

FUNCTIONAL SERVICING & STORMWATER MANAGEMENT REPORT

Derry-Britannia Developments Limited (North and South Draft Plans)

CITY OF MISSISSAUGA REGIONAL MUNICIPALITY OF PEEL

PREPARED FOR

DERRY-BRITANNIA DEVELOPMENTS LIMITED

Urbantech File No.: 20-652 City File No.: 21T-M 19003/19004

1ST SUBMISSION – NOVEMBER 2019 (RAND) 2ND SUBMISSION – MAY 2020 (RAND) 3RD SUBMISSION – November 2021 4TH SUBMISSION – April 2023 5TH SUBMISSION – OCTOBER 2023

Urbantech® Consulting, A Division of Leighton-Zec Ltd. | 3760 14th Avenue, Suite 301 · Markham · ON · L3R 3T7 | 905.946-9461

TABLE OF CONTENTS

1	IN.	FRODUCTION	3
2	BA	CKGROUND INFORMATION	4
3	PR	OPOSED DEVELOPMENT	5
	3.1.	DEVELOPMENT PHASING	5
4	EX	ISTING CONDITIONS	7
	4.1. 4.2.	TOPOGRAPHY AND DRAINAGE	7 7
	4.3.	EXISTING FLOODPLAIN	8
5	ST	ORMWATER MANAGEMENT PLAN	9
	5.1. 5.2. 5 3	STORM DRAINAGE DESIGN CRITERIA AND REQUIREMENTS	9 0 1
	5.4. 5.5.	STORMWATER MANAGEMENT POND	25
	5.6. 5.7. 5.8.	GEOMORPHIC ANALYSIS AND NATURAL CHANNEL DESIGN	5 5 6 7
6	WA	ASTEWATER SERVICING PLAN	8
	6.1. 6.2.	EXISTING WASTEWATER SERVICING	8 8
7	WA	TER SUPPLY AND DISTRIBUTION PLAN1	9
	7.1. 7.2.	EXISTING WATER SERVICING	9 9
8	RO	ADS & UTILITIES2	0
	8.1. 8.2.	PUBLIC ROADS 2 PRIVATE ROADS 2	0
9	GR	ADING2	1
	9.1. 9.2.	NINTH LINE EA	1
10	осо	NCLUSION2	2

APPENDIX A: Storm and Sanitary Sewer Design Sheets

APPENDIX B: SWM Pond Calculations

APPENDIX C: LID Calculations

APPENDIX D: Drawings

- Location Plan
- Draft Plan of Subdivision
- 3.1 Development Phasing Plan
- 5.2A Existing Storm Drainage Plan
- 5.2B Storm Servicing Plan
- 5.3 Conceptual Location of LID Measures
- 5.5 SWM Pond Plan
- 6.1 Sanitary Servicing Plan
- 7.1 Water Servicing Plan
- 8.1A Typical ROW Cross Sections
- 8.1B ROW Details
- 8.1C Preliminary Lot Details
- 9.1A to D Ultimate Grading Plans
- 9.1a to d Interim Grading Plans
- 9.1E to H Grading Cross Sections

Plan & Profiles

- PP1 to PP9 Street 'A' Plan & Profiles
- PP10 Street 'B' Plan & Profile
- PP11 to PP13 Ninth Line Plan & Profiles

APPENDIX E: Hydrological Model Validation

APPENDIX F: Water & Wastewater Calculations

Page 3 of 22

1 INTRODUCTION

Urbantech Consulting has been retained by Derry-Britannia Developments Limited to prepare a functional servicing and stormwater report (FSR / SWM) for the proposed mixed-use subdivision, located within the Ninth Line Lands, City of Mississauga, Region of Peel, hereafter referred to as the subject lands.

The information in this report applies to the North and South parcels of the proposed draft plan. As shown on the proposed *Location Plan*, the subject lands are bounded by Ninth Line to the east, an Enbridge Gas facility to the north, Sixteen Mile Creek and Highway 407 ETR to the west, and the existing Lisgar stormwater pond outlet channel (NLT-1) to the south. The subject lands are considered part of Block 2 within the overall Ninth Line Secondary Plan Area.

This study presents the recommended stormwater management and municipal servicing scheme for the development of the subject lands. This report is also applicable for any future revisions to the site plan, assuming the revisions are minor and in general conformance with the concepts outlined herein. The proposed Draft Plan and the design concepts in this report have also considered development of adjacent lands not currently owned by the applicant and these recommendations may be followed should those lands ever be incorporated into the Draft Plan in the future.

The design information presented in this report considers the following guidelines:

- City of Mississauga T&W Development Requirements
- Region of Peel Public Works Design, Specifications & Procedures Manual
- Credit Valley Conservation Authority Stormwater Management Criteria Document
- Draft Ministry of the Environment and Climate Change LID SWM Guidance Manual
- Stormwater Management Planning and Design Manual by the Ministry of Environment and Climate Change

Page 4 of 22

2 BACKGROUND INFORMATION

The development concepts contained in this report are an extension of the information contained within the following reports:

• High Level Concept Plan (HLCP) for the Ninth Line Heritage System Corridor (2023)

This study should be referenced for high-level information regarding development of the Block 2 Natural Heritage System with respect to the entire Ninth Line Secondary Plan Area. This study also includes detailed analysis of riparian storage and the Regional Floodplain for the Ninth Line Lands.

• Comprehensive Environmental Impact & Integration Study (CEIIS) (2023)

This study should be referenced for detailed information regarding implementation of the proposed Block 2 Natural Heritage System.

• Ninth Line Lands Scoped Subwatershed Study by Wood (2018)

This study should be referenced for background stormwater management information which has been further evaluated and expanded in the HLCP and CEIIS.

• Ninth Line Lands: Servicing Strategy Report by Region of Peel (2016)

This study should be referenced for high-level water and wastewater servicing information for the Ninth Line Lands including the preferred overall servicing strategies by the Region based on current and planned infrastructure.

• Preliminary Geotechnical Investigation by DS Consultants (2019)

• Hydrogeological Analysis by DS Consultants (2021)

3 PROPOSED DEVELOPMENT

The proposed Draft Plan of subdivision (refer to **Appendix D**) features a mixture of townhouses and midrise blocks in both freehold and condominium tenures. Overall, there are between 1,262 and 1,362 units proposed on 115.4 acres including lands designated for City parks, an elementary school, stormwater management facility, 407 Transitway and an integrated Natural Heritage System (NHS). The draft plan reflects the approved Secondary Plan in terms of proposed population and density.

Further the proposed NHS Corridor also reflects the Secondary Plan and Subwatershed Study vision to contain the Regional Floodplain and create enhancements to the natural heritage features and functions within the Ninth Line Corridor, as compared to existing conditions, and includes:

- the creation of a contiguous and connected NHS corridor west of the 407 transitway consisting of wetlands, woodlands and meadow habitat in place of the existing, isolated natural heritage features
- grading to contain the Regional Storm flood plain such that the proposed development does not result in increases to floodplain elevations east of Ninth Line

In addition to the improvements as proposed by the Subwatershed Study, the development proposal also provides for the following benefits, not anticipated as part of the Subwatershed Study:

- enhancements to the NLT-1 watercourse corridor (i.e., the watercourse that receives outflows from the Lisgar stormwater management pond) through the removal of the existing concrete lined channel and creation of a low-flow channel with natural channel design within a widened corridor
- improvements to the NLT-1 channel to minimize increases in flood plain elevation along Ninth Line that is anticipated as a result of the City's Ninth Line road widening and the 407 transitway crossing of NLT-1
- increase in the overall channel length of NLT-1 from 265 m to over 400 m to provide an overall net increase in habitat area and provide additional provisions for flood control

3.1. DEVELOPMENT PHASING

Due to the scale of this development and the adjacent public infrastructure projects, it is anticipated that the development will be built out over several years and that various interim conditions will be encountered. While it is impossible to predict every potential interim condition, there are several important phasing principles to consider:

NHS Construction and Site Earthworks

As established through the HLCP and CEIIS, the construction of the new NHS corridor and improvements to the NLT-1 channel should generally precede or be completed simultaneously

with removal of the existing features on site. Since the excess material generated from the NHS excavation will be needed to fill the development lands, an efficiently staged earthworks program will be critical to avoid unnecessary import/export, stockpiling and double handling of material, while also managing the existing features prior to their decommissioning. Refer to **CEIIS Drawings 12.1A**, "*Stage 1 – NHS*", and **12.1B**, "*Stage 2 – Subdivision*" for further information on the proposed construction sequence. Additional details will be provided through the future detailed design and permitting process and consultation with the City and Conservation Halton. To optimize the construction schedule and meet the timing window requirements, it is anticipated that the earthworks program will be separated into several permits.

North and South Draft Plan Parcels

While the proposed Draft Plan of Subdivision is separated into two parcels, it is generally required that the public elements of the South Plan proceed first (or simultaneously) since the South Plan contains critical infrastructure to service the overall development, including the proposed stormwater management pond and Street 'A,' which provides servicing outlets and overland flow conveyance. The exact limits of the first phase of development may be subject to change through detailed design, however, a preliminary phasing concept for the two separate Draft Plans has been provided on **Drawing 3.1**, "*Development Phasing Plan*," in **Appendix D**.

Condominium Blocks

It is anticipated that the condominium blocks will generally proceed with similar timing to the adjacent municipal roads which will provide the necessary municipal accesses and servicing outlets. Condominium Block 5 would likely be the first block to develop since it will be the first to have available access and outlets from Street 'A.' Given the nature of this development, where the majority of the proposed roads and services are private, special consideration from the City may be warranted to facilitate an efficient construction program and allow the condo blocks to be serviced in tandem with the adjacent roads.

Ninth Line Urbanization

The City of Mississauga is currently completing an Environmental Assessment for the urbanization and widening of Ninth Line. Preliminary design information (horizontal and vertical design) has been referenced in the preparation of this report to ensure that the development concepts are compatible with the Ninth Line urbanization works. It is possible for either project to proceed first; however, phasing and staging details regarding the road connections and intersection design shall be further evaluated as the detailed design of these projects progresses to ensure satisfactory interim conditions.

