

3168 HS LP

PRELIMINARY HYDROGEOLOGICAL ASSESSMENT

PROPOSED MIXED-USE RE-DEVELOPMENT

3154 and 3168 Hurontario St. and 25 to 33 Hillcrest Ave. Mississauga, Ontario

5 May 2022

CT2892.03

<u>Digital Distribution</u> 3168 HS LP Terrapex Environmental Ltd.

Terrapex Environmental Ltd.90 Scarsdale RoatToronto, Ontario, M3B 2R7Telephone:(416) 245-0011Facsimile:(416) 245-0012Email:toronto@terrapex.comWebsite:www.terrapex.com

EXECUTIVE SUMMARY

Terrapex Environmental Ltd. (Terrapex) was retained by 3168 HS LP to review hydrogeological conditions for the proposed re-development planned for the adjoining properties of 25 and 33 Hillcrest Avenue and 3154 Hurontario Street in Mississauga Ontario (the Site). The re-development will include a common five-level underground parking garage that will essentially span the entire property.

An existing network of groundwater monitoring wells was expanded to include sixteen locations across the Site. Groundwater levels were measured at all sixteen wells for four events. Single well hydraulic tests were performed on nine monitoring wells. One groundwater sample was analysed for municipal bylaws that regulate discharges to a storm sewer.

The foundation slab will be at approximately 106.5 metres above sea level. The depth of excavation will vary from approximately 14 to 22 metres below grade (mbg), depending on location due to the sloping grade. In comparison, the shallowest water table encountered was at 2.8 mbg, indicating that the construction excavation and the underground parking structure will experience groundwater seepage that will need to be managed.

The anticipated maximum combined rate of groundwater seepage (596,240 L/day) and a larger stormwater event (510,670 litres) to be managed during construction will be 1,106,910 litres per day, which will require a Permit To Take Water (PTTW) to be issued by the provincial government. The foundation drains in post-construction could experience a maximum rate of 599,500 litres per day, which could be integrated with the construction PTTW.

Groundwater quality was acceptable for discharge to the Peel Region's sanitary/combined sewer. Groundwater quality was acceptable for discharge to the City of Mississauga's storm sewer with treatment for total suspended solids (TSS), total Kjeldahl nitrogen (TKN) and manganese. TSS can be reduced by filtering and settlement methods prior to discharge to the sewer. Removal or reduction of sediments by treating TSS might reduce the concentrations of TKN, pending further sample testing. The elevated manganese is in dissolved form that would require ongoing chemical treatment. Monitoring for organic chemicals during construction is advised due to possible presence of contaminated groundwater on site or in the vicinity.

Pre-construction and post-construction consist of impervious cover, allowing negligible recharge. Low impact development (LID) measures to improve infiltration are not feasible due to the parking garage occupying the entire site.

The hydrogeological investigation performed was based on an earlier design of the parking garage consisting of four subsurface levels. The more recent design has the garage extending to five subsurface levels. The base elevation for the new design is lower than existing groundwater monitoring wells, therefore new deeper monitoring wells and testing will be required to confirm the dewatering analysis. Groundwater seepage estimates herein assume that bedrock hydrogeological conditions at higher elevations will be similar at the lower elevation of the P5 parking garage and its excavation. These groundwater seepage estimates are not intended to be used in support of a Functional Servicing Report. Values are to be considered as preliminary.

TABLE OF CONTENTS

EXEC	UTIVE SUMMARY	.2
1.0	BACKGROUND	. 1
2.0	LOCATION AND SETTING	. 1
 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 	LOCATION AND PROPERTY DIMENSIONS PRESENT LAND USE PROPOSED DEVELOPMENT SITE TOPOGRAPHY DRAINAGE REGIONAL GEOLOGY SENSITIVE ECOLOGICAL RECEIVERS GROUNDWATER SUPPLY WELLS	. 1 . 2 . 2 . 2 . 2 . 2
3.0	FIELD PROGRAM	. 3
3.1 3.2 3.3 3.4 3.5	DRILLING AND BOREHOLES MONITORING WELLS GROUNDWATER LEVEL MEASUREMENTS GROUNDWATER SAMPLING HYDRAULIC CONDUCTIVITY TESTS	3 3 4 4 4
4.0	OBSERVATIONS	5
4.1 4.2	SUBSURFACE MATERIALS AND HYDROSTRATIGRAPHY GROUNDWATER LEVELS	5 6
5.0	ANALYSIS	6
5.1 5.2 5.3 5.4	HYDRAULIC CONDUCTIVITY HYDRAULIC GRADIENT GROUNDWATER QUALITY BUILDING GEOMETRY AND HYDROGEOLOGY	. 6 . 7 . 7 . 8
6.0	DEWATERING AND FOUNDATION DRAINAGE	8
6.1 6.2 6.3	RATES PREDICTIONS RADIUS OF INFLUENCE AND SENSITIVE RECEIVERS	. 8 10 10
7.0	WATER BALANCE ASPECTS 1	10
7.1 7.2	PRE-CONSTRUCTION AND POST-CONSTRUCTION INFILTRATION	10 11
8.0	CLOSURE	11
9.0	REFERENCES 1	13

TABLE OF CONTENTS

FIGURES

Figure 1	Site Location Map
Figure 2	Site Vicinity Plan within 100 m
Figure 3	Site Vicinity Plan within 500 m
Figure 4	Locations of Investigations
Figure 5	Shallow Groundwater Regime
Figure 6	Cross Section – West to East
Figure 7	Cross Section – South to North

TABLES

Table 1	Monitoring Well Construction Details
Table 2	Observed Groundwater Levels
Table 3	Summary of Groundwater Quality
Table 4	Predicted Construction Dewatering Rate
Table 5	Predicted Foundation Drainage Rate

APPENDICES

Appendix I	Figures
Appendix II	Tables
Appendix III	Borehole Logs
Appendix IV	Laboratory Record of Groundwater Quality
Appendix V	Grain Size Analysis
Appendix VI	Hydraulic Conductivity Testing

1.0 BACKGROUND

Terrapex Environmental Ltd. (Terrapex) was retained by 3168 HS LP to prepare this hydrogeological review for the proposed mixed-use redevelopment of the adjoining properties of 3154 and 3168 Hurontario Street and 25 to 33 Hillcrest Avenue (the Site) in Mississauga, Ontario, which is in the Region of Peel. This review herein is intended to satisfy hydrogeological requirements as part of the development submissions process administered by the municipality.

Companion studies were undertaken by Terrapex, including a Phase Two Environmental Site Assessment (2019, 2021) and a geotechnical study (2019, 2021), which are reported under separate covers. Subsurface investigations were undertaken earlier by other consulting firms, from which borehole records were considered (Arcadis Canada Inc., 2020 and Franz Environmental Inc., 2015).

2.0 LOCATION AND SETTING

2.1 LOCATION AND PROPERTY DIMENSIONS

The Site fronts on the west corner of Hurontario Street and Hillcrest Avenue. The general location is mapped on Figure 1. The approximate UTM coordinates are 17T 611273 m easting and 4826447 m northing.

Approximately, the Site is a rectangle that covers approximately 21,670 m², with dimensions of 197 m by an average width of 110 m, oriented northeast - southwest.

2.2 PRESENT LAND USE

The Site presently hosts three single-storey buildings have commercial / retail uses, which are located in the eastern portion. The remaining area is mostly asphalt paved open-air parking and driving lanes. Narrow strips of grass lawn with trees are located along the property lines and along a central boundary. The general Site layout is shown on Figure 2.

The surrounding area is developed mainly for mixed commercial, residential and institutional uses. Conditions in the vicinity are shown at different scales on Figure 3 and 4. Local land uses essentially consist of the following features.

- **Southeast:** Hillcrest Avenue, across which are a residential apartment tower and a secondary school. Further away is a mixture of single-family dwellings, residential townhouse blocks, residential towers, low-rise office and commercial / retail buildings.
- **Northwest:** Cooksville GO Station that is mostly a large parking area with a rail line. Further beyond are neighbourhoods of single-family dwellings.
- **Northeast:** Hurontario Street, across which are residential apartment towers, low-rise commercial, a truck storage yard, residential townhouse blocks, low to mid-rise residential and neighbourhoods of single-family dwellings.
- **Southwest:** A large paved parking lot, several high-rise towers in a complex with underground parking, large areas with active construction, parkland and school yard, and further beyond are neighbourhoods of single-family dwellings.

2.3 PROPOSED DEVELOPMENT

The proposed development will demolish the existing buildings and then will construct one building. The footprint of the proposed building is assumed to cover approximately 20,427 m² that will occupy almost the entire site. A common subsurface parking garage will extend to five levels.

2.4 SITE TOPOGRAPHY

Topographic mapping indicates the grade descends eastward, from 128.0 masl at the western corner to approximately 120.2 masl at the eastern corner (Vumap, 2021; R-PE Surveying Ltd., 2020). The grade elevations at the borehole locations ranged between 120.2 masl to 126.4 masl, surveyed by Terrapex using a Global Navigation Satellite System (GNSS) receiver relative to a local geodetic datum.

2.5 DRAINAGE

Surface water features are absent on site. Stormwater is managed by the municipal stormwater management system of catchbasins and piped drainage. The only surface water feature within 500 m is Cooksville Creek that is located approximately 380 m to the east. That watercourse discharges to Lake Ontario.

2.6 REGIONAL GEOLOGY

Most of the site is mapped as resting upon glacial lake deposits consisting primarily of sand and gravel, with minor silt and clay (Ontario Geological Survey, 2010). The western corner is mapped as Paleozoic bedrock at or near grade. See Section 5.1 for soil conditions actually encountered, which vary from the types mapped for the site.

The bedrock underlying the entire site is the Georgian Bay Formation that is dominantly shale and limestone (Ontario Geological Survey, 2007). Shale bedrock was encountered at shallow depths of less than 5.0 mbg in nearby wells, including No. 7291784 and No. 7154043 (MECP, 2019). Shale is found across the site, as described in Section 5.1.

Additional information on soils in the vicinity of the Site is also available from reports of wells in the database maintained by the Ministry of the Environment, Conservation and Parks (MECP).

2.7 SENSITIVE ECOLOGICAL RECEIVERS

Designated sensitive ecological areas, such as Areas of Natural and Scientific Interest (ANSI) or Environmentally Significant Areas (ESA's), are absent within 500 m of the Site. Similarly, there are also no woodlands or wetlands with or without special designation in proximity.

2.8 GROUNDWATER SUPPLY WELLS

The MECP water well database reports three local wells as having a purpose of water supply. These wells included one industrial supply (No. 4902210) and two domestic supplies (Nos. 4902211 and 4902212) that were further than 180 m from the site. These wells were installed between 1955 and 1968 that was prior to local urbanization. These supply wells are likely demolished and no longer in use.

The site was reviewed under the provincial Source Water Protection mapping (MECP, 2021) for possible location inside various types of sensitive groundwater classifications. The area within approximately 45 m of the western corner and within 25 m of the southern corner are classified as Highly Vulnerable Aquifer, with a score of 6. No aquifer layer was observed by on-site drilling.

3.0 FIELD PROGRAM

The following describes the methodology and locations of investigation in the field program. Observations are provided in Section 4 and interpretations are provided in Section 5.

3.1 DRILLING AND BOREHOLES

In November 2014, 11 boreholes; designated as BH101 through BH111, were advanced by Franz Environmental Inc. (Franz) at 3168 Hurontario properties and extended to approximate depths ranging from 6.1 to 7.1 mbg (Franz Environmental Inc., 2015).

In July 2019, twelve boreholes - designated as MW101 through MW105 and BH106 through BH112 - were advanced by Pontil Drilling Inc. (Pontil), a drilling contactor commissioned by Terrapex. The drilling contractor employed a hollow stem auger with split spoon method for overburden and HQ-sized coring methods for bedrock. Boreholes depths ranged from 4.5 mbg to 12.7 mbg. Boreholes left without monitoring wells are designated in the BH-series and with monitoring wells are designated in the MW-series.

In January 2020, six boreholes - designated as MW201 through MW206 - were advanced by Arcadis Canada Inc. (Arcadis) at 25-33 Hillcrest Avenue and 3168 Hurontario properties and extended to approximate depths ranging from 5.2 to 6.1 mbg (Arcadis Canada Inc., 2020).

Between 30 November 2020 and 4 December 2020, 19 boreholes were advanced by Pontil, under supervision of Terrapex personnel. Three of the boreholes - designated as MW301, MW312, MW318, and MW319 - were advanced by using hollow stem auger with split spoon method to approximate depths while in soil and the bedrock portion was cored using HQ-sized bit to approximate depths of 15.3 to 15.5 mbg. The remaining 15 boreholes were extended to approximate depths ranging from 2.0 to 6.1 mbg.

Grain-size analyses were carried out on two soil samples using sieve and hydrometer methods by Terrapex's geotechnical laboratory.

3.2 MONITORING WELLS

Terrapex installed 14 monitoring wells at ten locations that are designated MW101, MW102(S), MW102(D), MW103, MW104, MW105, MW301A, MW301B, MW307, MW312, MW318A, MW318B and MW319A, MW319B. The designation suffix of "S" or "B" is a well installed at a shallow depth and "D" or "A" for wells installed at a deeper depth. The bottoms of well screens were placed ranging from 4.5 to 15.3 mbg.

The monitoring wells were constructed in Terrapex programs used environmental grade, 50 mm diameter, Schedule 40, PVC piping with machine-slotted (10 slot) screens at the bottom. Each monitoring well was covered by a flush-mount casing. The well components and their

relationships to adjacent stratigraphy are shown in the borehole records provided in Appendix III and well construction details are reported in Table 1.

The well locations and elevations of the top of the standpipe and grade were surveyed by Terrapex using a Global Navigation Satellite System (GNSS) receiver. The GNSS model used was a Topcon HiPer V GNSS Receiver.

Franz installed nine monitoring wells in boreholes BH101 to BH109 and the boreholes were relabelled as monitoring wells MW101 to MW109. Arcadis installed three monitoring wells at three locations, designated as MW201, MW203, and MW206. Refer to the original reports for well construction details by other consultants (Franz Environmental Inc., 2015 and Arcadis Canada Inc., 2020).

Monitoring wells, when no longer useful, must eventually be abandoned by a licensed water well contractor. Abandonment must proceed in accordance with Regulation 903 and its amendments issued under the Ontario Water Resources Act. The monitoring wells should remain until the time of construction to be available for observing future seasonal groundwater conditions closer to the time of construction for dewatering planning.

3.3 GROUNDWATER LEVEL MEASUREMENTS

Suites of groundwater levels were measured in the Terrapex monitoring well network in July and August 2019, December 2020, and January 2021. Levels were measured using an electric sounder device with graduated tape. See Table 2 for specific dates.

3.4 GROUNDWATER SAMPLING

The monitoring well selected for groundwater sampling was MW312, which is located close to the intersection of Hillcrest Avenue and Hurontario Street. The well was initially purged. Three well volumes were removed using a bailer prior to sampling on 19 January 2021. The sample was collected using a low-flow peristaltic pump. Sample water was discharged directly without filtering to pre-cleaned bottles supplied by the laboratory with preservatives as appropriate for parameters. These bottles were iced and held in a cooler under Chain of Custody protocols prior to delivery. Water quality analysis was performed by AGAT Laboratory of Mississauga, Ontario that was accredited to the Canadian Association for Laboratory Accreditation Inc. (CALA). The analysis suite consisted of the parameters specified under the Regional Municipality of Peel's bylaw 53-2010 for discharging to a sanitary sewer and the City of Mississauga's bylaw 0259-2005 for discharging to a storm sewer.

3.5 HYDRAULIC CONDUCTIVITY TESTS

Single well response tests to assess the hydraulic conductivity of formations were performed on monitoring wells MW101, MW102D, MW103, MW104, MW105, MW301A, MW301B, MW312, MW318B. The test method applied was a bail test, which is a rapid removal of a volume of water using an elongated bailer. The ensuing rising recovery to static level is observed over time using manual methods and by using Solinst levelogger brand leveloggers that were installed to record responses over a longer term, due to the slow recovery. The loggers recorded at one minute

intervals for at least one day. A barometric logger was also installed on site to allow removal of barometric pressure effects from the levelogger record.

Test data were analysed using the Aqtesolv software package by the Bouwer and Rice method.

4.0 OBSERVATIONS

4.1 SUBSURFACE MATERIALS AND HYDROSTRATIGRAPHY

The subsurface conditions encountered at each borehole are detailed on the borehole records provided in Appendix III. The following is a summary of stratigraphic layers encountered.

- *Asphaltic concrete*. All boreholes were advanced through the asphaltic concrete pavement with a thickness of approximately 0.1 m, with a granular base.
- *Fill*. Fill is present at all boreholes, extending to approximate depths ranging from 1.2 to 4.0 mbg. The fill texture varied, including crushed limestone, silty sand, sand, gravelly, sand, and clayey silt soils. Inclusions of construction debris were sometimes found.
- Clayey silt. Below the fill and rests on bedrock. Thickness varies from 0.3 to 4.0 m.
- *Bedrock*. Shale was encountered at depths greater than a range of 2.2 to 4.4 mbg. The corresponding elevations of top of bedrock ranged from 116.3 to 124.0 masl. The upper section is generally intensely fractured and very thin bedded, then with increasing depth becoming thinly to medium bedded and moderately fractured. Thin limestone layers and clay seams are occasionally present.

Isolated lenses of native granular material should be anticipated in the soil overburden. One such layer was encountered at MW103 that was gravelly sand at an approximate depth of 2.1 mbg. Silty sand layers were found in MW103 and MW104 at approximately 2.1 and 3.1 mbg, respectively. Such lenses were mostly encountered above the water table but are possible below the water table.

The above stratigraphic description is a generalization. Variations could occur in thickness, depth, presence and texture of units. Constructors and dewatering contractors should review the nearest borehole records for specific locations and if necessary, drill to confirm conditions if critical to their activities.

Borehole Number	Sample Depth and No.	Sample Description	Gravel %	Sand %	Silt %	Clay %
MW101	2.5 mbg (4)	Sandy Silt, some clay, trace gravel	4	22	58	16
MW103	1.8 mbg (3)	Sand, some silt, trace clay, trace gravel	3	79	13	5
BH307	2.6 mbg (4)	Clayey Silt, some gravel some sand	12	12	52	24

Sieve and hydrometer grain size analyse were carried out on three soil samples. The curves from the test are provided in Appendix V and are summarized below.

4.2 GROUNDWATER LEVELS

Groundwater level observations are presented as depths and as elevations on Table 2. The water table is indicated by the shallower wells of MW102(S), MW203, MW206, MW301B, MW307, MW312, MW318B and MW319B. The piezometric head is indicated in wells MW101, MW102(D), MW103, MW104, MW105, MW301A, MW318A, MW319A. The piezometric head observed in deeper wells does not represent the water table.

The average depth to the water table was 3.8 mbg based on shallower monitoring wells. The shallowest depth to the water table observed was 2.8 mbg in MW102(S) in the central portion of the south-eastern side.

The elevation of the water table grades down toward the east. The average elevation of the water table was observed at 119.2 masl, while the highest elevation of the water table was observed at MW319B at 122.3 masl. The water table trend, as presented on Figure 5, suggest that groundwater rises as high as 123 to 124 masl in the western corner and as low as 116 masl in the eastern corner.

The deeper piezometers at the MW102(S,D), MW301(A,B), and MW318(A,B) clusters had groundwater elevations that were approximately 3.1 m, 0.5 m, and 1.5 m lower than in the adjacent shallower piezometer, respectively.

Groundwater levels naturally fluctuate in response to seasons, to annual variations and possibly to major storm events. The measurements reported herein occurred during spring, which is typically the shallowest depth and highest elevation in the annual seasonal cycle. It is possible that the water table elevation could rise further (become shallower depth) to peak during a wetter period. As such, it is recommended to conduct two additional groundwater level measurement suites event in late March to May.

5.0 ANALYSIS

5.1 HYDRAULIC CONDUCTIVITY

Hydraulic conductivity is a parameter for quantifying the ability of a soil unit to transmit water. This parameter is necessary for predicting the rate of seepage into excavations to be collected by dewatering efforts during construction and by foundation drains in post-construction.

The bail tests were interpreted and analysis curves are presented in Appendix VI. The resulting interpreted hydraulic conductivity values are listed below:

- MW101, 6 x 10⁻⁸ m/s
- MW102D, 2 x 10⁻⁷ m/s
- MW103, 2 x 10⁻⁷ m/s
- MW104, 7 x 10⁻⁷ m/s (maximum)
- MW105, 4 x 10⁻⁷ m/s
- MW301A, 1 x 10⁻⁷ m/s

- MW301B, 3 x 10⁻⁸ m/s
- MW312, 6 x 10⁻⁷ m/s
- MW318B, 1 x 10⁻⁷ m/s

The above monitoring wells were screened in shale bedrock. The upper surface of the bedrock has a higher fracture density that is anticipated to offer a relatively higher hydraulic conductivity to deeper into the bedrock, but variations may occur due to fracture infilling.

5.2 HYDRAULIC GRADIENT

The water table surface is commonly a subdued reflection of the overlying ground surface with shallow groundwater movement parallel to the overlying general grade and toward watercourses. Based on this interpretation and local topography, shallow groundwater in the vicinity of the Site is anticipated to move eastward towards Cooksville Creek.

Piezometric contours of the water table were interpreted using shallower wells, as illustrated on Figure 5. The horizontal hydraulic gradient descends eastward with an average magnitude of approximately 0.04 m/m.

Local variations in topography, soil type, deeper building foundation drains and buried utilities trenches can influence the direction of the horizontal gradient.

Vertical hydraulic gradients were measured at the clusters of MW102, MW104 / MW312, MW301 and MW318. The two screens were typically separated by approximately 8 to 9 m in elevation. The gradient direction was consistently downward, which indicates the site functions as a recharge area. The average magnitude varied from 0.08 m/m at MW301 to 0.33 m at MW102. Across the site, the average water table elevation is generally about 3.0 m higher than the average piezometric head elevation, indicating downward gradient conditions likely prevail. The cluster at MW319 could not be used due to the groundwater levels in the deeper well not being static. The water levels in MW318 during 2020 are suspected to be not static.

5.3 GROUNDWATER QUALITY

The reported concentrations of tested parameters for the sample obtained from MW312 are provided in Table 3. The Certificate of Analysis issued by AGAT is provided in Appendix IV.

The groundwater quality was acceptable with respect to the criteria for discharge to the sanitary/combined sewer.

The following parameters exceeded the criterion specified under the City of Mississauga bylaw for storm sewer.

- Manganese was at a concentration of 0.267 mg/L, as compared to the storm sewer criterion of 0.05 mg/L;
- Total suspended solids was at a concentration of 30 mg/L, as compared to the storm sewer criterion of 15 mg/L; and,

• Total Kjeldahl Nitrogen was at 6.30 mg/L, as compared to the storm sewer criterion of 1 mg/L.

The groundwater quality was acceptable with respect to the criteria for discharge to the storm sewer with treatment for manganese, total suspended solids and Total Kjeldahl Nitrogen.

The datalogger in wells MW301A, MW301B, MW312, and MW318B, recorded average groundwater temperatures that were stable, with values ranging from 11.8 to 14.8 °C, depending on the individual well.

5.4 BUILDING GEOMETRY AND HYDROGEOLOGY

The parking garage will extend to five subsurface levels. The basement garage slab will be set at 106.5 mbg. The grade varies across the site from 120 to 128 masl, so relatively depth will vary from approximately 14 to 22 mbg.

We understand that building footings will be constructed to 1.0 m below the slab level. The excavation elevation is anticipated to be at 105.5 masl, with the depth ranging from approximately 15 to 23 mbg.

The average depth to water table observed to date was approximately 3.8 mbg. Thus, the excavation depths will be set deep into the saturated zone, so will require dewatering during construction. Similarly, the foundation slab will also be set below the water table, so foundation drains will also receive ongoing groundwater seepage to be discharged to a sewer.

The planned development will include buried municipal infrastructure, such as piped sanitary sewer, storm sewer and potable water. Construction will require excavation trenches, for which the depths are presently not determined.

The bedrock is mostly saturated. The water table is usually below the overburden / bedrock interface, resulting in the overburden being dry (above the water table). A few locations may experience a water table into the overburden. Calculations of groundwater inflow rates are provided in Section 6.

6.0 DEWATERING AND FOUNDATION DRAINAGE

6.1 RATES PREDICTIONS

The MECP requires a Permit to Take Water (PTTW) or an Environmental Activity and Sector Registry (EASR) for groundwater takings exceeding 50,000 litres per day (L/day). For the purpose of construction, a PTTW is required for dewatering extraction rate that exceeds 400,000 L/day. An EASR is required for a rate between 50,000 and 400,000 L/day.

Estimation of the rate of dewatering to counteract groundwater inflows is based on mathematical analogy to a simplified elongated rectangular trench (Powers et al, 2007). The equivalent trench dimensions are a length of 197 m and an average width of 103.7 m. The calculations anticipate that the subsurface will respond with hydrogeological behaviour similar to an unconfined aquifer. The formula, anticipated geometric conditions and input values in calculating construction dewatering are specified on Table 4.

The predicted maximum rate of groundwater seepage during construction is 596,240 litres per day. This rate should be anticipated as possible on days without precipitation.

The open excavation will capture incident precipitation. The excavation area of 20,430 m² and a relatively large precipitation event of 25 mm will capture approximately 510,675 litres. Such precipitation events are anticipated to recur four to five times per year. Obviously, larger precipitation events would produce larger amounts to manage, although occurring less frequently.

The precipitation amount must be added to the groundwater seepage amount in the application. The combined amount of groundwater seepage and precipitation is 1,106,910 litres per day, which indicates that construction dewatering will require a submission for an application for a PTTW.

The maximum amount that will be received by foundation drains was calculated using the analysis and values shown on Table 5. The method applied was similar to construction dewatering calculations. The foundation drain was set at a depth of 0.3 m below foundation slab. The predicted maximum amount of groundwater seepage is 599,500 litres per day, which is the value to specify for an application for a PTTW. The amount assumes that there are no contributions to the foundation drain by stormwater to ventilation or roof components or from a low impact development infiltration measure. The ongoing collection of groundwater by foundation drains is considered a groundwater taking under provincial regulations, so a PTTW will be required.

Lenses of silty sand and gravelly sand are present that may issue temporary larger flows until drained. Berms, ditches, and/or grading should be used during construction to divert stormwater flows from reaching the excavation that would otherwise require pumping.

The methods of dewatering of adjacent soils and bedrock, such as by wellpoints or by collection from sumps within the excavations should be decided by the construction and dewatering contractors.

The calculations are based on conservative assumptions that predict relatively high rates that are less likely, but remain possible. Calculations assumed that the entire site would be one open excavation (construction) and one contiguous five levels underground parking garage (post-construction). The hydraulic conductivity that is the highest observed was input, whereas average conditions are more likely to prevail. The values incorporate a factor of safety of 2.0 to allow for unknown conditions, such as a permeable soil horizon between boreholes or just beyond the excavation walls.

The cumulative amounts pumped from the excavation and finished building are required to be monitored daily to confirm that the requested pumping rate limit stated in the PTTW is not exceeded. Approval will have to be obtained from the municipality to allow dewatering discharge to the storm sewer or to the sanitary sewer, whichever type of outlet is proposed as a receiver.

The dewatering analysis was based on an earlier design of the parking garage consisting of four subsurface levels. The more recent design analysed has the garage extending to five subsurface levels. The base elevation for the new design is lower than the existing groundwater monitoring wells, therefore deeper monitoring wells and additional testing will be required to confirm the

dewatering analysis presented herein. The groundwater seepage estimates assumed that bedrock hydrogeological conditions encountered at higher elevation are consistent at the lower elevation of the P5 parking garage and its excavation. These groundwater seepage estimates are not intended to be used in support of a Functional Servicing Report. Values are to be considered as preliminary.

6.2 RADIUS OF INFLUENCE AND SENSITIVE RECEIVERS

The radius of influence is the distance range beyond which the drawdown on groundwater caused by dewatering is not expected to be detectable. The radius of influence is commonly estimated using the formula of Sichardt and Kryieleis (Powers et al, 2007), which is noted in Tables 4 and 5. The radius of influence is anticipated to be 41 m from the excavation boundary. No buildings or sensitive ecological receivers are situated within the radius of influence. Dewatering activities are not anticipated to adversely affect adjacent properties.

6.3 WATER QUALITY OF DISCHARGE

As noted in Section 5.3, collected groundwater can be discharged to the sanitary sewer without treatment. Collected groundwater can be discharged to the storm sewer with treatment for total suspended solids (TSS), total Kjeldahl nitrogen (TKN) and manganese.

The elevated total suspended solids concentration may be due to sampling from a well screen completed in shale bedrock that is comprised of consolidated clayey mineral grains. Most of the shallow subsurface is either soil or shale bedrock that can be anticipated to produce waters with elevated suspended solids. It is probable that the soils and bedrock will stabilize such that TSS would attenuate over the long-term. Construction should anticipate the requirement to filter and/or settle water to meet the discharge criterion. Dewatering extraction systems should be thoroughly developed prior to connection to sewers to reduce the production of particulates. Excavation soil walls, foundation drains and other infrastructure should be designed to prevent the mining out of adjacent sediments and bedrock.

In order to investigate whether elevated manganese was associated with particulates / sediments in the sample water, a filtered sample was submitted to the laboratory for analysis of metals. The manganese concentration in the filtered sample exceeded Mississauga's storm sewer by-law criterion, indicating that it is in dissolved form and chemical treatment would be required to discharge to the storm sewer. Additional sampling should be undertaken to confirm effectiveness of sediment removal for meeting criteria for TKN. A pilot-scale study should be undertaken if discharge to storm sewer is being considered.

7.0 WATER BALANCE ASPECTS

7.1 PRE-CONSTRUCTION AND POST-CONSTRUCTION INFILTRATION

Typically, incident precipitation infiltrates through a pervious soil surface, then moves down through the unsaturated zone and then recharges the shallow groundwater. In turn, this shallow groundwater moves toward watercourses to contribute to baseflow or to replenish aquifers, if

present. Impervious surfaces of buildings or paving block infiltration and divert precipitation to become runoff that is then directed to storm sewers.

The pre-construction land use is mostly impervious cover, as occupied by buildings and asphaltpaved driving lanes and parking areas, so mostly blocks infiltration. Minor areas of pervious cover, such as grasses and gravel strips, are present that permit limited infiltration.

The post-construction land usage will entirely consist of impervious cover of the new building and underlying parking garage and driveways. Thus, development will remove the limited pervious cover, with a consequent decrease in annual recharge of the shallow groundwater regime. Since the previous area is negligible, then change in recharge is also anticipated to be negligible.

7.2 LOW IMPACT DEVELOPMENT / AUGMENTED INFILTRATION

Low impact development (LID) measures to promote infiltration are not feasible since the impervious garage footprint will essentially span the entire site. The water table is relatively deep that would allow vertical setback for a buried stormwater system. The native soils are dominantly silty clay that would inhibit infiltration. Also, infiltration systems must be located at least 4 m beyond a foundation wall and outside of the building footprint.

8.0 CLOSURE

This report has been completed in accordance with the terms of reference for this project as agreed upon by 3168 HS LP (the Client) and Terrapex Environmental Ltd. (Terrapex) and generally accepted hydrogeological consulting practices in this area.

The reported information is believed to provide a reasonable representation of the general hydrogeological conditions at the site; however, studies of this nature have inherent limitations. The data were collected at specific locations and conditions may vary at other locations, or with the passage of time. Where applicable, the assessment of the environmental quality of groundwater was limited to a study of those chemical parameters specifically addressed in this report.

Terrapex has relied in good faith on information and representations obtained from the Client and third parties and, except where specifically identified, has made no attempt to verify such information. Terrapex accepts no responsibility for any deficiency or inaccuracy in this report as a result of any misstatement, omission, misrepresentation, or fraudulent act of those providing information. Terrapex shall not be responsible for conditions or consequences arising from relevant facts that were concealed, withheld, or not fully disclosed at the time of the study.

