

Geotechnical Investigation, Engineering, & Design

Shoring Design & Earth Retention Systems

Pavement Evaluation & Design

Environmental Assessment & Remediation Services

Hydrogeology

Building Systems & Sciences

Construction Materials Engineering Inspection & Testing

Earthworks, Design, Inspection & Compaction Testing

CCIL Certified Concrete Testing

CCIL Certified Aggregates & Asphalt Testing

CWB Certified Welding & Structural Steel

Consulting Geotechnical & Environmental Engineering Construction Materials Inspection & Testing

File No. 1-19-0719-46.1

Brampton Office

May 13, 2022

Ranee Management 4122 Bathurst Street North York, Ontario M3H 3P2 Attention: Ms. Ilana Glickman

RE: HYDROGEOLOGICAL ASSESSMENT REPORT 2570-2590 ARGYLE ROAD MISSISSAUGA, ONTARIO M2R 2S7

Dear Ms. Ilana Glickman:

Terraprobe Inc. is pleased to provide Ranee Management with the responses to the comments provided by the City of Mississauga on the Hydrogeological Assessment Report titled *"Hydrogeological Assessment Report, 2570-2590 Argyle Road, Mississauga, Ontario"*, dated July 13, 2020 and the most updated version of the hydrogeological assessment report.

If you have any questions or concerns regarding either of the documents, please do not hesitate to contact the undersigned.

Yours truly, Terraprobe Inc.

Rachel Geddam, B.Eng., E.I.T. Project Manager

Nai

Narjes Alijani, M.Sc., P.Geo. Senior Hydrogeologist

Greater Toronto

11 Indell Lane Brampton, Ontario L6T 3Y3 (905) 796-2650 Fax: 796-2250 Hamilton – NiagaraCentra903 Barton Street, Unit 22220 BaStoney Creek, Ontario L8E 5P5Barrie,(905) 643-7560 Fax: 643-7559(705) 7www.terraprobe.ca

Terraprobe Inc.

Central Ontario 220 Bayview Drive, Unit 25 Barrie, Ontario L4N 4Y8

(705) 739-8355 Fax: 739-8369

Northern Ontario

1012 Kelly Lake Rd., Unit 1 **Sudbury**, Ontario P3E 5P4 (705) 670-0460 Fax: 670-0558

2570-2590 Argyle Road | COMMENTS & RESPONSE MATRIX V.1

CITY OF MISSISSAUGA FILE NO. OZ 20 17

COMMENTS RECEIVED FROM THE FOLLOWING DEPARTMENTS/ AGENCIES:

10. CI	ITY OF MISSISSAUGA DEPARTMENTS	NO. EXTERNAL AGENCIES	CONSULTANT	REFERENCE CODE
	TY OF MISSISSAUGA – TRANSPORTAION AND WORKS - Developme eview and Environmental Engineering Review	nt Engineering	TERRAPROBE CONSULTING	TERRAPROBE
NO.	COMMENTS	RESPONSE	ADD	DRESSED CONSULTANT RESPONSIBLE
	CITY OF MISSISSAUGA – TRANSPORTAION AND WORKS - Develo	opment Engineering Review		
	Tara Sinden			
50	(905) 615-3200 ext 5270 See attached PDF "2570-2590 Argyle Road – Comment Mat	rix_lanuary 2022 pdf″		
4	Page 4 of PDF: A Hydrogeological Assessment Report prepared by Terrapro for review. The applicant is to submit an updated Hydrogeolog as noted in previous comment). (ii) Heading of Section 1.1 - (iii) Section 11.0 - Limitations of Liability references an incorrec (iv) This report must be accompanied by a letter signed by the Consulting Firm, which allows the City of Mississauga conclusions presented within the reports to the same extent the reliance must meet the City's sole and unfettered satisfa https://www.mississauga.ca/wp-content/uploads/2020/11/26 _Report_Terms_of_Reference.pdf	blogical Report to address the following: (i) gical Reports (i.e. different FFE values for P1 typo 'Discerption' should be 'Description'. the property address for the proposed works. the author of the reports or a Principal of a to make reliance on the findings and the author property owner. The wording of action. For more information please go to:	nd Section 11.0 of the hydrogeological assessment dress the comments. Additionally, a reliance letter is	TERRAPROBE
	CITY OF MISSISSAUGA – TRANSPORTAION AND WORKS - Enviro	nmental Engineering Review		
	Nathan McFadden (905) 615-3200 ext 3192			
66	See attached PDF "2570-2590 Argyle Road – Comment Matrix_Jan	iuary 2022.pdf"		
4	Page 6 of PDF: Based on a review of the Hydrogeological Assessment Report the Geotechnical Investigation and Engineering Design Report provided as comment: Both reports discuss a potential permodischarge, although there is no certainty of which system this groundwater is discharged to a City storm sewer then it must requirements. The groundwater and combined storm runoff release rate for the site. The quality must meet the City of Mi	brt, dated June 10, 2020 the following is nanent connection of groundwater s will connect to. If permanent st meet the City's quantity and quality quantities cannot exceed the allowable	gical Investigation report provides the estimated water and assesses groundwater quality. However, with the sewer capacities. The sewer capacity analysis er a separate cover by the civil consultant. is not aware of the proposed discharge plan.	

NO.	COMMENTS	RESPONSE	ADDRESSED	CONSULTANT RESPONSIBLE
	as amended. If the permanent groundwater discharge is to be sent to the Region of Peel's sanitary system then confirmation of their approval will be required. Confirmation of which system the permanent groundwater is to discharge to is required so that additional requirements can be provided.			
6	Page 6 of PDF: Confirmation will be required from the Credit Valley Conservation (CVC) that they have no objection to the construction within their regulated area.	Terraprobe: Assessing the proposed development with respect to the CVC regulated area is not in the scope of work for hydrogeological assessment. It is our understanding that Crozier Consulting Engineers will address the comment.		TERRAPROBE

HYDROGEOLOGICAL ASSESSMENT 2570-2590 Argyle Road MISSISSAUGA, ONTARIO L5B 1V2

Prepared For:	Ranee Management
	4122 Bathurst Street
	North York, Ontario
	M3H 3P2

Attention:

Ms. Ilana Glickman

File No. 1-19-0719-46.1 May 13, 2022

© Terraprobe Inc.

Greater Toronto

11 Indell Lane Brampton, Ontario L6T 3Y3 (905) 796-2650 Fax: 796-2250 Hamilton – Niagara 903 Barton Street, Unit 22 Stoney Creek, Ontario L8E (905) 643-7560 Fax: 643-7559

Terraprobe Inc.

Central Ontariot 22220 Bayview Drive, Unit 25b L8EBarrie, Ontario L4N 4Y843-7559(705) 739-8355 Fax: 739-8369www.terraprobe.ca

Northern Ontario

1012 Kelly Lake Rd., Unit 1 **Sudbury**, Ontario P3E 5P4 (705) 670-0460 Fax: 670-0558

EXECUTIVE SUMMARY

Terraprobe Inc. was retained by Ranee Management to conduct a Hydrogeologic Assessment at the property located at 2570-2590 Argyle Road, Mississauga, Ontario (the Site). This report was prepared to estimate the potential short-term construction dewatering and long-term (post construction) foundation drainage requirements associated with the proposed redevelopment. Furthermore, groundwater quality was assessed in comparison to the Region of Peel Sanitary and Storm Sewer Use By-Law limits to provide comments on discharge options.

The Site is located on the south side of Dundas Street West, approximately 100 m to the south of the intersection of Dundas Street West and Parkerhill Road in the City of Mississauga, Ontario. The Site is an active apartment complex that currently comprises of two (2) 12-storey residential towers with municipal addresses of 2570 Argyle Road and 2590 Argyle Road, in the City of Mississauga. It includes asphalt-paved parking lots, and landscaped area. Both towers have one (1) level of basement and at-grade parking lots. The current conditions of the Site are presented in **Table I**.

Table I: Existing Buildings

Municipal Address	Above Grade Levels	Below Grade Levels
2570 Argyle Road (Building A)	12	1 Basement Level
2590 Argyle Road (Building B)	12	1 Basement Level

A review of the "Preliminary Site Grading Plan" prepared by Crozier Consulting Engineers dated June 23, 2020, south portion of the Site, which is currently occupied by at-grade parking lots, will be developed as a residential building (proposed development). Based on the re-zoning and official plan amendment plans prepared by IBI Group dated January 24, 2022, the proposed development will consist of construction of a 14-storey residential tower (Building C) along with a mechanical penthouse, and an elevator machine room, which all are resting on top of a one level of underground parking (P1). It is understood that ground floor and P1 lowest finished floor are proposed at El. 113.00 and El. 109.20 masl, respectively. A review of the development plan indicates that 4 levels of above ground parking are also proposed at level 1 (at ground surface) extending to level 4 of the proposed building. A summary of the proposed redevelopment is presented in **Table II**.

Proposed Redeve	elopment Conditions						
			Bel	ow Grade Levels			
Redevelopment	Above Grade Levels		Lowest Finished Floor Approximate Base of		Lowest Finished Floor		Approximate Base of
Phase		Level #	Depth (mbgs)*	Elevation (masl)**	Proposed Foundation (masl)		
Building C	14 floors and an elevator machine room	P1	3.8	109.2	108.7		

*mbgs- meters below ground surface

**masl- meters above sea level

The subsoil profile and groundwater conditions for the Site are summarized in Table III and Table IV:

Stratum/Formation	Depth Range (mbgs)	Elevation Range (masl)	Hydraulic Conductivity (m/s)
Fill	0.8-2.3	110.0-111.4	1.00 x 10 ⁻⁶ *
Clayey Silt (Glacial Till)	1.5-3.5	108.6-110.4	$4.31 \times 10^{-7**}$
Inferred Bedrock	2.4-6.4	106.5-110.2	$1.49 \times 10^{-7**}$

Table III: Summary of Subsoil Profile

*Indicates hydraulic conductivity was estimated using typical published values from Freeze and Cherry (1979)

**Indicates hydraulic conductivity was estimated using in-situ hydraulic conductivity test

Table IV: Summary of Groundwater Conditions

Groundwater Conditions	
The stabilized shallow groundwater elevation for the dewatering flow rate estimate	110.59 masl (2.51 mbgs)
Zone of Influence	5.7 m (underground parking), 9.3 m (underground service)

Short-term construction dewatering and long-term foundation drainage flow rates are summarized in **Table V and Table VI**. Short-term (construction) dewatering included underground parking excavation for the proposed building, and proposed underground services (sanitary and storm sewers alignments) as follow.

Table V: Summary of Short-Term Dewatering Calculations

Ground Water Quantity	: Short-Term (Constru	iction)					
Location Shoring Option		Ground Water Seepage (Safety Factor - 1.5)		2-Year Rainfall Event (25 mm Design Storm Event)		Total Discharge Volume (Seepage + Rainfall)	
		L/day	L/sec	L/day	L/sec	L/day	L/sec
Proposed Underground Parking	Permeable Shoring	12,000	0.14	147,000	1.70	159,000	1.84
Proposed Underground Services	Permeable Shoring/Open cut	1,172	0.013	3,000	0.035	4,172	0.048
Total	-	13,172	0.153	150,000	1.74	163,172	1.89

Long-term (post construction) dewatering flow rates are summarized in Table VI.

Ground Water Quantity:	Long-Term (Post Con	nstruction)					
Location	Shoring Option	See	l Water page actor – 1.5)	(25 mn	ration 1 Design Event)	Vol	ischarge ume Infiltration)
		L/day	L/sec	L/day	L/sec	L/day	L/sec
Proposed Underground Parking	Permeable Shoring	9,000	0.10	6,000	0.07	15,000	0.17

Table VI: Summary of Long-Term Dewatering Calculation	ns
---	----

Groundwater quality was assessed in comparison with the Region of Peel Sewer Use By-Law limits with the results summarized in **Table VII**.

Table VII: Summary of Groundwater Quality Assessm

	Region of Peel Storm Sewer Limits	Region of Peel Sanitary and Combined Sewer Limits
Untreated Groundwater (Sample ID: SU-BH5)	Exceeds	Exceeds
Treatment Required Prior to Discharge	Yes	Yes

Permits potentially required to be obtained for short-term and long-term dewatering are summarized in **Table VIII**.

Table VIII: Summary of Permits Required for Dewatering

MECP Regulation Requirements					
Environmental Activity and Sector Registry (EASR) Posting	Required				
Short-Term Permit to Take Water (PTTW)	Not Required				
Long-Term Permit to Take Water (PTTW)	Not Required				
Municipality Requirements, if connected to municipal sewer					
Short-Term Discharge Agreement	Required				
Long-Term Discharge Agreement	Required				

TABLE OF CONTENTS

SE	CTION	PAGE (S))
1.0	INTF	RODUCTION	1
	1.1	SITE LOCATION AND PROJECT DESCRIPTION	1
	1.2	SCOPE OF WORK	
2.0	APPI	LICABLE REGULATIONS AND AGENCIES	4
	2.1	CREDIT VALLEY CONSERVATION (CVC) AUTHORITY POLICIES AND REGULATION (O.REG.	
	160/	06)	4
	2.2	CITY OF MISSISSAUGA OFFICIAL PLAN	4
	2.3	PERMIT TO TAKE WATER (PTTW)	4
	2.4	CLEAN WATER ACT	5
3.0	MET	HODOLOGY	6
	3.1	BOREHOLE ADVANCEMENT AND MONITORING WELL INSTALLATION	.6
	3.2	GROUNDWATER MONITORING	.7
	3.3	MECP WATER WELL RECORDS REVIEW	.7
	3.4	IN-SITU HYDRAULIC CONDUCTIVITY TEST	.7
	3.5	HYDRAULIC CONDUCTIVITY BASED ON GRAIN SIZE DISTRIBUTION GRAPHS	.7
	3.6	GROUNDWATER QUALITY ASSESSMENT	8
	3.7	REVIEW OF REGIONAL DATA AND AVAILABLE REPORTS FOR THE SITE	8
4.0	REG	IONAL AND LOCAL SITE SETTING	9
	4.1	REGIONAL GEOLOGY	.9
	4.2	REGIONAL PHYSIOGRAPHY	9
	4.3	REGIONAL TOPOGRAPHY AND DRAINAGE	9
	4.4	WATERSHED SETTING	0
	4.5	LOCAL SURFACE WATER AND NATURAL HERITAGE FEATURES	0
	4.6	FLOOD PLAIN REGULATED AREA1	0
	4.7	GROUND WATER RESOURCES (MECP WELL RECORDS)	1
	4.8	ACTIVE PERMIT TO TAKE WATER APPLICATION RECORDS REVIEW	1
5.0	LOC	AL GEOLOGY AND SUBSURFACE INVESTIGATION1	2
	5.1	PAVEMENT STRUCTURE AND EARTH FILL	2
	5.2	CLAYEY SILT TILL	2
	5.3	INFERRED BEDROCK 1	3

6.0	LOCA	L HYDROGEOLOGICAL STUDY	14
	6.1	MONITORING WELL DEVELOPMENT AND GROUND WATER LEVE	EL MONITORING14
	6.2	SHALLOW GROUNDWATER FLOW PATTERN	14
	6.3	HYDRAULIC CONDUCTIVITY TESTING	
		6.3.1 In-Situ Hydraulic Conductivity Testing	
		6.3.2 Hydraulic Conductivity Test Using Grain Size Distributi	ion Graphs15
	6.4	GROUNDWATER QUALITY	16
7.0	CON	TRUCTION DEWATERING	
	7.1	PROPOSED REDEVELOPMENT PLAN REVIEW	
	7.2	A REVIEW OF GEOTECHNICAL INVESTIGATION REPORT	
	7.3	SUMMARY OF HYDROGEOLOGICAL CONDITIONS	
	7.4	SHORT-TERM GROUNDWATER CONTROL REQUIREMENTS (CON	STRUCTION DEWATERING)18
		7.4.1 Proposed Building	
		7.4.2 Proposed Underground Services	
	7.5	LONG-TERM GROUNDWATER CONTROL REQUIREMENTS (POST-	-Construction)22
	7.6	PERMIT REQUIREMENTS	
	7.7	POTENTIAL DEWATERING IMPACTS AND MITIGATION PLAN	
		7.7.1 Ground Settlement	
		7.7.2 Surface Water, Wetlands and Areas of Natural Significant	nce24
		7.7.3 Water Supply Wells and Zone of Influence	
		7.7.4 Contamination Sources	
8.0	CON	LUSIONS AND RECOMMENDATIONS	
9.0	CLOS	URE	
10.0	REFE	RENCES	
11.0	LIMI	ATIONS OF LIABILITY	

TABLES:

Table 3-1- Monitoring Well Installation Details	6
Table 4-1- MECP Well Records Summary	11
Table 6-1- Summary of Groundwater Monitoring	14
Table 6-2- Summary of Hydraulic Conductivity Testing	15
Table 6-3 - Summary of Hydraulic Conductivity Using Hazen Equation	16
Table 6-4- Groundwater Quality Analysis Results Exceeded	16
Table 7-1- Summary of Proposed Excavation Dimensions	19
Table 7-2- Summary of Short-Term Dewatering Calculations for Proposed Underground Parking	20
Table 7-3- Summary of Dewatering Calculations for Proposed Underground Services	21
Table 7-4- Dewatering Flow Rate Summary	22
Table 7-5- Summary of Long-Term Dewatering Calculations	23

FIGURES:

- Figure 1 Site Location Plan
- Figure 2 Borehole and Monitoring Well Location Plan
- Figure 3 Surficial Geology Map
- Figure 4 Regional Physiography Map
- Figure 5 Topography Map
- Figure 6 Natural Heritage Feature Map
- Figure 7 MECP Water Well Records Map
- Figure 8 Subsurface Profile
- Figure 9 Shallow Groundwater Flow Pattern
- Figure 10 Proposed Development Plan

APPENDICES:

- Appendix A Borehole and Monitoring Well Logs and Grain Size Distribution Graphs
- Appendix B MECP Well Records
- Appendix C Groundwater Monitoring Details
- Appendix D In-Situ Hydraulic Conductivity Testing Results
- Appendix E Groundwater Quality Analysis Results
- Appendix F FEM Modelling and Dewatering Rate Calculations

1.0 INTRODUCTION

1.1 Site Location and Project Description

Terraprobe Inc. was retained by Ranee Management to conduct a Hydrogeologic Assessment at the property located at 2570-2590 Argyle Road, Mississauga, Ontario (the Site). The Site is located on the south side of Dundas Street West, approximately 100 m to the south of the intersection of Dundas Street West and Parkerhill Road in the City of Mississauga, Ontario. The location of the Site is shown on **Figure 1.**

The Site is irregular in shape with a total lot area of approximately $21,534 \text{ m}^2$. The Site is an active apartment complex that currently comprises of two (2) 12-storey residential towers with municipal addresses of 2570 Argyle Road and 2590 Argyle Road, in the City of Mississauga. It includes asphalt-paved parking lots, and landscaped area. Both towers have one (1) level of basement and at-grade parking lots.

A review of the "Preliminary Site Grading Plan" prepared by Crozier Consulting Engineers dated June 23, 2020, south portion of the Site, which is currently occupied by at-grade parking lots, will be developed as a residential building (proposed development). Based on the re-zoning and official plan amendment plans prepared by IBI Group dated January 24, 2022, the proposed development will consist of construction of a 14-storey residential tower (Building C) along with a mechanical penthouse, and an elevator machine room, which all are resting on top of a one level of underground parking (P1). It is understood that established grade is proposed at El. 113.27 meters above sea level (masl). Ground floor and P1 lowest finished floor are proposed at El. 113.00 and El. 109.20 masl, respectively. A review of the development plan indicates that 4 levels of above ground parking are also proposed at level 1 (at ground surface) extending to level 4 of the proposed building.

Currently, municipal water and sewer services are provided to the Site. It is understood that future residential redevelopment will be municipally serviced.

The study was undertaken to assess hydrogeological conditions of the Site and to provide general information regarding the hydrogeologic impact of the proposed redevelopment on the local groundwater function. The report addresses the following areas:

- Identifying the geological and hydrogeological setting of the Site;
- Confirming groundwater level and groundwater flow direction beneath the Site;
- Assessing groundwater quality in comparison with Region of Peel Sanitary and Storm Sewer By-Law limits;
- Evaluate potential short-term construction dewatering needs for the proposed redevelopment;
- Estimating the long-term foundation drainage rate;

- Identifying potential impacts to the nearby groundwater receptors including water supply wells and natural heritage features with respect to the proposed redevelopment;
- Providing mitigation plan on the potential impacts to the groundwater receptors associated to the proposed redevelopment; and,
- Providing recommendation on any needs for applying for a Permit to Take Water (PTTW), or posting on Environmental Activity and Sector Registry (EASR) with Ministry of the Environment, Conservation and Parks (MECP).

1.2 Scope of Work

The scope of work for the hydrogeological assessment is summarized below:

- <u>Review of available background information</u>: A review of available background geological and hydrogeological information for the site was completed using Ontario Geological Survey (OGS) maps, MECP, Oak Ridges Moraine Groundwater Program (ORMGP), and Ministry of Natural Resources and Forestry (MNRF) databases.
- <u>Review of the City of Mississauga Official Plans and Credit Valley Conservation (CVC)</u> <u>Authority Policy Areas</u>: The City of Mississauga official plans and CVC maps were reviewed to understand the location of the Site and the proposed redevelopment within the policy areas.
- <u>Site Inspection</u>: A visual inspection of the Site and surrounding areas was conducted to determine local topography and drainage, and an assessment of significant features.
- <u>Groundwater Monitoring and Hydraulic Conductivity Testing</u>: Groundwater levels within the installed monitoring wells were monitored over four (4) monitoring events. In-situ hydraulic conductivity testing was completed within the installed monitoring wells to estimate the hydraulic conductivity of the strata within the well screen interval.
- <u>Groundwater Quality Assessment:</u> Groundwater quality was assessed in comparison with the Region of Peel Sanitary and Storm Sewer By-Law limits to assess available options to discharge the potential dewatering effluent during construction (short-term), or following Site redevelopment for any long-term foundation drainage.
- <u>Review of Proposed Site Redevelopment Concept:</u> The proposed site redevelopment plans were reviewed to confirm the proposed invert elevation for developing underground structures.
- <u>Construction and Post Construction Dewatering Flow Rate Estimates:</u> Considering the proposed redevelopment plans, construction dewatering flow rate (short-term dewatering)

and long-term foundation drainage rate were estimated using the stable groundwater table and estimated hydraulic conductivity measured in the Site.

- <u>Mitigation Plans for Dewatering:</u> A mitigation plan was recommended to mitigate potential short-term dewatering impacts to the nearby groundwater receptors (including natural heritage features and water supply wells), and structures, if applicable.
- <u>Potential Dewatering Permits:</u> Considering the estimated short-term construction and long-term post construction dewatering flow rates, recommendations were provided on any need for applying for a PTTW or posting on the EASR with the MECP, if required.

The above scope of work was undertaken in accordance with all of the following: Ontario Water Resources Act, Ontario Regulation 387/04.

2.0 APPLICABLE REGULATIONS AND AGENCIES

The environmental regulations and policies relevant to this hydrogeological study are briefly discussed below.

2.1 Credit Valley Conservation (CVC) Authority Policies and Regulation (O.Reg. 160/06)

Under Section 28 of the Conservation Authorities Act, local conservation authorities are mandated to protect the health and integrity of the regional greenspace system, and to maintain or improve the hydrological and ecological functions performed by valley and stream corridors. The CVC, through its regulatory mandate, is responsible for issuing permits under Ontario Regulation (O.Reg.) 160/06, Regulation of Development, Interference with Wetlands and Alterations to Shorelines and Watercourses for development proposal or Site alteration work to shorelines and watercourses within the regulated areas.

2.2 City of Mississauga Official Plan

The City of Mississauga's Official Plan sets up policies that deal with legislative and administrative concerns, guides physical growth, and addresses social, economic, and environmental concerns. The Official Plan provides land use planning designations and identifies areas of environmental significance where more stringent policies may apply for development applications.

City of Mississauga's Official Plans were reviewed for the current study with the results summarized as below:

- Schedule 1b (Urban System City Structure) A review of the map, dated November 22, 2019, indicates that the Site is located within an area designated as Neighbourhood/Downtown.
- Schedule 3 (Natural System) A review of the map, dated November 22, 2019, indicates that the Site is not located within the areas designated as neither Natural Heritage System nor Natural Hazards.
- Schedule 10 (Land Use Designation) A review of the map, dated November 22, 2019, shows that the site is located within the Residential High Density Area.