Future MTO Transitway

The Environmental Assessment for the future MTO Transitway bisecting the subject lands is approved. The EA design has been incorporated into the design of the subject lands to ensure compatibility; however, it is generally assumed and acknowledged that the proposed development will proceed in advance of the transitway construction. Accordingly, suitable access from the development side will be provided to facilitate future transitway construction and maintenance. The proposed development will not hinder the transitway in any way.

4 EXISTING CONDITIONS

4.1. TOPOGRAPHY AND DRAINAGE

The subject lands have been predominantly cleared for past agricultural use; however, the site also contains several existing environmental features including wetlands and wooded areas (refer to CEIIS for detailed information). Several of the smaller properties along Ninth Line which comprise the larger study area are existing rural residences.

The subject lands are relatively flat and gently sloped from north to south. All overland drainage is ultimately directed to Sixteen Mile Creek and the confluence of the main branch and the east branch, NLT-1 (Lisgar stormwater outlet channel).

Lands to the east of Ninth Line are predominantly residential. Stormwater management for the lands to the east is primarily provided by the Lisgar SWM facility which is an online pond along the watercourse east of Ninth Line; in addition, two SWM facilities, located within the Ninth Line Lands near Thomas Street, provide the requisite stormwater quantity control for the Churchill Meadows Subdivision east of Ninth Line.

Refer to Drawing 5.2A, "Existing Storm Drainage Plan," in Appendix D.

For detailed information regarding the existing natural features, please refer to the Block 2 Comprehensive Environmental Impact & Integration Study (CEIIS).

4.2. SOILS

For detailed geotechnical and hydrogeological information, please refer to the following reports:

- Preliminary Geotechnical Investigation, DS Consultants (2019)
- Hydrogeological Investigation, DS Consultants (2021)

The soils within the Study Area consist of Chinguacousy clay loam and Jeddo clay loam, which are classified as SCS Type 'C' soils, exhibiting relatively low rates of infiltration and comparatively high rates of runoff. Based on the subsurface drilling investigation, the Subject Lands are underlain by surficial / fill material, which in turn is underlain by native soil deposits consisting of clayey silt to silty clay till and sandy silt to silty sand till. Shale bedrock was encountered at the Site underlying the overburden till and was generally found at shallower depths in the northern portion of the Site and declined in elevation towards the south.

A total of seven in-situ infiltration tests (TP1, TP2, TP3, TP4, TP5, TP6 and TP7) were completed in the northern portion of the Subject Lands on April 3, 2020 and a total of six (6) in-situ infiltration tests (TP1, TP2, TP3, TP4, TP5 and TP6) were completed in the southern portion of the Subject Lands and April 6, 2020. The purpose of the in-situ infiltration testing was to estimate the soil percolation rates in the surficial soils within the Subject Lands. The in-situ

Page 8 of 22

infiltration tests were conducted using the double ring infiltrometer method in general accordance with guidelines outlined in the *Low Impact Development (LID) Stormwater Management Planning and Design Guide for Stormwater Infiltration"* by the Toronto and Region Conservation Authority (TRCA), dated 2010. The double ring infiltrometer testing was conducted within the upper 0.3 m to 0.45 m of surficial soil consisting of earth fill (disturbed sandy silt to silty clay with trace amounts of gravel). Based on the results of the testing, the soil percolation rates within the surficial soils at the subject lands generally ranged from 10.8 mm/hour to 43.2 mm/hour, with an average rate of 26.5 mm/hour. The result of an infiltration test at the location of TP5 in the northern portion was estimated to be 158.4 mm/hour, which is considered to be an outlier and not representative of the infiltration rates of the surficial soils across the Subject Lands. During the infiltration testing in the southern portion, infiltration rates in four (4) testing locations (TP3, TP4, TP5 and TP6) were estimated to be approximately zero due to wet ground conditions, likely as a result of the spring snow melt.

4.3. EXISTING FLOODPLAIN

A significant portion of the subject lands are occupied by the existing Regional floodplain. A detailed analysis of the existing floodplain has been undertaken as part of the High Level Concept Plan (HLCP) study; please refer to that document for detailed information regarding the existing floodplain conditions within the Ninth Line Lands.

5 STORMWATER MANAGEMENT PLAN

5.1. STORM DRAINAGE DESIGN CRITERIA AND REQUIREMENTS

The following storm drainage criteria have been adopted for the stormwater conveyance system within the proposed development:

- The minor drainage system shall be designed for the 10-year storm event using the Rational Method and City of Mississauga IDF curves;
- The major system shall be designed to accommodate runoff exceeding the capacity of the minor system for flows up to and including the 100-year storm event. The major system should be contained within road allowances and designated easements without over-flowing onto the arterial roads. Where required, 100-year capture into the minor system will be accommodated in the minor system sizing / grate sizing;
- For residential lots, runoff from roof leaders should be directed towards pervious areas where possible;
- Storm sewers should be installed at adequate depth to enable connection of all basement foundation drains where possible, otherwise it is assumed that sump pumps will be required;
- On-site retention of the first 5 mm of runoff from the entire impervious surface area by way of infiltration, evapotranspiration or re-use is required. Where soil conditions do not permit infiltration, the first 5 mm of runoff should be filtered instead. Various Low Impact Development (LID) practices will be considered to provide the on-site runoff retention. This may include, but is not limited to:
 - Additional topsoil depth
 - o cisterns for water re-use
 - infiltration trenches in rear yards
 - o enhanced grass swales and bioretention areas within park blocks and buffers

In accordance with the recommended stormwater management plan presented in the Scoped SWS (Wood, 2022), stormwater quality, erosion and quantity control for the subject lands will be provided by an end-of-pipe SWM facility (Pond 294 in the SWS), as follows:

• The SWM facility shall be designed as an off-line wet pond with permanent storage for water quality control in accordance with the "enhanced" protection level for the receiving watercourse as defined in the March 2003 Ministry of Environment guidelines;

URBANTECH°

- The SWM facility shall incorporate extended detention storage for erosion control to maintain the volume of runoff above the critical flow rate at existing levels, for the 4-hour 25mm storm event and calculated based on 275 m³ per hectare of contributing impervious area. The extended detention release rate for the ponds should be designed based on 0.002 m³/s per hectare of contributing area;
- The SWM facility should provide water quantity control for all storm events up to and including the Regional Storm (Hurricane Hazel) event. The storage and discharge requirements are summarized in **Table 5-1**.

Return Period	Unit storage volume (m³/imp ha)	SWS Unit flow rate* (m³/s/ha)	Corrected unit flow rate* (m ³ /s/ha)
2	450	0.09	0.002
5	600	0.38	0.010
100-year	875	1.02	0.027
Regional	1,775	1.53	0.041

Table 5-1: SWM Pond Storage and Discharge Requirements

Note: Storage volumes are measured from permanent pool and include extended detention volume of 275m³/imp ha.

*Note that Wood staff has indicated that the unit flow rates reported in Table 2.2.2 of the SWS were incorrectly labelled as "unit flow rates"; these were in fact "total flow rates for the modelled area to SWS Pond 294 (37.10 ha). Therefore, the actual / "corrected" unit flow rates are the Table 2.2.2 rates divided by 37.10.

- The SWM facility design shall include a bottom draw outlet structure, sediment forebay, outlet plunge pool, emergency overflow spillway and a maintenance access route from a municipal road; and,
- The SWM facility shall be graded with side slopes 5:1 for 3 m horizontally above and below the permanent water level and side slopes of 3:1 to 4:1 elsewhere.

5.2. PROPOSED STORM DRAINAGE PLAN

The storm drainage concept for the site has been designed to maintain flows and contributing drainage areas to the existing outlets on the site where possible and meet the existing targets established in the preceding section. Storm sewers for the subject lands have been sized according to the City of Mississauga sewer design criteria (10-year storm).

Flows exceeding the minor system even will generally be conveyed to the SWM pond via the proposed roadways and overland flow routes. Due to grading constraints, several major system capture points are required throughout the development where overland flow cannot be maintained to the downstream pond.

Refer to the Storm Sewer Design Sheets in **Appendix A**.

Refer to **Drawing 5.2B**, "Storm Servicing Plan," in **Appendix D**.

5.3. LOW IMPACT DEVELOPMENT PRACTICES

As per the City of Mississauga requirements, the first 5mm of runoff from the entire impervious area of the proposed development will be retained on site. On-site runoff retention will be achieved using the following measures.

- The topsoil depth on the lots will be increased from 150 mm to 300 mm
- Roof leaders will be discharged to pervious areas wherever possible

The site imperviousness is roughly 73%; total impervious area is 22.83 ha. The 5 mm volume over this area is 1,142m3. Conversely, the total pervious area of the proposed lots is 29,222m2. In order to store the total 1,142 m3 runoff volume, the required storage depth is approximately 39 mm. At an assumed porosity of 0.4, 300 mm depth of topsoil within the pervious areas will exceed this requirement.

It is typical to assume that topsoil has a porosity of 0.4, which in this case provides a 7.7 mm total retention depth for the subject site. To conservatively assume the soil is more compact, a porosity of 0.261 can still achieve the 5mm total retention requirement. Furthermore, precautions during construction to avoid compaction can be taken (similar to LID installation) in which compaction is avoided or the effects of compaction can be mitigated. Refer to LID calculations for increased topsoil in **Appendix C**.