This report has been prepared for the sole use of 3168 HS LP. Terrapex accepts no liability for claims arising from the use of this report, or from actions taken or decisions made as a result of this report, by parties other than 3168 HS LP.

Respectfully submitted, TERRAPEX ENVIRONMENTAL LTD.

Chaoran Li, P.Geo. Project Manager

D. 0 Brian Theimer, M.Sc., P.G ROF Senior Hydrogeologist BRIAN D. THEIMER PRACTISING MEMBER 0466

9.0 **REFERENCES**

Arcadis Canada Inc. February 6, 2020. Phase Two Environmental Site Assessment, Cooksville Go Station Lots B & C, Mississauga, Ontario. File 30041197

Franz Environmental Inc. January 5, 2015, Phase II Environmental Site Assessment, 3168 Hurontario Street, Mississauga, Ontario. Project No. 3048-1401.

Government of Ontario. 2003. Stormwater management planning and design manual.

Ministry of the Environment, Conservation and Parks. 2019. "Ontario Source Protection Information Atlas". Interactive mapping application on Internet

Ministry of the Environment, Conservation and Parks. 2019. "Map: Well Records". Interactive mapping application on Internet.

Ministry of the Natural Resources and Forestry. 2019. "Make a Natural Heritage Map". Interactive mapping application on Internet.

MOTO Engineering Co. Inc. May 23, 2018. Geotechnical Soils Investigation Report. Proposed 6storey condominium with 2 level underground parking. 3154 Hurontario Street (at Hillcrest Avenue). Project MOTO1481.

Ontario Geological Survey. 2007. MRD-228. Physiography of Southern Ontario. Referenced to Google Earth.

Ontario Geological Survey. 2010. MRD-128. Surficial geology of Southern Ontario. Referenced to Google Earth.

J. Patrick Powers, Arthur Corwin, Paul Schmall, Walter Kaeck. 2007. Construction Dewatering and Groundwater Control. Third Edition.

R. Allan Freeze and John A. Cherry. 1979. Groundwater.

R-PE Surveying Ltd. October 9, 2020. Plan of Survey and Topography of Block 4, Plan 43M-501 and Part of Lot 16, Concession 1, North of Dundas Street, City of Mississauga, Regional Municipality of Peel. Job No. 19-217R03.

Terrapex Environmental Ltd. August 29, 2019. Proposed Mixed-Use Development, 3154 Hurontario Street and 25-33 Hillcrest Avenue, Mississauga, Ontario. File CT2892.00. (Geotechnical Report)

Terrapex Environmental Ltd. September 2019. Phase One Environmental Site Assessment, 3154 Hurontario Street and 25-33 Hillcrest Avenue, Mississauga, Ontario. File CT2892.00.

Terrapex Environmental Ltd. September 2019. Phase Two Environmental Site Assessment, 3154 Hurontario Street and 25-33 Hillcrest Avenue, Mississauga, Ontario. File CT2892.00.

APPENDICES

APPENDIX I

FIGURES

APPENDIX II

TABLES

TABLE 1Monitoring Well Construction Details25-33 Hillcrest Ave. & 3154 Hurontario St., Mississauga, Ontario

Position and Depth

Well Desig.	UTM	UTM	Date of	Stick	Depth of	Depth to	Screen	Depth to	Depth to	Depth to
	Northing	Easting	Construct	Down	Borehole	Well	Length	Screen	Screen	Top Sand
						Bottom		Bottom	Тор	
(m)	(m)	(m)		(m)	(m bg)	(m bg)	(m)	(m bg)	(m bg)	(m bg)
MW101	4826403	611250	22-Jul-19	-0.07	12.50	12.50	1.52	12.50	10.98	10.7
MW102(S)	4826373	611288	23-Jul-19	-0.14	4.50	4.50	3.05	4.50	1.45	1.2
MW102(D)	4826372	611288	23-Jul-19	-0.10	12.50	12.50	1.52	12.50	10.98	10.7
MW103	4826444	611317	24-Jul-19	-0.11	12.50	12.50	1.52	12.50	10.98	10.7
MW104	4826448	611356	25-Jul-19	-0.12	12.55	12.55	1.52	12.55	11.03	10.7
MW105	4826502	611324	26-Jul-19	-0.17	12.70	12.70	1.52	12.70	11.18	10.9
18MW-1	4826407	611252	14-Mar-18	-0.14	6.71	6.71	3.05	6.71	3.66	3.4
18MW-2	4826435	611278	14-Mar-18	-0.16	7.70	6.25	3.05	6.25	3.20	2.9
18MW-3(S)	-	-	23-Mar-18	-	2.74	2.74	1.52	2.74	1.22	0.9
18MW-3(D)	4826460	611289	23-Mar-18	-0.27	6.50	6.15	3.05	6.15	3.10	2.8
18MW-4	4826414	611299	14-Mar-18	-0.12	6.15	3.90	1.52	3.90	2.38	2.1
18MW-5	4826425	611332	14-Mar-18	-0.13	8.08	6.10	-	6.10	-	-
BH1	4826476	611304	13-Apr-18	-0.09	5.49	5.49	3.05	5.49	2.44	2.1
BH2	4826507	611328	13-Apr-18	-0.10	4.72	4.72	3.20	4.72	1.52	1.2
BH3	4826447	611357	13-Apr-18	-0.13	4.27	4.27	3.05	4.27	1.22	0.9
MW203	4826398	611211	29-Jan-20	-0.17	6.10	6.10	3.05	6.10	3.05	2.8
MW206	4826364	611277	29-Jan-20	-0.08	6.10	6.10	3.05	6.10	3.05	2.8
MW301A	4826335	611254	30-Nov-20	-0.12	15.40	15.25	3.05	15.25	12.20	11.9
MW301B	4826409	611197	30-Nov-20	-0.14	6.40	6.40	1.52	6.40	4.88	4.6
MW307	4826372	611247	01-Dec-20	-0.11	6.10	6.10	3.05	6.10	3.05	2.8
MW312	4826450	611354	02-Dec-20	-0.09	15.10	6.10	3.05	6.10	3.05	2.8
MW318A	4826506	611277	03-Dec-20	-0.17	15.55	15.25	3.05	15.25	12.20	11.9
MW318B	4826504	611278	03-Dec-20	-0.23	6.40	6.40	1.52	6.40	4.88	4.6
MW319A	4826408	611198	03-Dec-20	-0.15	15.30	15.25	3.05	15.25	12.20	11.9
MW319B	4826409	611197	04-Dec-20	-0.11	6.10	6.10	3.05	6.10	3.05	2.8

TABLE 1

Monitoring Well Construction Details 25-33 Hillcrest Ave. & 3154 Hurontario St., Mississauga, Ontario *Key Elevations*

Well Desig.	Ground	End of Top of		Screen	Screen
_	Elev.	Borehole	Pipe Elev.	Bottom	Top Elev.
		Elev.		Elev.	
	(m asl)	(m asl)	(m asl)	(m asl)	(m asl)
MW101	123.09	110.59	123.03	110.59	112.11
MW102(S)	121.12	116.62	120.98	116.62	119.67
MW102(D)	121.12	108.62	121.02	108.62	110.14
MW103	121.12	108.62	121.00	108.62	110.14
MW104	120.11	107.56	119.99	107.56	109.08
MW105	121.21	108.51	121.04	108.51	110.03
18MW-1	123.07	116.36	122.93	116.36	119.41
18MW-2	121.71	114.01	121.55	115.46	118.51
18MW-3(S)	-	-	-	-	-
18MW-3(D)	121.71	115.21	121.44	115.56	118.61
18MW-4	121.11	114.96	120.99	117.21	118.73
18MW-5	119.70	111.62	119.57	113.60	-
BH1	121.33	115.84	121.24	115.84	118.89
BH2	120.99	116.27	120.89	116.27	119.47
BH3	120.06	115.79	119.93	115.79	118.84
MW203	125.89	119.79	125.72	119.791	122.841
MW206	121.36	115.26	121.28	115.26	118.31
MW301A	122.662	107.26	122.539	107.412	110.462
MW301B	122.616	116.22	122.471	116.216	117.736
MW307	122.996	116.90	122.881	116.896	119.946
MW312	120.209	105.11	120.115	114.109	117.159
MW318A	123.248	107.70	123.083	107.998	111.048
MW318B	123.308	116.91	123.082	116.908	118.428
MW319A	126.302	111.00	126.148	111.052	114.102
MW319B	126.354	120.254	126.243	120.254	123.304

Notes:

 m asl = metres above sea level
 m bg = metres below ground (or grade)
 Monitoring wells 18MW-1 through 18MW-5 were installed by Toronto Inspection Ltd.
 Monitoring wells BH1 through BH3 were installed by Colestar Environmental Inc.
 No well construction details provided in borehole logs for 18MW-5, field measured well depth used.

TABLE 2Observed Groundwater Levels25-33 Hillcrest Ave. & 3154 Hurontario St., Mississauga, Ontario

Well	Date	Ground	Top Pipe	Well	Ground	dwater	Gr'water	Comment
Desig.			Elev.	Deptn (m.bg)	Der (m. hmn)	otn (m.hg)	Elev.	Comment
		(masi)	(111 851)	(in by)		(m bg)	(11 ası)	
MW101	26-Jul-19	123.09	123.03	12.50	7.80	7.86	115.23	
	31-Jul-19				7.89	7.89	115.14	
	06-Aug-19				7.92	7.92	115.11	
	09-Aug-19				7.92	7.92	115.11	
MW102(S)	26-Jul-19	121.12	120.98	4.50	2.78	2.92	118.20	
	31-Jul-19				2.82	2.96	118.16	
	06-Aug-19				2.85	2.99	118.14	
	09-Aug-19				2.89	3.03	118.10	
	10-Dec-20				2.86	3.00	118.13	
	23-Dec-20				2.85	2.99	118.13	
	07-Jan-21				2.69	2.83	118.29	
MW102(D)	26-Jul-19	121.12	121.02	12.50	5.82	5.92	115.21	
	31-Jul-19				5.87	5.97	115.21	
	06-Aug-19				5.80	5.90	115.21	
	09-Aug-19				5.90	6.00	115.21	
	10-Dec-20				5.72	5.82	115.21	
	23-Dec-20				5.76	5.86	115.21	
	07-Jan-21				5.74	5.84	115.21	
MW103	26-Jul-19	121.12	121.00	12.50	5.58	5.70	115.42	
	31-Jul-19				5.80	5.92	115.21	
	06-Aug-19				5.84	5.96	115.16	
	09-Aug-19				5.86	5.98 5.77	115.15	
	10-Dec-20				5.05	5.77	115.30	
	23-Dec-20				5.00	5.78 5.75	115.34	
	07-Jan-21	100.11	110.00	10 55	5.63	5.75	115.38	
10100104	20-Jul-19	120.11	119.99	12.55	4.85	4.97	115.14	
	31-Jul-19				4.88	5.00	115.11	
	00-Aug-19				4.92	5.04	115.07	
	09-Aug-19				4.93	5.05		
	10-Dec-20				4.83	4.95	115.10	
	23-Dec-20				4.88	5.00	115.11	
	07-Jan-21	404.04	101.04	10.70	4.80	4.98	115.13	
10100105	26-Jul-19	121.21	121.04	12.70	3.88	4.04	117.17	
	31-Jul-19				4.92	5.08	110.13	
	06-Aug-19				4.98	5.14	116.07	
	10 Dec 20				5.00	5.17 5.16	110.04	
	10-Dec-20				4.99	5.10 5.14	110.00	
	23-Dec-20				4.97	5.14	116.07	
M///202	10 Doo 20	125.90	125 72	6 10	4.94	3.72	122.10	
10100203	23_Dec_20	120.09	120.72	0.10	3.57	3.73	122.10	
	07_ lan 21				3.50	3.62	100 01	
	10 lon 21				3.52	3 71	122.21	
	19-Jan-21				3.55	ა./ I	122.1ŏ	

TABLE 2Observed Groundwater Levels25-33 Hillcrest Ave. & 3154 Hurontario St., Mississauga, Ontario

Well	Date	Ground	Top Pipe	Well	Ground	dwater	Gr'water	
Desig.		Elev.	Elev.	Depth	Dep	oth	Elev.	Comment
		(m asl)	(m asl)	(m bg)	(m bmp)	(m bg)	(m asl)	
MW206	10-Dec-20	121.36	121.28	6.10	3.04	3.12	118.24	
	23-Dec-20				2.98	3.05	118.31	
	07-Jan-21				2.80	2.87	118.49	
	19-Jan-21				2.85	2.93	118.43	
MW301A	10-Dec-20	122.66	122.54	15.25	5.16	5.28	117.38	
	23-Dec-20				5.13	5.25	117.41	
	07-Jan-21				5.06	5.18	117.48	
	19-Jan-21				4.76	4.88	117.78	
MW301B	10-Dec-20	122.62	122.47	6.40	4.51	4.66	117.96	
	23-Dec-20				4.36	4.50	118.12	
	07-Jan-21				4.22	4.36	118.26	
	19-Jan-21				4.20	4.35	118.27	
MW307	10-Dec-20	123.00	122.88	6.10	5.03	5.12	117.86	
	23-Dec-20				4.21	4.30	118.67	
	07-Jan-21				4.03	4.12	118.86	
	19-Jan-21				4.15	4.25	118.73	
MW312	10-Dec-20	120.21	120.12	6.10	2.23	2.32	117.89	
	23-Dec-20				3.29	3.39	116.82	
	07-Jan-21				3.16	3.25	116.96	
	19-Jan-21				3.29	3.39	116.82	
MW318A	10-Dec-20	123.25	123.08	15.25	2.65	2.81	120.44	possibly not static
	23-Dec-20				4.27	4.44	118.81	possibly not static
	07-Jan-21				5.66	5.83	117.42	
	19-Jan-21				5.91	6.07	117.18	
MW318B	10-Dec-20	123.31	123.08	6.40	4.17	4.39	118.92	
	23-Dec-20				4.31	4.54	118.77	
	07-Jan-21				4.17	4.40	118.91	
	19-Jan-21				4.40	4.63	118.68	
MW319A	10-Dec-20	126.30	126.15	15.30	2.71	2.86	123.44	
	23-Dec-20				14.54	14.69	111.61	still recovering from well development
	07-Jan-21				14.22	14.38	111.92	still recovering from well development
	19-Jan-21				12.66	12.82	113.49	still recovering from well development
MW319B	10-Dec-20	126.35	126.24	6.10	4.00	4.11	122.25	
	23-Dec-20				4.12	4.23	122.12	
	07-Jan-21				3.87	3.98	122.37	
	19-Jan-21				3.99	4.10	122.26	

Notes

1. Ground elevation surveyed with TOPCON GNSS Positioning System

2. Tops of pipe elevation surveyed with TOPCON GNSS Positioning System

3. m asl = metres above sea level

4. m bmp = metres below measurement point (Top of pipe)

5. m bg = metres below ground

6. >, < values are based on screen bottom depth and elevation

TABLE 3 Summary of Groundwater Quality 25-33 Hillcrest Ave. & 3154 Hurontario St., Mississauga, Ontario

		Sewers Bylaw		MW312				
		Pool Sanitary	Mississauga	19- Jan-21				
	Units	r cer Gaintary	Storm	10-0411-21				
MISCELLANEOUS INORGANIC PARAMETERS								
Fluoride	mg/L	10		<0.33				
рН	pH units	5.5-10	6.0-9.0	7.46				
Total Suspended Solids	mg/L	350	15	30				
Cyanide - Total (CN)	mg/L	2	0.02	<0.002				
Total Residual Chlorine	mg/L	-	1	<0.1				
METALS (Total)	•	•						
Aluminium (Al)	mg/L	50	1	0.791				
Antimony (Sb)	mg/L	5	-	<0.020				
Arsenic (As)	mg/L	1	0.02	<0.015				
Cadmium (Cd)	mg/L	0.7	0.008	<0.005				
Hexavalent Chromium (Cr VI)	mg/L	-	0.04	<0.005				
Chromium (Cr)	mg/L	5	0.08	<0.015				
Cobalt (Co)	mg/L	5	-	<0.020				
Copper (Cu)	mg/L	3	0.04	<0.010				
Lead (Pb)	mg/L	3	0.120	<0.020				
Manganese (Mn)	mg/L	5	0.05	0.267				
Mercury (Hg)	mg/L	0.01	0.0004	<0.0002				
Molybdenum (Mo)	mg/L	5	-	<0.020				
Nickel (N)	mg/L	3	0.08	<0.015				
Selenium (Se)	mg/L	1	0.02	<0.020				
Silver (Ag)	mg/L	5	0.12	<0.010				
Tin (Sn)	mg/L	5	-	<0.025				
Titanium (Ti)	mg/L	5	-	0.021				
Zinc (Zn)	mg/L	3	0.04	<0.020				
MICROBIOLOGICAL AND NUTRIENTS								
Escherichia coli	CFU/100 mL	-	200	<1				
Oil & Grease: Animal and Vegetable	mg/L	150	-	<0.5				
Oil & Grease: Mineral and Synthetic	mg/L	15	-	<0.5				
Biological Oxygen Demand (BOD)	mg/L	300	15	5				
Phenolics (4AAP)	mg/L	1.0	0.008	0.004				
Phosphorus (P)	mg/L	10	0.4	0.04				
Sulfate (SO4)	mg/L	1500	-	385				
Total Kjeldahl Nitrogen (TKN)	mg/L	100	1	6.30				

Notes

1. Criteria based on Peel Region sewer bylaw (53-2010) and City of Mississauga storm sewer bylaw (0259-2005)

2. Bold and italic values at least exceed either Table 1 or Table 2, as highlighted

3. mg/L = milligrams per litre

4. CFU/100mL = colony forming units per 100 millilitres

5. "-" indicates no established criteria for the parameter

TABLE 3 Summary of Groundwater Quality 25-33 Hillcrest Ave. & 3154 Hurontario St., Mississauga, Ontario

		Sewe	MW312							
	Linita	Peel Sanitary	Mississauga	19-Jan-21						
	Units	,	Storm							
VOLATILE ORGANIC COMPOUNDS										
Benzene	mg/L	0.01	0.002	<0.0002						
Chloroform	mg/L	0.04	-	<0.0002						
Methylene Chloride (Dichloromethane)	mg/L	2	-	<0.0003						
Dichlorobenzene, 1,2-	mg/L	0.05	-	<0.0001						
Dichlorobenzene,1,4-	mg/L	0.08	-	<0.0001						
Dichloroethylene, cis-1,2-	mg/L	4	-	<0.0002						
Dichloropropene, trans-1,3-	mg/L	0.14	-	<0.0003						
Ethylbenzene	mg/L	0.16	0.002	<0.0001						
Methyl Ethyl Ketone	mg/L	8.0	-	<0.0009						
Styrene	mg/L	0.2	-	<0.0001						
Tetrachloroethane, 1,1,2,2-	mg/L	1.4	-	<0.0001						
Tetrachloroethylene	mg/L	1	-	<0.0001						
Toluene	mg/L	0.27	0.002	<0.0002						
Trichloroethylene	mg/L	0.4	-	<0.0002						
Xylenes (Total)	mg/L	1.4	0.04	<0.0001						
Polycyclic Aromatic Hydrocarbons	mg/L	-	0.002	<0.0003						
SEMIVOLATILE ORGANIC COMPOUI	NDS									
Bis (2-ethylhexyl) phthalate	mg/L	0.012	-	<0.0005						
Di-N-Butyl phthalate	mg/L	0.08	-	<0.0005						
MISCELLANEOUS ORGANIC PARAMETERS										
Nonylphenols (Total)	mg/L	0.02		<0.001						
Nonylphenol Ethoxylate (Total)	mg/L	0.2		<0.001						
PCBs	mg/L	0.001		<0.0002						

Notes

1. Criteria based on Peel Region sewer bylaw (53-2010) and City of Mississauga storm sewer bylaw (0259-2005)

2. Bold and italic values at least exceed either Table 1 or Table 2, as highlighted

3. mg/L = milligrams per litre

4. CFU/100mL = colony forming units per 100 millilitres

5. "-" indicates no established criteria for the parameter

TABLE 4 Predicted Construction Dewatering Rate 3154 and 3168 Hurontario St. and 25 to 33 Hillcrest Ave., Mississauga

Parameter	Value	Units	Symbol	Origin of Value
Aquifer Hydraulic Conditions				
Hydraulic conductivity	7.0E-07	m/s	к	Maximum observed in bail tests
Hydraulic connection to water table	Unconfined			Interpreted
Analogous Dewatering Array Dimens	ions			
Analogous shape	Rectangula	r trench		
Long axis along excavation	196.0	m	×	Based on property boundary
Short axis along exavation	104.2	m 2	J	= A / X, average width
Garage footprint area to be dewatered	20,427	m ²	A	
Radius of equivalent wells at short sides	52.1	m	ΓW	= 3 / 2
Subsurface Vertical Dimensions				
Surface grade (current)	122.5	masl	E _G	Representative average, varies from 120 to 128 masl
Foundation slab (upper surface), depth	16.0	mbg	D _F	$= E_G - E_F$
Foundation slab (upper surface), elevation	106.5	masl	E _F	Design plan
Elevation difference between excavation base and foundation slab surface	1.0	m		$= E_F - E_{EX}$
Excavation base (bases of footings), elevation	105.5	masl	E _{EX}	Design plan
Excavation base (bases of footings), depth	17.0	mbg	D_EX	$= E_G - E_{EX}$
Assumed elevation difference between excavation base and reference datum	3.0	m		
Reference datum (for calculation)	102.5	masl	E _{RD}	Set at 3 m below base of excavation
Dowatoring Loyals and Dimonsions				
Water table elevation	119 7	masl	FW	= Fo - DW SHAL
Water table, depth	2.8	m		Shallowest water table observed
Puffer for account fluctuation	2.0		BUUSHALL	Beend on notantial for higher water levels during anring
	1.0	111		
Height of water table above reference	120.7	masi	EVV HIGHEST	- EW _{HIGH} + D. Allows for seasonal incluation
datum	18.2	m	Н	= EW _{HIGHEST} - E _{RD}
Target dewatering level, elevation	104.5	m asl	EW_{TARG}	Target is 1 m lower than excavation base = E _{EX} -1.0 m
Target dewatering level, depth	18.0	mbg	DW_{TARG}	Target is 1 m deeper than excavation bas. = D_{EX} + 1.0 m
Height of target water level above datum	2.0	m	h _T	
Radius of Influence				
Applied equation	$R_0 = 3000 * (H - h_T) * (K)$	0.5		Sichardt and Kryieleis (1930)
Radius of Influence	41	m	Ro	As measured from excavation edge
Equivalent line source	20	m	L	Half of radius of influence
Incident Stormwater				
Excavation open area	20,427	m²	А	Design plan
Typical large large storm	25	mm/dav	P⊤	Typically 4 to 5 events/year. Larger is possible.
Stormwater (i.e. from precipitation)	510 7	m ³ /day	0	$= A * P_{\tau}$
Change of units (rounded)	510.675	litres/dav		
, , , , , , , , , ,	,	· -	OTORIM	
Estimated Flows to be Managed	-			
Applied equation for trench long sides	$Q_{GW} = 2 * X * K^* (H^2 - h_T^2)$) / (3.34 x 10 ⁻⁵	' * L)	Powers et. al, 2007
Applied equation for trench short sides	$Q_{GW} = K * (H^2 - h_T^2) / (5.3)$	51 x 10 ⁻⁶ *ln ((F	R _o +R _w)/R _w))	Powers et. al, 2007
Groundwater seepage from long sides	132.2	litres/min	Q_{GW-LS}	Calculated from values in this sheet

ereditation seepage from long slace	102.2	110 00/11111	-GW-LS	
Groundwater seepage from short sides	74.8	litres/min	Q_{GW-ShS}	Calculated from values in this sheet
Groundwater seepage from all sides	207.0	litres/min	Q _{GW-ShS} + Q _{GW-LS}	8
Change of units	298,120	litres/day		
Safety factor	2.0			Allow for unknown conditions between boreholes or beyond the excavation walls
Groundwater seepage, with safety factor	596,239	litres/day		= Safety Factor x Q _{GW}
Groundwater seepage plus storm water	1,106,914	litres/day		= Safety Factor x Q _{GW} + Q _{STORM}
Applicable regulatory Instrument	PTTW R	equired		MECP, O.Reg 245/11, O.Reg 387/04; OWRA S.41
Value to specify in regulatory instrument	1,106,910		litres/day	Value includes stormwater. Rounded value.

Notes.

1. Patrick Powers, Arthur Corwin, Paul Schmall, Walter Kaeck. 2007. Construction Dewatering and Groundwater Control. Third Edition.

2. mbg = metres below ground level

3. masl = metres above sea level

Terrapex Environmental Ltd. 2022-05-03 1:48 PM

3168 HS LP CT2892.03

TABLE 5Predicted Foundation Drainage Rate3154 and 3168 Hurontario St. and 25 to 33 Hillcrest Ave., Mississauga

Parameter	Value	Units	Symbol	Origin of Value
Aquifer Hydraulic Conditions				
Hydraulic conductivity	7.0E-07	m/s	К	Maximum observed in bail tests
Hydraulic connection to water table	Unconfined	I		Interpreted
Analogous Dewatering Array Dimensi	ons			
Analogous shape	Rectangle / Trench			
Long axis along excavation	196.0	m	Х	Based on property boundary
Average width of exavation	104.2	m	J	= A / X, average width
Garage footprint area to be dewatered	20,427	m²	A	Site plans
Radius of an equivalent well at ends	52.1	m	R _w	= J / 2
Subsurface Vertical Dimensions				
Surface grade (approximate average)	122.5	masl	E _G	Representative average, varies from 120 to 128 masl
Foundation slab (upper surface), depth	16.0	mbg	D _F	= E _G - E _F
Foundation slab (upper surface), elevation	106.5	masl	E _F	Design plan
Elevation difference between foundation	0.3	m		Typical for this type of structure
slab and foundation drains	0.0		_	
Foundation drains, elevation	106.2	masl	E _{EX}	Assumed 0.3 m lower than foundation slab surface
Foundation drains, depth	16.3	mbg	D_EX	Assumed 0.3 m deeper than foundation slab surface
Elevation difference between foundation	3.0	m		Assumed
Reference datum (for calculation)	103.2	masl	E _{RD}	Set at 3 m below foundation drains
Dewatering Levels and Dimensions				
Water table, elevation	119.7	masl	EWHIGH	= E _G - DW _{SHALL}
Water table, depth	2.8	m	DW _{SHALL}	Shallowest water table observed
Buffer for seasonal fluctuation	10	m	B	Based on potential for higher water levels during spring
Water table elevation (pre-pumping level)	120.7	masl	EVV _{HIGHEST}	= EW _{HIGH} + B. Allows for seasonal fluctuation
Height of water table above reference datum	17.5	m	Н	= EW _{HIGHEST} - E _{RD}
Target dewatering level, elevation	106.2	m asl	EW_{TARG}	Target is foundation drain elevation, E_{EX}
Target dewatering level, depth	16.3	mbg	DW_{TARG}	Target is foundation drain depth, D _{EX}
Height of target water level above datum	3.0	m	h _T	
Radius of Influence				
Applied equation	$R_{0} = 3000 * (H - h_{T}) * (K)$	0.5		Sichardt and Krvieleis (1930)
Radius of Influence	36	m	Ro	As measured from excavation edge
Equivalent line source	18	m	L	Half of radius of influence
Estimated Flows to be Managed		_		
Applied equation for trench long sides	$Q_{GW} = 2 * X * K^* (H^2 - h_T^2)$) / (3.34 x 10 ⁻⁵	* L)	Powers et. al, 2007
Applied equation for trench short sides	$Q_{GW} = K * (H^2 - h_T^2) / (5.31 \times 10^{-6} * \ln ((R_0 + R_W)/R_W))$			Powers et. al, 2007
Groundwater seepage from long sides	134.2	litres/min	Q_{GW-LS}	Calculated from values in this sheet
Groundwater seepage from short sides	74.0	litres/min	Q_{GW-ShS}	Calculated from values in this sheet
Groundwater seepage from all sides	208.2	litres/min	Q	$Q = Q_{GW-ShS} + Q_{GW-LS}$
Change of units	299,774	litres/day		= Q * 24 * 60
Safety factor	2.0			Allow for unknown conditions between boreholes or beyond the excavation walls

599,500 litres/day

<u>Notes</u>

- 1. Patrick Powers, Arthur Corwin, Paul Schmall, Walter Kaeck. 2007. Construction Dewatering and Groundwater Control. Third Edition.
- 2. mbg = metres below ground level
- 3. masl = metres above sea level

APPENDIX III BOREHOLE RECORDS
CLIENT: TAS Design Build	METHOD: Spli	it Spoon Sar	npling and Ro	ock Coring	BHN	o · MW101
PROJECT: 3154 Hurontario St & 25-33 Hillcrest Ave	PROJECT ENG	SINEER: VN	ELEV. (m) 1	23.094	DITIN	
LOCATION: Mississauga, ON	NORTHING:		EASTING:			D.: CT2892.00
SAMPLE TYPE AUGER DRIVEN		NG	DYNAMIC CON Water		SHELBY	
GWL SOIL DESCRIPTION		(kPa) <u>80 120 160</u> N-Value ws/300mm) 40 60 80	Content (%) PL W.C. LL 20 40 60 80	o SAMPLE NO. SAMPLE TYPE	SPT(N) HEX/IBL (ppm) Well Construction	REMARKS
Asphaltic Concrete (50 mm) 0 Granular base (50 mm) 0 0.	123 - 10 5 122.5 -		7	1A 1B	10 <5/0 <5/0	Groundwater was measured at 7.99 mbgs on Aug 6, 2019. S1B: M&I
very stiff to stiff, damp, brown clayey silt trace gravel, trace sand occasional brick pieces	122 - 21		11	2	21 <5/0	
(FILL)	⁵ 121.5 – 9 121 – 9		12	3	9 <5/50	S3: BTEX, PHCs(F1-F4), VOCs (DUP)
- 2.	5 120.5 -	86/200	8	4	86/ 200 45/0	S4: EC/SAR
S6: SILTY CLAY -3 TCR= 78% trace shale - RQD= 0% fragments - 3.	120 - 50/7	75 🔺	9 7	5	50/ <5/0 75	
S7: TCR= 100%	119.5					
RQD = 83% S8: TCR = 99% RQD = 27%	.5 118.5 –					
5 59:	118 -			8		
TCR= 97% RQD= 50%	117.5 -			9		
S10: Georgian Bay TCR= 100% Formation: RQD= 46% grey Medium strong	.5 116.5					
SHALE moderately weathered 7 intensely to moderately fractured 7	116-			10		
occasional thin S11: limestone beddings TCR= 98% occasional thin RQD= 68% clay seams	115.5					
8.	5			11		
9 S12: TCR= 100%						
$\begin{bmatrix} RQD=57\% \\ C \end{bmatrix}$.5			H		
						2010
TERRAPEX		REVIEWED	BY: VN	Page 1 of 2	July 22,	2013

CLIENT: TAS Design Build	METHO	D: Split	t Spoon Sai	mpling and R	ock Coring		o · M\\/101
PROJECT: 3154 Hurontario St & 25-33 Hillcrest Av	e PROJEC	CT ENG	INEER: VN	ELEV. (m)	123.094		
LOCATION: Mississauga, ON	NORTHI	ING:		EASTING:		PROJECT NO	.: CT2892.00
SAMPLE TYPE AUGER DRIVEN		CORIN	IG	DYNAMIC CO	NE S	HELBY	SPLIT SPOON
GWL (m) IO SOIL DESCRIPTION	DEPTH (m)	40 8 40 8 (Blow 20 4	ar Strength (kPa) I-Value vs/300mm) 40 60 80	● Water Content (%) ■ PL W.C. LI 20 40 60 {	SAMPLE NO. SAMPLE TYPE	SPT(N) HEX/IBL (ppm) Well Construction	REMARKS
GWL (m) Description Image: state	(E) NOLEYAJJ 10 113 10.5 112.5 11 112 11.5 111.5 12 111	Shea	ar Strength (kPa) 0 120 160 I-Value vs/300mm) 10 60 80	Water Content (%)	advised and a set of the set of t	SPT(N) SPT(N) HEX/IBL (ppm) HEX/IBL (ppm) Output Mell	REMARKS
TFRRAPFX			LOGGED B	SY: DM	DRILLING D	ATE: July 22,	2019
			REVIEWED	BY: VN	Page 2 of 2		