2.3 Permit to Take Water (PTTW)

For construction dewatering, water takings of more than 50,000 L/day but less than 400,000 L/day may be registered on the EASR, while water takings of more than 400,000 L/day require a PTTW issued by the MECP. If it is identified that an EASR or PTTW is required for the Site, a hydrogeological report will need to be submitted in support of the application. Construction dewatering estimation was completed as

a part of the scope of work for the current assessment. Applying for PTTW with the MECP is also required if the anticipated long-term foundation drainage flow rate exceeds 50,000 L/day limits of the MECP.

2.4 Clean Water Act

The MECP mandates the protection of existing and future sources of drinking water under the Clean Water Act, 2006 (CWA). Initiatives under the CWA include the delineation of Wellhead Protection Areas (WHPAs), significant groundwater recharge areas (SGRAs) and Highly Vulnerable Aquifers (HVAs) as well as the assessment of drinking water quality and quantity threats within Source Protection Regions. Source Protection Plans are developed under the CWA and include the restriction and prohibition of certain types of activities and land uses within WHPAs.

Based on a regional-scale source water protection mapping (Source Protection Information Atlas) provided by the MECP dated January 10, 2020, the Site is not located within a WHPA, SGRA, and HVA.

3.0 METHODOLOGY

3.1 Borehole Advancement and Monitoring Well Installation

Drilling boreholes and installation of monitoring wells were conducted in conjunction with geotechnical investigation between December 2 and December 4, 2019. The program consisted of the drilling of a total of ten (10) boreholes, denoted as BH1 through BH10, extending to about 2.4 to 6.4 meters below ground surface (mbgs). Four (4) monitoring wells were advanced in the selected geotechnical boreholes beneath the Site. The locations of the boreholes and monitoring wells are shown on **Figure 2**.

Borehole drilling and monitoring well installation were completed by a licensed contractor, Profile Drilling Inc., under the full-time supervision of a geotechnical technician from Terraprobe, who also logged the soil strata encountered during borehole advancement and collected representative soil samples for textural classification. The boreholes were advanced using a continuous flight power auger machine using solid stem augers. Detailed descriptions of the encountered subsoil and groundwater conditions are presented on the borehole and monitoring well logs, on the enclosed **Appendix A**, inclusive.

The monitoring wells were constructed using 50-mm diameter PVC riser pipes and screens, which were installed in each of the selected geotechnical boreholes (BH2, BH3, BH5, and BH9) in accordance with Ontario Regulation (O. Reg.) 903. All of the monitoring wells were equipped with steel flush-mount protective casings at the ground surface.

The Universal Transverse Mercator (UTM) coordinates (Zone 17T) and ground surface elevations at the monitoring wells locations, as well as the monitoring well construction details, are presented in **Table 3-1**.

The ground surface elevations and coordinates at the monitoring wells locations were surveyed by Terraprobe using a Trimble R10® GNSS System. The Trimble R10® system uses the Global Navigation Satellite System and the Can-Net® reference system to determine target location and elevation. The Trimble R10® system is reported to have an accuracy of up to 10 mm horizontally and up to 30 mm vertically.

Monitoring	Installation	UTM Coordinates (m)		Ground	Monitoring	Screen	Casing Dia.	Protective
Well ID	Date	Easting	Northing	El. (masl)	Well Depth (mbgs)	Interval (mbgs)	(mm)	Casing Type
BH2	December 3, 2019	611270.6	4825498.2	113.3	6.4	4.9 - 6.4	50	Flush-mount
BH3	December 3, 2019	611304.7	4825494.7	113.1	4.9	3.4 - 4.9	50	Flush-mount
BH5	December 2, 2019	611329.9	4825483.4	112.6	5.2	3.7 - 5.2	50	Flush-mount
BH9	December 4, 2019	611328.2	4825433.4	111.7	3.7	2.2 - 3.7	50	Flush-mount

Table 3-1- Monitoring Well Installation Details

Notes:

mbgs metres below ground surface

masl metres above sea level

3.2 Groundwater Monitoring

All four (4) installed monitoring wells were utilized to measure and monitor groundwater levels. Monitoring wells were developed, and the groundwater monitoring program confirmed the stabilized groundwater level beneath the Site. The stabilized groundwater levels were monitored over four (4) monitoring events. The findings are presented in **Section 6.1**.

3.3 MECP Water Well Records Review

MECP Water Well Records (WWRs) were reviewed for the registered wells located at the Site and within 500 m radius of the Site boundaries (Study Area). The findings of the MECP well records are presented in the **Section 4.6** of the current report.

3.4 In-Situ Hydraulic Conductivity Test

Two (2) installed monitoring wells for hydrogeological assessment including BH3 and BH5 were utilized to conduct hydraulic conductivity testing. The in-situ test provides estimated hydraulic conductivity (K) for subsoil strata at the depths of the well screens. The monitoring wells were developed in advance of the tests. Well development involves the purging and removal of groundwater from each monitoring well to remove remnants of clay, silt and other debris introduced into the monitoring well during construction, and to induce the flow of formation groundwater through the well screens, thereby improving the transmissivity of the subsoil strata formation at the well screen depths.

The in-situ falling head hydraulic conductivity test involves the placement of a slug of known volume into the monitoring well, below the water table, to displace the groundwater level upward. The rate at which the water level recovers to static conditions (falling head) is tracked using a data logger/pressure transducer, and/or manually, using a water level tape. The rate at which the water table recovers to static conditions is used to estimate the K value for the water-bearing strata formation at the well screen depth. The findings for the hydraulic conductivity testing are presented in **Section 6.3.1** of the current report.

3.5 Hydraulic Conductivity based on Grain Size Distribution Graphs

The Hazen equation estimation method was also used to estimate the hydraulic conductivity (K) for saturated subsoils at selected depths beneath the water table below the subject site. The method provides alternative hydraulic conductivity (K) estimates which are derived from the grain size diameter, whereby 10% by weight of the soil particles are finer and 90% are coarser (Freeze and Cherry, 1979). The soils chosen for Hazen estimation were selected primarily within/above the well screen depths. Findings are presented in **Section 6.3.2**.

3.6 Groundwater Quality Assessment

One (1) set of groundwater samples was collected from one (1) selected monitoring well (BH5) to characterize its quality for evaluation against the Region of Peel Storm and Sanitary Sewer Use By-Law (53-2010) parameters. This is performed to assess whether any anticipated dewatering effluent can be disposed of into the City of Mississauga sewer system during construction, or following site redevelopment for any long-term foundation drainage. Based on the results, recommendations for any pre-treatment for any dewatering/drainage effluent can be developed, if required.

One (1) selected monitoring well was developed and purged of three (3) well casings volumes of groundwater prior to sample collection. One (1) complete set of groundwater samples was not filtered during collection, prior to placement in the laboratory sample bottles. Upon sampling, all of the bottles were placed in ice and packed in a cooler at about $4 \pm {}^{\circ}$ C for shipment to the analytical laboratory. Sample analysis was performed by SGS Canada Inc., a laboratory accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA). The results of the analysis are discussed in Section 6.4 of the current report.

3.7 Review of Regional Data and Available Reports for the Site

The maps, data, and documents provided by the MECP, Ontario Geological Survey (OGS), Ministry of Natural Resource and Forestry (MNRF), and CVC were reviewed. Additionally, available previously issued and concurrent geotechnical reports were reviewed at the time of preparation of the current hydrogeological report, with the findings summarized in **Section 4**.

4.0 REGIONAL AND LOCAL SITE SETTING

4.1 Regional Geology

The current understanding of the surface geological setting of the Site is based on scientific work conducted by the OGS (OGS, 2003). Much of the Site is located within an area mapped as Coarse-textured glaciolacustrine deposits (9c) consisting of sand, gravel, minor silt and clay. Based on a review of the surficial geology map, bedrock can be contacted at the south portion of the Site. The proposed development footprint is partially located within the area mapped as bedrock. **Figure 3** illustrates the mapped surficial geology for the Site and the surrounding area.

Oak Ridges Moraine Groundwater Program (ORMGP) produced a cross-sectional geological map to aid in the characterization of the general area. Considering the regional cross-section, it is understood that the overburden unit prevalent in this area consists of Halton Till (equivalent).

Halton Till (Upper Till): The Halton Till is mainly comprised of sandy silt to clayey silt till interbedded with silt, clay, and a number of discontinuous sand and gravel lenses. It was deposited approximately 12,500 years ago. Based on cross-sectional geology, the Halton Till or equivalent is present approximately in ground surface, with an approximate thickness of up to 1.8 m.

Bedrock: The underlying bedrock at the Site is the Georgian Bay Formation, which consists of shale, limestone, dolostone, and siltstone (OGS, 2007). A review of the ORMGP cross-section indicates that the bedrock could be contacted in approximate depth of 2.0 mbgs beneath the proposed development area. Inferred bedrock was contacted at depths ranging between 1.5 and 3.5 mbgs over the current subsurface investigation.

4.2 Regional Physiography

The Site is located within a regional physiography of Southern Ontario known as Iroquois Plain. The Iroquois Plain within the vicinity of the Site comprises sand plain. The Iroquois Plain occupies the lowlands around the western part of Lake Ontario, where it covers about a distance of 300 km, from the Niagara River to the Trent River. It has a width varying from about 100 m to over 10 km. When the last glacier (Wisconsin) was receding from Southern Ontario, the area was inundated by a body of water known as Lake Iroquois, which emptied eastward at Rome, New York State (Chapman and Putnam, 1984). **Figure 4** shows the location of the Site within the regional physiography map.

4.3 Regional Topography and Drainage

A review of a "Site Grading Plan" prepared by Crozier Consulting Engineers dated June 23, 2020 indicates that the ground surface elevation approximately ranges between 114 masl and 112 masl. The plan review shows that topography of the Site slopes gently towards south, in general.

Figure 5 shows regional topography of the Site and surrounding area. Considering the topography map ground surface elevation for the Site and the surrounding area slopes south/southeast direction. As such, it is anticipated that generated runoff (if it is not managed) will flow southeast direction.

4.4 Watershed Setting

The Credit Valley Conservation (CVC) watershed map was reviewed on May 11, 2020. The Site is located within the Norval to Port Credit sub watershed, which has an approximate area of 72.83 km² (CVC, 2009). It is situated within one of the most-densely populated regions of Canada, the Credit River Watershed contains some of the most diverse landscapes in southern Ontario. The Niagara Escarpment and the Oak Ridges Moraine run through the watershed, further increasing the number and diversity of plants, animals, and communities. The Credit River is almost 90 km long and meanders southeast from its headwaters in Orangeville, Erin and Mono, through nine municipalities, eventually draining into Lake Ontario at Port Credit, Mississauga (CVC website, 2020).

4.5 Local Surface Water and Natural Heritage Features

MNRF database was reviewed on June 3, 2020 for any natural heritage features including, watercourses, bodies of water, wetland features, Area of Natural and Scientific Interest (ANSI) and wooded areas. **Figure 6** shows the location of the Site within the surrounding Natural Heritage Features. Mary Fix Creek flows adjacent to the west boundary of the Site and flows inside the Site at the southwest corner.

A body of water, Stormwater Management pond, is located approximately 300 m to the northwest of the Site, and Lake Ontario is located approximately 4.0 km south of the Site.

Wooded areas are scattered around Site, with the closest record mapped approximately 250 m to the northwest of the Site.

Record review indicates that there are no other records wetland, and ANSI within or in close proximity to the Site.

4.6 Flood Plain Regulated Area

A review of the Source Water Protection Information Atlas interactive mapping tool provided by MECP indicates that portions of the Site and the entire proposed development are located within the zone designated as "Event Based Area". Pre-development Drainage Plan prepared by Crozier Consulting Engineers dated June 23, 2020 indicates the regulatory flood limits for the Mary Fix Creek and the existing regulatory flood elevation is at 111.91 masl. Additionally, 10 m setback is also presented on this plan. The proposed development footprint is located adjacent and outside of the setback.

4.7 Ground Water Resources (MECP Well Records)

MECP well record database was reviewed for records located within a radius of 500 m from the approximate Site boundary (Study Area). The location of the well records is presented on **Figure 7** with the details for each well summarized in **Appendix B.** A total of 37 wells were located within the study area. A summary of data obtained from record review is presented in **Table 4-1**.

A review of the final status of the records indicates that most local wells are registered as test holes. One (1) well is listed as water supply well. Static groundwater level at this well installed in 1955 approximately 400 m to the north of the Site, was recorded at 2.14 mbgs.

The site is situated in a serviced area within the City of Mississauga. Additionally, there are no records for water supply wells within or in close proximity to the Site.

Number of the Well Records	40
Well Type	
Drilled Well	31 (77.5%)
Dug Well	0 (0 %)
Unknown	6 (15%)
Other	3 (7.5%)
Depth Ranges	
Up to 6.0 m (up to 20 ft	22 (55%)
Greater than 6.0 m (20 ft)	9 (22.5%)
Unknown	9 (22.5%)
Water Use (Final Status)	
Observation Well	5 (12.5%)
abandoned/Other	2 (5%)
Test Hole	20 (50%)
Monitoring/test hole	9 (22.5%)
Water Supply	1 (2.5%)
Unknown	3 (7.5%)
Reported Static Level	
0 to 3.0 m (0 to 10 ft)	1 (2.5%)
Unknown	39 (97.5%)

 Table 4-1- MECP Well Records Summary

4.8 Active Permit to Take Water Application Records Review

MECP website was reviewed for any active PTTW application records within 1.0 km radius of the Site on March 13, 2020. Record review indicates that there are no active PTTW within the Study Area.

5.0 LOCAL GEOLOGY AND SUBSURFACE INVESTIGATION

Terraprobe completed a geotechnical investigation in conjunction with the hydrogeological assessment. The fieldwork consisted of drilling of a total of ten (10) boreholes extending to a maximum depth of 6.4 meters below ground surface (mbgs). Information regarding borehole logs and grain size distribution graphs is presented in **Appendix A**. The approximate locations of boreholes are shown on **Figure 2**. A subsurface profile (hydrogeological cross-section) across the Site is shown on **Figure 8**. A review of the geotechnical investigation report indicates that the stratigraphy beneath the investigated areas of the Site generally consists of the followings:

5.1 Pavement Structure and Earth Fill

Asphaltic concrete was encountered from the surface at all borehole locations. The thickness of the asphaltic concrete ranges from 75 to 90 mm. An aggregate base course with a thickness of 50 mm was encountered in Borehole BH3 underlying the asphaltic concrete.

Underlying the pavement structure, the boreholes encountered a layer of earth fill extending to depths ranging between 0.8 and 2.3 mbgs (El. 110.0 to $111.4 \pm masl$). The earth fill is variable in composition across the Site, but is predominantly clayey silt, trace sand, and trace gravel. Silty sand, trace clay trace gravel was encountered in BH6. Shale fragments, organics, asphaltic concrete and brick debris are also encountered at various borehole locations. A strong hydrocarbon odour was noted in Borehole BH1 at a depth of 1.5 m below surface grade. The earth fill ranges in colour from dark grey to brown, and is generally moist. Due to the variation and inconsistent placement of the earth fill materials, the relative density of the earth fill varies from loose to compact. The moisture contents of the earth fill samples range from 9 to 27% by mass, indicating a moist to wet condition.

5.2 Clayey Silt Till

Underlying the earth fill, the boreholes encountered a cohesive deposit of clayey silt till. The clayey silt was encountered at depths ranging from 0.8 to 2.3 mbgs (El. 110.0 to 111.4 \pm masl), and extends to depths ranging from 1.5 to 3.5 mbgs (El. 108.6 to 110.4 \pm m).

Glacial till is typically a heterogeneous mixture of all grain sizes. At this Site the till is composed predominantly of grey or greyish brown clayey silt, sandy or some sand, and trace gravel.

SPT N-Values recorded in the clayey silt till range from 7 to over 50 blows per 300 mm of penetration, indicative of a firm to hard consistency. The moisture contents of the clayey silt till deposit samples range from 8 to 19% by mass, indicating a moist condition.

5.3 Inferred Bedrock

Split spoon refusal was encountered at all borehole locations underlying the clayey silt glacial till. Based on drilling observations and the grey shale fragments within the split spoons, the refusal is likely encountered on inferred bedrock of the Georgian Bay Formation.

6.0 LOCAL HYDROGEOLOGICAL STUDY

6.1 Monitoring well development and Ground Water Level Monitoring

A groundwater monitoring program was completed between December 10, 2019 and January 9, 2020 as a part of the hydrogeological assessment. Four (4) monitoring wells installed for the hydrogeological assessment (BH2, BH3, BH5, and BH9) were considered for groundwater monitoring program.

Groundwater levels were monitored over four (4) monitoring events. The measured groundwater levels, along with other monitoring wells details and findings, are presented in **Appendix C**. A summary of the groundwater observations is provided in **Table 6-1**:

Monitoring Well ID	Unit	Ground El. nit (masl)	Screen Interval	Groundwater Level				Average	Fluctuation
	Umu			Dec. 10, 2019	Dec. 17, 2019	Dec. 23, 2019	Jan. 09, 2020	Average	Fluctuation
BH2	masl	113.3	108.4 - 106.9	108.72	108.52	108.58	108.42	108.56	0.30
DIIZ	mbgs	-	4.9 - 6.4	4.58	4.78	4.72	4.88	4.74	0.50
BH3	masl	113.1	109.7 - 108.2	110.50	110.46	110.59	110.31	110.47	0.28
БПЭ	mbgs	-	3.4 - 4.9	2.60	2.64	2.51	2.79	2.64	0.28
BH5	masl	112.6	108.9 - 107.4	110.15	109.87	110.09	109.82	109.98	0.33
БПЭ	mbgs	-	3.7 - 5.2	2.45	2.73	2.51	2.78	2.62	0.55
BH9	masl	111.7	109.5 - 108.0	109.96	109.38	NA	108.96	109.43	1.00
5117	mbgs	-	2.2 - 3.7	1.74	2.32	NA	2.74	2.27	1.00

Table 6-1- Summary of Groundwater Monitoring

Notes:

mbgs metres below ground surface

masl metres above sea level

NA not available

As shown in **Table 6-1**, average groundwater levels ranged from 108.56 masl (4.74 mbgs) to 110.47 masl (2.64 mbgs). The highest and lowest shallow groundwater levels were measured at El. 110.59 masl (2.51 mbgs) and 108.42 masl (4.88 mbgs) at BH3 and BH2, respectively.

In addition, the highest groundwater fluctuation of 1.00 m was measured at monitoring well BH9. The lowest fluctuation of 0.28 m was recorded at monitoring well BH3 location over the monitoring period.

6.2 Shallow Groundwater Flow Pattern

Groundwater level elevations measured on January 9, 2020 were considered to interpret the shallow groundwater flow pattern beneath the Site. **Figure 9** presents the interpreted shallow groundwater elevation contours. A review of the plan indicates that the shallow groundwater is interpreted flowing the west/southwesterly direction, in general, towards the Mary Fix Creek.

6.3 Hydraulic Conductivity Testing

6.3.1 In-Situ Hydraulic Conductivity Testing

Monitoring wells BH3 and BH5 underwent single well response tests (SWRTs) to assess the hydraulic conductivity (K) for saturated shallow aquifer subsoils and inferred bedrock at the depths of the well screens. Each monitoring well was equipped with a digital transducer to record the fluctuation made to complete the SWRT. The results of the SWRT tests are presented in **Appendix D**, with a summary of the findings provided in **Table 6-2**.

Well ID	Ground El. (masl)	Monitoring Well Depth (mbgs)	Screen Interval (mbgs)	Screened Soil Strata	Hydraulic Conductivity (K) (m/sec.)	Test Method
BH3	113.1	4.9	3.4 – 4.9	Clayey silt glacial till	4.31 x 10 ⁻⁷	Falling Head Test
BH5	112.6	5.2	3.7 – 5.2	Inferred Bedrock	1.49 x 10 ⁻⁷	Falling Head Test

 Table 6-2- Summary of Hydraulic Conductivity Testing

Notes:

mbgs metres below ground surface

masl metres above sea level

A review of the findings indicates a moderate to low hydraulic conductivity for the subsoil profile and featured bedrock contacted within the screen interval.

6.3.2 Hydraulic Conductivity Test Using Grain Size Distribution Graphs

The Hazen Equation method was adopted to estimate the hydraulic conductivity (K) for different soil layers which may contain groundwater during the seasonal high water table (spring) period, or if they are not encountered within the screen intervals.

The Hazen Equation method relies on the interrelationship between hydraulic conductivity and effective grain size, d_{10} , in the soil media. This empirical relation predicts a power-law relation with K, as follow:

$$K = Ad_{10}^2$$

where;

 d_{10} : Value of the soil grain size gradation curve as determined by sieve analysis, whereby 10% by weight of the soil particles are finer and 90% by weight of the soil particles are coarser.

A: Coefficient; it is equal to 1 when K in cm/sec and d_{10} is in mm

The Hazen Equation estimation provides an indication of the groundwater yield capacity for saturated soil strata at the depths where soils samples were selected for grain size analysis. The grain size distribution graphs prepared for the geotechnical investigation were used to estimate the hydraulic conductivity, with

the details presented in **Appendix A**. The results of the Hazen equation are provided in **Table 6-3**, below.

Borehole/ Monitoring Well ID	Soil Sample Depth (mbgs)	Soil Sample Elevation (masl)	Soil Strata	Hydraulic Conductivity (m/sec.)
BH3	2.5 (SS4)	110.6	Clayey silt (glacial till)	$3.90 imes 10^{-9}$
BH7	2.5 (SS4)	109.1	Clayey silt (glacial till)	4.52×10^{-9}
BH10	1.7 (SS3)	111.2	Clayey silt (glacial till)	$2.37 imes 10^{-9}$

 Table 6-3 - Summary of Hydraulic Conductivity Using Hazen Equation

Notes:

mbgs metres below ground surface

masl metres above sea level

The K estimates determined using the Hazen method suggests low hydraulic conductivity for the clayey silt (glacial till) unit.

6.4 Groundwater Quality

One (1) representative groundwater sample was collected for analysis from monitoring well BH5 on December 23, 2019. The sample was submitted for analysis and evaluation against the Region of Peel Sewer Use By-Law (53-2010) limits.

The submitted samples consisted of unfiltered groundwater, with results presented as totals for various parameters analyzed. Upon sampling, all bottles were placed in ice and packed in a cooler at about 4° C for shipment to the analytical laboratory. Sample analysis was performed by SGS Canada Inc., which is accredited by CALA. The results of the analysis are provided in **Appendix E**, with a discussion of the findings provided below.

The analytical results for the unfiltered groundwater samples obtained from monitoring well BH5 indicates that the concentrations for all the analyzed parameters exceeded the Region of Peel's sanitary sewer discharge with the exceedance for Total Suspended Solids (TSS); and exceeded storm sewer discharge with the exceedances for TSS and Total Manganese. The exceedances, together with the storm and sanitary sewer use criteria, are presented in **Table 6-4**.

Exceeded Parameter	Groundwater Quality Results (mg/L)	Region of Peel Sanitary Limits (mg/L)	Region of Peel Storm Limits (mg/L)					
TSS	377	<u>350</u>	<u>15</u>					
Total Manganese	2.93	5	<u>0.05</u>					

 Table 6-4- Groundwater Quality Analysis Results Exceeded

The results suggest that any construction dewatering or foundation drainage effluents would not be acceptable for discharge to the City of Mississauga sanitary and storm sewers. However, implementing pre-treatment to lower TSS and total manganese to meet Region of Peel sanitary and storm sewers by-law limits could potentially permit its discharge to the City's sanitary and storm sewers system.

7.0 CONSTRUCTION DEWATERING

7.1 **Proposed Redevelopment Plan Review**

Based on the re-zoning and official plan amendment plans prepared by IBI Group, dated January 24, 2022, the proposed redevelopment will consist of construction of a 14-storey residential tower along with a mechanical penthouse, and an elevator machine room, which all are resting on top of a one level of underground parking (P1). It is understood that established grade is proposed at El. 113.27 masl. Ground floor and P1 lowest finished floor are proposed at El. 113.00, El. 109.20 masl, respectively. A review of the development plan indicates that 4 levels of above ground parking are also proposed at level 1 extending to level 4 of the proposed building.

