TRANSPORTATION IMPACT STUDY

1303 LAKESHORE ROAD EAST

CITY OF MISSISSAUGA REGION OF PEEL

PREPARED FOR:
 HIGH STREET CAPITAL PARTNERS INC.
 PREPARED BY:
 C.F. CROZIER \& ASSOCIATES INC. 2800 HIGH POINT DRIVE, SUITE 100 MILTON, ON L9T 6P4

OCTOBER 2021

CFCA FILE NO. 2109-6004

The material in this report reflects best judgment in light of the information available at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties. C.F. Crozier \& Associates Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

Revision Number	Date	Comments
Rev.0	September, 2021	Issued for Client Review (Draft)
Rev.1	September, 2021	Issued for Client Review (Draft)
Rev.2	October, 2021	Issued for 1st Submission

1.0 Executive Summary

C.F. Crozier \& Associates Inc. (Crozier) was retained by High Street Capital Partners Inc. to undertake a Transportation Impact Study (TIS) in support of the planning applications for the development of property bounded by Lakeshore Road East to the south, Fergus Avenue to the west, residential buildings on the north and east, and Applewood Creek to the east in the City of Mississauga.

The proposed project includes a 10-storey residential building situated in the corner of Lakeshore Road East and Fergus Avenue, as well as 3-storeys of underground parking facilities. Furthermore, a full move site access is planned along Fergus Avenue.

The development is forecasted to generate 48 two-way trips (13 inbound and 35 outbound trips) during the weekday A.M. peak hour, and 58 two-way (35 inbound and 23 outbound) trips during the weekday P.M. peak hour.

Four Future developments located within the vicinity of the site were included in the analysis as part of the background developments. Future geometric changes along Lakeshore Road East and transit improvements were noted and commented on, but not included in calculations due to their early stage of development.

Under 2026 future background conditions, the movements that are over capacity are the A.M. northbound movement along Fergus Avenue at Lakeshore Road East and the P.M. eastbound movement left turn movement at Dixie Road and Lakeshore Road East. There is also increased delays for the southbound movement along Fergus Avenue at Lakeshore Road East and for the eastbound movement along St. James Avenue at Dixie Road.

The development is expected to generate 48 two-way (13 inbound and 35 outbound) trips during the weekday A.M. peak hour and 58 two-way (35 inbound and 53 outbound) trips during the weekday P.M. peak hour.

The proposed development is expected to have a negligible impact on the surrounding road network, especially along the major roads. Future total traffic is expected to operate similarly to the future background scenario in the horizon year 2026 except for a few movements along the minor roads.

200 parking spaces are provided on-site. With changes coming to the City of Mississauga's parking requirements and increased transit planned for the area, the proposed parking spaces are sufficient.

The proposed site accesses meet the Transportation Association of Canada's guidelines for site access spacing.

The planning applications can be supported from a transportation perspective as the site generated traffic will have a negligible effect on the public roadway system's operations, especially along the major routes.

TABLE OF CONTENTS

1.0 Executive Summary iii
2.0 Introduction 1
3.0 Existing Conditions 1
3.1 Development Lands 1
3.2 Boundary Road Network 1
3.3 Public Transit 2
3.4 Traffic Data 2
3.5 Traffic Modeling 3
3.6 Intersection Operations 3
4.0 Future Background Conditions 4
4.1 Study Horizons 4
4.2 Background Developments 4
4.3 Planned Multi-modal Developments 4
4.4 Traffic Growth Rates 5
4.5 Intersection Operations 5
5.0 Development Proposal 6
5.1 Site Generated Traffic 6
5.2 Trip Distribution and Assignment 7
6.0 Total Traffic Conditions 7
6.1 Intersection Operations 7
7.0 Comparison 9
8.0 Operations \& Safety Assessment 9
8.1 Sightline Review 9
8.2 Access Spacing 10
8.3 Access Configuration 10
8.4 Site Circulation Review 10
9.0 Parking Review 11
9.1 Parking Requirements - City of Mississauga's Zoning By-Law 0225-2007 11
9.2 Parking Requirements - City of Mississauga's Parking Master Plan 11
9.3 ITE Parking Demand 12
10.0 Travel Demand Management (TDM) 13
10.1 TDM Strategies Identification 13
10.2 TDM Strategies Implementation 13
10.3 TDM Monitoring 14
10.4 TDM Communications Study 16
10.5 Project Program Cost 16
10.6 Lakeshore Connecting Communities Transportation Master Plan 16
10.7 Hurontario Light Rail Transit. 17
11.0 Community Impacts 17
12.0 Recommendations 17
13.0 Conclusion 19

LIST OF TABLES

Table 1: Peak Hour Factors 2
Table 2: Existing Conditions 3
Table 3: 2026 Future Background Conditions 5
Table 4: Trip Generation 7
Table 5: Trip Distribution 7
Table 6: 2026 Future Total Conditions 8
Table 7: 2026 Future Background and Future Total Conditions 9
Table 8: Site Access Sight Distance Calculations 10
Table 9: City of Mississauga By-Law Parking Requirements 11
Table 10: City of Mississauga Parking Master Plan Parking Spaces Requirements 12
Table 11: ITE Parking Demand Calculations 12
Table 12: Travel Demand Management Plan Costs 16
LIST OF APPENDICES
Appendix A: Relevant Correspondence
Appendix B: Traffic Data
Appendix C: Level of Service Definitions
Appendix D: Transportation Tomorrow Survey Calculations
Appendix E: ITE Trip \& Parking Generation Manual Excerpts
Appendix F: Signal Warrants
Appendix G: Existing Detailed Capacity Analysis
Appendix H: Future Background Detailed Capacity Analysis
Appendix I: Future Total Detailed Capacity Analysis
Appendix J: Transit Excerpts
Appendix K: Relevant Background Development Excerpts
Appendix L: Site Plan
Appendix M: Zoning By-Law Excerpts

LIST OF FIGURES

Figure 1: Site Location
Figure 2: Existing Lane Configuration
Figure 3: Future Lane Configuration
Figure 4: \quad Existing Traffic Volumes
Figure 5: \quad Future Background 2026 Traffic Volumes
Figure 6: Trip Distribution
Figure 7: Site Traffic Volumes
Figure 8: Future Total 2026 Traffic Volumes
Figure 9: Site Circulation Diagram - Entering
Figure 10: Site Circulation Diagram - Exiting

2.0 Introduction

C.F. Crozier \& Associates Inc. (Crozier) was retained by High Street Capital Partners Inc. to undertake a Transportation Impact Study (TIS) in support of the planning applications for the development of a 10 -storey residential building and 3-storey underground parking facility. The purpose of the study is to evaluate the impacts of the proposed development on the surrounding road network and recommend mitigation measures if warranted. The following intersections were reviewed:

- Lakeshore Road East and Dixie Road (Signalized)
- Lakeshore Road East and Fergus Road (Stop Controlled)
- Proposed Site Access at Fergus Road

The following horizon timeframes were analyzed in this study, consistent with procedures set out in the City of Mississauga's Traffic Impact Study Guidelines:

- Existing traffic conditions
- Five-year horizon (2026) future conditions with and without the proposed development
- Weekday morning and afternoon peak hours

This study has been completed in accordance with the strategies set out in the City of Mississauga's Traffic Impact Study Guidelines, with the associated analysis and findings reported herein.

3.0 Existing Conditions

Transportation Impact Study Guidelines with the associated analysis and findings outlined herein.

3.1 Development Lands

The study area covers a developable area of 0.32 ha, and currently is occupied by a 2 -storey motel. The property is situated in a mixed-use neighborhood and is bounded by Lakeshore Road East to the south, Fergus Avenue to the west, residential properties to the north and east, and Applewood Creek to the east. The Site Plan has been included in Appendix L.

3.2 Boundary Road Network

The directions of the surrounding road networks are skewed, and therefore ambiguous. As such, to facilitate clarity throughout this report and supplementary analysis, Fergus Avenue and Dixie Road have been oriented in the north-south direction, and Lakeshore Road East and St. James Avenue has been assigned to be in the east-west direction.

Lakeshore Road East is an east-west roadway with a four-lane urban cross-section. Lakeshore Road East is under the jurisdiction of Peel Region and is defined as a major road. The roadway has sidewalks available on both and has a speed limit of $50 \mathrm{~km} / \mathrm{h}$ throughout the study area.

Dixie Road (Regional Road 4) is a north-south roadway with a two-lane (one way left-turn lane) urban cross section. Dixie Road is under the jurisdiction of Peel Region and is defined as a major road. The roadway has sidewalks available on both sides and has a posted speed limit of $50 \mathrm{~km} / \mathrm{h}$ throughout the study area.

Fergus Avenue is a north-south roadway with a two-lane urban cross-section. Fergus Avenue is under the jurisdiction of the City of Mississauga and is defined as a minor road. The roadway has a sidewalk on one side (east side) of the road and has an assumed speed limit of $40 \mathrm{~km} / \mathrm{h}$ throughout the study area.

St. James Avenue is an east-west roadway with a two-lane urban cross-section. St. James Avenue is under the jurisdiction of the City of Mississauga and is defined as a minor road. The roadway has a sidewalk on one side (south side) of the road and has an assumed speed limit of $40 \mathrm{~km} / \mathrm{h}$ throughout the study area.

3.3 Public Transit

There are multiple transit stops located in the vicinity of the site. The study area is serviced by 3 buses in the immediate vicinity of the study area and GO train service within a reasonable distance. MiWay Transit Route 5 'Dixie', and Route 23 'Lakeshore' have stops within walkable distance and operate on daily schedules and provide connections to major intersections and transit nodes in Mississauga. Both MiWay Routes 5 and 23 have a stop at Lakeshore Road East and Dixie Road with the bus stop within 200 meters of the proposed development. The Toronto Transit Commission (TTC) Route 110 'Islington South' provide service to the City of Toronto and operates out of the Long Branch GO which falls within 1.1 km of the site. This station connects to major GO train stations along the Lakeshore West route from Toronto to Hamilton.

3.4 Traffic Data

Turning movement counts at the intersections of Lakeshore Road East at Dixie Road as well as Lakeshore Road East at Fergus Avenue were conducted by Spectrum on Thursday, March 8, 2018 between the weekday A.M. peak hours of 7:00 a.m. and 8:45 a.m., and weekday P.M. peak hours of 5:00 p.m. and 5:45 p.m.

Traffic Data contained in Appendix D provides a summary of the turning movement counts. Refer to Figure 5 for the existing traffic volumes. Peak hour factors used for analysis were determined based on existing traffic and are summarized in Table 1.

Table 1: Peak Hour Factors

Intersection	Weekday a.m. Peak Hour Factor	Weekday p.m. Peak Hour Factor
Dixie Road at Lakeshore Rd E	0.92	0.96
Dixie Road at St. James Ave	0.88	0.94
Fergus Ave at Lakeshore Rd E	0.94	0.94
Fergus Ave at St. James Ave	0.93	0.78

3.5 Traffic Modeling

The assessment of intersections is based on the method outlined in the "Highway Capacity Manual, 2010 " using Synchro 11 modelling software. Intersections are assessed using the Level of Service (LOS) metric, with ranges of delay designated a letter ranging from "A" to " F ". For stop-controlled intersections, a Level of Service "A" or "B" would typically be expected during off-peak hours when there are lower traffic volumes on roadways. Levels of Service "C" to "F" would characteristically be measured during commuter peak hours when greater traffic volumes produce longer travel times. The Level of Service definitions for signalized and stop-controlled intersections is included in Appendix C.

Per the City of Mississauga's Traffic Impact Study (TIS) Guidelines, saturation flow rates of 1860, 1900, and $1640 \mathrm{veh} / \mathrm{hr} /$ lane were used for advanced left, through and right movements respectively, as applicable to City-owned roads. A saturation flow rate of 1900 was used for left turns that did not have an advance signal. Also, as per City guidelines, a heavy vehicle factor of 2.0 PCUs was assumed for large vehicles. Pedestrian walking speeds were assumed to be $1.0 \mathrm{~m} / \mathrm{s}$ for a conservative estimate in a residential neighborhood. The critical gap for City-owned roads was based on Highway Capacity Manual (HCM) 2010 guidelines as recommended by the City's TIS guide. As per City's TIS guidelines, the lost time was assumed to be 1.0 sec and 5.0 sec for the advanced green and main phase, respectively, for City-owned roads.

3.6 Intersection Operations

The traffic operations of the intersections of study were analyzed based on recorded traffic data during the A.M. and P.M. peak hours. The detailed capacity analysis is included in Appendix G. The operational analysis was conducted based on traffic volumes listed in Figure 4. Table 2 and Figure 4 outline the existing traffic operations.

Table 2: Existing Conditions

Intersection	Control	Peak Hour	Level of Service (Average Delay per Vehicles)	V/C Ratio(s) > 0.85 (Approach)
Fergus Avenue at St. James Avenue (Stop Control)	Stop Control	A.M.	A (9.1 s)	0.02 (WB)
		P.M.	A (9.1 s)	0.08 (WB)
Fergus Avenue at Lakeshore Road East (Stop Control)	Stop Control	A.M.	F (295.3 s)	0.98 (NB)
		P.M.	E (41.9 s)	0.31 (SB)
Dixie Road at St. James Avenue (Stop Control)	Stop Control	A.M.	C (21.7 s)	0.23 (EB)
		P.M.	B (18.0 s)	0.11 (EB)
Dixie Road at Lakeshore Road East (Stop Control)	Signal	A.M.	C (30.4 s)	0.76 (EBL)
		P.M.	C (30.5 s)	0.93 (WBT)

Note: Delay at stop-controlled intersections is based on the most critical minor approach.
As can be seen in Table 2, none of the movements are over capacity. However, the A.M. northbound movement along Fergus Avenue at Lakeshore Road East and the P.M. westbound movement through movement at Dixie Road and Lakeshore Road East are both approaching capacity. This is reflected in the delay for the northbound traffic at Fergus Avenue and Lakeshore Road East as the vehicles there are experiencing significant delays. The LOS during the A.M and P.M. peak periods are " F " and "E" respectively. These values are based on the northbound and southbound approaches as their delays as 295.3 and 41.9 seconds respectively.

The high volume along Lakeshore Road East that is leading to the high v/c ratio for the westbound through movement is of concern but has not created a significant delay at the intersection in this scenario.

4.0 Future Background Conditions

4.1 Study Horizons

Per the City of Mississauga's Transportation Impact Study Guidelines and confirmed with City of Mississauga staff per our Terms of Reference attached in Appendix A, a five-year horizon for the year of 2026 was considered for the analysis.

4.2 Background Developments

There are currently 4 active development applications in the vicinity of the proposed site. The first application located at 1082 Lakeshore Road East, pertains to Ontario Power Generation (OPG) lands to the east of Port Credit near Lakeshore East at Lakefront Promenade. The development of the 177-acre site includes 8,004 residential units ranging from townhouses to high-rise buildings. The Municipal Infrastructure Group Ltd. was retained for transportation advisory services in June 2020. Per the findings in the report, it is estimated the development will generate 2,261 two-way trips in the A.M. peak hour and 2,881 two-way trips in the P.M. peak hour. All relevant excerpts from the Traffic Considerations Report for the development are provided in Appendix K.

1345 Lakeshore Road East is an active application which fronts onto Dixie Road and Lakeshore Road East. This development features 474 residential condominium units and $930 \mathrm{~m}^{2}$ of commercial/retail GFA. BA Group was retained to provide transportation considerations and provided a report in August 2020. Per this report, this development is expected to generate 160 two-way trips in the A.M. peak hour and 215 two-way trips in the P.M. peak hour. All relevant excerpts from the Traffic Considerations Report for the development are provided in Appendix K.

At 1381 Lakeshore Road East, the application is for a proposed mixed-use development including a 15 -storey residential high-rise building with an 8 -storey residential podium and ground floor retail. Furthermore, a 3-level underground parking facility with 6 surface-level spaces is included in the development. Cole Engineering Group Ltd. was retained to complete a Traffic Impact and Parking Study in August 2020. Per the findings in the report, it is estimated that the development will generate 66 two-way trips in the A.M. peak hour, and 46 two-way trips in the P.M. peak hour. All relevant excerpts from the Traffic Impact Study are provided in Appendix K.

1407 Lakeshore Road East consists of three (3) mixed used buildings in development by Booth Developments. A site plan was provided for this development and is included in Appendix K. Using the site data included as part of the site plan and the Institute of Transportation Engineers (ITE) trip generation manual, an estimate for the total number of trips was generated. For the A.M peak hour, 10 two-way trips were estimated while 17 two-way trips were estimated for the P.M. peak hour.

4.3 Planned Multi-modal Developments

The Hurontario Light Rail Transit (LRT) line is under construction and expected to finish in 2024. This LRT project will provide an expanded and reliable service north along Hurontario Road with stops at the major transit hubs up to the City of Brampton, including the Port Credit GO, the Cooksville GO, the City Centre and the Brampton Gateway Terminal. The Port Credit GO is one of the stops along the current MiWay Route 23.

The Lakeshore Connecting Communities Transportation Master Plan is a plan to redevelop Lakeshore Road in the City of Mississauga in a complete streets design which will provide increased access to all residents along this corridor.

The section of the corridor that includes this development has been designated as segment 7 by the plan and is planned to feature separated bike lanes in both directions as well as dedicated transit lanes. This planned work is expected to be completed in 2041 however, improvements to the existing transit services are planned along Lakeshore. These improvements include plans to:

- Increase local bus service by doubling the peak frequency of the local bus
- Upgrade local bus service from 40 ft to 60 ft buses to increase capacity
- Introduce express bus service layered on top of the local bus service

4.4 Traffic Growth Rates

Per the city's instructions, a growth rate of 1.5% was applied to the eastbound traffic on Lakeshore Road during the A.M. and P.M. peak periods and a growth rate of 0.0% and 1.0% was applied to the westbound traffic on Lakeshore Road during the A.M. and P.M. peak periods respectively. applied to all through traffic during the weekday peak periods along the road network in the study area. Figure 5 illustrates the future background traffic volumes for the 2026 horizon year and reflects the traffic growth rate applied to the traffic volumes at the intersection in addition to the background development's traffic.

4.5 Intersection Operations

Traffic operations at the study intersections were analyzed with the growth rates and traffic from background developments. Table 3 outlines the 2026 future background Levels of Service. Detailed capacity analysis worksheets for the Future Background conditions are included in Appendix H.

Table 3: 2026 Future Background Conditions

Intersection	Control	Peak Hour	Level of Service (Average Delay per Vehicles)	V/C Ratio(s) > 0.85 (Approach)
Fergus Avenue at St. James Avenue (Stop Control)	Stop Control	A.M.	A (5.4 s)	0.03 (WB)
		P.M.	A (9.5 s)	0.10 (WB)
Fergus Avenue at Lakeshore Road East (Stop Control)	Stop Control	A.M.	F (482.3 s)	1.32 (NB)
		P.M.	F (63.6 s)	0.44 (SB)
Dixie Road at St. James Avenue (Stop Control)	Stop Control	A.M.	E (45.3 s)	0.63 (EB)
		P.M.	D (29.1 s)	0.35 (EB)
Dixie Road at Lakeshore Road East (Signalized)	Signal	A.M.	C (31.9 s)	1.04 (EBL)
		P.M.	D (36.4 s)	0.96 (WBT)

Note: Delay at stop-controlled intersections is based on the most critical minor approach.

As can be seen in Table 3, the A.M. northbound movement along Fergus Avenue at Lakeshore Road East and the P.M. eastbound movement left turn movement at Dixie Road and Lakeshore Road East are both finding a lack of gaps along Lakeshore Road East. These movements require gaps in the opposing traffic and are waiting for one to appear. This is reflected in the delay for the northbound traffic at Fergus Avenue and Lakeshore Road East as the vehicles there are experiencing significant delays and giving an LOS of "F". The increased volume projected along Lakeshore Road East has continued to reduce the gaps that would allow for the turning movements to occur and has led to these delays and capacity issues.

The eastbound movement at Dixie Road and St. James Avenue is also experiencing an LOS of "E" during the A.M. peak period as vehicles try to avoid the intersection at Lakeshore Road East and Dixie Road. As the volume increases along Dixie Road, there are less gaps for the vehicles attempting to turn left and go northbound. The development at 1345 Lakeshore Road East also has a full moves access just west of the intersection which contributes significantly to the volume.

5.0 Development Proposal

The development covers a developable area of 0.32 ha, and currently is occupied by a 2 -storey motel. The property is situated in a mixed-use neighborhood and is bounded by Lakeshore Road East to the south, Fergus Avenue to the west, residential properties to the north and east, and Applewood Creek to the east. The site is accessed by a full moves access along Fergus Avenue.

The elements envisioned for this development include:

- A 10-storey residential development with 169 units
- An underground parking area
- An aboveground parking area

5.1 Site Generated Traffic

The proposed development will result in additional vehicles to travel along the surrounding road network that previously was not present. The proposed development will also result in additional turning movements at the boundary road intersections.

The trip generation for the proposed development was estimated using rates provided in the ITE Trip Generation Manual, 10th Edition. The relevant excerpts from the manual can be found in Appendix E.

Land use category 221 "Multifamily Housing (Mid-rise)" was used to forecast the trips generated by the proposed development. The forecasted primary trips are included in Table 4 for both the A.M. and P.M. peak hours.

The existing modal split was determined using data from the 2016 Transportation Tomorrow Survey (TTS). According to available data, an 86% modal split was applied to all trips generated by the proposed development. The calculations that led to this determination can be found in Appendix D.

Table 4: Trip Generation

ITE Category	Units	Roadway Peak Hour	Rate/Equation Used	Number of Trips		
		Inbound	Outbound	Total		
Multifamily Housing (Mid-Rise) (LUC 221)	169	Weekday A.M.	$\operatorname{Ln}(T)=0.83 \operatorname{Ln}(X)-0.27$	13	35	48
		$\operatorname{Ln}(T)=0.83 \operatorname{Ln}(X)-0.05$	35	23	58	

Note: Number of trips reflect the 14% non-auto modal reduction.
Overall, the development is expected to generate 48 two-way (13 inbound and 35 outbound) trips during the weekday A.M. peak hour and 58 two-way (35 inbound and 53 outbound) trips during the weekday P.M. peak hour.

5.2 Trip Distribution and Assignment

Data from the 2016 Transportation Tomorrow Survey (TTS), provided in Appendix D, was used to determine the trip distribution for the proposed development. The trip distribution for the proposed development, divided by time of travel and direction of travel, is included in Table 5 with detailed distributions shown in Figure 6.

The assumed trip assignment for the proposed development is summarized in Figure 7.
Table 5: Trip Distribution

	A.M. Peak Hour	P.M. Peak Hour
Direction	In (Out)	In (Out)
North	$41 \%(46 \%)$	$45 \%(46 \%)$
South	$0 \%(0 \%)$	$0 \%(0 \%)$
East	$46 \%(50 \%)$	$48 \%(43 \%)$
West	$13 \%(4 \%)$	$7 \%(11 \%)$

Given that the city centers of Mississauga and Toronto are to the north and east, respectively, of this development these distributions make sense. No traffic to or from the south is expected as there is very little between the development and Lake Ontario outside of the wastewater treatment facility.

6.0 Total Traffic Conditions

6.1 Intersection Operations

Traffic operations at the intersections of study were analyzed after the addition of site generated traffic. Total traffic volumes are illustrated in Figure 8. The 2026 total traffic Levels of Service are tabulated in Table 6. Appendix I includes detailed capacity analysis worksheets.