CLIEN	TAS Design Build	Ν	IETHO	D: Spli	t Sp	oon S	amp	oling	and R	ock	Cor	ing		RH	Nc	• MW102D
PROJE	CT: 3154 Hurontario St & 25-33 Hillcrest	Ave F	PROJEC	T ENG	INEE	ER: V	N	ELE	V. (m)	121	.124					
LOCAT	ION: Mississauga, ON	r		NG:		_		EAS	TING:		_			ROJEC	T NC	D.: C12892.00
SAMPL					NG ar Stre	enath		YNAN	AIC CO Vater	NE			SHE	lby I		
GWL (m)	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	40 8 (Blov	(kPa) 80 12 N-Valu ws/300) 2 <u>0 160</u> ue 0mm)	-	PL V	w.c. L	L 80	SAMPLE NO.	SAMPLE TYPE	SPT(N)	HEX/IBL (ppm)	Well Construction	REMARKS
407	Asphaltic Concrete (125 mm)	0	121 -		40 0		1	3				Ť				Groundwater was
	Granular Base (400 mm)	- 0.5	120 5 -	25							1A 1B		25	10/0 <5/0		measured at 5.91 mbgs on Aug 6, 2019.
	loose, damp, reddish brown silty sand, trace gravel	- - - - - - - - - - - - - - - - - - -	120.0 	10				19			2		10	10/0		
	(FILL)	-2	119-	▲ 8 ▲ 15			1	4			3 4A		8	<5/0 <5/0		
	8	2.5	- 118.5 -									\square		15/0		S4B: EC/SAR (DUP)
	hard, damp, brown SILTY CLAY	- 	118 -				1	5			48			<5/0		
	trace shale fragments	- 3.5	- - 117.5 -	4			1	3			5		47	<5/0		
	grey WEATHERED SHALE	-4	117 -	50/2	25 ▲						6		50/ 25	<5/0		
	TCR= 94% RQD= 44%	4.5	- - 116.5 -								7	K				
	S8: TCR= 72% RQD= 42%	- 5	116 -													
		- - 5.5 -	115.5 -								8					
	S9: Georgian Bay	-6	115 -													
	RQD= 24% Grey Medium strong	6.5	114.5 -								9	V				
	S10: moderately TCR= 100% weathered RQD= 73% intensely to	-7	114 -								10	V				
	fractured occasional thin	- 7.5	113.5 -									$\left \right $				
	limestone beddings occasional thin S11: day seams	-8	113 -													
	TCR= 100% RQD= 57%	- 8.5	112.5								11					
	S12:	9	112 -													
	TCR= 100% RQD= 71%	9.5	111.5 -									X				
	TEDDADEY				LO	GGED	BY:	DM		DR	ILLIN	IG [DATE	E: July	23,	2019
	V IERRAPEX				RE	VIEW	ED B	Y: V	N	Pa	ge 1	of 2				

CLIENT: TAS Design Build	METHO	HOD: Split	Spoon Sar	npling and Ro	ck Coring		
PROJECT: 3154 Hurontario St & 25-33 Hillcrest Ave	e PROJEC	JECT ENGI	NEER: VN	ELEV. (m) 1	21.124		
LOCATION: Mississauga, ON	NORTHI	RTHING:		EASTING:		PROJECT NC	D.: CT2892.00
SAMPLE TYPE AUGER DRIVEN			G	DYNAMIC CON	IE S		
GWL GWL SOIL DESCRIPTION	DEPTH (m) ELEVATION (m)	(E) (10 (E) (1	(kPa) 0 120 160 -Value (s/300mm) 0 60 80	Content (%) PL W.C. LL 20 40 60 8(SAMPLE NO. SAMPLE TYPE	SPT(N) HEX/IBL (ppm) Well Construction	REMARKS
S13: Georgian Bay TCR= 100% Formation: RQD= 71% Grey Medium strong SHALE moderately weathered intensely to moderately fractured occasional thin limestone beddings occasional thin clay seams END OF BOREHOLE	Ham Ham 10 111 10.5 110.5 11 109.5 12 109			Y: DM			2019
TERRAPEX		-	REVIEWED	Y: DM BY: VN	DRILLING D	ATE: July 23,	2019

CLI	ENT:	TAS Design Build	1	IETHO	D: Hol	low S	Step /	٩ug	ger						ВΠ	Nc	· MW1029
PR	DJEC	T: 3154 Hurontario St & 25-33 Hillcrest	Ave F	PROJEC	T ENG	SINEE	R: V	N	ELE	V. (m	ı) 12′	1.115	5		БП	INC	D IVIVV I UZS
LOC	CATIC	N: Mississauga, ON	1		NG:		_		EAS	STING	3:	_	-	PF	ROJEC	T NC	D.: CT2892.00
SAN	/PLE	TYPE AUGER DRIVE	N T			NG	angth		DYNA	MIC (CONE	╷┖		SHEI	_BY		
GWL (m)	SOIL SYMBOL	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	40 (Blor 20	(kPa) 80 12 N-Valu ws/30 40 6	20 160 20 160 1e 0mm) 0 80	-	PL 20 4	W.C. 40 60	t LL) 80	SAMPLE NO.	SAMPLE TYPE	SPT(N)	HEX/IBL (ppm)	Well Construction	REMARKS
Ţ		Straight auger to 4.5 m to install the monitoring well	- 0.5 - 1 - 1.5 - 2.5 - 3 - 3.5 - 4	120.5 120.5 120- 119.5 119.5 118.5 118.5 118.5 117.5 117.5													Groundwater was measured at 2.98 mbgs on Aug 6, 2019. Bentonite sand sand + screen
		END OF BOREHOLE															2010
		TERRAPEX				RE	VIEW	ED	r: DN BY: \	I /N	Pa	ige 1	of 1	JATE	.: July	1 23,	2019

CLIENT:	TAS Design Build	Ν	NETHOD): Spli	it Sp	oon S	am	pling a	and F	Rock	Cori	ng		BП		0 · MW103
PROJEC	T: 3154 Hurontario St & 25-33 Hillcrest	Ave F	PROJEC	T ENG	INEE	R: V	N	ELEV	/. (m)	121	1.116	i		БП		0 19199 103
LOCATIO	DN: Mississauga, ON	١	VORTHI	NG:		_		EAST	TING:		_		PF	ROJEC	T NC	D.: CT2892.00
SAMPLE		N 1	╷ 🔼 ╷	CORIN	NG ar Str	ength		YNAM	IIC CO	ONE	╷┖		SHE	LBY		
G (m) G (m)	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	40 1 (Blov	(kPa) 80 12 N-Valu ws/30 40 6	20 160 20 160 ue 0mm) 50 80	•	Co (PL V 20 40	Valer ontent (%) V.C.	LL 80	SAMPLE NO.	SAMPLE TYPE	SPT(N)	HEX/IBL (ppm)	Well Construction	REMARKS
6.65	Asphaltic Concrete (100 mm)	Eo	121 -								14		16	<5/0		Groundwater was
	compact, dark brown, damp silty sand, trace gravel (FILL)	- 0.5	120.5 -	16 20 ▲							1B 2		20	<5/0		measured at 5.95 mogs on Aug 6, 2019. S1B: M&I, PAHs (DUP)
2,000	compact, moist, reddish brown SILTY SAND	-2	119.5 - - - 119 - -	12							3		12	<5/0		
	dense, damp, brown GRAVELLY SAND	- - 2.5 - - - 3	- 118.5 – - - -	31							4		31	20/0		
	hard, damp, brown SILTY CLAY trace shale fragments		118 – - - 117.5 –	50/15	50						5		50/ 150	25/0		S5: EC/SAR
	grey, WEATHERED SHALE	-4	117 -	50/2	25▲						6	V	50/ 25	5/0		
	S7: TCR= 100% RQD= 21%	-4.5	116.5 -								7	ľ				
	S8: TCR= 100% RQD= 30%	- 5	116 – 115.5 –								8	V				
¥	S9: Georgian Bay		115 -									\land				
	TCR= 94% Formation: RQD= 56% grey Medium strong SHALE moderately weathered	- 6.5 - - - - 7	114.5 - - - - - - - -									V				
	intensely to moderately fractured occasional thin S10: limestone beddings	- - - - -	- 113.5 - -								9	\land				
	TCR= 100% occasional thin RQD= 70% clay seams	- 8 5	113 -								10	X				
	S11: TCR= 100% RQD= 64%	-9	112.5 - - - 112 -								11					
	S12: TCR= 100% RQD= 71%	- 9.5 -	111.5 -													
	TERRADEY				LO	GGED	BY	DM		DF	RILLIN	IG [DATE	E: July	/ 24,	2019
					RE	VIEWI	ED E	BY: VN	N	Pa	ige 1	of 2				

CLIENT: TAS Design Build	CLIENT: TAS Design Build ME 2ROJECT: 3154 Hurontario St & 25-33 Hillcrest Ave PR									k Co	ring	-	RH		<u>م ، ا</u>	MW1(וא
PROJECT: 3154 Hurontario St & 25-33 Hillcre	st Ave	PROJEC	T ENG	INEE	R: V	1	ELE	V. (m) 12	1.11	6	+			0		55
		NORTHI	NG:		_		EAS	TING	:			P	ROJEC	T NO		892.00	
SAMPLE TYPE AUGER DRIV	'EN			NG ar Stre	ength	D	YNAN	AIC C	ONE	: 		SHE	lby I		<u>_</u> ⊥	SPLITS	POON
	DEPTH (m)	ELEVATION (m)	40 (Blov 20	(kPa) <u>80 12</u> N-Valu ws/300 <u>40 6</u>	e 0 160 e 0mm) 0 80	•	PL 20 4	ontent (%) W.C. 0 60	LL 80	SAMPLE NO.	SAMPLE TYPE	SPT(N)	HEX/IBL (ppm)	Well Construction		REMARKS	i
S13: Georgian Bay TCR= 100% Formation: grey Medium strong SHALE moderately weathered Unitensely to moderately at 12. fractured 60.7 M occasional thin limestone beddings occasional thin clay seams END OF BOREHOLE	10 10 10 10 11 11 11 11 11 12 12 12 12 12	Image: state			3GED	BY									2019		
TERRAPEX	TERRAPEX						Y: V	N	P	age 2	2 of 2	2/7/16	Jul	, ∠ 1 ,	2019		

CLIE	ENT:	TAS Design Build	N	METHO	D: Spli	t Sp	oon	Sam	pling	and R	Rock	Cori	ng		BH	N	o. • MW104
		1: 3154 Hurontario St & 25-33 Hillcrest	Ave F			INEE	:R: \	/N	ELE	V. (m)	120	.110					CT2902.00
			r					. ,		STING:						TINC	
- SAN					Shea	ar Stre	ength	'.		Water							
GWL (m)	SOIL SYMBOL	SOIL DESCRIPTION	ОЕРТН (m)	ELEVATION (m	40 8 N (Blov	(kPa) 30 12 I-Valu vs/300) 2 <u>0 16</u> Je Omm)	0	C A PL	W.C. L	L	SAMPLE NO.	SAMPLE TYPE	SPT(N)	HEX/IBL (ppm)	Vell Construction	REMARKS
	2000 2000	Asphaltic Concrete (50 mm)	0	120 -		<u>+0 0</u>		,	4		80		Ĩ		-		Groundwater was
		Granular Base (550 mm)	- 0.5	- - 119.5 –		1		4				1		34	<5/0		measured at 5.04 mbgs on Aug 6, 2019.
		loose, damp, brown silty sand (FILL)	- - - - -	119	4			4				2		4	35/0		S2: M&I, PAHs, OCPs (DUP)
		reddish brown	- 1.5	- 118.5 –	4			6				ЗA		4	<5/0		
		damp	-2	-								3B			10/0		
		SILTY SAND trace gravel brown dense	- 2.5	118 -	43			5				4		43	<5/0		S4: EC/SAR
		hard, damp, brown SILTY CLAY, trace shale fragments	-3	117 -		79/2	25	1	0			5		79/ 225	<5/0		
		drov	- 3.5	116.5 -													
		GIEY WEATHERED SHALE	-4	116 -	50/7	5 🖌		5				6		50/ 75	<5/0		
		S7: TCR= 82% RQD= 7%	- 	- - 115.5 -									V				
Ā			-5	115 -								7	À				
		S8: TCR= 92%	- 5.5	- - 114.5 –													
		RQD= 37% Georgian Bay Formation: grey	-6	114 -									V				
		Medium strong SHALE moderately	- - 6.5	113.5 -								8	Å				
		weathered S9: intensely to TCR= 100% moderately ROD= 46%	-7	113 -													
		occasional thin limestone beddings	7.5	112.5								9	V				
		clay seams S10: TCR= 85%	-8	112													
		RQD= 0% S11: TCR= 75%	- 8.5	111.5 -								10	X				
		RQD= 41%	-9	111-													
			- 9.5	110.5 -								11					
		TFRRAPFX				LO	GGE	D BY	: DM		DR	ILLIN		DATE	E: July	25,	2019
		V . 1.000 1.7				RE	VIEV	VED	вү: V	'N	Pa	ge 1 o	ot 2				

CLIENT: TAS Design Build	CLIENT: TAS Design Build ME								l Ro	ock (Cori	ng	-	RH	IN	• ·	MW102	1
PROJECT: 3154 Hurontario St & 25-33 Hillcrest	Ave F	ROJEC	T ENG	SINEE	ER: V	N	ELE	EV. (r	n) 1	20.	110					0		T
LOCATION: Mississauga, ON	N		NG:		_		EAS	STIN	G:		-			ROJEC	CT NC		2892.00	
SAMPLE TYPE AUGER DRIVEN			CORI	NG ar Str	enath		DYNA	Wate	CON r	NE T			SHEI	LBY	-		SPLIT SPC	NOC
GWL (m) SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	40 (Blo 20	(kPa) 80 12 N-Valu ws/30 40 6	20 160 20 160 Je 0mm) 0 80	•	▲ PL 20	Wate Conter (%) W.C.	nt . LL <u>0 8</u>	0	SAMPLE NO.	SAMPLE TYPE	SPT(N)	HEX/IBL (ppm)	Well Construction		REMARKS	
S12: TCR= 92% RQD= 61% Georgian Bay UCS Formation: at 10.8- grey 56.0 MPa Medium strong SHALE moderately weathered intensely to moderately S13: fractured TCR= 100% occasional thin RQD= 87% timestone beddings occasional thin clay seams END OF BOREHOLE	- 10 - 10.5 - 11 - 11.5 - 12 - 12.5				GGEE					DR	12					2019		
TERRAPEX	TERRAPEX						BY: \	/N		Pag	le 2	of 2		Jul	y 20,	2019		

CLIE	NT:	TAS Design Build	ſ	METHO	D: S	plit	Spo	oon S	amp	ling a	and Ro	ock (Cori	ng		рц		0 · MW/105
PRO	JEC	T: 3154 Hurontario St & 25-33 Hillcrest	Ave F	PROJEC	CT EN	NGIN	IEE	R: VI	1	ELEV	/. (m)	121.	210			БП		
LOCA	ATIC	DN: Mississauga, ON	1	NORTHI	NG:					EAST	TING:		_	_	PF	ROJEC	TNC	D.: CT2892.00
SAM	PLE	TYPE AUGER DRIVE	N		COF	RING	3		DY	'NAM	IIC CO	NE		;	SHE	LBY		
GWL (m)	SOIL SYMBOL	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	40 (E 20	N-1 (k) <u>80</u> N-1 Blows 0 40	Stre (Pa)) <u>12</u> Valu s/300) 60	<u>0 160</u> e)mm)) 80		Co (PL V	Valer ontent (%) V.C. LL 0 60 8	- 30	SAMPLE NO.	SAMPLE TYPE	SPT(N)	HEX/IBL (ppm)	Well Construction	REMARKS
0	000	Asphaltic Concrete (75 mm) Granular Base (250 mm)	0	121 -	13				10							- 14		Groundwater was measured at 5.15 mbgs
		loose, damp, brown silty sand, trace gravel (FILL)	- 0.5 	120.5 - - - 120 -	3				6				1		3	<5/0 <5/0		on Aug 6, 2019. S2: M&I, PAHs, OCPs
		dense to compact, damp, brown gravelly sand (FILL)	- 1.5 	119.5 - 119 - 119 - 119 - 118.5 -		42			3				3		42 42	<5/0 <5/0		S4: SAR
		hard, damp, grey SILTY CLAY, trace shale fragments	-3	118	50	0/75			8				5		50/ 75	<5/0		
		grey WEATHERED SHALE	- - - - - -	- 117.5 –	50/	/125			5				6		50/ 125	<5/0		
		S7: TCR= 83% RQD= 0%	- 4.5	117 - 									7		120			
<u>√</u>		S8: TCR= 100% RQD= 7%	- 5	116 - - - 115.5 -									8	V				
		S9: Georgian Bay TCR= 94% Formation: RQD= 27% grey Medium strong SHALE moderately weathered intensely to moderately fractured occasional thin S10: limestone beddings TCR= 100% occasional thin RQD= 35% clay seams S11: TCR= 100% RQD= 57%	- 6.5 - 7 - 7.5 - 8.5 - 9.5	115 - 114.5 - 114.5 - 114.5 - 113.5 - 113.5 - 113.5 - 1112.5 - 1112.5 - 1112.5 - 1112.5 -				GGED	BY:	DM		DRI	9 10		DATE	: July	r 26,	, 2019
		TERRAPEX					RE\	/IEWE	DB	/: VI	N	Pag	e 1 (of 2			,	-

CLIENT: TAS Design Build	ETHO): Spli	t Spo	oon S	amp	oling	and	Roc	k Co	ring		рμ		~ • •		
PROJECT: 3154 Hurontario St & 25-33 Hillcrest A	Ave PF	ROJEC	T ENG	INEE	R: VI	۷	ELE	V. (m) 12	1.21	0		ВΠ		0.:	
LOCATION: Mississauga, ON	N	ORTHI	NG:		_		EAS	TING	:			PF	ROJEC	T NO	.: CT2	2892.00
SAMPLE TYPE AUGER DRIVEN	1		CORIN	IG	nath	D	YNAN	AIC C	ONE			SHE	LBY			SPLIT SPOON
GWL GWL SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	40 (Blov 20	(kPa) (kPa) 80 12 V-Valu vs/300 40 60	e 20 160 e 20mm) 20 80		PL 20 4	0ntent (%) W.C.	LL 80	SAMPLE NO.	SAMPLE TYPE	SPT(N)	HEX/IBL (ppm)	Well Construction		REMARKS
S12: Georgian Bay TCR= 100% Formation: RQD=55% grey UCS Medium strong at 11.5= 60.0 MPa moderately weathered intensely to moderately fractured occasional thin limestone beddings occasional thin clay seams END OF BOREHOLE	- 10 - 10.5 - 11 - 11.5 - 12 - 12.5	ш 1111 – 110.5 – 109.5 –			3GED	BY:	DM		80 D	0 11 12 RILLI					2019	
TERRAPEX	TERRAPEX								P	age 2	of 2	2		- ,		

CLIENT:	TAS Design Build	I	METHO	D: A	۱uge	erin	g an	d S	plit	Spo	oon	Sar	npli	ing			BL	I N	0 · BH106
PROJEC	CT: 3154 Hurontario St & 25-33 Hillcrest	Ave	PROJEC	ΤE	NGI	NEE	R: \	/N	E	ELE\	V. (n	ı) 1	22.	046			DI		U BHIUU
	DN: Mississauga, ON	1		NG:			_		E	AS		3:	_	-				TNO	.: CT2892.00
SAMPLE	TYPE AUGER DRIVE	IN		CO S	RIN Shea	G r Stre	enath		DYN	NAN V	IIC (Vater	CON	E			SHE	LBY I		
GWL GWL (m)	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	4	(0 8 N- Blow	(kPa) 0 12 -Valu s/300) 20 160 Je 0mm)	<u>D</u>	• • •	Co PL \	N.C.	LL		SAMPLE NO.	SAMPLE TYPE	SPT(N)	HEX/IBL (ppm)	Well Construction	REMARKS
	Asphaltic Concrete (65 mm) Granular Base (75 mm)	0	122	13		0 0							, 	1		13	<5/0		Borehole open and dry on completion.
	stiff, damp, grey silty clay, trace gravel (FILL)	- 0.5	121.5 -		.17									2A		17	65/0		S2A: M&I, PAHs
			121 -											2B			<5/0		
00000000000000000000000000000000000000	compact, damp, brown gravelly sand (FILL)	- 1.5 - - - 2	120.5 - - - - 120 -		19									3		19	70/0		
		- 2.5	- - 119.5 –		50									4		50	<5/0		
	hard, damp, browm SILTY CLAY trace shale fragments																		
	grey WEATHERED SHALE	4	118 -	6	0/20	5.								<u>\5</u> /	-1-1-	1 50/	<5/0/		
	END OF BOREHOLE															25			
	TERRAPEX				-	LO			Y: [DM · . //	N		DRI Pag	LLIN	IG E	DATE	E: July	/ 23,	2019

CLIENT: TAS Design Build	METHO	D: Aug	ering	g and	d Sp	olit S	poon	Sar	mpli	ng			DL	л и	o · P⊔107
PROJECT: 3154 Hurontario St & 25-33 Hillcrest Ave	PROJEC	T ENG	INEE	R: V	/N	ELI	EV. (r	m) 1	21.7	755			БГ	1 IN	0.: БПТ07
LOCATION: Mississauga, ON	NORTHI	NG:		_	_	EA	STIN	G:		-	_	PF	ROJEC	T NO	.: CT2892.00
SAMPLE TYPE AUGER DRIVEN		CORIN		ngth		DYNA	MIC	CON	IE T		5	SHEI	LBY		
	ELEVATION (m)	40 8 (Blov	ar Stre (kPa) 8 <u>0 12</u> N-Valu ws/300	e 20 160 e 20 160 e)	PL	Wate Conter (%) W.C.	nt . LL		SAMPLE NO.	SAMPLE TYPE	SPT(N)	HEX/IBL (ppm)	Vell Construction	REMARKS
Asphaltic Concrete (90 mm)							40 0								Borehole open and dry
dense, damp, brown gravelly sand (FILL)	121.5 - 5 121 - 120.5 - 5 120.5 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 -		14							1		44	<5/0		S1: PAHs
SILTY CLAY trace shale fragments 2.	5		89	/225						2		89/ 225	<5/0		32. EC/3AR
END OF BOREHOLE												225			
TEDDADEV			LO	GGE	D B)	r: D	N		DRII	LIN	GΕ	DATE	E: July	/ 26,	2019
			RE	VIEW	/ED	BY:	VN		Page	e 1 c	of 1				

CLIENT:	TAS Design Build		METHO	D: D	irect	Pus	sh Sa	mpl	ing						-	DL	J N	
PROJEC	T: 3154 Hurontario St & 25-33 Hillcrest	Ave I	PROJEC	T EN	IGIN	EER	: VN	1	ELE	V. (m	n) 1	20.3	350			БГ	1 IN	0.: DI 100
LOCATIO	ON: Mississauga, ON		NORTHI	NG:				1	EAS	TING):			_	PF	ROJEC	T NO	.: CT2892.00
SAMPLE	TYPE AUGER DRIVE	N		COF	RING	24		DY	NAN		CON	IE .	L	:	SHE	LBY		SPLIT SPOON
TOBWAS TIOS G (m) G (m)	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	40 (E	hear (kl (kl <u>80</u> N-V Blows/	Streng Pa) <u>120</u> /alue 300m	160 100 110	•		vater onten (%) W.C.	t LL		SAMPLE NO.	SAMPLE TYPE	SPT(N)	HEX/IBL (ppm)	Vell Construction	REMARKS
0,7	Asphaltic Concrete (100 mm)	0	-	20) 40	60	80	2	0 4	0 60	80	,	0)	0,	0,	-	>0	
	moist, brown gravelly sand (FILL)	- 0.5	120										1 2A	/		150/0 15/1		S2A: PAHs, EC/SAR
	moist, reddish brown to brown silty sand trace to some gravel (FILL)	- 1 - 1 	119-									:	2B 3	7		20/0 85/0		
	moist, brown gravelly sand (FILL) damp, brown	-2	118.5 - - - - - 118 -										4			5/0		S4:SAR
	SILTY CLAY, trace shale fragments END OF BOREHOLE												5			_<5/0		
			1			 .0G0	JED E	L 3Y:	PH					IG [DATE	L E: Julv	/ 26.	L 2019
	TERRAPEX				F	REVI	EWE) BY	': V	N		Page	e 1 o	of 1			-,	-

CLIENT:	TAS Design Build		METHO	D: A	۱uge	erin	g ar	nd S	Split	Spo	oon	San	npli	ng		-	RL	I N	0 · BH100
PROJEC	T: 3154 Hurontario St & 25-33 Hillcrest	Ave	PROJEC	T E	NGI	NEE	R:	VN	E	ELE\	V. (m	1) 1:	21.0	072		_	Ы		U DIT109
LOCATIO	N: Mississauga, ON		NORTHI	NG:				_	E	AS	TING	3:		_		PF	ROJEC	T NO	.: CT2892.00
SAMPLE	TYPE AUGER DRIVE	N		CO	RIN	G			DYI	NAN	IIC C	CON	E			SHE	LBY		
TOBWAS TIOS G (m)	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	4 (1	0 8 0 8 N Blow 0 4	(kPa) 0 12 -Valu s/300 0 6	20 16 20 16 Je 0mm 60 8	50) 0	• • F 20	∨ Co PL \) 40	Vater onten (%) W.C.	t LL) 80	,	SAMPLE NO.	SAMPLE TYPE	SPT(N)	HEX/IBL (ppm)	Well Construction	REMARKS
000	Asphaltic Concrete (75 mm)	0	121 -											1A		12	<5/0		Borehole open and dry
	loose, damp, brown silty sand, trace gravel (FILL)	- - - - - - - - - - - - - - - - - - -	120.5 - - - 120 -	12	0/25	5								1B 2		50/ 25	<5/0 35/0		on completion. S1B: M&I, PAHs
2002 2002 2002 2002 2002 2002 2002 200	very loose, damp, brown gravelly sand (FILL)	- 1.5 - 2 - 2.5 - 2.5 - 3	119.5 - 	2 50	/150									3		2 50/ 150	20/0 35/0		SEA: SAD
	hard, damp, grey	- 3.5				89	v225							5A 5B		225	35/0 35/0		SDA: SAR
		£	-				ľ												
		<u> </u>		50	/125	5 🖌			-	-	+	+	+	6	μΓ	50/ 1125	35/0		
	TEDDADEV	•				LO	GGE	ED B	۲: I	DM		[DRI	LLIN	IG [DATE	: E: July	<i>i</i> 26,	2019
	V IERKAPEX				ſ	RE	VIE	NED) BY	: VI	N	F	Pag	e 1 (of 1				

CLIENT:	TAS Design Build		METHO	D: A	uge	ring	and	d S	plit S	Spoc	on S	amp	ling		Γ	DL	л и	o · B∐110
PROJEC [®]	T: 3154 Hurontario St & 25-33 Hillcrest	Ave I	PROJEC	T El	NGIN	IEEI	R: V	/N	EI	EV.	(m)	120	.341			Ы	1 11	U BHI IU
LOCATIC	N: Mississauga, ON		NORTHI	NG:					E/	ASTI	NG:		_	-	PF	ROJEC	T NO	.: CT2892.00
SAMPLE	TYPE AUGER DRIVE	N T			RING	Stro	nath	-	DYN	AMI		DNE	╷┖		SHE	LBY		
Solt SYMBOL (m)	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	4((E	(k <u>) 80</u> N-\ Blows	(Pa) 120 /alue /300	0 160 e mm))	PI	Con (% L W.	itent 6) .C. L	L	SAMPLE NO.	SAMPLE TYPE	SPT(N)	HEX/IBL (ppm)	Vell Construction	REMARKS
	Asphaltic Concrete (65 mm)	-0			<u>J 40</u>	- 60				40	00	80		Í		-		Borehole cave-in at 4.42
	compact, damp, brown gravelly sand (FILL)	0.5	120	14									1		14	<5/0		mbgs and dry on completion.
		- - - - - - - - - - - - - - - - - - -	119.5 - - - - 119 -	4									2		4	<5/0		S2:M&I, PAHs, OCPs
	loose, damp, brown silty sand, trace gravel (FILL)	-2	118.5 -	▲ 5									3		5	<5/0		
		- 2.5	118 -		0								4		10	<5/0		01.045
	hard, damp, grey SILTY CLAY trace shale fragments		117 - 		77	7/20	0						5		77/ 200	<5/0		S5: SAR
	grey WEATHERED SHALE	4			38 🖌								6		38	<5/0		
	END OF BOREHOLE																	
		I					GEI	D B'	Y: D	M		DR				L E:July	/ 25,	2019
	ΓΕΚΚΑΡΕΧ					REV	/IEW	/ED	BY:	VN		Pa	ge 1	of 1				

CLIENT: TAS Design Build	METHOD: Dire	ect Push Sa	mpling			
PROJECT: 3154 Hurontario St & 25-33 Hillcrest Ave	PROJECT ENG	SINEER: VN	ELEV. (m) 12	21.654		
LOCATION: Mississauga, ON	NORTHING:		EASTING:		PROJECT NC	D.: CT2892.00
SAMPLE TYPE AUGER DRIVEN		NG	DYNAMIC CON	E		
		ar Strengtn (kPa) 80 120 160 N-Value ws/300mm) 40 60 80	 Vvater Content (%) PL W.C. LL 20. 40. 60. 80 	SAMPLE NO. SAMPLE TYPE	SPT(N) HEX/BL (ppm) Well Construction	REMARKS
Asphaltic Concrete 0	121 5 -	40 00 00		1		S1: PHCs (E1-E4) PCBs
gravelly sand (FILL)						Auger Refusal on concrete slab
						2019
TERRAPEX		REVIEWED	BY: VN F	Page 1 of 1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2013

CLIENT:	TAS Design Build		METHO	D: Di	rect F	Push	Sa	mpli	ing							DL			рци,	10
PROJEC	T: 3154 Hurontario St & 25-33 Hillcrest	Ave I	PROJEC	T EN	GINE	ER:	VN	E	ELEV	/. (m	ı) 1	21.	507			Ы	יו ר	0.:	рпі	
LOCATIO	DN: Mississauga, ON	1	NORTHI	NG:				E	AST	TING	6:		_	_	PF	ROJEC	T NC	0.: CT2	892.00	
SAMPLE	TYPE AUGER DRIVE	N		COR	RING			DY	NAM		CON	IE			SHE	LBY			SPLIT	SPOON
Soll SYMBOL C (E)	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	40 (B 20	ear Sti (kPa <u>80 1</u> N-Val lows/30 40 0	rengtr a) <u>20 16</u> ue 00mm 60 8	60) 0	• F 20	V Co (PL V) 40	Vater ontent (%) V.C.	t LL 80	5	SAMPLE NO.	SAMPLE TYPE	SPT(N)	HEX/IBL (ppm)	Well Construction		REMARKS	6
		0.5	121.5										1	7		<5/0 5/0		S1: PH (DUP)	ICs (F1-F4	4), PCBs
	moist, brown gravelly sand (FILL)	- 1.5 	120.3										3			<5/0				
		-											4			<5/0				
	END OF BOREHOLE																			
			1		LC	GGE	D B	9Y: F	 >H			DRI	LLIN			L E: July	y 26,	2019		
	V IERRAPEX				RE	VIE\	NED	BY	: VI	N		Pag	e 1 (of 1						