7.2 A review of Geotechnical Investigation Report

A Terraprobe's geotechnical investigation report entitled "Geotechnical Investigation and Engineering Design Report, 2570-2590 Argyle Road, Mississauga, Ontario" dated February 18 2022, was reviewed as below:

- It is necessary that building floor slabs be provided with a capillary moisture barrier and drainage layer. This is made by placing the slab on a minimum 300 mm layer of 19 mm clear stone (OPSS.MUNI 1004) compacted by vibration to a dense state.
- In considering the approach to groundwater control during construction at this site, the shoring for the excavation will consist of permeable soldier pile and lagging walls. The shoring walls should be toed into sound bedrock of the Georgian Bay Formation.
- The site is bounded on all sides by the parking lot servicing the existing residential buildings on the property. No excavation shall extend below the foundations of existing adjacent structures without adequate alternative support being provided. Terraprobe recommends that if the existing footings for the adjacent buildings are not on bedrock and they are within the zone of influence of the shoring system, they may be supported using a continuous interlocking caisson wall shoring or may be underpinned down to bedrock at locations adjacent to the proposed deeper excavation. Where excavations cannot be sloped, they can be supported using a shoring system such as soldier piles and lagging shoring.

7.3 Summary of Hydrogeological Conditions

The results of the investigation completed by Terraprobe indicate the following hydrogeologic features for the Site:

• Underlying the fill, native deposits mainly comprising glacial till (clayey silt till), underlain by inferred bedrock were encountered.

- The shallow groundwater table for design purposes was to be at El. 110.59 ± masl (2.51 mbgs) measured at BH3 on December 23, 2019.
- The hydraulic conductivity of 4.31 x 10⁻⁷ m/sec and 1.49 x 10⁻⁷ m/sec were considered for clayey silt till and inferred bedrock, respectively, in which the excavation and construction will be completed. Additionally, a hydraulic conductivity of 1.0 x 10⁻⁶ m/sec was considered for the fill material.
- Permeable shoring system consisting of soldier piles and lagging walls was considered for dewatering flow rate estimates as per the project geotechnical engineer's advise.

7.4 Short-Term Groundwater Control Requirements (Construction Dewatering)

7.4.1 Proposed Building

Dewatering Flow Rate Estimate

Underground Garage Plan - Level P1, prepared by IBI Group, was reviewed to estimate dimensions of the proposed excavation area. Based on the shape of the proposed P1 level, dewatering calculations were completed considering two (2) approximate rectangular shape excavation areas as below, which is shown in **Figure 10**:

- Proposed dewatering area 1: partial underground parking area at north section (approximately 35.5 m x 45.5 m).
- Proposed dewatering area 2: partial underground parking area at south section (approximately 81 m x 52.5 m).

Short-term dewatering flow rate was estimated reviewing the proposed redevelopment plans, considering subsoil profile, groundwater conditions and estimated hydraulic conductivity for the geological units, in which the excavation and construction of the underground parking will be completed. Considering the estimated conceptual zone of influence for dewatering and recommendations received from geotechnical investigation (Section 7.2), a permeable shoring system (soldier piles and lagging walls) was considered for the current short-term dewatering flow rate estimate. The assumptions considered for the dewatering flow rate calculations are summarized in **Table 7-1**.

Proposed Redevelopment	Approximate Proposed Width (m)	Approximate Proposed Length (m)	Proposed FFE (masl)	Assumed foundation El. (masl)	Shallow Groundwater Level (masl)	Proposed Shoring
Proposed Dewatering Area 1	35.5	45.5	109.2	108.7	110.59	Permeable Shoring
Proposed Dewatering Area 2	81	52.5	109.2	108.7	110.59	Permeable Shoring

Table 7-1- Summary of Proposed Excavation Dimensions

Notes:

mbgs metres below ground surface

masl metres above sea level

As the approximate elevation of foundation level was assumed to be at $108.7\pm$ masl, a dewatering target of $107.7\pm$ masl was used to maintain a 1 m dry base of excavations for short-term (during construction).

A numerical analysis was conducted utilizing computer software (Slide 7.014, released March 30, 2016, developed by Rocscience Inc.), utilizing the Finite Element Modelling (FEM) method. FEM for groundwater seepage indicates the short-term (construction) dewatering requirements as provided below. The finite element model results and dewatering rate calculations are presented in **Appendix F.**

The estimated construction dewatering rates for the proposed redevelopments are summarized below:

- Proposed Dewatering Area 1: 2,667 L/day, and it could reach to 4,000 L/day of groundwater seepage into the excavation considering a safety factor of 1.5.
- Proposed Dewatering Area 2: 5,334 L/day, and it could reach to 8,000 L/day of groundwater seepage into the excavation considering a safety factor of 1.5.
- The above estimates do not take into account storm water management from rainfall events. The collection system should also account for a typical 2-year design storm event which will generate approximately 40,500 L/day and 106,500 L/day for proposed dewatering Area 1 and Area 2, respectively.
- The dewatering system should be designed to take into account removal of rainfall from the excavation. According to O. Reg. 63/16, a plan for discharge must consider the conveyance of storm water from a 100-year storm event, which translates to approximately 152,000 L/day and 400,000 L/day for proposed dewatering Area 1 and Area 2, respectively.
- A total volume of 44,500 L/day and 114,500 L/day are anticipated for short-term construction dewatering with proposed dewatering Area 1 and Area 2, respectively. Total anticipated short-term dewatering flow rate is summarized in **Table 7-2**.

Location	Shoring Option	Ground Water Seepage (Safety Factor - 1.5)		(25 mm D	ainfall Event Jesign Storm Vent)	Total Discharge Volume (Seepage + Rainfall)	
		L/day	L/sec	L/day	L/sec	L/day	L/sec
Proposed Dewatering Area 1	Permeable Shoring	4,000	0.05	40,500	0.47	44,500	0.52
Proposed Dewatering Area 2	Permeable Shoring	8,000	0.09	106,500	1.23	114,500	1.32
Total	Permeable Shoring	12,000	0.14	147,000	1.70	159,000	1.84

Table 7-2- Summary of Short-Term Dewatering Calculations for Proposed Underground Parking

Zone of Influence

The conceptual Zone of Influence (ZOI) for dewatering, also known as Radius of Influence (R_0), was calculated based on the anticipated maximum drawdown required and the average hydraulic conductivity recorded at the Site using Sichardt's Relationship. The native stratigraphy at the Site generally consists of clayey silt (glacial till). The ZOI was calculated for short-term (construction) for the Site.

Equation: $R_0 = 3000^* dH^* K^{0.5}$ Where dH is the drawdown (m) K is the hydraulic conductivity (m/s)

FFE for the proposed underground structure is proposed at El. 109.2 masl. Base of the footing will be developed 0.5 m below the proposed FFE at El. 108.7 masl. To provide safe, dry and stable conditions for excavations, the water table will need to be lowered in advance of/ during excavation for approximately 1.0 m below the proposed base of the proposed footing at El. 107.7 masl. The highest shallow groundwater level is measured at 110.59 masl.

Zone of Influence (also known as Radius of Influence or R₀) Calculations:

$$\begin{split} R_0 &= 3000 \, * \, 2.89 \; m \, * \, 4.31 \; x \; 10^{\text{-7}} \; m/s^{\, 0.5} \\ R_0 &= 5.7 {\pm} \; m \end{split}$$

The estimated ZOI could reach 5.7 m from the proposed excavation area.

7.4.2 Proposed Underground Services

The proposed preliminary site grading and servicing plans prepared by Crozier Consulting Engineers dated June 23, 2020 was reviewed for the current assessment. Plan review indicates that finished floor elevation at the ground floor is proposed at El. 113.00 masl. Additionally, plan review indicates that a proposed sanitary sewer alignment, 55.7 m long, will be developed at the east part of the Site, where the invert elevations range from 110.81 to 109.41 masl (west-east direction). Based on the plan, a storm

sewer alignment, 4.0 m long, is also proposed at the west side of the proposed building having invert elevations ranging between 110.39 and 110.31 masl. Additionally, proposed FFE for the proposed P1 level underground parking was confirmed at El. 109.2 masl, via an email received from the project architect.

Proposed buildings will be connected to the existing sanitary and storm manholes. The location and the invert elevations are presented on **Figure 10**, with a summary presented in **Table 7-3**.

Proposed Alignment	Approximate Width (m)	Approximate Proposed Length (m)	Existing MH El. (masl)	Shallow Groundwater Level (masl)	
Proposed Sanitary Sewer Alignment	2	55.7	109.41	110.59	
Proposed Storm Sewer Alignment	2	4	110.31	110.59	

 Table 7-3- Summary of Dewatering Calculations for Proposed Underground Services

Dewatering Flow Rate Estimate

Pumping rate calculations for the proposed underground services performed based on the assumption that the proposed sewer alignments will be installed within a trench. The calculations were based on equations provided in Powers et al. (2007) for unconfined aquifer.

The following equation was used to compute the dewatering rates required for the proposed underground services alignment and is based on unconfined aquifer conditions:

$$Q = \frac{\pi K (H^2 - h^2)}{\ln(R_0 / r_s)} + 2 \left[\frac{x K (H^2 - h^2)}{2L} \right]$$

Where,

Q	=	Anticipated pumping rate (m ³ /day)
Κ	=	Hydraulic conductivity (m/day)
Н	=	Distance from initial static water level to bottom of the saturated aquifer (m)
h	=	Depth of water in the well while pumping (m)
R_0	=	Distance from a point of greatest drawdown to a point where there is no drawdown (radius of influence) (m)
rs	=	Distance to the well points from the centre of the trench (m), assumed to be half of the trench width
х	=	Trench Length (m)
L	=	Distance from a line source to the trench, equivalent to Ro (m)

Zone of Influence

An estimate of the Zone of Influence (ZOI) for dewatering excavations in unconfined aquifers can be calculated using the following equation (Bear, 1979):

$$R_0 = 2.45 \sqrt{\frac{HK}{S_y}t}$$

where,

R_0	=	Zone of Influence (m), beyond which there is negligible drawdown
Н	=	Distance from initial static water level to bottom of saturated aquifer (m)
$\mathbf{S}_{\mathbf{y}}$	=	Specific yield of the aquifer formation (based on Johnson (1967))
t	=	Time, in seconds, required to draw the static groundwater level to the desired level (assumed to be equivalent to 14 days)
Κ	=	Hydraulic Conductivity (m/s)

A summary of the dewatering rate calculations and conceptual ZOI are presented in Table 7-4 below and

Appendix F.

Table 7-4- Dewatering Flow Rate Summary	
---	--

Proposed Alignment	H (m)	h (m)	K (m/s)	Drawdown (m)	ZOI (R0) (m)	Pumping Rate (L/day)			Total Anticipated Volume (L/day)
Proposed Storm Sewer Alignment	0.7	0.1	4.3 x 10 ⁻⁷	0.7	6.2	48	72	200	272
Proposed Sanitary Sewer Alignment	1.7	0.4	4.3 x 10 ⁻⁷	1.3	9.3	73	1,100	2,800	3,900
Total Dewatering Flow Rate4,172									

*S.F: Safety Factor

A review of the **Table 7-4** indicates that the anticipated dewatering flow rate for developing the proposed underground services alignments could reach to 4,172 L/day considering a safety factor of 1.5-, and 25mm storm event.

7.5 Long-Term Groundwater Control Requirements (Post-Construction)

The approximate elevation of foundation level was estimated to be at 108.7± masl, and a drainage layer at $108.7\pm$ masl was used for long-term (post construction).

A numerical analysis was conducted utilizing computer software (Slide 7.014, released March 30, 2016, developed by Rocscience Inc.), utilizing the Finite Element Modelling (FEM) method. FEM for groundwater seepage indicates the long-term (post construction) dewatering requirements as provided below. The finite element model results and dewatering rate calculations are presented in Appendix F.

The estimated post construction dewatering rates for the proposed redevelopments are summarized below:

Proposed Dewatering Area 1: 2,334 L/day, and it could reach to 3,500 L/day of groundwater seepage into the excavation considering a safety factor of 1.5.

- Proposed Dewatering Area 2: 3,667 L/day, and it could reach to 5,500 L/day of groundwater seepage into the excavation considering a safety factor of 1.5.
- Since surficial asphalt degradation could happen in area above and adjacent to the perimeter of the parking garage, stormwater infiltration should be taken into consideration over the post construction. Therefore, a 2-year rainfall event seeping into the surface around a 0.5 m wide perimeter around the proposed underground parking level was considered. This will generate approximately an additional 2,500 L/day and 3,500 L/day of stormwater infiltration for proposed dewatering Area 1 and Area 2, respectively.
- A total volume of 6,000 L/day and 9,000 L/day are anticipated for long-term foundation drainage flow rate within proposed dewatering Area 1 and Area 2, respectively. A total anticipated long-term dewatering flow rate is summarized in **Table 7-5**.

Location	Shoring Option	Ground Seep (Safety Fa		Infiltration (25 mm Design Storm Event)		Total Discharge Volume (Seepage + Infiltration)	
		L/day	L/sec	L/day	L/sec	L/day	L/sec
Proposed Dewatering Area 1	Permeable Shoring	3,500	0.04	2,500	0.03	6,000	0.07
Proposed Dewatering Area 2	Permeable Shoring	5,500	0.06	3,500	0.04	9,000	0.10
Total	Permeable Shoring	9,000	0.10	6,000	0.07	15,000	0.17

 Table 7-5- Summary of Long-Term Dewatering Calculations

7.6 Permit Requirements

The estimated short-term (construction) dewatering flow rate reaches 159,000 L/day for developing the proposed underground parking and 4,172 L/day for installation of the proposed underground services alignments. The total estimated short-term construction dewatering flow rate exceeds the MECP lower limits of 50,000 L/day but remains below the MECP upper limit of 400,000 L/day. As such, posting EASR with MECP is required.

Additionally, estimated long-term foundation drainage flow rate (15,000 L/day) is below MECP limits of 50,000 L/day. As such, applying for PTTW with MECP is not required for the long-term (post-construction) dewatering.

Obtaining discharge permit from the City of Mississauga is required for both short-term (construction) and long-term (post construction) if the anticipated dewatering effluent is proposed to be discharged to the City of Mississauga sanitary or storm sewer.

This report provides the estimated quantity of the discharge water. However, the report does not deal with the sewer capacities. The sewer capacity analysis should be provided under a separate cover by the civil consultant

7.7 Potential Dewatering Impacts and Mitigation Plan

7.7.1 Ground Settlement

The estimated ZOI could reach to 5.7 m and 9.3 m away from the excavation area for developing the proposed underground parking and installation of proposed underground services, respectively. Existing buildings within the Site are partially located within the conceptual ZOI. Additionally, Argyle Road and existing buildings located at the north side are partially located within the conceptual ZOI for installation of proposed underground sanitary sewer alignment. It is recommended a professional geotechnical engineer is consulted to assess the potential ground settlement.

7.7.2 Surface Water, Wetlands and Areas of Natural Significance

Mary Fix Creek flows adjacent to the west boundary of the Site. A review of pre-development drainage plan, prepared by Crozier Consulting Engineers indicates that the elevation of the creek ranges from 108.48 masl to 109.48 masl along the west limits of the Site, respectively. Considering the interpreted shallow groundwater flow pattern, flowing towards the creek, and base of the creek within the bedrock, any dewatering program may impact flow rate within the creek. It is recommended the creek is monitored in advance of, during and after construction.

A body of water, Stormwater Management pond, is located approximately 300 m to the northwest of the Site, and Lake Ontario is located approximately 4.0 km south of the Site. Wooded areas are scattered around Site, with the closest record mapped approximately 250 m to the northwest of the Site. Record review indicates that no other records for any other natural heritage features including wetland, water bodies, and ANSI are within or in close proximity to the Site. As such, no impacts to natural heritage features are anticipated with respect to the proposed development.

7.7.3 Water Supply Wells and Zone of Influence

The Site is situated in a serviced area within the City of Mississauga. A review of the MECP well records confirmed that most local wells are registered as test holes and one well is listed as water supply well within 500 m of the Site. Considering the estimated ZOI for construction and location of the water supply well, no concerns are anticipated on the water supply well with respect to the proposed development.

7.7.4 Contamination Sources

Based on the Phase One Environmental Site Assessment (ESA) completed for the Site by Try Environmental Services Inc. dated November 22, 2010, the Phase One ESA did not reveal any significant environmental concerns that would restrict the current use or redevelopment of the Site and no further work/investigation would be required or warranted.

8.0 CONCLUSIONS AND RECOMMENDATIONS

- The Site is located within a regional physiography of Southern Ontario known as Iroquois Plain.
- Much of the Site is located within an area mapped as Coarse-textured glaciolacustrine deposits (9c) consisting of sand, gravel, minor silt and clay. Based on a review of the surficial geology map, bedrock can be contacted at the south portion of the Site. The proposed development footprint is partially located within the area mapped as bedrock.
- The Credit Valley Conservation (CVC) watershed map was reviewed on May 11, 2020. The Site is located within the Norval to Port Credit sub watershed, which has an approximate area of 72.83 km² (CVC, 2009).
- Mary Fix Creek flows adjacent to the west boundary of the Site and flows inside the Site at the southwest corner. A body of water, Stormwater Management pond, is located approximately 300 m to the northwest of the Site, and Lake Ontario is located approximately 4.0 km south of the Site. Wooded areas are scattered around the Site, with the closest record mapped approximately 250 m to the northwest of the Site. Record review indicates that there are no other records wetland, and ANSI within or in close proximity to the Site.
- The subsoil profile beneath the pavement structure (asphaltic concrete) consisted mainly of earth fill, underlain by clayey silt (glacial till), and followed by inferred bedrock.
- The average groundwater levels ranged from 108.56 masl (4.74 mbgs) to 110.47 masl (2.64 mbgs). The highest and lowest shallow groundwater levels were measured at El. 110.59 masl (2.51 mbgs) and 108.42 masl (4.88 mbgs) at BH3 and BH2, respectively.
- Estimated hydraulic conductivity using single well response test (SWRT) was 4.31 x 10⁻⁷ m/s for clayey silt (glacial till), and was 1.49 x 10⁻⁷ m/s for inferred bedrock unit.
- Groundwater quality for one (1) sample collected from monitoring well BH5 exceeds the Region of Peel's sanitary sewer use by-law limits with the exceedance for Total Suspended Solid (TSS), and exceeds the Region of Peel's storm sewer use by-law limits with the exceedances for Total Suspended Solid (TSS) and Total Manganese.
- Short-term construction dewatering flow rate for the proposed underground parking considering a safety factor of 1.5 and a 2-year rainfall event (25 mm design storm event) could reach 159,000 L/day.
- Short-term construction dewatering flow rate for the proposed underground services considering a safety factor of 1.5 and a 2-year rainfall event (25 mm design storm event) could reach 4,172 L/day.

- Long-term post construction dewatering flow rate for the proposed underground parking considering a safety factor of 1.5 and an infiltration (25 mm design storm event) could reach 15,000 L/day.
- The estimated ZOI could extend up to 5.7 m and 9.3 m away from the proposed excavated area for developing the proposed underground parking and installation of proposed underground services, respectively.

9.0 CLOSURE

We trust that the above-noted information is suitable for your review. If you have any questions regarding this information, please do not hesitate to contact the undersigned.

Yours truly,

Terraprobe Inc.

Rachel Geddam, B.Eng., E.I.T Project Engineer

w/w/

R. Baker Wohayeb, M.A.Sc., P. Eng., QP_{RA} Principal

Nai

Narjes Alijani, M.Sc., P.Geo. Project Manager

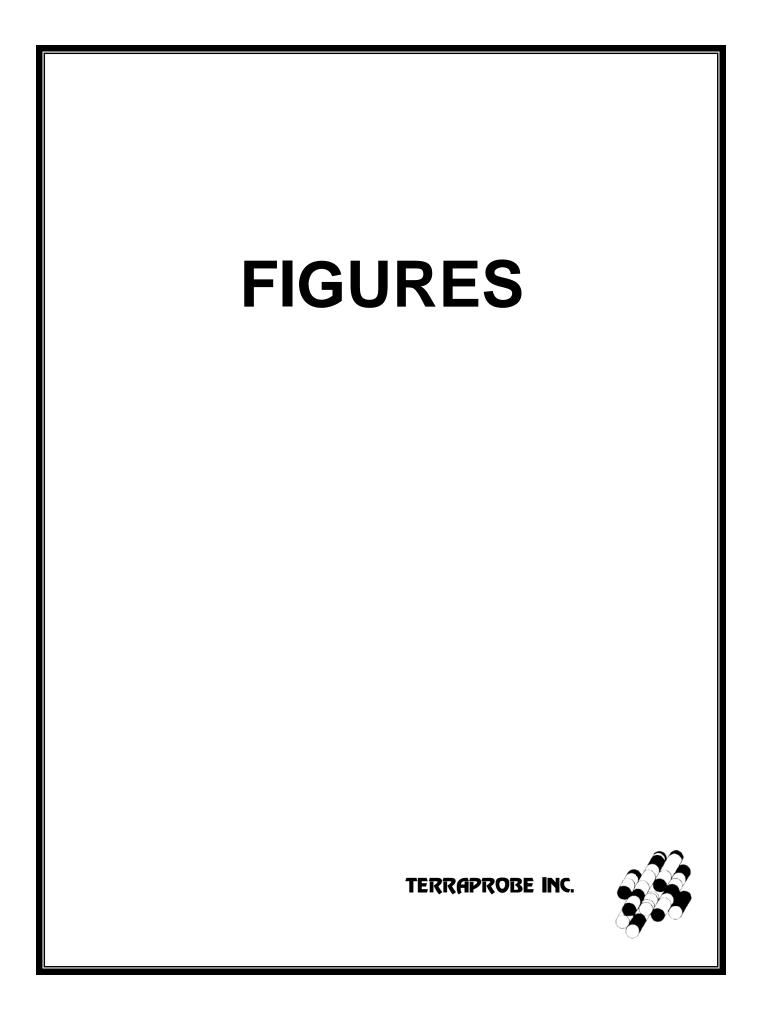
10.0 REFERENCES

- 1. Chapman, L.J. and D.F. Putnam, 1984. The Physiography of Southern Ontario. Ontario.
- 2. Freeze, A. and Cherry, J., 1979. Groundwater, Prentice-Hall Inc., New Jersey.
- 3. Geological Survey. Ontario Geological Survey (OGS), 2003. Surficial Geology of Southern Ontario. Miscellaneous Release Data 128 revised.
- 4. Geological Survey. Ontario Geological Survey (OGS), 2007. Bedrock Geology of Ontario. Miscellaneous Release MRD 219.
- 5. Ministry of the Environment, Conservation and Parks, 2020, Source Protection Information Atlas Interactive Map.
- 6. Ministry of Natural Recourses and Forestry, 2020. Natural Heritage Interactive Map.
- 7. Credit Valley Conservation (CVC) Authority, Watershed map, 2009.
- 8. Terraprobe Inc. "Geotechnical Investigation and Engineering Design Report, 2570-2590 Argyle Road, Mississauga, Ontario", dated February 18 2022. File No. 1-19-0719-01.