Table 6: 2026 Future Total Conditions

Intersection	Control	Peak Hour	Level of Service (Average Delay per Vehicles)	V/C Ratio(s) > 0.85 (Approach)
Fergus Avenue at St. James Avenue (Stop Control)	Stop Control	A.M.	A (9.2 s)	0.03 (WB)
		P.M.	A (9.5 s)	0.01 (WB)
Fergus Avenue at Lakeshore Road East (Stop Control)	Stop Control	A.M.	F (482.3 s)	1.32 (NB)
		P.M.	F (273.6 s)	1.16 (SB)
Dixie Road at St. James Avenue (Stop Control)	Stop Control	A.M.	E (46.8 s)	0.66 (EB)
		P.M.	D (30.4 s)	0.37 (EB)
Dixie Road at Lakeshore Road East (Signalized)	Signal	A.M.	C (34.0 s)	1.07 (EBL)
		P.M.	D (37.5 s)	0.97 (WBT)
Site Access at Fergus Avenue (Stop Control)	Stop Control	A.M.	A (9.0 s)	0.04 (WB)
		P.M.	A (9.4 s)	0.03 (WB)

Note: Delay at stop-controlled intersections is based on the most critical minor approach.
As can be seen in Table 6, the major areas of concern in terms of delay are along the minor roads of Fergus Avenue and St. James Avenue. These delays are caused by the increased traffic along Fergus Avenue and Lakeshore Road East. This increased traffic means that vehicles are waiting longer periods for an acceptable gap to appear to make the movements.

Both the southbound and northbound movements at Fergus Avenue and Lakeshore Road East have an LOS of "F" during the A.M and P.M. peak periods. The delay at the Dixie Road and St. James Avenue intersection has increased and caused the LOS to become an " E ". This is a common occurrence for developments on minor streets that approach a major arterial road such as Lakeshore Road East as the priority needs to be given to the higher volumes on this major road.

The increased traffic going northbound along Dixie Road from the site are also adding to an existing issue for the eastbound left turn movement at the Lakeshore Road East Intersection. However, the intersection is still operating at an LOS of "C" and "D" during the A.M. and P.M. peak periods respectively.

7.0 Comparison

The effect of the site development can be seen Table 7 compares the future background and future total traffic operations on the boundary road network.

Table 7: 2026 Future Background and Future Total Conditions

Scenario		Future Background 2026		Future Total 2026	
Intersection	Peak Hour	Level of Service (Average Delay per Vehicles)	$\begin{gathered} \hline \text { V/C Ratio(s) > } \\ 0.85 \\ \text { (Approach) } \end{gathered}$	Level of Service (Average Delay per Vehicles)	$\begin{gathered} \text { V/C Ratio(s) } \\ >0.85 \\ \text { (Approach) } \end{gathered}$
Fergus Avenue at St. James Avenue (Stop Control)	A.M.	A (5.4 s)	0.03 (WB)	A (9.2 s)	0.03 (WB)
	P.M.	A (9.5 s)	0.10 (WB)	A (9.5 s)	0.01 (WB)
Fergus Avenue at Lakeshore Road East (Stop Control)	A.M.	F (482.3 s)	1.32 (NB)	F (482.3 s)	1.32 (NB)
	P.M.	F (63.6 s)	0.44 (SB)	F (273.6 s)	1.16 (SB)
Dixie Road at St. James Avenue (Stop Control)	A.M.	E (45.3 s)	0.63 (EB)	E (46.8 s)	0.66 (EB)
	P.M.	D (29.1 s)	0.35 (EB)	D (30.4 s)	0.37 (EB)
Dixie Road at Lakeshore Road East (Signalized)	A.M.	C (31.9 s)	1.04 (EBL)	C (34.0 s)	1.07 (EBL)
	P.M.	D (36.4 s)	0.96 (WBT)	D (37.5 s)	0.97 (WBT)

Note: Delay at stop-controlled intersections is based on the most critical minor approach.
As shown in Table 7, the average delay per vehicle and the volume to capacity ratios between the two scenarios are similar across most of the intersections for both peak periods. At Fergus Avenue and St. James Avenue, the difference during the A.M. peak hour is 3.8 s and does not reduce the LOS of " A " for the movement while the delay during the P.M. peak hour remains the same. At the Dixie road intersections at St. James Avenue and Lakeshore Road East the maximum delay increase is 2.1 s and none of the LOS values change.

The major difference occurs in the P.M. peak hour at the Fergus Avenue and Lakeshore Road East intersection. For the southbound approach, the delay increases from 63.6 s to 273.6 s .

8.0 Operations \& Safety Assessment

The site was reviewed for several criteria, including sightlines, site access and site circulation, and there were no operational or safety issues from the transportation aspect.

8.1 Sightline Review

The available sightlines for the future intersection of Fergus Road and the Site Access was measured and compared to the standards set out in the Transportation Association of Canada (TAC) Geometric Design Guide for Canadian Roads (GDGCR), June 2017.

Sight distance was measured from the proposed site accesses using the following assumptions:

- A standard driver eye height of 1.08 meters for a passenger car
- A 5.4-metre setback from the approximate extension of the outer curb to represent a vehicle waiting to exit the site
- A passenger car was used as the design vehicle
- The time gap was assumed for the design vehicle as per table 9.93 of the GDGCR

Intersection sight distance is calculated using equation 9.9.1 from the GDGCR as outlined below:

$$
I S D=0.278 * \vee \text { major } * t g
$$

Where;
ISD = Intersection Sight Distance
V major $=$ design speed of roadway (km / h)
tg $=$ assumed time gap for vehicles to turn from stop onto roadway (s)
A design speed $20 \mathrm{~km} / \mathrm{h}$ higher than the posted or assumed speeds of each road of study was assumed for the sight distance analysis. Table 8 summarizes the sight distance analysis for the intersection of Fergus Road and the Site Access.

Table 8: Site Access Sight Distance Calculations

Intersection	$\mathbf{V}_{\text {major (km/h) }}$	ISD (m)
Fergus Road \& Site Access	60	126

Table 8 demonstrates that the available sight distance achieved meets the minimum requirement for turning vehicles at the access. To the north, the sightlines are clear along Fergus Avenue and the stop signs at Fergus Avenue for the vehicles approaching along St. James Avenue prevent these vehicles from approaching the access at speed. To the south, there are no obstructions for the 126 m which meets the intersection of Fergus Avenue and Lakeshore Road East. As outlined in Table 8, the minimum sight distance requirements are fulfilled for the proposed site access. Therefore, the proposed subdivision is supported with regards to sight distance.

8.2 Access Spacing

The access along Fergus Avenue is approximately 50 m away from the two-way stop-controlled intersection at St. James Avenue and 125 m away from the two-way stop-controlled intersection at Lakeshore East. As Fergus Avenue is considered a local road, the requirements for access spacing outlined in Chapter 8 of the TAC GDGCR are met and there is no issue regarding the construction of this access.

8.3 Access Configuration

A full moves access is preferable as it allows drivers to choose their path out of the development along Fergus Avenue. A stop sign should be installed at the access for vehicles leaving the development to provide control for safety while minimizing the delay for the north-south traffic along Fergus Avenue. With no limitations due to the spacing of the access, this configuration is allowed and recommended.

8.4 Site Circulation Review

As shown in Figures 9 and 10, the site can accommodate delivery and moving vehicles for the residents. As the fire route is along Fergus Avenue, there are no restrictions on the movement of these vehicles while on site.

9.0 Parking Review

9.1 Parking Requirements - City of Mississauga's Zoning By-Law 0225-2007

Relevant Zoning By-Law Excerpts are included in Appendix M. It is noted that the Site is currently zoned as an apartment building in Zone C4. The parking requirements for the development are outlined in Table 9.

Table 9: City of Mississauga By-Law Parking Requirements

Land Use	Rate per Mississauga Zoning By-Law 0225-2007		Proposed Number of Units	Required Number of Parking Spaces	Proposed Number of Parking Spaces	Surplus/ Deficiency
Residential -169 Units	1.00 resid	nt space per studio unit	5	5	200	-44
		8 resident spaces one-bedroom unit	110	130		
		6 resident spaces two-bedroom unit	45	61		
	1.5 resident spaces per three-bedroom unit		9	14		
	0.20 visitor spaces per unit		169	34		
Total				244		
Loading Space - 1 Apartment Building		1.0 loading space per apartment containing a minimum of 30 dwelling units	1	1	1	0

As can be seen in Table 9, the site has a planned deficiency of 44 parking spaces under the current by-laws with 200 parking spaces provided and 244 spaces required. The site meets the requirement for the 1 loading space per building for apartment buildings.

9.2 Parking Requirements - City of Mississauga's Parking Master Plan

The City of Mississauga recently released the latest 'Parking Regulations-Draft Policy Directions for Consultation' on May 14, 2021. While the parking rates outlined in the report are not approved, it gives us a look into the future of parking rates in the City. This policy change is currently on schedule for approval in 2021 and held a public forum on September 14, 2021. The proposed site is within "Precinct 3 " which is contemplating 0.8 spaces/unit (no unit split) for apartments and Visitor is proposed at 0.15 spaces/unit. These rates are shown in Table 10.

Table 10: City of Mississauga Parking Master Plan Parking Spaces Requirements

Land Use	Proposed Parking Rates	Proposed Number of Units	Required Number of Parking Spaces	Proposed Number of Parking Spaces	Surplus/ Deficiency
Residential- 169 Units	0.8 resident space per unit	169	136		200
	0.15 visitor spaces per unit	169	26	$\mathbf{+ 3 8}$	
	Total		$\mathbf{1 6 2}$		

Under these new regulations, the site would have an excess of 38 parking spaces. While these new regulations have not been approved as of the submission of this report, the proposed changes reflect the acknowledgement of the changing requirements for parking capacity.

9.3 ITE Parking Demand

The Institute of Transportation Engineers (ITE) Parking Generation (5th Edition) provides data on surveys across the USA and Canada of peak parking demands for different land uses. The land-use code 221 (Multifamily Housing - Mid Rise), which includes mid-rises. Typically, ITE rates include visitor parking; however, the City of Mississauga's Zoning By-Law 0225-2007 visitor parking rate was used to provide a more conservative rate.

The estimated parking demand calculations are summarized in Table 11.
Table 11: ITE Parking Demand Calculations

Land Use	Equation/Rate Used	Required Number of Parking Spaces	Proposed Number of Parking Spaces	Surplus/ Deficiency
Residential- 169 Units	$\mathrm{P}=1.04(\mathrm{X})-15.22$	161		
	0.20 visitor spaces per Unit (per Zoning By-law-0225-2007)	34	200	$\mathbf{+ 5}$

Using the ITE parking generation formula and the City's visitor parking rate, the site would have sufficient parking for the proposed development.

With the proposed changes to the City of Mississauga's parking rate and the improvements to the transit network, the proposed parking supply should be sufficient.

10.0 Travel Demand Management (TDM)

Transportation Demand Management (TDM) refers to various strategies to reduce traffic congestion, minimize the number of single-occupant vehicles, encourage non-auto modes of travel, and reduce vehicle dependency to create a sustainable transportation system.

TDM strategies have multiple benefits, including the following:

- Reduced auto-related emissions to improve air quality
- Decreased traffic congestion to reduce travel time
- Increased travel options for residents and commuters
- Reduced personal transportation costs and energy consumption
- Support Provincial Smart Growth Objectives

The above-combined benefits will assist in creating a more active and livable community.

10.1 TDM Strategies Identification

The City of Mississauga is a pedestrian and cycling supportive community that embraces the "complete streets" concept by encouraging commuter and recreational travel by walking, cycling and using public transit through a safe and desirable Municipality-wide network of on-road and offroad pedestrian and cycling facilities.

Currently, there are sidewalks to the south of the proposed development along the north side of Lakeshore Road East that lead to the bus stops at Dixie Road.

As part of the Lakeshore Connecting Communities Transportation Master Plan, discussed later in this section, a separated bike lane will be included along Lakeshore Road East. This will promote the use of bicycle transportation as well as provide an increased sense of safety for pedestrians as the gap between the pedestrians and vehicles will be larger.

10.2 TDM Strategies Implementation

An increase in transit use is fund amental to the overall reduction of automobile use. People associate utilities with each mode of transportation (such as safety, reliability, comfort, accessibility, speed, cost and travel time). Their mode choice is based on the relative costs associated with one versus another mode. The two (2) characteristics that will most likely influence mode choice are monetary cost and travel time.

Transit productivity is a measure of return on investment in the transit system. It measures how many travelers use the transit service provided in a region. Local buses with few passengers suggest that transit systems are not providing transportation benefits consistent with their capital and operating costs. Having more passengers on each bus generates more revenue for transit agencies and can result in better air quality and less congestion. Moreover, transit service levels (i.e., network coverage and frequency) have a strong positive correlation with transit demand (i.e., ridership).

As an incentive to encourage residents to use the MiWay transit service, the Owner will consider providing and distributing (one time) prepaid and fee-waived complimentary PRESTO cards. This subsidized transit card will provide a financial incentive to encourage public transit, especially for 'first-time' users to try local transit services as a primary mode of transportation, which is in keeping with a recent incentive (offering free pre-loaded PRESTO cards) initiated by the City. Each PRESTO card is to be pre-loaded with $\$ 50-\$ 100$. The PRESTO cards' total cost is estimated to be ($\$ 50-$ $\$ 100$ PRESTO card $\times 169$ units) $\$ 8,450-\$ 16,900$ to be borne by the Owner. Note that the amount and provision of PRESTO cards are subject to the Owner's discretion.

It is recommended that the Owner make an information package to inform new/prospective residents with alternative travelling options. It is recommended that the Owner consults with the City to provide the following materials to promote active transportation:

- Peel Region Transit Map
- City of Mississauga Trails Map
- Peel Region Cycling Map
- Peel Region Bike-to-Work Practical Guide

In addition to the above-noted materials, the information package will also include information on transit schedules (i.e., MiWay Transit, Go Transit) to assist residents in planning their trips (i.e., to/from work/school) utilizing the existing and growing transit network system. A location map will also be prepared to indicate the nearby facilities and points of interest (i.e., retail store, grocery store, school, community center and library) within convenience and comfortable walking distance to further discourage vehicle dependency.

The Owner's total approximate cost to compile the above information into an information package will be approximately $\$ 500$ to be borne by the Owner. The above information is subject to availability and to be provided at the Owner's discretion.

10.3 TDM Monitoring

Monitoring a TDM program can be accomplished by conducting a biennial commuter survey to determine the TDM measures (individually or as a combination). It is recommended that the first survey be conducted at substantial occupancy (80\%) and after that every two years.

A commuter survey typically gathers quantitative data (i.e., percentage use of the various modes of transportation) and qualitative data (i.e., respondents' perception of the alternative transportation programs). This survey will produce and collect essential information to understand the effectiveness of the proposed TDM strategies, which will provide valuable indications (if any) in determining adjustments to the TDM initiatives to be required to achieve or exceed the targeted outcomes. Moreover, the collected data can also focus on the marketing initiatives and efforts of the City.

The questionnaire is recommended to contain no more than five questions, as the length of the survey has a negative correlation with both respondent rate and accuracy. Keeping the survey short and simple to understand is the first principle in achieving essential survey data. In general, the survey should gather the following information:

- Trip Rate - to obtain information on how many people travel during the morning and afternoon peak hours.
- Modal Split -what is the primary transportation modes when travelling during peak hours.
- Trip Purpose - this is to test whether most trips are the journey-to-work trip or other trips, as the TDM strategies should be altered accordingly between work trips and non-work trips.
- Traveler's preference - to understand, aside from driving alone, which TDM measures have the most significant potential to reduce vehicle dependency further.
- Comments - to allow respondents to express any comments that can assist in improving the proposed/implemented TDM strategies.

A survey's statistical reliability depends on the response rate, which is the number of correctly completed surveys compared to the total number of distributed surveys. Therefore, it is essential to maximize the survey response rate. Some of the methods that can be used to maximize the response rate are listed as follows:

- Place a notice on a bulletin board and other high pedestrian locations and attach a cover memorandum to the questionnaire describing the purpose of the survey and requesting cooperation.
- Inform recipients of the duration it takes to respond to the questionnaire and note that their responses are strictly confidential.
- Offer prizes to respondents, and it is preferably based on a drawing to ensure un-biases.
- Offer a contact person and phone number to respond to any questions that survey recipients may have.
- Facilitate access to the survey questionnaire by posting it on a webpage. As an alternative, deliver the questionnaire and pick-up responses of the different tenants.
- Providing the survey in different languages to assist in non-English speaking residents to understand the survey.
- Send one or more reminders (e-mail and flyers) requesting to complete the survey by the due date.

As noted previously, allowing the completion of the survey on-line can help reduce the time and effort spent on circulating and administrating the survey.

It is recommended to conduct a baseline survey to residents before starting the TDM program. This can assist in evaluating the program's effectiveness (before and after comparative analysis). Besides, comparing the biennial survey results to previous years can evaluate the program's progress and potential modifications. It is possible to add survey questions to assess the new improvements. Furthermore, MiWay can be consulted for ridership statistics. The estimated cost to conduct the survey is $\$ 500$.

10.4 TDM Communications Study

To facilitate the implementation of TDM strategies, information and incentives must be passed from the City to the public effectively.

The Owner is to contact the City, which will provide information packages with Site-specific information on nearby pedestrian, bicycle and transit facilities. These information packages are to be provided by the City and distributed by the Owner at the time of house closing.

The Owner is to prepare a TDM event, which occurs when the units are at a minimum of 50% occupancy. This event would provide an opportunity for Region and MiWay Staff to attend and promote sustainable transportation through presentations and question/answer sessions, to encourage engagement and participation in creating and maintaining a sustainable community. Distribution of PRESTO cards would take place at this event by City and MiWay Staff. City and MiWay Staff are to be provided with details and notice of the TDM event at least two months before the event's date. The estimated cost of the TDM event is $\$ 1,000$ to be borne by the Owner.

10.5 Project Program Cost

The estimated cost to implement the TDM program components are outlined in Table 12. The estimated cost to administer the TDM plan would be $\$ 8,450-\$ 18,900$.

Table 12: Travel Demand Management Plan Costs

TDM Measure	Unit Price	Quantity / Number of	Product Cost
PRESTO Cards	$\$ 50-\$ 100$	169	$\$ 8,450-\$ 16,900$
TDM Information Package	$\$ 500$	1	$\$ 500$
Travel Survey	$\$ 500$	11,000	1
TDM Event	Total Cost	$\$ 500$	

10.6 Lakeshore Connecting Communities Transportation Master Plan

The Lakeshore Connecting Communities Transportation Master Plan is a plan to redevelop Lakeshore Road in the City of Mississauga in a complete streets design which will provide increased access to all residents along this corridor.

The section of the corridor that includes this development has been designated as segment 7 by the plan and is planned to feature separated bike lanes in both directions as well as dedicated transit lanes. This planned work is expected to be completed in 2041 however, improvements to the existing transit services are planned along Lakeshore. These improvements include plans to:

- Increase local bus service by doubling the peak frequency of the local bus
- Upgrade local bus service from 40 ft to 60 ft buses to increase capacity
- Introduce express bus service layered on top of the local bus service

This plan would help increase the usage of non-auto travel methods by increasing the availability and attractiveness of the other methods. With increased bus service and safety for the bicyclists, the Lakeshore Connecting Communities Transportation Master Plan looks to increase the multi-modal aspects of this corridor.

10.7 Hurontario Light Rail Transit

MiWay Route 23 also includes a stop at the Port Credit GO station, the site of development of the Hurontario LRT line currently under construction and expected to finish in 2024. This LRT project will provide an expanded and reliable service north along Hurontario Road with stops at the major transit hubs up to the City of Brampton, including the Port Credit GO, the Cooksville GO, the City Centre and the Brampton Gateway Terminal.

While already a major GO station, connecting along the Lakeshore West GO Line, Port Credit GO will attract more passengers with the construction of this LRT line. The proposals outlined in the Lakeshore Connecting Communities Transportation Master Plan would increase the capacity of the transit network to move people from this development to the major hub.

These plans, along with our TDM proposals, will help increase the percentage of trips that are undertaken using non-auto modes. Our TDM methods should include information regarding these plans to all prospective residents as this could impact their decisions and travel patterns.

11.0 Community Impacts

A community meeting was held on September 8, 2021 to hear and address concerns from the community. The impacts on the community from a traffic perspective are the volume developments outlined in the earlier sections of this study as well as the increased traffic on the alternative methods of transportation outlined in the previous section.

As was shown earlier, the areas of concern in terms of delay are along the minor roads of Fergus Avenue and St. James Avenue as they approach the major roads of Lakeshore Road East and Dixie Road respectively. The delays at these intersections will increase but the intersection of Fergus Avenue and St. James Avenue did not suffer any significant increases due to this development.

12.0 Recommendations

The development does not significantly increase the delay for most of the intersections in the boundary road network. The increases are along the minor roads, especially Fergus Avenue, and do not impact the major arterial roads.

The TDM measures outlined in this report should help reduce the number of non-auto trips and change the current percentage from a $14 \% / 86 \%$ split. These measures included:

- PRESTO Cards
- TDM Information Package

The measures that are currently either in process or are in planning by the City of Mississauga will also improve the network by reducing the non-auto trips. These measures include:

- Increases to the local bus service by doubling the peak frequency of the local bus
- Expresses bus service layered on top of the local bus service
- Lakeshore Road BRT Construction and road redesign
- Hurontario LRT

The usage of TDM strategies will aid in the performance of the intersections by reducing the auto trips generated by the site. With a reduction in vehicles, less time will be spent by vehicles as they wait for gaps on the major roads.

13.0 Conclusion

The analysis contained within this report has resulted in the following key findings:

- The existing boundary road network is currently operating at a LOS "C" or better except for Fergus Avenue's intersection at Lakeshore Road East where the northbound and southbound movements are experiencing significant delays due to the high volume on the major road traffic.
- Growth rates were provided by the City of Mississauga and applied as directed.
- Four Future developments located within the vicinity of the site were included in the analysis as part of the background developments. Future geometric changes along Lakeshore Road East and transit improvements were noted and commented on, but not included in calculations due to their early stage of development.
- Under 2026 future background conditions, the movements that are over capacity are the A.M. northbound movement along Fergus Avenue at Lakeshore Road East and the P.M. eastbound movement left turn movement at Dixie Road and Lakeshore Road East. There is also increased delays for the southbound movement along Fergus Avenue at Lakeshore Road East and for the eastbound movement along St. James Avenue at Dixie Road.
- The development includes a 10-storey residential development with 169 units with an underground parking area and an aboveground parking area. The site is accessed by a full moves access along Fergus Avenue.
- The development is expected to generate 48 two-way (13 inbound and 35 outbound) trips during the weekday A.M. peak hour and 58 two-way (35 inbound and 53 outbound) trips during the weekday P.M. peak hour.
- The proposed development is expected to have a negligible impact on the surrounding road network, especially along the major roads. Future total traffic is expected to operate similarly to the future background scenario in the horizon year 2026 except for a few movements along the minor roads.
- 200 parking spaces are provided on-site. With changes coming to the City of Mississauga's parking requirements and increased transit planned for the area, the proposed parking spaces are sufficient.
- Several Transportation Demand Management opportunities and strategies are to be introduced to discourage single-occupant vehicle usage within the study area.

We trust that this review satisfies any transportation concerns associated with the proposed development. Please feel free to contact the undersigned for any further information required.

Respectfully submitted,

C.F. CROZIER \& ASSOCIATES INC.