CLIEN	T: 3168 HS LP			PRO	ECT	NO.:	СТ	2892	.03						F	RECO	RD OF	:
ADDR	ESS: 3154 Hurontario St & 25-33 Hillcre		STAT	ION:											MW	<u>301D</u>		
CITY/F	PROVINCE: Mississauga, ON			NOR	HIN	G (m):	: 48	32633	35.434	4 E	AST	ING	i (m):	6112	54.488	ELEV	. (m) 122	.662
CONT	RACTOR: Pontil Drilling Inc.				ME	THOD	S	plit S	poon	Sam	plin	g ar	nd R	ock Co	ring			
BORE	HOLE DIAMETER (cm): 15 WELL DIAM	IETER	(cm):	5	SCF	REEN	SLC	DT #:	10 s/	AND T	YPE:	2			SEA		TYPE: Ho	oleplug
SAMP	LE TYPE _ AUGER DRIVE	EN		C SHE			тн Т		DYNA WATE	MIC C	ONI	E		SHELB T	Y	I SPLI	IT SPOON	1
я Э	SOIL	-	(iii) N		(kP	°a)●		(CONTE (%)	NT			%) 	EL)	ORY	LION		
SYM (Ľ) H	ATIO	40	N-VA	120 16 LUE	50				L		- N	oV or %	ING		RE	MARKS
Soll O	DESCRIPTION	DEPT	ELEV	(B	ows/3 40	800mm)	PL 20	W.C	. LL			RECO	SV/T(LABC	WELL INST,		
600	Asphaltic Concrete (75 mm)	0	122.5 -		Ť	Ť			10 0		1	A	50					
	Granular base (gravelly sand- 250 mm)	-		13				11 14				_H						
	clayey silt	- 0.5	122 -								'	╹凵	Ц					
🗱	trace gravel, trace sand (FILL)	-						15					Г					
🗱	trace	-1	121.5 -] ♦ 2	2						2	2	67					
		-											Ц					
🗱	loose, damp, dark brown siltv sand (FILL)	- 1.5	121 -					12					П					
🗱	, , ,	-		▲ 9								3	100)				
👹	very stiff damn grevish brown	-2	120.5 -									Γ	7					
	clayey silt (FILL)						15			4								
	hard, damp	120 -	1				17			4	в	Ηď						
	brown to greyish brown CLAYEY SILT		1															
		1195-		$\langle $			15											
		-	. 10.0	35	×.						ţ	5	83					
		- 3.5	119 -			\setminus							-					
		-						12										
		- 4	1185-		1	92/20					6	6	100)				
			110.0															
	Georgian Bay TCR= 90% Formation [.]	- 4.5	118-	50/	25 🛦							7	100					
	RQD= 62% grey	-																
	Medium strong SHALE	- 5	117.5 -															
	moderately weathered	-																
	intensely to moderately	- 5.5	117 -								R	C1						
	fractured	-																
		-6	1165-															
	RQD= 41% occasional thin	-	110.0															
	ciay seams	- 6.5	116 -	1														
		-		1														
		-7	1155-								R	C2						
		-	110.0															
	TCB- 100%	115 -																
	RQD= 53%																	
		1115																
		-	. 14.0															
		- 8.5	111								R	63						
		-																
		-9	1135-	1														
		-	13.5			+						Þ	◀					
						L	OGO	GED E	BY: R	G		+	DR	LLING	DATE: 3	30-Nov-	-2020	
	TERRAPEX						VPU	ſBY:	SA	\/ \ /		+	MO		NG DATI	E: 10-E	Jec-2020	J
						R	EVI	FMED	J BA:	VN			PAG	E 1 OF از	- 2			

CLI	ENT: 3168 HS LP			PROJECT	NO.: CT	2892.03	3					R	ECO	RD OF:
ADI	DRESS: 3154 Hurontario St & 25-33 Hillcres		STATION:									MW	<u>301D</u>	
CIT	Y/PROVINCE: Mississauga, ON			NORTHIN	G (m): 48	326335.4	434	EAS	TING	(m):	61125	64.488	ELEV	. (m) 122.662
CO	NTRACTOR: Pontil Drilling Inc.			ME	THOD: S	plit Spo	on Sar	mplir	ng an	d Ro	ck Co	ring		
BOF	REHOLE DIAMETER (cm): 15 WELL DIAM	1ETER	(cm):	5 SCF	REEN SLO	DT #: 10	SAND	TYPE	: 2	_		SEA		TYPE: Holeplug
SAN		N			IG RENGTH			CON	NE		SHELB	Y _		T SPOON
2 2			(m) J	(kF	a)		NTENT		. Ш	۲ (%)	Ē	RΥ	NOI	
VL (r		(m) H	TION	40 80	120 160		,,,,,		ž ́́́́́́	VER	۲ %L	NG		REMARKS
0	DESCRIPTION	EPTI	LEV/	(Blows/3	600mm)	PL V	V.C. LL	.	AMP	ECO	VTO pmd	ABOF	/ELL	
0			ш	20 40	60 80	20 40	60 8	0	ິທ	₩	S R	⊢	≤≤	
	RQD= 74% Formation:	- 9.5	113 -											
	grey Medium strong													
	SHALE	- 10	- - 1125 -						RC4					
	moderately weathered		- 112.5											
	intensely to moderately fractured	- 10.5	-											
	TCR= 100% occasional thin		112 -											
IE	RQD= 42% limestone beddings	- 11	-											
	clay seams		111.5 -											
			-											
IE		- 11.5	111 -					[RC5					bentonite
	30.9 Mpa	-												
		- 12	-											sand
	TCR= 100%		110.5 -											sand + screen
		-												
		-	110 -											
		- 13	-										l:≣:	
			109.5 -						KC6				l:≣:	
			-										l:≣:	
ΙE		- 13.5	100 -										ŀ≣÷	
ΙE	TCR= 100%		109										ŀ≣:	
ΙE		- 14	-										l:≣:	
ΙE	3		108.5 -										l:≣:	
		- - 14.5	-										l:≣:	
	24.8 Mpa		108 -						KC /				l:≣:	
		- 15	-										l:≣:	
			107.5 -										ĿĒĽ	
┝╘╸		-						$\left \right $						
1														
\vdash	1						PC					ATE: 0		-2020
						леу, с	^		+			UC DAT	-110V	- <u>2020</u> Dec-2020
	ΓΕΚΚΑΡΕΧ				т в ү: S	A		+				⊑: IU-l	Jec-2020	
					REVI	EWED B	Y: VN			PAG	ie 2 OF	2		

CLI	ENT: 3168 HS LP			PROJE	CT NO	: C1	2892	2.03							F	RECC	RD OF:
AD	DRESS: 3154 Hurontario St & 25-33 Hillcre	st Ave		STATIO	ON:				_							MW	<u>301S</u>
СІТ	Y/PROVINCE: Mississauga, ON			NORTH	HING (m	n): 48	8263	37.03	9	EAS	STIN	IG (m):	61125	55.297	ELEV	[/] . (m) 122.616
co	NTRACTOR: Pontil Drilling Inc.				METHO	D: S	olid S	Stem	Aug	er							
BO	REHOLE DIAMETER (cm): 15 WELL DIAM	METER	(cm):	5	SCREE	N SLO	OT #:	10 s	AND	TYPE	E: 2	2			SE	ALANT	TYPE: Holeplug
SAI		EN			RING R STREN	GTH		DYNA WATE		00	NE		<u> </u>	SHELB	Y _	SPL	IT SPOON
Ê Ĝ	SOIL	Ê	m) N		(kPa)●	100		CONTE (%)	ENT		<u>o</u>	-ΥPE	RY (%	LEL)	ORY	TION	
SWL (Ľ.	ATIC	40 N	80 120 I-VALUE	160					PLE N	PLE 1	OVEF	ov or %	DRAT TING		REMARKS
		DEP.	ELEV	(Blo	ws/300m 40 60	m) 80	P 20	L W.C	50 8	0	SAM	SAMI	REC	SV/T	LABC TES1	WELI	
	Straight auger to 6.4 m to install the	0 1	22.5 -		ĪĪ	Ĩ				Ŭ							
	monitoring well																
		- 0.5	122 -														Bentonite
		-1	21.5 -														
		- 1.5	121 -														
		-2	20.5 -														
		- 2.5	120 -														
		-3	19.5 -														
]													
		- 3.5	119 -	1													
		-4	18.5 -														
		- 4.5	118 -														sand
																	and theorem
		-5	17.5 -														
		- 5.5	117 -													l:≣:	
		-6	16.5 -														
\square		-															
1	END OF BOREHOLE																
⊢																<u> </u>	
1				-	LOG	GED	BY: R	G					LING [DATE: 3	30-Nov	-2020	
1	V IERRAPEX			-	INPU	IT BY:	SA							NG DAT	E: 10-	Dec-2020	
1						REVI	EWE	J BY:	٧N				'AG	E 1 OF	· 1		

CLIENT:	3168 HS LP		PR	OJEC	T NO.	: СТ	2892	2.03							F	RECO	RD OF:
ADDRES	SS: 3154 Hurontario St & 25-33 Hillcre	est Ave	ST	ATIO	N:											BH	302
CITY/PR	OVINCE: Mississauga, ON		NO	RTHI	NG (m): 48	3263	60.9	51	EAS	STIN	IG ((m):	61127	77.727	ELEV	. (m) 121.294
CONTRA	ACTOR: Pontil Drilling Inc.			М	ETHO	D: S	olid	Sten	n Aug	ger a	and	Sp	lit S	poon \$	Samplin	g	
BOREHO	OLE DIAMETER (cm): WELL DIAI	METER (cm):	S	CREEN	I SLO)T #:		SAND) TYP	PE:		_		SEA		TYPE:
SAMPLE	AUGER DRIV	EN				GTH		DYN	IAMIC	c co	NE			SHELB	Y	SPLI	T SPOON
GWL (m) SOIL SYMBOL	SOIL DESCRIPTION	DEPTH (m) EI EVATION (m)		(I 40 80 N-V (Blows 20 40	(Pa) 120 1 (ALUE 5/300mr 60 5	1 <u>60</u> n) ≜ 80	P 20	CON (9 L W 40	TENT %) .C. L	L 80	SAMPLE NO.	SAMPLE TYPE	RECOVERY (%)	SV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL INSTALLATION	REMARKS
	Asphaltic Concrete (75 mm) Granular Base (sand and gravel-600 mm) loose, damp, brown	- 12	- - 1 - - - - 5 -		58						1		75	0/0			
	sand and gravel some bricks and concrete pieces (FILL)	- 1 - 1 - 12 - 1.5		9							2		22	0/0			
		- 119.:	5 - *	<u>" </u>							3		22	0/0			
	END OF BOREHOLE																
	-			1	<u> </u>						<u> </u>		ייפח				-2020
	TEDDADEV				H		TRV	- S4	<u></u>			+				F.	
							EWE		(: VN	١		\vdash	PAG	SE 1 OF	1	<u> </u>	

CLIEN	IT: 3168 HS LP		PR	OJECT N	IO.: CT	2892	2.03							F	ECO	RD OF:
ADDR	ESS: 3154 Hurontario St & 25-33 Hillcre	STA	ATION:											BH	303	
CITY/I	PROVINCE: Mississauga, ON		NO	RTHING	(m): 48	82636	64.50	3 1	EAS	TIN	G (m):	61127	76.313	ELEV.	. (m) 121.380
CONT	RACTOR: Pontil Drilling Inc.			METH	HOD: S	iolid S	Stem	Auge	er a	nd S	Spl	it S	poon S	Samplin	g	
BORE	HOLE DIAMETER (cm): WELL DIAI	METER (cm):	SCR	EEN SLO	OT #:	S	AND	TYPE	:				SEA		TYPE:
SAMP	LE TYPE AUGER DRIV	EN		CORING	G ENGTH		DYNA	MIC		NE T			SHELB	Y	SPLI	IT SPOON
GWL (m) GWL (m)	SOIL DESCRIPTION	DEPTH (m) FI FVATION (m)		(kPa) 40 80 12 N-VALI (Blows/30) 20 40 6	0 160 JE 0mm) 0 80	PI 20	CONTE (%) L W.C <u>40 (</u>	ENT . LL 50 80	0	SAMPLE NO.	SAMPLE TYPE	RECOVERY (%	SV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL	REMARKS
	Asphaltic Concrete (80 mm) Granular Base (gravelly sand-520 mm) Crusher Run Limestone (FILL)	12 12	- - 1- - -		65 A					1		75	0/0			
		- 120. - 1 - 1 - 12 - 12	5 - - 0 -	16						2		67	0/0			
		- - 119. -2	5-	10						3		62	0/0			
	hard, damp, brown CLAYEY SILT	- 2.5 - 118.	9	42						4A 4B		100	0/0 0/0			
	END OF BOREHOLE															
	~				LOG	GED E	3Y: J	С			[DRIL	LING	DATE: 0	1-Dec-	-2020
	TERRAPEX				INPU	IT BY:	SA				I	NON	NITORI	NG DAT	E:	
1	V				REVI	EWE	DBY:	VN			F	PAG	E 1 OF	1		

CLIENT: 3168 HS LP		PROJECT N	0.: CT2	2892.03					R	ECO	RD OF:
ADDRESS: 3154 Hurontario St & 25-33 Hillcrest A	Ave	STATION:								BH	304
CITY/PROVINCE: Mississauga, ON		NORTHING	(m): 482	26367.28	8 EAS	STING	(m):	611280.	.410	ELEV.	(m) 121.222
CONTRACTOR: Pontil Drilling Inc.		METH	OD: So	lid Stem	Auger a	and S	plit S	poon Sa	mpling	9	
BOREHOLE DIAMETER (cm): WELL DIAMETE	ER (cm):	SCRE	EN SLO	T#: S	AND TYP	'E:			SEA	LANT T	YPE:
SAMPLE TYPE AUGER DRIVEN			NOTUL		MIC CO	NE	5	SHELBY		SPLI	T SPOON
(II) TOGWY AS TIOS (III) TOGWY AS TIOS (III) TOGWY AS TIOS	ELEVATION (m)	SHEAR STRE (kPa) 40 80 12 N-VALU (Blows/300 20 40 60	0 160 IE Imm) 0 80	PL W.C 20 40 (=R ENT 2. LL 50 80	SAMPLE NO. SAMPLE TVDE	RECOVERY (%)	SV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL INSTALLATION	REMARKS
Asphaltic Concrete (80 mm) Granular Base (gravelly sand-500 mm) some brick pieces 0.5	121 - 5	22				1	79	0/1			
gravelly sand (FILL)	120.5 - 120 -	20				2	58	0/1			
	5 119.5 -	16				3	62	0/0			
hard, damp, brown	119-	31				4A 	83	0/0			
CLAYEY SILT	118.5 -					4B		0/0			
END OF BOREHOLE											
	I		LOGG	ED BY: J	C		DRIL	LING DA	<u>TE:</u> 0	1-Dec-	2020
TERRAPEX			INPUT	BY: SA			MON	IITORING	G DATE	:	
V			REVIE	WED BY:	VN		PAG	E 1 OF 1			

CLIEN	CLIENT: 3168 HS LP VDRESS: 3154 Hurontario St & 25-33 Hillcrest Ave XITY/PROVINCE: Mississauga, ON				NO.: C1	2892	.03						F	RECO	RD OF:
ADDF	RESS: 3154 Hurontario St & 25-33 Hillcre	est Ave	ST	ATION:				_						BH	305
CITY/	PROVINCE: Mississauga, ON		NO	RTHING	G (m): 48	32636	65.78°	I E	AST	ING	(m):	61127	71.551	ELEV.	(m) 121.637
CONT	RACTOR: Pontil Drilling Inc.			MET	HOD: S	olid S	Stem /	Auge	r and	d Sp	olit S	poon \$	Samplin	g	
BORE	HOLE DIAMETER (cm): WELL DIAM	METER (cm	ı):	SCR	EEN SL	OT #:	SA	AND T	YPE:				SEA	LANT 1	TYPE:
SAMF	PLE TYPE AUGER DRIV	EN		CORIN	G					<u> </u>		SHELB	Y		T SPOON
GWL (m) SOIL SYMBOL	SOIL DESCRIPTION	DEPTH (m)		40 80 1 (kPa N-VAL (Blows/30	120 160 UE D0mm)	((%) (%)	NT LL	SAMPI F NO	SAMPLE TYPE	RECOVERY (%)	SV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL INSTALLATION	REMARKS
	Asphaltic Concrete (100 mm) Granular Base (gravelly sand-325 mm) some concrete and asphalt pieces loose, damp, brown sand (FILL) hard, damp, brown	0 121. 0.5 12 120. 1.5 1.5 120. 1.5 120. 1.5 120. 1.5 120.	.5 	7	99				1 2 3		79 83 79	0/1 0/0 0/0			
	CLATET SILT	- 2.5 - 11	9-	39					4		79	0/0			
	END OF BOREHOLE														
				LOGGED BY: JC						DRILLING DATE: 01-Dec-2020					
	V TERRAPEX				INPUT BY: SA						MON	NITORI	NG DATI	E:	
1	V				REV	EWED	DBY:	VN			PAG	E 1 OF	1		

CLIENT: 3168 HS LP	PROJECT	NO.: CT2	892.03					RECO	RD OF:
ADDRESS: 3154 Hurontario St & 25-33 Hillcrest Ave	STATION:							BH	1306
CITY/PROVINCE: Mississauga, ON		G (m): 482	26378.075	EAST	ΓING (r	n): 6	611251.97	9 ELEV	. (m) 122.702
CONTRACTOR: Pontil Drilling Inc.	MET	THOD: So	lid Stem A	uger an	id Spli	t Sp	oon Samp	ling	
BOREHOLE DIAMETER (cm): WELL DIAMETER (cm)): SCR	REEN SLO	T#: SAN	ND TYPE:	: •		S		TYPE:
SAMPLE TYPE AUGER DRIVEN	CORIN	IG RENGTH	DYNAM WATER		E	S	HELBY	SPL	IT SPOON
SOIL (III) TOBWAS TION DESCRIPTION	40 80 1 N-VAL (Blows/30	a)● 1 <u>20 160</u> LUE 00mm)▲	CONTEN (%) PL W.C.		AMPLE NO. AMPLE TYPE	ECOVERY (%	V/TOV ppm or %LEL) ABORATORY	/ELL	REMARKS
Asphaltic Concrete (100 mm) 0 Granular Base (gravelly sand-375 mm) 122.5 some concrete, wood, and brick pieces 0.5 stiff, damp, grey 0.5 clayey silt, trace gravel 12 (FILL) 1 1.5 12)			1 2 3	83 79 67	0/1 0/1 0/0		
hard, damp, brown CLAYEY SILT		80 🔺			4	71	0/1		
END OF BOREHOLE									
		LOGGED BY: JC				DRILLING DATE: 01-Dec-2020			
TERRAPEX		INPUT	BY: SA		MONITORING DATE:				
		REVIE	WED BY: V	/N	P	AGE	1 OF 1		

CLIENT: 3168 HS LP	PROJECT N	IO.: CT2892.03		REC	ORD OF:		
ADDRESS: 3154 Hurontario St & 25-33 Hillcrest Ave	STATION:			M	W307		
CITY/PROVINCE: Mississauga, ON	NORTHING	(m): 4826372.559	EASTING (m):	611247.208 ELE	EV. (m) 122.996		
CONTRACTOR: Pontil Drilling Inc.	METH	HOD: Solid Stem Au	iger and Split S	poon Sampling			
BOREHOLE DIAMETER (cm): 15 WELL DIAMETER (cm)	: 5 SCRE	EEN SLOT #: 10 SAN	D TYPE: 2	SEALAN	T TYPE: Holeplug		
SAMPLE TYPE AUGER DRIVEN		G DYNAMI			PLIT SPOON		
SOIL SOIL SOIL SOIL STATION (II) DESCRIPTION (II) DESCRIPTION	(kPa) 40 80 12 N-VALU (Blows/300 20 40 6	CONTENT 20 160 JE Dmm) PL W.C. I 0. 80 20 40 60	B T J SAMPLE NO. SAMPLE TYPE RECOVERY (%)	SV/TOV (ppm or %LEL) LABORATORY TESTING WELL	REMARKS		
DESCRIPTION Head Mead Asphaltic Concrete (100 mm) 0 0 0 Granular Base (gravelly sand-250 mm) 0.5 122.6 compact, damp, brown 0.5 122.6 compact, damp, brown 0 1 122.6 stiff, damp, brown 1.5 121.5 121.5 clayey silt (FILL) -1 122.6 122.6 hard, damp, brown -1.5 121.5 121.5 clayey silt (FILL) -2 121.5 121.5 hard, damp, brown -2.5 120.5 120.5 Some shale -3 120 -3 120 some shale -3.5 119.5 -5 119.5 Grey SHALE BEDROCK -4 118.5 -5 118.5 Grey -5.5 117.5 -5.5 117.5 END OF BOREHOLE -6 117	N-VAL (Blows/300 20 40 6 29 40 6 416 50/75 50/25	JE 0 80 20 40 60	Image: state	0/0 0/0 0/0 0/0	bentonite sand sand + screen		
		LOGGED BY: JC	DRIL	LING DATE: 01-De	ec-2020		
TERRAPEX		INPUT BY: SA	MON	MONITORING DATE: 10-Dec-2020			
· · · · · · · · · · · · · · · · · · ·		REVIEWED BY: V	N PAG	E 1 OF 1			

CLIENT: 3168 HS LP	PROJECT	NO.: CT2892.03		R	ECORD OF:
ADDRESS: 3154 Hurontario St & 25-33 Hillcrest Ave	STATION:				BH308
CITY/PROVINCE: Mississauga, ON	NORTHING	G (m): 4826388.067	EASTING (m): 611247.809	ELEV. (m) 122.989
CONTRACTOR: Pontil Drilling Inc.	MET	THOD: Solid Stem A	uger and Split	Spoon Samplin	g
BOREHOLE DIAMETER (cm): WELL DIAMETER (cm)	: SCR	REEN SLOT #: SA	ND TYPE:	SEA	
SAMPLE TYPE AUGER DRIVEN	CORIN	IG DYNAN		SHELBY _	
SOIL SOIL (III) (III) (III) (III) (III) (III) (III) (IIII) (IIII) (IIII) (IIII) (IIIII) (IIIII) (IIIIII) (IIIIIII) (IIIIIIII	40 80 / N-VAI (Blows/30 20 40	aP CONTEN 120 160 (%) LUE (%) 00mm) PL W.C. 60 80 20 40 60	08 TT 11 SAMPLE NO. SAMPLE TYPE	SV/TOV SV/TOV (ppm or %LEL) LABORATORY TESTING	NOILUT REMARKS
Asphaltic Concrete (100 mm) 0 Granular Base (gravelly sand-275 mm) 0 loose, damp to moist, brown 0.5 122.6 clayey silt (FILL) 122.6	20 2 2 2 4 19			2 0/0 7 0/1	
hard, damp, brown CLAYEY SILT	23		3A 7 3B	1 0/1 0/0	
~		LOGGED BY: JC	DF	RILLING DATE: 0	1-Dec-2020
TERRAPEX		INPUT BY: SA	M	ONITORING DATE	E:
¥		REVIEWED BY: \	/N P4	GE 1 OF 1	

CLIEN	LIENT: 3168 HS LP DDRESS: 3154 Hurontario St & 25-33 Hillcrest Ave ITY/PROVINCE: Mississauga, ON					NO.:	СТ	289	2.03								F	RECO	RD OF:
ADDF	ESS: 3154 Hurontario St & 25-33 Hil	crest Ave		STATIO	DN:													BH	309
CITY/	PROVINCE: Mississauga, ON		1	NORTH	HING	i (m):	: 48	3263	876.0	01	E	AST	ΓIN	G (m):	61123	37.941	ELEV	(m) 123.508
CONT	RACTOR: Pontil Drilling Inc.			!	MET	HOD	: S	olid	Ster	n Aı	ugei	r ar	nd S	Spl	it S	poon S	Samplin	g	
BORE	HOLE DIAMETER (cm): WELL D	IAMETER (cr	n):	!÷	SCR	EEN	SLC)T #	:	SAN	יד DV	YPE		_			SEA		TYPE:
SAMF	PLE TYPE AUGER DF						тн Т		DYN WA			ON I	E	_		SHELB	Y	L SPLI	T SPOON
GWL (m) SOIL SYMBOL	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	40 N (Blor 20	(kPa 80 1: -VAL ws/30 40 6	20 16 UE 00mm 60 8	30)▲ 0	F 20	CON (⁶ PL W) 40	ITEN %) /.C. 60	T LL 80		SAMPLE NO.	SAMPLE TYPE	RECOVERY (%	SV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL INSTALLATION	REMARKS
	Asphaltic Concrete (75 mm) Granular Base (gravelly sand-375 m loose, damp, brown clayey silt (FILL)	0 123 m) - - 0.5 1: - 1 122	3.5 23 – 2.5 –	11 • •	8 4								2		67 83	0/1 0/1			
		- - 1.5 1: -	22 -		90	/225	5 🔺					:	3		100	0/0			
	END OF BOREHOLE																		
						L	OGC	GED	BY:	JC				[DRIL	LING I	DATE: 0	1-Dec	-2020
	V TERRAPE	X				١١	NPU	ТΒ	∕: SA	4				ľ	NON	NITORI	NG DAT	E:	
1	4					R	EVI	EWE	ED BY	r: V	/N			F	PAG	E 1 OF	1		

CLIENT: 3168 HS LP	PROJECT	NO.: CT28	92.03			F	RECO	RD OF:
ADDRESS: 3154 Hurontario St & 25-33 Hillcrest Ave	STATION:						BH	310
CITY/PROVINCE: Mississauga, ON	NORTHIN	G (m): 4826	365.259	EASTIN	IG (m):	611242.170	ELEV.	(m) 123.305
CONTRACTOR: Pontil Drilling Inc.	ME	THOD: Solic	d Stem Au	iger and	Split Sp	oon Samplin	Ig	
BOREHOLE DIAMETER (cm): WELL DIAMETER (cm): SCF	REEN SLOT #	#: SAN	D TYPE:		SEA		TYPE:
SAMPLE TYPE AUGER DRIVEN				C CONE	s	HELBY		T SPOON
SOIL SOIL SOIL SOIL SUMPORT	SHEAR ST (kP 40 80 N-VA (Blows/3 20 40	120 160 LUE 300mm) 60 80 2	VATER CONTENT (%) PL W.C. L 20 40 60	88 TT	SAMPLE TYPE RECOVERY (%)	SV/TOV (ppm or %LEL) LABORATORY TESTING	WELL INSTALLATION	REMARKS
Asphaltic Concrete (80 mm) Granular Base (gravelly sand-450 mm) some concrete and brick pieces loose, damp, brown silty sand (FILL) hard, damp, brown CLAYFY SILT	3 3 5 - 10 2			2	54	0/0		
	5-37			3	87	0/0		
END OF BOREHOLE								
			DBY: JC		DRILLING DATE: 01-Dec-2020			
TERRADEX		INPLIT R	Y: SA		MON		E:	
		REVIEW	ED BY: VI	N	PAG	E 1 OF 1		

CLIENT: 3168 HS LP	PROJECT	NO.: CT2892.03			RECORD OF:		
ADDRESS: 3154 Hurontario St & 25-33 Hillcrest Ave	STATION:		1		BH311		
CITY/PROVINCE: Mississauga, ON		G (m): 4826388.067	EASTING (r	m): 611247.809	ELEV. (m) 122.989		
CONTRACTOR: Pontil Drilling Inc.	MET	HOD: Solid Stem A	uger and Spli	it Spoon Sampli	ng		
BOREHOLE DIAMETER (cm): WELL DIAMETER (cm)	: SCR	REEN SLOT #: SAN	ND TYPE:	SE			
SAMPLE TYPE AUGER DRIVEN	CORINO SHEAR STR	IG DYNAM RENGTH WATER		SHELBY			
SOIL (⁽ⁱⁱ⁾) SOIL (⁽ⁱⁱⁱ⁾) DESCRIPTION (⁽ⁱⁱⁱ⁾) DESCRIPTION	(kPa 40 80 1 N-VAL (Blows/30 20 40 6	a♥ CONTEN (%) UE 00mm ♥ PL W.C. 60 80 20 40 60	B T TYPE SAMPLE NO.	RECOVERY (% SV/TOV (ppm or %LEL) LABORATORY TESTING	NOLLUN REMARKS		
Asphaltic Concrete (80 mm) Granular Base (gravelly sand-475 mm) - 0.5 122.5 compact, damp, brown gravelly sand (FILL) - 1 122			1	79 0/067 0/0			
firm, damp, brown clayey silt, trace brick (FILL) very stiff, damp, brown	5 - - ▲ 8 		3A	62 0/0 0/0			
END OF BOREHOLE			38	0/0			
TEDDADEV			L		01-De0-2020		
		REVIEWED BY: V	/N F	PAGE 1 OF 1	· <u></u> .		