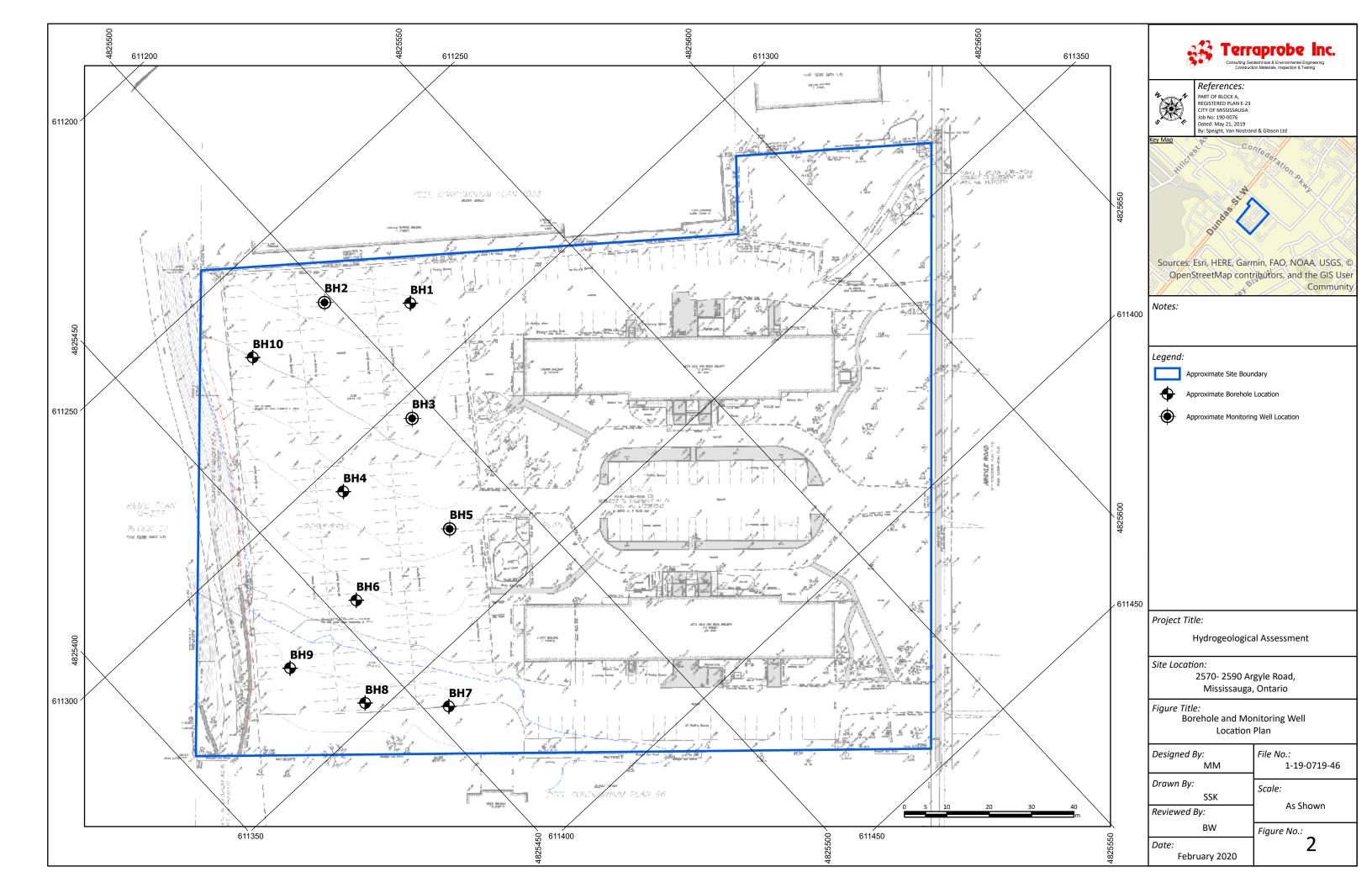
11.0 LIMITATIONS OF LIABILITY

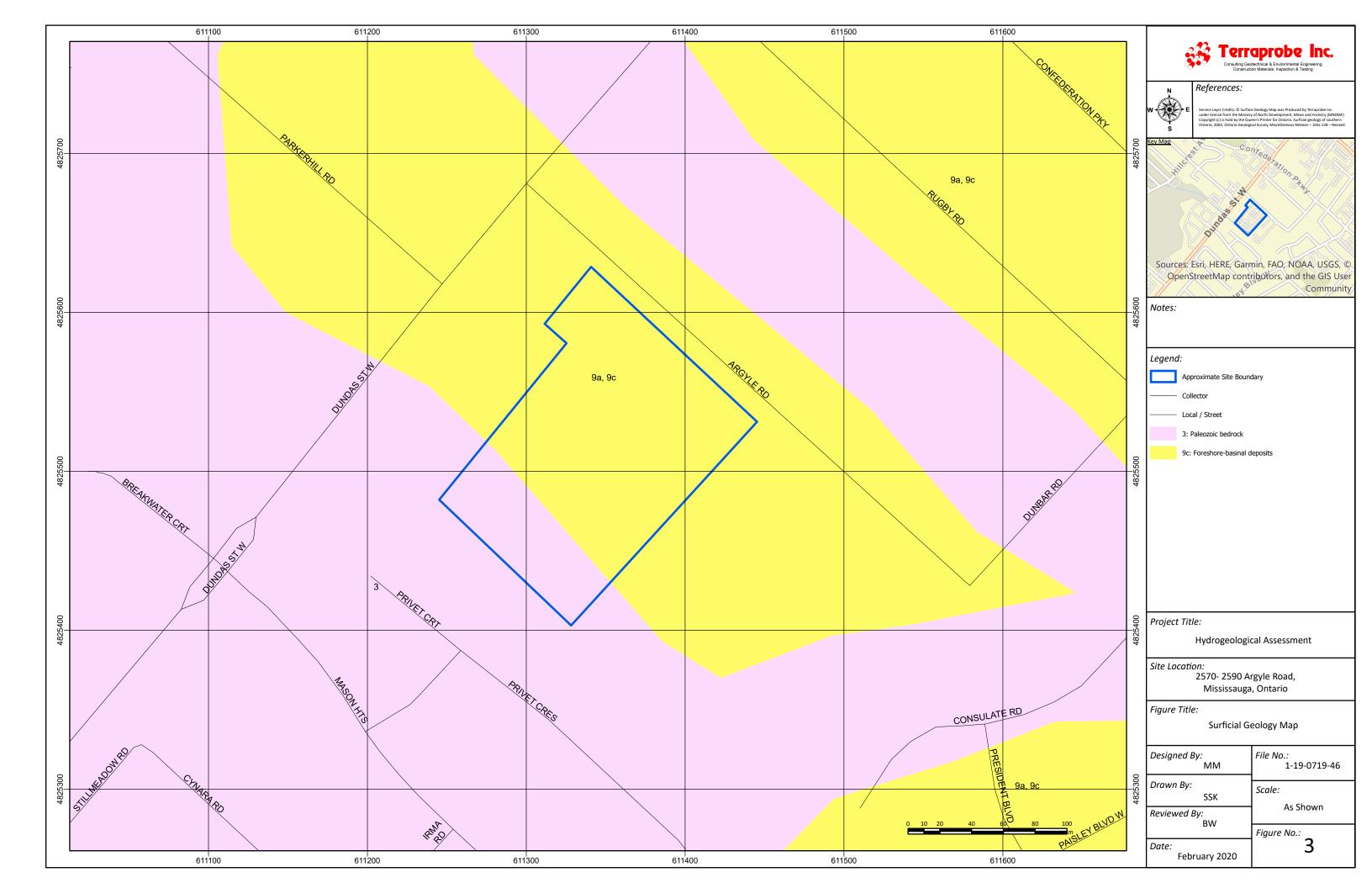
This report was prepared at the request of, and for the exclusive use of Ranee Management and its affiliates ("the Intended User") is intended to provide an assessment of the hydrogeological conditions of the Property located at 2570-2590 Argyle Road, Mississauga, Ontario (the Site). No one other than the Intended User has the right to use and rely on the work without first obtaining the written authorization of Terraprobe Inc. and Ranee Management.

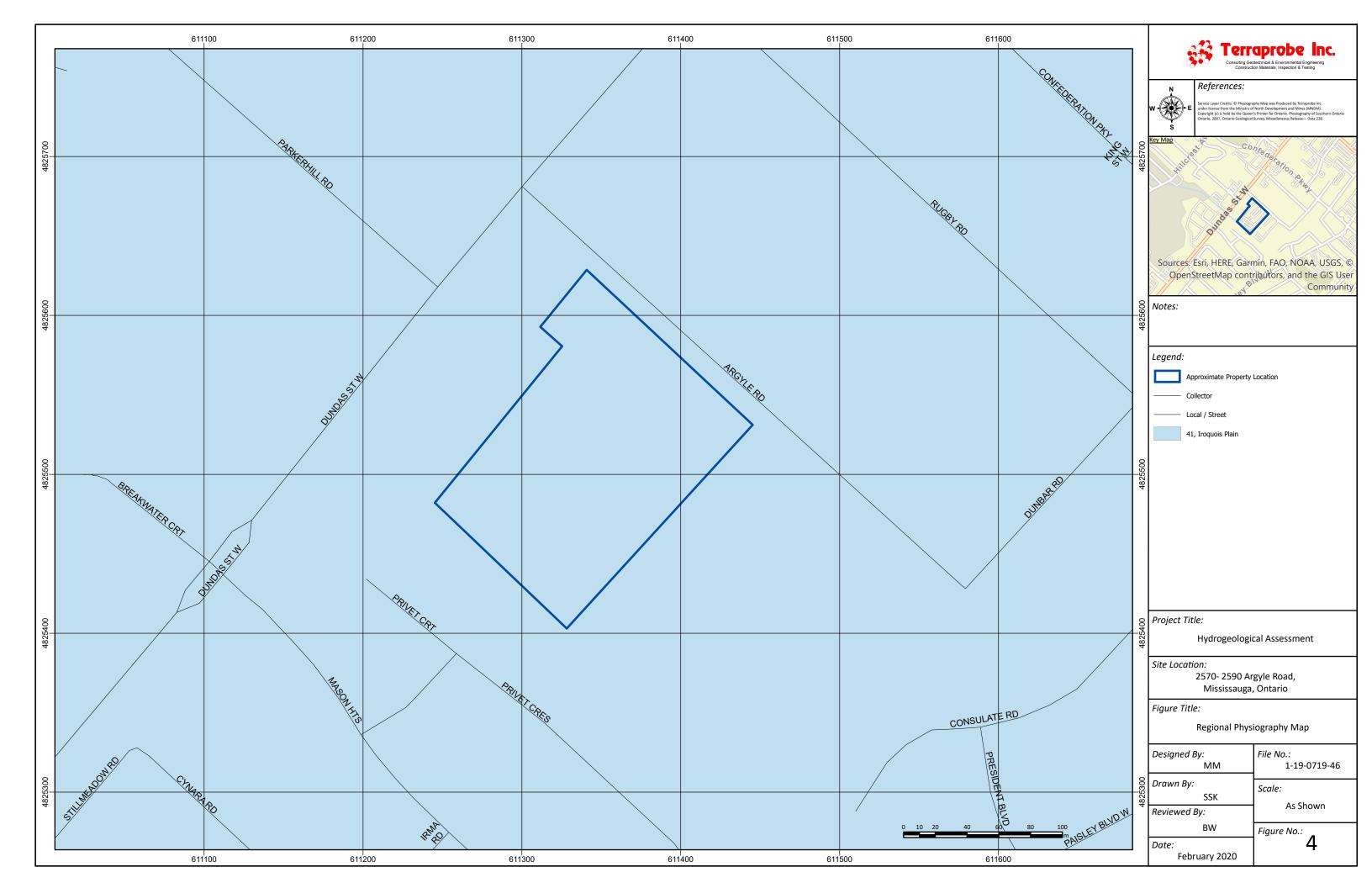
Terraprobe Inc. expressly excludes liability to any party except the Intended User for any use of, and/or reliance upon, the work. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Terraprobe Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report, including consequential financial effects on transactions or property values, or requirements for follow-up actions and costs.

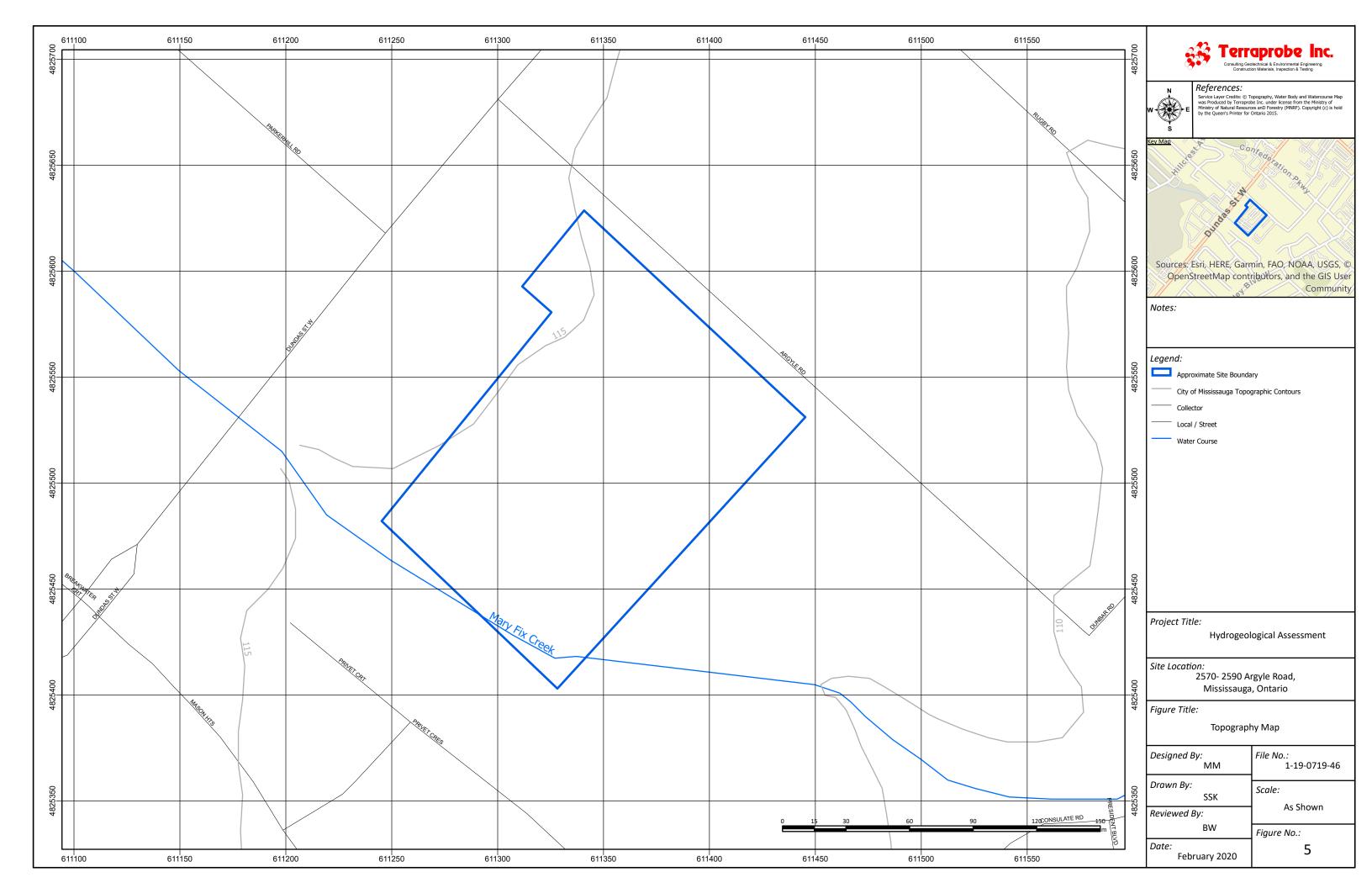

The assessment should not be considered a comprehensive audit that eliminates all risks of encountering hydrogeological problems. The information presented in this report is based on information collected during the completion of the hydrogeological study by Terraprobe Inc. It was based on the conditions on the Site at the time of the hydrogeological study by a review of historical information and field investigation to assess the hydrogeological conditions of the Site, as reported herein.

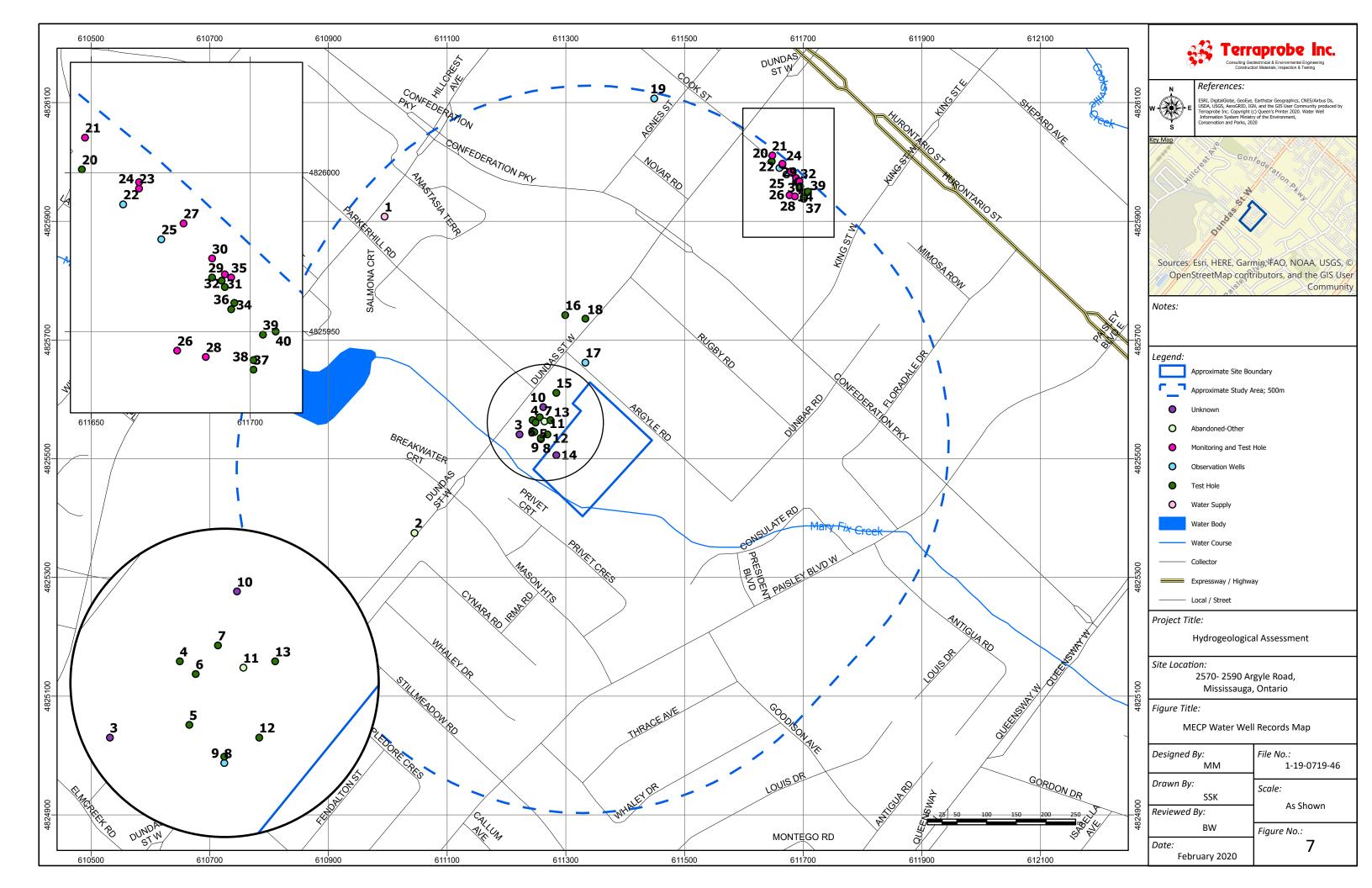
There is no warranty expressed or implied by this report regarding the hydrogeological conditions for the Site. Professional judgement was exercised in gathering and analyzing information collected by reviewing previous reports, data provided by government and are open to public and field work investigation. The conclusions presented are the product of professional care and competence, and cannot be construed as an absolute guarantee.


In the event that during future work new information regarding the hydrogeological conditions of the Site is encountered, or in the event that the outstanding responses from the regulatory agencies indicate outstanding issues on file with respect to the Site, Terraprobe Inc. should be notified in order that we may re-evaluate the findings of this assessment and provide amendments, as required.

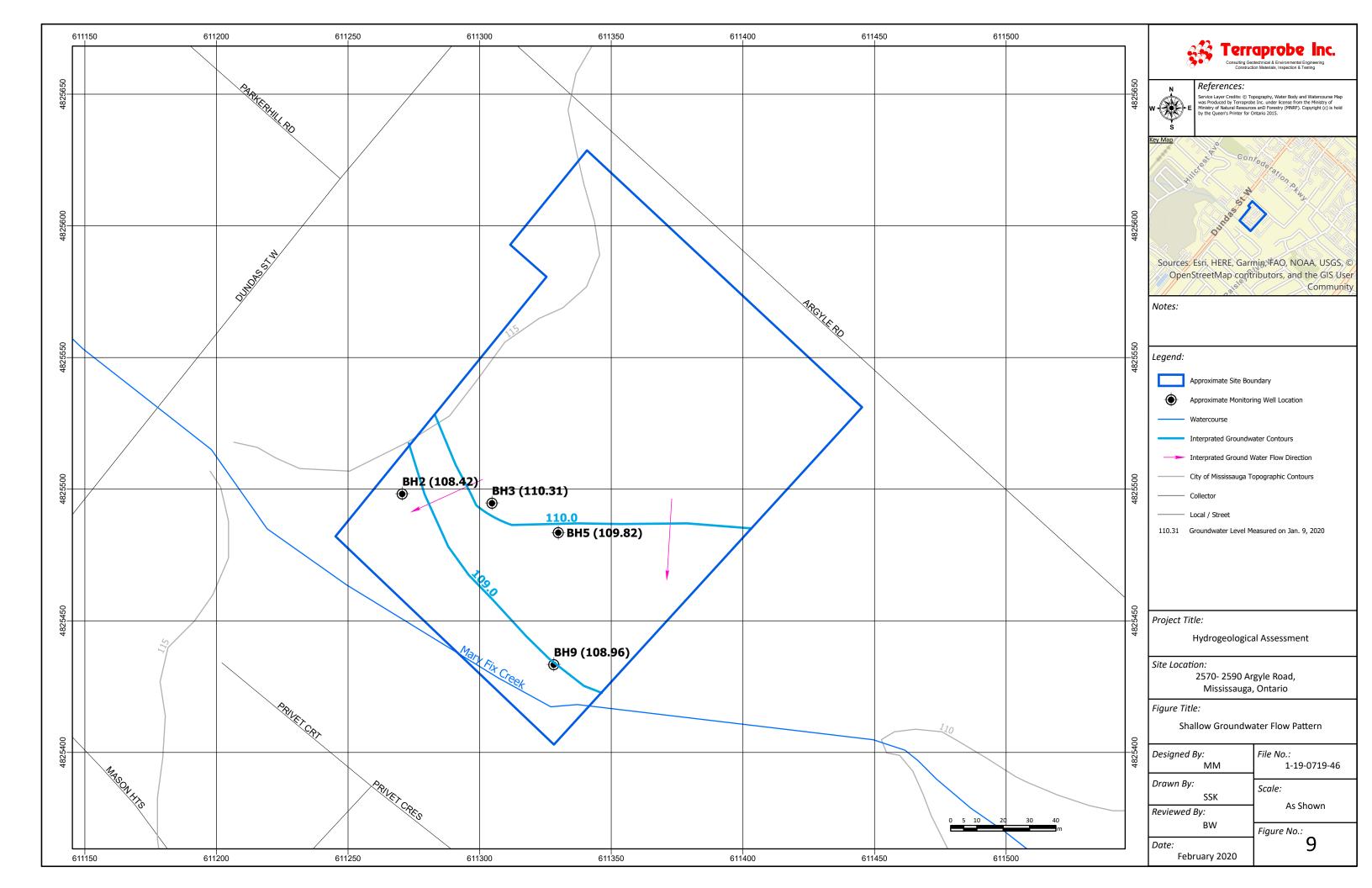

Neither possession of the Work, nor a copy of it, carries the right of publication. All copyright in the Work is reserved to Terraprobe Inc. The Work shall not be disclosed, produced or reproduced, quoted from, or referred to, in whole or in part, or published in any manner, without the express written consent of Terraprobe Inc. or Ranee Management.