Ian Lindley, E.I.T.
Transportation
$\mathrm{IL} / \mathrm{stm}$
$\mathrm{I}: \backslash 2100 \backslash 2109-1303$ Lakeshore Rd. E. Ltd $\backslash 6004$ - High Street Capital Lakeshore Infill \backslash Reports $\backslash 2021.10 .04 _6004 _T I S . d o c x$

APPENDIX A

Relevant Correspondence

From:	Kate Vassilyev Kate.Vassilyev@mississauga.ca
Sent:	Wednesday, June 16, 2021 10:08 AM
To:	Kavleen Sachdeva
Cc:	Ryan Au
Subject:	FW: TOR for 1303 Lakeshore Road East Traffic TIS

Hi Kavleen,

I apologize for the delay. Thank you for providing the Terms of Reference for 1303 Lakeshore Rd E. Staff have reviewed it and provided the following comments in blue:

1) The following intersections will be analyzed: Please update to include:

- Lakeshore Road East and Dixie Road (Signalized)
- Lakeshore Road East and Fergus Road (Stop Controlled)
- Fergus Ave St. and James Ave (Stop Controlled)
- St. James Ave and Dixie Rd (Stop Controlled)
- Proposed Site Access at Lakeshore Road East. Please note as identified in Official Plan, Chapter 1 the creation of new additional direct access to an arterial road will be discouraged. Please include a scenario with no access to Lakeshore Road East.
- Proposed Site Access at Fergus Road

2) Most recent traffic counts for the intersections of the study. Please contact the City first, if the counts are not available TMC's from background developments may be acceptable.
Growth rate applicable to intersections of study to reflect 2026 conditions. To obtain most recent counts and confirm growth rates please contact Tyler Xuereb, Transportation Planning Analyst
(tyler.xuereb@mississauga.ca, Ext. 4783)
3) We kindly request to obtain the current signal timings of the existing intersection(s) of study for analysis. The signal timing plan for signalized intersections can be obtained from Jim Kartsomanis (Jim.Kartsomanis@mississauga.ca, Ext. 3964).
4) Any additional background developments and associated traffic impact studies to be included in the analysis. Please update to include 1345 Lakeshore Road East (HOZ 20/6 W1) and SP 11/174-1407 Lakeshore Road East.
5) Details of any planned roadway or transit improvement plans in the study area within the horizon years. Please refer to LAKESHORE CONNECTING COMMUNITIES at http://www.mississauga.ca/portal/residents/lakeshore-connecting-communities and Miway website for the planned roadway and transit improvements.
6) A comprehensive Transportation Demand Management Plan is to be part of the report. Provide a TDM plan to demonstrate measures to be implemented to reduce single occupancy vehicle (SOV) trips to the site in support of the city's vision of Lakeshore Road corridor.
7) Please include all applicable Synchro reports in the Appendix.
8) Include a section for Community Impacts. Any traffic related impacts on the existing community and comments from the public through the planning approvals process shall be addressed in this section.

Please feel free to contact me if you have any questions.
Regards,

Kate (Jekaterina) Vassilyev

Traffic Planning Technologist
T 905-615-3200 ext.8171
kate.vassilyev@mississauga.ca
City of Mississauga | Transportation and Works Department, Infrustructure Planning Division

Please consider the environment before printing.

From: Kavleen Sachdeva
Sent: Thursday, May 27, 2021 2:29 PM
To: Kate Vassilyev Kate.Vassilyev@mississauga.ca
Cc: Farah Choudhury fchoudhury@cfcrozier.ca
Subject: 1303 Lakeshore Road East Traffic TIS

Dear Kate,

C.F. Crozier and Associates (Crozier) was retained for a Traffic Impact Study (TIS) to support the development applications for the site located at 1303 Lakeshore Road East, in the City of Mississauga. The proposed development includes a 10-storey residential building, three storeys of underground parking, as well as underground parking access.

We request your feedback regarding our study assumptions.

Study Methodology for the Transportation Impact Study

Study Area and Intersections to Assess

The following intersections will be analyzed: Please update to include:

- Lakeshore Road East and Dixie Road (Signalized)
- Lakeshore Road East and Fergus Road (Stop Controlled)
- Fergus Ave St. and James Ave (Stop Controlled)
- St. James Ave and Dixie Rd (Stop Controlled)
- Proposed Site Access at Lakeshore Road East
- Proposed Site Access at Fergus Road

Due to the impact of the ongoing COVID-19 pandemic, current travel within the road networks of interest is not reflective of typical commuter travel patterns. As such, we kindly request the most recent traffic data collected of the study intersection(s).

Alternatively, our sub-consultants have traffic counts available for the below intersections with the associated dates:

- Lakeshore Road East and Dixie Road (2018-03-08 Thursday, 7 am-9 am, 4 pm-6 pm)
- Lakeshore Road East and Fergus Road (2018-03-08 Thursday, 7 am-9 am, 4 pm-6 pm)

In the absence of more recent counts available, we recommend using the above counts for analysis.

We kindly request to obtain the current signal timings of the existing intersection(s) of study for analysis.

Analysis Periods and Scenarios

The weekday AM and PM peak hours for existing conditions in 2021 and a 5-year horizon year after full build-out (2026) will be considered for background and total traffic conditions. The horizon years outlined are consistent with the Region of Peel and the City of Mississauga's Traffic Impact Study Guidelines.

Given the residential nature of the development, traffic counts of the study intersections on a typical weekday during the morning and evening peak periods will be considered.

Future Background Traffic Growth

Future background traffic volume will be estimated for the study area to ensure that the analysis reflects background traffic growth and growth from other area developments.

As such, we kindly request a recommended growth rate applicable to traffic volumes in the study area, namely along Lakeshore Road East, Dixie Road, and Fergus Road, to sufficiently reflect future conditions in the years 2026. If a growth rate is not available, an industry standard of 2% is suggested to forecast future traffic growth in the intersection(s) of study.

Background Developments

Upon review of active development applications in the City of Mississauga within a reasonable distance from the proposed development at 1303 Lakeshore Road East, the following projects have been identified as part of our background developments:

- 1082 Lakeshore Road East (T 19/001, OZ 19/003, OPA 19/021)
- 1381 Lakeshore Road East (OZ 20/018 W1)

The traffic impact studies have been completed for the above-noted projects and can be found on the City's website under Active Development Applications (Ward 1). Kindly confirm that the above developments included are sufficient.

If not, please provide additional developments and the associated traffic impact studies that should be included in our analysis.

Trip Generation

Trip generation for the proposed development will be forecasted using the Trip Generation Manual, $10^{\text {th }}$ Edition, prepared by the Institute of Transportation Engineers (ITE), for Multifamily Housing (Mid-rise) (land use code 221). The most conservative model, between the average rate and fitted curve, will be used.

Trip Distribution

Data from the 2016 Transportation Tomorrow Survey (TTS) will be used to determine trip distribution for the AM and PM periods to the proposed development in 2006 GTA Zone 3643 . Based on TTS data, a modal split of 14% applies to the development. The TTS results have been attached for your reference.

Access Analysis

The proposed site accesses will be analyzed, including geometric analysis, sight distance, site circulation, and turning analysis. The analysis will be conducted regarding sight distance, access geometry, site circulation and truck turning analysis will be conducted according to the methodology set out in the Transportation Association of Canada (TAC) Manual.

Analysis Procedures

Weekday AM and PM peak hours will be analyzed for the intersections of study using Synchro 11 and Highway Capacity Manual (HCM) guidelines.

As per the City of Mississauga's Traffic Impact Study (TIS) Guidelines, saturation flow rates of 1860, 1900, and 1640 veh/hr/lane will be used for advanced left, through, and right movements, respectively, as applicable to City-owned roads. Also, as per City guidelines, a heavy vehicle factor of 2.0 PCUs will be assumed for large vehicles. Pedestrian walking speeds will be assumed at $1.0 \mathrm{~m} / \mathrm{s}$ for a more conservative estimate in a residential neighbourhood. The critical gap for City-owned roads will be based on Highway Capacity Manual (HCM) 2010 guidelines as recommended by the City's TIS guide. As per City's TIS guidelines, the lost time will be assumed to be 1.0 sec and 5.0 sec for the advanced green and main phase, respectively, for City-owned roads.

For roads within the study area owned by the Region of Peel, guidance from the Region's Traffic Impact Study (TIS) guidelines will be taken. As per the Region's TIS guide, capacity analysis completed in Synchro will use HCM 2000 guidelines. In addition, a saturation flow rate of 1900 veh/hr, 7-meter lane width on regional roads, and 5-meter lane widths will be used on intersecting streets as per the Region's guidelines.

Could you please provide any comments you may have for the listed ToR and the following information for inclusion in the study:
7) Most recent traffic counts for the intersections of the study. Growth rate applicable to intersections of study to reflect 2026 conditions. To obtain most recent counts and confirm growth rates please contact Tyler Xuereb, Transportation Planning Analyst (tyler.xuereb@mississauga.ca, Ext. 4783)
8) We kindly request to obtain the current signal timings of the existing intersection(s) of study for analysis. The signal timing plan for signalized intersections can be obtained from Jim Kartsomanis (Jim.Kartsomanis@mississauga.ca, Ext. 3964).

- Any additional background developments and associated traffic impact studies to be included in the analysis. Please update to include 1345 Lakeshore Road East (HOZ 20/6 W1)

9) Details of any planned roadway or transit improvement plans in the study area within the horizon years. Please refer to LAKESHORE CONNECTING COMMUNITIES at http://www.mississauga.ca/portal/residents/lakeshore-connecting-communities and Miway website for the planned roadway and transit improvements.
10) A comprehensive Transportation Demand Management Plan is to be part of the report. Provide a TDM plan to demonstrate measures to be implemented to reduce single occupancy vehicle (SOV) trips to the site in support of the city's vision of Lakeshore Road corridor.
11) Please include all applicable Synchro reports in the Appendix.
12) The TIS should have a section addressing resident's complaints raised during public consultations if any.

I hope the above is acceptable. Should you have any questions or concerns, please feel free to contact me.

Regards,
Kavleen

From:	Tyler Xuereb Tyler.Xuereb@mississauga.ca
Sent:	Monday, June 21, 2021 8:38 AM
To:	Kavleen Sachdeva
Subject:	RE: TMC and Growth Rates (CFCA 2109-6004)

Good Morning Kavleen,

Using the City's Travel Demand Model and supporting traffic count data, the City's Transportation Planning section has determined the projected growth along Lakeshore Road to be used as part of your study. The recommended projected growth is shown below.

Lakeshore Road

	Compounded Annual Growth from Existing to 2026	
	EB	WB
AM Peak Hour	1.5%	0.0%
	1.5%	1.0%
PM Peak Hour		

Regards,

Tyler Xuereb

Transportation Planning Analyst
T 905-615-3200 ext. 4783
Tyler.xuereb@mississauga.ca
City of Mississauga | Transportation and Works Department, Infrastructure Planning and Engineering Services Division

Please consider the environment before printing.

From: Kavleen Sachdeva ksachdeva@cfcrozier.ca
Sent: Wednesday, June 16, 2021 2:29 PM
To: Tyler Xuereb Tyler.Xuereb@mississauga.ca
Subject: RE: TMC and Growth Rates (CFCA 2109-6004)

Thank you Tyler!

Regards,
Kavleen

Kavleen Sachdeva, P.Eng. | Project Engineer

 2800 High Point Drive, Suite 100 | Milton, ON L9T 6P4 T: 905.875.0026
Crozier Connections: $f=$ in

Read our latest news and announcements here.

From: Tyler Xuereb Tyler.Xuereb@mississauga.ca
Sent: Wednesday, June 16, 2021 1:39 PM
To: Kavleen Sachdeva ksachdeva@cfcrozier.ca
Subject: RE: TMC and Growth Rates (CFCA 2109-6004)

Hello Kavleen,

Hope you are doing well.

Below are the counts that we have available.

- Lakeshore Road East and Dixie Road (Signalized) - Regional Road...Contact Region
- Lakeshore Road East and Fergus Road (Stop Controlled) - 2009
- Fergus Ave St. and James Ave (Stop Controlled) - No count
- St. James Ave and Dixie Rd (Stop Controlled) - Regional Road...Contact Region

In regards to growth rates to grow counts to 2021 volumes, you can contact whoever reviewed your submission and provided comments to you. I will work on the growth rates for your future horizon year.

Regards,

M mississauga

Tyler Xuereb
Transportation Planning Analyst
T 905-615-3200 ext. 4783
Tyler.xuereb@mississauga.ca

City of Mississauga | Transportation and Works Department,
Infrastructure Planning and Engineering Services Division
Please consider the environment before printing.
From: Kavleen Sachdeva ksachdeva@cfcrozier.ca
Sent: Wednesday, June 16, 2021 12:40 PM
To: Tyler Xuereb Tyler.Xuereb@mississauga.ca
Subject: TMC and Growth Rates (CFCA 2109-6004)
Hello Tyler,
C.F. Crozier and Associates (Crozier) was retained for a Traffic Impact Study (TIS) to support the development applications for the site located at 1303 Lakeshore Road East, in the City of Mississauga. As part of the TIS, we have been asked to review the below intersections:

- Lakeshore Road East and Dixie Road (Signalized)
- Lakeshore Road East and Fergus Road (Stop Controlled)
- Fergus Ave St. and James Ave (Stop Controlled)
- St. James Ave and Dixie Rd (Stop Controlled)

Could you please let us know if the City has turning moving counts available (and what year) for the above intersections?

Additionally, if you could provide us with a growth rate to grow volumes to 2021 (if historical counts are available) and 2026, that would be very helpful. Thank you.

Regards,
Kavleen

Kavleen Sachdeva, P.Eng. | Project Engineer
2800 High Point Drive, Suite 100 | Milton, ON L9T 6P4
T: 905.875.0026

COMSULTING ENGIMEERS

Crozier Connections: $f y$ in

Read our latest news and announcements here.

This email was sent on behalf of C.F. Crozier \& Associates Inc. and may contain confidential and/or privileged information for the sole use of the intended recipient. If you have received this email in error, please contact the sender and delete all copies. Any review or distribution by anyone other than the intended recipient is strictly prohibited.

APPENDIX B

Traffic Data

Peak Hour: 07:45 AM-08:45 AM Weather: Overcast (-3.4 ${ }^{\circ} \mathrm{C}$)																									
Start Time	N Approach DIXIE RD						E Approach LAKESHORE RD E						S Approach DIXIE RD						W Approach LAKESHORE RD E						$\begin{aligned} & \text { Int. Total } \\ & \text { (15 min) } \end{aligned}$
	Right	Thru	Left	u-Turn	Peds	Approach Total	Right	Thru	Left	U-Turn	Peds	Approach Total	Right	Thru	Left	U-Turn	Peds	Approach Total	Right	Thru	Left	U-Turn	Peds	Approach Total	
07:45:00	31	0	41	0	4	72	52	132	0	0	0	184	0	0	0	0	1	0	1	237	94	0	1	332	588
08:00:00	54	0	36	0	2	90	48	112	0	0	1	160	0	0	0	0	0	0	0	176	116	0	0	292	542
08:15:00	48	0	25	0	3	73	45	149	0	0	0	194	0	0	0	0	0	0	0	186	93	0	0	279	546
08:30:00	48	0	31	0	1	79	38	112	0	0	0	150	0	0	0	0	1	0	0	158	93	0	0	251	480
Grand Total	181	0	133	0	10	314	183	505	0	0	1	688	0	0	0	0	2	0	1	757	396	0	1	1154	2156
Approach\%	57.6\%	0\%	42.4\%	0\%		-	26.6\%	73.4\%	0\%	0\%		-	0\%	0\%	0\%	0\%		-	0.1\%	65.6\%	34.3\%	0\%		-	-
Totals \%	8.4\%	0\%	6.2\%	0\%		14.6\%	8.5\%	23.4\%	0\%	0\%		31.9\%	0\%	0\%	0\%	0\%		0\%	0\%	35.1\%	18.4\%	0\%		53.5\%	-
PHF	0.84	0	0.81	0		0.87	0.88	0.85	0	0		0.89	0	0	0	0		0	0.25	0.8	0.85	0		0.87	.
Heavy	22	0	0	0		22	6	${ }_{35}^{-7}$	${ }_{0}$	${ }_{0}$		41	0	0	${ }_{0}$	${ }_{0}$		0	0	${ }^{-14}$	${ }_{13}^{-7}$	0		47	-
Heavy \%	12.2\%	0\%	0\%	0\%		7\%	3.3\%	6.9\%	0\%	0\%		6\%	0\%	0\%	0\%	0\%		0\%	0\%	4.5\%	3.3\%	0\%		4.1\%	-
Lights	${ }_{159}$	0	${ }_{133}$	${ }_{0}$		292	-177	470	${ }_{0}$	${ }_{0}$		647	${ }^{-}$	0	${ }^{-}$	${ }_{0}$		0	1	${ }_{72} 7$	383	${ }_{0}$		${ }_{1107}$.
Lights \%	87.8\%	0\%	100\%	0\%		93\%	96.7\%	93.1\%	0\%	0\%		94\%	0\%	0\%	0\%	0\%		0\%	100\%	95.5\%	96.7\%	0\%		95.9\%	.
Single-Unit Trucks	18	0	0	0		18	1	20	0	0		21	0	0	0	0		0	0	19	9	0		28	-
Single-Unit Trucks \%	9.9\%	0\%	0\%	0\%		5.7\%	0.5\%	4\%	0\%	0\%		3.1\%	0\%	0\%	0\%	0\%		0\%	0\%	2.5\%	2.3\%	0\%		2.4\%	-
Buses	3	0	0	0		3	4	14	0	0		18	0	0	0	0		0	0	13	3	0		16	\cdot
Buses \%	1.7\%	0\%	0\%	0\%		1\%	2.2\%	2.8\%	0\%	0\%		2.6\%	0\%	0\%	0\%	0\%		0\%	0\%	1.7\%	0.8\%	0\%		1.4\%	-
Ariculated Trucks	1	0	0	0		1	1	1	0	0		2	0	0	0	0		0	0	2	1	0		3	-
Ariculated Trucks \%	0.6\%	0\%	0\%	0\%		0.3\%	0.5\%	0.2\%	0\%	0\%		0.3\%	0\%	0\%	0\%	0\%		0\%	0\%	0.3\%	0.3\%	0\%		0.3\%	\cdot
Pedestrians	-	\cdots	-	-	10	-	-	-	-	-	0	-	-	-	-	-	1	-	-	-	-	-	1	-	-
Pedestrians\%	-	-	-	-	71.4\%		-	*	-	-	0\%		-	-	-	-	7.1\%		-	-	-	-	7.1\%		-
Bicycles on Crosswalk	-	-	\cdot	-	0	-	-	-	-	-	1	-	-	-	-	-	1	-	-	-	-	-	0	-	-
Bicycles on Crosswak\%	-	-	-	-	0\%		-	-	-	-	7.1\%		-	-			7.1\%		-	-		-	0\%		-
Bicycles on Road	0	0	0	0	0	-	0	0	0	0	0	\cdot	0	0	0	0	0		0	1	0	0	0	-	
Bicycles on Road\%	-	-	-	-	0\%		-	-	-	-	0\%		-	-	-	-	0\%		-	-	-	-	0\%		-

Peak Hour: 04:45 PM - 05:45 PM Weather: Snow (-0.4 ${ }^{\circ} \mathrm{C}$)																									
Start Time	N Approach DIXIE RD						E ApproachLAKESHORE RD E						S Approach DIXIE RD						W Approach LAKESHORE RD E						$\begin{aligned} & \text { Int. Total } \\ & (15 \mathrm{~min}) \end{aligned}$
	Right	Thru	Left	U-Turn	Peds	Approach Total	Right	Thru	Left	U-Turn	Peds	Approach Total	Right	Thru	Left	U-Turn	Peds	Approach Total	Right	Thru	Left	U-Turn	Peds	Approach Total	
16:45:00	79	0	48	0	1	127	57	254	0	0	0	311	1	0	0	0	0	1	1	131	62	0	0	194	633
17:00:00	71	0	40	0	2	111	59	272	0	0	0	331	0	0	0	0	0	0	0	${ }^{118}$	55	0	1	173	615
17:15:00	59	0	59	0	2	118	45	266	0	0	1	311	0	0	0	0	3	0	0	118	50	0	1	168	597
17:30:00	65	0	45	0	4	110	58	272	0	0	0	330	0	0	0	0	1	0	0	107	50	0	1	157	597
Grand Total	274	0	192	0	9	466	219	1064	0	0	1	1283	1	0	0	0	4	1	1	474	217	0	3	692	2442
Approach\%	58.8\%	0\%	41.2\%	0\%		-	17.1\%	82.9\%	0\%	0\%		-	100\%	0\%	0\%	0\%		-	0.1\%	68.5\%	31.4\%	0\%		*	-
Totals \%	11.2\%	0\%	7.9\%	0\%		19.1\%	9\%	43.6\%	0\%	0\%		52.5\%	0\%	0\%	0\%	0\%		0\%	0\%	19.4\%	8.9\%	0\%		28.3\%	\cdot
PHF	0.87	0	0.81	0		0.92	0.93	0.98	0	0		0.97	0.25	0	0	0		0.25	0.25	0.9	0.88	0		0.89	-
Heavy	2	0	1	0		${ }^{-}$	2	${ }_{13}$	0	0		15	${ }^{-}$	0	0	0		${ }^{-}$	${ }^{-1}$	17	1	0		18	\cdot
Heavy \%	0.7\%	0\%	0.5\%	0\%		0.6\%	0.9\%	1.2\%	0\%	0\%		1.2\%	0\%	0\%	0\%	0\%		0\%	0\%	3.6\%	0.5\%	0\%		2.6\%	-
Lights	272	0	${ }_{191}$	${ }_{0}$		463	${ }^{217}$	${ }_{1051}^{-7}$	0	${ }_{0}$		${ }_{1268}$	1	0	${ }^{-}$	${ }_{0}$		1	1	457	216	0		674	-
Lights \%	99.3\%	0\%	99.5\%	0\%		99.4\%	99.1\%	98.8\%	0\%	0\%		98.8\%	100\%	0\%	0\%	0\%		100\%	100\%	96.4\%	99.5\%	0\%		97.4\%	-
Single-Unit Trucks	2	0	0	0		2	0	4	0	0		4	0	0	0	0		0	0	6	0	0		6	-
Single-Unit Trucks \%	0.7\%	0\%	0\%	0\%		0.4\%	0\%	0.4\%	0\%	0\%		0.3\%	0\%	0\%	0\%	0\%		0\%	0\%	1.3\%	0\%	0\%		0.9\%	-
Buses	0	0	1	0		1	0	9	0	0		9	0	0	0	0		0	0	11	0	0		11	-
Buses \%	0\%	0\%	0.5\%	0\%		0.2\%	0\%	0.8\%	0\%	0\%		0.7\%	0\%	0\%	0\%	0\%		0\%	0\%	2.3\%	0\%	0\%		1.6\%	-
Ariculated Trucks	0	0	0	0		0	2	0	0	0		2	0	0	0	0		0	0	0	1	0		1	-
Articulated Trucks \%	0\%	0\%	0\%	0\%		0\%	0.9\%	0\%	0\%	0\%		0.2\%	0\%	0\%	0\%	0\%		0\%	0\%	0\%	0.5\%	0\%		0.1\%	\cdot
Pedestrians	-	-	-	-	8	-	-	-	-	*	1	-	-	-	-	\cdots	2	-	-	-	-	-	3	-	-
Pedestrians\%	-	-	-	-	47.1\%		-	-	-	-	5.9\%		-	-	-	-	11.8\%		-	-	-	-	17.6\%		-
Bicycles on Crosswalk	-	-	\cdot	-	1	-	-	-	-		0	-	\cdot	-	-	-	2	-	-	-	-	-	0	-	-
Bicycles on Crosswalk\%	\cdot	\cdot	\cdot	-	5.9\%		-	-			0\%		-		-	-	11.8\%		-	-	-	-	0\%		-
Bicycles on Road	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	\cdot
Bicycles on Road\%	-	-	-	-	0\%		-	-	-	-	0\%		-	-	-	-	0\%		-	-	-	-	0\%		-