CL	IEN.	IT: 3168 HS LP			PROJE	CT NO.:	CT	2892	2.03						F	RECO	RD OF:
AD	DRESS: 3154 Hurontario St & 25-33 Hillcrest Ave TY/PROVINCE: Mississauga, ON NTRACTOR: Pontil Drilling Inc.				STATIO	N:										MV	V312
CI	TY/	PROVINCE: Mississauga, ON			NORTH	ING (m)	: 48	264	50.052	2 E	AST	ING	(m):	61135	53.733	ELEV	. (m) 120.209
CC	DNT	RACTOR: Pontil Drilling Inc.			N	IETHOD): Sp	plit S	Spoon	Sam	plin	g an	d Ro	ock Co	ring		
BC	DRE	HOLE DIAMETER (cm): 15 WELL DIAM	METER	(cm):	5 S	CREEN	SLC	DT #:	10 s	AND T	YPE:	2			SEA		TYPE: Holeplug
SA	MP T	LE TYPEAUGERDRIVI	EN		COF SHEAR	RING STRENG	атн Т		DYNA	MIC C		E	Ľ	SHELB	Y 	I SPL	IT SPOON
Ê	ğ	SOIL	ē	N (m		(kPa)●			CONTE (%)	NT		j Hd	× (%	-EL)	ORY	TION	
SWL (SYM		LH (n	'ATIO	40 8	0 120 16 VALUE	<u></u>						OVEF	oV or %	ING		REMARKS
	SOIL	DESCINI HON	DEP'	ELEV	(Blow 20 4	s/300mm 0 60 8	i) io	P 20	L W.C	. LL	NAN O	SAM	REC	SV/T	LABC	WELI	
H	-	Straight Auger to 12.3 m	0	120			Ĭ										bentonite
		Refer to MW104 for soil stratigraphy	-	120-													
			- 0.5	110 5													
			-	119.5													
			-1	110													
			-	119-]												
			- 1.5														
			_	118.5 -]												
			-2														
			-	118 -]											Y	
			- 2.5														
			_	117.5 -]												sand
																	sand + screen
]											l:≣:	
			- 3.5													ŀ≣:	
			-	116.5 -												li 🗄	
			-4													l:≣:	
			-	116 -												l:≣:	
			- 4.5														
			-	115.5 -													
			-5													l:≣:	
			-	115 -												l: E:	
			- 5.5														
			-	114.5 -												l:≣:	
			-6													<u>l:</u> ≣:	
			-	114 -													
			- 6.5														
			-	113.5 -	1												
			-7		1												
			-	113 -													
			- 7.5														
			-	112.5 -													
			-8														
	112			112 -												1	
	- 8.5																
			-	111.5 -	1											1	
			-9		1											1	
_					LOGGED BY: JC					DRILLING DATE: 02-Dec-2020							
		TERRAPEX				INPUT BY: SA				MONITORING DATE: 10-Dec-202				Dec-2020			
1	TERRAPEX				R	REVIE	EWE	D BY:	VN			PAG	E 1 OF	2			

CLIENT: 3168 HS LP		PROJECT N	10.: CT	2892.03			F	RECO	RD OF:
ADDRESS: 3154 Hurontario St & 25-33 Hillcres	t Ave	STATION:			_			MN	/312
CITY/PROVINCE: Mississauga, ON		NORTHING	(m): 48	326450.05	2 EAS	TING (m):	611353.733	ELEV.	. (m) 120.209
CONTRACTOR: Pontil Drilling Inc.		METH	HOD: S	plit Spoon	Samplin	ig and Ro	ck Coring		
BOREHOLE DIAMETER (cm): 15 WELL DIAME	ETER (cm):	5 SCRE	EEN SLO	ot#: 10 s	AND TYPE	: 2	SE	ALANT 1	TYPE: Holeplug
		CORING	G ENGTH		MIC CON	IE L S	SHELBY		T SPOON
E JORNAS JOIL DESCRIPTION	EPTH (m)	(kPa) 40 80 12 N-VALU (Blows/30) 20 160 JE 0mm)	CONTE (%) PL W.C	ENT	AMPLE NO. AMPLE TYPE ECOVERY (%	V/TOV ppm or %LEL) ABORATORY ESTING	/ELL VSTALLATION	REMARKS
Straight Auger to 12.3 m		20 40 6	0 80	20 40 6	<u>30 80</u>	S S Z	<u>-1 20</u>	_ ≤ ≤	
TCR= 83% Georgian Bay Formation: RQD= 40% Formation: grey Weak to Medium strong SHALE moderately weathered TCR= 100% intensely UCS= RQD= 41% to moderately 66.0 Mpa fractured occasional thin limestone beddings occasional thin clay seams	9.5 10.5 10.5 10.5 10.5 109.5 11 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 108.5 107.5 107.5 107.5 106.5 107.5 106.5 107.				R	2C-1			
	₩				с <u> </u>	DRILLING DATE: 02-Dec-2020			-2020
TERRAPEX			INPUT BY: SA				NITORING DAT	E: 10-D	Dec-2020
· · · · · · · · · · · · · · · · · · ·			REVI	EWED BY:	VN	PAG	E 2 OF 2		

CLIENT: 3168 HS LP	PROJECT N	NO.: CT2892.03		REC	ORD OF:		
ADDRESS: 3154 Hurontario St & 25-33 Hillcrest Ave	STATION:			B	H313		
CITY/PROVINCE: Mississauga, ON	NORTHING	G (m): 4826421.814	EASTING (m):	611263.846 ELE	EV. (m) 121.644		
CONTRACTOR: Pontil Drilling Inc.	METH	THOD: Solid Stem Au	ger and Split Sp	poon Sampling			
BOREHOLE DIAMETER (cm): WELL DIAMETER (cm)	: SCRE	REEN SLOT #: SANI	D TYPE:		IT TYPE:		
SAMPLE TYPE AUGER DRIVEN	CORING	IG DYNAMIO			PLIT SPOON		
TOBINAS TO SOIL (III) TOBINAS TO SOIL (III) (IIII) (III) (IIII) (III) (III) (III) (III) (III) (I	(kPa) 40 80 12 N-VALI (Blows/30	a) CONTENT 120 160 (%) LUE 00mm) PL W.C. L 60 80 20 40 60	SAMPLE NO. SAMPLE TYPE SECOVERY (%	SV/TOV (ppm or %LEL) 	REMARKS		
Asphaltic Concrete (105 mm) 0 Granular Base (gravelly sand-150 mm) 0 compact, damp, brown 0.5 gravelly sand (FILL) 121 121.5			1 79 2A 87	0/3			
CLAYEY SILT		100/225	2B 100 3	0/0			
END OF BOREHOLE							
		LOGGED BY: JC		DRILLING DATE: 02-Dec-2020			
TERRAPEX		INPUT BY: SA	MON	NITORING DATE:			
v		REVIEWED BY: V	N PAG	E 1 OF 1			

CLIEN	LIENT: 3168 HS LP DDRESS: 3154 Hurontario St & 25-33 Hillcrest Ave TY/PROVINCE: Mississauga, ON				NO.: CT	2892.0	3					R	RECO	RD OF:
ADDF	RESS: 3154 Hurontario St & 2	•	STATION:									BH	314	
CITY/	PROVINCE: Mississauga, ON		NORTHIN	G (m): 48	326454	.412	EAS	TING	(m):	61127	73.703	ELEV.	(m) 124.375	
CONT	RACTOR: Pontil Drilling Inc.			ME	THOD: S	olid Ste	em Aug	ger a	nd Sp	olit S	poon \$	Samplin	g	
BORE	HOLE DIAMETER (cm):		t (cm):	SCI	REEN SLO	DT #:	SAND) TYPE	:			SEA		TYPE:
SAMF	PLE TYPE AUGER			CORIN SHEAR ST	IG RENGTH		/NAMIC /ATER		<u>IE</u>		SHELB	Y _	SPLI	T SPOON
BOL 1	SOIL		L N	(kF	a) P	cc	NTENT (%)		-j Z	۲۷ (%	LEL)	ORY	TION	
SYM (אר <u>ב</u>	ATIO	40 80 N-VA	120 160 LUE					OVEF	oV or %	ING		REMARKS
SOIL			ELEV	(Blows/3	60 80	PL 20 4	W.C. L	L 80	SAM	REC	SV/T	LABC TES1	WELI	
0000	Asphaltic Concrete (80	mm) _ 0			ĪĪ			Ť	ТĨ					
0000	Granular Base (CRL-400) mm)	124 -	1 🖌					1	50	0/1			
	firm, damp, brown	0.5							Ш	-				
🗱	clayey silt, some gravel	(FILL)	123.5 -	1/										
		- 1 E		≜ 8					2	42	0/0			
			123 -						Ш	_				
🗱	compact to dense, damp, gravelly sand (FILL	brown - 1.5												
	g , (,	122.5 -	22					3	54	0/1			
👹		- 2							Щ					
🗱		-	122 -	1 /										
🗱			411					4	58	0/1				
		121.5 -						Ш	_					
💥									-					
		121 -	43					5	67	0/0				
🗱		- 3.5												
			120.5 -	15					6A 🗍	42	0/1			
	hard, damp, brown	- 4								1	0/0			
	CLAYEY SILT	-	120 -						∞ы		0/0			
		- 4.5								-				
		-	-	50/125	` <u> </u>				7	100	0/0			
	END OF BOREHOL	-E												
				LOGGED BY: JC					DRILLING DATE: 02-Dec-2020					
	TERI	RAPEX			INPUT BY: SA				_	MONITORING DATE:				
1	*				REVI	EWED I	BY: VN	1		PAG	E 1 OF	1		

CLIENT: 3168 HS LP		PROJECT N	NO.: CT	2892.	03						R	ECO	RD OF:
ADDRESS: 3154 Hurontario St & 25-33 Hillcrest Av	/e	STATION:				_						BH	315
CITY/PROVINCE: Mississauga, ON		NORTHING	i (m): 48	32646 ⁻	1.193	3 E	ASTI	NG	(m):	61127	72.994	ELEV.	(m) 124.186
CONTRACTOR: Pontil Drilling Inc.		MET	HOD: S	olid St	tem A	Auge	r and	l Sp	lit S	poon S	Samplin	g	
BOREHOLE DIAMETER (cm): WELL DIAMETE	R (cm):	SCR	EEN SLO	DT #:	SA	AND T	YPE:				SEA		TYPE:
SAMPLE TYPE AUGER DRIVEN		CORING	G RENGTH		YNA!	MIC C	ONE	1		SHELB	Y _	SPLI	T SPOON
(W) HLdd SOIL SOIL (W) HLdd MI HLdd	ELEVATION (m)	(kPa 40 80 1: N-VAL (Blows/30 20 40 6	20 160 UE 00mm)	PL 20	ONTE (%) W.C.	NT LL 0 80	SAMPLE NO.	SAMPLE TYPE	RECOVERY (%	SV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL INSTALLATION	REMARKS
Asphaltic Concrete (80 mm)	124	- 16								0.10			
stiff, damp, greyish brown clayey silt (FILL)	123.5								62	0/0			
dense, damp, brown gravelly sand (FILL)	123						2		50	0/1			
		36 ▲					3		58	0/0			
END OF BOREHOLE													
<u> </u>													2020
			LOGGED BY: JC					+				2-Dec-	2020
V IEKKAPEX			REVI		BY:	VN		+	PAG	E 1 OF	1	=:	
CLIENT: 3168 HS LP	PROJECT	NO.: CT2892.03		RE	CORD OF:								
---	---	--	--	---	--------------------								
ADDRESS: 3154 Hurontario St & 25-33 Hillcrest Ave	STATION:			<u> </u>	BH316								
CITY/PROVINCE: Mississauga, ON	NORTHING	G (m): 4826465.158	EASTING (m):	611267.976 E	ELEV. (m) 124.186								
CONTRACTOR: Pontil Drilling Inc.	MET	HOD: Solid Stem Au	iger and Split S	poon Sampling									
BOREHOLE DIAMETER (cm): WELL DIAMETER (cn	i): SCR	EEN SLOT #: SAN	D TYPE:	SEALA	ANT TYPE:								
SAMPLE TYPE AUGER DRIVEN					SPLIT SPOON								
SOIL (W) HLAND DESCRIPTION	SHEAR SIT (kPa 40 80 1 N-VAL (Blows/30 20 40 0	RENGIH a) CONTENT (%) (%) (%) (%) (%) (%) (%) PL W.C. 1 60 80 20 40 60	8 T J SAMPLE NO. SAMPLE TYPE RECOVERY (%)	SV/TOV (ppm or %LEL) LABORATORY TESTING	REMARKS REMARKS								
Asphaltic Concrete (100 mm) Granular Base (CRL-225 mm) dense, damp, brown gravelly sand occasional clay layers (FILL) END OF BOREHOLE	$\begin{array}{c} (Blows/3) \\ 20 40 4 \\ 5 \\ 5 \\ 3 \\ 5 \\ - \\ 3 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$			No. No. <td></td>									
		LOGGED BY: JC	DRIL	LING DATE: 02-1	Dec-2020								
TEDDADEV					<u>200-2020</u>								
V IENNAFEA		REVIEWED BY: V	N PAG	E 1 OF 1									

CLIE	NT: 3168 HS LP			PRC	JECT	Γ NO.:	СТ	289	2.0	3							F	RECO	RD OF:
ADDF	RESS: 3154 Hurontario St & 2	5-33 Hillcrest Av	ve	STA	TION	:												BH	317
CITY	PROVINCE: Mississauga, ON			NOF		IG (m)): 48	3264	69.	074	ŀ	EAS	STIN	IG ((m):	6112	79.205	ELEV	(m) 123.913
CON	TRACTOR: Pontil Drilling Inc.				ME	THOE): S	olid	Ste	m A	۱ug	er a	and	Sp	lit S	poon	Samplin	g	
BORE		WELL DIAMETE	R (cm):		SC	REEN	I SLC	# тс		SA	ND	TYP	E:				SEA	ALANT '	TYPE:
SAM	PLE TYPE AUGER	DRIVEN		SHE	CORI EAR S	NG TRENG	GTH		DY		MIC R	CO	NE			SHELB	Υ Ι		T SPOON
GWL (m) SOIL SYMBOL	SOIL DESCRIPTIC		ELEVATION (m)	4((I	(kl 0 80 N-V/ Blows/ 0 40	Pa) <u>120 1</u> ALUE 300mm 60 8	60 n) ▲ 30	- F 20	CO PL \) 4(NTEI (%) W.C. 0 60	NT LL D 8	0	SAMPLE NO.	SAMPLE TYPE	RECOVERY (%	SV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL INSTALLATION	REMARKS
20.90	Asphaltic Concrete (100) mm) = 0		1,	,														
	Granular Base (CRL-55)	0 mm) [- 	123.5 -										1		62	0/1			
	clayey silt mixed with gravelly sand	(FILL)	123 -		11								2		50	0/1			
	compact, damp, brov gravelly sand mixed with clav lave	wn _ 1.5	122.5 -	24									3		75	0/6			
	some wood pieces (F	ILL)	122 ·										Ĺ		Ĺ				
	END OF BOREHO	LE																	
┣──						+,			DV/		<u> </u>							0.0	2020
		DADEV						GED	вҮ: /. с		,			+					-2020
		<i>NAPEX</i>							D B	и ВҮ: '	VN			+			- 1	⊑.	

CLIENT: 3168 HS LP	PROJECT	NO.: CT2892.03		R	ECORD OF:
ADDRESS: 3154 Hurontario St & 25-33 Hillcrest Ave	STATION:				MW318D
CITY/PROVINCE: Mississauga, ON		G (m): 4826505.820	EASTING (m):	611276.828	ELEV. (m) 123.248
CONTRACTOR: Pontil Drilling Inc.	MET	HOD: Split Spoon Sa	ampling and Ro	ck Coring	
BOREHOLE DIAMETER (cm): 15 WELL DIAMETER (cm): 5 SCR	EEN SLOT #: 10 SAN	D TYPE: 2	SEA	LANT TYPE: Holeplug
SAMPLE TYPE AUGER DRIVEN	CORIN	G DYNAMIC RENGTH WATER		SHELBY	SPLIT SPOON
	(kPa	20 160 CONTENT	NO. TYPE RY (%	LEL)	NOIT
	N-VAL			n or % ORA TING	
	(Blows/30	60 80 20 40 60	REO 8 8 08	SV/T (ppn LAB TES	NS- INS-
Asphaltic Concrete (80 mm) 0	3 34	2			
loose to very loose	31 ▲		1 71	0/0	
damp, brown					
silty sand (FILL)	°]/				
I ₩ E¹ I	1 🛉 10		2 58	0/0	
	2-				
[121.	5 - 4 5	4	3 17	0/0	
12	1 -				
rock 2.5		3	4 46	0/0	
120.	5-1			0/0	V
I ₩ -3					
rock 12	o -1 -				
fragments	1 ▲8	🕈	5 100	0/0	
	5				
Formation:	50/50	3	6 100	0/0	
grey 4					
Medium strong	9				
moderately weathered	50/100▲	4	7 1100		
intensely to moderately 118.	5 -				
RQD= 0% occasional thin					
limestone beddings	8-1				
clay seams			RC1		
117.	5-				
6					
TCR= 100%	7-]				
RQD= 0%					
116.	5 -				
			RC2		
TCR= 100%					
RQD=52%					
114. 	5 -				
- 9 - 9	1				
	4 -				
~		LOGGED BY: RG	DRIL	LING DATE: 0	3-Dec-2020
TERRAPEX		INPUT BY: SA	MON	IITORING DATE	E: 10-Dec-2020
*		REVIEWED BY: V	N PAG	E 1 OF 2	

CLIEN	NT: 3168 HS LP				PROJE	CT NO.:	CT2	892.0	03						R	RECO	RD OF:
ADDF	RESS: 3154 Hurontario St & 2	5-33 Hillcre	st Ave	<u>,</u>	STATIO	DN:										MW	318D
CITY/	PROVINCE: Mississauga, ON				NORTH	HING (m):	482	26505	5.820) E	AST	ING	(m):	61127	6.828	ELEV	. (m) 123.248
CONT	RACTOR: Pontil Drilling Inc.					METHOD:	Sp	lit Sp	oon	Sam	plin	g and	d Ro	ck Co	ring		
BORE	HOLE DIAMETER (cm): 15	WELL DIAN	METER	t (cm):	5	SCREEN	SLO	T#: 1	10 s/	ND T	YPE	2	_		SEA		TYPE: Holeplug
SAMF	AUGER	DRIV	EN			RING	. 1		YNA		CON	E		SHELB	Y	SPL	IT SPOON
5	SOII			Ē		(kPa)	"	▲ C		R NT		. H	(%)	EL)	Ř	No	
VL (n YMB	SUIL		(m) H	NOL	40	80 120 160	0		(%)			л Х Т Т	/ER)	ر %LI	NG	LAT	REMARKS
OIL S		JN	EPTH	EVA	(Blo	I-VALUE ws/300mm)		PL	W.C.	LL			ECO.	//TO	BOF	ELL	
S			IO.	<u> </u>	20	<u>40 60 80</u>		20 4	40 6	<u>0 80</u>	-	/s	R	S/ (pi	J H	≥≧	
	TCR= 95% Formation:	UCS=	- 9.5														
	RQD= 52% grey	14.1 Mpa	-	113.5 -													
	Medium strong		- 10									N					
	moderately weather	ed	_	113 -							R	C4					
	intensely		- 10 5														
	to moderately		-	1125													
	TCR= 100% occasional thin		-	112.5 -													
	RQD= 43%limestone bedding	S	- 11														bentonite
	occasional thin		[112 -	1												
	Juay Stallis		- 11.5	:	1							N					sand
			-	111.5 -							R	C5					sand
			- 12													: :	
		20.7 Mpa	-	. 111 -												l∷⊨∺	sand + screen
	TCR= 100%		- 125														
	RQD= 64%		- 12.5														
			_	110.5 -	1											l:≣:	
			- 13									N					
			-	110 -							R	Ce				ŀ≣:	
			- 13.5													l:=:	
			-	109.5 -												l:≣:	
	TCR= 100%		- 14													l:1	
	RQD= 60%	UCS=	-	109 -												l∷≣÷	
		17.4 мра	-													ŀ≣:	
			- 14.5									N				ŀ≣:	
			-	108.5 -							R	C7				ŀ:∎:	
			- 15 -													ŀ≣:	
				108 -								1					-
			_ 15.5	· ·	1	+ $+$ $+$	+	_	$\left \right $	+	+	_					
							DGG	ED B)	r: R(G			DRII	LING [DATE: 0	3-Dec	-2020
	TERI	KAPEX				IN	IPUT	BY:	SA			_	MON	ITORI	NG DATE	E: 10-I	Dec-2020
	*					R	EVIE	WED	BY:	VN			PAG	E 2 OF	2		

CLIE	NT: 3168 HS LP			PROJ	IECT N	ю.: С	T289	92.0	3							F	RECC	RD OF:
ADD	RESS: 3154 Hurontario St & 25-33 Hillcre	est Ave	;	STAT	ION:												MW	<u>3185</u>
CITY	/PROVINCE: Mississauga, ON			NOR	THING	(m): 4	826	504	367	E	EAS	TIN	G (I	m):	61127	7.976	ELEV	r. (m) 123.248
CON	TRACTOR: Pontil Drilling Inc.			_	METH	HOD: S	Solid	Ste	em A	uge	er							
BOR	EHOLE DIAMETER (cm): 15 WELL DIA	METER	: (cm):	5	SCRE	EN SL	.OT #	≠: 1(■ - ·	JSA	ND T	YPE	: 2						TYPE: Holeplug
SAM	PLE TYPE DRIV	en I		SHE/	ORING AR STR	; ENGTH		UY W	ATEF			1	_		SHELB	Y		
BOL I	SOIL	- -	M (m	10	(kPa)	•		CO	NTEN (%)	١T		ġ	ΓYPE	RY (%	(TEL)	ORY		
SYN (DESCRIPTION	LH (n	ATIC	40	N-VALU		-					PLE	PLEJ	OVEF	ov or %	DRAT		REMARKS
SOIL		DEP	ELE	(B) 20	lows/300 40 6	0mm) 0 80	2	PL 1 20 4	W.C. 0 60	LL) 80		SAM	SAM	REC	SV/T (ppm	LAB(TES ⁻	WEL	
	Straight auger to 6.4 m to install the	0	100															
	monitoring well	-	123 -															
		- 0.5																Bentonite
		-	122.5 -															
		-1 [
		-	122 -															
		- 1.5 E		1														
		E	121.5 -	1														
		-2 -																
		Ē	121 -	1														
		- 2.5																
		Ē	120.5 -															
		-3																
		-	120 -															
		- 3.5																
		-	119.5 -															
		-4																
		-	119 -															
		- 4.5																
		-	118.5 -															sand
		-5																sand + screen
		-	118 -															
		- - 5.5															l:=	
		-	117.5 -	1													l:≣:	
		-6															l:≣:	
		-	117 -															
┝┶	END OF BOREHOLE			$\uparrow \uparrow$			+	\square	+	+	+	+					┢┅╘═ᡬ	
1																		
1																		
1																		
<u> </u>	1	1	1				L GEF) RV		- })BII		Ι ΔΑΤΕ· Γ	1)3-Dec	-2020
1						INPI		Y: S	A	-						NG DAT	E: 10-	Dec-2020
						REV	/IEW	ED E	3Y: \	٧N			F	PAG	E 1 OF	1		

CLIE	NT: 3168 HS LP			PROJ	ECTN	10.: C	T289	2.03							F	RECO	RD	OF:	
ADD	RESS: 3154 Hurontario St & 25-33 Hillcre	st Ave		STAT	ION:											MW	31	9D	
CITY	/PROVINCE: Mississauga, ON			NORT	HING	(m): 4	18264	108.0	31	EAS	STIN	G (m	n): 6	61119	8.188	ELEV	/. (m)	126.302	
CON	TRACTOR: Pontil Drilling Inc.				MET	HOD:	Split	Spoo	n Sa	ampli	ng a	and I	Roc	ck Cor	ring				
BOR	EHOLE DIAMETER (cm): 15 WELL DIAM	METER	(cm):	5	SCR	EEN SI	LOT #	: 10	SANI	D TYP	E: 2	-			SE	ALANT	TYPE	: Holeplug	
SAM	PLE TYPE AUGER DRIVI	EN			ORINO	3 ENGTH		DYN WA	IAMIO	с со	NE		S		Y _		IT SP	OON	
GWL (m) SOIL SYMBOL	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m	40 (Bl	(kPa 80 1: N-VAL ows/30 40 6	● 20 160 JE 0mm) 0 80	2	CON (? PL W 0 40	TENT %) .C. L 60	L 80	SAMPLE NO.	SAMPLE TYPE	RECOVERY (%	SV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL		REMARKS	
00	Asphaltic Concrete (80 mm)	0							Ĩ	Ĩ		Î							
	Granular base (CRL- 225 mm) hard, damp, grey clayey silt (FILL)	- 0.5	126 - 125.5 -		25						1		50						
		- 1 - -	125 -	-							-	Ш°							
	hard, damp, grey CLAYEY SILT some shale fragments	- 1.5 - - - 2	124.5 -	- 50/ -	/75 🔺						3	∏ 1(00						
	Georgian Bay Formation: grey	- 2.5	124 -	- - 50/ -	/75 🛦						4	∏10	00						
	Medium strong SHALE moderately weathered	-3	123.5 -	-												Y			
	TCR= 100% to moderately RQD= 27% fractured occasional thin	- 3.5 	123 -								RC1	V							
	limestone beddings occasional thin clay seams	- 	122.5	-								Ą							
	RQD= 19%	- 4.5	121.5 -	-															
		-5	121 -	-							RC2								
	TCR= 100%	- 5.5 - - - - 6	120.5 -	-															
	RQD= 57%	- 6.5	120 -	-															
		-7	119.5 -								RC3	Ň							
	TCR= 100% RQD= 48%	- 7.5	119 - 118.5 -																
		- 8	118 -								RC4								
		- 8.5 - - - 9	117.5 -																
		-	117									\mathbf{X}							
						LOC	GGED	BY:	RG			D	RILL	LING E	DATE: (03-Dec	-2020)	
	TERRAPEX					INP	UT B	1: SA	<u>۱</u>			М	ONI	ITORI	NG DAT	E: 10-	Dec-2	2020	
						RE\	/IEW	ED BY	': VI	N		P/	AGE	E 1 OF	2				

CLIEN	NT: 3168 HS LP			PROJEC	T NO.: CT	2892.03	}				R	ECO	RD OF:
ADDR	ESS: 3154 Hurontario St & 25-33 Hillcre	st Ave	,	STATION	l:							MW	319D
CITY/	PROVINCE: Mississauga, ON			NORTHIN	NG (m): 48	326408.0	031 E	ASTIN	G (m):	61119	98.188	ELEV	. (m) 126.302
CONT	RACTOR: Pontil Drilling Inc.			ME	ETHOD: S	plit Spoo	on Samp	pling a	nd Ro	ock Co	ring		
BORE	HOLE DIAMETER (cm): 15 WELL DIAM	METER	(cm):	5 SC	REEN SLO	o T #: 10	SAND TY	YPE: 2			SEA		TYPE: Holeplug
SAMF	PLE TYPE AUGER DRIV	EN		COR	ING	DYI	NAMIC C	ONE	Ш	SHELB	Y	SPL	T SPOON
ر م	2011		(E)	SHEAR S	Pa)				, (%)	ΞΓ)	RY	NO	
VL (n	JUIL	Ű.	10L	40 80	120 160		70)	Й Ш	VER,	۷ ۲%L	RATC		REMARKS
OIL S	DESCRIPTION	EPTH	LEVA	(Blows	/300mm)	PL V	V.C. LL	AMPI	ECO	V/TO pm o	ABOF	ELL	
Š	TCP= 100% Coordian Day		<u> </u>	20 40	60 80	20 40	60 80	ŝ	S R	ω d	32	≥≤	
	RQD= 64% Formation:	- 9.5											
	grey	-	116.5 -						V				
	Medium strong	- 10						RC5	X				
	moderately weathered	_	116 -						Δ				
	intensely to moderately	- 10 5											
	fractured TCR= 100%	-											
	RQD= 55% occasional trin	-	115.5 -										
	occasional thin	- 11 -											bentonite
	clay seams	-	115 -						V				
	32.2 Mpa	- 11.5						RC	X				
		-							Λ			0 E	sand
		40	114.5 -									E E	
	TCR= 100%	- 12										::	
	RQD= 80%		114 -]									sand + screen
		- 12.5										ŀ≣:	
		_	1135-						V			ŀ:≣::	
		- 13						RC7	X			ŀ≣:	
		-	· ·						Δ			:: ::	
		-	113 -	1									
	TCB= 100%	- 13.5		1								E≣:	
	RQD= 43%	-	112.5 -									ŀ≣:	
	UCS= 24.2 Mpa	- 14										ŀ≣:	
	pa	_	112 -						V			ŀ≣÷	
		- 14.5						RC8	Y			ŀ≣:	
		-							Λ			l:≣:	
		-	111.5 -										
		- 15											
	END OF BOREHOLE												
								Щ					
					LOG	GED BY:	RG		DRI	LING	DATE: 0	3-Dec	-2020
	TERRAPEX				INPU	TBY: S	Α		MOI	NITORII	NG DATE	E: 10-[Dec-2020
	•				REVI	EWED B	Y: VN		PAG	E 2 OF	2		

CLIENT: 3168 HS LP		PROJECT	NO.: CT	2892.03			F	RECO	RD OF:
ADDRESS: 3154 Hurontario St & 25-33 Hillcrest Ave	,	STATION:			1			MW	<u>319S</u>
CITY/PROVINCE: Mississauga, ON		NORTHING	6 (m): 48	326408.906	EASTI	ING (m):	611196.909	ELEV	. (m) 126.354
CONTRACTOR: Pontil Drilling Inc.		MET	HOD: S	olid Stem Au	uger				
BOREHOLE DIAMETER (cm): 15 WELL DIAMETER	: (cm):	5 SCR	EEN SLO	DT #: 10 SAM	ND TYPE:	2	SE	ALANT 1	TYPE: Holeplug
SAMPLE TYPE _ AUGER _ DRIVEN		CORIN SHEAR STR	G RENGTH	DYNAM			SHELBY		T SPOON
IND SOIL (III) HLdag	ELEVATION (m	(kPa 40 80 1 N-VAL (Blows/30	20 160 20 160 .UE 00mm)	CONTEN (%) PL W.C.		SAMPLE TYPE RECOVERY (%	SV/TOV ppm or %LEL) 	VELL NSTALLATION	REMARKS
Straight auger to 6.1 m to install the monitoring well 0 -1.5 -1.5 -2 -2.5 -3.5 -3.5 -4 -4.5 -5 -5.5 -6 END OF BOREHOLE	126 - 125.5 - 125 - 124.5 - 124.5 - 124.5 - 123.5 - 123.5 - 123.5 - 123.5 - 123.5 - 124.5 - 124.5 - 124.5 - 125.5 -	(Blows/30	00mm) 60 80	PL W.C. 20 40 60		SAM REC	SVT (Ppm / LAB/		Bentonite sand sand + screen
			LOG	GED BY: RG	6	DRIL	LING DATE: (04-Dec	-2020
TERRAPEX			INPU	T BY: SA		MON	ITORING DAT	E: 10-0	Dec-2020
v			REVI	EWED BY: V	/N	PAG	E 1 OF 1		

Project No: 3048-1401

Project: Phase Two Environmental Site Assessment Client: Metrolinx Site Location: 3168 Hurontario Street, Mississauga, ON Well Location: See Figure 3 GS Elevation: 105.57 m ald TOC Elevation: 105.46 m ald Water Level: 4.73 m bgs Water Level Elevation: 100.84 m als Bottom of Well Depth: 6.1 m bgs

		SUBSURFACE PROFILE					SA	MPLE				
Depth (m)	Symbol	Description	Elevations (m amsl)\ Depth (mbgs)	Sample ID	Type	Sample Symbol	Recovery	Blow Count	Combustible Gas Meter Reading (ppmv)	Submitted for Lab Analysis	Well Completion Details	Depth (m)
0.0-	****	Ground Surface	105.57									-0.0
0.5		Sandy Silt Fill moist, grey, stiff, some gravel	104 81	BH-101-1	SS			4-7-12-10	<25	×		0.5
1.0	A A	Silty Clay dry to moist, brown/grey, stiff, some sand, trace gravel	0.76	BH-101-2	SS			5-7-13-14	<25	x	PVC Rise	1.0
1.5	HH/	grey, hard	104.05 1.52	BH-101-3	SS			14-23-23-41	<25	x	Bentor	
2.0	HA	Shalo	103.07 2.50	BH-101-4	SS			24-25-50 for 6 in	<25	×	s cm Di	2.0 2.5
3.0		dry to moist, grey, fractured, hard							-20	~	*	 3.0
3.5			101.76	BH-101-5	SS			50 for 6 in	<25	X	Leeu	3.5 3.5
4.0		Limestone	3.81	BH-101-6	SS			38-50 for 3 in	<25		Sand Slot 10 Sc	4.0
4.5				BH-101-7	SS			50 for 3 in	<25		Silica Silica Sch, 40	4.5
5.5				Not Sampled							2 cm [5.5
6.0-		End of Borehole	99.48 6.10									6.0
6.5 		Notes: TOC = Top of Casing m ald = Metres above local datum m bgs = Metres below ground surface ppmv = Parts per million by volume %LEL = Percent of the lower explosive limit of hexane NA = Not available										
8.0												 8.0
8.5						8.5 8.5						
Drille Drill Drill Note: A Franz	ed By: Metho Date: Date: Any deci Environr	Geo-Environmental Drilling Inc. Dd: CME 75 Truck Mount November 24, 2014 sions/actions made by a third party based on this log are mental accepts no liability for third party decisions/actions	the sole re	Logged E Log Prep Checked sponsibilty of the ed on this log.	By: J. ared By: third p	Nob By: L. Zh arty.	le J. No ang	oble			FRANZ ENVIRONMEN INC.	

BOREHOLE LOG

Project No: 3048-1401

Project: Phase Two Environmental Site Assessment **Client: Metrolinx** Site Location: 3168 Hurontario Street, Mississauga, ON Well Location: See Figure 3

GS Elevation: 102.06 m ald TOC Elevation: 101.94 m ald Water Level: 4.52 m bgs Water Level Elevation: 97.54 m ald Bottom of Well Depth: 6.1 m bgs

		SUBSURFACE PROFILE					SA	MPLE				
Depth (m)	Symbol	Description	Elevations (m amsl)\ Depth (mbgs)	Sample ID	Type	Sample Symbol	Recovery	Blow Count	Combustible Gas Meter Reading (ppmv)	Submitted for Lab Analysis	Well Completion Details	Depth (m)
0.0-		Ground Surface	102.06									-0.0
0.5		<i>Silty Sand Fill</i> moist, brown, loose, some gravel	0.00	BH-102-1	SS			2-4-4-5	<25	x	Ť	0.5
1.0			100 54	BH-102-2	SS			4-4-4-4	<25	x	o PVC Ris	1.0
1.5		compact	1.52	BH-102-3	SS			5-9-11-12	<25	x	Benti	
2.5		Silty Clay moist, grey, stiff, some sand, trace gravel	<u>99.77</u> 2.29	BH-102-4	SS			8-9-10-12	<25	x	20 20 20	2.5
3.0		Shale dry to moist, grey, fractured, hard	<u>99.01</u> 3.05	BH-102-5	SS			9-35-50 for 5 in	<25		¥.	
4.0				BH-102-6	SS			40-50 for 4 in	<25	x	Slot 10 Scre	4.0
4.0 				BH-102-7	SS			40-50 for 3 in	<25		Silica S Dia. Sch. 40	- 5.0
5.5				BH-102-8	SS			50 for 6 in	<25		5 cm	-5.5
-			95.66	Not Sampled								
6.5 7.0 7.5 8.0		End of Borehole Notes: TOC = Top of Casing m ald = Metres above local datum m bgs = Metres below ground surface ppmv = Parts per million by volume %LEL = Percent of the lower explosive limit of hexane NA = Not available	6.40								★	
8.5			93.53 8.53	-								8.5
Drille Drill Drill	ed By Meth Date:	: Geo-Environmental Drilling Inc. od: CME 75 Truck Mount November 26, 2014		Logged E Log Prep Checked	By: J. ared By:	Nob By: L. Zh	le J. No iang	oble	1		FRANZ	NTAL

Franz Environmental accepts no liability for third party decisions/actions made based on this log.