Although the LID approach of increased topsoil is currently proposed for on-site retention mitigation, it is potentially subject to change based on resolution between the Province and the City regarding the CLI-ECA program, where other possible hierarchical approaches will be proposed, where applicable, for retaining the 27 mm runoff event. As per the new MECP criteria, increased topsoil approach cannot be considered for on-site retention. Therefore, if the 27 mm retention criteria are initiated, potential additional LID measures will be required:

Rear Yard Infiltration Trenches

Using resources from the City of Toronto *Wet Weather Flow Management Guidelines* (*WWFMG, 2006*), rainfall depth infiltrated for each trench can manage up to 96% of the total average annual rainfall (refer to **Appendix C** for details), depending on the associated drainage catchment. A soil percolation rate of 25 mm/hour was also assumed based on minimum soil percolation rate for sandy loam in order to confirm the infiltration trench sizing requirements, as per Section 5.2.3.3 in the *MESP*. Refer to Table 4.4 from the *MOE SWMP Manual (2003)* for soil percolation rate and refer to the Preliminary Geotechnical Investigation by DS Consultants for site soil type. The maximum LID depth is also constrained by high groundwater level which requires further confirmation by geotechnical consultant, although considering that the site will be filled several meters above the existing ground elevation, groundwater is not anticipated to be a constraint for infiltration depth. The maximum trench width of 1.55m was applied based on spacing constraints in the proposed rear-yards. The potential preliminary infiltration trench

locations are shown on **Drawing 5.3** provided in **Appendix D**. Infiltration trench sizing calculations are also provided in **Appendix C** for reference.

Front Yard Soakaway Pits (along Ninth Line)

Due to standard construction and lot grading principles, overland drainage from the front yards of units along Ninth Line will be directed towards the Ninth Line right-of-way. To mitigate impact to the right-of-way, drainage from this catchment should be controlled within the lots by a private LID such as a soakaway pit. The proposed soakaway pits as detailed on **Drawing 5.3** in **Appendix D** can manage up to 95% of the total average annual rainfall and capture the equivalent of 27mm runoff from their respective catchment (refer to **Appendix C**).

Underground Infiltration Systems within Blocks (School and Parks)

Strong consideration should be given to permitting the use of underground infiltration facilities within the school and public park blocks to retain at least 27mm of runoff from their respective catchments (or more if sufficient space is available). Systems such as the Greenstorm Geocellular Module have been approved and implemented on other similar projects in the GTA; this or an equivalent system would be a suitable candidate for this site. For the school and public parks combined, a total storage volume of 2,100 m³ would be required to control up to 100% of the total average annual rainfall which would exceed the 27mm requirement. These systems typically provide highly efficient storage volumes, up to 96% of the LID volume depending on the configuration. Please refer to **Drawing 5.3** for preliminary details or refer to Stormcon.ca for additional product information.

Re-Use (High-Density Blocks)

It is anticipated that the high-density blocks will require underground parking structures to meet the population density requirements for those areas, thus prohibiting many conventional infiltration-based LIDs. Opportunities for on-site re-use such as mechanical or irrigation, should be explored at the future site plan design; however, it would not be practical to retain 27mm of runoff on these blocks.

In the event that the CLI-ECA 27 mm retention requirement is initiated by the City, the total maximum retention volume provided by the above additional LIDs would be approximately 19.3mm (totaling to 27mm when fairly accounting for the additional 7.7mm of retention provided from the increased topsoil depth). Refer to **Appendix C** for details.

5.4. STORMWATER MANAGEMENT POND

The minor and major system flows from the subject lands will be conveyed to the proposed SWM Pond located at the southern limit of the development. The design of the facility will be conducted in conjunction with the proposed grading and servicing design for the proposed development, interim transitway berm design and NHS channel reconfiguration works along NLT-1.

The proposed SWM facility will consist of the following components:

Page 13 of 22

URBANTECH®

- Quality and Erosion Control The water quality control outlet will be a bottom draw consisting of a reverse-slope outlet pipe with vertical bends connected to a control manhole. An orifice will be installed vertically within the manhole at the permanent water elevation, allowing the extended detention volume to drain over a minimum period of 48 hours. Treated flows will be conveyed from the common manhole to a headwall at NLT-1.
- Quantity Control The controlled flows will be conveyed via an orifice / weir control structure within a concrete chamber. Controlled flows will be conveyed to the headwall at NLT-1. It should be noted that the storage stacking of the quantity control volume over the extended detention volume in the proposed SWM pond facility is to be provided, as per CVC guidelines.
- **Emergency Spillway** In the event of temporary blockage of the quantity control outlet structure, all flow will be conveyed by an emergency spillway located on the south side of the facility.
- The pond will be designed with a sediment forebay sized according to the MOE SWM Planning and Design Guidelines. Pond liner requirements and berm stability will be established at the detailed design stage through geotechnical investigations.
- A maintenance access road (5 m wide) is proposed around the facility within the 15m wide buffer area.

The SWM Pond will provide drainage control for the lands shown on **Drawing 5.2B**, "*Storm Servicing Plan*." The facility will be constructed as an off-line wet pond and will provide water quality, erosion and quantity control for the contributing 31.28 ha drainage area with an average impervious level of 73%. The pond will be located within the approximately 2.81 ha block located at the southern part of the development.

The permanent pool storage for water quality control in the pond has been sized to achieve an "enhanced" protection level for the receiving watercourse as defined in the 2003 MOE "*Stormwater Management Practices Planning and Design Manual*". The target volume is approximately 5,882 m³. The permanent pool level has been established at 187.75 m to facilitate gravity drainage to the lowered NLT-1 watercourse.

Based on the proposed drainage area and imperviousness, **Table 5-2** summarizes the required and provided storage volumes:

Return Period	Unit storage volume (m³/imp ha)	Target Storage based on 31.28 ha @ 75 % IMP (m ³)	Provided Storage (Active Storage) (m ³)	Provided Storage (Active Storage+ED) (m ³)	Designed Pond Water Level (m)	Unit flow rate (m³/s/ha)	Target flow (m ³ /s) based on 31.28 ha
Permanent Pool	188 m³/ha	5,882	18,360	-	187.75	-	-
Extended Detention	275	6,313	6,540	6,540	188.25	0.0020	0.063
2-year	450	10,330	4,169	10,708	188.55	0.0024	0.075
5-year	600	13,774	7,765	14,305	188.80	0.0102	0.319
100-year	875	20,087	13,751	20,291	189.20	0.0275	0.860
Regional	1,775	40,748	36,059	42,599	190.55	0.0412	1.289

Table 5-2: Required and Provided Storage Volumes

The regional storm volume was calculated assuming that the extended detention volume was completely full, in accordance with the "storm stacking" approach as requested by Conservation Halton. Note that due to the use of volumetric unit rates, the calculation of stacking is "static" in that it does not consider the dynamic drawdown of the pond similar to a hydrological model would consider. Therefore, the stacking volume calculated for this FSR is conservative and will be refined during detailed design using a hydrological model and the detailed outlet structure rating curve. In practice/ through experience on other projects, the stacking volumes are typically not considerably higher than the non-stacking regional volume. This is due to the fact that although the extended attention volume is not available, the regional storm begins to discharge at a higher rate via the two-year and greater outlet structure, instead of the slow release and accumulation of storage in the extended detention volume. At this time, the conservative approach to adding the regional storage requirement above the extended detention requirement is sufficient to demonstrate that the pond block can accommodate the range of storms including stacking conditions.

The required sediment forebay length for settling is 20 m and for dispersion is 41 m. The forebay has been designed with 70 m forebay length with a minimum length-to-width ratio of 2:1 as per the municipal standards. The extended detention target discharge rate will be maintained with a 205 mm ø orifice. The designed extended detention discharge rate is 55 L/s, which is lower than the target 63 L/s discharge rate. The drawdown time will be 48.6 hours greater than 48 hours as per municipal standards.

Refer to SWM calculations in **Appendix B** and **Drawing 5.5**, "*SWM Pond*," in **Appendix D** for further details.

5.5. NHS CHANNELIZATION WORKS

Refer to the HLCP and CEIIS for details of the proposed NHS. As part of HLCP study, Reach NLT-1, which serves as the outlet for the proposed SWM pond, is proposed to be realigned downstream of Ninth Line to its confluence with the Lisgar Creek tributary. The channel was designed with bankfull discharge of 2.27 m³/s, the overall channel gradient is 0.06%, the width and depth of the bankfull channel for the NLT-1 reach in from 5.3 m - 6.90 m and 0.95 m - 1.3 m. the width and depth of the low flow channel ranges from 3.8 m - 4.5 m and 0.7 m - 1.05 m. Average riffle gradient is 0.30%. However, the design concept is preliminary in nature and will be further refined through detailed design.

5.6. GEOMORPHIC ANALYSIS AND NATURAL CHANNEL DESIGN

Refer to the HLCP for all details by GEO Morphix regarding the proposed natural channel design.

5.7. EROSION AND SEDIMENT CONTROL

Rigorous erosion and sediment control measures will be designed, implemented and maintained throughout the construction period. At detailed design, an Erosion and Sediment Control Plan will be prepared in conformance with the City and Conservation Authority guidelines. Erosion and sediment control will be implemented for all construction activities including topsoil stripping, earthworks, foundation excavation and stockpiling of materials and will remain in place and functional until bare surfaces are stabilized.

The following erosion and sediment control measures should be considered for use during construction:

- Natural features will be staked and temporary fencing provided to keep machinery out of sensitive areas;
- Sediment control fence and snow fence will be placed prior to earthworks;
- Logistics/construction plan will be implemented to limit the size of disturbed areas, minimizing the non-essential clearing and grading areas;
- Temporary sediment ponds fitted with one or more turbidity curtains to increase sediment removal efficiency;
- Rock check-dams and cut-off swales will be provided, where required, in order to control, slow down and direct runoff to sediment basins;
- Sediment traps will be provided;
- Gravel mud mats will be installed at construction vehicle access points to minimize offsite tracking of sediments;

- All temporary erosion and sediment control measures will be routinely inspected monitored and repaired during construction. Temporary controls will not be removed until the areas they serve are restored and stable;
- Where underground services are located below the water table, the use of trench collars are recommended to provide barriers to flow to prevent groundwater flow along granular bedding material.