Turning Movement Count (4. FERGUS AVE \& LAKESHORE RD E)																										
Start Time	N Approach FERGUS AVE						E Approach LAKESHORE RD E						S Approach fergus ave						W Approach LAKESHORE RD E						$\begin{aligned} & \text { Int. Total } \\ & (15 \mathrm{~min}) \end{aligned}$	$\underset{\substack{\text { Int. Total } \\(11 \mathrm{hr})}}{ }$
	$\begin{aligned} & \text { Right } \\ & N: W \end{aligned}$	$\begin{aligned} & \text { Thru } \\ & \text { N: } \end{aligned}$	$\begin{aligned} & \text { Left } \\ & \mathrm{N}: \mathrm{E} \end{aligned}$	$\underset{\substack{\text { U-Turn } \\ \mathrm{N}: \mathrm{N}}}{ }$	$\begin{aligned} & \text { Peds } \\ & N \end{aligned}$	Approach Total	$\begin{aligned} & \text { Right } \\ & \text { E:N } \end{aligned}$	$\begin{gathered} \text { Thru } \\ \text { T: } \end{gathered}$	$\begin{aligned} & \text { Left } \\ & \mathrm{E}: \mathrm{S} \end{aligned}$	$\underset{E: E}{\text { U-Turn }}$	$\begin{aligned} & \text { Peds } \\ & \text { Fi } \end{aligned}$	Approach Total	$\begin{aligned} & \text { Right } \\ & \text { S:E } \end{aligned}$	$\underset{~ T h r u ~}{\text { Thu }}$	$\begin{aligned} & \text { Left } \\ & \mathrm{S}: \mathrm{W} \end{aligned}$	$\underset{\substack{\mathrm{U} \text {-Turn } \\ s: S}}{ }$	$\begin{aligned} & \text { Peds } \\ & \text { S: } \end{aligned}$	Approach Total	$\begin{aligned} & \text { Right } \\ & \text { W:S } \end{aligned}$	$\begin{aligned} & \text { Thru } \\ & \text { W:E } \end{aligned}$	$\begin{gathered} \text { Left } \\ W: N \end{gathered}$	$\begin{gathered} \mathrm{u}-\mathrm{Turn} \\ \mathrm{w}: \mathrm{w} \end{gathered}$	$\begin{gathered} \text { Peds } \\ \text { W. } \end{gathered}$	Approach Total		
07:00:00	7	0	2	0	0	9	3	101	6	0	0	110	0	0	3	0	0	3	4	177	2	0	0	183	305	
07:15:00	3	0	3	0	2	6	0	114	6	0	0	120	1	0	2	0	0	3	5	243	3	0	0	251	380	
07:30:00	9	0	2	0	2	11	1	109	3	0	0	113	1	0	2	0	0	3	${ }^{13}$	264	2	0	0	279	406	
07:45:00	12	0	0	0	3	12	1	140	12	0	0	153	4	0	3	0	0	7	9	314	4	0	0	327	499	1590
08:00:00	17	0	2	0	2	19	1	146	14	0	0	161	3	0	3	0	0	6	9	288	3	0	0	300	486	1771
08:15:00	10	0	3	0	0	13	1	197	9	0	0	207	5	0	6	0	0	11	7	280	4	0	1	291	522	1913
08:30:00	12	0	1	0	1	13	4	150	11	0	0	165	5	0	7	0	0	12	5	248	6	0	0	259	449	1956
08:45:00	19	0	4	0	0	${ }^{23}$	1	136	8	0	0	145	8	0	8	0	1	16	10	241	5	0	0	256	440	1897
"'BREAK"																										
16:00:00	3	0	0	0	1	3	3	264	0	0	1	267	9	0	9	0	0	18	6	182	${ }^{11}$	0	1	199	487	
16:15:00	1	0	0	0	4	1	6	298	4	0	0	308	9	0	5	0	0	14	2	129	5	0	0	136	459	
16:30:00	11	0	2	0	3	13	6	310	0	0	0	316	10	0	6	0	0	16	2	132	11	0	0	145	490	
16:45:00	6	0	1	0	1	7	2	321	0	1	0	324	8	0	1	0	0	9	4	176	4	0	1	184	524	1960
17:00:00	10	0	3	0	0	13	4	353	1	0	0	358	4	0	8	0	0	12	0	165	9	0	0	174	557	2030
17:15:00	10	0	3	0	3	13	4	314	1	0	0	319	4	0	3	0	0	7	1	164	6	0	1	171	510	2081
17:30:00	6	0	1	0	2	7	4	328	1	0	0	333	0	0	2	0	0	2	2	161	7	0	0	170	512	2103
17:45:00	8	0	3	0	3	11	3	252	1	0	0	256	1	0	2	0	0	3	0	148	6	0	0	154	424	2003
Grand Total	144	0	30	0	27	174	44	3533	77	1	1	3655	72	0	70	0	1	142	79	3312	88	0	4	3479	7450	-
Approach\%	82.8\%	0\%	17.2\%	0\%		-	1.2\%	96.7\%	2.1\%	0\%		-	50.7\%	0\%	49.3\%	0\%		-	2.3\%	95.2\%	2.5\%	0\%		-	-	\cdot
Totals \%	1.9\%	0\%	0.4\%	0\%		2.3\%	0.6\%	47.4\%	1\%	0\%		49.1\%	1\%	0\%	0.9\%	0\%		1.9\%	1.1\%	44.5\%	1.2\%	0\%		46.7\%	-	-
Heavy	8	0	0	0		-	1	103	31	0		-	27	0	26	0		-	28	100	3	0		-	\cdot	\cdot
Heays \%	5.6\%	0\%	0\%	0\%		-	2.3\%	2.9\%	40.3\%	0\%		-	37.5\%	0\%	37.1\%	0\%		-	35.4\%	3\%	3.4\%	0\%		-	\cdot	-
Bicycles	0	0	0	0			0	0	0	0			0	0	0	0		-	0	1	0	0		-	-	-
Bicycle \%	0\%	0\%	0\%	0\%		-	0\%	0\%	0\%	0\%		\cdot	0\%	0\%	0\%	0\%		\cdot	0\%	0\%	0\%	0\%		*	-	\cdot

Peak Hour: 07:45 AM - 08:45 AM Weather: Overcast (-3.4 $\left.{ }^{\circ} \mathrm{C}\right)$																									
Start Time	N Approach FERGUS AVE						E Approach LAKESHORE RD E						S Approach fergus ave						w Approach LAKESHORERDE						$\begin{aligned} & \text { Int. Total } \\ & (15 \mathrm{~min}) \end{aligned}$
	Right	Thru	Left	U-Turn	Peds	Approach Total	Right	Thru	Left	U-Turn	Peds	Approach Total	Right	Thru	Left	U-Turn	Peds	Approach Total	Right	Thru	Left	U-Turn	Peds	Approach Total	
07:45:00	12	0	0	0	3	12	1	140	12	0	0	153	4	0	3	0	0	7	9	314	4	0	0	327	499
08:00:00	17	0	2	0	2	19	1	146	14	0	0	161	3	0	3	0	0	6	9	288	3	0	0	300	486
08:15:00	10	0	3	0	0	13	1	197	9	0	0	207	5	0	6	0	0	11	7	280	4	0	1	291	522
08:30:00	12	0	1	0	1	13	4	150	11	0	0	165	5	0	7	0	0	12	5	248	6	0	0	259	449
Grand Total	51	0	6	0	6	57	7	633	46	0	0	686	17	0	19	0	0	36	30	1130	17	0	1	1177	1956
Approach\%	89.5\%	0\%	10.5\%	0\%		-	1\%	92.3\%	6.7\%	0\%		-	47.2\%	0\%	52.8\%	0\%		-	2.5\%	96\%	1.4\%	0\%		-	-
Totals \%	2.6\%	0\%	0.3\%	0\%		2.9\%	0.4\%	32.4\%	2.4\%	0\%		35.1\%	0.9\%	0\%	1\%	0\%		1.8\%	1.5\%	57.\%	0.9\%	0\%		60.2\%	-
PHF	0.75	0	0.5	0		0.75	0.44	0.8	0.82	0		0.83	0.85	0	0.68	0		0.75	0.83	0.9	0.71	0		0.9	-
Heavy	5	0	0	0		5	0	37	20	0		57	11	0	13	0		24	14	36	1	0		51	-
Heavy \%	9.8\%	0\%	0\%	0\%		8.8\%	0\%	5.8\%	43.5\%	0\%		8.3\%	64.7\%	0\%	68.4\%	0\%		66.7\%	46.7\%	3.2\%	5.9\%	0\%		4.3\%	-
Lights	46	0	6	0		52	7	596	26	0		629	6	0	6	0		12	16	1094	16	0		1126	-
Lights \%	90.2\%	0\%	100\%	0\%		91.2\%	100\%	94.2\%	56.5\%	0\%		91.7\%	35.3\%	0\%	31.6\%	0\%		33.3\%	53.3\%	96.8\%	94.1\%	0\%		95.7\%	-
Single-Unit Trucks	1	0	0	0		1	0	20	20	0		40	11	0	13	0		24	12	17	0	0		29	-
Single-Unit Trucks \%	2\%	0\%	0\%	0\%		1.8\%	0\%	3.2\%	43.5\%	0\%		5.8\%	64.7\%	0\%	68.4\%	0\%		66.7\%	40\%	1.5\%	0\%	0\%		2.5\%	-
Buses	4	0	0	0		4	0	16	0	0		16	0	0	0	0		0	0	15	1	0		16	-
Buses \%	7.8\%	0\%	0\%	0\%		7\%	0\%	2.5\%	0\%	0\%		2.3\%	0\%	0\%	0\%	0\%		0\%	0\%	1.3\%	5.9\%	0\%		1.4\%	-
Articulated Trucks	0	0	0	0		0	0	1	0	0		1	0	0	0	0		0	2	4	0	0		6	-
Articulated Trucks \%	0\%	0\%	0\%	0\%		0\%	0\%	0.2\%	0\%	0\%		0.1\%	0\%	0\%	0\%	0\%		0\%	6.7\%	0.4\%	0\%	0\%		0.5\%	-
Pedestrians	-	-	-	-	6	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	1	-	-
Pedestrians\%	-	-	-	-	85.7\%		-	-	-	-	0\%		-	-	-	-	0\%		-	-	-	-	14.3\%		-
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
Bicycles on Crosswalk\%	-	-	-	-	0\%		-	-	-	-	0\%		-	-	-	-	0\%		-	-	-	-	0\%		-
Bicycles on Road	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	1	0	0	0	-	-
Bicycles on Road\%	-	-	-	-	0\%		-	-	-	-	0\%		-	-	-	-	0\%		-	-	-	-	0\%		-

Peak Hour: 04:45 PM - 05:45 PM Weather: Snow (-0.4 $\left.{ }^{\circ} \mathrm{C}\right)$																									
Start Time	N Approach FERGUS AVE						E Approach LAKESHORE RD E						S Approach fergus ave						W Approach LAKESHORE RD E						$\begin{aligned} & \text { Int. Total } \\ & \text { (15 min) } \end{aligned}$
	Right	Thru	Left	U-Turn	Peds	Approach Total	Right	Thru	Left	U-Turn	Peds	Approach Total	Right	Thru	Left	U-Turn	Peds	Approach Total	Right	Thru	Left	U-Tum	Peds	Approach Total	
16:45:00	6	0	1	0	1	7	2	321	0	1	0	324	8	0	1	0	0	9	4	176	4	0	1	184	524
17:00:00	10	0	3	0	0	13	4	353	1	0	0	358	4	0	8	0	0	12	0	165	9	0	0	174	557
17:15:00	10	0	3	0	3	13	4	314	1	0	0	319	4	0	3	0	0	7	1	164	6	0	1	171	510
17:30:00	6	0	1	0	2	7	4	328	1	0	0	333	0	0	2	0	0	2	2	161	7	0	0	170	512
Grand Total	32	0	8	0	6	40	14	1316	3	1	0	1334	16	0	14	0	0	30	7	666	26	0	2	699	2103
Approach\%	80\%	0\%	20\%	0\%		-	1\%	98.7\%	0.2\%	0.1\%		-	53.3\%	0\%	46.7\%	0\%		-	1\%	95.3\%	3.7\%	0\%		-	-
Totals \%	1.5\%	0\%	0.4\%	0\%		1.9\%	0.7\%	62.6\%	0.1\%	0\%		63.4\%	0.8\%	0\%	0.7\%	0\%		1.4\%	0.3\%	31.7\%	1.2\%	0\%		33.2\%	-
PHF	0.8	0	0.67	0		0.77	0.88	0.93	0.75	0.25		0.93	0.5	0	0.44	0		0.63	0.44	0.95	0.72	0		0.95	-
Heavy	0	0	0	${ }_{0}$		0	${ }^{-1}$	14	0	${ }_{0}^{-}$		14	0	0	${ }_{0}$	0		${ }_{0}$	0	18	1	${ }_{0}$		19	-
Heavy \%	0\%	0\%	0\%	0\%		0\%	0\%	1.1\%	0\%	0\%		1\%	0\%	0\%	0\%	0\%		0\%	0\%	2.7\%	3.8\%	0\%		2.7\%	-
Lights	32	0	8	0		40	14	${ }_{1302}$	${ }^{-}$	${ }_{1}$		1320	16	0	${ }^{14}$	0		30	7	648	25	0		680	-
Lights \%	100\%	0\%	100\%	0\%		100\%	100\%	98.9\%	100\%	100\%		99\%	100\%	0\%	100\%	0\%		100\%	100\%	97.3\%	96.2\%	0\%		97.3\%	-
Single-Unit Trucks	0	0	0	0		0	0	5	0	0		5	0	0	0	0		0	0	6	1	0		7	-
Single-Unit Trucks \%	0\%	0\%	0\%	0\%		0\%	0\%	0.4\%	0\%	0\%		0.4\%	0\%	0\%	0\%	0\%		0\%	0\%	0.9\%	3.8\%	0\%		1\%	\cdot
Buses	0	0	0	0		0	0	9	0	0		9	0	0	0	0		0	0	11	0	0		11	-
Buses \%	0\%	0\%	0\%	0\%		0\%	0\%	0.7\%	0\%	0\%		0.7\%	0\%	0\%	0\%	0\%		0\%	0\%	1.7\%	0\%	0\%		1.6\%	-
Ariculated Trucks	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	1	0	0		1	-
Articulated Trucks \%	0\%	0\%	0\%	0\%		0\%	0\%	0\%	0\%	0\%		0\%	0\%	0\%	0\%	0\%		0\%	0\%	0.2\%	0\%	0\%		0.1\%	-
Pedestrians	-	-	-	-	6	-	-	-	-	-	0	-		-		-	0	-	-	-	-	-	2	-	-
Pedestrians\%	-	-	-	-	75\%		-	-	-	-	0\%		-	-	-	-	0\%		-	-	-	\cdot	25\%		-
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
Bicycles on Crosswalk\%	-	-	-	-	0\%		\cdot	\cdot	-	-	0\%		\cdot	-	-	\cdot	0\%		-	-	-	-	0\%		-
Bicycles on Road	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	-
Bicycles on Road\%	-	-	-	-	0\%		-	-	-	-	0\%		-	-	-	-	0\%		-	-	-	-	0\%		-

	N Approach DIXIE RD								S Approach DIXIE RD	
START TIME	Thru	Right	U-Turn	Peds CCW	Peds CW	Approach Total	Left	Thru	U-Turn	Peds CCW
07:00:00	53	6	0	0	0	59	0	69	0	0
07:15:00	59	1	0	0	0	60	0	109	0	0
07:30:00	56	3	0	0	0	59	0	105	0	0
07:45:00	69	4	0	0	0	73	0	141	0	0
08:00:00	87	5	0	0	0	92	2	166	0	0
08:15:00	78	2	0	0	0	80	0	137	0	0
08:30:00	79	6	0	0	0	85	2	128	1	0
08:45:00	59	6	0	0	0	65	1	120	0	0
16:00:00	99	9	0	0	0	108	2	122	0	0
16:15:00	81	6	0	0	0	87	1	91	0	0
16:30:00	105	10	0	0	0	115	0	110	0	0
16:45:00	120	9	0	0	0	129	1	122	0	0
17:00:00	111	14	0	0	0	125	0	113	0	0
17:15:00	119	11	0	0	0	130	0	94	0	0
17:30:00	108	12	0	0	0	120	1	105	0	0
17:45:00	114	22	0	0	1	136	1	99	0	0
Grand Total	1397	126	0	0	1	1523	11	1831	1	0

		W Approach						
Seds CW	Approach Total	Left	Right	U-Turn	Peds CCW	Peds CW	Approach Total	
0	69	9	0	0	0	0	9	
0	109	15	0	0	0	0	15	
0	105	13	2	0	0	0	15	
0	141	13	4	0	0	0	17	
0	168	12	0	0	0	0	12	
0	137	15	0	0	0	0	15	
0	131	10	1	0	0	0	11	
0	121	11	1	0	0	0	12	
0	124	7	1	0	0	0	8	
0	92	4	1	0	1	0	5	
0	110	8	0	0	0	0	8	
0	123	4	2	0	0	0	6	
0	113	5	1	0	0	0	6	
0	94	10	1	0	0	0	11	
0	106	5	0	0	1	0	5	
0	100	8	0	0	0	0	8	
$\mathbf{0}$	1843	149	$\mathbf{1 4}$	$\mathbf{0}$	$\mathbf{2}$	0	163	

	N Approach DIXIE RD							
START TIME	Thru	Right	U-Turn	Peds CCW	Peds CW	Approach Total	Left	Thru
07:45:00	69	4	0	0	0	73	0	141
08:00:00	87	5	0	0	0	92	2	166
08:15:00	78	2	0	0	0	80	0	137
08:30:00	79	6	0	0	0	85	2	128
Grand Total	313	17	0	0	0	330	4	572
Approach\%	94.8\%	5.2\%	0.0\%	-	-	-	0.7\%	99.1\%
Totals\%	32.5\%	1.8\%	0.0\%	-	-	34.3\%	0.4\%	59.5\%
PHF	0.9	0.71	0	-	-	0.9	0.5	0.86
Heavy	24	0	0	-	-	24	3	15
Heavy\%	7.7\%	0.0\%	0.0\%	-	-	7.3\%	75.0\%	2.6\%
Lights	289	17	0	-	-	306	1	557
Lights\%	92.3\%	100.0\%	-	-	-	92.7\%	25.0\%	97.4\%
Single-Unit Trucks	19	0	0	-	-	19	0	7
Single-Unit Trucks\%	6.1\%	0.0\%	-	-	-	5.8\%	0.0\%	1.2\%
Buses	4	0	0	-	-	4	3	3
Buses\%	1.3\%	0.0\%	-	-	-	1.2\%	75.0\%	0.5\%
Articulated Trucks	1	0	0	-	-	1	0	5
Articulated Trucks\%	0.3\%	0.0\%	-	-	-	0.3\%	0.0\%	0.9\%
Pedestrians	-	-	-	0	0	-	-	-
Pedestrians\%	-	-	-			-	-	-

S Approach DIXIE RD				W Approach ST JAMES AVE						
U-Turn	Peds CCW	Peds CW	Approach Total	Left	Right	U-Turn	Peds CCW	Peds CW	Approach Total	
0	0	0	141	13	4	0	0	0	17	231
0	0	0	168	12	0	0	0	0	12	272
0	0	0	137	15	0	0	0	0	15	232
1	0	0	131	10	1	0	0	0	11	227
1	0	0	577	50	5	0	0	0	55	962
0.2\%	-	-	-	90.9\%	9.1\%	0.0\%	-	-	-	-
0.1\%	-	-	60.0\%	5.2\%	0.5\%	0.0\%	-	-	5.7\%	-
0.25	-	-	0.86	0.83	0.31	0	-	-	0.81	0.88
0	-	-	18	1	0	0	-	-	1	43
0.0\%	-	-	3.1\%	2.0\%	0.0\%	0.0\%	-	-	1.8\%	4.5\%
1	-	-	559	49	5	0	-	-	54	919
100.0\%	-	-	96.9\%	98.0\%	100.0\%	-	-	-	98.2\%	95.5\%
0	-	-	7	0	0	0	-	-	0	26
0.0\%	-	-	1.2\%	0.0\%	0.0\%	-	-	-	0.0\%	2.7\%
0	-	-	6	1	0	0	-	-	1	11
0.0\%	-	-	1.0\%	2.0\%	0.0\%	-	-	-	1.8\%	1.1\%
0	-	-	5	0	0	0	-	-	0	6
0.0\%	-	-	0.9\%	0.0\%	0.0\%	-	-	-	0.0\%	0.6\%
-	0	0	-	-	-	-	0	0	-	-
-			-	-	-	-			-	-

	N Approach DIXIE RD							
START TIME	Thru	Right	U-Turn	Peds CCW	Peds CW	Approach Total	Left	Thru
16:30:00	105	10	0	0	0	115	0	110
16:45:00	120	9	0	0	0	129	1	122
17:00:00	111	14	0	0	0	125	0	113
17:15:00	119	11	0	0	0	130	0	94
Grand Total	455	44	0	0	0	499	1	439
Approach\%	91.2\%	8.8\%	0.0\%	-	-	-	0.2\%	99.8\%
Totals\%	46.9\%	4.5\%	0.0\%	-	-	51.4\%	0.1\%	45.3\%
PHF	0.95	0.79	0	-	-	0.96	0.25	0.9
Heavy	3	0	0	-	-	3	0	7
Heavy\%	0.7\%	0.0\%	0.0\%	-	-	0.6\%	0.0\%	1.6\%
Lights	452	44	0	-	-	496	1	432
Lights\%	99.3\%	100.0\%	-	-	-	99.4\%	100.0\%	98.4\%
Single-Unit Trucks	2	0	0	-	-	2	0	3
Single-Unit Trucks\%	0.4\%	0.0\%	-	-	-	0.4\%	0.0\%	0.7\%
Buses	1	0	0	-	-	1	0	1
Buses\%	0.2\%	0.0\%	-	-	-	0.2\%	0.0\%	0.2\%
Articulated Trucks	0	0	0	-	-	0	0	3
Articulated Trucks\%	0.0\%	0.0\%	-	-	-	0.0\%	0.0\%	0.7\%
Pedestrians	-	-	-	0	0	-	-	-
Pedestrians\%	-	-	-			-	-	-

S Approach DIXIE RD				W Approach ST JAMES AVE						
U-Turn	Peds CCW	Peds CW	Approach Total	Left	Right	U-Turn	Peds CCW	Peds CW	Approach Total	
0	0	0	110	8	0	0	0	0	8	233
0	0	0	123	4	2	0	0	0	6	258
0	0	0	113	5	1	0	0	0	6	244
0	0	0	94	10	1	0	0	0	11	235
0	0	0	440	27	4	0	0	0	31	970
0.0\%	-	-	-	87.1\%	12.9\%	0.0\%	-	-	-	-
0.0\%	-	-	45.4\%	2.8\%	0.4\%	0.0\%	-	-	3.2\%	-
0	-	-	0.89	0.68	0.5	0	-	-	0.7	0.94
0	-	-	7	0	0	0	-	-	0	10
0.0\%	-	-	1.6\%	0.0\%	0.0\%	0.0\%	-	-	0.0\%	1.0\%
0	-	-	433	27	4	0	-	-	31	960
-	-	-	98.4\%	100.0\%	100.0\%	-	-	-	100.0\%	99.0\%
0	-	-	3	0	0	0	-	-	0	5
-	-	-	0.7\%	0.0\%	0.0\%	-	-	-	0.0\%	0.5\%
0	-	-	1	0	0	0	-	-	0	2
-	-	-	0.2\%	0.0\%	0.0\%	-	-	-	0.0\%	0.2\%
0	-	-	3	0	0	0	-	-	0	3
-	-	-	0.7\%	0.0\%	0.0\%	-	-	-	0.0\%	0.3\%
-	0	0	-	-	-	-	0	0	-	-
-			-	-	-	-			-	-

	N Approach FERGUS AVE									
START TIME	Left	Thru	Right	U-Turn	Peds CCW	Peds CW	Approach Total	Left	Thru	Right
07:00:00	0	0	0	0	0	0	0	4	0	1
07:15:00	1	2	0	0	0	0	3	3	0	0
07:30:00	3	2	0	0	0	0	5	1	1	1
07:45:00	0	1	0	0	0	0	1	2	1	2
08:00:00	0	0	0	0	0	0	0	5	0	3
08:15:00	1	3	0	0	0	0	4	1	1	0
08:30:00	1	2	0	0	0	0	3	6	1	0
08:45:00	1	4	0	0	0	0	5	5	0	2
16:00:00	1	0	0	0	0	0	1	10	0	1
16:15:00	0	0	0	0	0	0	0	5	0	2
16:30:00	1	5	0	0	0	0	6	10	0	0
16:45:00	0	3	0	0	0	0	3	7	2	1
17:00:00	1	2	0	0	1	0	3	12	0	1
17:15:00	0	1	0	0	0	0	1	11	1	0
17:30:00	1	1	0	0	0	0	2	9	0	1
17:45:00	0	2	0	0	0	0	2	22	0	2
Grand Total	11	28	0	0	1	0	39	113	7	17