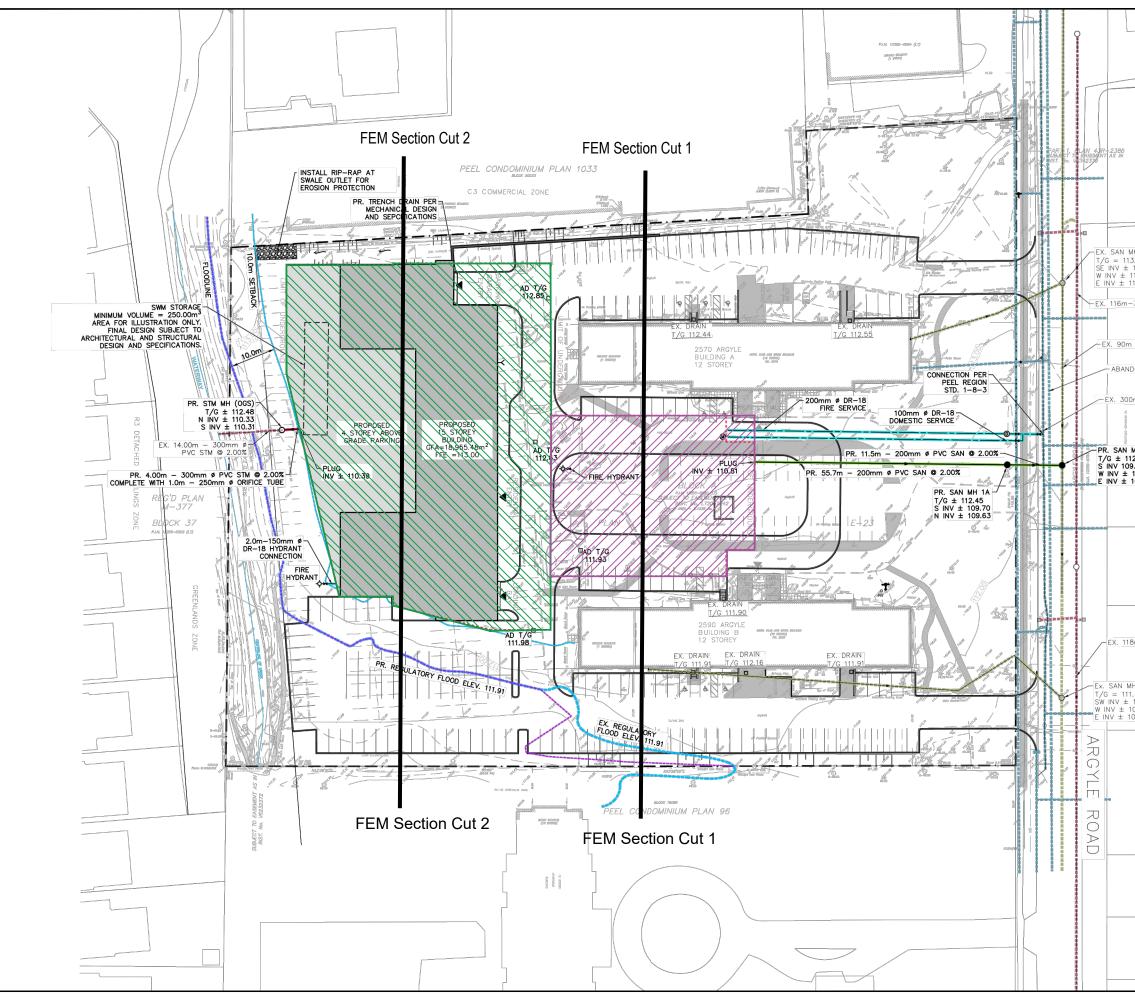


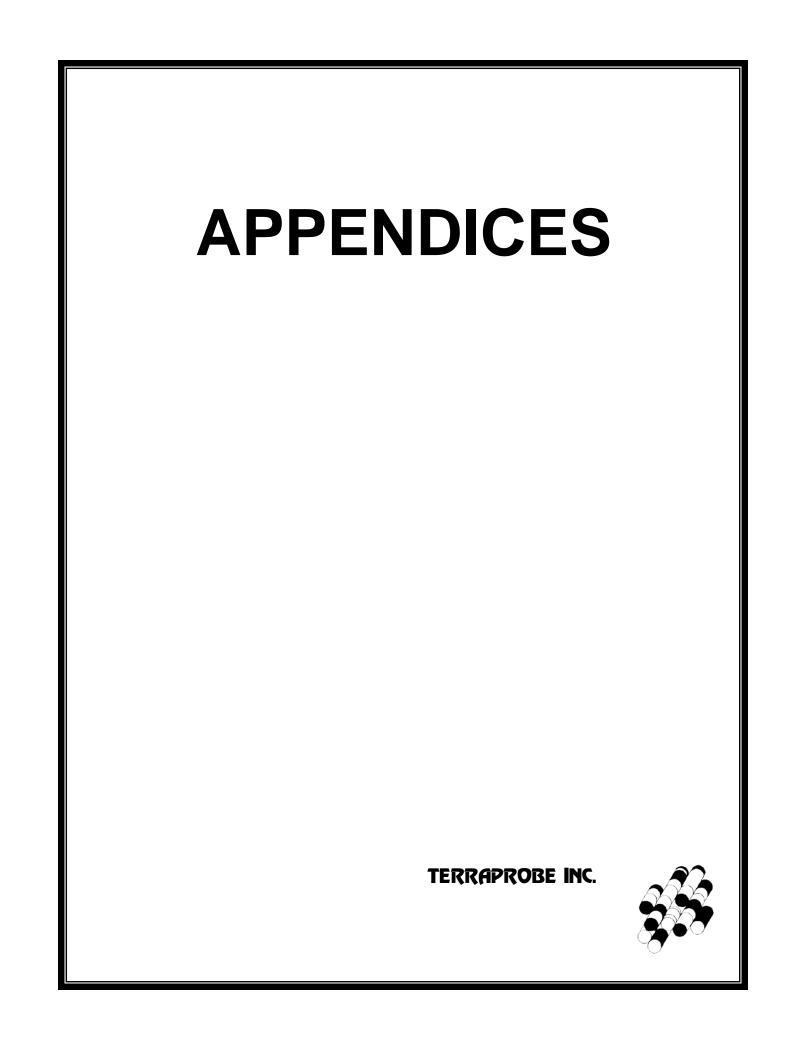












sinohania\Desktop\1-19-0719\temp.

MH 2	11 Indeil Lau	Consulting Geotechnic Construction Mat ne - Brampton On Reference: Preliminary Si 2570-2590 Ar Mississauga, Project No: 17 Dwg- Fig 1	
3.02 110.22 10.13 10.10 375mm Ø STM @ 1.60% - 250mm Ø SAN @ 1.78% DONED 150mm Ø WATERMAIN Mm Ø D.I. WATERMAIN MH 2A 2.20 3.50 109.41	Legend:		E VALVE ANRIGLE * MARIGLE TO VALVE TO SPECIFICATIONS) NO SPECIFICATIONS) NO SPECIFICATIONS) MARIGLE & MARIGLE
Bm−450mm ø STM @ 1.60% I 3 I 108.71 08.50 08.47	Project Title: Site Location:		al Assessment
_	Figure Title: Designed By:	2570- 2590 / Mississaug Proposed Dev MM	ja, Ontario
_	Drawn By: Reviewed By: Date: Febr	SSK BW uary 2020	Scale: As Shown Figure No.: 10

APPENDIX A

Borehole and Monitoring Well Logs

and Grain Size Distribution Graphs

TERRAPROBE INC.

SAMP	LING METHODS	PENETRATION RESISTANCE
AS CORE DP FV GS	auger sample cored sample direct push field vane grab sample	Standard Penetration Test (SPT) resistance ('N' values) is defined as the number of blows by a hammer weighing 63.6 kg (140 lb.) falling freely for a distance of 0.76 m (30 in.) required to advance a standard 50 mm (2 in.) diameter split spoon sampler for a distance of 0.3 m (12 in.).
SS ST WS	split spoon shelby tube wash sample	Dynamic Cone Test (DCT) resistance is defined as the number of blows by a hammer weighing 63.6 kg (140 lb.) falling freely for a distance of 0.76 m (30 in.) required to advance a conical steel point of 50 mm (2 in.) diameter and with 60° sides on 'A' size drill rods for a distance of 0.3 m (12 in.)."

COHESIONLESS SOILS COHESIVE SOILS COMPOSITION **Undrained Shear** Consistency 'N' value Compactness 'N' value Term (e.g) % by weight Strength (kPa) very soft < 2 < 12 very loose < 4 < 10 trace silt 2 – 4 soft 12 – 25 4 – 10 loose some silt 10 – 20 25 – 50 firm 4 – 8 10 – 30 compact 20 – 35 silty 8 – 15 50 - 100 stiff 30 - 50 dense > 35 sand and silt very stiff 15 – 30 100 – 200 > 50 very dense > 30 > 200 hard

TESTS AND SYMBOLS

мн	mechanical sieve and hydrometer analysis	¥	Unstabilized water level
W, Wc	water content	\mathbf{V}	1 st water level measurement
w∟, LL	liquid limit	\mathbf{V}	2 nd water level measurement
w _P , PL	plastic limit	T	Most recent water level measurement
I _P , PI	plasticity index	_ 3.0	Undrained shear strength from field vane (with sensitivity)
k	coefficient of permeability	+	ondrained shear strength from field valie (with scholavity)
Y	soil unit weight, bulk	Cc	compression index
Gs	specific gravity	Cv	coefficient of consolidation
φ'	internal friction angle	mv	coefficient of compressibility
C'	effective cohesion	е	void ratio
Cu	undrained shear strength	PID	photoionization detector
		FID	flame ionization detector

FIELD MOISTURE DESCRIPTIONS

Damp refers to a soil sample that does not exhibit any observable pore water from field/hand inspection.
 Moist refers to a soil sample that exhibits evidence of existing pore water (e.g. sample feels cool, cohesive soil is at plastic limit) but does not have visible pore water
 Wet refers to a soil sample that has visible pore water

Terraprobe
rendprove

																LV		
Proje	ct l	No. : 1-19-0719-46	Clie	ent	: F	Ranee	e Mana	agem	ent								Origina	ated by :DH
Date	sta	rted : December 3, 2019	Pro	jec	t :2	570 -	- 2590	Argy	le Ro	bad							Comp	oiled by:BV
Shee	t N	o. :1 of 1	Loc	atio	on : N	/lissis	sauga	, Ont	tario								Cheo	ked by :SZ
Positio	n	: E: 611285, N: 4825513 (UTM 17T)				Elevati	ion Datu	m : (Geodet	ic								
Rig typ	e	: B-37				Drilling	Method	: 5	Solid st	tem au	gers							
Ê		SOIL PROFILE			SAMP		e	Penet (Blows	ration Te s / 0.3m)	est Value	es		M	nisture /	Plasticity	υ	t	Lab Data
Depth	<u>Elev</u> Depth (m) 113.4	Description	Graphic Log	Number	Type	SPT 'N' Value	Elevation Scale (m)	Undra	ined She Unconfine Pocket Pe	20 ear Strei ed enetromet	ngth (kP + Fi er II La	, eld Vane	Plastic Limit	: Na Water	tural Liquid Content Limit	Headspace Vapour (ppm)	Instrument Details	GRAIN SIZE GRAIN SIZE OSTRIBUTION (MIT) GR SA SI
°		90mm ASPHALTIC CONCRETE	/****	8														
		FILL, clayey silt, trace sand, trace gravel, with shale fragments, stiff, greyish brown, moist		1	SS	12	113 -									_		
1		at 0.8 m, firm		2	SS	5							c)				
		at 1.5 m, strong hydrocarbon odour,					112 -											
2		stiff		3	SS	11			\searrow						0			
1	11.1			<u> </u>							\mathbf{k}							
	2.3	CLAYEY SILT, sandy, trace gravel, hard, brown with orange inclusions, mois (GLACIAL TILL)		4	ss	43	111-							0				
3 1	10.4					50/	-					$ \rangle$						
1	10.2 3.2		کلار	5	SS	50 / 25mm	J						0					

END OF BOREHOLE

Borehole was dry and open upon completion of drilling.

e sta	No. : 1-19-0719-46	Clie	nı	: Ի	kanee	e Mana	igement						Origin	ated by :DI
	arted :December 3, 2019	Proj	ject	t :2	570 -	- 2590	Argyle F	Road					Comp	biled by :B
et N	No. :1 of 1	Loc	atic	on : N	/lissis	sauga	, Ontario)					Cheo	cked by :SZ
ion	: E: 611271, N: 4825498 (UTM 17T)				Elevati	on Datu	n : Geoc	etic						-
/pe	: B-37				Drilling	Method			0					
	SOIL PROFILE		:	SAMPI		Scale	Penetration (Blows / 0.3		es		Moisture / Plasticity	e _	ent «	Lab Dat
<u>Ele</u> Dept (m) 113.	h Description	Graphic Log	Number	Type	SPT 'N' Value	Elevation Sc (m)	X Dynamic 1,0 Undrained 3 O Uncon Pocket 4,0	20 Shear Stre ined Penetromet	ngth (kPa + Fie ter I La	40 a) eld Vane b Vane 60	Plastic Natural Liquid Limit Water Content Limit PL MC LL 10 20 30	Headspace Vapour (ppm)	Instrument Details	GRAIN SIZ GRAIN SIZ GRAIN SIZ DISTRIBUTIO (MIT)
113.	90mm ASPHALTIC CONCRETE	/ 🔆			0,									GR SA S
	FILL, clayey silt, trace sand, trace gravel, trace asphalt pieces, shale fragments, stiff, greyish brown, moist		1	SS	13	113 -					0			
			2	SS	11	112-					0	_		
			3	SS	12	-					0			
111.														
2.	 CLAYEY SILT, sandy, trace gravel, very stiff, moist (GLACIAL TILL) 		4	SS	24	111-					0			
	at 3.0 m, trace sand, hard		5	SS	39	110 -			\square		0	_		
109. 3.	8 5 INFERRED BEDROCK		<u> </u>											at 3.5m, auger
	(GEORGIAN BAY FORMATION)					-				$\left \right\rangle$				grinding
						109 -						_		
			6	SS	50 / 50mm	-							7	
						108 -						_		· ·
						-								
	9		1			107								·

END OF BOREHOLE

Borehole was dry and open upon completion of drilling.

50 mm dia. monitoring well installed.

WA	FER LEVEL READIN	IGS
Date	Water Depth (m)	Elevation (m)
Dec 10, 2019	4.6	108.7
Dec 17, 2019	4.8	108.5
Dec 23, 2019	4.7	108.5
Jan 9, 2020	4.9	108.4

Date started : December 3, 2019 Project : 2570 - 2590 Argyle Road Sheet No. : 1 of 1 Destino : E: 611305, N: 4825495 (UTM 17T) Elevation Datum : Geodetic Rig type : B-37 Description GROUND SURFACE 0 1 1 1 1 1 1 1 1 1 1 1 1 1			Terraprobe														LO	G (DF	: B	H3
Sheet No. : 1 of 1 Location : Mississauga, Ontario Position :: E: 611305, N: 4825495 (UTM 17T) :: Elevation Datum :: Geodetic Rig type :B-37 Drilling Method :: Solid stem augers Image: Solid stem augers Solid stem augers Moisture / Plasticity :: Solid stem augers Image: Solid stem augers Solid stem augers Moisture / Plasticity ::: Solid stem augers Image: Solid stem augers Solid stem augers ::: Solid stem augers ::: Solid stem augers Image: Solid stem augers ::: Solid stem augers ::: Solid stem augers ::: Solid stem augers Image: Solid stem augers ::: Solid stem augers ::: Solid stem augers ::: Solid stem augers Image: Solid stem augers ::: Solid stem augers ::: Solid stem augers ::: Solid stem augers Image: Solid stem augers ::: Solid stem augers ::: Solid stem augers ::: Solid stem augers Image: Solid stem augers ::: Solid stem augers ::: Solid stem augers ::: Solid stem augers Image: Solid stem augers ::: Solid stem augers ::: Solid stem augers ::: Solid stem augers Image: Solid stem augers ::: Solid stem augers ::: Solid stem augers ::: Solid stem augers Image: Solid stem augers <td::: augers<="" solid="" stem="" td=""> <td:: augers<="" solid="" stem="" td=""></td::></td:::>	Pro	ject N	No. : 1-19-0719-46	Clie	ent	: F	Ranee	e Mana	agem	ent								Origir	ate	d by	: DH
Position : E: 611305, N: 4825495 (UTM 17T) Elevation Datum : Geodetic Rig type : B-37 Dilling Method : Solid stem augers SOIL PROFILE SAMPLES Berefation rest values 0 1131 GROUND SURFACE 0 1131 GROUND SURFACE 0 1131 GROUND SURFACE 0 1131 GROUND SURFACE 0 1131 GROUND SURFACE 1 133 11 133	Dat	e sta	rted : December 3, 2019	Proj	ject	: 2	2570 -	2590	Argy	le Ro	ad							Com	pile	d by	: BV
Prigravi pri : B-37 Drilling Method : Solid stem augers Solid PROFILE Solid PROFILE OPENIZION Description OPENIZION OPENIZION </td <td>She</td> <td>et No</td> <td>o. :1 of 1</td> <td>Loc</td> <td>atic</td> <td>on : N</td> <td>Aissis</td> <td>sauga</td> <td>, Ont</td> <td>ario</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Che</td> <td>cke</td> <td>d by</td> <td>: SZ</td>	She	et No	o. :1 of 1	Loc	atic	on : N	Aissis	sauga	, Ont	ario								Che	cke	d by	: SZ
Soll PROFILE SAMPLES Beneficial Status Penetration Test Values Moisture / Plasticity Elevin Description Big Big Status Big Big Status Big Big Status Big Big Status -0 113.1 GROUND SURFACE Big Big Status -0 113.1 GROUND SURFACE Big Big Status -0 113.1 GROUND SURFACE Big Big Status -0 113.1 GROUND SURFACE Big Big Status -0 113.1 GROUND SURFACE Big Big Status -1 Somm AGGREGATE 11 SS 111 11 SS 111 Big Big Status Big Big Status Big	Posi	tion	: E: 611305, N: 4825495 (UTM 17T)				Elevati	on Datu	m : C	Geodeti	ic										
Liew Description OI	Rig t	ype	: B-37				Drilling	Method	: 5	Solid ste	em au	gers									
Eacy Bord C Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	Ê		SOIL PROFILE			SAMP		e	Penet (Blows	ration Te s / 0.3m)	st Valu	es		Mc	oisture /	Plasticity	e	t		Lat	o Data
90mm ASPHALTIC CONCRETE 113 50mm AGGREGATE 11 SS 11 FILL, clayey slit, trace sand, trace gravel, stiff, greyish brown, moist 1 SS 21 2 SS 21 112 3 SS 8 0 1108 111 2 SS 21 112 1108 0 1108 0 2 SS 21 0 1108 0 2 SS 8 111 1108 0 2 SS 8 111 1108 0 2 SS 8 111 1108 0 2 SS 88 12 1108 0 2 SS 88 12 110 0 110 0 110 0 111 0 111 0 110 0 110 0 110 <		Depth (m)	-	Graphic Log	Number	Type	SPT 'N' Value	Elevation Sca (m)	Undra	ynamic Co 10 2 ined She Jnconfine Pocket Pe	<u>0</u> ear Strei d netromet	ngth (kP + Fi er I La	a) eld Vane ib Vane	Plastic Limit	Nater Water	tural Liquid Content Limit C LL	Headspac Vapour (ppm)	Instrument Details	Unstabilized Water Level	GRA DISTRIE	and nments NN SIZE BUTION (% MIT) SA SI C
-1 FILL, clayey silt, trace sand, trace gravel, with shale fragments, firm to very stiff, greyish brown, moist 1 SS 11 0 -1 2 SS 21 112 0 0 -2 10.8 CLAYEY SILT, some sand, trace gravel, stiff, greyish brown, moist 4 SS 12 0 -3 at 3.0 m, hard 5 SS 89/ 110 0 0	Γ		90mm ASPHALTIC CONCRETE	/	*			113 -									-				
-1 2 SS 21 112 0 -2 -2 -3 -3 SS 8 0 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -4	-		FILL, clayey silt, trace sand, trace gravel, with shale fragments, firm to very	/	1	SS	11		-					C	C						
-2 110.8 -1 -1 -1 2.3 CLAYEY SILT, some sand, trace gravel, stiff, greyish brown, moist (GLACIAL TILL) -8 4 SS 12 -3 at 3.0 m, hard -5 SS 89/ 275mm -10 -10 -11	-1		suit, greyish brown, moist		2	SS	21	112 -							C		-				
-2 110.8	-				3	SS	8								c	>					
-3 -3 -4 -4 -4 -4 -2 -3 -3 -3 -3 -3 -3 -3 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4	-2	110.8						111 -													
- 4at 3.0 m, hard 0at 3.0 m, hard 0	-	2.3	stiff, greyish brown, moist		4	SS	12	-	-	$\$					0			V V		4 1	3 53 30
	-3		at 3.0 m, hard		5	ss		110-						0			-				
	-4						2/5mm	-	-					Ŭ							
								109 -											· · · · · · · · · · · · · · · · · · ·		
4.6 INFERRED BEDROCK 108.2 (GEORGIAN BAY FORMATION)	1					SS		-											·		

END OF BOREHOLE

Borehole was dry and open upon completion of drilling.

50 mm dia. monitoring well installed.

WAT	FER LEVEL READIN	IGS
Date	Water Depth (m)	Elevation (m)
Dec 10, 2019	2.6	110.5
Dec 17, 2019	2.6	110.5
Dec 23, 2019	2.5	110.6
Jan 9, 2020	2.8	110.3

	Terraprobe
--	------------

-																		
Project No. : 1-19-0719-4	6 Cli	ient	: R	lanee	Mana	igem	ent									Origina	ated b	y:DH
Date started : December 2	, 2019 Pr	oject	t : 2	570 -	2590	Argyl	e Ro	ad								Comp	iled b	y:BV
Sheet No. : 1 of 1	Lo	catio	on : N	lissis	sauga	, Onta	ario									Chec	ked b	y:SZ
Position : E: 611306, N: 4825471	(UTM 17T)		[Elevatio	on Datur	n : G	eodeti	с										
Rig type : B-37	,		[Drilling	Method	: S	olid ste	em aug	gers									
SOIL PR	OFILE		SAMPL	ES	e	Penetra (Blows	ation Te / 0.3m)	st Value	S		Mc	oisture /	Diactio	it.	a)	LT.		Lab Data
Elev Depth (m) 112.5 GROUND SURFACE	on Oct	Number	Type	SPT 'N' Value	Elevation Scale (m)	X Dy 1 Undrain O U	namic Co 0 2 ned She Inconfined ocket Per 0 8	ne 0 <u>3</u> ar Stren d netromete	igth (kPa + Fie	eld Vane b Vane	Plastic Limit PL	Nat Water	ural Content C L	Liquid Limit	Headspace Vapour (ppm)	Instrument Details	hstabi /ater L	and comments GRAIN SIZE TRIBUTION (% (MIT) GR SA SI (
90mm ASPHALTIC CO		∞—																
FILL, clayey silt, trace sa gravel, with shale fragme firm to stiff, wet		1	SS	6	112 -	_						0						
1		2	SS	9	-								0					
111.0 1.5 CLAYEV SILT. cont. to		×			111													
2		3	SS	29	_							0						
110.2																		
2.3 INFERRED BEDROCK (GEORGIAN BAY FORM	IATION)	4	SS	50 / 125mm	110 -						0							
3 109.4			SS I	50/	-						0							
END OF BOREHOLE		_		50mm														

Borehole was dry and open upon completion of drilling.

		Terraprobe															LO	G (OF BH5
Proj	ect N	No. : 1-19-0719-46	Clie	nt	: F	Ranee	e Mana	gem	ent									Origin	ated by :DH
Date	e sta	rted : December 2, 2019	Proj	jec	t :2	2570 -	2590	Argyl	e Ro	ad								Com	piled by :BV
She	et No	o. :1 of 1	Loc	atio	on : N	Nissis	sauga	, Onta	ario									Che	cked by :SZ
Posit	ion	: E: 611330, N: 4825483 (UTM 17T)				Elevati	on Datur	m : G	eodeti	ic									
Rig ty	/pe	: B-37				-	Method			em au	-								
Ê		SOIL PROFILE			SAMP		Scale			st Value	es		N	loisture	Plasticity	y	e _	ent s	Lab Data যু _ক and
Depth Scale (m)	Elev Depth (m) 112.6	Description GROUND SURFACE	Graphic Log	Number	Type	SPT 'N' Value	Elevation Sc (m)	1 Undraii O U	ned She Inconfine ocket Pe	<u>903</u> ear Strer d netromete	ngth (kP + Fi er II La	eld Vane	Plast Limit	Water	tural I Content Content	Liquid Limit	Headspace Vapour (ppm)	Instrument Details	Bend Aliger State GRAIN SIZE DISTRIBUTION (% (MIT) GR SA SI C
-0		90mm ASPHALTIC CONCRETE	/ 🔆				-												
-		FILL, clayey silt, trace sand, trace gravel, firm to stiff, greyish brown, moist		1	ss	8	112							0					
- 1				2	SS	12	_							0					
	111.4 1.2	CLAYEY SILT, sandy, trace gravel,		_															
-		trace shale fragments, stiff, grey, moist (GLACIAL TILL)		3	SS	11	111 –		-					C C					
-2					55		_												
		at 2.3 m, some sand, hard			SS	89 /							0					V	
-						250mm	110 -						0					⊻ ¥	
-3	109.6 3.0			1		50 /	-												
	0.0	INFERRED BEDROCK (GEORGIAN BAY FORMATION)		5	SS	100mm							0						
-							109 —												
-4							-												· · · · · · · · · · · · · · · · · · ·
-																			
							108 -												
-5							-												· ·
-							107 —												
-6	106.5						_												

END OF BOREHOLE

Borehole was dry and open upon completion of drilling.