General mitigative measures that will be considered are:

- Erosion and sediment control measures will be identified, implemented monitored maintained throughout the construction period;
- Construction timing windows for works in streams and for clearing of vegetation will be implemented;
- Fish and wildlife rescues will be carried out if necessary; and,
- Tree protection measures to be installed where required

Reference will be made to the *Guidelines for Erosion and Sediment Control for Urban Construction Sites* prepared by the Greater Golden Horseshoe Area Conservation Authorities (2006) when preparing Erosion and Sediment Control Plans.

Practical measures for the maintenance of water levels in wetlands and watercourses during construction, as well as monitoring requirements, will be identified and implemented, where feasible. Conceptual staging plans for the NHS construction, demonstrating the extent to which the existing natural features may be retained during construction, are presented in the CEIIS. Refer to **CEIIS Drawings 12.1A**, "*Stage 1 – NHS*", and **12.1B**, "*Stage 2 – Subdivision*" for further information on the proposed construction sequence. Additional details will be provided through the future detailed design and permitting process. To optimize the construction schedule and meet the timing window requirements, it is anticipated that the earthworks program will be separated into several permits.

5.8. RIPARIAN STORAGE REQUIREMENT

The HLCP has demonstrated that riparian storage is matched under post-development conditions and there are no negative flooding impacts upstream or downstream. Conceptual grading plans have demonstrated that sufficient area exists within the NHS Corridor to accommodate all the required vegetation communities within the appropriate topography (i.e., wetlands are not proposed on slopes, woodlands are not proposed in areas that will be flooded regularly). Recommended planting schematics and natural habitat elements have been identified for all habitat types throughout the corridor.

As the grading of the FSR is consistent with the HLCP corridor design, the results and conclusion of the HLCP analysis are valid for the FSR. Note that analysis of riparian storage is not included in the HLCP study, but the total flood storage with culverts in place is assessed as advised by CH. Refer to the HLCP study for the details regarding riparian storage.

5.9. HYDROLOGICAL MODEL VALIDATION

As per the City's request, a hydrological model validation is provided to document conformity to the Scoped SWS. The original model from the Ninth Line SWS by Wood (2022) and the Future scenarios updated by Urbantech are listed below:

- 5-B_SWS-Future-NoSWM_Ex Reg Control-AMC III
- 5-C_SWS-Future-NoSWM_All Ex. SWM-AMC II
- 6-A_SWS-Future-SWM_Reg Control-AMC II
- 6-B_SWS-Future-SWM_Reg Control-AMC III
- 6-C_SWS-Future-SWM_All SWM-AMC II
- 6-D_SWS-Future-SWM_All SWM-AMC III

Table 5-3: Updated Information	n for VO Model Validation
---------------------------------------	---------------------------

Original Scenario from Ninth Line SWS	Updated Scenario for updated area and imperviousness
(Wood, 2022)	(Urbantech, 2023)
	• VO ID 211, Catchment area is 5.82 ha with 75%
	TIMP and 60% XIMP;
• VO ID 211, Catchment area is	• VO ID 600, Catchment area is 31.28 ha with 73%
37.1 ha with 75% TIMP and 60%	TIMP and 73% XIMP;
XIMP	 SWM pond 294 with rating curve of target
	discharge and target volume based on drainage
	area of 31.28 ha

The provided pond volume for the Regional storm event is 42,599 m³, which meets the required Regional pond volume of 39,897 m³. Refer to Scenario 6-B of the VO6 model provided in **Appendix E**.

As a confirmation, the total flows at Britannia Road West (VO ID 237), Sixteen Mille Creek East (VO ID 74) and Sixteen Mille Creek East and West (VO ID 104) were evaluated for the Regional and 2 to 100-year storm events to ensure targets are not exceeding the original peak flows for the entire study area. The peak flow at the three specified locations are compared between original and updated model. Refer to the flow comparison tables and VO6 Model Schematic for flow locations in **Appendix E**.

The proposed values are at most 1.45 m³/s higher than the original Future VO model by Wood at Britannia Road West (VO ID 237). The peak flows at Britannia Road West are higher at this location as the time to peak is shorter than the original SWS model scenarios. The proposed values are at most 0.547 m³/s lower than the original Future VO model at Sixteen Mille Creek. As lower imperviousness and drainage area is proposed, the peak flows at downstream Sixteen Mille Creek decreased.

Based on the preceding results, the SWM pond has sufficient quality, erosion and quantity control volume to accommodate the proposed drainage area and land use.

6 WASTEWATER SERVICING PLAN

6.1. EXISTING WASTEWATER SERVICING

The following existing wastewater infrastructure is located within the vicinity of the site:

- 450mm trunk sewer on Ninth Line (from north of Saratoga Way to north of Parkgate Drive).
- 900mm trunk sewer on Ninth Line (from north of Parkgate Drive to Britannia Road)

The Region of Peel identified the above sewers as the preferred outlets for the subject lands in the Ninth Line Lands: Servicing Strategy Report (2019). These are part of the West Trunk Sewer System which ultimately drains to the Clarkson Water Pollution Control Plant. The plant is anticipated to be expanded and the 900mm trunk sewer system is adequately sized to convey projected flows from the subject property.

6.2. PROPOSED WASTEWATER SERVICING

Proposed sanitary sewers to service the development will be designed in accordance with the Region of Peel standards and the recommendations for the *Ninth Line Lands: Servicing Strategy Report (2019).* All proposed sanitary sewers 375mm diameter and higher shall be considered as DC-recoverable infrastructure.

Since the existing 450mm sanitary sewer does not have adequate capacity for the proposed development, and to avoid having multiple parallel sanitary trunks in the same section of the road, the Region of Peel has confirmed the optimal strategy will be to replace the existing 450mm pipe from Street A to the downstream 900mm trunk, with a 600mm pipe. Due to crossing constraints with existing services, the replacement pipe will run at the exact same slope as the existing pipe (0.15%). Further details regarding by-pass pumping and staging of the works shall be provided at the detailed design stage.

Where possible, all other proposed sanitary sewers will be located within the subject lands rather than within Ninth Line. All units fronting onto Ninth Line will be serviced from the rear – no local services are proposed within the Ninth Line right-of-way.

Due to servicing and grading constraints, a portion of the proposed trunk sewer is required to be constructed at a reduced slope of 0.2%. Based on the anticipated flows, the minimum cleaning velocity is still achieved for this section of the sewer. It should be noted and considered that many of the existing sanitary sewers in the vicinity of the subject lands are also at reduced slopes (less than 0.2%) to accommodate the extremely flat topography. The proposed sewers will ultimately be extended north in the future to provide an outlet for developments in Block 1 north of Derry Road. This concept is in accordance with the *Ninth Line Lands: Servicing Strategy Report.*

Population densities have been assigned per Region standards (175 people per hectare for townhouses and 2.7 people per unit for high density blocks). Refer to the Sanitary Sewer Design Sheet in **Appendix A.** Refer to **Drawing 6.1**, "*Sanitary Servicing Plan*," in **Appendix D.**

7 WATER SUPPLY AND DISTRIBUTION PLAN

7.1. EXISTING WATER SERVICING

The Ninth Line Lands: Servicing Strategy Report (2019) confirms the Region's water supply and distribution system has sufficient capacity to service the subject lands.

There are two existing pressure zone systems, PZ-5A and PZ-4A, which will service the development. The following water services are in the vicinity of the site:

- 300 mm diameter watermain on Beacham Street (PZ-5A)
- 150 mm diameter watermain on Doug Leavens Boulevard (PZ-5A)
- 150 mm diameter watermain on Beechnut Street (PZ-5A)
- 300 mm diameter watermain on Saratoga Way (PZ-4A)
- 300 mm diameter watermain on Foxwood Avenue (PZ-4A)
- 300 mm diameter watermain on Osprey Boulevard (PZ-4A)

7.2. PROPOSED WATER SERVICING

Proposed water servicing within the development will be designed in accordance with the Region of Peel standards. The following proposed connection points will service the development:

- Connection to 300 mm diameter watermain on Beacham Street (PZ-5A)
- Connection to 150 mm diameter watermain on Doug Leavens Boulevard (PZ-5A)
- Connection to 300 mm diameter watermain on Osprey Boulevard (PZ-4A)

The watermain network will be looped within public lands and all blocks will be provided with a minimum of two service connections where required for internal looping. All freehold and condominium units will be provided with individual water service laterals per Region standards. The interface between pressure zones will be further investigated at detailed design (i.e. zone separation chamber).

There is other proposed infrastructure in the vicinity of this development. The project number is 22-1114 with 400 mm diameter watermain on Derry Road (PZ-5A) to 620 m southerly.

Refer to the Watermain Analysis by Municipal Engineering Solutions in Appendix F.

Refer to **Drawing 7.1**, "*Water Servicing*," in **Appendix D** for further details.

8 ROADS & UTILITIES

8.1. PUBLIC ROADS

The following road cross sections are proposed for the public rights-of-way throughout the development:

Minor Residential Collector Road – 8m Pavement on 22m ROW (mod City Std. 2211.080)

Geometric design for all roads will comply with the City of Mississauga standards. Sightline and truck turning analyses will be completed at detailed design.

All services (water, sanitary and storm) and utilities (hydro, gas, telecom) within the public rightsof-way will be designed in standard locations per the approved cross sections. In extenuating circumstances, approval from the City and Region will be required for any deviations.

The City of Mississauga is currently completing an Environmental Assessment for the urbanization and widening of Ninth Line. Preliminary design information (horizontal and vertical design) has been referenced in the preparation of this report to ensure that the development concepts are compatible with the Ninth Line urbanization works. It is possible for either project to proceed first; however, phasing and staging details regarding the road connections and intersection design shall be further evaluated as the detailed design of these projects progresses to ensure satisfactory interim conditions.

Refer to the Draft Plan of Subdivision in **Appendix D** for proposed ROW sizes and **Drawing 8.1B**, *"Typical ROW Details"* for additional information about the proposed ROW configuration.

8.2. PRIVATE ROADS

Typical private roads will follow the applicable City standards for common element condominium roads (City Stds. 2211.154, 2211.155) in principle, including the provision for two 3.5m-wide travel lanes, on-street parking where required, and 3m-wide servicing easements (clear of any buildings, steps, porches etc.) beyond the curb / sidewalk.