E Approach ST JAMES AVE				S Approach FERGUS AVE							
U-Turn	Peds CCW	Peds CW	Approach Total	Left	Thru	Right	U-Turn	Peds CCW	Peds CW	Approach Total	Left
0	0	0	5	0	0	7	0	0	0	7	0
0	0	0	3	0	0	10	0	0	0	10	0
0	0	0	3	0	2	12	0	0	1	14	0
0	0	0	5	0	2	14	0	0	2	16	1
0	0	1	8	0	0	12	0	1	0	12	0
0	0	0	2	0	0	13	0	0	1	13	0
0	0	0	7	1	0	6	0	0	5	7	0
0	0	0	7	0	0	11	0	2	1	11	0
0	0	0	11	0	1	9	0	2	1	10	0
0	0	0	7	1	2	4	0	1	1	7	0
0	0	0	10	1	2	9	0	0	2	12	0
0	0	0	10	0	3	4	0	1	1	7	1
0	0	1	13	1	3	6	1	0	0	11	0
0	0	0	12	0	2	7	1	0	0	10	0
1	0	0	11	1	2	4	0	0	0	7	0
0	0	0	24	0	0	8	0	1	0	8	0
1	0	2	138	5	19	136	2	8	15	162	2

W Approach ST JAMES AVE					
Thru	Right	U-Turn	Peds CCW	Peds CW	Approach Total
2	0	0	1	1	2
1	0	0	0	0	1
0	3	0	0	0	3
1	0	0	0	0	2
1	0	0	0	0	1
1	0	0	0	0	1
0	0	0	1	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	1	0
0	0	0	0	0	1
1	0	0	0	0	1
1	0	0	0	0	1
0	0	0	0	1	0
0	0	0	0	0	0
8	3	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{3}$	13

	N Approach FERGUS AVE							
START TIME	Left	Thru	Right	U-Turn	Peds CCW	Peds CW	Approach Total	Left
07:30:00	3	2	0	0	0	0	5	1
07:45:00	0	1	0	0	0	0	1	2
08:00:00	0	0	0	0	0	0	0	5
08:15:00	1	3	0	0	0	0	4	1
Grand Total	4	6	0	0	0	0	10	9
Approach\%	40.0\%	60.0\%	0.0\%	0.0\%	-	-	-	52.9\%
Totals\%	4.5\%	6.7\%	0.0\%	0.0\%	-	-	11.2\%	10.1\%
PHF	0.33	0.5	0	0	-	-	0.5	0.45
Heavy	0	1	0	0	-	-	1	3
Heavy\%	0.0\%	16.7\%	0.0\%	0.0\%	-	-	10.0\%	33.3\%
Lights	4	5	0	0	-	-	9	6
Lights\%	100.0\%	83.3\%	-	-	-	-	90.0\%	66.7\%
Single-Unit Trucks	0	0	0	0	-	-	0	0
Single-Unit Trucks\%	0.0\%	0.0\%	-	-	-	-	0.0\%	0.0\%
Buses	0	1	0	0	-	-	1	3
Buses\%	0.0\%	16.7\%	-	-	-	-	10.0\%	33.3\%
Bicycles on Road	0	0	0	0	-	-	0	0
Bicycles on Road\%	0.0\%	0.0\%	-	-	-	-	0.0\%	0.0\%
Pedestrians	-	-	-	-	0	0	-	-
Pedestrians\%	-	-	-	-			-	-

E Approach ST JAMES AVE								S Approach FERGUS AVE		
Thru	Right	U-Turn	Peds CCW	Peds CW	Approach Total	Left	Thru	Right	U-Turn	Peds CCW
1	0	0	0	0	2	0	2	12	0	0
1	2	0	0	0	5	0	2	14	0	0
0	3	0	0	1	8	0	0	12	0	1
1	0	0	0	0	2	0	0	13	0	0
3	5	0	0	1	17	0	4	51	0	1
17.6\%	29.4\%	0.0\%	-	-	-	0.0\%	7.3\%	92.7\%	0.0\%	-
3.4\%	5.6\%	0.0\%	-	-	19.1\%	0.0\%	4.5\%	57.3\%	0.0\%	-
0.75	0.42	0	-	-	0.53	0	0.5	0.91	0	-
0	0	0	-	-	3	0	1	1	0	-
0.0\%	0.0\%	0.0\%	-	-	17.6\%	0.0\%	25.0\%	2.0\%	0.0\%	-
3	5	0	-	-	14	0	3	50	0	-
100.0\%	100.0\%	-	-	-	82.4\%	-	75.0\%	98.0\%	-	-
0	0	0	-	-	0	0	0	0	0	-
0.0\%	0.0\%	-	-	-	0.0\%	-	0.0\%	0.0\%	-	-
0	0	0	-	-	3	0	1	1	0	-
0.0\%	0.0\%	-	-	-	17.6\%	-	25.0\%	2.0\%	-	-
0	1	0	-	-	1	0	0	0	0	-
0.0\%	20.0\%	-	-	-	5.9\%	-	0.0\%	0.0\%	-	-
-	-	-	0	1	-	-	-	-	-	1
-	-	-		100.0\%	-	-	-	-	-	100.0\%

		$\begin{aligned} & \text { W Approach } \\ & \text { ST JAMES AVE } \end{aligned}$							
Peds CW	Approach Total	Left	Thru	Right	U-Turn	Peds CCW	Peds CW	Approach Total	
1	14	0	0	3	0	0	0	3	24
2	16	1	1	0	0	0	0	2	24
0	12	0	1	0	0	0	0	1	21
1	13	0	1	0	0	0	0	1	20
4	55	1	3	3	0	0	0	7	89
-	-	14.3\%	42.9\%	42.9\%	0.0\%	-	-	-	-
-	61.8\%	1.1\%	3.4\%	3.4\%	0.0\%	-	-	7.9\%	-
-	0.86	0.25	0.75	0.25	0	-	-	0.58	0.93
-	2	0	0	0	0	-	-	0	6
-	3.6\%	0.0\%	0.0\%	0.0\%	0.0\%	-	-	0.0\%	6.7\%
-	53	1	3	3	0	-	-	7	83
-	96.4\%	100.0\%	100.0\%	100.0\%	-	-	-	100.0\%	93.3\%
-	0	0	0	0	0	-	-	0	0
-	0.0\%	0.0\%	0.0\%	0.0\%	-	-	-	0.0\%	0.0\%
-	2	0	0	0	0	-	-	0	6
-	3.6\%	0.0\%	0.0\%	0.0\%	-	-	-	0.0\%	6.7\%
-	0	0	0	0	0	-	-	0	1
-	0.0\%	0.0\%	0.0\%	0.0\%	-	-	-	0.0\%	1.1\%
4	-	-	-	-	-	0	0	-	-
100.0\%	-	-	-	-	-			-	-

	N Approach FERGUS AVE							
START TIME	Left	Thru	Right	U-Turn	Peds CCW	Peds CW	Approach Total	Left
17:00:00	1	2	0	0	1	0	3	12
17:15:00	0	1	0	0	0	0	1	11
17:30:00	1	1	0	0	0	0	2	9
17:45:00	0	2	0	0	0	0	2	22
Grand Total	2	6	0	0	1	0	8	54
Approach\%	25.0\%	75.0\%	0.0\%	0.0\%	-	-	-	90.0\%
Totals\%	1.9\%	5.7\%	0.0\%	0.0\%	-	-	7.5\%	50.9\%
PHF	0.5	0.75	0	0	-	-	0.67	0.61
Heavy	0	0	0	0	-	-	0	0
Heavy\%	0.0\%	0.0\%	0.0\%	0.0\%	-	-	0.0\%	0.0\%
Lights	2	6	0	0	-	-	8	54
Lights\%	100.0\%	100.0\%	-	-	-	-	100.0\%	100.0\%
Single-Unit Trucks	0	0	0	0	-	-	0	0
Single-Unit Trucks\%	0.0\%	0.0\%	-	-	-	-	0.0\%	0.0\%
Buses	0	0	0	0	-	-	0	0
Buses\%	0.0\%	0.0\%	-	-	-	-	0.0\%	0.0\%
Bicycles on Road	0	0	0	0	-	-	0	0
Bicycles on Road\%	0.0\%	0.0\%	-	-	-	-	0.0\%	0.0\%
Pedestrians	-	-	-	-	1	0	-	-
Pedestrians\%	-	-	-	-	100.0\%		-	-

E Approach ST JAMES AVE								S Approach FERGUS AVE		
Thru	Right	U-Turn	Peds CCW	Peds CW	Approach Total	Left	Thru	Right	U-Turn	Peds CCW
0	1	0	0	1	13	1	3	6	1	0
1	0	0	0	0	12	0	2	7	1	0
0	1	1	0	0	11	1	2	4	0	0
0	2	0	0	0	24	0	0	8	0	1
1	4	1	0	1	60	2	7	25	2	1
1.7\%	6.7\%	1.7\%	-	-	-	5.6\%	19.4\%	69.4\%	5.6\%	-
0.9\%	3.8\%	0.9\%	-	-	56.6\%	1.9\%	6.6\%	23.6\%	1.9\%	-
0.25	0.5	0.25	-	-	0.63	0.5	0.58	0.78	0.5	-
0	0	0	-	-	0	0	1	0	0	-
0.0\%	0.0\%	0.0\%	-	-	0.0\%	0.0\%	14.3\%	0.0\%	0.0\%	-
1	4	1	-	-	60	2	6	25	2	-
100.0\%	100.0\%	100.0\%	-	-	100.0\%	100.0\%	85.7\%	100.0\%	100.0\%	-
0	0	0	-	-	0	0	1	0	0	-
0.0\%	0.0\%	0.0\%	-	-	0.0\%	0.0\%	14.3\%	0.0\%	0.0\%	-
0	0	0	-	-	0	0	0	0	0	-
0.0\%	0.0\%	0.0\%	-	-	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	-
0	0	0	-	-	0	0	0	0	0	-
0.0\%	0.0\%	0.0\%	-	-	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	-
-	-	-	0	1	-	-	-	-	-	1
-	-	-		100.0\%	-	-	-	-	-	100.0\%

		W Approach ST JAMES AVE							
Peds CW	Approach Total	Left	Thru	Right	U-Turn	Peds CCW	Peds CW	Approach Total	
0	11	0	1	0	0	0	0	1	28
0	10	0	1	0	0	0	0	1	24
0	7	0	0	0	0	0	1	0	20
0	8	0	0	0	0	0	0	0	34
0	36	0	2	0	0	0	1	2	106
-	-	0.0\%	100.0\%	0.0\%	0.0\%	-	-	-	-
-	34.0\%	0.0\%	1.9\%	0.0\%	0.0\%	-	-	1.9\%	-
-	0.82	0	0.5	0	0	-	-	0.5	0.78
-	1	0	0	0	0	-	-	0	1
-	2.8\%	0.0\%	0.0\%	0.0\%	0.0\%	-	-	0.0\%	0.9\%
-	35	0	2	0	0	-	-	2	105
-	97.2\%	-	100.0\%	-	-	-	-	100.0\%	99.1\%
-	1	0	0	0	0	-	-	0	1
-	2.8\%	-	0.0\%	-	-	-	-	0.0\%	0.9\%
-	0	0	0	0	0	-	-	0	0
-	0.0\%	-	0.0\%	-	-	-	-	0.0\%	0.0\%
-	0	0	0	0	0	-	-	0	0
-	0.0\%	-	0.0\%	-	-	-	-	0.0\%	0.0\%
0	-	-	-	-	-	0	1	-	-
	-	-	-	-	-		100.0\%	-	-

APPENDIX C

Level of Service Definitions

Level of Service Definitions
Signalized Intersections

Level of Service	Control Delay per Vehicle (seconds)	Interpretation
A	≤ 10	EXCELLENT. Extremely favourable progression with most vehicles arriving during the green phase. Most vehicles do not stop and short cycle lengths may contribute to low delay.
B	>10 and ≤ 20	VERY GOOD. Very good progression and/or short cycle lengths with slightly more vehicles stopping than LOS "A" causing slightly higher levels of average delay.
C	>20 and ≤ 35	GOOD. Fair progression and longer cycle lengths lead to a greater number of vehicles stopping than LOS "B".
D	>35 and ≤ 55	FAIR. Congestion becomes noticeable with higher average delays resulting from a combination of long cycle lengths, high volume-to-capacity ratios and unfavourable progression.
E	>55 and ≤ 80	POOR. Lengthy delays values are indicative of poor progression, long cycle lengths and high volume-to-capacity ratios. Individual cycle failures are common with individual movement failures also common.
F	>80	UNSATIFACTORY. Indicative of oversaturated conditions with vehicular demand greater than the capacity of the intersection.

Adapted from Highway Capacity Manual 2000, Transportation Research Board

Level of Service Definitions
Two-Way Stop Controlled Intersections

Level of Service	Control Delay per Vehicle (seconds)	Interpretation
A	≤ 10	EXCELLENT. Large and frequent gaps in traffic on the main roadway. Queuing on the minor street is rare.
B	>10 and ≤ 15	VERY GOOD. Many gaps exist in traffic on the main roadway. Queuing on the minor street is minimal.
C	>15 and ≤ 25	GOOD. Fewer gaps exist in traffic on the main roadway. Delay on minor approach becomes more noticeable.
D	>35 and ≤ 35	FAIR. Infrequent and shorter gaps in traffic on the main roadway. Queue lengths develop on the minor street.
E	>50	POOR. Very infrequent gaps in traffic on the main roadway. Queve lengths become noticeable.
F	>50	UNSATISFACTORY. Very few gaps in traffic on the main roadway. Excessive delay with significant queve lengths on the minor street.

Adapted from Highway Capacity Manual 2000, Transportation Research Board

APPENDIX D

Transportation Tomorrow Survey Calculations

Fri May 212021 11:21:39 GMT-0400 (Eastern Daylight Time) - Run Time: 2526ms
Cross Tabulation Query Form - Trip - 2016 v1.1
Row: Planning district of origin - pd_orig
Column: Primary travel mode of trip - mode_prime

Filters:
2006 GTA zone of destination - gta06_dest $\ln 3643$
and
Start time of trip - start_time $\ln 700-900$
and
Primary travel mode of trip - mode_prime In D
Trip 2016
Table:
,Auto driver
PD 7 of Toronto, 32
PD 8 of Toronto, 25
PD 11 of Toronto, 12
King,23
Vaughan,41
Brampton, 88
Mississauga,488
Milton,126
Oakville,79

TTS Detailed Distribution - AM Peak IN

	Auto driver
PD 7 of Toronto	32
PD 8 of Toronto	25
PD 11 of Toronto	12
King	23
Vaughan	41
Brampton	88
Mississauga	488
Milton	126
Oakville	79
TOTAL	

North South

Fri May 212021 11:26:38 GMT-0400 (Eastern Daylight Time) - Run Time: 2338ms
Cross Tabulation Query Form - Trip - 2016 v1.1
Row: Planning district of destination - pd_dest
Column: Primary travel mode of trip - mode_prime

Filters:
(2006 GTA zone of origin - gta06_orig In 3643
and
Start time of trip - start_time $\ln 700-900$
and
Primary travel mode of trip - mode_prime In D)
Trip 2016
Table:
,Auto driver
PD 1 of Toronto,42
PD 2 of Toronto, 43
PD 3 of Toronto, 17
PD 6 of Toronto, 27
PD 7 of Toronto, 106
PD 8 of Toronto, 181
PD 9 of Toronto,48
PD 13 of Toronto,27
Oshawa,69
King, 23
Vaughan,63
Brampton, 40
Mississauga, 750
Oakville,18
Burlington, 18

TTS Detailed Distribution - AM Peak OUT

		North		South			East		West	
	Auto driver	\%	\#	\%	\#		\%	\#	\%	\#
PD 1 of Toronto	42	100\%	42	0\%	0		0\%	0	0\%	0
PD 2 of Toronto	43	50\%	21.5	0\%	0		50\%	21.5	0\%	0
PD 3 of Toronto	17	50\%	8.5	0\%	0		50\%	8.5	0\%	0
PD 6 of Toronto	27	50\%	13.5	0\%	0		50\%	13.5	0\%	0
PD 7 of Toronto	106	0\%	0	0\%	0		100\%	106	0\%	0
PD 8 of Toronto	181	50\%	90.5	0\%	0		50\%	90.5	0\%	0
PD 9 of Toronto	48	50\%	24	0\%	0		50\%	24	0\%	0
PD 13 of Toronto	27	50\%	13.5	0\%	0		50\%	13.5	0\%	0
Oshawa	69	30\%	20.7	0\%	0		70\%	48.3	0\%	0
King	23	0\%	0	0\%	0		100\%	23	0\%	0
Vaughan	63	0\%	0	0\%	0		100\%	63	0\%	0
Brampton	40	0\%	0	0\%	0		50\%	20	50\%	20
Mississauga	750	60\%	450	0\%	0		40\%	300	0\%	0
Oakville	18	0\%	0	0\%	0		0\%	0	100\%	18
Burlington	18	0\%	0	0\%	0		0\%	0	100\%	18
TOTAL	1472	46\%	684.2			0	50\%	731.8	4\%	56

Fri May 212021 11:29:04 GMT-0400 (Eastern Daylight Time) - Run Time: 2177ms
Cross Tabulation Query Form - Trip - 2016 v1.1
Row: Planning district of origin - pd_orig
Column: Primary travel mode of trip - mode_prime

Filters:
(2006 GTA zone of destination - gta06_dest In 3643
and
Start time of trip - start_time In 1600-1800
and
Primary travel mode of trip - mode_prime In D)
Trip 2016
Table:
,Auto driver
PD 1 of Toronto, 57
PD 2 of Toronto, 43
PD 3 of Toronto, 26
PD 6 of Toronto, 27
PD 7 of Toronto, 139
PD 8 of Toronto, 130
PD 9 of Toronto, 48
PD 13 of Toronto,27
Vaughan,26
Brampton, 84
Mississauga,533
Oakville,38

		North		South		East		West	
	Auto driver	\%	\#	\%	\#	\%	\#	\%	\#
PD 1 of Toronto	57	100\%	57	0\%	0	0\%	0	0\%	0
PD 2 of Toronto	43	50\%	21.5	0\%	0	50\%	21.5	0\%	0
PD 3 of Toronto	26	50\%	13	0\%	0	50\%	13	0\%	0
PD 6 of Toronto	27	50\%	13.5	0\%	0	50\%	13.5	0\%	0
PD 7 of Toronto	139	0\%	0	0\%	0	100\%	139	0\%	0
PD 8 of Toronto	130	50\%	65	0\%	0	50\%	65	0\%	0
PD 9 of Toronto	48	50\%	24	0\%	0	50\%	24	0\%	0
PD 13 of Toronto	27	50\%	13.5	0\%	0	50\%	13.5	0\%	0
Vaughan	26	0\%	0	0\%	0	100\%	26	0\%	0
Brampton	84	0\%	0	0\%	0	50\%	42	50\%	42
Mississauga	533	60\%	319.8	0\%	0	40\%	213.2	0\%	0
Oakville	38	0\%	0	0\%	0	0\%	0	100\%	38
TOTAL	1178	45\%	527.3			48\%	570.7	7\%	80

Fri May 212021 11:28:00 GMT-0400 (Eastern Daylight Time) - Run Time: 2390ms
Cross Tabulation Query Form - Trip - 2016 v1.1
Row: Planning district of destination - pd_dest
Column: Primary travel mode of trip - mode_prime

Filters:
(2006 GTA zone of origin - gta06_orig In 3643
and
Start time of trip - start_time In 1600-1800
and
Primary travel mode of trip - mode_prime In D)
Trip 2016
Table:
,Auto driver
PD 6 of Toronto, 32
PD 7 of Toronto, 19
PD 8 of Toronto, 40
PD 9 of Toronto, 4
PD 10 of Toronto,41
PD 11 of Toronto, 12
PD 14 of Toronto, 14
Mississauga,499
Milton, 126
Oakville,97
Innisfil,10

Fri May 212021 10:39:29 GMT-0400 (Eastern Daylight Time) - Run Time: 2106ms

Cross Tabulation Query Form - Trip - 2016 v1.1

Row: 2006 GTA zone of household - gta06_hhld
Column: Primary travel mode of trip - mode_prime

Filters:
2006 GTA zone of household - gta06_hhld In 3643
and
Start time of trip - start_time In 700-900, 1500-1900
and
Age of person - age \ln 18-99

Trip 2016
Table:
,Transit excluding GO rail,Auto driver,GO rail only,Joint GO rail and local transit,Auto passenger,Taxi passenger,Walk
3643,188,4221,299,44,272,23,199

Household Zone	Transit excluding GO rail	Auto driver	GO rail only	Joint GO rail and local transit	Auto passenger	Taxi passenger	Walk	TOTAL
3643	188	4221	299	44	272	23	199	5246
	4%	80%	6%	1%	5%	0%	4%	

APPENDIX E

ITE Trip \& Parking Generation Manual Excerpts

Land Use: 221 Multifamily Housing (Mid-Rise)

Description

Mid-rise multifamily housing includes apartments, townhouses, and condominiums located within the same building with at least three other dwelling units and that have between three and 10 levels (floors). Multifamily housing (low-rise) (Land Use 220), multifamily housing (high-rise) (Land Use 222), off-campus student apartment (Land Use 225), and mid-rise residential with 1st-floor commercial (Land Use 231) are related land uses.

Additional Data

In prior editions of Trip Generation Manual, the mid-rise multifamily housing sites were further divided into rental and condominium categories. An investigation of vehicle trip data found no clear differences in trip making patterns between the rental and condominium sites within the ITE database. As more data are compiled for future editions, this land use classification can be reinvestigated.

For the six sites for which both the number of residents and the number of occupied dwelling units were available, there were an average of 2.46 residents per occupied dwelling unit.

For the five sites for which the numbers of both total dwelling units and occupied dwelling units were available, an average of 95.7 percent of the total dwelling units were occupied.

Time-of-day distribution data for this land use are presented in Appendix A. For the eight general urban/suburban sites with data, the overall highest vehicle volumes during the AM and PM on a weekday were counted between 7:00 and 8:00 a.m. and 4:45 and 5:45 p.m., respectively.

For the four dense multi-use urban sites with 24 -hour count data, the overall highest vehicle volumes during the AM and PM on a weekday were counted between 7:15 and 8:15 a.m. and 4:15 and 5:15 p.m., respectively. For the three center city core sites with 24 -hour count data, the overall highest vehicle volumes during the AM and PM on a weekday were counted between 6:45 and 7:45 a.m. and 5:00 and 6:00 p.m., respectively.

For the six sites for which data were provided for both occupied dwelling units and residents, there was an average of 2.46 residents per occupied dwelling unit.

For the five sites for which data were provided for both occupied dwelling units and total dwelling units, an average of 95.7 percent of the units were occupied.

The average numbers of person trips per vehicle trip at the five center city core sites at which both person trip and vehicle trip data were collected were as follows:

- 1.84 during Weekday, Peak Hour of Adjacent Street Traffic, one hour between 7 and 9 a.m.
- 1.94 during Weekday, AM Peak Hour of Generator
- 2.07 during Weekday, Peak Hour of Adjacent Street Traffic, one hour between 4 and 6 p.m.
- 2.59 during Weekday, PM Peak Hour of Generator

The average numbers of person trips per vehicle trip at the 32 dense multi-use urban sites at which both person trip and vehicle trip data were collected were as follows:

- 1.90 during Weekday, Peak Hour of Adjacent Street Traffic, one hour between 7 and 9 a.m.
- 1.90 during Weekday, AM Peak Hour of Generator
- 2.00 during Weekday, Peak Hour of Adjacent Street Traffic, one hour between 4 and 6 p.m.
- 2.08 during Weekday, PM Peak Hour of Generator

The average numbers of person trips per vehicle trip at the 13 general urban/suburban sites at which both person trip and vehicle trip data were collected were as follows:

- 1.56 during Weekday, Peak Hour of Adjacent Street Traffic, one hour between 7 and 9 a.m.
- 1.88 during Weekday, AM Peak Hour of Generator
- 1.70 during Weekday, Peak Hour of Adjacent Street Traffic, one hour between 4 and 6 p.m.
- 2.07 during Weekday, PM Peak Hour of Generator

The sites were surveyed in the 1980s, the 1990s, the 2000s, and the 2010s in Alberta (CAN), British Columbia (CAN), California, Delaware, District of Columbia, Florida, Georgia, Illinois, Maryland, Massachusetts, Minnesota, New Hampshire, New Jersey, Ontario, Oregon, Pennsylvania, South Carolina, South Dakota, Tennessee, Utah, Virginia, and Wisconsin.