BOREHOLE LOG

CONSULTING
 ENGINEERING
 TECHNOLOGIES

Project No: 3048-1401

Project: Phase Two Environmental Site Assessment **Client: Metrolinx** Site Location: 3168 Hurontario Street, Mississauga, ON Well Location: See Figure 3

BOREHOLE LOG GS Elevation: 98.66 m ald TOC Elevation: 98.54 m ald Water Level: 4.36 m bgs Water Level Elevation: 94.30 m ald Bottom of Well Depth: 6.1 m bgs

		SUBSURFACE PROFILE					SA	MPLE				
Depth (m)	Symbol	Description	Elevations (m amsl)\ Depth (mbgs)	Sample ID	Type	Sample Symbol	Recovery	Blow Count	Combustible Gas Meter Reading (ppmv)	Submitted for Lab Analysis	Well Completion Details	Depth (m)
0.0-	****	Ground Surface	98.66 0.00									0.0
0.5		Silty Sand Fill moist brown loose some gravel		BH-103-1	SS			4-6-8-10	<25	X	Ĩ	_ 0.5
1.0		compact	<u>97.90</u> 0.76	BH-103-2	SS			9-14-17-22	<25	x	PVC Riser	 1.0
1.5 — 2.0 —		very dense	97.14 1.52 96.68	BH-103-3	SS			23-38-50 for 6 in	<25	x	Bentor	
2.5		compact		BH-103-4	SS			8-11-13-14	<25	x	-2 cm C	2.5
3.0		Shale dry to moist, grey, fractured, hard	<u>95.61</u> 3.05	BH-103-5	SS			50 for 6 in	<25		en all a statements	
4.0				BH-103-6	SS			50 for 5 in	<25	x	Slot 10 Scre	
5.0				BH-103-7	ss			50 for 6 in	<25		Silica S Silica S Sch. 40	 5.0
5.5				BH-103-8	SS			50 for 5 in	<25		-5 cm [
0.0 			92.26	Not Sampled								
6.5 7.0 7.5 8.0		End of Borehole Notes: TOC = Top of Casing m ald = Metres above local datum m bgs = Metres below ground surface ppmv = Parts per million by volume %LEL = Percent of the lower explosive limit of hexane NA = Not available	6.40									
8.5			90.13 8.53									
Drille Drill Drill Note: A Franz	ed By Metho Date: Any deci Environ	: Geo-Environmental Drilling Inc. od: CME 75 Truck Mount November 26, 2014 sions/actions made by a third party based on this log are mental accepts no liability for third party decisions/actions	the sole reader base	Logged E Log Prep Checked sponsibilty of the ed on this log.	By: J. ared By: third p	Nob By: L. Zh arty.	ole J. No nang	oble			FRANZ ENVIRONMEI INC.	NTAL

Project No: 3048-1401

Project: Phase Two Environmental Site Assessment Client: Metrolinx Site Location: 3168 Hurontario Street, Mississauga, ON Well Location: See Figure 3 GS Elevation: 105.26 m ald TOC Elevation: 105.14 m ald Water Level: 4.58 m bgs Water Level Elevation: 100.68 m ald Bottom of Well Depth: 6.1 m bgs

ΙI.		SUBSURFACE PROFILE				_	SA	MPLE			-	
Depth (m)	Symbol	Description	Elevations (m amsl)\ Depth (mbgs)	Sample ID	Type	Sample Symbol	Recovery	Blow Count	Combustible Gas Meter Reading (ppmv)	Submitted for Lab Analysis	Well Completion Details	Depth (m)
0.0	Ŧ	Ground Surface Sand and Gravel Fill Silty Clay	105.26 0.00	BH-104-1	SS			2-7-23-50	<25	x	*	0.0
1.0	HH	moist, brown/grey, hard, some sand and gravel Shale dry to moist, brown/grey, hard	104.19 1.07 103.74	BH-104-2	SS	Ι		19 <mark>-29-44-5</mark> 0	<25	×	onite to PVC Riser	-1.0
2.0		grey	1.52	BH-104-3	SS	Ι		24-50 for 5 in	<25	x	Bent	-1.5
2.5				BH-104-4	SS	Ι		50 for 6 in	<25	×		-2.5
3.0-				BH-104-5	SS	Π		50 for 5 in	<25	×	E E	-3.5
4.0				BH-104-6	SS	Π		50 for 5 in	<25		a Sand	-4.0
5.0				BH-104-7	SS	Π		50 for 6 in	<25		-Silica	-4.5
5.5			00.16	BH-104-8	SS	Π		50 for 5 in	<25		2 CH 2	-5.5
6.5 7.0 7.5		End of Borehole Notes: TOC = Top of Casing m ald = Metres above local datum m bgs = Metres below ground surface ppmv = Parts per million by volume %LEL = Percent of the lower explosive limit of hexane NA = Not available	6.10	Not Sampler								-6.5 -7.0 -7.5 -8.0
8.5			96.73 8.53					-				-8.5
Drille Drill Drill Note: Franz	ed By: Metho Date: Any deci Environr	Geo-Environmental Drilling Inc. Dd: CME 75 Truck Mount November 24, 2014 sions/actions made by a third party based on this log are mental accepts no liability for third party decisions/action	e the sole re s made bas	Logged E Log Prep Checked sponsibility of the ed on this log.	By: J arec By: third p	. Nob I By: L. Zh ^{arty.}	le J. No nang	ble			FRANZ ENVIRONMEN INC.	

Project No: 3048-1401

Project: Phase Two Environmental Site Assessment Client: Metrolinx Site Location: 3168 Hurontario Street, Mississauga, ON Well Location: See Figure 3 GS Elevation: 99.99 m ald TOC Elevation: 99.90 m ald Water Level: 4.51 m bgs Water Level Elevation: 95.48 m ald Bottom of Well Depth: 6.1 m bgs

		SUBSURFACE PROFILE					SA	MPLE				
Depth (m)	Symbol	Description	Elevations (m amsl)\ Depth (mbgs)	Sample ID	Type	Sample Symbol	Recovery	Blow Count	Combustible Gas Meter Reading (ppmv)	Submitted for Lab Analysis	Well Completion Details	Depth (m)
0.0		Ground Surface Asphalt	99.99 0.00	DU 105 1				20 12 14 12	<25	~	*	0.0
0.5		Sand and Gravel Fill moist, brown, compact		BH-105-1	55	Ш		20-12-14-12	<25	^		0.5
1.0				BH-105-2	SS			8-8-7-6	<25	x	nite D PVC Rise	1.0
1.5 2.0		loose	<u>98.47</u> 1.52	BH-105-3	SS			3-4-4-5	<25		Bentc	
25-	97.70 11 Silty Clay 2.29 moist brown bard some sand BH-105-4 SS 9-23-50 for 5 in <25										5 cm l	- -
	Silty Clay moist, brown, hard, some sand 2.25 97.25 BH-105-4 SS 9-23-50 for 5 in <25 Shale 2.74 BH-105-5 SS 9-23-50 for 5 in <25									_x_	I	
3.0 — 	Shale dry to moist, grey, fractured, hard 2.74 BH-105-5 SS 9-23-50 for 5 in <25 BH-105-6 SS 9-43-50 for 3 in <25											3.0
4.0				BH-105-7	SS			50 for 5 in	<25	x	iot 10 Scre	4.0 4.0
4.5 				BH-105-8	SS			50 for 4 in	<25	x	- Silica Se ia. Sch. 40 S	-4.5
5.5				BH-109-9	SS			50 for 5 in	<25		5 cm D	5.5 5.5
6.0-			93.59	Not Sampled							L	
6.5 7.0 7.5 8.0		End of Borehole Notes: TOC = Top of Casing m ald = Metres above local datum m bgs = Metres below ground surface ppmv = Parts per million by volume %LEL = Percent of the lower explosive limit of hexane NA = Not available	6.40								•	
8.5			91.46 8.53									8.5
Drille Drill Drill Note: A Franz	ed By: Metho Date: Any deci Environr	Geo-Environmental Drilling Inc. Dd: CME 75 Truck Mount November 27, 2014 sions/actions made by a third party based on this log are mental accepts no liability for third party decisions/actions	the sole reader the sole reader the sole reader the sole reader the sole base sole bas	Logged E Log Prep Checked sponsibilty of the ed on this log.	By: J. ared By: third p	Nob By: L. Zh arty.	le J. No lang	oble			FRANZ ENVIRONMEN INC.	

Project No: 3048-1401

Project: Phase Two Environmental Site Assessment **Client:** Metrolinx Site Location: 3168 Hurontario Street, Mississauga, ON Well Location: See Figure 3

GS Elevation: 99.01 m ald TOC Elevation: 98.87 m ald Water Level: 3.98 m bgs Water Level Elevation: 95.03 m ald Bottom of Well Depth: 6.7 m bgs

		SUBSURFACE PROFILE					SA	MPLE				
Depth (m)	Symbol	Description	Elevations (m amsl)\ Depth (mbgs)	Sample ID	Type	Sample Symbol	Recovery	Blow Count	Combustible Gas Meter Reading (ppmv)	Submitted for Lab Analysis	Well Completion Details	Depth (m)
0.0-		Ground Surface	99.01									-0.0
0.5		Silty Sand Fill moist, brown, loose, some gravel	0.00	BH-106-1	SS			3-4-6-8	<25	x		0.5
1.0		Sand and Gravel Fill	97.94 1.07	BH-106-2	SS			10-9-11-16	<25	x	C	1.0
1.5— 2.0—		dense	<u>97.49</u> 1.52	BH-106-3	SS	Π		9-17-19-19	<25	x	Bentonite Sch. 40 PV	
2.5		Silty Sand Fill moist to wet, brown, compact, some	96.42 2.59	BH-106-4	SS			14-12-18-15	<25	x	5 cm Dia.	2.5 2.5
3.0		gravel, some fractured shale pieces <i>Shale</i> dry to moist, grey, fractured, hard	3.05	BH-106-5	SS			50 for 5 in	<25		*	3.0
4.0				BH-106-7	SS			50 for 5 in	<25	x	u u u u u u u u u u u u u u u u u u u	
5.0				BH-106-8	SS			50 for 5 in	<25		a Sand	5.0
5.5				BH-106-9	SS			50 for 5 in	<25		n Dia. Sch.	
6.5			92.00	Not Samplec								
/.0		End of Borehole	7.01									
7.5		Notes: TOC = Top of Casing m ald = Metres above local datum m bgs = Metres below ground surface ppmv = Parts per million by volume %LEL = Percent of the lower explosive limit of hexane	90.48									
	1		8.53									-
Drille	ed By	: Geo-Environmental Drilling Inc.		Logged E	By: J.	Nob	le					
Drill	Meth	od: CME 75 Truck Mount		Log Prep	ared	By:	J. No	oble			FRANZ	
Drill Note: /	Date:	November 27, 2014 isions/actions made by a third party based on this log are	e the sole re	Checked sponsibility of the	By: third p	L. Zh arty.	ang				ENVIRONME INC.	NTAL

Note: Any decisions/actions made by a third party based on this log are the sole responsibility of the third party. Franz Environmental accepts no liability for third party decisions/actions made based on this log.

CONSULTING
 ENGINEERING
 TECHNOLOGIES

Project No: 3048-1401

Project: Phase Two Environmental Site Assessment **Client: Metrolinx** Site Location: 3168 Hurontario Street, Mississauga, ON Well Location: See Figure 3

GS Elevation: 98.87 m ald TOC Elevation: 98.76 m ald Water Level: 4.91 m bgs Water Level Elevation: 93.96 m ald Bottom of Well Depth: 6.1 m bgs

ίI		SUBSURFACE PROFILE	1			_	SA	MPLE				
Depth (m)	Symbol	Description	Elevations (m amsl)\ Depth (mbgs)	Sample ID	Type	Sample Symbol	Recovery	Blow Count	Combustible Gas Meter Reading (ppmv)	Submitted for Lab Analysis	Well Completion Details	Depth (m)
0.0		Ground Surface	98.87									0.0
0.5		Asphalt Silty Sandl Fill moist, brown, loose, some gravel	98.11	BH-107-1	SS			5-3-3-2	<25	x	ee e	0.5
1.0		trace clay	0.76	BH-107-2	SS			2-3-6-22	<25		PVC Ris	-1.0
1.5		very dense fractured shale pieces	97.35 1.52	BH-107-3	SS			10-35-40-40	<25	x	Bento	-1.5
2.5		Sand Fill moist, brown, dense, some silt and gravel, fractured shale pieces	96.58 2.29	BH-107-4	SS	Ι		12-15-16-27	<25	×	5 g	2.5
3.0		Shale dry to moist, grey, fractured, hard	95.82 3.05	BH-107-5	SS	Ι		28-50 for 4 in	<25	x		- 3.0
4.0				BH-107-6	SS	Ι		11-27-50 for 5 in	<25	x	Sand	4.0
5.0				BH-107-7	SS	Π		50 for 6 in	<25		Silica Dia, Sch. 40	5.0
5.5				BH-107-8	SS	Ι		50 for 5 in	<25		e S	-5.5
0.0			92.47	Not Sampled		2.1					_ *	-0.0
6.5		End of Borehole	6.40								T. FILLER	-6.5
7.0-		Notes: TOC = Top of Casing m ald = Metres above local datum m bgs = Metres below ground surface ppmv = Parts per million by volume										-7.0
8.0		%LEL = Percent of the lower explosive limit of hexane NA = Not available										-8.0
8.5			90.34 8.53									-8.5
Drille Drill Drill Note:	ed By Metho Date:	: Geo-Environmental Drilling Inc. od: CME 75 Truck Mount November 25, 2014 isions/actions made by a third party based on this log a	re the sole re	Logged E Log Prep Checked	By: J arec By:	. Nob I By: L. Zh arty.	le J. N ang	oble			FRANZ ENVIRONM INC.	ENTAL

Franz Environmental accepts no liability for third party decisions/actions made based on this log.

BOREHOLE LOG

Project No: 3048-1401

Project: Phase Two Environmental Site Assessment Client: Metrolinx Site Location: 3168 Hurontario Street, Mississauga, ON Well Location: See Figure 3 GS Elevation: 98.75 m ald TOC Elevation: 98.65 m ald Water Level: 4.55 m bgs Water Level Elevation: 94.20 m ald Bottom of Well Depth: 6.1 m bgs

		SUBSURFACE PROFILE					SA	MPLE				
Depth (m)	Symbol	Description	Elevations (m amsl)\ Depth (mbgs)	Sample ID	Type	Sample Symbol	Recovery	Blow Count	Combustible Gas Meter Reading (ppmv)	Submitted for Lab Analysis	Well Completion Details	Depth (m)
0.0		Ground Surface	98.75									-0.0
0.5		Asphalt Sand and Gravel Fill moist, brown, loose	0.00	BH-108-1	SS			11-8-6-7	<25	x		 0.5
1.0		Sandy Silt Fill moist, brown, stiff, some gravel Sand and Gravel Fill dry to moist, brown, dense	97.84 0.91	BH-108-2	SS			10-20-19-28	<25	x	onite 0 PVC Rise	
1.5 — 		very dense	1.52	BH-108-3	SS			10-20-32-32	<25	x	Bent Dia Sch. 4	
	***		96.31	BH-108-4		Ш		7-10-29-50			E I	=
2.5		Shale dry to moist, grey, fractured, hard	2.44	BH-108-5	SS			7-10-29-50	<25	x	¥	
3.5				BH-108-6	SS			32-50 for 5 in	<25			- -
4.0				BH-108-7	SS			50 for 3 in	<25		Siot 10 Sc	-
5.0			03 / 2	BH-108-8	SS			50 for 5 in	<25	x	Silica S	
5.5		Limestone	5.33	BH-108-9	SS			50 for 4 in			2 GB	-
6.0		End of Develop	92.35	Not Sampled							· ·	
7.0 7.5 8.0		End of Borenole Notes: TOC = Top of Casing m ald = Metres above local datum m bgs = Metres below ground surface ppmv = Parts per million by volume %LEL = Percent of the lower explosive limit of hexane NA = Not available	0.40									
8.5			90.22 8.53									
Drille Drill Drill Note: A Franz	ed By Metho Date: Any deci	: Geo-Environmental Drilling Inc. od: CME 75 Truck Mount November 26, 2014 sions/actions made by a third party based on this log are mental accepts no liability for third party decisions/actions	the sole reader base	Logged E Log Prep Checked sponsibilty of the ed on this log.	By: J. ared By: third p	Nob By: L. Zh arty.	le J. No ang	bble			FRANZ ENVIRONME INC.	

BOREHOLE LOG

Project No: 3048-1401

Project: Phase Two Environmental Site Assessment Client: Metrolinx Site Location: 3168 Hurontario Street, Mississauga, ON Well Location: See Figure 3 GS Elevation: 98.93 m ald TOC Elevation: 98.84 m ald Water Level: 4.18 m bgs Water Level Elevation: 94.75 m ald Bottom of Well Depth: 6.1 m bgs

		SUBSURFACE PROFILE					SA	MPLE				
Depth (m)	Symbol	Description	Elevations (m amsl)\ Depth (mbgs)	Sample ID	Type	Sample Symbol	Recovery	Blow Count	Combustible Gas Meter Reading (ppmv)	Submitted for Lab Analysis	Well Completion Details	Depth (m)
0.0-		Ground Surface	98.93									-0.0
0.5		Asphalt Sand Fill moist, brown, loose,some gravel	0.00	BH-109-1	SS			4-5-7-11	<25	x	Ť	 0.5
1.0		compact, some fractured shale	97.71 1.22	BH-109-2	SS			7-9-14-16	<25	x	onite 0 PVC Rise	1.0 1
1.5 2.0		pieces, some clay loose		BH-109-3	SS			7-5-7-3	<25	x	Bentc	1.5 2.0
-		verv dense		5	_							
2.5 —	very dense 2.29 BH-109-4 SS 2-4-25-50 for 4 in <25 Shale BH-109-5 SS 2-4-25-50 for 4 in <25										• •	-2.5 -
3.0	Shale dry to moist, grey, fractured, hard BH-109-5 SS II 2-4-25-50 for 4 in <25 BH-109-6 SS II 50 for 6 in <25										*	
4.0				BH-109-7	SS			50 for 5 in	<25	x	Slot 10 Scr	-
4.3 				BH-109-8	SS			50 for 5 in	<25		- Silica S Dia, Sch. 40	4.5
5.5				BH-109-9	SS			50 for 4 in			5 5	
-			92.53	Not Sampled							_	
6.5 7.0 7.5 8.0 8.5		End of Borehole Notes: TOC = Top of Casing m ald = Metres above local datum m bgs = Metres below ground surface ppmv = Parts per million by volume %LEL = Percent of the lower explosive limit of hexane NA = Not available	90.40 90.40								S. karanan	
			8.53	I				l			I	-
Drille Drill Drill Note: A Franz	ed By Metho Date: Any deci Environi	: Geo-Environmental Drilling Inc. od: CME 75 Truck Mount November 26, 2014 sions/actions made by a third party based on this log are mental accepts no liability for third party decisions/actions	the sole res	Logged E Log Prep Checked sponsibility of the ed on this log.	By: J. ared By: third p	Nob By: L. Zh arty.	le J. N ang	oble			FRANZ ENVIRONMEN INC.	

Project No: 3048-1401

Project: Phase Two Environmental Site Assessment

Client: Metrolinx

Site Location: 3168 Hurontario Street, Mississauga, ON

Borehole Location: See Figure 3

Franz Environmental Inc., 4005 Hickory Drive, Mississauga, Ontario, L4W 1L1, info@franzenvironmental.com

BOREHOLE LOG

Project No: 3048-1401

Project: Phase Two Environmental Site Assessment

Client: Metrolinx

Site Location: 3168 Hurontario Street, Mississauga, ON

Borehole Location: See Figure 3

		SUBSURFACE PROFILE					SA	MPLE			
Depth (m)	Symbol	Description	Elevations (m amsl)\ Depth (mbgs)	Sample ID	Type	Sample Symbol	Recovery	Blow Count	Combustible Gas Meter Reading (ppmv)	Submitted for Lab Analysis	Depth (m)
0.0		Ground Surface	0.00								— 0.0
=		Asphalt	0.00	BH-111-1	SS	Ш		3-8-8-9			
0.5		Sandy Silt Fill		BH-110-2	SS	╢		3-8-8-9			-0.5
1.0		moist, grey, stiff, some gravel Silty Sand Fill	-0.98 0.98	BH-111-3	SS	Ш		7-12-14-18			1.0
1.5		dry to moist, brown, compact, some gravel	-1.52 1.52	BH-111-4	SS	Π		9-9-5-3			
2.0			-2.29								
2.5		moist, brown, firm, some gravel, fractured shale pieces	-3.05	BH-111-5	SS			4-4-3-10			-2.5
3.5		Shale dry to moist, grey, fractured, hard	3.05	BH-111-6	SS			25-50 for 4 in			- 3.5
4.0				BH-111-7	SS			50 for 5 in			- 4.0 - 4.5
5.0				BH-111-8	SS			50 for 3 in			5.0
5.5			-5.94	BH-111-9	SS			50 for 5 in			- 5.5
6.5		End of Borenole	0.04								6.5
7.0											7.0
7.5											7.5
8.5											
Drille	ed By	Geo-Environmental Drilling Inc.		Logged E	By: J.	Nob	le		•		
Drill	Meth	od: CME 75 Truck Mount		Log Prep	ared	By:	J. No	oble			FRANZ
Drill Note: A Franz	Date: Any deci Environi	November 26, 2014 sions/actions made by a third party based on this log are mental accepts no liability for third party decisions/actions	the sole res made base	Checked sponsibility of the ed on this log.	By: third p	L. Zh arty.	ang				

BOREHOLE LOG

Dm	iect: N	METROLINX - 1		ESA		Cont	ract	No: 3	004	1197		<u> </u>	Bora	shole:	BH	/ MW	V-201
Ror	ing date	2020-1-18		Sun	ervised	by:	Ha	mmad	<u>. S</u> я	eed							
Bor	abola Loca	tion: Cooks	ille GO Parkin	σ Lots B	and C	. Mi	ssis	sanoa	. 0	N			Mor	itorin	g Well:	In	istalled
D01			a and Investig	<u>tive Serv</u>	vices T	.td			<u> </u>	<u></u>					Shoe	410	F 1
			<u>g and investiga</u> U D 120 m/ US	A	1003 1										Shee	. 1 0	11
Dri	ling Metho		<u>H D.120 W/ HS</u>	A													
		Stra	tigraphy					S	amj	oles				Hea ⊕	dspace T (ppm)	ΌV	
Scale (m)	Elev. (m) Depth (m)	D	escription		mbol	ell etails	ater Level	umple pe and umber	ondition	lows/ 0mm	Recovery	۵) ۵	dour	25 Hea	50 75 dspace T (%LEL)	100 OV	Remarks and Sample Analyses
	177 20	Ground Surfa	ace Elevation:122.4	7m	Sy	≱ ă א א	×	S T Z	Ŭ	<u>13 B</u>	%	R	Ŏ	20	40 60	80	
-	0.08	ASPHALT, 80 mm t GRAVELLY SILT'Y dense	hick SAND [FILL], mo	oist, brown,				55-1	X	38 14 17 12	60		N				Metals and Inorganics Analyses
								SS-2	$\overline{\mathbb{N}}$	9 19 24 23	63		N				PAHs, Chlorophenols, Pesticides, Herbicides Analyses
		 becoming moist to w m 	vet, dense to very dei	nse @ 1.52				SS-3	X	11 26 28 21	75		N				Metals and Inorganics Analyses
						9 9		SS-4	X	25 40 50/125	25		N	€			•
—3 — —								SS-5	X	19 22 30 50/50	50		N	€			VOCs, F1-F4 PHcs,PAHs, Chlorophenols Analyses DUP AE
4 4	118.66 3.81	SHALE [BEDROC	K], dry , grey, hard, 1	fractured			¥	SS-6	X	40 50/75	25		N	€			
5								SS-7	X	40 50/75	33		N	₽			-
								SS-8	X	50/125	25		N	€			
-6	116.37															<u> </u>	
 7	6.10	End of Borehole @ Water level @ 4.04 r 2020 Water level @ 3.70 r 2020	6.1 m n (el 118.43) on Janu n (el 118.77) on Janu	uary 23, uary 27,													Groundwater Analyses: PHC BTEX - F1 & F2 - F4 VOCs, PAHs, Metals, Inorganics, Pesticides, Herbicides, Chlorophenols
F							ļ										DUP - MW 211
ODC	UR:			TT 0					-			<u> </u>					
N - T	None		Prepared by: .	<u>н. Sae</u>	:ea			-									
M - S -	Moderate Strong		Checked by:	J. Jen:	ah					2		4	ŀ	2	Ú	4	DIS
VS	Very Strop	ng	Date:	<u>20-1-2</u>	9				-		2					_	

Proj	ect:]	METROLINX -	PHASE TWO ESA		Con	ntract	:No: <u>3</u>	004	1197		.	Bore	ehole:	<u>BH-2</u>	02	
Bor	ing date:	2020-1-18	Suj	oervised	i by:	<u>Ha</u>	mmad	l Sa	eed		.	N #	itoria - T	Wall-	mla	
Bor	ehole Loca	ation: <u>Cooks</u>	ville GO Parking Lots B	and	<u>C, M</u>	lissis	ssauga	1, O	<u>N</u>			10101	noring V	vеп:	J1/8	L
Dril	ler:	ALTECH Drillin	ng and Investigative Ser	vices	Ltd.									Sheet 1	1 oí	1
Dril	ling Meth	od: DIEDRIC	CH D.120 w/ HSA													
 		Ster	atioranhy				S	am	les		_		Heads	pace TOV	vl	
	Elev		augraphy			5				ک ا			⊕ (25 5	opm) 0 75 100	0	
Scale (m)	(m) Depth	D	escription	5		.Lev	er al	tion	<u>,</u> Е	ove			 Heads	pace TOV	v	Remarks and Sample Analyses
()	(m)	Coursed Surge	Dec Elevation 124.40m	- fig	Vell	Vater	amp Vpe	ondi	50m	6 Re	ß	nop		LEL)		
	124.32	ASPHALT. 80 mm	thick			212	SS-1	H	35	50	<u> </u>	N N			, 	
\vdash	0.08	GRAVELLY SILT	Y SAND [FILL], moist, brown,		8			X	25							Metals & Inorganics Analyses
		dense to loose						\square	20							
							66.2	\square	2	22		_N €	Ð			DAHe
-1					Š.		55-2	M	3	55					_	Chlorophenols,
-								M	7							Herbicides
	122.88															Analyses
	1.52	CLAYEY SILT [Na gravel, compact	ATIVE], moist, brown, trace				SS-3	M	4 7	33		N				
\mathbb{L}_{2}									10 15							
		:						Η								
-		haaami'aa Oosaaa h	maxim damaa @ 2.43 m				SS-4	\mathbb{N}	10	33		N				
-		- becoming Orange-c	rown, dense @ 2.45 m					X	20							
								Ц	22							
	121.35 3.05	SAND, moist to wet,	, orange-brown, trace gravel,		4		SS-5	∇	4	63		N	•			Metals & Inorganics
	Ĺ	compact				-		IX	6 9							Analyses
\vdash								Δ	12		ĺ					
F	120.59 3.81	GRAVELLY SILT	Y SAND, moist , brown, dense				SS-6	\vdash	12	33		N				BTEX, F1-F4
-4						-		X	22 18			1				PHCs, PAHs Analyses
Ē					1			\square	20							·
Ē	119.83	OUT T maint heaven	trace gravel compact to dense	┼┥┥	<u>i</u>		55.7	\vdash	2	75						BTFX F1-F4 PHCs
	4.37	SIL1, moist, brown,	, Lace graver, compact to dense				33-7	IX	8	15						Analyses
-5		- becoming Orange-l	brown @ 4.87 m					\square	50/75							
╞	119.07	- trace shale fragmer	nts @ 5.2 m										→			
	5.33	SHALE [BEDROC	K], dry, grey, hard, fractured				SS-8		50/50	8		N				
-6	118.46 5.94	End of Borehole @	5.94 m		Ĩ			+				+				
\vdash																
F																
E	1															
-7																
<u> </u>																
E							<u> </u>			-						
ODO	UR:		Prepared has H. Sa	eed												
N -	INONE Trace							6	-		Λ			> ^		
M -	Moderate Strong		Checked by:J, Jen	<u>ап</u>			-	C	1		А	ŀ	21			U15
VS-	Very Stro	ng	Date:20-1-2	9			_	P	- P							

Pro	ject:	<u>METROLINX -</u>	PHASE TWO ESA		Contra	act N	o: <u>3</u>	<u>004119</u>	7	-	Boreho	ole: <u>BH/MV</u>	<u>v-203</u>
Bor	ing date:	2020-1-15		Supervised	iby: <u>E</u>	lam	mad	Saeed		-	Monite	ring Well· I	istalled
Bot	ehole Loc	ation: <u>Cooks</u>	ville GO Parking Lot	B and (C, Mis	sissa	uga	, ON		-			
Dri	ller:	ALTECH Drilli	ng and Investigative S	ervices]	Ltd.					-		Sheet 1 o	of 1
Dri	lling Meth	od: DIEDRIC	CH D.120 w/ HSA										
					1		-					Headsman TOV	
		Stra	angrapny				36	imples		r		Φ (ppm)	
Scale	Elev. (m)	П	escription	1		ève	p _	5	very				Remarks and
(m)	Depth		escription	lođi	ails	ter L	be ar mber	ws/	Seco	A	10	Headspace TOV	Sample Analyses
	()	Ground Surf	face Elevation:126.01m	Syr	Ve Det	Wa Sar	TY1 Nu	Col Blo 150	1%	RQ	ð,	20 40 60 80	
	125.93	ASPHALT, 80 mm	thick			5	SS-1	12	75		N		
	125.70	GRAVELLY SILT	Y SAND [FILL], moist, brow	vil, 🗱				35			ļ		
	0.51	SHALE [BEDROC	K], dry, grey, hard, fractured										•
╞╴╵							SS-2	30	33		_N €		
-1								△50/10	ø		$ \vdash$		-
┝													
┣													
						1	SS-3	×50/12	5 17	1	N		
							SS-4	50/2	5 0		N [®]		
F					<u> </u>				Ì				
3													-
-						י צ	SS-5	X 35 50/10	0 25	1	N		
╞													
┝													
							SS-6	⊠50/12	5 17		N [®]		
-4]
E													
L	ļ					Í.			12		l		
L							55-1		13	1			
-5									Ì				-
\vdash													
F							SS-8	≤50/12	5 13		N [♥]		
┠													
F													
F ⁶	119.91	End of Borchole	61 m		₽: ⊨₽:	_			-	$\left - \right $	╞┼╴		Groundwater
Ľ	0.10		w. (.) 100 (0)							1			Analyses:
L		water level @ 3.53 1 2020	m (et 122.48) on January 23,										F2-F4
F		Water level @ 3.25 1 2020	m (el 122.76) on January 27,										VOCs, PAHs, Metals, Inorganics,
-7	1												Pesticides, Herbicides
┝													
E													
ODO	UR:		Desenand have H 6	aeed									
N - T -	None Trace		rrepared by:					C		A			
M -	Moderate		Checked by:	enah				10		Δ	R		
S -	Strong Verv Stro	ng	Date: 20-3	-29				120	V				
	,		·										