It is noted that the City's standard condo road cross sections do not account for all potential servicing scenarios and may require modification to suit this particular style of development. For example, the condo blocks include rear-lane product, where public sidewalks are available at the fronts of units and would not be required to access the garages along the back / condo road. Similarly, utilities (hydro, gas, telecom) would be provided from the public frontage and not the rear-lane, eliminating the need for the 3m-wide servicing easements in some cases.

Conceptual cross sections showing the intended servicing and utility layout for the units with frontage on both public and condo roads are provided on **Drawing 8.1A**, *"Typical ROW Cross Sections*," in **Appendix D** for details. Also refer to **Drawing 8.1B**, *"Typical ROW Details."* Preliminary unit types and lot details are available on **Drawing 8.1C**, *"Preliminary Lot Details."*

9 GRADING

The site grading design considers the following objectives and constraints:

- Conform to City of Mississauga grading criteria
- Match existing boundary conditions
- Minimize cut and fill operations and work towards a balanced site
- Provide overland flow conveyance for major storm conditions
- Provide minimum cover on proposed servicing
- Provide flood protection and flood storage where required (refer to HLCP)
- Achieve acoustic requirements (refer to Acoustic Report by YCA)

9.1. NINTH LINE EA

As identified in the preceding section, an Environmental Assessment for the urbanization and widening of Ninth Line is currently ongoing. Preliminary horizontal and vertical design information provided by the City has been referenced in preparation of the grading concepts herein to ensure that the proposed development is compatible with the future conditions of Ninth Line. Interim conditions will need to be established and evaluated during the detailed design of whichever project proceeds first. Should the development proceed first, the grades along the future ROW limit will be set based on the ultimate profile of Ninth Line and interim transition sloping will be provided where necessary (refer to **Drawings 9.1E to H**, *"Grading Cross Sections,"* for examples).

9.2. MTO TRANSITWAY

The Environmental Assessment for the future MTO Transitway bisecting the subject lands is approved. The transitway centerline elevations have been established from the approved EA drawings; however, limited additional details within the transitway corridor are not available at this time. Conservatively, the proposed development grades along the transitway boundary have been set as close to the approved centerline elevations as possible to provide maximum flexibility for grading within the transitway corridor in the future. It is generally assumed and acknowledged that the proposed development will proceed in advance of the transitway construction. Interim sloping to the existing ground will be required in this scenario. The proposed development boundary grades are set higher than the proposed Regional floodline elevations to provide flood protection, regardless of whether the transitway proceeds or not. On the west side of the future transitway, the NHS creation will respect the transitway alignment, plus the associated 14m buffer. Suitable access will be provided from the development side to facilitate future construction and maintenance activities. The development grading concept will in no way hinder the future transitway.

Refer to **Drawings 9.1 A to D**, "*Ultimate Grading Plans*," for the ultimate grading condition of the development. **Drawings 9.1a to d**, "*Interim Grading Plans*," reflect the interim condition (without the transitway). **Drawings 9.1E to H**, "*Grading Cross Sections*," illustrate the proposed grading cross sections at key locations around the proposed site and include profiles for the interim and ultimate grading conditions for reference.

Page 22 of 22

10 CONCLUSION

The proposed Derry-Britannia development can be adequately serviced through a combination of existing and proposed municipal infrastructure. In summary:

- Stormwater quantity and quality control for all lands (both public and private) will be provided by the proposed SWM Pond
- Water balance will be achieved through increased topsoil and other potential LIDs where required to meet the applicable requirements
- Wastewater servicing will be provided by replacing the existing 450mm sewer on Ninth Line with a 600mm sewer, connecting to the existing 900mm trunk
- Water servicing for domestic supply and fire protection will be provided from the existing PZ5A and PZ4A watermains in the vicinity of Ninth Line

Report Prepared by:

Scott Riemer, P.Eng. *Associate, Design*

APPENDIX A

STORM AND SANITARY SEWER DESIGN SHEETS

STORM SEWER DESIGN SHEET

10 Year Storm

DERRY BRITANNIA DEVELOPMENTS LIMITED

CITY OF MISSISSAUGA

PROJECT DETAILS

Designed by: TL

Checked by: SR

Project No: 20-652 Date: 14-Apr-23 Min.

Sta

Factor

STREET	FROM MH	то мн	AREA (ha)	RUNOFF COEFFICIENT "R"	'AR'	ACCUM. 'AR'	RAINFALL INTENSITY (mm/hr)	FLOW (m3/s)	CONSTANT FLOW (m3/s)	ACCUM. CONSTANT FLOW (m3/s)	TOTAL FLOW (m3/s)	LENGTH (m)	SLOPE (%)	PIPE DIAMETER (mm)	FULL FLOW CAPACITY (m3/s)	FULL FLOW VELOCITY (m/s)	INITIAL Tc (min)	TIME OF CONCENTRATION (min)	ACC. TIME OF CONCENTRATION (min)	PERCENT FULL (%)
STREET A	1	2	0.54	0.65	0.35	0.35	99.2	0.097	0.081	0.081	0.178	107.0	0.50	525	0.304	1.40	15.00	1.27	16.27	58%
STREET A	2	3				0.35	94.4	0.092		0.081	0.173	13.3	0.50	525	0.304	1.40	16.27	0.16	16.43	57%
STREET A	3	4	1.32	0.90	1.19	1.54	93.9	0.401		0.081	0.482	67.8	0.30	750	0.610	1.38	16.43	0.82	17.25	79%
DVBK	CTRI 1 1	4	0.76	0.30	0.23	0.23	99.2	0.063			0.063	12.0	0.50	375	0 124	1 1 2	15.00	0.18	15 18	51%
			0.70	0.50	0.25	0.25	55.2	0.005			0.005	12.0	0.50	575	0.121	1.12	15.00	0.10	15.10	5170
STREET A	4	5				1.77	91.1	0.447		0.081	0.528	49.8	0.30	750	0.610	1.38	17.25	0.60	17.85	87%
STREET A	5	6				1.77	89.2	0.438		0.081	0.519	117.6	0.30	750	0.610	1.38	17.85	1.42	19.27	85%
STREET A	6	7				1.77	85.0	0.417		0.081	0.498	118.2	0.30	750	0.610	1.38	19.27	1.43	20.69	82%
FUT CONDO ROAD	CTRL 1	7	0.67	0.65	0.44	0.44	99.2	0.120			0.120	13.5	0.50	450	0.202	1.27	15.00	0.18	15.18	60%
STREET A	7	8	0.09	0.90	0.08	2.28	81.3	0.516		0.081	0.597	39.7	0.30	825	0.786	1.47	20.69	0.45	21.14	76%
		0	2 22	0.65	2.10	2.10	00.2	0 570	0.205	0.205	0.072	10.1	0.50	000	1 200	2.01	15.00	0.11	1 - 11	700/
CUNDU RUAD G	CTRL Z	ð	3.23	0.05	2.10	2.10	99.2	0.578	0.395	0.395	0.973	13.1	0.50	900	1.280	2.01	15.00	0.11	15.11	70%
STREET A	8	9	0 19	0.90	0 17	4 55	80.2	1 014		0 476	1 490	90 5	0.30	1200	2 135	1.89	21 14	0.80	21 94	70%
OTHEET A			0.15	0150	0117	1135	0012	1.011		011/0	11150	5015	0100	1200	2.135	1105		0100	21191	7070
CONDO BLOCK	CTRL 3	9_1	0.82	0.90	0.74	0.74	99.2	0.203			0.203	11.0	0.50	525	0.304	1.40	15.00	0.13	15.13	67%
CONDO BLOCK	CTRL 4	9_1	0.83	0.90	0.75	0.75	99.2	0.206			0.206	14.0	0.50	525	0.304	1.40	15.00	0.17	15.17	68%
STREET B	9_1	9	0.33	0.90	0.30	1.78	98.5	0.488	0.241	0.241	0.729	103.3	0.50	825	1.015	1.90	15.17	0.91	16.07	72%
			0.00	0.00	0.10	6 52	70.2	4 44 7		0 717	2 1 2 4	00 F	0.20	1250	2 022	2.04	21.04	0.76	22.71	700/
SIREELA	9	11	0.20	0.90	0.18	6.52	/8.3	1.41/		0.717	2.134	93.5	0.30	1350	2.923	2.04	21.94	0.76	22.71	/3%
	CTRI 5	11	2 78	0.65	1.81	1 81	99.2	0 498			0 408	13 5	0.50	675	0 594	1.66	15.00	0.14	15 14	84%
CONDO ROAD J	CITE 5	11	2.70	0.05	1.01	1.01	55.2	0.450			0.450	15.5	0.50	075	0.554	1.00	13.00	0.17	13.14	0170
STREET A	11	12	0.08	0.90	0.07	8.40	76.6	1.785		0.717	2.502	37.0	0.30	1350	2.923	2.04	22.71	0.30	23.01	86%
CONDO ROAD J	CTRL 6	12	0.30	0.65	0.20	0.20	99.2	0.054			0.054	13.5	0.50	300	0.068	0.97	15.00	0.23	15.23	79%
STREET A	12	13	0.09	0.90	0.08	8.67	75.9	1.828		0.717	2.545	39.1	0.30	1500	3.872	2.19	23.01	0.30	23.31	66%
					0.75	0 = -	00.5	0 4 5 1	0.455	0.455	0.0		0.55			4 = 1				
CONDO ROAD L	CIRL 7	13	0.90	0.65	0.59	0.59	99.2	0.161	0.109	0.109	0.270	14.5	0.50	600	0.434	1.54	15.00	0.16	15.16	62%

Urbantech Consulting, A Division of Leighton-Zec Ltd. 3760 14th Ave, Suite 301 Markham, Ontario L3R 3T7 TEL: 905.946.9461 FAX: 905.946.9595 www.urbantech.com

DESIGN CRITERIA												
lin. Diameter =	300	mm	Rainfall Intensity =	Α								
Mannings 'n'=	0.013			(Tc+B)^c								
Starting Tc =	15	min	Α =	1010								
-			В =	4.6								
ctor of Safety =	15	%	c =	0.78								

NOMINAL PIPE SIZE USED

STORM SEWER DESIGN SHEET

10 Year Storm

DERRY BRITANNIA DEVELOPMENTS LIMITED

CITY OF MISSISSAUGA

PROJECT DETAILS

Project No: 20-652

Designed by: TL

Checked by: SR

Date: 14-Apr-23

Min.