Source Numbers

$168,188,204,305,306,321,357,390,436,525,530,579,638,818,857,866,901,904,910,912$,
918, 934, 936, 939, 944, 947, 948, 949, 959, 963, 964, 966, 967, 969, 970

Multifamily Housing (Mid-Rise)
 (221)

Vehicle Trip Ends vs: Dwelling Units
On a: Saturday, Peak Hour of Generator

Setting/Location: General Urban/Suburban

Number of Studies: 8
Avg. Num. of Dwelling Units: 264
Directional Distribution: 49\% entering, 51\% exiting
Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.44	$0.34-0.73$	0.08

Data Plot and Equation

Multifamily Housing (Mid-Rise)
 (221)

Vehicle Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.
Setting/Location: General Urban/Suburban
Number of Studies:
53
Avg. Num. of Dwelling Units: 207
Directional Distribution: 26\% entering, 74% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.36	$0.06-1.61$	0.19

Data Plot and Equation

Multifamily Housing (Mid-Rise)
 (221)

Vehicle Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.
Setting/Location: General Urban/Suburban
Number of Studies:
60
Avg. Num. of Dwelling Units: 208
Directional Distribution: 61\% entering, 39\% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.44	$0.15-1.11$	0.19

Data Plot and Equation

Land Use: 221 Multifamily Housing (Mid-Rise)

Description

Mid-rise multifamily housing includes apartments, townhouses, and condominiums located within the same building with at least three other dwelling units and with between three and 10 levels (floors) of residence. Multifamily housing (low-rise) (Land Use 220), multifamily housing (high-rise) (Land Use 222), and affordable housing (Land Use 223) are related land uses.

Time of Day Distribution for Parking Demand

The following table presents a time-of-day distribution of parking demand on a weekday (one general urban/suburban study site), a Saturday (two general urban/suburban study sites), and a Sunday (one dense multi-use urban study site).

Percent of Peak Parking Demand

Hour Beginning	Weekday	Saturday	Sunday
12:00-4:00 a.m.	100	100	100
5:00 a.m.	94	99	-
6:00 a.m.	83	97	-
7:00 a.m.	71	95	-
8:00 a.m.	61	88	-
9:00 a.m.	55	83	-
10:00 a.m.	54	75	-
11:00 a.m.	53	71	-
12:00 p.m.	50	68	-
1:00 p.m.	49	66	33
2:00 p.m.	49	70	40
3:00 p.m.	50	69	27
4:00 p.m.	58	72	13
5:00 p.m.	64	74	33
6:00 p.m.	67	74	60
7:00 p.m.	70	73	67
8:00 p.m.	76	75	47
9:00 p.m.	83	78	53
10:00 p.m.	90	82	73
11:00 p.m.	93	88	93

Additional Data

In prior editions of Parking Generation, the mid-rise multifamily housing sites were further divided into rental and condominium categories. An investigation of parking demand data found no clear differences in parking demand between the rental and condominium sites within the ITE database. As more data are compiled for future editions, this land use classification can be reinvestigated.

The average parking supply ratios for the study sites with parking supply information are shown in the table below.

Parking Supply Ratio

Setting	Proximity to Rail Transit	Per Dwelling Unit	Per Bedroom
Center City Core	Within $1 / 2$ mile of rail transit	$1.1(15$ sites $)$	$1.0(12$ sites $)$
Dense Multi-Use Urban	Within $1 / 2$ mile of rail transit	$1.2(39$ sites $)$	$0.9(34$ sites $)$
	Not within $1 / 2$ mile of rail transit	$1.2(65$ sites $)$	$0.8(56$ sites $)$
	Within $1 / 2$ mile of rail transit	$1.5(25$ sites $)$	$0.8(12$ sites $)$
	Not within $1 / 2$ mile of rail transit	$1.7(62$ sites $)$	$1.0(39$ sites $)$

The sites were surveyed in the 1980s, the 1990s, the 2000s, and the 2010s in California, Colorado, District of Columbia, Maryland, Massachusetts, New Jersey, New York, Oregon, Virginia, Washington, and Wisconsin.

It is expected that the number of bedrooms and number of residents are likely correlated to the parking demand generated by a residential site. Parking studies of multifamily housing should attempt to obtain information on occupancy rate and on the mix of residential unit sizes (i.e., number of units by number of bedrooms at the site complex). Future parking studies should also indicate the number of levels contained in the residential building.

Source Numbers

$21,209,247,255,277,401,402,419,505,512,522,533,535,536,537,538,545,546,547,575$, $576,577,579,580,581,583,584,585,587$

Land Use: 820 Shopping Center

Description

A shopping center is an integrated group of commercial establishments that is planned, developed, owned, and managed as a unit. A shopping center's composition is related to its market area in terms of size, location, and type of store. A shopping center also provides on-site parking facilities sufficient to serve its own parking demands. Factory outlet center (Land Use 823) is a related use.

Additional Data

Shopping centers, including neighborhood centers, community centers, regional centers, and super regional centers, were surveyed for this land use. Some of these centers contained non-merchandising facilities, such as office buildings, movie theaters, restaurants, post offices, banks, health clubs, and recreational facilities (for example, ice skating rinks or indoor miniature golf courses).

Many shopping centers, in addition to the integrated unit of shops in one building or enclosed around a mall, include outparcels (peripheral buildings or pads located on the perimeter of the center adjacent to the streets and major access points). These buildings are typically drive-in banks, retail stores, restaurants, or small offices. Although the data herein do not indicate which of the centers studied included peripheral buildings, it can be assumed that some of the data show their effect.

The vehicle trips generated at a shopping center are based upon the total GLA of the center. In cases of smaller centers without an enclosed mall or peripheral buildings, the GLA could be the same as the gross floor area of the building.

Time-of-day distribution data for this land use are presented in Appendix A. For the 10 general urban/ suburban sites with data, the overall highest vehicle volumes during the AM and PM on a weekday were counted between 11:45 a.m. and 12:45 p.m. and 12:15 and 1:15 p.m., respectively.

The average numbers of person trips per vehicle trip at the 27 general urban/suburban sites at which both person trip and vehicle trip data were collected were as follows:

- 1.31 during Weekday, AM Peak Hour of Generator
- 1.43 during Weekday, Peak Hour of Adjacent Street Traffic, one hour between 4 and 6 p.m.
- 1.46 during Weekday, PM Peak Hour of Generator

The sites were surveyed in the 1980s, the 1990s, the 2000s, and the 2010s in Alberta (CAN), British Columbia (CAN), California, Colorado, Connecticut, Delaware, District of Columbia, Florida, Georgia, Illinois, Indiana, lowa, Kansas, Kentucky, Maine, Maryland, Massachusetts, Michigan, Minnesota, Nevada, New Jersey, New York, North Carolina, Ohio, Oklahoma, Oregon, Pennsylvania, South Dakota, Tennessee, Texas, Vermont, Virginia, Washington, West Virginia, and Wisconsin.

Source Numbers

$105,110,154,156,159,186,190,198,199,202,204,211,213,239,251,259,260,269,294,295$,
$299,300,301,304,305,307,308,309,310,311,314,315,316,317,319,358,365,376,385,390$,
400, 404, 414, 420, 423, 428, 437, 440, 442, 444, 446, 507, 562, 580, 598, 629, 658, 702, 715, 728,
868, 870, 871, 880, 899, 908, 912, 915, 926, 936, 944, 946, 960, 961, 962, 973, 974, 978

Shopping Center (820)

Vehicle Trip Ends vs: 1000 Sq. Ft. GLA
On a: Saturday, Peak Hour of Generator

Setting/Location: General Urban/Suburban

Number of Studies:
119
Avg. 1000 Sq. Ft. GLA: 416
Directional Distribution: 52\% entering, 48\% exiting
Vehicle Trip Generation per 1000 Sq. Ft. GLA

Average Rate	Range of Rates	Standard Deviation
4.50	$1.42-15.10$	1.88

Data Plot and Equation

Shopping Center (820)

Vehicle Trip Ends vs: 1000 Sq. Ft. GLA
On a: Weekday,
Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.
Setting/Location: General Urban/Suburban
Number of Studies:
84
Avg. 1000 Sq. Ft. GLA: 351
Directional Distribution: 62\% entering, 38\% exiting
Vehicle Trip Generation per 1000 Sq. Ft. GLA

Average Rate	Range of Rates	Standard Deviation
0.94	$0.18-23.74$	0.87

Data Plot and Equation

Shopping Center (820)

Vehicle Trip Ends vs: 1000 Sq. Ft. GLA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.
Setting/Location: General Urban/Suburban
Number of Studies:
261
Avg. 1000 Sq. Ft. GLA: 327
Directional Distribution: 48\% entering, 52% exiting
Vehicle Trip Generation per 1000 Sq. Ft. GLA

Average Rate	Range of Rates	Standard Deviation
3.81	$0.74-18.69$	2.04

Data Plot and Equation

APPENDIX F

Signal Warrants

Signal Warrant Calculation

Justification 7 - Projected Volumes
Major Street: Lakeshore Road East
East/West
Minor Street: Fergus Avenue
Traffic Condition: 2026 Future Total AM

Number of Approaches: 2
Tee Intersection: No
Existing Intersection: Yes

North/South

Flow Condition: Restricted Flow (Urban)
No. of Peak Hours: 1

Volume	1st Hour	2nd Hour	Factor	Average Hour
1A - All	2191	0	2	1096
1B - Minor	134	0	2	67
2A - Major	2057	0	2	1029
2B - Crossing	55	0	2	28

WARRANT 1 - MINIMUM VEHICULAR VOLUME =>
39\% Satisfied

A.	Vehicle volume all approaches (average hour)	Restricted Flow	Average Hour	Percent Satisfied
	B.	900	1096	122%
Vehicle volume, along minor streets (average hour)	Restricted Flow	Average Hour	Percent Satisfied	
	170	67	39%	

WARRANT 2 - DELAY TO CROSS TRAFFIC =>

A.	Vehicle volume all approaches (average hour)	Restricted Flow	Average Hour	Percent Satisfied
	B.	Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	Restricted Flow	Average Hour
	Percent Satisfied			
	170	28	16%	

$\begin{aligned} \text { Overall Warrant } & =>\quad 39 \% \text { Satsified } \\ \text { Result } & =>\text { No signals are warranted nor provision for undergrounds needed. }\end{aligned}$

Signal Warrant Calculation

Justification 7 - Projected Volumes
Major Street: Lakeshore Road East
Minor Street: Fergus Avenue
Traffic Condition: 2026 Future Total AM

Number of Approaches: 2
Tee Intersection: No
Existing Intersection: Yes

East/West
North/South

Flow Condition: Restricted Flow (Urban)
No. of Peak Hours: 1

Volume	1st Hour	2nd Hour	Factor	Average Hour
1A - All	2428	0	2	1215
1B - Minor	101	0	2	51
2A - Major	2327	0	2	1164
2B - Crossing	40	0	2	20

WARRANT 1 - MINIMUM VEHICULAR VOLUME =>
30\% Satisfied

A.	Vehicle volume all approaches (average hour)	Restricted Flow	Average Hour	Percent Satisfied
	B.	900 Vehicle volume, along minor streets (average hour)	Restricted Flow	Average Hour
	Percent Satisfied			

WARRANT 2 - DELAY TO CROSS TRAFFIC =>

A.	Vehicle volume all approaches (average hour)	Restricted Flow	Average Hour	Percent Satisfied
	B.	900 Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	Restricted Flow	Average Hour
	Percent Satisfied			
	170	20	12%	

Overall Warrant => 30% Satsified
Result => No signals are warranted nor provision for undergrounds needed.

Signal Warrant Calculation

Justification 7 - Projected Volumes

Major Street: Dixie Road
Minor Street: St. James Avenue
Traffic Condition: 2026 Future Total AM

Number of Approaches: 2
Tee Intersection: No
Existing Intersection: Yes

North/South
East/West

Flow Condition: Restricted Flow (Urban)
No. of Peak Hours: 1

Volume	1st Hour	2nd Hour	Factor	Average Hour
1A - All	1139	0	2	570
1B - Minor	133	0	2	67
2A - Major	1006	0	2	503
2B - Crossing	128	0	2	64

WARRANT 1 - MINIMUM VEHICULAR VOLUME =>
39\% Satisfied

A.	Vehicle volume all approaches (average hour)	Restricted Flow	Average Hour	Percent Satisfied
	B.	900 Vehicle volume, along minor streets (average hour)	Restricted Flow	Average Hour
	Percent Satisfied			

WARRANT 2 - DELAY TO CROSS TRAFFIC =>

A.	Vehicle volume all approaches (average hour)	Restricted Flow	Average Hour	Percent Satisfied
	B.	Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	Restricted Flow	Average Hour
	Percent Satisfied			
B	170	64	38%	

Overall Warrant => 39% Satsified
Result => No signals are warranted nor provision for undergrounds needed.

Signal Warrant Calculation

Justification 7 - Projected Volumes

Major Street: Dixie Road
Minor Street: St. James Avenue
Traffic Condition: 2026 Future Total PM

Number of Approaches: 2
Tee Intersection: No
Existing Intersection: Yes

North/South
East/West

Flow Condition: Restricted Flow (Urban)
No. of Peak Hours: 1

Volume	1st Hour	2nd Hour	Factor	Average Hour
1A - All	1186	0	2	593
1B - Minor	78	0	2	39
2A - Major	1108	0	2	554
2B - Crossing	74	0	2	37

WARRANT 1 - MINIMUM VEHICULAR VOLUME =>
23\% Satisfied

A.	Vehicle volume all approaches (average hour)	Restricted Flow	Average Hour	Percent Satisfied
	B.	900 Vehicle volume, along minor streets (average hour)	Restricted Flow	Average Hour
	Percent Satisfied			

WARRANT 2 - DELAY TO CROSS TRAFFIC =>

A.	Vehicle volume all approaches (average hour)	Restricted Flow	Average Hour	Percent Satisfied
	B.	Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	Restricted Flow	Average Hour
	Percent Satisfied			
170	37	22%		

Overall Warrant => 23\% Satsified
Result => No signals are warranted nor provision for undergrounds needed.

APPENDIX G

Existing Detailed Capacity Analysis

9: Dixie Road \& St. James Ave

Intersection						
Int Delay, s/veh	1.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			4	4	$\mathbf{7}$
Traffic Vol, veh/h	50	5	4	572	313	17
Future Vol, veh/h	50	5	4	572	313	17
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	0	-	-	130
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, \%	2	0	75	3	8	0
Mvmt Flow	57	6	5	650	356	19

	4	\rightarrow	\%			4	4	4	\%	\%	1	\pm
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	4\%		${ }^{1}$	中 ${ }^{\text {a }}$			4		${ }^{7}$	\dagger	
Traffic Volume (vph)	415	794	1	0	505	183	0	0	0	133	0	181
Future Volume (vph)	415	794	1	0	505	183	0	0	0	133	0	181
Ideal Flow (vphpl)	1860	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	75.0		0.0	100.0		0.0	0.0		0.0	75.0		0.0
Storage Lanes	1		0	2		0	0		0	1		0
Taper Length (m)	7.6			7.6			7.6			7.6		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	1.00			0.99						0.99	
Frt					0.960						0.850	
Flt Protected	0.950									0.950		
Satd. Flow (prot)	1677	3394	0	1858	3176	0	0	1858	0	1765	1391	0
Flt Permitted	0.174									0.757		
Satd. Flow (perm)	306	3394	0	1858	3176	0	0	1858	0	1406	1391	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					56						457	
Link Speed (k/h)		50			40			40			50	
Link Distance (m)		198.2			101.4			58.3			153.5	
Travel Time (s)		14.3			9.1			5.2			11.1	
Confl. Peds. (\#/hr)	10		1	1		10	1					1
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	3\%	4\%	0\%	0\%	7\%	3\%	0\%	0\%	0\%	0\%	0\%	12\%
Adj. Flow (vph)	451	863	1	0	549	199	0	0	0	145	0	197
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	451	864	0	0	748	0	0	0	0	145	197	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(m)		3.4			3.4			3.4			3.4	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.9			4.9			4.9			4.9	
Two way Left Turn Lane												
Headway Factor	1.06	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru										
Leading Detector (m)	6.1	10.0		2.0	10.0		6.1	10.0		2.0	10.0	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	0.6		2.0	0.6		6.1	0.6		2.0	0.6	
Detector 1 Type	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$		Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	

Splits and Phases: 10: Dixie Road \& Lakeshore Road

Intersection													
Int Delay, s/veh	5.7												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		\$			\uparrow			¢			\uparrow		
Traffic Vol, veh/h	0	2	0	55	1	4	2	7	25	2	6	0	
Future Vol, veh/h	0	2	0	55	1	4	2	7	25	2	6	0	
Conflicting Peds, \#/hr	1	0	1	1	0	1	1	0	1	1	0	1	
Sign Control S	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#	\# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	78	78	78	78	78	78	78	78	78	78	78	78	
Heavy Vehicles, \%	0	0	0	0	0	0	0	14	0	0	0	0	
Mvmt Flow	0	3	0	71	1	5	3	9	32	3	8	0	

Intersection												
Int Delay, s/veh	1.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	中 ${ }^{\text {a }}$		${ }^{*}$	虫			\&			*	
Traffic Vol, veh/h	27	699	7	4	1355	14	14	0	16	8	0	32
Future Vol, veh/h	27	699	7	4	1355	14	14	0	16	8	0	32
Conflicting Peds, \#/hr	6	0	0	0	0	6	2	0	0	0	0	2
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	500	-	-	500	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, \%	4	3	0	0	1	0	0	0	0	0	0	0
Mvmt Flow	29	744	7	4	1441	15	15	0	17	9	0	34

9: Dixie Road \& St. James Ave

Intersection						
Int Delay, s/veh	0.6					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	M			4	个	$\mathbf{7}$
Traffic Vol, veh/h	27	4	1	439	455	44
Future Vol, veh/h	27	4	1	439	455	44
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	0	-	-	130
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, \%	0	0	0	2	1	0
Mvmt Flow	29	4	1	467	484	47

	4	\rightarrow	\%			4	4	4	\%	,	1	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	4\%		${ }^{1}$	中 ${ }^{\text {a }}$			4		${ }^{7}$	\dagger	
Traffic Volume (vph)	227	497	1	0	1095	225	0	0	1	192	0	274
Future Volume (vph)	227	497	1	0	1095	225	0	0	1	192	0	274
Ideal Flow (vphpl)	1860	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	75.0		0.0	100.0		0.0	0.0		0.0	75.0		0.0
Storage Lanes	1		0	2		0	0		0	1		0
Taper Length (m)	7.6			7.6			7.6			7.6		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		1.00			1.00			0.99		1.00	0.98	
Frt					0.974			0.865			0.850	
Flt Protected	0.950									0.950		
Satd. Flow (prot)	1711	3394	0	1858	3390	0	0	1586	0	1747	1538	0
Flt Permitted	0.078									0.757		
Satd. Flow (perm)	140	3394	0	1858	3390	0	0	1586	0	1390	1538	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					26			390			328	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		198.2			101.4			58.3			153.5	
Travel Time (s)		14.3			7.3			4.2			11.1	
Confl. Peds. (\#/hr)	8		2	2		8	3		1	1		3
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Heavy Vehicles (\%)	1\%	4\%	0\%	0\%	1\%	1\%	0\%	0\%	0\%	1\%	0\%	1\%
Adj. Flow (vph)	236	518	1	0	1141	234	0	0	1	200	0	285
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	236	519	0	0	1375	0	0	1	0	200	285	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(m)		3.4			3.4			3.4			3.4	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.9			4.9			4.9			4.9	
Two way Left Turn Lane												
Headway Factor	1.06	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru										
Leading Detector (m)	6.1	10.0		2.0	10.0		6.1	10.0		2.0	10.0	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	0.6		2.0	0.6		6.1	0.6		2.0	0.6	
Detector 1 Type	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$		Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	

Splits and Phases: 10: Dixie Road \& Lakeshore Road

APPENDIX H

Future Background Detailed Capacity Analysis

9: Dixie Road \& St. James Ave

	\rangle	\rightarrow		7	\checkmark	4	4	\dagger			\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	个 \uparrow		${ }_{1}$	性			¢		\%	$\hat{\beta}$	
Trafic Volume (vph)	462	865	1	0	539	192	0	0	0	159	0	220
Future Volume (vph)	462	865	1	0	539	192	0	0	0	159	0	220
Ideal Flow (vphpl)	1860	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	75.0		0.0	100.0		0.0	0.0		0.0	75.0		0.0
Storage Lanes	1		0	2		0	0		0	1		0
Taper Length (m)	7.6			7.6			7.6			7.6		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	1.00			0.99						0.99	
Frt					0.961						0.850	
Flt Protected	0.950									0.950		
Satd. Flow (prot)	1677	3394	0	1858	3180	0	0	1858	0	1765	1391	0
Flt Permitted	0.162									0.757		
Satd. Flow (perm)	285	3394	0	1858	3180	0	0	1858	0	1406	1391	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					55						441	
Link Speed (k/h)		50			40			40			50	
Link Distance (m)		198.2			101.4			58.3			153.5	
Travel Time (s)		14.3			9.1			5.2			11.1	
Confl. Peds. (\#/hr)	10		1	1		10	1					1
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	3\%	4\%	0\%	0\%	7\%	3\%	0\%	0\%	0\%	0\%	0\%	12\%
Adj. Flow (vph)	502	940	1	0	586	209	0	0	0	173	0	239
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	502	941	0	0	795	0	0	0	0	173	239	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(m)		3.4			3.4			3.4			3.4	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.9			4.9			4.9			4.9	
Two way Left Turn Lane												
Headway Factor	1.06	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03
Turning Speed (kh)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru										
Leading Detector (m)	6.1	10.0		2.0	10.0		6.1	10.0		2.0	10.0	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	0.6		2.0	0.6		6.1	0.6		2.0	0.6	
Detector 1 Type	Cl+Ex	Cl+Ex										
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		Cl+Ex			Cl+Ex			Cl+Ex			Cl+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	

Splits and Phases: 10: Dixie Road \& Lakeshore Road

Intersection												
Int Delay, s/veh	2.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	中 ${ }_{6}$		${ }^{1}$	嘲			4			*	
Traffic Vol, veh/h	44	780	7	4	1443	15	14	0	16	8	0	42
Future Vol, veh/h	44	780	7	4	1443	15	14	0	16	8	0	42
Conflicting Peds, \#/hr	6	0	0	0	0	6	2	0	0	0	0	2
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	500	-	-	500	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, \%	4	3	0	0	1	0	0	0	0	0	0	0
Mvmt Flow	47	830	7	4	1535	16	15	0	17	9	0	45

9: Dixie Road \& St. James Ave

Intersection						
Int Delay, s/veh	2.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	M			4	4	$\mathbf{7}$
Traffic Vol, veh/h	72	4	36	453	525	69
Future Vol, veh/h	72	4	36	453	525	69
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	0	-	-	130
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, \%	0	0	0	2	1	0
Mvmt Flow	77	4	38	482	559	73