Proi	ect: 1		PHASE TWO ESA			act	No: 3	<u></u>	1197			Bore	hole:	
Bori	ing date:	2020-1-14 - 20)20-1-15 Sur	pervised	by: I	Iar	<u>mmad</u>	Sa	eed					
Bon	ehole Loca	tion: Cooksv	ille GO Parking Lots B	and	<u>C, Mi</u> s	sis	sauga	<u>, 0</u>	N		ļ	Mon	nitoring Well: <u>n/</u>	a
Dril	ler:	ALTECH Drilling	g and Investigative Ser	vices]	Ltd.								Sheet 1 o	f1
Dril	ling Meth	od: DIEDRICI	H D.120 w/ HSA											
			tioronhy				C,	100*	les		<u> </u>		Headspace TOV	
	Flore	Sura	ugrapny	1	<u> </u>	ایر	<u>اد</u>			~			⊕ (ppm) 25 50 75 100	
Scale	(m)	De	scription	=		Lev	er de	tion	- F	over		 .	Headspace TOV	Remarks and Sample Analyses
(m)	(m)		-	- Aux	/ell etails	ater	ampl ype 2 umb	ondi	50mr	6 Rec	8	nop		
	122.92	Ground Surfa	tick	Sector 1	A O	12	<u> ジース</u> SS-1	\mathbb{H}	<u>m</u> ∺ 3	83	*	N	20 40 60 80	
\vdash	0.08	GRAVELLY SILTY	SAND [FILL], moist, dark	1			•	ΙXI	30 12					Metals & Inorganics,
		brown, dense to com	pact					\mathbb{N}	10				[]	Herbicides Analyses
								\square		76		Ţ	•	PAHe Analyzee
		i i					33-2	V	15	13				a raino r maryous
 		P 					Į	\mathbb{N}	17			l		
┡╴╵	121.48	- some grey shale frag	ments @ 1.4 m				_	日					b	
	1.52	SILTY SAND [FILL], , moist to wet, dark brown				SS-3	M	5	75		N		Grain Size Analyses
Ľ, I		to grey, trace gravel,	toose to compact				Į	M	5 23		ļ			-
	120 71						•	H		l	ļ			
	2.29	SILT [NATIVE], mo	oist, brown, trace gravel, grey				SS-4	\square	7	83		א <u> </u> א	Ψ	VOCs, F1-F4 PHCs. PAHs
-		mouning, compact					ł	X	18					Analyses
								μ	24					
							SS-5	\square	10	75		N	₽ <u> </u>	Metal & Inorganics
E		ļ			1.0			Ŵ	25 50/125					Analyses
F								\square						
┡		- becoming moiet to y	vet, brown, trace weathered				SS-6	$\mathbf{\nabla}$	15	67		N	e	VOCs, F1-F4
-4		shale fragments, con	npact to dense @ 3.81 m					\vdash	50/100					PHCs, Grain Size Analyses
F														
E	118.43		21 day may have functional				55-7	X	50/125	25		N	¢	
\vdash	4.57	SHALE (BEDROCI	nj, ury, grey, naru, nacureo				0.0-/	Ľ,	UV 12J					
-5	115.00													4
\vdash	5.18	End of Borehole @	5.94 m				<u> </u>	1			\top	\Box		
E										l				
E	1									ļ		1		
-6										Ì				
\vdash														
\vdash						1					ł			
E					1									
	F			21										
Ļ														
		<u> </u>					<u> </u>							
ODC	UR:		Prepared by: H. Sa	eed										
N - T -	None Trace			hak			-	1	6		Λ	F		DIC
M - S	Moderate Strong	;	Checked by:	1811		—	-	E	1		\mathbf{A}	ŀ	くしろ	UD
vs.	· Very Stro	mg	Date:20-1-	<u>29</u>				V						

· · · · ·								_			1			
Proj	ject:]	METROLINX - 1	PHASE TWO ESA		Cont	ract	No: <u>3</u>	<u>00</u> 4	<u>1197</u>			Bore	ehole: <u>BH-205</u>	
Bor	ing date:	2020-1-13		Supervised	lby:	Ha	mmad	<u> S</u> a	leed			Mor	nitoring Well: n/	a
Bor	ehole Loca	ation: <u>Cooks</u>	ville GO Parking Lots	B and	<u>C, Mi</u>	ssis	sauga	ı , O	<u>N</u>			11101		
Dril	ller:	ALTECH Drillin	g and Investigative S	ervices	Ltd.		-				.		Sheet 1 o	f 1
Dri	lling Meth	od: <u>DIEDR</u> IC	H_D.120 w/ HSA											
							a		alaa				Headspace TOV	
		Stra	ugrapny		-		2		hiez	>			⊕ (ppm) 25 50 75 100	
Scale (m)	Elev. (m) Denth	D	escription	0		r Leve	and	ition	ک B	солегу		₊	Headspace TOV	Remarks and Sample Analyses
	(m)	<u> </u>		– m⁄	Vell	Vater	amp ype	ond	S0m	6 Re	B	Ddou	(%LEL)	
	123.28	ASPHALT 80 mm f	hick	<u>.</u>		P	SS-1	Ю	19	50	<u> </u>	N N		
\vdash	0.08	GRAVELLY SAND	[FILL], dark brown, moist,	-/				Å	19	•••				Metals & Inorganics
\vdash		dense							50/25					Analyses
	122.60	1.1.4 . 0.07	t					L						
F.	0.76	- crusned stone @ 0.7 SILTY SAND [FIL]	LL, moist, dark brown to gre	/**********************************	Š.		SS-2	M	4	50		N		VOCs, F1-F4 PHCs, PAHs
		trace gravel, compac	st		Š			\square	50/125					Analyses
E		1			8									
	121.84 1.52	SHALE IBEDROCI	KI, dry to moist. light brown				SS-3		16	83		N	\$	Herbicides and
	1.02	fractured, hard	,, _,					X	20					Pesticides Analyses
					Ĩ			Д	50/50					
╞												Ι.		
╞		- becoming grey @ 2	.29 m				SS-4	X	15 50/125	50		N	Ţ	
\vdash					1	ļ		F	0,123					
┝														
-3							SS-5	×	50/125	25		N	¢	1
-										-•				
-														r
E,							SS-6	X	5	33		N		
Ľ								Ľ	00120					
L														
\vdash							SS-7	\vdash	2	58		N	e	
┝								X	2					
-5								F	p0/123	ĺ	1			1
┢										1				
\vdash					-		SS-8	\mathbb{N}	25 30	75		N	T	
t								X	45					
۲,	117.42				Ę			\downarrow	50	ļ		-		
6	5.94	End of Borehole @	5.94 m											
Γ								1						
L				ļ										
F								ł						ļ
-7					-				•					
┢														
E														l
ODC	UR:		Prepared by H.	Saeed										
N - T -	- None - Trace							1	C	-	Α			
M ·	Moderate		Checked by:	enan	_		-	f	2		\square		イ レ	
S VS	 Strong Very Strop 	ong	Date: <u>20-</u>	1-29			_	10		V _				

Dm	iect:	METROLINY - PHASE TWO F		Contr	art`	No [,] 2	004	1107			Borehol	e R	H/MV	 V-206
Bot	ring date:	2020-1-14 - 2020-1-13	Supervised	by: E	Iar	<u>nm</u> ad	<u>I</u> Sa	eed						
Bor	rehole Loca	ation: Cooksville GO Parkin	g Lots B and	<u>C, Mis</u>	sis	sauga	ı, O	N			Monitor	ing Well:	<u></u> Iı	istalled
Dri	ller:	ALTECH Drilling and Investiga	tive Services	Ltd.								Sh	eet 1 o	of 1
Dri	lling Meth	od:DIEDRICH D.120 w/ HS/	A											
		Stratigraphy			_	S	amr	oles			H	leadspace	TOV	
Scale (m)	Elev. (m) Depth (m)	Description	loda	11 ails	ter Level	npie be and nber	ndition	ws/ mm	Recovery	Q	He	b (ppm) 25 50 7: ↓ ↓ ↓ ↓ leadspace □ (%LEI) 5 100 	Remarks and Sample Analyses
		Ground Surface Elevation:121.50	Om S	Det e	Ma		Š	Blo 150	¥ %	RQ	ð :	20 40 6	0 80	
-	0.08	ASPHALT, 80 mm thick GRAVELLY SILTY SAND [FILL], mo brown, very dense	ist, dark		5	SS-1	M	27 35 46 50/100	75		N			PAHs, PCBs, Pesticides Analyses
1		- becoming light brown, dense @ 0.76 m				SS-2		13 17 19 50/100	67		N () ()			Metals & Inorganics Analyses DUP FB
-2		- becoming dry to moist, dense @ 1.52 m				SS-3	\mathbb{N}	14 15 19 21	75		л ^{⊕…}			
		- becoming dark brown, compact @ 2.28 n	n	8 8	V	SS-4	\mathbb{N}	4 8 10 12	75		л Ө 			Metals & Inorganics Analyses
-3 - -	118.46 3.04	SILT [NATIVE], moist, brown, trace gran compact to dense	vel,		*	SS-5	X	10 38 50/125	50		л Ө 			VOCs, F1 - F4 PHCs, PAHs Analyses DUP FE
4 4	117.69 3.81	CLAYEY SILT, wet, brown, very stiff				SS-6	X	50/125	17		м [⊕]			~
- - -5	116.93 4.57	SHALE [BEDROCK], dry to moist, grey fractured	, hard,			SS- 7	X	50/125	21		м [⊕]			
		-becoming dry @ 5.33 m				SS-8	X	30 50/100	33		м [⊕]			
-6 - - -	115.40 6.10	End of Borchole @ 6.1 m Water level @ 2.89 m (el 118.61) on Janua 2020 Water level @ 2.92 m (el 118.58) on Janua 2020	ary 23, ary 27,		-									Groundwater Analyses: PHC BTEX - F1 & F2 - F4 VOCs, PAHs, Metals, Inorganics, Pesticides
-7 ODO N - T - M -	UR: None Trace Moderate	Prepared by: Checked by:	H. Saeed J. Jenah			-		6			P	<u> </u>	Δ	Herbicides
S - VS-	Strong Very Stro	ng Date: _	20-1-29			_	~							

APPENDIX IV

LABORATORY RECORD OF GROUNDWATER QUALITY

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED 90 SCARSDALE RD TORONTO, ON M3B2R7 (905) 474-5265 **ATTENTION TO: Brian Theimer** PROJECT: CT2892.03 AGAT WORK ORDER: 21T701251 MICROBIOLOGY ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist ULTRA TRACE REVIEWED BY: Philippe Morneau, chimiste WATER ANALYSIS REVIEWED BY: Jacky Zhu, Spectroscopy Technician DATE REPORTED: Jan 29, 2021 PAGES (INCLUDING COVER): 21 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Iember of: Association of Professional Engineers and Geoscientists of Alberta	
(APEGA)	
Western Enviro-Agricultural Laboratory Association (WEALA)	

Environmental Services Association of Alberta (ESAA)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Page 1 of 21

AGAT WORK ORDER: 21T701251 PROJECT: CT2892.03 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

SAMPLING SITE: 3154 Hurontario St. Mississauga ON

ATTENTION TO: Brian Theimer

SAMPLED BY:AMD/SJ

				E.	Coli (Using MI Agar)
DATE RECEIVED: 2021-01-	19				DATE REPORTED: 2021-01-29
	SA	MPLE DES SAM	CRIPTION: PLE TYPE:	MW312 Water	
DATE SAMPLED:			SAMPLED:	2021-01-19 14:00	
Parameter	Unit	G/S	RDL	1973954	
Escherichia coli	CFU/100mL	200	1	ND	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to City of Mississauga - Storm Sewer Discharge

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. ND - Not Detected.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 21T701251 PROJECT: CT2892.03 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

SAMPLING SITE: 3154 Hurontario St. Mississauga ON

ATTENTION TO: Brian Theimer

SAMPLED BY:AMD/SJ

Mississauga Storm - Organics

DATE RECEIVED: 2021-01-19

	S	AMPLE DES	CRIPTION:	MW312		
		SAM	PLE TYPE:	Water		
	DATE SAMPLED:		2021-01-19 14:00			
Parameter	Unit	G/S	RDL	1973954		
Benzene	mg/L		0.0002	<0.0002		
Toluene	mg/L	0.002	0.0002	<0.0002		
Ethylbenzene	mg/L	0.002	0.0001	<0.0001		
Xylenes (Total)	mg/L	0.0044	0.0001	<0.0001		
Total PAHs	mg/L	0.002	0.0003	<0.0003		

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to City of Mississauga - Storm Sewer Discharge

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1973954 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

DATE REPORTED: 2021-01-29

AGAT WORK ORDER: 21T701251 PROJECT: CT2892.03 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

SAMPLING SITE: 3154 Hurontario St. Mississauga ON

ATTENTION TO: Brian Theimer

SAMPLED BY:AMD/SJ

Peel Region Sanitary - Organics									
DATE RECEIVED: 2021-01-19					DATE REPORTED: 2021-01-29				
		SAMPLE DESC	CRIPTION:	MW312					
		SAMF	PLE TYPE:	Water					
		DATES	SAMPLED:	2021-01-19 14:00					
Parameter	Unit	G/S	RDL	1973954					
Oil and Grease (animal/vegetable) in water	mg/L	150	0.5	<0.5					
Oil and Grease (mineral) in water	mg/L	15	0.5	<0.5					
Methylene Chloride	mg/L	2	0.0003	<0.0003					
Methyl Ethyl Ketone	mg/L	8.0	0.0009	<0.0009					
cis- 1,2-Dichloroethylene	mg/L	4	0.0002	<0.0002					
Chloroform	mg/L	0.04	0.0002	<0.0002					
Benzene	mg/L	0.01	0.0002	<0.0002					
Trichloroethylene	mg/L	0.4	0.0002	<0.0002					
Toluene	mg/L	0.27	0.0002	<0.0002					
Tetrachloroethylene	mg/L	1	0.0001	<0.0001					
trans-1,3-Dichloropropylene	mg/L	0.14	0.0003	<0.0003					
Ethylbenzene	mg/L	0.16	0.0001	<0.0001					
1,1,2,2-Tetrachloroethane	mg/L	1.4	0.0001	<0.0001					
Styrene	mg/L	0.2	0.0001	<0.0001					
1,2-Dichlorobenzene	mg/L	0.05	0.0001	<0.0001					
1,4-Dichlorobenzene	mg/L	0.08	0.0001	<0.0001					
Xylenes (Total)	mg/L	1.4	0.0001	<0.0001					
PCBs	mg/L	0.001	0.0002	<0.0002					
Di-n-butyl phthalate	mg/L	0.08	0.0005	<0.0005					
Bis(2-Ethylhexyl)phthalate	mg/L	0.012	0.0005	<0.0005					

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Peel Sanitary By-Law 53-2010

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1973954 Oil and Grease animal/vegetable is a calculated parameter. The calculated value is the difference between Total O&G and Mineral O&G. Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

Total Nonylphenol Ethoxylates is reported as the sum of Nonylphenol Ethoxylate and Nonylphenol Diethoxylate. NP/NPE analysis done at AGAT 5623 McAdam Road Mississauga location.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukoloj

AGAT WORK ORDER: 21T701251 **PROJECT: CT2892.03**

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

SAMPLING SITE: 3154 Hurontario St. Mississauga ON

ATTENTION TO: Brian Theimer

SAMPLED BY: AMD/SJ

Nonylphenol and Nonylphenol Ethoxylates (Ontario, mg/L)

DATE RECEIVED: 2021-01-19

	S/	MW312		
		Water		
	DATE SAMPLED:		2021-01-19 14:00	
Parameter	Unit	G/S	RDL	1973954
Total Nonylphenol	mg/L	0.02	0.001	<0.001
NP1EO	mg/L		0.001	<0.001
NP2EO	mg/L		0.0003	<0.0003
Total Nonylphenol Ethoxylates	mg/L	0.2	0.001	<0.001

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Peel Sanitary By-Law 53-2010 Comments:

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. Analysis performed at AGAT Montreal (unless marked by *)

Certified By:

DATE REPORTED: 2021-01-29

AGAT WORK ORDER: 21T701251 **PROJECT: CT2892.03**

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

SAMPLING SITE: 3154 Hurontario St. Mississauga ON

ATTENTION TO: Brian Theimer

SAMPLED BY: AMD/SJ

BOD5							
DATE RECEIVED: 2021-01-19					DATE REPORTED: 2021-01-29		
		SAMPLE DES	CRIPTION:	MW312			
		SAM	PLE TYPE:	Water			
DATE SAMPLED:				2021-01-19 14:00			
Parameter	Unit	G / S	RDL	1973954			
Biochemical Oxygen Demand, Total	mg/L	15	2	5			

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to City of Mississauga - Storm Sewer Discharge

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Analysis performed at AGAT Halifax (unless marked by *)

AGAT WORK ORDER: 21T701251 **PROJECT: CT2892.03**

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

SAMPLING SITE: 3154 Hurontario St. Mississauga ON

ATTENTION TO: Brian Theimer

SAMPLED BY: AMD/SJ

CBOD5									
DATE RECEIVED: 2021-01-19					DATE REPORTED: 2021-01-29				
	S	AMPLE DES	CRIPTION:	MW312					
		SAM	PLE TYPE:						
DATE SAMPLED:				2021-01-19 14:00					
Parameter	Unit	G/S	RDL	1973954					
Biochemical Oxygen Demand, Carbonaceous	mg/L	300	2	<2					

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Peel Sanitary By-Law 53-2010

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Analysis performed at AGAT Halifax (unless marked by *)

Certified By:

AGAT WORK ORDER: 21T701251 PROJECT: CT2892.03 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

SAMPLING SITE: 3154 Hurontario St. Mississauga ON

ATTENTION TO: Brian Theimer

SAMPLED BY:AMD/SJ

Mississauga Storm Sewer Use Bylaw- Inorganics								
DATE RECEIVED: 2021-01-19					DATE REPORTED: 2021-01-29			
	S	AMPLE DES	CRIPTION:	MW312				
		SAM	PLE TYPE:	Water				
		DATES	SAMPLED:	2021-01-19 14:00				
Parameter	Unit	G/S	RDL	1973954				
рН	pH Units	6.0-9.0	NA	7.46				
Total Suspended Solids	mg/L	15	10	30				
Total Residual Chlorine	mg/L	1.0	0.1	<0.1				
Total Cyanide	mg/L	0.02	0.002	<0.002				
Phenols	mg/L	0.008	0.001	0.004				
Total Phosphorus	mg/L	0.4	0.02	0.04				
Total Kjeldahl Nitrogen	mg/L	1	0.10	6.30				
Chromium VI	mg/L	0.04	0.005	<0.005				
Total Aluminum	mg/L	1.0	0.010	0.791				
Total Arsenic	mg/L	0.02	0.015	<0.015				
Total Cadmium	mg/L	0.008	0.005	<0.005				
Total Chromium	mg/L	0.08	0.015	<0.015				
Total Copper	mg/L	0.04	0.010	<0.010				
Total Lead	mg/L	0.12	0.020	<0.020				
Total Manganese	mg/L	0.05	0.020	0.267				
Total Mercury	mg/L	0.0004	0.0002	<0.0002				
Total Nickel	mg/L	0.08	0.015	<0.015				
Total Selenium	mg/L	0.02	0.020	<0.020				
Total Silver	mg/L	0.12	0.010	<0.010				
Total Zinc	mg/L	0.04	0.020	<0.020				

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to City of Mississauga - Storm Sewer Discharge

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1973954 Dilution required, RDL has been increased accordingly.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 21T701251 PROJECT: CT2892.03

Peel Sanitary Sewer Use By-Law - Inorganics

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

SAMPLING SITE: 3154 Hurontario St. Mississauga ON

ATTENTION TO: Brian Theimer

SAMPLED BY:AMD/SJ

DATE RECEIVED: 2021-01-19					DATE REPORTED: 2021-01-29				
	S	AMPLE DES	CRIPTION:	MW312					
		SAM	PLE TYPE:	Water					
		DATES	SAMPLED:	2021-01-19					
				14:00					
Parameter	Unit	G/S	RDL	1973954					
рН	pH Units	5.5-10	NA	7.46					
Total Suspended Solids	mg/L	350	10	30					
Fluoride	mg/L	10	0.33	<0.33					
Sulphate	mg/L	1500	5.0	385					
Total Cyanide	mg/L	2	0.002	<0.002					
Phenols	mg/L	1.0	0.002	0.004					
Total Phosphorus	mg/L	10	0.02	0.04					
Total Kjeldahl Nitrogen	mg/L	100	0.10	6.30					
Total Aluminum	mg/L	50	0.010	0.791					
Total Antimony	mg/L	5	0.020	<0.020					
Total Arsenic	mg/L	1	0.015	<0.015					
Total Cadmium	mg/L	0.7	0.010	<0.010					
Total Chromium	mg/L	5	0.015	<0.015					
Total Cobalt	mg/L	5	0.020	<0.020					
Total Copper	mg/L	3	0.010	<0.010					
Total Lead	mg/L	3	0.020	<0.020					
Total Manganese	mg/L	5	0.020	0.267					
Total Mercury	mg/L	0.01	0.0002	<0.0002					
Total Molybdenum	mg/L	5	0.020	<0.020					
Total Nickel	mg/L	3	0.015	<0.015					
Total Selenium	mg/L	1	0.020	<0.020					
Total Silver	mg/L	5	0.010	<0.010					
Total Tin	mg/L	5	0.025	<0.025					
Total Titanium	mg/L	5	0.020	0.021					
Total Zinc	mg/L	3	0.020	<0.020					

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Peel Sanitary By-Law 53-2010

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Exceedance Summary

AGAT WORK ORDER: 21T701251 PROJECT: CT2892.03 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

ATTENTION TO: Brian Theimer

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
1973954	MW312	ON Mississauga SM	Mississauga Storm Sewer Use Bylaw- Inorganics	Total Kjeldahl Nitrogen	mg/L	1	6.30
1973954	MW312	ON Mississauga SM	Mississauga Storm Sewer Use Bylaw- Inorganics	Total Manganese	mg/L	0.05	0.267
1973954	MW312	ON Mississauga SM	Mississauga Storm Sewer Use Bylaw- Inorganics	Total Suspended Solids	mg/L	15	30

Quality Assurance

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

PROJECT: CT2892.03

SAMPLING SITE: 3154 Hurontario St. Mississauga ON

AGAT WORK ORDER: 21T701251

ATTENTION TO: Brian Theimer

SAMPLED BY: AMD/SJ

Microbiology Analysis

RPT Date: Jan 29, 2021	te: Jan 29, 2021 DUPLICATE			E		REFERENCE MATERIAL		TERIAL	METHOD BLANK SPIKE			MATRIX SPIKE			
PARAMETER Batch Sample Dup #		Dup #1	#1 Dup #2 RPD		Method Blank	Measured	Acceptable Limits		Recoverv	Acceptable Limits		Recoverv	Acce Lin	ptable nits	
		Id		1			value	Lower	Upper		Lower	Upper	,	Lower	Upper
E. Coli (Using MI Agar)															

Escherichia coli 1972139 ND ND NA <1

Comments: ND - Not Detected, NA - % RPD Not Applicable.

Certified By:

Page 11 of 21

AGAT QUALITY ASSURANCE REPORT (V1)

Quality Assurance

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

PROJECT: CT2892.03

SAMPLING SITE: 3154 Hurontario St. Mississauga ON

AGAT WORK ORDER: 21T701251

ATTENTION TO: Brian Theimer

SAMPLED BY: AMD/SJ

Trace Organics Analysis

					,		,								
RPT Date: Jan 29, 2021			C	UPLICATE	Ξ		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lir	ptable nits	Recovery	Acce Lin	ptable nits	Recovery	Acce Lir	ptable nits
		Ia					value	Lower	Upper		Lower	Upper		Lower	Upper
Peel Region Sanitary - Organics															
Oil and Grease (animal/vegetable) in water	1977184		< 0.5	< 0.5	NA	< 0.5	90%	70%	130%	102%	70%	130%	106%	70%	130%
Oil and Grease (mineral) in water	1977184		< 0.5	< 0.5	NA	< 0.5	84%	70%	130%	86%	70%	130%	77%	70%	130%
Methylene Chloride	1961168		< 0.0003	< 0.0003	0.0%	< 0.0003	78%	50%	140%	81%	60%	130%	78%	50%	140%
Methyl Ethyl Ketone	1961168		< 0.0009	< 0.0009	0.0%	< 0.0009	104%	50%	140%	82%	50%	140%	88%	50%	140%
cis- 1,2-Dichloroethylene	1961168		< 0.0002	< 0.0002	0.0%	< 0.0002	86%	60%	130%	78%	60%	130%	98%	60%	130%
Chloroform	1961168		< 0.0002	< 0.0002	0.0%	< 0.0002	79%	60%	130%	81%	60%	130%	79%	60%	130%
Benzene	1961168		< 0.0002	< 0.0002	0.0%	< 0.0002	77%	50%	140%	73%	60%	130%	78%	50%	140%
Trichloroethylene	1961168		< 0.0002	< 0.0002	0.0%	< 0.0002	102%	50%	140%	77%	60%	130%	103%	50%	140%
Toluene	1961168		< 0.0002	< 0.0002	0.0%	< 0.0002	78%	50%	140%	87%	60%	130%	97%	50%	140%
Tetrachloroethylene	1961168		< 0.0001	< 0.0001	0.0%	< 0.0001	72%	60%	130%	96%	60%	130%	95%	60%	130%
trans-1,3-Dichloropropylene	1961168		< 0.0003	< 0.0003	0.0%	< 0.0003	81%	60%	130%	106%	60%	130%	97%	60%	130%
Ethylbenzene	1961168		< 0.0001	< 0.0001	0.0%	< 0.0001	73%	50%	140%	81%	60%	130%	83%	50%	140%
1,1,2,2-Tetrachloroethane	1961168		< 0.0001	< 0.0001	0.0%	< 0.0001	83%	50%	140%	89%	60%	130%	89%	50%	140%
Styrene	1961168		< 0.0001	< 0.0001	0.0%	< 0.0001	61%	50%	140%	74%	60%	130%	76%	50%	140%
1,2-Dichlorobenzene	1961168		< 0.0001	< 0.0001	0.0%	< 0.0001	82%	50%	140%	98%	60%	130%	97%	50%	140%
1,4-Dichlorobenzene	1961168		< 0.0001	< 0.0001	0.0%	< 0.0001	83%	50%	140%	102%	60%	130%	103%	50%	140%
PCBs	1987562		< 0.0002	< 0.0002	NA	< 0.0002	102%	60%	130%	96%	60%	130%	98%	60%	130%
Di-n-butyl phthalate	1979247		< 0.0005	< 0.0005	NA	< 0.0005	101%	60%	130%	88%	60%	130%	96%	60%	130%
Bis(2-Ethylhexyl)phthalate	1979247		< 0.0005	< 0.0005	NA	< 0.0005	114%	50%	140%	110%	50%	140%	85%	50%	140%
Mississauga Storm - Organics															
Benzene	1961168		<0.0002	<0.0002	NA	< 0.0002	77%	50%	140%	73%	60%	130%	78%	50%	140%
Total PAHs	1978079		< 0.0003	< 0.0003	NA	< 0.0003	101%	60%	140%	88%	60%	140%	96%	60%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

NPopukok

Page 12 of 21

AGAT QUALITY ASSURANCE REPORT (V1)

Quality Assurance

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

PROJECT: CT2892.03

SAMPLING SITE: 3154 Hurontario St. Mississauga ON

AGAT WORK ORDER: 21T701251

ATTENTION TO: Brian Theimer

SAMPLED BY: AMD/SJ

Ultra Trace Analysis

							5								
RPT Date: Jan 29, 2021			C	UPLICATI	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2 RPD		Method Blank	Measured	Acce Lin	ptable nits	Recovery	Acceptable Limits		Recovery	Acce Lin	ptable nits
				value	Lower	Upper		Lower	Upper		Lower	Upper			
Nonylphenol and Nonylphenol Eth	noxylates	(Ontario,	mg/L)												
Total Nonylphenol	1	1975223	< 0.001	< 0.001	NA	< 0.001	77%	60%	140%	NA	60%	140%	NA	60%	140%
NP1EO	1	1975223	< 0.001	< 0.001	NA	< 0.001	76%	60%	140%	NA	60%	140%	NA	60%	140%
NP2EO	1	1975223	< 0.0003	< 0.0003	NA	< 0.0003	91%	60%	140%	NA	60%	140%	NA	60%	140%

Certified By:

Page 13 of 21

AGAT QUALITY ASSURANCE REPORT (V1)

MATRIX SPIKE

Recovery

Acceptable

Limits

Quality Assurance

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

PROJECT: CT2892.03

RPT Date: Jan 29, 2021

PARAMETER

SAMPLING SITE: 3154 Hurontario St. Mississauga ON

AGAT WORK ORDER: 21T701251

ATTENTION TO: Brian Theimer

SAMPLED BY: AMD/SJ Water Analysis DUPLICATE REFERENCE MATERIAL METHOD BLANK SPIKE Method Acceptable Acceptable Sample Blank Measured Limits Limits Dup #2 RPD Batch Dup #1 Recovery ld Value

							Lower	Upper		Lower	Upper		Lower	Upper
Peel Sanitary Sewer Use By-Law	- Inorganics	•												
рН	1970389	7.87	7.92	0.6%	NA	100%	90%	110%						
Total Suspended Solids	1997725	<10	<10	NA	< 10	98%	80%	120%						
Fluoride	1970310	<0.07	<0.07	NA	< 0.05	108%	90%	110%	107%	90%	110%	105%	85%	115%
Sulphate	1970310	105	107	1.9%	< 0.10	102%	70%	130%	107%	80%	120%	106%	70%	130%
Total Cyanide	1971170	0.004	0.004	NA	< 0.002	99%	70%	130%	94%	80%	120%	111%	70%	130%
Phenols	1976929	<0.002	<0.002	NA	< 0.002	93%	90%	110%	101%	90%	110%	111%	80%	120%
Total Phosphorus	1973954 1973954	0.04	0.04	NA	< 0.02	101%	70%	130%	103%	80%	120%	93%	70%	130%
Total Kieldahl Nitrogen	1971170	0.18	0.26	NA	< 0.10	98%	70%	130%	102%	80%	120%	98%	70%	130%
Total Aluminum	1980524	0 399	0.362	9.7%	< 0.010	99%	70%	130%	104%	80%	120%	109%	70%	130%
Total Antimony	1980524	< 0.020	<0.020	NA	< 0.020	94%	70%	130%	98%	80%	120%	96%	70%	130%
Total Arconia	1090524	<0.015	<0.015	NIA	< 0.015	0.00/	700/	1200/	1000/	900/	1000/	10.40/	700/	1200/
Total Arsenic	1960524	<0.015	<0.015		< 0.015	90%	70%	130%	100%	00%	120%	104%	70%	130%
	1980524	<0.010	<0.010	NA	< 0.010	97%	70%	130%	101%	80%	120%	99%	70%	130%
	1980524	< 0.015	< 0.015	NA	< 0.015	100%	70%	130%	100%	80%	120%	100%	70%	130%
	1980524	<0.020	<0.020	NA	< 0.020	98%	70%	130%	103%	80%	120%	101%	70%	130%
Total Copper	1980524	<0.010	<0.010	NA	< 0.010	98%	70%	130%	100%	80%	120%	98%	70%	130%
Total Lead	1980524	<0.020	<0.020	NA	< 0.020	98%	70%	130%	94%	80%	120%	94%	70%	130%
Total Manganese	1980524	0.759	0.722	5.0%	< 0.020	97%	70%	130%	102%	80%	120%	99%	70%	130%
Total Mercury	1973954 1973954	<0.0002	<0.0002	NA	< 0.0002	105%	70%	130%	97%	80%	120%	95%	70%	130%
Total Molybdenum	1980524	<0.020	<0.020	NA	< 0.020	98%	70%	130%	105%	80%	120%	104%	70%	130%
Total Nickel	1980524	<0.015	<0.015	NA	< 0.015	99%	70%	130%	101%	80%	120%	98%	70%	130%
Total Selenium	1980524	<0.020	<0.020	NA	< 0.020	98%	70%	130%	97%	80%	120%	101%	70%	130%
Total Silver	1980524	<0.010	<0.010	NA	< 0.010	98%	70%	130%	102%	80%	120%	95%	70%	130%
Total Tin	1980524	<0.025	<0.025	NA	< 0.025	95%	70%	130%	94%	80%	120%	95%	70%	130%
Total Titanium	1980524	<0.020	<0.020	NA	< 0.020	99%	70%	130%	104%	80%	120%	107%	70%	130%
Total Zinc	1980524	0.059	0.054	NA	< 0.020	100%	70%	130%	99%	80%	120%	103%	70%	130%
Mississauga Storm Sewer Use By	/law- Inorganics													
рН	1970389	7.87	7.92	0.6%	NA	100%	90%	110%						
Total Suspended Solids	1997725	<10	<10	NA	< 10	98%	80%	120%						
Total Residual Chlorine	1964098	<0.1	<0.1	NA	< 0.1	99%	80%	120%	100%	85%	115%	105%	85%	115%
Total Cyanide	1971170	0.004	0.004	NA	< 0.002	99%	70%	130%	94%	80%	120%	111%	70%	130%
Phenols	1976929	<0.001	<0.001	NA	< 0.001	93%	90%	110%	101%	90%	110%	111%	80%	120%
Total Phosphorus	1973954 1973954	0.04	0.04	NA	< 0.02	101%	70%	130%	103%	80%	120%	93%	70%	130%
Total Kieldahl Nitrogen	1971170	0.18	0.26	NA	< 0.10	98%	70%	130%	102%	80%	120%	98%	70%	130%
Chromium VI	1966312	<0.005	<0.005	NΔ	< 0.005	101%	70%	130%	101%	80%	120%	99%	70%	130%
Total Aluminum	1980572	~0.000 0 300	0.000	9.7%	< 0.000	99%	70%	130%	101%	80%	120%	109%	70%	130%
	1980524	<0.000	<0.002	ΝΔ	< 0.010	98%	70%	130%	10470	80%	120%	10070	70%	130%
	100024	-0.013	-0.013		- 0.015	3070	1070	10070	10070	00 /0	12070	10470	1070	100 /0
Total Cadmium	1980524	<0.005	<0.005	NA	< 0.005	97%	70%	130%	101%	80%	120%	99%	70%	130%
Total Chromium	1980524	<0.015	<0.015	NA	< 0.015	100%	70%	130%	100%	80%	120%	100%	70%	130%
Total Copper	1980524	<0.010	<0.010	NA	< 0.010	98%	70%	130%	100%	80%	120%	98%	70%	130%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 14 of 21