Sta

Factor

STREET	FROM MH	то мн	AREA (ha)	RUNOFF COEFFICIENT "R"	'AR'	ACCUM. 'AR'	RAINFALL INTENSITY (mm/hr)	FLOW (m3/s)	CONSTANT FLOW (m3/s)	ACCUM. CONSTANT FLOW (m3/s)	TOTAL FLOW (m3/s)	LENGTH (m)	SLOPE (%)	PIPE DIAMETER (mm)	FULL FLOW CAPACITY (m3/s)	FULL FLOW VELOCITY (m/s)	INITIAL Tc (min)	TIME OF CONCENTRATION (min)	ACC. TIME OF CONCENTRATION (min)	PERCENT FULL (%)
		-	-		-	_			_				-		-					-
STREET A	13	14	0.79	0.90	0.71	9.97	75.3	2.084		0.826	2.910	104.9	0.30	1500	3.872	2.19	23.31	0.80	24.10	75%
ELEMENTARY SCHOOL	CTRL 8	14	2.84	0.90	2.56	2.56	99.2	0.704			0.704	14.5	0.50	825	1.015	1.90	15.00	0.13	15.13	69%
		14	0.77	0.65	0.50	0.50	00.2	0 1 2 0			0 1 2 0	12 5	0.50	450	0.202	1 27	15.00	0.10	15 10	C00/
CONDO ROAD K	CIRL 9	14	0.77	0.05	0.50	0.50	99.2	0.138			0.138	13.5	0.50	450	0.202	1.2/	15.00	0.18	15.18	68%
STDEET Λ	14	15				13 02	73.6	2 664		0.826	3 400	51 3	0.30	1200v1800 (BOX)	4 605	2 13	24 10	0.40	24 50	76%
	15	16				13.02	73.0	2.004		0.826	3 461	100.8	0.30	1200x1800 (BOX)	4 605	2.15	24.10	0.70	25.20	7070
	16	17				13.02	72.3	2.000		0.826	3 407	101.6	0.30	1650	4 992	2.15	25.29	0.73	25.29	68%
JINELLA	10	17				15.02	71.5	2.501		0.020	5.107	101.0	0.50	1050	1.552	2.55	25.25	0.75	20.02	0070
PARK	CTRL 10	17	1.36	0.30	0.41	0.41	99.2	0.112			0.112	13.0	0.50	450	0.202	1.27	15.00	0.17	15.17	56%
STREET A	17	18	0.16	0.90	0.14	13.58	70.0	2.641		0.826	3.467	70.5	0.15	1800	4.452	1.75	26.02	0.67	26.69	78%
CONDO ROAD O	CTRL 11	18	0.91	0.65	0.59	0.59	99.2	0.163			0.163	12.5	0.50	450	0.202	1.27	15.00	0.16	15.16	81%
STREET A	18	19	0.13	0.90	0.12	14.28	68.9	2.732		0.826	3.558	59.0	0.15	1800	4.452	1.75	26.69	0.56	27.25	80%
CONDO ROAD P	CTRL 12	19	1.28	0.65	0.83	0.83	99.2	0.229	0.272	0.272	0.501	12.5	0.30	750	0.610	1.38	15.00	0.15	15.15	82%
	10	20	1.70	0.65	1.10	16.20	(7.0	2.071		1.000	4 1 6 0	175 7	0.15	1200-2400 (DO)()	4.650	1.02	27.25	1.20	20 54	000/
	19	20	1.79	0.65	1.16	16.28	67.9	3.0/1		1.098	4.169	125.2	0.15	1200x2400 (BOX)	4.658	1.62	27.25	1.29	28.54	89%
	20	21				16.28	62.0	2.977		1.098	4.075	125.2	0.15	1200X2400 (DOX)	4.000	1.02	20.04	1.29	29.83	8/% 720/-
SIREELA	21	22				10.20	03.9	2.090		1.090	2.900	12/.1	0.15	1950	5.511	1.05	29.03	1.15	20.90	72%0
	CTRI 13	22	1.80	0.65	1 17	1 17	99.2	0 322	0 332	0 332	0.654	12 5	0.50	750	0 787	1 78	15.00	0.12	15 12	83%
CONDO ROAD R	CITE 15		1.00	0.05	1.17	1.17	55.2	0.522	0.552	0.552	0.051	12.5	0.50	750	0.707	1.70	15.00	0.12	13.12	0570
STREET A	22	23	0.39	0.90	0.35	17.80	62.3	3.080		1.430	4.510	56.4	0.15	1950	5.511	1.85	30.98	0.51	31.49	82%
CONDO ROAD S	CTRL 14	23	1.73	0.65	1.12	1.12	99.2	0.310	0.037	0.037	0.347	12.5	0.30	675	0.460	1.29	15.00	0.16	15.16	75%
STREET A	23	26				18.93	61.6	3.238		1.467	4.705	99.1	0.15	1950	5.511	1.85	31.49	0.90	32.38	85%
STREET A		24	0.65	0.90	0.59	0.59														
STREET A	24	25	0.34	0.90	0.31	0.89	99.2	0.245	0.020	0.020	0.265	67.3	0.50	600	0.434	1.54	15.00	0.73	15.73	61%
STREET A	25	26				0.89	96.4	0.239		0.020	0.259	16.3	0.50	600	0.434	1.54	15.73	0.18	15.91	60%
		6=																		
SWM POND	26	27				19.82	60.4	3.326		1.487	4.813	68.0	0.15	2100	6.715	1.94	32.38	0.58	32.97	72%

Urbantech Consulting, A Division of Leighton-Zec Ltd. 3760 14th Ave, Suite 301 Markham, Ontario L3R 3T7 TEL: 905.946.9461 FAX: 905.946.9595 www.urbantech.com

DESIGN CRITERIA												
lin. Diameter =	300	mm	Rainfall Intensity =	Α								
Mannings 'n'=	0.013		, <u> </u>	(Tc+B)^c								
Starting Tc =	15	min	Α =	1010								
-			В =	4.6								
ctor of Safety =	15	%	c =	0.78								

NOMINAL	PIPE	SIZE	USED
TAC			

STORM SEWER DESIGN SHEET

10 Year Storm

DERRY BRITANNIA DEVELOPMENTS LIMITED

CITY OF MISSISSAUGA

PROJECT DETAILS

Project No: 20-652 Date: 14-Apr-23

Designed by: TL Checked by: SR Min. I Mai

Factor

STREET	FROM MH	то МН	AREA (ha)	RUNOFF COEFFICIENT "R"	'AR'	ACCUM. 'AR'	RAINFALL INTENSITY (mm/hr)	FLOW (m3/s)	CONSTANT FLOW (m3/s)	ACCUM. CONSTANT FLOW (m3/s)	TOTAL FLOW (m3/s)	LENGTH (m)	SLOPE (%)	PIPE DIAMETER (mm)	FULL FLOW CAPACITY (m3/s)	FULL FLOW VELOCITY (m/s)	INITIAL Tc (min)	TIME OF CONCENTRATION (min)	ACC. TIME OF CONCENTRATION (min)	PERCENT FULL (%)
	20	27	0.42	0.20	0.12	0.12	00.2	0.025			0.025	6.0	0.50	200	0.000	0.07	15.00	0.10	15 10	F10/
PARK	28	27	0.42	0.30	0.13	0.13	99.2	0.035			0.035	6.0	0.50	300	0.068	0.97	15.00	0.10	15.10	51%
SWM POND	27	29				19.94	59.7	3.307		1.487	4.794	17.9	0.15	1200x3000 (BOX)	6.097	1.69	32.97	0.18	33.15	79%
SWM POND	29	HW 1				19.94	59.5	3.295		1.487	4.782	13.1	0.15	1950	5.511	1.85	33.15	0.12	33.26	87%

	DESIGN CRITERIA												
in. Diameter =	300	mm	Rainfall Intensity =	Α									
Mannings 'n'=	0.013		· _	(Tc+B)^c									
Starting Tc =	15	min	Α =	1010									
-			В =	4.6									
tor of Safety =	15	%	c =	0.78									

NOMINAL PIPE SIZE USED

PROJECT DETAILS	
Title1:	STORM SEWER DESIGN SHEET
Title2:	100YR Capture/Constant Flow Calculations
Project Name:	DERRY BRITANNIA DEVELOPMENTS LIMITED
Municipality:	CITY OF MISSISSAUGA
Project No:	20-652
Date:	14-Apr-23
Designed by:	TL
Checked by:	SR

ID	F Parame
	А
1=A/(1+D)	В
	С

			1											
ID	мн	Α	R (10-Yr)	R (100-Yr)	AR (10-Yr)	AR (100-Yr)	L	Тс	I10	I100	Q10	Q100	Q100-Q10	Const. flow
10	rini	ha		R(10-Yr) x 1.25			т	min	mm/hr	mm/hr	m3/s	m3/s	m3/s	m3/s
100YR-1	MH1	0.61	0.65	0.81	0.40	0.50	138	16.15	94.85	134.66	0.104	0.185	0.081	0.081
100YR-2	CTRL MH 2	3.09	0.65	0.81	2.01	2.51	260	17.17	91.38	129.79	0.510	0.905	0.395	0.395
100YR-3	MH9_1	1.78	0.90	1.00	1.60	1.78	170	16.42	93.91	133.34	0.418	0.659	0.241	0.241
100YR-4	CTRL MH 7	0.82	0.65	0.81	0.53	0.67	124	16.03	95.27	135.24	0.141	0.250	0.109	0.109
100YR-5	CTRL MH 12	2.10	0.65	0.81	1.37	1.71	212	16.77	92.7	131.7	0.352	0.624	0.272	0.272
100YR-6	CTRL MH 13	2.58	0.65	0.81	1.68	2.10	245	17.04	91.79	130.37	0.428	0.759	0.332	0.332
100YR-7	CTRL MH 14	0.27	0.65	0.81	0.18	0.22	37	15.31	98.0	139.0	0.048	0.085	0.037	0.037
100YR-8	MH 24	0.14	0.90	1.00	0.13	0.14	22	15.18	98.45	139.69	0.034	0.054	0.020	0.020

Tc calcs

where Tc = starting Tc + length/velocity Starting Tc (min) = 15 Velocity (m/s) = 2

P:\Projects\20-652 - Derry-Britannia Developments Ltd\Reports\Functional Servicing Report\Calculations & Models\Storm Sewer Design Sheet\[20-652 FSR STM (Constant Flow).xls]100yr capture calcs

Urbantech Consulting, A Division of Leighton-Zec Ltd. 3760 14th Avenue, Suite 301 Markham, Ontario L3R 3T7 TEL: 905.946.9461 FAX: 905.946.9595 www.urbantech.com

ete	rs for Missis	sauga
	10-yr	100-yr
	1010	1450
	4.6	4.9
	0.78	0.78

SANITARY SEWER DESIGN SHEET

INTERIM CONDITIONS (NO EXTERNAL)

DERRY BRITANNIA DEVELOPMENTS LTD.