50 mm dia. monitoring well installed.

WATER LEVEL READINGS Date Water Depth (m) Elevation (m) Dec 10, 2019 2.5 110.1 Dec 17, 2019 2.7 109.9 Dec 23, 2019 2.5 110.1 Jan 9, 2020 2.8 109.8

Project	t No. : 1-19-0719-46	Client : Ranee Management	Originated by :DH
Date s	tarted :December 2, 2019	Project :2570 - 2590 Argyle Road	Compiled by : BV
Sheet	No. :1 of 1	Location : Mississauga, Ontario	Checked by : SZ
Position	: E: 611327, N: 4825456 (UTM 17T)	Elevation Datum : Geodetic	
Rig type	: B-37	Drilling Method : Solid stem augers	
Ê	SOIL PROFILE	SAMPLES of (Blows / 0.3m) Moisture / Plasticity 8	tz Lab Data
Depth Scale (m)	Description	SAMPLES SAM	Lab Data and comments tree unt
			GR SA SI CL
Ĵ	75mm ASPHALTIC CONCRETE		
	FILL, silty sand, trace clay, trace gravel, asphalt debris, loose, brown, moist		
-1	at 0.8 m, clayey silt, trace sand, trace gravel, soft, grey, moist	2 SS 4 111 0	
110			
	^{1.5} CLAYEY SILT, sandy, trace gravel, hard, grey, moist (GLACIAL TILL)	6 3 SS 63	
109		4 SS 50/	
2	INFERRED BEDROCK (GEORGIAN BAY FORMATION)		

END OF BOREHOLE

Borehole was dry and open upon completion of drilling.

🙀 Terraprobe	
--------------	--

Pro	ject N	No. : 1-19-0719-46	Clie	ent	: F	Ranee	e Mana	igement							Origin	ated by :DH
Dat	e sta	rted : December 2, 2019	Pro	ject	t :2	2570 -	2590	Argyle Ro	ad						Com	piled by :BV
She	et N	o. :1 of 1	Loc	atio	on : N	Aissis	sauga	, Ontario							Cheo	cked by :SZ
Posi	tion	: E: 611360, N: 4825455 (UTM 17T)				Elevati	on Datu	m : Geodetio	;							
Rig t	уре	: B-37				Drilling	Method	: Solid ste	m aug	gers						
Ê		SOIL PROFILE		:	SAMP	LES	e	Penetration Tes (Blows / 0.3m)	t Value	s		Moietu	re / Plasticity	۵	t	Lab Data
Depth Scale (m)	Elev Depth (m) 111.6	Description	Graphic Log	Number	Type	SPT 'N' Value	Elevation Scale (m)	X Dynamic Cor 10 20 Undrained Shea O Unconfined Pocket Pen 40 80	ne) 3 ar Stren etromete	igth (kP + Fi er ■ La	, eld Vane	Plastic		Headspace Vapour (ppm)	Instrument Details	GRAIN SIZE GRAIN SIZE DISTRIBUTION (% (MIT) GR SA SI C
F ⁰		75mm ASPHALTIC CONCRETE	/****				-									
-		FILL, sandy silt, some gravel, trace clay, trace asphalt debris, compact, dark grey, moist		1	SS	21	111 -		,			0				
-1		at 0.8 m, clayey silt, trace sand, trace gravel, stiff		2	SS	12	-						0			
ŀ	<u>110.1</u> 1.5						110 -									
-2		CLAYEY SILT, sandy, trace gravel, firm, grey, moist (GLACIAL TILL)		3	SS	7						c				
-		at 2.3 m, trace sand, hard		4	SS	78 / 250mm	109 -					0				0 5 63 3
-3	108.6 108.5 3.1	INFERRED BEDROCK		5	SS	50 / 75mm	-					0				

Borehole was dry and open upon completion of drilling.

Project No. : 1-19-0719-46	Client : Ranee Management	Originated by :DH
Date started : December 4, 2019	Project : 2570 - 2590 Argyle Road	Compiled by : BV
Sheet No. : 1 of 1	Location : Mississauga, Ontario	Checked by : SZ
Position : E: 611346, N: 4825441 (UTM 17T)	Elevation Datum : Geodetic	
Rig type : B-37	Drilling Method : Solid stem augers	
E SOIL PROFILE	SAMPLES O Penetration Test Values (Blows / 0.3m) Moisture / Plasticity	စ္ 🛫 Lab Data
E Elev Description	SAMPLES orgeneration rest values Moisture / Plasticity 0 0 0 0 0 0 0 1 0 0 0 0 1 0 20 30 40 1 1 0 10 20 30 40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Lab Data and Comments GRAIN SIZE (MIT) GR SA SI CL
FILL, clayey silt, trace sand, trace gravel, with rootlets, firm, grey, moist	1 SS 6	
-1	2 SS 7	
110.0		
1.5 CLAYEY SILT , sandy, trace gravel, hard, grey, moist (GLACIAL TILL)	8 3 SS 82 110 0 0	
109.2 109.1 2.4 (GEORGIAN BAY FORMATION)	4 SS 50/ 125mm	
END OF BOREHOLE		

END OF BOREHOLE

Borehole was dry and open upon completion of drilling.

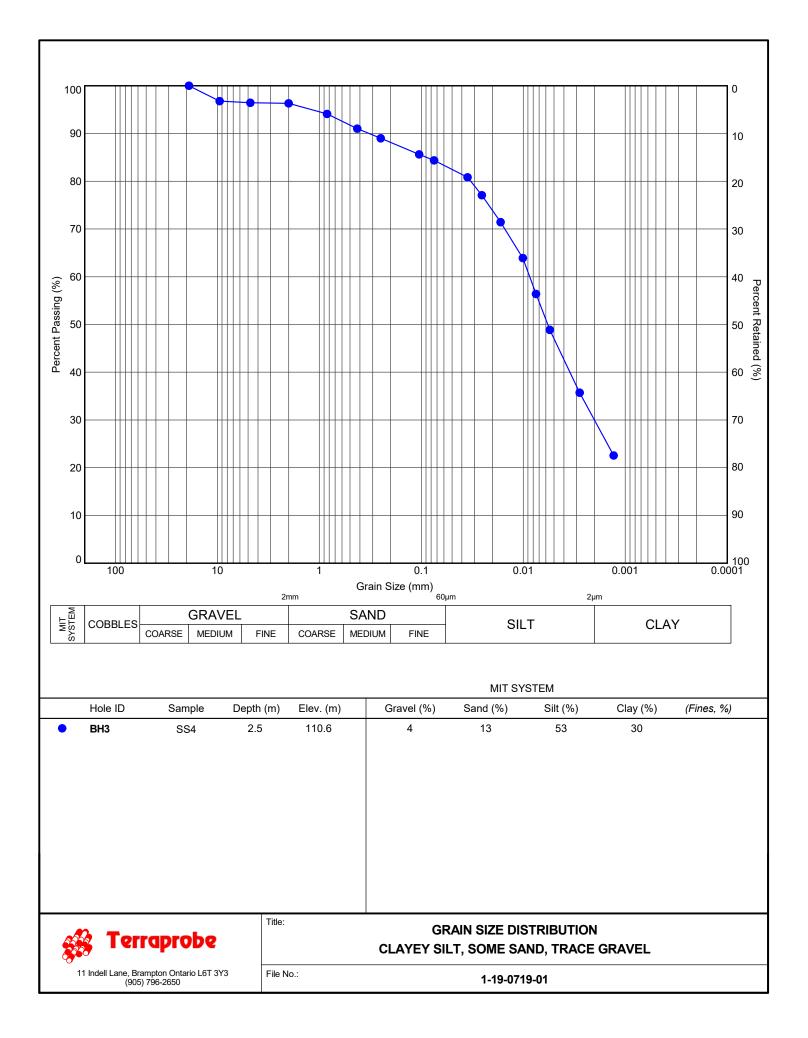
	Terraprobe
--	------------

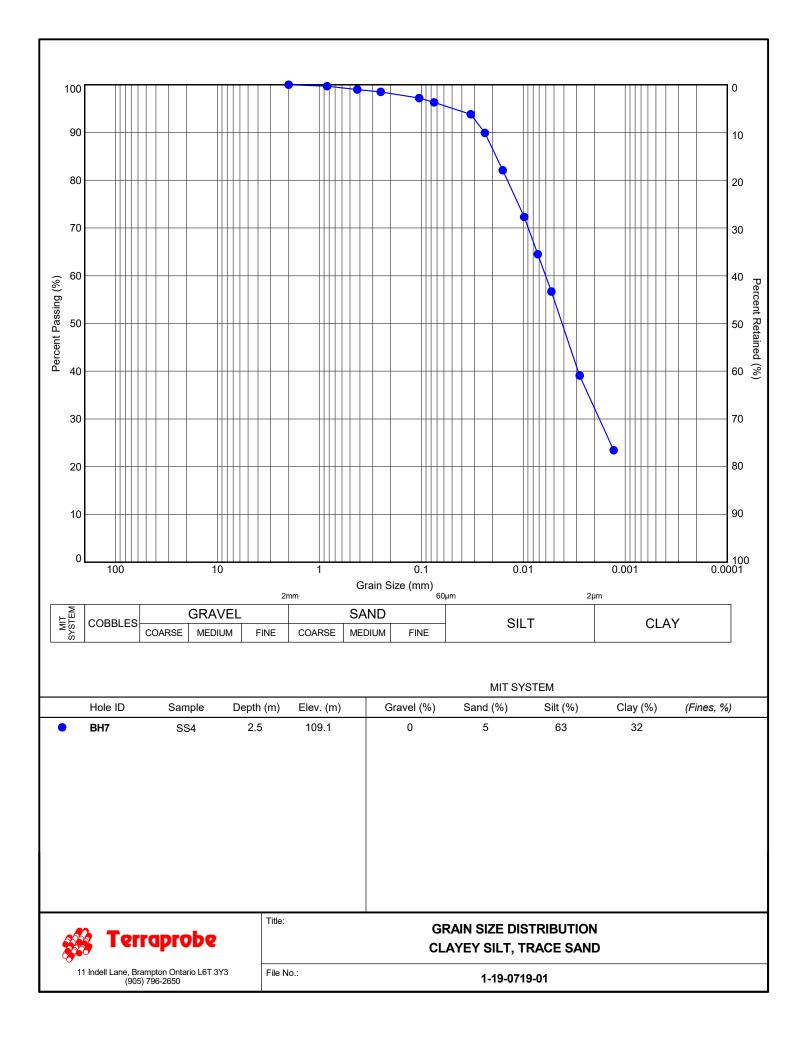
															LU	G	Л	ПЭ
Project N	lo. : 1-19-0719-46	Clie	ent	: F	Ranee	e Mana	agem	ent								Origin	ated by	: DH
Date star	rted : December 4, 2019	Pro	jec	t :2	2570 -	- 2590	Argy	le Ro	ad							Com	oiled by	: BV
Sheet No	p.: 1 of 1	Loc	atio	on : N	Aissis	sauga	, Ont	ario								Cheo	cked by	: SZ
osition :	E: 611328, N: 4825433 (UTM 17T)				Elevati	on Datu	m : G	ieodeti	ic									
Rig type :	B-37				Drilling	Method	: S	olid st	em au	gers								
<u> </u>	SOIL PROFILE			SAMP		e	Penetr (Blows	ation Te / 0.3m)	est Value	es		Mo	nisture /	Plasticity	Ð	ıt	Lat	Data
Debth Scale (J) Void (M) (m) 111.7	Description GROUND SURFACE	Graphic Log	Number	Type	SPT 'N' Value	Elevation Scale (m)	X Dy 1 Undrai O L	namic Co 0 2 ned She Inconfine locket Pe	one 203 ear Strer d netromete	30 4 ngth (kP + Fi er ■ La	40 a) eld Vane b Vane 60	Plastic Limit Pl	: Nat Water ∟ M	ural Liquid Content Limit	Headspace Vapour (ppm)	Instrument Details	Con Mater Leve Mater Leve	and Iments IN SIZE BUTION MIT) SA SI
, , , , , , , , , , , , , , , , , , , ,			×				-			<u> </u>	-	- · ·					GR	SA SI
	FILL, clayey silt, some sand, some gravel, with cinders, organics, firm, dark grey, moist		1	SS	7	- -								0				
<u>110.9</u> 0.8	CLAYEY SILT, sandy, trace gravel, very stiff, grey, moist (GLACIAL TILL)	, , , , , , , , , , , , , , , , , , , 	2	SS	21	- 111							0					
110.2 1.5	INFERRED BEDROCK		3	SS	50 / 75mm	110 -						0				V		
108.0	(GEORGIAN BAY FORMATION)																	
108.0			(1	1	1	J										H.		

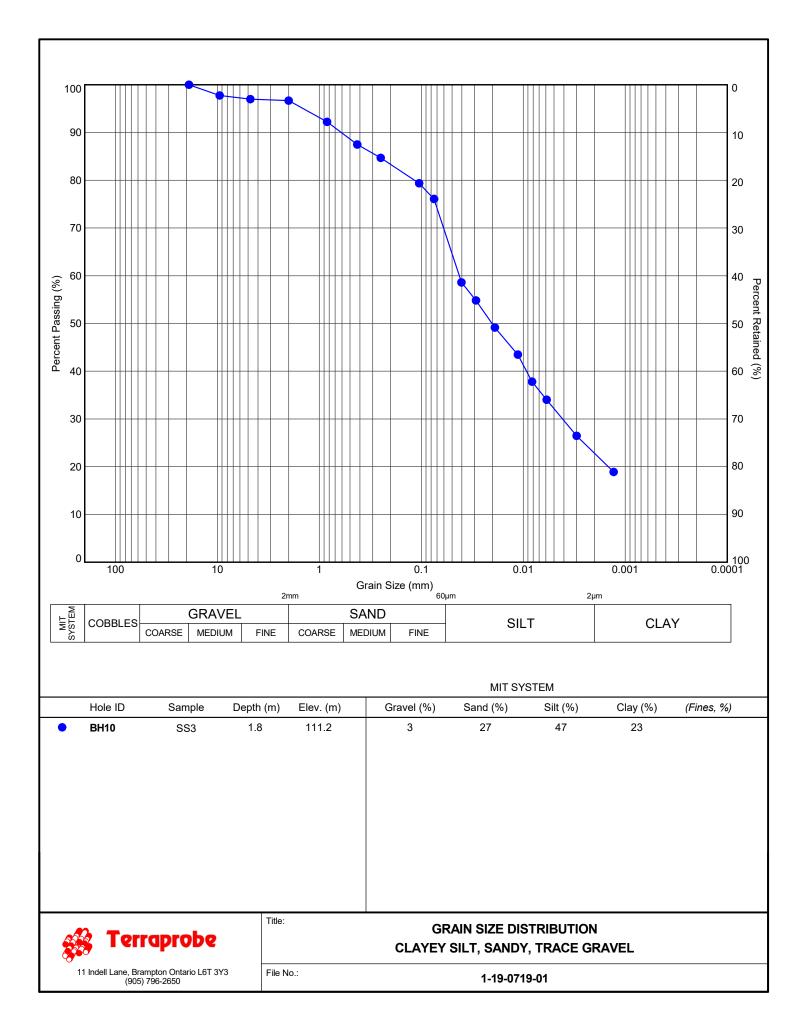
END OF BOREHOLE

Borehole was dry and open upon completion of drilling.

50 mm dia. monitoring well installed.


WA	TER LEVEL READIN	NGS
Date	Water Depth (m)	Elevation (m)
Dec 10, 2019	1.7	109.9
Dec 17, 2019	2.3	109.4
Dec 23, 2019		n/a
Jan 9, 2020	2.7	108.9


	Terraprobe
--	------------


Proj	ect l	No. : 1-19-0719-46	Clie	ent	: F	Ranee	Mana	ag	ement									Origina	ated	by :	DH
Dat	e sta	arted : December 3, 2019	Pro	ject	t :2	2570 -	2590	A	rgyle Ro	bad								Comp	oiled	by :	ΒV
She	et N	o. :1 of 1	Loc	atio	on : N	Aissis	sauga	a, (Ontario									Chec	ked	by :	SZ
Posit	ion	: E: 611269, N: 4825477 (UTM 17T)				Elevati	on Datu	ım	: Geodet	ic											
Rig t	/pe	: B-37				Drilling	Method	_	: Solid st		<u> </u>										
Ê		SOIL PROFILE		:	SAMP	1	e e	P (E	Penetration Te Blows / 0.3m	est Valu	ies	-	l M	loisture	/ Plasticity	g		¥		Lab D	
Depth Scale (m)	Elev Depth (m)	Description	Graphic Log	Number	Type	SPT 'N' Value	Elevation Scale (m)	U	Jndrained Sh O Unconfine Pocket Pe	2 <u>0</u> ear Stre ed enetrome	ter ■ L	ield Vane	Plast Limit	ic Na Water	atural Liqui Content Lim MC LL Content 1	Headspac	(ppm)	Instrument Details	Unstabilized Water Level	an Comm GRAIN STRIBU (MI	SIZE TION (%
-0	112.9	75mm ASPHALTIC CONCRETE		4		0,	_	╈			120									GR S/	A SI C
-		FILL, sitty sand, trace gravel, trace clay, with brick debris, asphalt concrete, loose, brown, moist	´ 🞇	1	SS	9	-		1					0							
-1		at 0.8 m, clayey silt, firm, dark grey, we		2	SS	6	112 -								0						
-	<u>111.4</u> 1.5						-	-													
-2	1.5	CLAYEY SILT, sandy, trace gravel, very stiff, greyish brown, moist (GLACIAL TILL)		3	SS	21	111 -							0						3 27	47 2
- 2																					
$\left \right $		at 2.3 m, trace sand, hard, grey, damp		4	SS	84 / 200mm	-	-						0							
-3	109.9						110 -						0								
	109.8 3.1	(GEORGIAN BAY FORMATION)		45	<u>ss</u>	50 / 50mm		_													

END OF BOREHOLE

Borehole was dry and open upon completion of drilling.

APPENDIX B MECP Well Records TERRAPROBE INC.

WEL MECP* Construction Wel			Well	<u>CP Well Records Summ</u> Usage			Top of	Bottom of		
L ID	MECP* WWR ID	Construction Method	Well Depth (m)**	Final Status	First Use	Water Found (m)**	Static Water Level (m)**	Screen Depth (m)**	Screen Depth (m)**	Date Completed
1	4902212	Cable Tool	-	Water Supply	Domestic	15.56	2.14	-	-	January 10, 1955
2	7044712	-	-	Abandoned-Other	-	-	-	-	-	May 3, 2007
3	7158299	-	-	-	Monitoring	-	-	-	-	December 10, 2010
4	7125539	Air Percussion	4.57	Test Hole	Test Hole	-	-	3.05	4.57	November 25, 2010
5	7125539	Air Percussion	4.57	Test Hole	Test Hole	-	-	3.05	4.57	November 25, 2010
6	7152092	Boring	2.40	Test Hole	Test Hole	-	-	0.90	2.40	February 8, 2010
7	7157739	Air Percussion	4.57	Test Hole	Test Hole	-	-	3.05	4.57	November 25, 2010
8	7113192	Boring		Observation Wells	Monitoring	-	-		-	September 23, 2008
9	7157739	Air Percussion	4.57	Test Hole	Test Hole	-	-	3.05	4.57	November 25, 2010
10	7232882	-	-	-	-	-	-	-	-	November 5, 2014
11	7158298	-	-	Abandoned-Other	Monitoring	-	-	-	-	December 10, 2010
12	7157739	Air Percussion	4.57	Test Hole	Test Hole	-	-	3.05	4.57	November 25, 2010
13	7157739	Air Percussion	_	Test Hole	Test Hole	-	-	-	-	November 25, 2010
14	7261648	Air Percussion	_	-	-	-	-	-	-	October 16, 2014
15	7205206	Other Method	3.60	Test Hole	Monitoring and Test Hole	-	-	0.91	3.60	June 25, 2013
16	7108246	Rotary (Convent.)	3.05	Test Hole	Test Hole	-	-	1.53	3.05	April 24, 2008
17	7236755	Rotary (Convent.)	2.86	Observation Wells	Monitoring	2.39	-	1.34	2.86	September 25, 2014
18	7108266	Rotary (Convent.)	3.10	Test Hole	Test Hole	-	-	1.50	3.10	March 12, 2008
19	7241290	Diamond	9.50	Observation Wells	Monitoring	-	-	6.50	9.50	April 24, 2015
20	7154043	Air Percussion	7.62	Test Hole	Monitoring and Test Hole	-	-	4.57	7.62	September 16, 2010
21	7154121	Other Method	6.10	Monitoring and Test Hole	Monitoring and Test Hole	_	-	4.57	6.10	September 13, 2010
22	7217458	Direct Push	4.27	Observation Wells	Monitoring and Test Hole	_	-	1.53	4.27	January 23, 2014
23	7147065	Direct Push	5.79	Monitoring and Test Hole	Monitoring and Test Hole	-	-	2.74	5.79	April 28, 2010
24	7154126	Air Percussion	5.49	Monitoring and Test Hole	Monitoring and Test Hole	_	-	3.96	5.49	September 14, 2010
25	7217459	Direct Push	1.22	Observation Wells	Monitoring and Test Hole	-	-	1.53	1.22	January 23, 2014
26	7154243	Other Method	3.51	Monitoring and Test Hole	Monitoring and Test Hole	-	-	1.98	3.51	September 9, 2010
27	7154123	Air Percussion	6.10	Monitoring and Test Hole	Monitoring and Test Hole	-	-	4.57	6.10	September 14, 2010
28	7154242	Diamond	3.51	Monitoring and Test Hole	Monitoring and Test Hole	-	-	1.53	3.51	September 9, 2010
29	7202013	Direct Push	3.05	Test Hole	Monitoring and Test Hole	-	-	1.53	3.05	March 27, 2013
30	7154122	Air Percussion	6.10	Monitoring and Test Hole	Monitoring and Test Hole	-	-	4.57	6.10	September 13, 2010

WEL	MECP*	Construction	Well Depth	Well	Usage	Water Found	Static Water	Top of	Bottom of	
L ID	WWR ID	Method	(m)**	Final Status	First Use	(m)**	Level (m)**	Screen Depth (m)**	Screen Depth (m)**	Date Completed
31	7202014	Direct Push	7.93	Test Hole	Monitoring and Test Hole	-	-	6.41	7.93	March 27, 2013
32	7202011	Direct Push	3.05	Test Hole	Monitoring and Test Hole	-	-	1.53	3.05	March 28, 2013
33	7277826	Rotary (Convent.)	3.97	Monitoring and Test Hole	Monitoring and Test Hole	-	-	1.83	3.97	November 16, 2016
34	7154043	Air Percussion	-	Test Hole	Monitoring and Test Hole	-	-	-	-	September 19, 2010
35	7277825	-	3.97	Monitoring and Test Hole	Monitoring and Test Hole	-	-	1.83	3.97	November 16, 2016
36	7154043	-	7.01	Test Hole	Monitoring and Test Hole	-	-	3.96	7.01	September 16, 2010
37	7202012	Direct Push	3.05	Test Hole	Monitoring and Test Hole	-	-	1.53	3.05	March 27, 2013
38	7154043	Air Percussion	7.01	Test Hole	Monitoring and Test Hole	-	-	3.96	7.01	September 16, 2010
39	7154043	Air Percussion	7.01	Test Hole	Monitoring and Test Hole	-	-	3.96	7.01	September 16, 2010
40	7202060	Direct Push	3.05	Test Hole	Monitoring and Test Hole	-	-	1.53	3.05	March 28, 2013

*MECP WWID: Ministry of the Environment , Conservation and Parks Water Well Records Identification

**metres below ground surface

APPENDIX C Groundwater Monitoring Details TERRAPROBE INC.