Quality Assurance

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

PROJECT: CT2892.03

SAMPLING SITE: 3154 Hurontario St. Mississauga ON

AGAT WORK ORDER: 21T701251

ATTENTION TO: Brian Theimer

SAMPLED BY: AMD/SJ

Water Analysis (Continued)

RPT Date: Jan 29, 2021	RPT Date: Jan 29, 2021			DUPLICATE			REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lir	Acceptable Limits		Acce Lin	ptable nits	Recovery	Acce Lir	ptable nits
		Ia					value	Lower	Upper		Lower	Upper	er	Lower	Upper
Total Lead	1980524		<0.020	<0.020	NA	< 0.020	98%	70%	130%	94%	80%	120%	94%	70%	130%
Total Manganese	1980524		0.759	0.722	5.0%	< 0.020	97%	70%	130%	102%	80%	120%	99%	70%	130%
Total Mercury	1973954	1973954	<0.0002	<0.0002	NA	< 0.0002	105%	70%	130%	97%	80%	120%	95%	70%	130%
Total Nickel	1980524		<0.015	<0.015	NA	< 0.015	99%	70%	130%	101%	80%	120%	98%	70%	130%
Total Selenium	1980524		<0.020	<0.020	NA	< 0.020	98%	70%	130%	97%	80%	120%	101%	70%	130%
Total Silver	1980524		<0.010	<0.010	NA	< 0.010	98%	70%	130%	102%	80%	120%	95%	70%	130%
Total Zinc	1980524		0.059	0.054	NA	< 0.020	100%	70%	130%	99%	80%	120%	103%	70%	130%

Comments: NA Signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

BOD5 Biochemical Oxygen Demand, Tota	l 1978146	1250	980	24.2%	< 2	87%	70%	130%
Comments: If RPD value is NA, the r BOD: Duplicate not within acceptanc	esults of the duplica e limits. Unable to re	ites are less th epeat as samp	nan 5x the oles are p	e RDL and ti ast hold tim	he RPD v e.	vill not be	calcula	ted.
CBOD5					-			

Biochemical Oxygen Demand,	1975176	80	65	20.7%	< 2	77%	70%	130%
Carbonaceous								

Comments: Duplicate not within acceptance limits due to non-homogenous sample. BOD: Duplicate not within acceptance limits. Unable to repeat as samples are past hold time.

AGAT QUALITY ASSURANCE REPORT (V1)

Page 15 of 21

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

Time Markers

AGAT WORK ORDER: 21T701251 PROJECT: CT2892.03 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Brian Theimer

Sample ID	Sample Description	Sample Type	Date Sampled	Date Received
1973954	MW312	Water	19-JAN-2021	19-JAN-2021
	BOD5			
	Parameter	Date Prepar	ed Date Analy	zed Initials
	Biochemical Oxygen Demand, Total	21-JAN-202	26-JAN-20	21 KF
	,,,,,,,			
	CBOD5			
	Parameter	Date Prepar	ed Date Analy	zed Initials
	Biochemical Oxygen Demand, Carbonaceous	21-JAN-202	21 26-JAN-20	21 KF
	E. Coli (Using MI Agar)			
	Parameter	Date Prepar	ed Date Analy	zed Initials
	Escherichia coli	19-JAN-202	20-JAN-20	SJM
	Mississauga Storm - Organics			
	Parameter	Date Prepar	ed Date Analy	zed Initials
	Benzene	23-JAN-202	21 25-JAN-20	21 KS
	Toluene	23-JAN-202	25-JAN-20	21 KS
	Ethylbenzene	23-JAN-202	21 25-JAN-20	21 KS
	Xylenes (Total)	23-JAN-202	25-JAN-20	21 KS
	Total PAHs	26-JAN-202	21 27-JAN-20	21 US
	Mississauga Storm Sewer Use Bylaw- Inorga	nics		
	Parameter	Date Prepar	ed Date Analy	zed Initials
	рН	20-JAN-202	20-JAN-20	21 ND
	Total Suspended Solids	26-JAN-202	26-JAN-20	21 SR
	Total Residual Chlorine	19-JAN-202	21 19-JAN-20	21 NK
	Total Cyanide	22-JAN-202	21 22-JAN-20	21 BG
	Phenols	21-JAN-202	21 21-JAN-20	21 NK
	Total Phosphorus	22-JAN-202	21 22-JAN-20	21 SK
	Total Kjeldahl Nitrogen	20-JAN-202	20-JAN-20	21 GN
	Chromium VI	25-JAN-202	21 25-JAN-20	21 NK
	Total Aluminum	21-JAN-202	21 21-JAN-20	021 DW
	Total Arsenic	21-JAN-202	21 21-JAN-20	021 DW
	Total Cadmium	21-JAN-202	21 21-JAN-20	021 DW
	Total Chromium	21-JAN-202	21 21-JAN-20	21 DW
	Total Copper	21-JAN-202	21-JAN-20	21 DW
	Total Lead	21-JAN-202	21 21-JAN-20	21 DW
	Total Manganese	21-JAN-202	21-JAN-20	21 DW
	Total Mercury	20-JAN-202	21 20-JAN-20	21 DI
	Total Nickel	21-JAN-202	21 21-JAN-20	21 DW
	Total Selenium	21-JAN-202	21-JAN-20	21 DW
	Total Silver	21-14NI-202	21-0/(N-20 21_ΙΔΝ-20	121 DW
		21-0/11-202	21-0/11-20	

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

Time Markers

AGAT WORK ORDER: 21T701251 PROJECT: CT2892.03 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Brian Theimer

Sample ID	Sample Description	Sample Type	Date Sampled	Date Received
1973954	MW312	Water	19-JAN-2021	19-JAN-2021
	Mississauga Storm Sewer Use Bylaw- Inorga	nics		
	Parameter	Date Prepar	ed Date Analyzed	Initials
	Total Zinc	21-JAN-202	21 21-JAN-2021	DW
	Nonylphenol and Nonylphenol Ethoxylates (Ontario, mg/L)		
	Parameter	Date Prepar	ed Date Analyzed	Initials
	Total Nonylphenol	22-JAN-202	21 27-JAN-2021	TC
	NP1EO	22-JAN-202	21 27-JAN-2021	TC
	NP2EO	22-JAN-202	21 27-JAN-2021	TC
	Total Nonylphenol Ethoxylates	22-JAN-202	21 27-JAN-2021	TC
	Peel Region Sanitary - Organics			
	Parameter	Date Prepar	ed Date Analyzed	Initials
	Oil and Grease (animal/vegetable) in water	26-JAN-202	21 26-JAN-2021	RMK
	Oil and Grease (mineral) in water	26-JAN-202	21 26-JAN-2021	RMK
	Methylene Chloride	23-JAN-202	21 23-JAN-2021	KS
	Methyl Ethyl Ketone	23-JAN-202	21 23-JAN-2021	KS
	cis- 1,2-Dichloroethylene	23-JAN-202	21 23-JAN-2021	KS
	Chloroform	23-JAN-202	21 23-JAN-2021	KS
	Benzene	23-JAN-202	21 23-JAN-2021	KS
	Trichloroethylene	23-JAN-202	21 23-JAN-2021	KS
	Toluene	23-JAN-202	21 23-JAN-2021	KS
	Tetrachloroethylene	23-JAN-202	21 23-JAN-2021	KS
	trans-1,3-Dichloropropylene	23-JAN-202	21 23-JAN-2021	KS
	Ethylbenzene	23-JAN-202	21 23-JAN-2021	KS
	1,1,2,2-Tetrachloroethane	23-JAN-202	21 23-JAN-2021	KS
	Styrene	23-JAN-202	21 23-JAN-2021	KS
	1,2-Dichlorobenzene	23-JAN-202	21 23-JAN-2021	KS
	1,4-Dichlorobenzene	23-JAN-202	21 23-JAN-2021	KS
	Xylenes (Total)	23-JAN-202	21 23-JAN-2021	KS
	PCBs	25-JAN-202	21 27-JAN-2021	VDP
	Di-n-butyl phthalate	27-JAN-202	21 27-JAN-2021	US
	Bis(2-Ethylhexyl)phthalate	27-JAN-202	21 27-JAN-2021	US
	Peel Sanitary Sewer Use By-Law - Inorganics	3		
	Parameter	Date Prepar	ed Date Analyzed	Initials
	pH	20-JAN-202	20-JAN-2021	ND
	Total Suspended Solids	26-JAN-202	21 26-JAN-2021	SR
	Fluoride	20-JAN-202	20-JAN-2021	LC
	Sulphate	20-JAN-202	20-JAN-2021	LC
	Total Cyanide	22-JAN-202	21 22-JAN-2021	BG

Time Markers AGAT WORK ORDER: 21T701251

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

— PROJECT: CT2892.03

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

ATTENTION TO: Brian Theimer

Sample ID	Sample Description	Sample Type	Date Sampled	Date Received	
973954	MW312	Water	19-JAN-2021	19-JAN-2021	

Peel Sanitary Sewer Use By-Law - Inorganics Parameter Date Prepared Date Analyzed Initials Phenols 21-JAN-2021 21-JAN-2021 NK 22-JAN-2021 22-JAN-2021 SK **Total Phosphorus** Total Kjeldahl Nitrogen 20-JAN-2021 20-JAN-2021 GN **Total Aluminum** 21-JAN-2021 21-JAN-2021 DW **Total Antimony** 21-JAN-2021 21-JAN-2021 DW Total Arsenic 21-JAN-2021 21-JAN-2021 DW **Total Cadmium** 21-JAN-2021 21-JAN-2021 DW **Total Chromium** 21-JAN-2021 21-JAN-2021 DW **Total Cobalt** 21-JAN-2021 21-JAN-2021 DW **Total Copper** 21-JAN-2021 21-JAN-2021 DW Total Lead 21-JAN-2021 21-JAN-2021 DW Total Manganese 21-JAN-2021 21-JAN-2021 DW **Total Mercury** 20-JAN-2021 20-JAN-2021 DL 21-JAN-2021 **Total Molybdenum** 21-JAN-2021 DW Total Nickel 21-JAN-2021 21-JAN-2021 DW **Total Selenium** 21-JAN-2021 21-JAN-2021 DW Total Silver 21-JAN-2021 21-JAN-2021 DW Total Tin 21-JAN-2021 21-JAN-2021 DW Total Titanium 21-JAN-2021 21-JAN-2021 DW Total Zinc 21-JAN-2021 21-JAN-2021 DW

Method Summary

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

PROJECT: CT2892.03

SAMPLING SITE: 3154 Hurontario St. Mississauga ON

AGAT WORK ORDER: 21T701251

ATTENTION TO: Brian Theimer

SAMPLED BY:AMD/SJ

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Microbiology Analysis		1	
Escherichia coli	MIC-93-7010	EPA 1604	Membrane Filtration
Trace Organics Analysis			
Benzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	P & T GC/MS
Ethylbenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	P & T GC/MS
Xylenes (Total)	VOL-91-5001	modified from EPA 5030B & EPA 8260D	P & T GC/MS
Total PAHs	ORG-91-5105	EPA SW-846 3510 & 8270E	GC/MS
Oil and Grease (animal/vegetable) in water	VOL-91-5011	EPA SW-846 3510C & SM5520	BALANCE
Oil and Grease (mineral) in water	VOL-91-5011	EPA SW-846 3510C & SM 5520	BALANCE
Methylene Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
cis- 1,2-Dichloroethylene	VOL-91-5001	EPA SW-846 5030B & 8260B	(P&T)GC/MS
Chloroform	VOL-91-5001	EPA SW-846 5030B & 8260B	(P&T)GC/MS
Trichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5001	EPA SW-846 5030B & 8260B	(P&T)GC/MS
trans-1,3-Dichloropropylene	VOL-91-5001	EPA SW-846 5030B & 8260B	(P&T)GC/MS
Ethylbenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
PCBs	ORG-91-5112	EPA SW-846 3510C & 8082A	GC/ECD
Di-n-butyl phthalate	ORG-91-5114	EPA SW-846 3510C & 8270E	GC/MS
Bis(2-Ethylhexyl)phthalate	ORG-91-5114	EPA SW-846 3510C & 8270E	GC/MS
Ultra Trace Analysis			
Total Nonylphenol	NA	ASTM D7065-6	LC/MS/MS
NP1EO	NA	ASTM D7065-6	LC/MS/MS
NP2EO	NA	ASTM D7065-6	LC/MS/MS
Total Nonviphenol Ethoxylates	NA	ASTM D7065-6	LC/MS/MS

Method Summary

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

PROJECT: CT2892.03

SAMPLING SITE: 3154 Hurontario St. Mississauga ON

AGAT WORK ORDER: 21T701251

ATTENTION TO: Brian Theimer SAMPLED BY:AMD/SJ

	-		
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis			
Biochemical Oxygen Demand, Total	INOR-121-6023	SM 5210 B	INCUBATOR
Carbonaceous	INOR-121-6023	SM 5210 B	INCUBATOR
рН	INOR-93-6000	modified from SM 4500-H+ B	PC TITRATE
Total Suspended Solids	INOR-93-6028	modified from EPA 1684,ON MOECC E3139,SM 2540C,D	BALANCE
Total Residual Chlorine	INOR-93-6060	SM 4500 CI- F	SPECTROPHOTOMETER
Total Cyanide	INOR-93-6051	modified from MOECC E3015; SM 4500-CN- A, B, & C	TECHNICON AUTO ANALYZER
Phenols	INOR-93-6072	modified from SM 5530 D	LACHAT FIA
Total Phosphorus	INOR-93-6022	modified from SM 4500-P B and SM 4500-P E	SPECTROPHOTOMETER
Total Kjeldahl Nitrogen	INOR-93-6048	modified from EPA 351.2 and SM 4500-NORG D	LACHAT FIA
Chromium VI	INOR-93-6034	modified from SM 3500-CR B	SPECTROPHOTOMETER
Total Aluminum	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Arsenic	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Cadmium	MET -93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Chromium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Copper	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Lead	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Manganese	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Mercury	MET-93-6100	modified from EPA 245.2 and SM 3112 B	² CVAAS
Total Nickel	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Selenium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Silver	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Zinc	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Fluoride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Sulphate	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Total Antimony	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Cobalt	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Molybdenum	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Tin	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Titanium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS

		T - 1-			PI	Mi 905.71	5 ssissai 2 510	5835 Co uga, On 1 Fax: 9	opers A tario L4	venue Z 1Y2 5122	L	abora /ork Ord	atory er #:	Use	Only	70	012	51	
Chain of Custody Record	If this is a	LaD	mple, please use Dr	IES	of Custody Form (pota	ble water o	we	ebearth ed by hur	agatlat	s.com	C A	ooler Qu rrival Te	uantity: mperati	Ures:	red	Blue	e 10	The	-
Report Information:	Four	aman I-I	Re	gulatory Requ	uirements:	-						ustody S	Seal Inta	act:	LY€	<u>3</u>	9-9 No	19-	
Company: Icreapex churonmental Lto Contact: Brian Theimer Address: 90 Scarsdale Rd Toronto ON M3B 2R7				Table				6 Sower Use Beanitary Storm - Pect / Mississavga Region				Notes: 9.6 9.7 9.5 Turnaround Time (TAT) Required: Regular TAT 5 to 7 Business Days							
Phone: Reports to be sent to: 1. Email: 2. Email: 5. jivanj@terrapex.com			Soil	Image: Person Park Image: Person Park Image: Person Park Image: Person Person Soil Texture (Check One) Image: Person Person Image: Person Person Image				Ru	Rush TAT (Rush Surcharges Apply) 3 Business 2 Business Days Days OR Date Required (Rush Surcharges May Apply):										
Project Information: Project: CT2892.0 Site Location: 3/54 Hurentaria	3 st. Mis	Sixsa uga	ON I	ls this submissionecord of Site Co Ves	on for a ondition ?	Re Cer	port tifica Yes	Guide te of a	line o Analys	n Sils O		*7/ For 'Sa	Please AT is exc me Day	e provi clusive ' analy	de prior of wee ysis, pl	r notifica kends a: ease coi	tion for rus nd statutor ntact your	sh TAT 'y holida AGAT C	iys PM
Sampled By: AGAT Quote #: Please note: If quotation number is Invoice Information:	not provided, client will	be billed full price for ana	lysis. B B W No D GW	mple Matrix Le, Biota Ground Water	gend	Hg, CrVI, DOC	0.	Reg 153	S DNo		ion TCLP:	B(a)PLPCBs 20	Reg 406 Dackage			wict			centration (Y/N)
Company: Terropex Env Contact: Rrian Their Address: 90 Scarsda Email: b.theimer@terro QCCOU	ner ner ale Rd.To apex.com ; nts.payo	U 411 1000110, ON 16110 OKANG	0 P S SD SD SW	Oil Paint Soil Sediment Surface Water		Field Filtered - Metals,	& Inorganics	- 🗆 CrVI, 🗆 Hg, 🗆 HW 1-F4 PHCs	e F4G if required 🗆 Ye		Disposal Characterizati	M&I LUVOCE LLABNS LU Soils SPLP Rainwate There LUVOCe Clevi	Soils Characterization MS Metals. BTEX. F1-	c/SAR	1 Sanitary	iss auga S		-	ly Hazardous or High Con
Sample Identification	Date Sampled	Time Sampled C	# of Sample containers Matrix	e Com Special	ments/ Instructions	Y/N	Metals	Metals BTEX, F	Analyze	PCBs	VOC	Excess	Excess DH. ICP	Salt - E	Pee	Miss		-	Potentia
MW312	Jan 19/2	AM AM AM AM AM AM AM	42 GM	Peel Sanit Mississai Sewet us	ulyze for ary and ya storm e bylaws	N													N
		AM PM AM PM AM PM AM																	
Samples Relinquished By (Print Name and Sign):	oFivanj	Date Jan 19/2		Samples Redeived By (F Samples Received By (F	Yint Name and Sign):	ajor	1		7	Data		Time				Page	JAN 1	9 4	11Ø 2P
Samples Relinquished By (Print Name and Sign)		Date	Time	Samples Received By (F	rint Name and Sign)					Date	14	Time	0		Nº: •	τ1	140)58	}

1

Document ID: DIV-78 1811.018

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED 90 SCARSDALE RD TORONTO, ON M3B2R7 (905) 474-5265 **ATTENTION TO: Brian Thermer** PROJECT: CT2892.03 AGAT WORK ORDER: 21T701416 WATER ANALYSIS REVIEWED BY: Yris Verastegui, Report Reviewer DATE REPORTED: Jan 27, 2021 PAGES (INCLUDING COVER): 7 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

es	
aimer:	

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta
(APEGA)
Western Enviro-Agricultural Laboratory Association (WEALA)
Environmental Services Association of Alberta (ESAA)

Page 1 of 7

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Certificate of Analysis

AGAT WORK ORDER: 21T701416 **PROJECT: CT2892.03**

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

SAMPLING SITE: 3154 Hurontario St. Mississauga ON

ATTENTION TO: Brian Thermer

SAMPLED BY: AMD/SJ

Peel Sanitary/Mississauga Storm Sewer Use By-Law - Total Metals

DATE RECEIVED: 2021-01-19 DATE REPORTED: 2021-01-27 SAMPLE DESCRIPTION: MW312-FF SAMPLE TYPE: Water DATE SAMPLED: 2021-01-19 15:00 Parameter Unit G / S: A G / S: B RDL 1977573 50 Total Aluminum mg/L 1.0 0.010 0.016[<B] Total Antimony mg/L 5 0.020 < 0.020 1 0.02 0.015 < 0.015 Total Arsenic mg/L Total Cadmium mg/L 0.7 0.008 0.010 < 0.010 Total Chromium mg/L 5 0.08 0.015 < 0.015 Total Cobalt mg/L 5 0.020 < 0.020 3 Total Copper mg/L 0.04 0.010 < 0.010 mg/L 3 0.12 0.020 < 0.020 Total Manganese mg/L 5 0.05 0.020 0.194[B-A] Total Molybdenum mg/L 5 0.020 < 0.020 3 Total Nickel mg/L 0.08 0.015 < 0.015 0.020 < 0.020 Total Selenium mg/L 1 0.02 Total Silver 5 0.12 0.010 < 0.010 mg/L mg/L 5 0.025 <0.025 Total Titanium mg/L 5 0.020 < 0.020 3 0.04 0.020 < 0.020 mg/L

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: A Refers to Peel Sanitary By-Law 53-2010, B Refers to City of Mississauga - Storm Sewer Discharge

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Irús Verastegui

Total Lead

Total Tin

Total Zinc

	AGAT	Laborator	AGAT WORK ORDER: 21T701410 PROJECT: CT2892.03	AGAT WORK ORDER: 21T701416				
CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED			ATTENTION TO: Brian The	ermer	http://	www.agaliabs.com		
SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT	
1977573	MW312-FF	ON Mississauga SM	Peel Sanitary/Mississauga Storm Sewer Use By-Law - Total Metals	Total Manganese		0.05	0.194	

Quality Assurance

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

PROJECT: CT2892.03

SAMPLING SITE: 3154 Hurontario St. Mississauga ON

AGAT WORK ORDER: 21T701416

ATTENTION TO: Brian Thermer

SAMPLED BY: AMD/SJ

Water Analysis

RPT Date: Jan 27, 2021		C	UPLICAT	E		REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE				
PARAMETER	Batch	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lin	ptable nits	Recovery	Acce Lir	eptable nits	Recovery	Acce Lin	ptable nits
		iu iu					value	Lower	Upper		Lower	Upper		Lower	Upper	
Peel Sanitary/Mississauga Storm Sewer Use By-Law - Total Metals																
Total Aluminum	1980524		0.45	0.39	14.3%	< 0.010	99%	70%	130%	104%	80%	120%	105%	70%	130%	
Total Antimony	1980524		<0.20	<0.20	NA	< 0.020	94%	70%	130%	98%	80%	120%	95%	70%	130%	
Total Arsenic	1980524		<0.15	<0.15	NA	< 0.015	98%	70%	130%	100%	80%	120%	101%	70%	130%	
Total Cadmium	1980524		<0.10	<0.10	NA	< 0.010	99%	70%	130%	99%	80%	120%	99%	70%	130%	
Total Chromium	1980524		<0.15	<0.15	NA	< 0.015	100%	70%	130%	100%	80%	120%	100%	70%	130%	
Total Cobalt	1980524		<0.20	<0.20	NA	< 0.020	98%	70%	130%	103%	80%	120%	101%	70%	130%	
Total Copper	1980524		<0.10	<0.10	NA	< 0.010	98%	70%	130%	100%	80%	120%	95%	70%	130%	
Total Lead	1980524		<0.20	<0.20	NA	< 0.020	98%	70%	130%	94%	80%	120%	94%	70%	130%	
Total Manganese	1980524		0.77	0.78	1.3%	< 0.020	97%	70%	130%	102%	80%	120%	99%	70%	130%	
Total Molybdenum	1980524		<0.20	<0.20	NA	< 0.020	98%	70%	130%	105%	80%	120%	104%	70%	130%	
Total Nickel	1980524		<0.15	<0.15	NA	< 0.015	99%	70%	130%	101%	80%	120%	97%	70%	130%	
Total Selenium	1980524		<0.20	<0.20	NA	< 0.020	98%	70%	130%	98%	80%	120%	95%	70%	130%	
Total Silver	1980524		<0.10	<0.10	NA	< 0.010	98%	70%	130%	102%	80%	120%	94%	70%	130%	
Total Tin	1980524		<0.25	<0.25	NA	< 0.025	95%	70%	130%	94%	80%	120%	95%	70%	130%	
Total Titanium	1980524		<0.20	<0.20	NA	< 0.020	97%	70%	130%	105%	80%	120%	109%	70%	130%	
Total Zinc	1980524		<0.20	<0.20	NA	< 0.020	100%	70%	130%	99%	80%	120%	101%	70%	130%	

Comments: NA signifies Not Applicable.

If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

Certified By:

Inis Verastegui

AGAT QUALITY ASSURANCE REPORT (V1)

Page 4 of 7

Time Markers AGAT WORK ORDER: 21T701416 PROJECT: CT2892.03

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Brian Thermer

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

Sample ID	Sample Description	Sample Type	Date Sampled	Date Received
1977573	MW312-FF	Water	19-JAN-2021	19-JAN-2021

Peel Sanitary/Mississauga Storm Sewer Use By-Law - Total Metals

Parameter	Date Prepared	Date Analyzed	Initials
Total Aluminum	21-JAN-2021	21-JAN-2021	DW
Total Antimony	21-JAN-2021	21-JAN-2021	DW
Total Arsenic	21-JAN-2021	21-JAN-2021	DW
Total Cadmium	21-JAN-2021	21-JAN-2021	DW
Total Chromium	21-JAN-2021	21-JAN-2021	DW
Total Cobalt	21-JAN-2021	21-JAN-2021	DW
Total Copper	21-JAN-2021	21-JAN-2021	DW
Total Lead	21-JAN-2021	21-JAN-2021	DW
Total Manganese	21-JAN-2021	21-JAN-2021	DW
Total Molybdenum	21-JAN-2021	21-JAN-2021	DW
Total Nickel	21-JAN-2021	21-JAN-2021	DW
Total Selenium	21-JAN-2021	21-JAN-2021	DW
Total Silver	21-JAN-2021	21-JAN-2021	DW
Total Tin	21-JAN-2021	21-JAN-2021	DW
Total Titanium	21-JAN-2021	21-JAN-2021	DW
Total Zinc	21-JAN-2021	21-JAN-2021	DW

Method Summary

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

PROJECT: CT2892.03 SAMPLING SITE: 3154 Huroptario St. Mississauga ON

AGAT WORK ORDER: 21T701416

ATTENTION TO: Brian Thermer

SAMELING SITE. 3134 HUTOIItano	St. Mississauya ON							
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
Water Analysis			L.					
Total Aluminum	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Antimony	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Arsenic	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Cadmium	MET -93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Chromium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Cobalt	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Copper	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Lead	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Manganese	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Molybdenum	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Nickel	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Selenium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Silver	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Tin	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Titanium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Zinc	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					

Chain of Custody Record If this is a Dri	Laborate	OTIES use Drinking Water Chain of Custody Form (por	5835 Coopers Avenue Misslssauga, Ontario L4Z 1Y2 Ph: 905,712,5100 Fax: 905,712.5122 webearth,agatlabs.com	Laboratory Use Only Work Order #: 217701416 Free Cooler Quantity: Bog Check (C) Arrival Temperatures: 19.71
Report Information:	1 44.	Regulatory Requirements: (Please check all applicable boxes)		Custody Seal Intact: TYes TNo N/A
Contact: Brian Theamer Address: 90 Scandale Rd Toronto DN M3B 2P Phone: 416 245 0011 Reports to be sent to: 6 theimer @temapex 1. Email: 5 jivani@terrapex	7 7 (com	Regulation 153/04 Excess Soils Table Indicate One Ind/Com Table Res/Park Regulation 5 Soil Texture (Check One) COArse Coarse CCME	R406 Sewer Use Storm PCC1 / MISSISSA UG Fregion Fegion 58 Prov. Water Quality Objectives (PWQO) Other Indicate One	Image: Procession of the system of the s
Project Information: Project: Site Location: 315 Y Huron Laris St. Mission	sissaug on	Is this submission for a Record of Site Condition ? Yes No	Report Guideline on Certificate of Analysis	Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays
Sampled By: AGAT Quote #: Please note: Il quotation number is not provided, client will be I Please note: Il quotation number is not provided, client will be I Please note: Il quotation number is not provided, client will be I Please note: Il quotation number is not provided, client will be I Please note: Il quotation number is not provided, client will be I Please note: Il quotation number is not provided, client will be I Please note: Il quotation number is not provided, client will be I Please note: Il quotation number is not provided, client will be I Company: Company: Contact: Address: 90 Scars faile. Rej Ta Email: b. theimer @ terrapex.co Accounts.payable@	To Same: Yes & No D 1 Ltd Dromto ON 1 Etrappy. 6m	Sample Matrix Legend B Biota GW Ground Water O Oil P Paint S Soil SD Sediment SW Surface Water	Field Filtered - Metals, Hg, CrVI, DOC Field Filtered - Metals, Hg, CrVI, DOC & A Inorganics & Inorganics 5 - D CrVI, D Hg, D HWSB F1-F4 PHCs e F4G if required D Yes D No	IDEsposal Characterization TCLP: JM&I TVOCS TABNS TBRain PLPCBS JM&I TVOCS TABNS TBRain PLPCBS Solis SPLP Rainwater Leach Metals TUVCS TSVOCS Solis Characterization Package PMS Metals, BTEX, F1-F4 PMS Metals, BTEX,
Sample Identification Date Sampled	Time # of S Sampled Containers #	Sample Comments/ Matrix Special Instructions	Metal Metal Anaby PCBs	VOC Landfilt Excess SPLP, C P.H, C Salt-
MW312-FF Jan. A/21	AM PM AM AM PM AM AM AM AM AM AM AM AM AM A	Sw Please analyze tor Total Metals an compare to Peel sanitary/ Mississauga Storn Sewer by law reguirements Samples peopled by (Print Name and Sign):		
Samples Relinquished By (Print Name and Sign):	Jan 19/21 Y:0 Date Time	Samples Received By (Print Name and Sign):	Date	Time Page of Time N** 1 1 4 0 5 6

Page 7 of 7

APPENDIX V

GRAIN SIZE ANALYSIS

Tested By: AM

HYDRAULIC CONDUCTIVITY

APPENDIX VI