CITY OF MISSISSAUGA, REGION OF PEEL

PROJECT DETAILS

Project No:	20-652
Date: Designed by:	October 2023 TL
Checked by:	SR

			DESIGN CRITERIA
Min. Flow =	13	l/s	
Min Diameter = Mannings 'n'=	= 250 = 0.013	mm	Avg. Domestic Flow Infiltratior
Min. Velocity =	= 0.75	m/s	Max. Peaking Factor
Max. Velocity =	= 3.50	m/s	Min. Peaking Facto Domestic Sewage
Factor of Safety =	= 20	%	(Region of Peel St

				RESIDENTIA	L				COMMERCI	AL/INDUST	RIAL/INSTI	TUTIONAL				FLO	W CALCUL	ATIONS						PIPE DA	TA				
STREET	FROM MH	то мн	AREA (ha)	ACC. AREA (ha)	UNITS (#)	DENISTY (P/ha)	DENSITY (P/unit)	POP	ACCUM. RES. POP.	AREA (ha)	ACC. AREA (ha)	EQUIV. POP. (p/ha)	FLOW RATE (I/s/ha)	EQUIV. POP.	ACCUM. EQUIV. POP.	INFILTRATION (I/s)	TOTAL ACCUM. POP.	PEAKING FACTOR	RES. FLOW (l/s)	MIN. RES. FLOW (l/s)	COMM. FLOW (l/s)	ACCUM. COMM. FLOW (l/s)	TOTAL FLOW (l/s)	SLOPE (%)	PIPE DIAMETER (mm)	FULL FLOW CAPACITY (I/s)	FULL FLOW VELOCITY (m/s)	ACTUAL VELOCITY (m/s)	PERCENT FULL (%)
STREET A	1A	2A	0.55	0.55		175		97	97							0.1	97	4.00	1.4	13.0			13.1	0.30	375	96.0	0.87	0.61	14%
STREET A - PARK	2A	3A	0.76	1.31		175		222	97							0.3	97	4.00	1.4	13.0			13.3	0.30	375	96.0	0.87	0.61	14%
	3A 4A	4A 5A	1.33	2.64		1/5		233	330							0.5	330	4.00	4.6	13.0			13.5	0.30	375	96.0	0.87	0.61	14%
STREET A	54	6A		2.64					330							0.5	330	4.00	4.6	13.0			13.5	0.30	375	96.0	0.87	0.61	14%
STREET A	6A	7A		2.64					330							0.5	330	4.00	4.6	13.0			13.5	0.30	375	96.0	0.87	0.61	14%
FUTURE RES	CTRL 1A	7A	0.77	0.77		175		135	135							0.2	135	4.00	1.9	13.0			13.2	0.50	250	42.0	0.86	0.75	31%
	74	0.4	0.09	2.40					465							0.7	465	2.00	6 5	12.0			12 7	0.20	275	06.0	0.07	0.61	140/
SIREELA	7A	6A	0.08	5.49					405							0.7	405	5.99	0.5	15.0			15.7	0.30	3/5	96.0	0.87	0.01	14%
CONDO ROAD G	CTRL 2A	8A	3.64	3.64		175		637	637							0.7	637	3.92	8.7	13.0			13.7	0.50	250	42.0	0.86	0.75	33%
																-							-						
STREET A	8A	9A	0.15	7.28					1102							1.5	1102	3.77	14.6	14.6			16.0	0.30	375	96.0	0.87	0.64	17%
		~ .						070	070								070			10.0				0.50			0.00		2404
BLOCK 8N	CTRL 3A	9A	0.82	0.82	325		2.7	878	8/8							0.2	8/8	3.84	11.8	13.0			13.2	0.50	250	42.0	0.86	0.75	31%
STREET A	94	104	0.50	8 60					1980							17	1980	3 59	24.9	24.9			26.6	0.30	375	96.0	0.87	0 74	28%
SIRLETA	5/1	10/1	0.50	0.00					1500							1.7	1500	5.55	2115	2115			20.0	0.50	575	5010	0.07	0.7 1	2070
BLOCK 13S	CTRL 4A	10A	0.83	0.83	325		2.7	878	878							0.2	878	3.84	11.8	13.0			13.2	0.50	250	42.0	0.86	0.75	31%
STREET A	10A	11A	0.43	9.86					2858							2.0	2858	3.46	34.7	34.7			36.6	0.30	375	96.0	0.87	0.78	38%
		11.0	2.60	2.60		175		471	471							0.5	471	2.00	6.6	12.0			12 E	0.50	250	42.0	0.96	0.75	220/-
CONDO ROAD J	CIRL 5A	IIA	2.09	2.09		1/5		4/1	4/1							0.5	4/1	5.99	0.0	15.0			15.5	0.50	250	42.0	0.00	0.75	5270
STREET A	11A	12A		12.55					3329							2.5	3329	3.40	39.7	39.7			42.2	0.30	375	96.0	0.87	0.81	44%
CONDO ROAD J	CTRL 6A	12A	0.29	0.29		175		51	51							0.1	51	4.00	0.7	13.0			13.1	0.50	250	42.0	0.86	0.75	31%
	124	10.		12.04					2200							2.6	2200	2.40	40.2	40.2			42.0	0.20	275	06.0	0.07	0.02	450/
STREET A	IZA	13A		12.84					3380							2.6	3380	3.40	40.3	40.3			42.8	0.30	375	96.0	0.87	0.83	45%
CONDO ROAD L	CTRL 7A	13A	1.01	1.01		175		177	177							0.2	177	4.00	2.5	13.0			13.2	0.50	250	42.0	0.86	0.75	31%
	01112 //1	2071	1.01			270										012			2.0	1010			10.2	0.00	200		0.00	0.70	
STREET A	13A	14A		13.85					3557							2.8	3557	3.38	42.1	42.1			44.9	0.30	375	96.0	0.87	0.83	47%
		144						450	450	2 02	2 02					0.6	450	4.00	6.2	12.0			12.6	0.50	250	42.0	0.96	0.75	220/
ELEMENTART SCHOOL	CTRL 8A	14A						450	450	2.85	2.85					0.6	450	4.00	0.3	15.0			13.0	0.50	250	42.0	0.80	0.75	52%
CONDO ROAD K	CTRL 9A	14A	0.77	0.77		175		135	135							0.2	135	4.00	1.9	13.0			13.2	0.50	250	42.0	0.86	0.75	31%
			-	-												-							-						
STREET A	14A	15A	0.58	15.20					4142		2.83					3.6	4142	3.32	48.2	48.2			51.8	0.20	450	127.5	0.80	0.75	41%
STREET A	15A	16A	1.20	15.20					4142		2.83					3.6	4142	3.32	48.2	48.2			51.8	0.20	450	127.5	0.80	0.75	41%
	16A 17A	1/A 184	1.30	16.50					4142		2.83					3.9	4142 4142	3.32	48.2	48.2 49.2			52.1	0.20	450	127.5	0.80	0.75	41% 41%
JINEELA	1/A	TOA	0.13	10.09					7142		2.03					5.3	7142	5.52	+0.2	70.2			JZ.1	0.20	טכד	127.3	0.00	0.75	7170
CONDO ROAD O	CTRL 11A	18A	1.09	1.09		175		191	191							0.2	191	4.00	2.7	13.0			13.2	0.50	250	42.0	0.86	0.75	31%
STREET A	18A	19A	0.14	17.92					4333		2.83					4.2	4333	3.30	50.1	50.1			54.3	0.20	450	127.5	0.80	0.75	43%

Urbantech Consulting, A Division of Leighton-Zec Ltd.