2570-2590 Argyle Road, Mississauga, Ontario

Groundwater Depths (m below ground surface)

Monitoring Well ID	Ground Surface Elevation (masl)	Well Depth (mbgs)	Top of the Well Screen Depth (mbgs)	1st GW Monitoring Event	2nd GW Monitoring Event	3rd GW Monitoring Event	4th GW Monitoring Event
				Water Depth Dec. 10, 2019 (mbgs)	Water Depth Dec. 17, 2019 (mbgs)	Water Depth Dec. 23, 2019 (mbgs)	Water Depth Jan. 9, 2020 (mbgs)
BH2	113.30	6.40	4.90	4.58	4.78	4.72	4.88
BH3	113.10	4.90	3.40	2.60	2.64	2.51	2.79
BH5	112.60	5.20	3.70	2.45	2.73	2.51	2.78
BH9	111.70	3.70	2.20	1.74	2.32	NA	2.74

Groundwater Elevations (m above sea level)

				1st GW	2nd GW	3rd GW	4th GW
Monitoring Well ID	Ground Surface Elevation (masl)	Well Screen Bottom Elevation (masl)	Top of the Well Screen Depth (masl)	Monitoring	Monitoring	Monitoring	Monitoring
				Event	Event	Event	Event
				Ground Water Elevation Dec. 10, 2019 (masl)	Ground Water Elevation Dec. 17, 2019 (masl)	Ground Water Elevation Dec. 23, 2019 (masl)	Ground Water Elevation Jan. 9, 2020 (masl)
BH2	113.30	106.90	108.40	108.72	108.52	108.58	108.42
BH3	113.10	108.20	109.70	110.50	110.46	110.59	110.31
BH5	112.60	107.40	108.90	110.15	109.87	110.09	109.82
BH9	111.70	108.00	109.50	109.96	109.38	NA	108.96

mbgs - meters below ground surface

masl - meters above sea level

NA - not available

NF - not found (due to snow cover)

APPENDIX D In-Situ Hydraulic Conductivity Testing Results TERRAPROBE INC.

			Slug Tes	t Analysi	s Report				
0000	rqpriv	oho	Project: 2570-2590 Argyle Road						
			Number: 2	1-19-0719-4	46				
Consultin Constructio	g Geotechnical & Enviror on Materials Engineering,	Inspection & Testing	Client: F	Ranee Man	agement				
Location: Mississauga	a S	lug Test: BH3			Test Well: BH3				
Test Conducted by: N					Test Date: 12/17/2019				
Analysis Performed by		H3			Analysis Date: 5/12/202	20			
Aquifer Thickness: 4.9	91 m								
		т	ime [s]						
0	320	640		960	1280	1600			
eq 1E0									
Ĕ									
			Time-						
						<u>Multure</u>			
Calculation using Bouwe	r & Rice								
Observation Well	Hydraulic Conductiv	rity							
	[m/s]								
ВНЗ	4.31 × 10 ⁻⁷								

				Slug Tes	st Analysi	s Report	
	L T		aha		-	Argyle Road	
		Iqpins	VDE	-			
	Consulting G	Geotechnical & Envir	onmental Engineering 9, Inspection & Testing		1-19-0719-		
0				Client:	Ranee Mar	-	
	Mississauga		Slug Test: BH5			Test Well: BH5	
	lucted by: NK		DUE			Test Date: 12/17/2019	
-	Performed by: T iickness: 5.21 r		BH5			Analysis Date: 5/12/202	20
Aquiler 11	IICKI1855. 0.211						
			т	ime [s]			
	0	320	640		960	1280	1600
04/4							
h/							
	-						
	using Bouwer &						
Observation	Well	Hydraulic Conduc	tivity				
		[m/s]					
BH5		1.49 × 10 ⁻⁷					

APPENDIX E Groundwater Quality Analysis Results TERRAPROBE INC.

CA14842-DEC19 R1

1-19-0719-46, 2570-2590 Argyle Road, Mississsauga

Prepared for

Terraprobe

First Page

CLIENT DETAILS	3	LABORATORY DETAIL	LS
Client	Terraprobe	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	11 Indell Lane	Address	185 Concession St., Lakefield ON, K0L 2H0
	Brampton, Ontario		
	L6T 3Y3. Canada		
Contact	Mahmoud Meskar	Telephone	705-652-2143
Telephone	905-796-2650	Facsimile	705-652-6365
Facsimile	905-796-2250	Email	brad.moore@sgs.com
Email	mmeskar@terraprobe.ca	SGS Reference	CA14842-DEC19
Project	1-19-0719-46, 2570-2590 Argyle Road, Mississsauga	Received	12/23/2019
Order Number		Approved	12/31/2019
Samples	Ground Water (1)	Report Number	CA14842-DEC19 R1
		Date Reported	01/02/2020

COMMENTS

RL - SGS Reporting Limit Temperature of Sample upon Receipt: 4 degrees C Cooling Agent Present: yes Custody Seal Present: yes

Chain of Custody Number: 012612

SIGNATORIES

TABLE OF CONTENTS

First Page	1
Index	2
Results.	3-8
Exceedance Summary	9
QC Summary	10-18
Legend	19
Annexes	20

CA14842-DEC19 R1

Client: Terraprobe

Project: 1-19-0719-46, 2570-2590 Argyle Road, Mississsauga

Project Manager: Mahmoud Meskar

PACKAGE: SANSEW - General Chemis	stry (WATER)		Sa	mple Number	8
			s	Sample Name	SU-BH5
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Di	ischarge - BL_53_2010		s	Sample Matrix	Ground Water
L2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Disc	charge - BL_53_2010			Sample Date	23/12/2019
Parameter	Units	RL	L1	L2	Result
General Chemistry					
Biochemical Oxygen Demand (BOD5)	mg/L	2	300	15	5
Total Suspended Solids	mg/L	2	350	15	377
Total Kjeldahl Nitrogen	as N mg/L	0.5	100	1	< 0.5
PACKAGE: SANSEW - Metals and Inorg	ganics		Sa	mple Number	8
(WATER)					
			s	Sample Name	SU-BH5
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Di	ischarge - BL_53_2010		s	Sample Matrix	Ground Water
L2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Disc	charge - BL_53_2010			Sample Date	23/12/2019
Parameter	Units	RL	L1	L2	Result
Metals and Inorganics					
Fluoride	mg/L	0.06	10		0.21
Cyanide (total)	mg/L	0.01	2	0.02	< 0.01
Sulphate	mg/L	0.2	1500		210
Aluminum (total)	mg/L	0.001	50		13.7
Antimony (total)	mg/L	0.0009	5		< 0.0009
Arsenic (total)	mg/L	0.0002	1	0.02	0.0038
Cadmium (total)	mg/L	0.00000	0.7	0.008	0.000040
		3	0	0.000	
Chromium (total)	mg/L	0.00008	5	0.08	0.0165
Copper (total)	mg/L	0.0002	3	0.05	0.0102
Cobalt (total)	mg/L	0.00000	5		0.00979
		4	-		
		0.00004	•	0.40	0.00187
Lead (total)	mg/L	0.00001	3	0.12	0.00107

CA14842-DEC19 R1

Client: Terraprobe

Project: 1-19-0719-46, 2570-2590 Argyle Road, Mississsauga

Project Manager: Mahmoud Meskar

PACKAGE: SANSEW - Metals and Inor	rganics		Sa	mple Number	8
(WATER)			s	ample Name	SU-BH5
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer E	Discharge - BL_53_2010		s	ample Matrix	Ground Water
L2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Dis	scharge - BL_53_2010			Sample Date	23/12/2019
Parameter	Units	RL	L1	L2	Result
Metals and Inorganics (continued)					
Manganese (total)	mg/L	0.00001	5	0.05	2.93
Molybdenum (total)	mg/L	0.00004	5		0.00434
Nickel (total)	mg/L	0.0001	3	0.08	0.0168
Phosphorus (total)	mg/L	0.003	10	0.4	0.325
Selenium (total)	mg/L	0.00004	1	0.02	0.00067
Silver (total)	mg/L	0.00005	5	0.12	< 0.00005
Tin (total)	mg/L	0.00006	5		0.00143
Titanium (total)	mg/L	0.00005	5		0.352
Zinc (total)	mg/L	0.002	3	0.04	0.030

CA14842-DEC19 R1

Client: Terraprobe

Project: 1-19-0719-46, 2570-2590 Argyle Road, Mississsauga

Project Manager: Mahmoud Meskar

PACKAGE: SANSEW - Microbiology (W	/ATER)		Sar	nple Number	8
			S	ample Name	SU-BH5
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Di	ischarge - BL_53_2010		s	ample Matrix	Ground Water
L2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Disc	harge - BL_53_2010			Sample Date	23/12/2019
Parameter	Units	RL	L1	L2	Result
Microbiology					
E. Coli	cfu/100mL	-		200	<2↑
PACKAGE: SANSEW - Nonylphenol and	d Ethovadotoo		Sar	nple Number	8
					Ũ
(WATER)					
			S	ample Name	SU-BH5
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Di	ischarge - BL_53_2010		S	ample Matrix	Ground Water
L2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Disc	harge - BL_53_2010			Sample Date	23/12/2019
Parameter	Units	RL	L1	L2	Result
Nonylphenol and Ethoxylates					
Nonylphenol	mg/L	0.001	0.02		< 0.001
		0.001	0.02		< 0.01
Nonylphenol Ethoxylates	mg/L		0.2		< 0.01
Nonylphenol diethoxylate	mg/L	0.01			
Nonylphenol monoethoxylate	mg/L	0.01			< 0.01
			Sa	nple Number	8
PACKAGE: SANSEW - Oil and Grease	(WATER)			-	
				ample Name	SU-BH5
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Di	scharge - BL_53_2010		S	ample Matrix	Ground Water
L2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Disc	harge - BL_53_2010			Sample Date	23/12/2019
Parameter	Units	RL	L1	L2	Result
Oil and Grease					
Oil & Grease (total)					< 2
	mg/L	2			~ 2
Oil & Grease (total) Oil & Grease (animal/vegetable) Oil & Grease (mineral/synthetic)	mg/L mg/L	4	150		< 4

CA14842-DEC19 R1

Client: Terraprobe

Project: 1-19-0719-46, 2570-2590 Argyle Road, Mississsauga

Project Manager: Mahmoud Meskar

PACKAGE: SANSEW - Other (ORP) (WA	TER)		S	ample Number	8
				Sample Name	SU-BH5
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Disch	arge - BL_53_2010			Sample Matrix	Ground Water
L2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Discharg	ge - BL_53_2010			Sample Date	23/12/2019
Parameter	Units	RL	L1	L2	Result
Other (ORP)					
		0.05	10	0	7.46
pH	no unit	0.05	10	9	
Mercury (total)	mg/L	0.00001	0.01	0.0004	< 0.00001
			8	ample Number	8
PACKAGE: SANSEW - PCBs (WATER)				-	
				Sample Name	SU-BH5
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Disch	= SANSEW / WATER / Peel Table 1 - Sanitary Sewer Discharge - BL_53_2010			Sample Matrix	Ground Water
L2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Discharg	ge - BL_53_2010			Sample Date	23/12/2019
Parameter	Units	RL	L1	L2	Result
PCBs					
Polychlorinated Biphenyls (PCBs) - Total	mg/L	0.0001	0.001	0.0004	< 0.0001
PACKAGE: SANSEW - Phenols (WATER)			S	ample Number	8
				Sample Name	SU-BH5
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Disch	arge - BL 53 2010			Sample Matrix	Ground Water
L2 = SANSEW / WATER / Peel Table 2 - Storm Sever Discharg	-			Sample Date	23/12/2019
	Units	RL	L1	L2	Result
Parameter	Units	RL	L.		Result
Phenols					
4AAP-Phenolics	mg/L	0.002	1	0.008	0.004
PACKAGE: SANSEW - SVOCs (WATER)			S	ample Number	8
				Sample Name	SU-BH5
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Disch	arge - BL_53_2010			Sample Matrix	Ground Water
L2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Discharg				Sample Date	23/12/2019
Parameter	Units	RL	L1	L2	Result
r aranoloj	Unito				rtooun

CA14842-DEC19 R1

Client: Terraprobe

Project: 1-19-0719-46, 2570-2590 Argyle Road, Mississsauga

Project Manager: Mahmoud Meskar

	•		e -	mple Number	8
PACKAGE: SANSEW - SVOCs (WATER	.)			•	
				Sample Name	SU-BH5
1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Disc	charge - BL_53_2010			Sample Matrix	Ground Water
2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Discha	arge - BL_53_2010			Sample Date	23/12/2019
Parameter	Units	RL	L1	L2	Result
SVOCs					
di-n-Butyl Phthalate	mg/L	0.002	0.08	0.015	< 0.002
Bis(2-ethylhexyl)phthalate	mg/L	0.002	0.012	0.0088	< 0.002
PACKAGE: SANSEW - VOCs (WATER)			Sa	mple Number	8
			5	Sample Name	SU-BH5
1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Disc	charge - BL_53_2010		5	Sample Matrix	Ground Water
2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Discha	arge - BL_53_2010			Sample Date	23/12/2019
Parameter	Units	RL	L1	L2	Result
/OCs					
	mg/L	0.0005	0.04	0.002	< 0.0005
Chloroform					
Chloroform	ma/l	0 0005	0.05	0.0056	< 0.0005
1,2-Dichlorobenzene	mg/L	0.0005	0.05	0.0056	< 0.0005
1,2-Dichlorobenzene 1,4-Dichlorobenzene	mg/L	0.0005	0.08	0.0068	< 0.0005
1,2-Dichlorobenzene 1,4-Dichlorobenzene cis-1,2-Dichloroethene	mg/L mg/L	0.0005 0.0005	0.08	0.0068	< 0.0005 < 0.0005
1,2-Dichlorobenzene 1,4-Dichlorobenzene cis-1,2-Dichloroethene trans-1,3-Dichloropropene	mg/L mg/L	0.0005 0.0005 0.0005	0.08 4 0.14	0.0068 0.0056 0.0056	< 0.0005 < 0.0005 < 0.0005
1,2-Dichlorobenzene 1,4-Dichlorobenzene cis-1,2-Dichloroethene trans-1,3-Dichloropropene Methylene Chloride	mg/L mg/L mg/L mg/L	0.0005 0.0005 0.0005 0.0005	0.08 4 0.14 2	0.0068 0.0056 0.0056 0.0052	< 0.0005 < 0.0005 < 0.0005 < 0.0005
1,2-Dichlorobenzene 1,4-Dichlorobenzene cis-1,2-Dichloroethene trans-1,3-Dichloropropene	mg/L mg/L	0.0005 0.0005 0.0005	0.08 4 0.14	0.0068 0.0056 0.0056	< 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005
1,2-Dichlorobenzene 1,4-Dichlorobenzene cis-1,2-Dichloroethene trans-1,3-Dichloropropene Methylene Chloride	mg/L mg/L mg/L mg/L	0.0005 0.0005 0.0005 0.0005	0.08 4 0.14 2	0.0068 0.0056 0.0056 0.0052	< 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.02
1,2-Dichlorobenzene 1,4-Dichlorobenzene cis-1,2-Dichloroethene trans-1,3-Dichloropropene Methylene Chloride 1,1,2,2-Tetrachloroethane	mg/L mg/L mg/L mg/L mg/L	0.0005 0.0005 0.0005 0.0005 0.0005	0.08 4 0.14 2 1.4	0.0068 0.0056 0.0056 0.0052	< 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005
1,2-Dichlorobenzene 1,4-Dichlorobenzene cis-1,2-Dichloroethene trans-1,3-Dichloropropene Methylene Chloride 1,1,2,2-Tetrachloroethane Methyl ethyl ketone	mg/L mg/L mg/L mg/L mg/L mg/L	0.0005 0.0005 0.0005 0.0005 0.0005 0.0005	0.08 4 0.14 2 1.4 8	0.0068 0.0056 0.0056 0.0052	< 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.02

CA14842-DEC19 R1

Client: Terraprobe

Project: 1-19-0719-46, 2570-2590 Argyle Road, Mississsauga

Project Manager: Mahmoud Meskar

PACKAGE: SANSEW - VOCs - BTE	X (WATER)		Sar	nple Number	8
			s	ample Name	SU-BH5
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sew	SANSEW / WATER / Peel Table 1 - Sanitary Sewer Discharge - BL_53_2010		Sample		Ground Water
L2 = SANSEW / WATER / Peel Table 2 - Storm Sewer	r Discharge - BL_53_2010		Sample Date		23/12/2019
Parameter	Units	RL	L1	L2	Result
VOCs - BTEX					
Benzene	mg/L	0.0005	0.01	0.002	< 0.0005
Ethylbenzene	mg/L	0.0005	0.16	0.002	< 0.0005
Toluene	mg/L	0.0005	0.27	0.002	< 0.0005
Xylene (total)	mg/L	0.0005	1.4	0.0044	< 0.0005
m-p-xylene	mg/L	0.0005			< 0.0005
o-xylene	mg/L	0.0005			< 0.0005

EXCEEDANCE SUMMARY

				SANSEW / WATER / Peel Table 1 - Sanitary Sewer Discharge - BL_53_2010	SANSEW / WATER / Peel Table 2 - Storm Sewer Discharge - BL_53_2010
Parameter	Method	Units	Result	L1	L2
U-BH5					
Total Suspended Solids	SM 2540D	mg/L	377	350	15
Manganese	SM 3030/EPA 200.8	mg/L	2.93		0.05

Anions by IC

Method: EPA300/MA300-lons1.3 | Internal ref.: ME-CA-[ENVIIC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Sulphate	DIO0392-DEC19	mg/L	0.2	<0.2	0	20	97	80	120	89	75	125

Biochemical Oxygen Demand

Method: SM 5210 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference		Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	-	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Biochemical Oxygen Demand (BOD5)	BOD0050-DEC19	mg/L	2	< 2	7	30	98	70	130	NV	70	130

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		м	atrix Spike / Re	ıf.
	Reference		Blank		RPD	AC	Spike		ry Limits %)	Spike Recovery		ery Limits (%)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Cyanide (total)	SKA0209-DEC19	mg/L	0.01	<0.01	ND	10	93	90	110	84	75	125

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Ret	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0347-DEC19	mg/L	0.06	<0.06	0	10	99	90	110	92	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	latrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury (total)	EHG0025-DEC19	mg/L	0.00001	< 0.00001	ND	20	113	80	120	119	70	130

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-IENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	i.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover (%	•	Spike Recovery		ry Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0171-DEC19	mg/L	0.00005	<0.00005	ND	20	108	90	110	101	70	130
Aluminum (total)	EMS0171-DEC19	mg/L	0.001	<0.001	2	20	107	90	110	93	70	130
Arsenic (total)	EMS0171-DEC19	mg/L	0.0002	<0.0002	7	20	103	90	110	103	70	130
Cadmium (total)	EMS0171-DEC19	mg/L	0.000003	<0.000003	14	20	102	90	110	84	70	130
Cobalt (total)	EMS0171-DEC19	mg/L	0.000004	<0.000004	2	20	103	90	110	101	70	130
Chromium (total)	EMS0171-DEC19	mg/L	0.00008	<0.00008	ND	20	107	90	110	110	70	130
Copper (total)	EMS0171-DEC19	mg/L	0.0002	<0.0002	9	20	103	90	110	92	70	130
Manganese (total)	EMS0171-DEC19	mg/L	0.00001	<0.00001	2	20	102	90	110	NV	70	130
Molybdenum (total)	EMS0171-DEC19	mg/L	0.00004	<0.00004	2	20	101	90	110	108	70	130
Nickel (total)	EMS0171-DEC19	mg/L	0.0001	<0.0001	6	20	99	90	110	102	70	130
Lead (total)	EMS0171-DEC19	mg/L	0.00001	<0.00001	7	20	105	90	110	97	70	130
Phosphorus (total)	EMS0171-DEC19	mg/L	0.003	<0.003	ND	20	95	90	110	NV	70	130
Antimony (total)	EMS0171-DEC19	mg/L	0.0009	<0.0009	ND	20	100	90	110	110	70	130
Selenium (total)	EMS0171-DEC19	mg/L	0.00004	<0.00004	ND	20	110	90	110	100	70	130
Tin (total)	EMS0171-DEC19	mg/L	0.00006	<0.00006	4	20	98	90	110	NV	70	130
Titanium (total)	EMS0171-DEC19	mg/L	0.00005	<0.00005	11	20	96	90	110	NV	70	130
Zinc (total)	EMS0171-DEC19	mg/L	0.002	<0.002	ND	20	98	90	110	79	70	130

Microbiology

Method: SM 9222D | Internal ref.: ME-CA-[ENVIMIC-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dupl	cate	LC	S/Spike Blank		М	atrix Spike / Ref	:
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery	Recove	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
E. Coli	BAC9414-DEC19	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							

Nonylphenol and Ethoxylates

Method: ASTM D7065-06 | Internal ref.: ME-CA-IENVIGC-LAK-AN-015

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref	i.
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Nonylphenol diethoxylate	GCM0356-DEC19	mg/L	0.01	< 0.01			87	55	120			
Nonylphenol Ethoxylates	GCM0356-DEC19	mg/L	0.01	< 0.01								
Nonylphenol monoethoxylate	GCM0356-DEC19	mg/L	0.01	< 0.01			100	55	120			
Nonylphenol	GCM0356-DEC19	mg/L	0.001	< 0.001			100	55	120			

Oil & Grease

Method: MOE E3401 | Internal ref.: ME-CA-IENVIGC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		əry Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (total)	GCM0351-DEC19	mg/L	2	<2	NSS	20	99	75	125			

Oil & Grease-AV/MS

Method: MOE E3401/SM 5520F | Internal ref.: ME-CA-IENVIGC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Ref	•
	Reference			Blank	RPD	AC	Spike	Recove (۹	•	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (animal/vegetable)	GCM0351-DEC19	mg/L	4	< 4	NSS	20	NA	70	130			
Oil & Grease (mineral/synthetic)	GCM0351-DEC19	mg/L	4	< 4	NSS	20	NA	70	130			

рΗ

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Ref	
	Reference			Blank	RPD	RPD AC (%)			ery Limits (%)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0356-DEC19	no unit	0.05	NA	0		100			NA		

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	latrix Spike / Re	:
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0222-DEC19	mg/L	0.002	<0.002	0	10	103	90	110	106	75	125

Polychlorinated Biphenyls

Method: MOE E3400/EPA 8082A | Internal ref.: ME-CA-IENVIGC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	latrix Spike / Re	<i>i</i> .
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ory Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Polychlorinated Biphenyls (PCBs) -	GCM0349-DEC19	mg/L	0.0001	<0.0001	NSS	30	110	60	140	NSS	60	140
Total												

Semi-Volatile Organics

Method: EPA 3510C/8270D | Internal ref.: ME-CA-[ENVIGC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery	Recove	ry Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High	
Bis(2-ethylhexyl)phthalate	GCM0350-DEC19	mg/L	0.002	< 0.002	NSS	30	102	50	140	NSS	50	140	
di-n-Butyl Phthalate	GCM0350-DEC19	mg/L	0.002	< 0.002	NSS	30	101	50	140	NSS	50	140	

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		м	Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery		ry Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High	
Total Suspended Solids	EWL0353-DEC19	mg/L	2	< 2	0	10	NV	90	110	NA			

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-[ENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		N	Matrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	-	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen	SKA0225-DEC19	as N mg/L	0.5	<0.5	ND	10	103	90	110	96	75	125

Volatile Organics

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.			
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover (%		Spike Recovery		ry Limits %)	
						(%)	(%)	Low	High	(%)	Low	High	
1,1,2,2-Tetrachloroethane	GCM0366-DEC19	mg/L	0.0005	<0.0005	ND	30	100	60	130	95	50	140	
1,2-Dichlorobenzene	GCM0366-DEC19	mg/L	0.0005	<0.0005	ND	30	99	60	130	96	50	140	
1,4-Dichlorobenzene	GCM0366-DEC19	mg/L	0.0005	<0.0005	ND	30	99	60	130	96	50	140	
Benzene	GCM0366-DEC19	mg/L	0.0005	<0.0005	ND	30	95	60	130	99	50	140	
Chloroform	GCM0366-DEC19	mg/L	0.0005	<0.0005	ND	30	97	60	130	100	50	140	
cis-1,2-Dichloroethene	GCM0366-DEC19	mg/L	0.0005	<0.0005	ND	30	96	60	130	99	50	140	
Ethylbenzene	GCM0366-DEC19	mg/L	0.0005	<0.0005	ND	30	98	60	130	100	50	140	
m-p-xylene	GCM0366-DEC19	mg/L	0.0005	<0.0005	ND	30	99	60	130	100	50	140	
Methyl ethyl ketone	GCM0366-DEC19	mg/L	0.02	<0.02	ND	30	105	50	140	80	50	140	
Methylene Chloride	GCM0366-DEC19	mg/L	0.0005	<0.0005	ND	30	93	60	130	97	50	140	
o-xylene	GCM0366-DEC19	mg/L	0.0005	<0.0005	ND	30	99	60	130	101	50	140	
Styrene	GCM0366-DEC19	mg/L	0.0005	<0.0005	ND	30	99	60	130	100	50	140	
Tetrachloroethylene	GCM0366-DEC19	mg/L	0.0005	<0.0005	ND	30	96	60	130	95	50	140	
(perchloroethylene)													
Toluene	GCM0366-DEC19	mg/L	0.0005	<0.0005	ND	30	97	60	130	98	50	140	
trans-1,3-Dichloropropene	GCM0366-DEC19	mg/L	0.0005	<0.0005	ND	30	96	60	130	92	50	140	
Trichloroethylene	GCM0366-DEC19	mg/L	0.0005	<0.0005	ND	30	96	60	130	95	50	140	