	\rangle	\rightarrow		7	\checkmark	4	4	4	p		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	个 ${ }_{\text {d }}$		${ }^{7}$	个t			\dagger		\%	$\hat{\beta}$	
Trafic Volume (vph)	310	561	1	0	1161	250	0	0	1	217	0	298
Future Volume (vph)	310	561	1	0	1161	250	0	0	1	217	0	298
Ideal Flow (vphpl)	1860	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	75.0		0.0	100.0		0.0	0.0		0.0	75.0		0.0
Storage Lanes	1		0	2		0	0		0	1		0
Taper Length (m)	7.6			7.6			7.6			7.6		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		1.00			1.00			0.99		1.00	0.98	
Frt					0.973			0.865			0.850	
Flt Protected	0.950									0.950		
Satd. Flow (prot)	1711	3394	0	1858	3386	0	0	1586	0	1747	1538	0
Flt Permitted	0.072									0.757		
Satd. Flow (perm)	130	3394	0	1858	3386	0	0	1586	0	1390	1538	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					28			341			323	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		198.2			101.4			58.3			153.5	
Travel Time (s)		14.3			7.3			4.2			11.1	
Confl. Peds. (\#/hr)	8		2	2		8	3		1	1		3
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Heavy Vehicles (\%)	1\%	4\%	0\%	0\%	1\%	1\%	0\%	0\%	0\%	1\%	0\%	1\%
Adj. Flow (vph)	323	584	1	0	1209	260	0	0	1	226	0	310
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	323	585	0	0	1469	0	0	1	0	226	310	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(m)		3.4			3.4			3.4			3.4	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.9			4.9			4.9			4.9	
Two way Left Turn Lane												
Headway Factor	1.06	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03
Turning Speed (kh)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru										
Leading Detector (m)	6.1	10.0		2.0	10.0		6.1	10.0		2.0	10.0	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	0.6		2.0	0.6		6.1	0.6		2.0	0.6	
Detector 1 Type	Cl+Ex	Cl+Ex		$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex		Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		Cl+Ex			Cl+Ex			Cl+Ex			Cl+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	

Splits and Phases: 10: Dixie Road \& Lakeshore Road

APPENDIX I

Future Total Detailed Capacity Analysis

Intersection												
Int Delay, s/veh	11.7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{1}$	性		${ }^{1}$	虾			*			*	
Traffic Vol, veh/h	25	1286	34	46	648	17	19	0	17	36	0	62
Future Vol, veh/h	25	1286	34	46	648	17	19	0	17	36	0	62
Conflicting Peds, \#/hr	6	0	0	0	0	6	1	0	0	0	0	1
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-		None	-	-	None	-	-	None
Storage Length	500	-	-	500	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, \%	6	3	47	44	6	0	68	0	65	0	0	10
Mvmt Flow	27	1368	36	49	689	18	20	0	18	38	0	66

Approach	EB	WB	NB	SB
HCM Control Delay, s	0.2	1.2	$\$ 482.3$	73
HCM LOS		F	F	

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR SBLn1
Capacity (veh/h)	29	853	-	-	313	-	- 148
HCM Lane V/C Ratio	1.321	0.031	-	-	0.156	-	- 0.704
HCM Control Delay (s)	\$ 482.3	9.4	-	-	18.6	-	73
HCM Lane LOS	F	A	-	-	C	-	F
HCM 95th \%tile Q(veh)	4.4	0.1	-	-	0.5	-	4.1
Notes							
\sim : Volume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined							

Intersection												
Int Delay, s/veh	11.7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{1}$	性		${ }^{1}$	虾			*			*	
Traffic Vol, veh/h	25	1286	34	46	648	17	19	0	17	36	0	62
Future Vol, veh/h	25	1286	34	46	648	17	19	0	17	36	0	62
Conflicting Peds, \#/hr	6	0	0	0	0	6	1	0	0	0	0	1
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-		None	-	-	None	-	-	None
Storage Length	500	-	-	500	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, \%	6	3	47	44	6	0	68	0	65	0	0	10
Mvmt Flow	27	1368	36	49	689	18	20	0	18	38	0	66

Approach	EB	WB	NB	SB
HCM Control Delay, s	0.2	1.2	$\$ 482.3$	73
HCM LOS		F	F	

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR SBLn1
Capacity (veh/h)	29	853	-	-	313	-	- 148
HCM Lane V/C Ratio	1.321	0.031	-	-	0.156	-	- 0.704
HCM Control Delay (s)	\$ 482.3	9.4	-	-	18.6	-	73
HCM Lane LOS	F	A	-	-	C	-	F
HCM 95th \%tile Q(veh)	4.4	0.1	-	-	0.5	-	4.1
Notes							
\sim : Volume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined							

9: Dixie Road \& St. James Ave

Intersection						
Int Delay, s/veh	5.6					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	M			个	个	$\mathbf{7}$
Traffic Vol, veh/h	128	5	14	615	348	28
Future Vol, veh/h	128	5	14	615	348	28
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	0	-	-	130
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, \%	2	0	75	3	8	0
Mvmt Flow	145	6	16	699	395	32

	4	\rightarrow	\%			4	4	4	\%	\%	1	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	中 ${ }^{\text {a }}$		${ }^{1}$	中 ${ }^{\text {a }}$			4		${ }^{7}$	\dagger	
Traffic Volume (vph)	475	882	1	0	544	192	0	0	0	159	0	224
Future Volume (vph)	475	882	1	0	544	192	0	0	0	159	0	224
Ideal Flow (vphpl)	1860	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	75.0		0.0	100.0		0.0	0.0		0.0	75.0		0.0
Storage Lanes	1		0	2		0	0		0	1		0
Taper Length (m)	7.6			7.6			7.6			7.6		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		1.00			0.99						0.99	
Frt					0.961						0.850	
Flt Protected	0.950									0.950		
Satd. Flow (prot)	1677	3394	0	1858	3180	0	0	1858	0	1765	1391	0
Flt Permitted	0.159									0.757		
Satd. Flow (perm)	281	3394	0	1858	3180	0	0	1858	0	1406	1391	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					54						439	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		198.2			101.4			58.3			153.5	
Travel Time (s)		14.3			7.3			4.2			11.1	
Confl. Peds. (\#/hr)	10		1	1		10	1					1
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	3\%	4\%	0\%	0\%	7\%	3\%	0\%	0\%	0\%	0\%	0\%	12\%
Adj. Flow (vph)	516	959	1	0	591	209	0	0	0	173	0	243
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	516	960	0	0	800	0	0	0	0	173	243	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(m)		3.4			3.4			3.4			3.4	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.9			4.9			4.9			4.9	
Two way Left Turn Lane												
Headway Factor	1.06	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru										
Leading Detector (m)	6.1	10.0		2.0	10.0		6.1	10.0		2.0	10.0	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	0.6		2.0	0.6		6.1	0.6		2.0	0.6	
Detector 1 Type	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$		Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	

Splits and Phases: 10: Dixie Road \& Lakeshore Road

Intersection												
Int Delay, s/veh	9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }_{1}$	中 ${ }^{\text {P }}$		${ }^{1}$	郎			\&			4	
Traffic Vol, veh/h	46	780	7	4	1443	44	14	0	16	26	0	44
Future Vol, veh/h	46	780	7	4	1443	44	14	0	16	26	0	44
Conflicting Peds, \#/hr	6	0	0	0	0	6	2	0	0	0	0	2
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	500	-	-	500	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, \%	4	3	0	0	1	0	0	0	0	0	0	0
Mvmt Flow	49	830	7	4	1535	47	15	0	17	28	0	47

Major/Minor	Major1	Major2				Minor1			Minor2			
Conflicting Flow All	1588	0	0	837	0	0	1710	2528	419	2086	2508	799
Stage 1	-	-	-	-	-	-	932	932	-	1573	1573	-
Stage 2	-	-	-	-	-	-	778	1596	-	513	935	-
Critical Hdwy	4.18	-	-	4.1	-	-	7.5	6.5	6.9	7.5	6.5	6.9
Critical Hdwy Stg 1	-	-	-	-	-	-	6.5	5.5	-	6.5	5.5	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.5	5.5	-	6.5	5.5	-
Follow-up Hdwy	2.24	-	-	2.2	-	-	3.5	4	3.3	3.5	4	3.3
Pot Cap-1 Maneuver	400	-	-	806	-	-	60	28	589	31	29	333
Stage 1	-	-	-	-	-	-	291	348	-	117	172	-
Stage 2	-	-	-	-	-	-	360	168	-	517	347	-
Platoon blocked, \%		-	-		-	-						
Mov Cap-1 Maneuver	398	-	-	806	-	-	46	24	589	~ 27	25	331
Mov Cap-2 Maneuver	-	-	-	-	-	-	46	24	-	~ 27	25	-
Stage 1	-	-	-	-	-	-	255	305	-	102	170	-
Stage 2	-	-	-	-	-	-	307	166	-	440	304	-

Approach	EB	WB	NB	SB
HCM Control Delay, s	0.8	0	65.5	273.6
HCM LOS			F	F

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR SBLn1
Capacity (veh/h)	90	398	-	-806	-	-64	
HCM Lane V/C Ratio	0.355	0.123	-	-0.005	-	-1.164	
HCM Control Delay (s)	65.5	15.3	-	-	9.5	-	-273.6
HCM Lane LOS	F	C	-	-	A	-	-
HCM 95th \%otile Q(veh)	1.4	0.4	-	-	0	-	-

Notes

\sim : Volume exceeds capacity $\$$: Delay exceeds $300 s \quad+$: Computation Not Defined \quad : All major volume in platoon

Intersection												
Int Delay, s/veh	9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }_{1}$	中 ${ }^{\text {P }}$		${ }^{1}$	郎			\&			4	
Traffic Vol, veh/h	46	780	7	4	1443	44	14	0	16	26	0	44
Future Vol, veh/h	46	780	7	4	1443	44	14	0	16	26	0	44
Conflicting Peds, \#/hr	6	0	0	0	0	6	2	0	0	0	0	2
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	500	-	-	500	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, \%	4	3	0	0	1	0	0	0	0	0	0	0
Mvmt Flow	49	830	7	4	1535	47	15	0	17	28	0	47

Major/Minor	Major1	Major2				Minor1			Minor2			
Conflicting Flow All	1588	0	0	837	0	0	1710	2528	419	2086	2508	799
Stage 1	-	-	-	-	-	-	932	932	-	1573	1573	-
Stage 2	-	-	-	-	-	-	778	1596	-	513	935	-
Critical Hdwy	4.18	-	-	4.1	-	-	7.5	6.5	6.9	7.5	6.5	6.9
Critical Hdwy Stg 1	-	-	-	-	-	-	6.5	5.5	-	6.5	5.5	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.5	5.5	-	6.5	5.5	-
Follow-up Hdwy	2.24	-	-	2.2	-	-	3.5	4	3.3	3.5	4	3.3
Pot Cap-1 Maneuver	400	-	-	806	-	-	60	28	589	31	29	333
Stage 1	-	-	-	-	-	-	291	348	-	117	172	-
Stage 2	-	-	-	-	-	-	360	168	-	517	347	-
Platoon blocked, \%		-	-		-	-						
Mov Cap-1 Maneuver	398	-	-	806	-	-	46	24	589	~ 27	25	331
Mov Cap-2 Maneuver	-	-	-	-	-	-	46	24	-	~ 27	25	-
Stage 1	-	-	-	-	-	-	255	305	-	102	170	-
Stage 2	-	-	-	-	-	-	307	166	-	440	304	-

Approach	EB	WB	NB	SB
HCM Control Delay, s	0.8	0	65.5	273.6
HCM LOS			F	F

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR SBLn1
Capacity (veh/h)	90	398	-	-806	-	-64	
HCM Lane V/C Ratio	0.355	0.123	-	-0.005	-	-1.164	
HCM Control Delay (s)	65.5	15.3	-	-	9.5	-	-273.6
HCM Lane LOS	F	C	-	-	A	-	-
HCM 95th \%otile Q(veh)	1.4	0.4	-	-	0	-	-

Notes

\sim : Volume exceeds capacity $\$$: Delay exceeds $300 s \quad+$: Computation Not Defined \quad : All major volume in platoon

9: Dixie Road \& St. James Ave

Intersection						
Int Delay, s/veh	2.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Mr			个	个	$\mathbf{7}$
Traffic Vol, veh/h	74	4	36	461	537	72
Future Vol, veh/h	74	4	36	461	537	72
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	0	-	-	130
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, \%	0	0	0	2	1	0
Mvmt Flow	79	4	38	490	571	77

Major/Minor	Minor2		Major1		ajor2	
Conflicting Flow All	1137	571	648	0	-	0
Stage 1	571	-	-	-	-	-
Stage 2	566	-	-	-	-	-
Critical Hdwy	6.4	6.2	4.1	-	-	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	225	524	947	-	-	-
Stage 1	569	-	-	-	-	-
Stage 2	572	-	-	-	-	-
Platoon blocked, \%				-	-	-
Mov Cap-1 Maneuver	216	524	947	-	-	-
Mov Cap-2 Maneuver	216	-	-	-	-	-
Stage 1	546	-	-	-	-	-
Stage 2	572	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	30.4		0.6		0	
HCM LOS	D					
Minor Lane/Major Mvmt		NBL	NBT EBLn1		SBT	SBR
Capacity (veh/h)		947	-	223	-	-
HCM Lane V/C Ratio		0.04	-	0.372	-	-
HCM Control Delay (s)		9	-	30.4	-	-
HCM Lane LOS		A	-	D	-	-
HCM 95th \%tile Q(veh)		0.1	-	1.6	-	-

	4	\rightarrow					4	\dagger	\%		\dagger	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	中 ${ }^{\text {a }}$		${ }^{7}$	中 ${ }^{\text {P }}$			4		${ }^{7}$	\uparrow	
Traffic Volume (vph)	318	571	1	0	1178	250	0	0	1	217	0	310
Future Volume (vph)	318	571	1	0	1178	250	0	0	1	217	0	310
Ideal Flow (vphpl)	1860	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	75.0		0.0	100.0		0.0	0.0		0.0	75.0		0.0
Storage Lanes	1		0	2		0	0		0	1		0
Taper Length (m)	7.6			7.6			7.6			7.6		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		1.00			1.00			0.99		1.00	0.98	
Frt					0.974			0.865			0.850	
Flt Protected	0.950									0.950		
Satd. Flow (prot)	1711	3394	0	1858	3390	0	0	1586	0	1747	1538	0
Flt Permitted	0.071									0.757		
Satd. Flow (perm)	128	3394	0	1858	3390	0	0	1586	0	1390	1538	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					27			334			322	
Link Speed (k/h)		50			50			60			50	
Link Distance (m)		198.2			101.4			58.3			153.5	
Travel Time (s)		14.3			7.3			3.5			11.1	
Confl. Peds. (\#/hr)	8		2	2		8	3		1	1		3
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Heavy Vehicles (\%)	1\%	4\%	0\%	0\%	1\%	1\%	0\%	0\%	0\%	1\%	0\%	1\%
Adj. Flow (vph)	331	595	1	0	1227	260	0	0	1	226	0	323
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	331	596	0	0	1487	0	0	1	0	226	323	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(m)		3.4			3.4			3.4			3.4	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.9			4.9			4.9			4.9	
Two way Left Turn Lane												
Headway Factor	1.06	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru										
Leading Detector (m)	6.1	10.0		2.0	10.0		6.1	10.0		2.0	10.0	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	0.6		2.0	0.6		6.1	0.6		2.0	0.6	
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$										
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	

Splits and Phases: 10: Dixie Road \& Lakeshore Road

APPENDIX J

Transit Excerpts

Weekday Service Map

Effective: September 6, 2021
MiWay Route Service Types

- Key Transit Stops
(t) Hospital

畨 Shopping Centre

- High School, University or College
(2) Recreation or Community Centre Ice Rink Public Library Living Arts Centre Civic Centre (City Hall) Court House

All MiWay routes are fully accessible with low floor, wheelchair accessible buses

508
 Lake Shore

The 508 Lake Shore LRT will bring 17 kilometres of new, modern, reliable, kilometres of new, modern, reliab ROW streetcar transit to connect Union Station, Exhibition Place,

Mimico, and

APPENDIX K

Relevant Background Development Excerpts

2031 SITE TRAFFIC VOLUMES

[^0]iqure 11-1-2031 Site Traffic Volum

LEGEND
\# Weekday AM Peak Hour
\#Weekday PM Peak Hour

Figure 5-1: Site Generated Traffic Volumes
Traffic Impact Study-Mixed-Uus Development
Trigure
Traffic Impact Study - Mixed -Use Developmen
${ }_{1381}$ Lakeshore Road East, City of Mississauga

APPENDIX L

Site Plan

APPENDIX M

Zoning By-Law Excerpts

TABLE OF CONTENTS Part 3: Parking, Loading and Stacking Lane Regulations

3.1 PARKING, LOADING AND STACKING LANE REGULATIONS $3.1 \sim 1$ to 16
3.1.1
3.1.1.1
3.1.1.2
3.1.1.3
3.1.1.4
3.1.1.5
3.1.1.6
3.1.1.7
3.1.1.8
3.1.1.9
3.1.1.10
3.1.1.11
3.1.2
3.1.2.1
3.1.2.2
3.1.2.3
3.1.3
3.1.3.1
3.1.3.2
3.1.3.3
3.1.4
3.1.4.1
3.1.4.2
3.1.4.3
3.1.4.4
3.1.4.5
.
3.1.5
Parking Regulations $3.1 \sim 1$
General Parking Regulations $3.1 \sim 1$
Location of Parking $3.1 \sim 1$
Required Parking in a Residential Zone $3.1 \sim 1$
Parking Space Dimensions $3.1 \sim 1$
Aisles $3.1 \sim 2$
Driveways $3.1 \sim 2$
Surface Treatment and Drainage $3.1 \sim 2$
Access 3.1 ~ 2
Alternative Gross Floor Area Deductions for Non-Residential Uses 3.1 ~ 3
Retail Centre $3.1 \sim 3$
Parking for Additional Uses in a Public or Private School 3.1 ~ 3
Required Number of Parking Spaces $3.1 \sim 5$
Required Number of Parking Spaces for Residential Uses $3.1 \sim 5$
Required Number of Parking Spaces for Non-Residential Uses $3.1 \sim 7$
Mixed Use Development Shared Parking $3.1 \sim 12$
Accessible Parking Spaces 3.1 ~ 13
Required Number of Accessible Parking Spaces. $3.1 \sim 13$
Location of Accessible Parking Spaces 3.1 ~ 13
C4 Zone Exception 3.1 ~ 13
Loading Regulations. $3.1 \sim 13$
Loading Space Regulations. 3.1 ~ 13
Required Number of Loading Spaces for Office and Medical Office Buildings. $3.1 \sim 14$
Required Number of Loading Spaces $3.1 \sim 14$
Loading Space Dimensions 3.1 ~ 14
Required Number of Loading Spaces for Apartment and/or Retirement Buildings $3.1 \sim 14$
Stacking Lane Regulations 3.1 ~ 15

3.1.2 Required Number of Parking Spaces

3.1.2.1 Required Number of Parking Spaces for Residential Uses

Off-street parking spaces for residential uses shall be provided in accordance with Table 3.1.2.1 - Required Number of Parking Spaces for Residential Uses.

Table 3.1.2.1 - Required Number of Parking Spaces for Residential Uses

Column A		B	
\|	line	TYPE OF USE	MINIMUM OFF-STREET PARKING REGULATIONS
2.0	Condominium Apartment (0207-2008), (0174-2017), (0179-2018)	1.00 resident space per studio unit 1.25 resident spaces per one-bedroom unit 1.40 resident spaces per two-bedroom unit 1.75 resident spaces per three-bedroom unit 0.20 visitor spaces per unit	
3.0	Rental Apartment (0207-2008), (0174-2017), (0179-2018)	1.00 resident space per studio unit 1.18 resident spaces per one-bedroom unit 1.36 resident spaces per two-bedroom unit 1.50 resident spaces per three-bedroom unit 0.20 visitor spaces per unit	
4.0	Apartment (within CC1 to CC4 zones) (0207-2008), (0174-2017)	1.0 resident space per unit 0.15 visitor spaces per unit ${ }^{(1)}$ For the visitor component, a shared parking arrangement may be used for the calculation of required visitor/nonresidential parking in accordance with the following: the greater of 0.15 visitor spaces per unit ${ }^{(1)(2)}$ or Parking required for all non-residential uses, located in the same building or on the same lot as the residential use, except banquet hall/conference centre/convention centre, entertainment establishment, overnight accommodation, place of religious assembly, recreational establishment and restaurant. ${ }^{(1)(2)}$ Parking for banquet hall/conference centre/convention centre, entertainment establishment, overnight accommodation, place of religious assembly, recreational establishment and restaurant shall not be included in the above shared parking arrangement and shall be provided in accordance with applicable regulations contained in Table 3.1.2.2 of this By-law.	
5.0	Detached Dwelling, Linked Dwelling, Semi-Detached, Street Townhouse (0297-2013), (0174-2017), (0181-2018/ LPAT Order 2019 February 15)	2.0 spaces per unit	
6.0	Condominium Detached Dwelling, Condominium Semi-Detached, Condominium Townhouse, Detached Dwelling on a CEC - Road, Semi-Detached on a CEC - Road, Townhouse on a CEC - Road (0174-2017), (0181-2018/LPAT Order 2019 February 15)	2.0 resident spaces per unit 0.25 visitor spaces per unit	
7.0	Duplex, Triplex (0174-2017)	1.25 spaces per unit	
8.0	Dwelling units located above a commercial development with a maximum height of three storeys	1.25 spaces per unit	
9.0	Group Home	2.0 spaces	

Table 3.1.2.1 continued on next page

Column A		B
$\begin{array}{\|l} \text { Line } \\ 1.0 \end{array}$	TYPE OF USE	MINIMUM OFF-STREET PARKING REGULATIONS
Table 3.1.2.1 continued from previous page		
10.0	Condominium Back to Back and Stacked Townhouse (0179-2018), (0181-2018/LPAT Order 2019 February 15)	Without exclusive use garage and driveway: 1.10 resident spaces per studio/one-bedroom unit 1.5 resident spaces per two-bedroom unit 1.75 resident spaces per three-bedroom unit 2.0 resident spaces per four-bedroom unit 0.25 visitor spaces per unit With exclusive use garage and driveway: 2.0 resident spaces per unit 0.25 visitor spaces per unit
11.0	Rental Back to Back and Stacked Townhouse, Rental Townhouse (0179-2018), (0181-2018/LPAT Order 2019 February 15)	Without exclusive use garage and driveway: 1.10 resident spaces per studio/one-bedroom unit 1.25 resident spaces per two-bedroom unit 1.41 resident spaces per three-bedroom unit 1.95 resident spaces per four-bedroom unit 0.25 visitor spaces per unit With exclusive use garage and driveway: 2.0 resident spaces per unit 0.25 visitor spaces per unit
12.0	Long-Term Care Building (0174-2017)	0.33 spaces per bed
13.0	Resident Physician, Dentist, Drugless Practitioner or Health Professional	5.0 spaces for office and detached dwelling, 4.0 of which may be tandem
14.0	Retirement Building (0174-2017)	0.50 spaces per unit
15.0	All other housing forms not identified above with more than two dwelling units	2.0 resident spaces per unit 0.25 visitor spaces per unit

NOTES: (1) Visitor parking spaces shall not be required for an apartment for which a building permit has been issued on or before May 29, 2009. (0207-2008), (0174-2017)
(2) All required parking spaces must be accessible to all users participating in the shared parking arrangements and may not be reserved for a particular use or occupant. (0207-2008)

3.1.2.2 Required Number of Parking Spaces for Non-Residential Uses

Off-street parking spaces for non-residential uses shall be provided in accordance with Table 3.1.2.2. - Required Number of Parking Spaces for Non-Residential Uses.

Table 3.1.2.2 - Required Number of Parking Spaces for Non-Residential Uses

Column A		B
$\begin{array}{\|\|l\|l} \text { Line } \\ \hline 1.0 \\ \hline \end{array}$	TYPE OF USE	MINIMUM OFF-STREET PARKING REGULATIONS
2.0	Active Recreational Use	4.5 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential, except for an arena or a marina
3.0	Adult Entertainment Establishment	16.3 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential
4.0	Animal Services:	
4.1	Animal Boarding Establishment	3.6 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential
4.2	Animal Care Establishment	5.4 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential
4.3	Animal Care Establishment (in a C4 zone)	4.0 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential
5.0	Arena	1.0 space per 4 seats of permanent fixed seating ${ }^{(1)}$
6.0	Art Gallery, Museum	3.6 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential
7.0	Banquet Hall/Conference Centre/ Convention Centre	10.8 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential
8.0	Commercial School	5.0 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential
9.0	Community Centre	4.5 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential, except for an arena
10.0	Composting Facility	1.6 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential up to $2325 \mathrm{~m}^{2}$ GFA - non-residential; and 1.1 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential between $2325 \mathrm{~m}^{2}$ and $9300 \mathrm{~m}^{2}$ GFA - non-residential; and 0.6 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential over $9300 \mathrm{~m}^{2}$ GFA - non-residential
10A. 0	Contractor Service Shop (0190-2014)	1.1 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential
10B. 0	Contractor's Yard (0190-2014)	0.6 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential
11.0	Convenience Retail and Service Kiosk (0018-2015)	5.4 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential plus a stacking lane where a drive-through is provided ${ }^{(2)}$
12.0	Day Care	2.5 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential
13.0	Education and Training Facility	5.0 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential
14.0	Entertainment Establishment	1.0 space per 5 seats of permanent fixed seating ${ }^{(1)}$ or 10.0 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential, whichever is greater
15.0	Essential Emergency Service	1.0 space per staff on duty with a minimum of 2.0 spaces
16.0	Financial Institution (0018-2015)	5.5 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential plus a stacking lane where a drive-through is provided ${ }^{(2)}$
16A. 0	Food Bank (0325-2008)	3.0 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential
17.0	Funeral Establishment	7.5 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential for the area accessible to the public
18.0	Garden Centre	3.2 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential used for retail sales and display of products and/or office; and 1.1 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential used for warehousing and/or wholesaling
19.0	Golf Course	10.0 spaces per hole

Table 3.1.2.2 continued on next page

Column A		B	
\|	line	TYPE OF USE	MINIMUM OFF-STREET PARKING REGULATIONS
Table 3.1.2.2 continued from previous page			
20.0	deleted by 0212-2015		
21.0	Hospital	2.5 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential	
22.0	Library	3.2 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential	
23.0	Manufacturing Facility (Single-Occupancy Building) ${ }^{(6)}$ (0308-2011)	1.6 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential up to $2325 \mathrm{~m}^{2}$ GFA - non-residential; and 1.1 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential between $2325 \mathrm{~m}^{2}$ and $9300 \mathrm{~m}^{2}$ GFA - non-residential; and 0.6 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential over $9300 \mathrm{~m}^{2}$ GFA - non-residential	
24.0	Manufacturing Facility (Multiple-Occupancy Mixed Use Building) ${ }^{(4)}$	1.6 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential Parking for restaurant, convenience restaurant, banquet hall/conference centre/convention centre, night club, and adult entertainment establishment will be provided in accordance with the applicable regulations contained in Table 3.1.2.2 of this By-law. Parking for individual manufacturing occupancies which exceed a GFA - non-residential of $2325 \mathrm{~m}^{2}$ shall be calculated in accordance with the provisions applicable to manufacturing facility (Single-Occupancy Building). Parking for individual warehouse/distribution occupancies, and wholesaling occupancies which exceed a GFA - nonresidential of $6975 \mathrm{~m}^{2}$ shall be calculated in accordance with the regulations applicable to warehouse/distribution facilities, wholesaling facilities (Single-Occupancy Building).	
25.0	Marina	0.6 spaces per slip or berth	
25A. 0	Medicinal Product Manufacturing Facility (0055-2015)	1.6 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential up to $2325 \mathrm{~m}^{2}$ GFA - non-residential; and 1.1 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential between $2325 \mathrm{~m}^{2}$ and $9300 \mathrm{~m}^{2}$ GFA - non-residential; and 0.6 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential over $9300 \mathrm{~m}^{2}$ GFA - non-residential	
$25 B .0$	Medicinal Product Manufacturing Facility - Restricted (0055-2015)	1.6 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential up to $2325 \mathrm{~m}^{2}$ GFA - non-residential; and 1.1 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential between $2325 \mathrm{~m}^{2}$ and $9300 \mathrm{~m}^{2}$ GFA - non-residential; and 0.6 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential over $9300 \mathrm{~m}^{2}$ GFA - non-residential	
26.0	Motor Vehicle Body Repair Facility, Motor Vehicle Repair Facility Commercial Motor Vehicle, Motor Vehicle Repair Facility - Restricted (0379-2009)	4.3 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential, of which 50% of the required spaces may be tandem parking spaces	
27.0	Motor Vehicle Sales, Leasing and/or Rental Facility - Commercial Motor Vehicles; Motor Vehicle Sales, Leasing and/or Rental Facility - Restricted	4.3 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential (exclusive of display and storage parking)	
28.0	Motor Vehicle Service Station	5.4 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential	
29.0	Motor Vehicle Wash Facility Commercial Motor Vehicle, Motor Vehicle Wash Facility - Restricted (0379-2009)	4.0 spaces per wash bay, of which 2.0 spaces can be located at vacuum stations, plus a stacking lane ${ }^{(2)}$	
30.0	Night Club	25.2 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential	

Table 3.1.2.2 continued on next page

Column A		B
$\left\lvert\, \begin{aligned} & \text { Line } \\ & 1.0 \end{aligned}\right.$	TYPE OF USE	MINIMUM OFF-STREET PARKING REGULATIONS
Table 3.1.2.2 continued from previous page		
31.0	Office:	
31.1	$\begin{aligned} & \hline \begin{array}{l} \text { Office }{ }^{(6)} \\ (0308-2011) \end{array} \end{aligned}$	3.2 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential Where the non-office uses, including medical office and real estate office, are greater than 10% of the total GFA - nonresidential of the building, separate parking will be required for all of such uses in accordance with the regulations contained in Table 3.1.2.2 of this By-law
31.2	Medical Office	6.5 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential
31.3	Medical Office - Restricted	6.5 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential
31.4	Real Estate Office	6.5 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential
32.0	Overnight Accommodation (0379-2009)	0.8 space per guest room; plus 10.0 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential used for public use areas including meeting rooms, conference rooms, recreational facilities, dining and lounge areas and other commercial facilities, but excluding bedrooms, kitchens, laundry rooms, washrooms, lobbies, hallways, elevators, stairways and recreational facilities directly related to the function of the overnight accommodation
33.0	Personal Service Establishment:	
33.1	Personal Service Establishment	5.4 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential
33.2	Personal Service Establishment (in C4 zone)	4.0 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential
33.3	Personal Service Establishment (in CC2 to CC4 zones) (0207-2008)	4.3 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential
34.0	Pilot Plant, Prototype Production Facility (0325-2008)	1.6 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential up to $2325 \mathrm{~m}^{2}$ GFA - non-residential; and 1.1 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential between $2325 \mathrm{~m}^{2}$ and $9300 \mathrm{~m}^{2}$ GFA - non-residential; and 0.6 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential over $9300 \mathrm{~m}^{2}$ GFA - non-residential
35.0	Place of Religious Assembly	1.0 space per 4.5 seats for permanent fixed seating ${ }^{(1)}$; plus 27.1 spaces for any non-fixed moveable seating per $100 \mathrm{~m}^{2}$ GFA - non-residential, all in the worship area or 27.1 spaces for all non-fixed moveable seating per $100 \mathrm{~m}^{2}$ GFA - non-residential, in the worship area or 10.0 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential, whichever is greater Where the worship area of a place of religious assembly includes permanent fixed seating or non-fixed moveable seating for clergy, leaders, choirs, or musicians, such seating or area shall be included in the calculation of seating for the purpose of calculating required parking. Where a community/multi use hall is equal to or less than the gross floor area of the worship area, no additional parking shall be required for that use.
36.0	Power Generating Facility	1.0 space per staff on duty with a minimum of 2.0 spaces
37.0	Private Club	4.5 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential
38.0	Recreational Establishment	4.5 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential, except for an arena

Table 3.1.2.2 continued on next page

Column A		B
$\left\lvert\, \begin{aligned} & \text { Line } \\ & 1.0 \end{aligned}\right.$	TYPE OF USE	MINIMUM OFF-STREET PARKING REGULATIONS
Table 3.1.2.2 continued from previous page		
39.0	Repair:	
39.1	Repair Establishment	5.4 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential
39.2	Repair Establishment (in a C4 zone)	4.0 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential
40.0	Retail Centre:	
40.1	Retail Centre (Less than or equal to $2000 \mathrm{~m}^{2}$ GFA -non-residential) (0325-2008), (0379-2009)	4.3 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential Parking for restaurant, convenience restaurant, place of religious assembly, funeral establishment, overnight accommodation, banquet hall/conference centre/convention centre and entertainment establishment uses will be provided in accordance with the applicable regulations contained in Table 3.1.2.2 of this By-law
40.2	Retail Centre (Greater than $2000 \mathrm{~m}^{2}$ GFA - nonresidential) (0379-2009)	5.4 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential
40.3	CC1 - Retail Core Commercial (lands bounded by City Centre Drive, Duke of York Boulevard and Rathburn Road West)	4.57 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential
41.0	Retail:	
41.1	Retail Store	5.4 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential
41.2	Retail Store (in a C4 zone)	4.0 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential
41.3	Retail Store (in a CC2 to CC4 zones) (0207-2008)	4.3 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential
42.0	Restaurants:	
42.1	Convenience Restaurant (0212-2015)	16.0 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential plus a stacking lane ${ }^{(2)}$
42.2	Restaurant (0212-2015)	16.0 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential
42.3	Take-out Restaurant (0212-2015)	6.0 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential
42.4	$\begin{aligned} & \text { Restaurant (in a C4 zone) } \\ & (0308-2011),(0212-2015) \end{aligned}$	9.0 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential
43.0	Schools:	
43.1	College, University	1.1 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential used for academic purposes; plus 0.15 spaces per resident student and/or staff
43.2	Public/Private School (up to and including Grade 8)	1.0 space per $100 \mathrm{~m}^{2}$ GFA - non-residential (excluding portables) plus 1.0 spaces per portable classroom ${ }^{(3)}$
43.3	Public/Private School (Grade 9 and above)	1.5 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential (excluding portables) plus 1.0 spaces per portable classroom ${ }^{(3)}$
43A. 0	Science and Technology Facility (0325-2008)	3.2 spaces per $100 \mathrm{~m}^{2}$ GFA - non residential
43B. 0	Self Storage Facility (0308-2011)	0.6 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential (exclusive of storage parking)
44.0	Transit Terminal	1.0 space per staff on duty with a minimum of 2.0 spaces
45.0	Truck Terminal	3.2 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential used for office purposes, and/or 1.1 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential used for warehouse/distribution facility

Table 3.1.2.2 continued on next page

Column A		B
$\begin{aligned} & \text { Line } \\ & 1.0 \end{aligned}$	TYPE OF USE	MINIMUM OFF-STREET PARKING REGULATIONS
Table 3.1.2.2 continued from previous page		
46.0	Utility:	
46.1	Utility Building	1.0 space per staff on duty with a minimum of 2.0 spaces
46.2	Water Treatment Facility	1.0 space per staff on duty with a minimum of 2.0 spaces
46.3	Sewage Treatment Plant	1.0 space per staff on duty with a minimum of 2.0 spaces
46.4	Electric Transformer and Distribution Facility	1.0 space per staff on duty with a minimum of 2.0 spaces
46A. 0	Vehicle Pound Facility (0358-2007)	3.2 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential used for office, with a minimum of 4 spaces
47.0	Veterinary Clinic	3.6 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential
48.0	Warehouse/Distribution Facility, Wholesaling Facility (Single-Occupancy Building) ${ }^{(6)}$ (0308-2011)	1.1 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential up to $6975 \mathrm{~m}^{2}$ GFA - non-residential; and 0.6 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential over $6975 \mathrm{~m}^{2}$ GFA - non-residential
49.0	Warehouse/Distribution Facility, Wholesaling Facility (Multiple-Occupancy Building) ${ }^{(5)}$	1.1 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential Parking for individual warehouse/distribution occupancies and wholesaling occupancies which exceed a GFA - nonresidential of $6975 \mathrm{~m}^{2}$ shall be calculated in accordance with the regulations applicable to warehouse/distribution facilities, wholesaling facilities (Single-Occupancy Building).
50.0	Waste Processing Station	1.6 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential up to $2325 \mathrm{~m}^{2}$ GFA - non-residential; and 1.1 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential between $2325 \mathrm{~m}^{2}$ and $9300 \mathrm{~m}^{2}$ GFA - non-residential; and 0.6 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential over $9300 \mathrm{~m}^{2}$ GFA - non-residential
51.0	Waste Transfer Station	1.1 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential up to $6975 \mathrm{~m}^{2}$ GFA - non-residential; and 0.6 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential over $6975 \mathrm{~m}^{2}$ GFA - non-residential
52.0	Other Non-Residential Uses Not Specified Above	5.4 spaces per $100 \mathrm{~m}^{2}$ GFA - non-residential

NOTES: (1) Where permanent fixed seating is open-style bench or pew, each 0.5 m of bench or pew space is equal to one (1) seat for the purpose of calculating required parking.
(2) See also Subsection 3.1 .5 of this By-law
(3) See also Article 3.1.1.11 of this By-law.
(4) Manufacturing Facility (Multiple-Occupancy Mixed Use Building) a building(s) occupied by more than one (1) occupant located on one (1) lot, primarily used for manufacturing, warehouse/distribution and/or wholesaling facilities, but may contain other non-manufacturing, non-warehouse/distribution and/or non-wholesaling facilities. Where the non-manufacturing, non-warehouse/distribution and/or non-wholesaling facilities exceed 50% of the total gross floor area - non-residential of the site, separate parking will be required for all uses in accordance with the regulations contained in Table 3.1.2.2 of this By-law. (0325-2008), (0379-2009, (0190-2014)
(5) Warehouse/Distribution Facility, Wholesaling Facility (Multiple-Occupancy Building) a building(s) occupied by more than one (1) occupant located on one (1) lot, where the primary function of all occupants is warehousing, distribution or wholesaling. (0379-2009)
(6) Where a single occupant office building includes a manufacturing, warehouse/distribution and/or wholesaling facility component and the GFA - non-residential of the manufacturing, warehouse/distribution and/or wholesaling facility component is greater than 10% of the total GFA - non-residential of the building, parking for the manufacturing, warehouse/distribution and/or wholesaling facility component shall be calculated in accordance with the applicable manufacturing, warehouse/distribution and/or wholesaling facility (single occupancy) regulations contained in Table 3.1.2.2 of this By-law. (0308-2011)

Mixed Use Development Shared Parking

A shared parking formula may be used for the calculation of required parking for a mixed use development. A mixed use development means the following:
(1) Non-office uses in an office or medical office building or group of buildings on the same lot;
(2) Office or medical office space in a building or group of buildings on the same lot primarily occupied by retail uses;
(3) A building or group of buildings on the same lot containing a mix of office or medical office, commercial uses and dwelling units;
(4) Non-residential uses in an apartment. (0174-2017)

Shared parking is to be calculated in compliance with Table 3.1.2.3 - Mixed Use Development Shared Parking Formula. All required parking spaces must be accessible to all users participating in the shared parking arrangement and may not be reserved for specific users.

The initial step in determining required parking for a mixed use development is to calculate the parking requirement for each use in the development as if these uses were free-standing buildings. The parking requirement for each use is then multiplied by the percent of the peak period for each time period (i.e. noon), contained in Table 3.1.2.3Mixed Use Development Shared Parking Formula. Each column is totalled for weekday and weekend. The highest figure obtained from all time periods shall become the required parking for the mixed use development.

Table 3.1.2.3 - Mixed Use Development Shared Parking Formula

Column A		B	C	D	E
$\begin{aligned} & \text { Line } \\ & 1.0 \end{aligned}$	TYPE OF USE	PERCENTAGE OF PEAK PERIOD (WEEKDAY)			
		Morning	Noon	Afternoon	Evening
1.1	Office/Medical Office/Financial Institution	100	90	95	10
1.2	Retail Centre/Retail Store/Personal Service Establishment (0379-2009)	80	90	90	90
1.3	Restaurant/ Convenience Restaurant/ Take-out Restaurant	20	100	30	100
1.4	Overnight Accommodation	70	70	70	100
1.5	$\begin{aligned} & \text { Residential - Resident }{ }^{(1)} \\ & \text { Residential - Visitor } \end{aligned}$	$\begin{aligned} & 90 \\ & 20 \end{aligned}$	$\begin{aligned} & 65 \\ & 20 \end{aligned}$	$\begin{aligned} & 90 \\ & 60 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$
2.0	TYPE OF USE	PERCENTAGE OF PEAK PERIOD (SATURDAY)			
		Morning	Noon	Afternoon	Evening
2.1	Office/Medical Office/Financial Institution	10	10	10	10
2.2	Retail Centre/Retail Store/Personal Service Establishment (0379-2009)	80	100	100	70
2.3	Restaurant/ Convenience Restaurant/ Take-out Restaurant	20	100	50	100
2.4	Overnight Accommodation	70	70	70	100
2.5	$\begin{aligned} & \text { Residential - Resident }{ }^{(1)} \\ & \text { Residential - Visitor } \end{aligned}$	$\begin{aligned} & 90 \\ & 20 \end{aligned}$	$\begin{aligned} & \hline 65 \\ & 20 \end{aligned}$	$\begin{aligned} & 90 \\ & 60 \end{aligned}$	$\begin{aligned} & \hline 100 \\ & 100 \\ & \hline \end{aligned}$

NOTE: (1) Excludes resident physicians, dentists, drugless practitioners, health professionals, retirement buildings and long-term care buildings. (0174-2017)

3.1.3 Accessible Parking Spaces

3.1.3.1 Required Number of Accessible Parking Spaces
3.1.3.1A Accessible parking spaces for non-residential uses shall be provided in compliance with Table 3.1.3.1 - Accessible Parking Regulations. (0144-2016)
3.1.3.1B Accessible parking spaces for residential uses shall only apply to the total number of visitor parking spaces required and shall be provided in compliance with Table 3.1.3.1 Accessible Parking Regulations. (0144-2016)

Table 3.1.3.1 - Accessible Parking Regulations (0190-2014), (0144-2016)

Column	B	C	
$\begin{array}{l}\text { Line }\end{array}$	$\begin{array}{l}\text { TOTAL NUMBER } \\ \text { OF REQUIRED } \\ \text { NON-RESIDENTIAL } \\ \text { PARKING SPACES }\end{array}$	$\begin{array}{l}\text { TOTAL NUMBER } \\ \text { OF REQUIRED } \\ \text { VISITOR PARKING } \\ \text { SPACES }\end{array}$	$\begin{array}{l}\text { MINIMUM NUMBER OF } \\ \text { REQUIRED ACCESSIBLE } \\ \text { PARKING SPACES }\end{array}$
${ }^{(3)}$			

NOTES: (1) Where only 1 accessible parking space is required, a Type A accessible parking space shall be provided.
(2) Where more than 1 accessible parking space is required:
(2.1) if an even number of accessible parking spaces are required, an equal number of Type A and Type B accessible parking spaces must be provided;
(2.2) if an odd number of accessible parking spaces are required, an equal number of Type A and Type B accessible parking spaces must be provided and the odd space may be a Type B accessible parking space.
(3) Where a shared parking arrangement is used for the calculation of required visitor/non-residential parking, the required accessible parking space requirement will be calculated on either the visitor component or non-residential component. (0144-2016)

Loading Regulations
3.1.4.1 Loading Space Regulations

Loading spaces shall be required for the following uses:
(1) Retail Store
(2) Retail Centre (0379-2009)
(3) Office
(4) Medical Office
(5) Overnight Accommodation
(6) Restaurant
(7) Convenience Restaurant
(8) Manufacturing Facility
(9) Warehouse/Distribution Facility
(10) Wholesaling Facility

3.1.4.2 Required Number of Loading Spaces for Office and/or Medical Office Buildings

Where required for office and/or medical office uses, loading spaces shall be provided in accordance with Table 3.1.4.2 - Required Number of Loading Spaces for Office and/or Medical Office Buildings.

Table 3.1.4.2 - Required Number of Loading Spaces for Office and/or Medical Office Buildings

Column	B	
Line $\mathbf{1 . 0}$	GROSS FLOOR AREA - NON-RESIDENTIAL OF BUILDING $(0297-2013)$	MINIMUM NUMBER OF OFF- STREET LOADING SPACES
$\mathbf{2 . 0}$	Less than or equal to $2350 \mathrm{~m}^{2}$	None Required
$\mathbf{3 . 0}$	Greater than $2350 \mathrm{~m}^{2}$ but less than or equal to $11600 \mathrm{~m}^{2}$	1 space
$\mathbf{4 . 0}$	Greater than $11600 \mathrm{~m}^{2}$	1 space plus 1 additional space for each 9 300 m^{2} gross floor area - non- residential or portion thereof

Required Number of Loading Spaces

Where required, loading spaces for uses other than office and/or medical office uses, shall be provided in accordance with Table 3.1.4.3 - Required Number of Loading Spaces.

Table 3.1.4.3 - Required Number of Loading Spaces

Column		B
Line $\mathbf{1 . 0}$	GROSS FLOOR AREA - NON-RESIDENTIAL OF BUILDING $(0297-2013)$	MINIMUM NUMBER OF OFF- STREET LOADING SPACES
$\mathbf{2 . 0}$	Less than or equal to $250 \mathrm{~m}^{2}$	None required
$\mathbf{3 . 0}$	Greater than $250 \mathrm{~m}^{2}$ but less than or equal to $2350 \mathrm{~m}^{2}$	1 space
$\mathbf{4 . 0}$	Greater than $2350 \mathrm{~m}^{2}$ but less than or equal to $7500 \mathrm{~m}^{2}$	2 spaces
$\mathbf{5 . 0}$	Greater than $7500 \mathrm{~m}^{2}$ but less than or equal to $14000 \mathrm{~m}^{2}$	3 spaces
$\mathbf{6 . 0}$	Greater than $14000 \mathrm{~m}^{2}$	3 spaces plus 1 nodditional space for each $9300 \mathrm{~m}^{2}$ GFA -

Loading Space Dimensions
Required loading spaces shall have an unobstructed rectangular area with a minimum width of 3.5 m and a minimum length of 9.0 m .

Required Number of Loading Spaces for Apartment and/or Retirement Buildings
One loading space per apartment and/or retirement building containing a minimum of 30 dwelling units, shall be required. (0174-2017)

3.1.5 Stacking Lane Regulations

3.1.5.1 The following regulations shall apply to uses that have a stacking lane component:
3.1.5.1.1 A stacking lane associated with a convenience restaurant, convenience retail and service kiosk, financial institution, motor vehicle wash facility - commercial motor vehicle or a motor vehicle wash facility - restricted shall be provided in accordance with Table 3.1.5.1.1 - Required Number of Stacking Lane Parking Spaces. (0379-2009)

Table 3.1.5.1.1 - Required Number of Stacking Lane Parking Spaces

Column	A	
Line 1.0	TYPE OF USE	MINIMUM NUMBER OF STACKING LANE TANDEM PARKING SPACES REQUIRED
2.0	Convenience Restaurant	10 spaces
3.0	Convenience Retail and Service Kiosk	5 spaces
4.0	Financial Institution	5 spaces
5.0	Motor Vehicle Wash Facility - Commercial Motor Vehicle (0379-2009)	10 spaces per wash bay
6.0	Motor Vehicle Wash Facility - Restricted	10 spaces per wash bay

3.1.5.1.2 A stacking lane associated with a convenience restaurant or convenience retail and service kiosk shall be measured from a point located 2.0 m beyond the middle of the drive-through window used for the receipt of goods.
3.1.5.1.3 A stacking lane associated with a financial institution shall be measured from a point located 2.0 m beyond the middle of the drive-through bank machine.

A stacking lane associated with a motor vehicle wash facility - commercial motor vehicle or motor vehicle wash facility - restricted shall be measured from the entrance to the wash bay. (0379-2009)

FIGURES

1303 LAKESHORE ROAD EAST CITY OF MISSISSAUGA

800 High Point Drive

[^0]: LEGEND
 XX AM Peak Hour Volumes
 (XX) PM Peak Hour Volumes
 (XX) PM Peak Hour Volumes
 Signaized Intersection
 $\dot{\bar{\otimes}} \underset{\substack{\text { Stoircontrol } \\ \text { Rairoad Crossing }}}{\text { Stand }}$