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
- ↑ Reporting limit raised.
- ↓ Reporting limit lowered.
- $\ensuremath{\textbf{NA}}$ The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

DUD_Environment, Health & Safety	- London: 657 Cons	sortium Court,	London, ON, N	NGE 2S8 Phone	: 519-6	672-450	D Toll F	ree: 877	-848-8	8060 Fax	k: 519-	672-03	61										No: 0126 Page of
X. Shar										- Lab											and the second		1 age 01
red By: <u>12,23,19</u> (mm/dd/y)	Adding only the part of the	Received By Custody Sea	Plan Control of Control of Control			200	Cooli		+ Proo	onti V	- Th	/ No E	л.	-	2	10							
ved Time: 14:50 (hr : min)	"	Custody Sea			/		Temp	erature	Upon I	ent: Y Receipt	(°C)_(4	Type:	10					1.4	BIIMS #	CA	14842
REPORT INFORMATION	IN	VOICE INFO	RMATION							C. Starter			,			and and and a					D LING #		110 10
Dany: Terraprobe. Inc	(same as R	eport Informa	ation)		Quo	tation #											P.C	D. #:					
ict: Mahmond Meskar	Company:			and the second	Proje	ect #:	1-	-19	- 0	719	1-2	16							on/ID:	257	-25	90 A	gyle Rd. M
ss: 11 In Jell Ln,	Contact:												т	URNA	ROUI	ND TIME	E (TAT)	REQUI	RED			6	Jan Chain
Brampton, MY 905-796-2650	Address:				1	R	egular	TAT (5	-7day	rs)							TAT's Samp	are quo	ted in bus	siness da	ays (exclu	de statuto	y holidays & weekends begins next business da
905-796-2650			- And Constant		RUS	н тат	(Addi	tional (Charg	es May	у Арр	ly):		1	Day	2 Da	ays 🗌 :	3 Days	2 4 D	avs	JII WEEKE	nus. TAT L	egins next dusiness da
	Phone:				PLE	ASE C	ONFIR	MRUS	H FE	ASIBIL	ITY W	VITH S	GS R	EPRE	SENT	ATIVE	PRIOR	TO SUE	MISSIC	DN			
mmeskar@tenapme.	Email: 1000	siQte	mont	-e . 1a	Spec	ify Due	Date:		201				NO	DTE: D	RINKIN	NG (POTA	BLE) W		MPLES	FOR HU	MAN CO	SUMPTIC	ON MUST BE SUBMITT
REGU	ILATIONS	, , ,									A	ANA	LYS	SIS F	REQ	UEST				ATEN Cr		JUSTODY	States & States of States
lation 153/04:	Other Regulatio	ns:	Sewe	er By-Law:		М	& I		SV	/OC	A Real Property lies and the state of the st		HC	-		Pest		Othe	er (please	e specify)		TCLP	
able 1 Res/Park Soil Texture: able 2 Ind/Com Coarse	Reg 347/558	51 CED (6.0 2 M/Ter 10.00		Sanitary																	Pkg	Specify	State and the
able 2 Ind/Com Coarse able 3 Agri/Other Medium] MMER] Other:		Storm		(IIOS	IN IN										an a			4	on Pl	TCLP	
able Fine			Pe	el Regin		CS SAR-e	Hg, CrVI	o,Ni,			Aroclor									3	ation	tests	
RECORD OF SITE CONDITION (RSC)	🗌 YES 📑	NO			N	s),EC	lite il only)	V u,Pb.M			Arc					other				estim	Exten	M&I	COMMENT
					C p	(B(HW	WS-so	only ,co,ci		CPs		Ĕ				pecify				X	act	Voc	COMMENT
SAMPLE IDENTIFICATION	DATE	TIME	# OF	MATDIN	Filtered (Y/N	Metals & Inorganics incl CrVI, CN,Hg pH,(B(HWS),EC,SAH-s (Cl, Na-water)	tals us B(H	ICP Metals only Sb,As,Ba,Be,B,Cd,Cr,Co,Cu,F Se,Ag,TI,U,V,Zn	nly	SVOCS all incl PAHs, ABNs, (Total	BTEX	Vin		ly	les ne or s			212	Sewer Use:	Characterizati	Прсв	en el seguere
CAME LE IDERTIFICATION	SAMPLED	SAMPLED	BOTTLES	MATRIX	E p	als VI, CN, -water	Me atais pli	Me.Ba,Be,E	PAHs only	DCS PAHs.		F1-F4 +	F1-F4 only no BTEX	VOCs all incl BTEX	BTEX only	Pesticides Organochlorine or s				er L			
		Section of			Field	Met (CI, Na	Ful ICP m	Sb,As, Se,Ag,	PAH	SVC all incl	PCBs	1-	F1-F	VOC	BTE	Des				Sew	Specify pkg Water General		
SU-BH5	Dec23/au	11:00	15	GW	M														16.75	X		salignit.	
	1. Barris and State	Stoke.	S. Same																1.469				
				and the second second		1-1-010- 1-1-010-010-010-010-010-010-010											1000	16355	12162	28 0.33			
																			1939 <u>-</u>				
																						1000	A PARTY PROPERTY
													<u>.</u>							96. A.			
the second s								100							1997				Sec. 1				
	Section 2		14284		Set.			Ma							17108			1997					a den e
				3044														1.10					
	a marsha	1. 2.16						130										16					
			and the state	Const Track		10-10-	1	19							1			10.00					
	as the s	24 Plate		all salam.	1			12									19 19 19 19	1	1997 - 1997 1997 - 1997		7		
ations/Comments/Special Instructions					1.	1997 - 1997 1999 - 1997 1997 - 1997	1.444													Colorado			
Lis Are			UTUAL MAD		U	rA	as						all in the		Rent.		3.6.2						
By (NAME).	norm		Signature:	1	-		4	18/						C	Date: _	12	23	1 19	-	(mm/dd	/yy)		Pink Copy - Client
d by (NAME): Madan h ished by (NAME): 19/a dem	Sunal		Signature:	7 1) N. (1) N. (2) N. (2)	172 (2017	Ne	A /	100	the second	Statilized and stations	10.000	Chick Street	NUMBER OF STREET	COVER STATES		12				State of products of the second	1000 million and 1000	the second second	

APPENDIX F

FEM Modelling

and Dewatering Rate Calculations

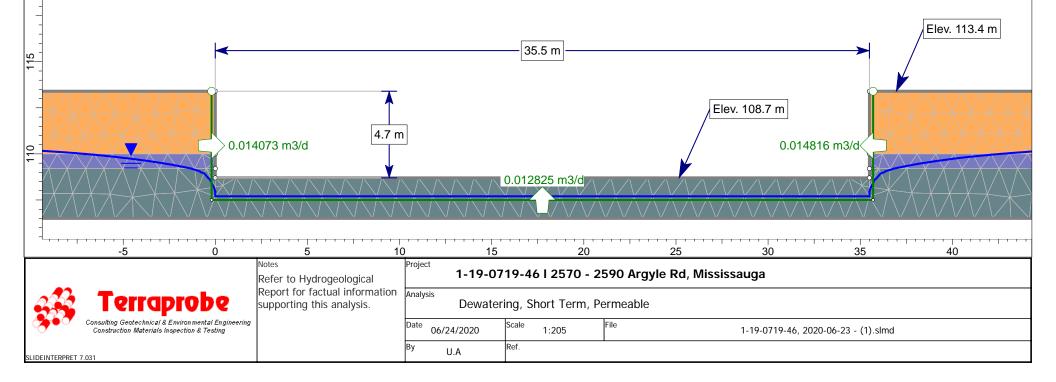
TERRAPROBE INC.

Short-Term Proposed Dewatering Area 1

30

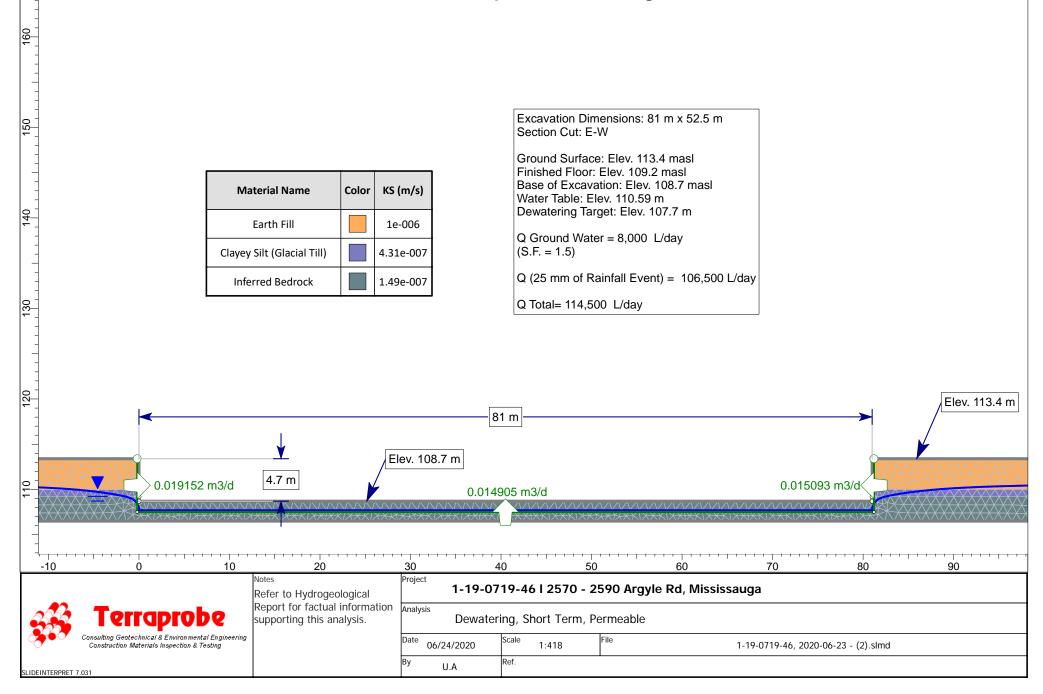
125

20


Excavation Dimensions: 35.5 m x 45.5 m Section Cut: E-W

Ground Surface: Elev. 113.4 masl Finished Floor: Elev. 109.2 masl Base of Excavation: Elev. 108.7 masl Water Table: Elev. 110.59 m Dewatering Target: Elev. 107.7 m

Q Ground Water = 4,000 L/day (S.F. = 1.5)


Q (25 mm of Rainfall Event) = 40,500 L/day

Q Total= 44,500 L/day

Page 1 of 11

Short-Term Proposed Dewatering Area 2

Page 3 of 11

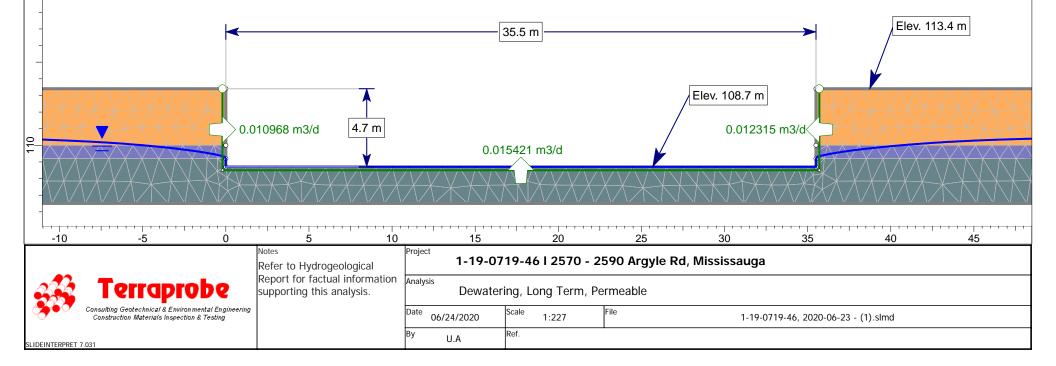
Long-Term Proposed Dewatering Area 1

Material Name	Color	KS (m/s)
Earth Fill		1e-006
Clayey Silt (Glacial Till)		4.31e-007
Inferred Bedrock		1.49e-007

140

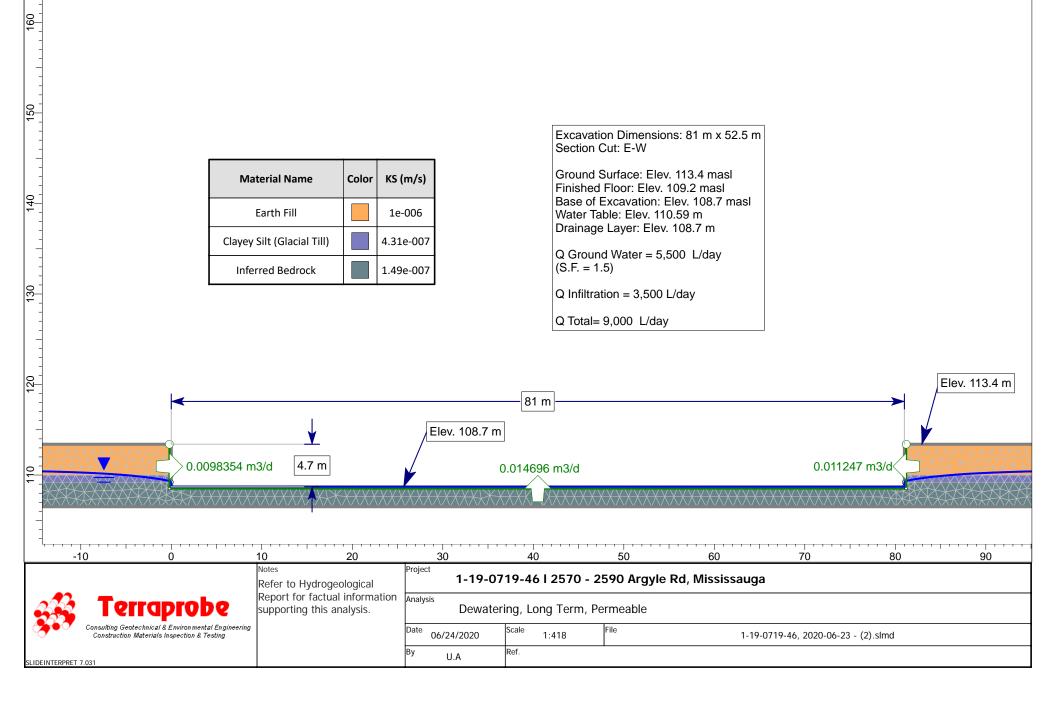
8

20


Excavation Dimensions: 35.5 m x 45.5 m Section Cut: E-W

Ground Surface: Elev. 113.4 masl Finished Floor: Elev. 109.2 masl Base of Excavation: Elev. 108.7 masl Water Table: Elev. 110.59 m Drainage Layer: Elev. 108.7 m

Q Ground Water = 3,500 L/day (S.F. = 1.5)


Q Infiltration = 2,500 L/day

Q Total= 6,000 L/day

Page 4 of 11

Long-Term Proposed Dewatering Area 2

Short-Term Construction Dewatering Flow Rate Estimate Details Proposed Dewatering Area 1

Dewatering fl	ow rate from Groundwate	er Source
Excavatio	n Dimensions	
NS (m)	45.5	
EW (m)	35.5	Section Cut
Area (m²)	1615.25	
Perimeter (m)	162	
Q BASE		
Flow (m ³ /day)	Length of Base (m)	Flow (L/day)
0.0128250	45.5	583.5375
Q SIDES (m ³ /day)		
Flow	Perimeter (m)	Flow (L/day)
0.0148160	126.5	1874.224
Q Total	L/day	2,457.76
Safety Factor		1.5
	L/day	3,686.64
	L/day	4,000.00

Dewatering Flow F	Dewatering Flow Rate from Rainfall Event								
Rair	Rainfall Event								
Year	2	100							
Hour	3	12							
Depth (mm)	25	94							
Depth (m)	0.025	0.094							
2 Year Event (L/day)	40,381	40,500							
100 Year Event (L/Day)	151,834	152,000							

Estimated Short-Term Dewatering Flow Rate (2 Year Event)

L/day	44,500.00
L/Sec	0.52

Short-Term Construction Dewatering Flow Rate Estimate Details Proposed Dewatering Area 2

Dewatering fl	ow rate from Groundwate	er Source
Excavatio	n Dimensions	
NS (m)	52.5	
EW (m)	81	Section Cut
Area (m²)	4252.5	
Perimeter (m)	267	
Q BASE		
Flow (m ³ /day)	Length of Base (m)	Flow (L/day)
0.0149050	52.5	782.5125
Q SIDES (m ³ /day)	Device story (vo)	
Flow	Perimeter (m)	Flow (L/day)
0.0191520	231.5	4433.688
Q Total	L/day	5,216.20
Safety Factor		1.5
	L/day	7,824.30
	L/day	8,000.00

Dewatering Flow F	Dewatering Flow Rate from Rainfall Event								
Rair	Rainfall Event								
Year	2	100							
Hour	3	12							
Depth (mm)	25	94							
Depth (m)	0.025	0.094							
2 Year Event (L/day)	106,313	106,500							
100 Year Event (L/Day)	399,735	400,000							

Estimated Short-Term Dewatering Flow Rate (2 Year Event)

L/day	114,500.00
L/Sec	1.32

Long-Term Post Construction Dewatering Flow Rate Estimate Details Proposed Dewatering Area 1

Dewatering Flow Rate flow rate from Groundwater Source				
Excavation Dimensions				
NS (m)	45.5			
EW (m)	35.5	Section Cut		
Area (m²)	1615.25			
Perimeter (m)	162			
Q BASE				
Flow (m ³ /day)	Length of Base (m)	Flow (L/day)		
0.0154210	45.5	701.66		
Q SIDES (m ³ /day) Flow	Perimeter (m)	Flow (L/day)		
	Perimeter (m)	Flow (L/day)		
0.0123150	126.5	1,557.85		
Q Total	L/day	2,259.50		
Safety Factor		1.5		
	L/day	3,389.25		
	L/day	3,500.00		

Dewatering Flow Rate from Rainfall Event			
Infiltration			
Perimeter (m)	Slice (m)	rainfall event (m)	
162	0.5	0.025	

2 Year Event (L/day)	2,500
2 Year Event (L/day)	2,025

Estimated Long-Term Dewatering Flow Rate

L/day	6,000.00
L/Sec	0.07

Long-Term Post Construction Dewatering Flow Rate Estimate Details Proposed Dewatering Area 2

Dewatering Flow Ra	te flow rate from Groundwa	ter Source
Excavatio	n Dimensions	
NS (m)	52.5	
EW (m)	81	Section Cut
Area (m²)	4252.5	
Perimeter (m)	267	
Q BASE		
Flow (m ³ /day)	Length of Base (m)	Flow (L/day)
0.0146960	52.5	771.54
Q SIDES (m ³ /day) Flow	Perimeter (m)	Flow (L/day)
	Perimeter (m)	Flow (L/day)
0.0112470	231.5	2,603.68
Q Total	L/day	3,375.22
Safety Factor		1.5
	L/day	5,062.83
	L/day	5,500.00

Dewatering Flow Rate from Rainfall Event			
Infiltration			
Perimeter (m)	Slice (m)	rainfall event (m)	
267	0.5	0.025	

2 Year Event (L/day)	3,500
2 Year Event (L/day)	3,338

Estimated Long-Term Dewatering Flow Rate

L/day	9,000.00
L/Sec	0.10

Dewatering Calculations 2570-2590 Argyle Road, Mississauga Proposed Underground Services

Dewatering Rate Formula for an Unconfined Aquifer (Powers et al., 2007)

$Q = \frac{\pi K (H^2 - h^2)}{\ln(R_0 / r_s)} + 2 \left[\frac{x K (H^2 - h^2)}{2L} \right]$				Proposed Storm Sewer	Proposed Sanitary Sewer		
Where:		Parameter	Units	Value	Value		
Q = Anticipated pumping rate (m ³ /day)		Q	m³/day	0.048	0.727		
K = Hydraulic Conductivity (m/day)		К	m/day	0.04	0.04		
H = Distance from initial static water level to bottom of the satu	irated aquifer (m)	н	m	0.7	1.7		
h = Depth of water in the well while pumping (m)		h	m	0.1	0.4		
R ₀ = Distance from a point of greatest drawdown to a point when		R ₀	m	6.2	9.3		
r_s = Distance to the wellpoints from the centre of the trench (m)), assumed to be half of the trench width	Trench width (b)	m	2	2		
x = Trench Length (m)		r _s	m	1.0	1.0	Considering a factor of safety of 1.5	
L = Distance from a line source to the trench, equivalent to R_o (n	n)	x (a)	m	4.0	55.7	Required Dewatering Rate:	
		L	m	6.2	9.3	Q (Proposed Storm Sewer)= 72.2	L/day
			a/b	2.0	27.9	Q (Proposed Sanitary Sewer = 1,090.0	L/day
Radius of Influence Formula (Bear, 1979):							
				a/b>1.5 Tren	ch Dewaterin	Ig	
$\mathbf{R}_0 = 2.45 \sqrt{\frac{HK}{S_y} t}$				a/b<1.5 Singl	e Well Dewa	tering	
Where:		Parameter	Units	Value	Value		
R ₀ = Radius of Influence (m), beyond which there is negligible dr	rawdowr	R ₀	m	6.2	9.3		
H = Distance from initial static water level to bottom of saturate	ed aquifer (m)	н	m	0.7	1.7		
K = Hydraulic conductivity (m/s)		К	m/s	4.3E-07	4.3E-07		
S_y = Specific yield of the aquifer formation		Sy		0.06	0.06		

t

s

1209600

1209600

t =Time (s) required to draw the static groundwater level to the desired level (assumed to be equivalent to 14 days)

Terraprobe Inc.

Short-Term Construction Dewatering Flow Rate Estimate Details Proposed Storm Sewer Alignment

Dewatering flow rate from Groundwater Source			
Excavation	Excavation Dimensions		
NS (m)	2		
EW (m)	4		
Area (m ²)	8		
Perimeter (m)	16		
		- -	
Total Flow (m ³ /day)	Flow (I/day)		
0.07	72.20		

Dewatering Flow Rate from Rainfall Event				
Rainfall Event				
Year	2 100			
Hour	3	12		
Depth (mm)	25	94		
Depth (m)	0.025	0.094		
2 Year Event (L/day)	200	200		
100 Year Event (L/Day)	752	800		

Estimated Short-Term Dewatering Flow Rate

2 Year Event (L/day)	272.20
100 Year Event (L/day)	872.20

Short-Term Construction Dewatering Flow Rate Estimate Details Proposed Sanitary Sewer Alignment

Dewatering flow rate from Groundwater Source				
Excavation Dimensions				
NS (m)	55.7			
EW (m)	2			
Area (m ²)	123.2			
Perimeter (m)	250.4			
Total Dewatering Flow Rate (Appendix G Page 1 of 3)				
Total Flow (m ³ /day)	Flow (l/day)			
1.18	1,100.00			

Dewatering Flow Rate from Rainfall Event			
Rainfall Event			
Year	2	100	
Hour	3	12	
Depth (mm)	25	94	
Depth (m)	0.025	0.094	
2 Year Event (L/day) for			
Excavation Trench	2,785	2,800	
100 Year Event (L/Day)			
for Excavation Trench	11,581	11,600	

Estimated Short-Term Dewatering Flow Rate

2 Year Event (L/day)	3,900	
100 Year Event (L/day)	12,780.00	