3760 14th Avenue, Suite 301 Markham, Ontario L3R 3T7 TEL: 905.946.9461 FAX: 905.946.9595 www.urbantech.com

A

ow = 302.8 l/c/d on = 0.200 l/s/ha or = 4.00 or= 1.50 e flow for < 1000 ppl = 0.013m³/s td. 2-5-2)

NOMINAL PIPE SIZE USED

						RESIDENTIA	L				COMMERCI	AL/INDUST	RIAL/INSTIT	UTIONAL		FLOW CALCULATIONS										PIPE DA	ГА		
																									PIPE				
STREET	FROM	то		ACC.					ACCUM.		ACC.	EQUIV.	FLOW	EQUIV.	ACCUM.	INFILTRATION	TOTAL	PEAKING	RES.	MIN. RES.	сомм.	ACCUM.	TOTAL	SLOPE	DIAMETER	FULL FLOW	FULL FLOW	ACTUAL	PERCENT
	мн	мн	AREA	AREA	UNITS	DENISTY	DENSITY	POP	RES.	AREA	AREA	POP.	RATE	POP.	EQUIV.		ACCUM.	FACTOR	FLOW	FLOW	FLOW	COMM. FLOW	FLOW			CAPACITY	VELOCITY	VELOCITY	FULL
			(ha)	(ha)	(#)	(P/ha)	(P/unit)		POP.	(ha)	(ha)	(p/ha)	(l/s/ha)		POP.	(l/s)	POP.		(l/s)	(l/s)	(l/s)	(l/s)	(l/s)	(%)	(mm)	(l/s)	(m/s)	(m/s)	(%)
CONDO ROAD P	CTRL 12A	19A	1.38	1.38		175		242	242							0.3	242	4.00	3.4	13.0			13.3	0.50	250	42.0	0.86	0.75	32%
STREET A	19A	20A	1.78	21.08		175		312	4887		2.83					4.8	4887	3.25	55.7	55.7			60.5	0.20	450	127.5	0.80	0.77	47%
STREET A	20A	21A		21.08					4887		2.83					4.8	4887	3.25	55.7	55.7			60.5	0.20	450	127.5	0.80	0.77	47%
WALKWAY BLOCK	CTRL 13A	21A	1.92	1.92		175		336	336							0.4	336	4.00	4.7	13.0			13.4	0.50	250	42.0	0.86	0.75	32%
STREET A	21A	22A		23.00					5223		2.83					5.2	5223	3.23	59.1	59.1			64.2	0.20	450	127.5	0.80	0.79	50%
STREET A	22A	23A		23.00					5223		2.83					5.2	5223	3.23	59.1	59.1			64.2	0.20	450	127.5	0.80	0.79	50%
CONDO ROAD R	CTRL 14A	23A	1.90	1.90		175		333	333							0.4	333	4.00	4.7	13.0			13.4	0.50	250	42.0	0.86	0.75	32%
STREET A	23A	24A	0.12	25.02					5556		2.83					5.6	5556	3.20	62.4	62.4			67.9	0.20	450	127.5	0.80	0.79	53%
CONDO ROAD S	CTRL 15A	24A	2.17	2.17		175		380	380							0.4	380	4.00	5.3	13.0			13.4	0.50	250	42.0	0.86	0.75	32%
STREET A	24A	25A	0.42	27.61					5936		2.83					6.1	5936	3.18	66.1	66.1			72.1	0.20	450	127.5	0.80	0.81	57%
STREET A	25A	26A		27.61					5936		2.83					6.1	5936	3.18	66.1	66.1			72.1	0.20	450	127.5	0.80	0.81	57%
STREET A	26A	27A		27.61					5936		2.83					6.1	5936	3.18	66.1	66.1			72.1	0.20	450	127.5	0.80	0.81	57%
STREET A	27A	28A		27.61					5936		2.83					6.1	5936	3.18	66.1	66.1			72.1	0.20	450	127.5	0.80	0.81	57%
NINTH LINE	28A	29A		27.61					5936		2.83					6.1	5936	3.18	66.1	66.1			72.1	0.20	450	127.5	0.80	0.81	57%
EXISTING NINTH LINE	A	29A						10750	10750								10750	2.92	110.1	110.1			110.1	0.15	450	110.4	0.69	0.79	100%
NINTH LINE	29A	30A		27.61					16686		2.83					6.1	16686	2.73	159.7	159.7			165.8	0.15	600	237.8	0.84	0.90	70%
NINTH LINE	30A	EX. MH		27.61					16686		2.83					6.1	16686	2.73	159.7	159.7			165.8	0.15	600	237.8	0.84	0.90	70%

SANITARY SEWER DESIGN SHEET

ULTIMATE CONDITIONS

DERRY BRITANNIA DEVELOPMENTS LTD.

CITY OF MISSISSAUGA, REGION OF PEEL

PROJECT DETAILS

Project No: 20-652 Date: 14-Apr-23 Designed by: TL Checked by: SR

			DESIGN CRITERIA
Min. Flow =	13	l/s	
Min Diameter = Mannings 'n'=	250 0.013	mm	Avg. Domestic Flow = Infiltration =
Min. Velocity =	0.75	m/s	Max. Peaking Factor =
Max. Velocity =	3.50	m/s	Min. Peaking Factor= Domestic Sewage flow
Factor of Safety =	20	%	(Region of Peel Std. 2

RESIDENTIAL			L				COMMERCI	AL/INDUST	RIAL/INSTI	TUTIONAL				FLO	W CALCULA	TIONS						PIPE D	ATA						
STREET	FROM MH	то мн	AREA (ha)	ACC. AREA (ha)	UNITS (#)	DENISTY (P/ha)	DENSITY (P/unit)	РОР	ACCUM. RES. POP.	AREA (ha)	ACC. AREA (ha)	EQUIV. POP. (p/ha)	FLOW RATE (l/s/ha)	EQUIV. POP.	ACCUM. EQUIV. POP.	INFILTRATION (I/s)	TOTAL ACCUM. POP.	PEAKING FACTOR	RES. FLOW (I/s)	MIN. RES. FLOW (l/s)	COMM. FLOW (I/s)	ACCUM. COMM. FLOW (l/s)	TOTAL FLOW (I/s)	SLOPE (%)	PIPE DIAMETER (mm)	FULL FLOW CAPACITY (I/s)	FULL FLOW VELOCITY (m/s)	ACTUAL VELOCITY (m/s)	PERCENT FULL (%)
r																													
EXTERNAL - NINTH LINE	E EX. 100	1A	31.40	31.40		175		2615	2615							6.3	2615	3.49	32.0	32.0			38.3	0.30	375	96.0	0.87	0.81	40%
STREET A - PARK	2A	2A 3A	0.55	32.71		1/5		97	2712							6.5	2712	3.48	33.1	33.1			39.5	0.30	375	96.0	0.87	0.81	41%
STREET A	3A	4A	1.33	34.04		175		233	2945							6.8	2945	3.45	35.6	35.6			42.4	0.30	375	96.0	0.87	0.81	44%
STREET A	4A	5A		34.04					2945							6.8	2945	3.45	35.6	35.6			42.4	0.30	375	96.0	0.87	0.81	44%
STREET A	5A	6A		34.04					2945							6.8	2945	3.45	35.6	35.6			42.4	0.30	375	96.0	0.87	0.81	44%
STREET A	6A	7A		34.04					2945							6.8	2945	3.45	35.6	35.6			42.4	0.30	375	96.0	0.87	0.81	44%
FUTURE RES	CTRI 1A	74	0.77	0.77		175		135	135							0.2	135	4 00	19	13.0			13.2	0.50	250	42.0	0.86	0.75	31%
		78	0.77	0.77		175		155	155							0.2	155	1.00	1.5	15.0			15.2	0.50	230	12.0	0.00	0.75	5170
STREET A	7A	8A	0.08	34.89					3080							7.0	3080	3.43	37.1	37.1			44.0	0.30	375	96.0	0.87	0.83	46%
		0.4	2.64	2.64		175		627	627							0.7	627	2 02	07	12.0			12 7	0.50	250	42.0	0.96	0.75	220/
CONDO ROAD G	CIRL ZA	оA	5.04	5.04		1/5		037	037							0.7	037	5.92	0.7	15.0			15.7	0.50	250	42.0	0.00	0.75	33%
STREET A	8A	9A	0.15	38.68					3717							7.7	3717	3.36	43.8	43.8			51.5	0.30	375	96.0	0.87	0.86	54%
BLOCK 8N	CTRL 3A	9A	0.82	0.82	325		2.7	878	878							0.2	878	3.84	11.8	13.0			13.2	0.50	250	42.0	0.86	0.75	31%
STREET A	٩۵	104	0.50	40.00					4595							8.0	4595	3 28	52.8	52.8			60.8	0.30	375	96.0	0.87	0.90	63%
SIREELA	57	104	0.50	10.00					1555							0.0	1555	5.20	52.0	52.0			00.0	0.50	575	50.0	0.07	0.50	0370
BLOCK 13S	CTRL 4A	10A	0.83	0.83	325		2.7	878	878							0.2	878	3.84	11.8	13.0			13.2	0.50	250	42.0	0.86	0.75	31%
STREET A	10A	11A	0.43	41.26					54/3							8.3	54/3	3.21	61.5	61.5			69.8	0.30	3/5	96.0	0.87	0.93	/3%
CONDO ROAD J	CTRL 5A	11A	2.69	2.69		175		471	471							0.5	471	3.99	6.6	13.0			13.5	0.50	250	42.0	0.86	0.75	32%
STREET A	11A	12A		43.95					5944							8.8	5944	3.17	66.1	66.1			74.9	0.30	375	96.0	0.87	0.95	78%
	CTDL CA	124	0.20	0.20		175		F1	F1							0.1	F1	4.00	0.7	12.0			10.1	0.50	250	42.0	0.00	0.75	210/
CONDO ROAD J	CIRL 0A	12A	0.29	0.29		1/5		51	51							0.1	51	4.00	0.7	15.0			15.1	0.50	250	42.0	0.80	0.75	51%
STREET A	12A	13A		44.24					5995							8.8	5995	3.17	66.6	66.6			75.5	0.30	375	96.0	0.87	0.95	79%
CONDO ROAD L	CTRL 7A	13A	1.01	1.01		175		177	177							0.2	177	4.00	2.5	13.0			13.2	0.50	250	42.0	0.86	0.75	31%
STDEET A	134	140		45.25					6172							0 1	6172	3 16	68.3	68.3			77.4	0.30	375	96.0	0.87	0.96	81%
SIREELA	134	114		15.25					0172							5.1	0172	5.10	00.5	00.5			,,,,,	0.50	575	50.0	0.07	0.50	0170
ELEMENTARY SCHOOL	CTRL 8A	14A						450	450	2.83	2.83					0.6	450	4.00	6.3	13.0			13.6	0.50	250	42.0	0.86	0.75	32%
		144	0.77	0.77		175		125	125							0.2	125	4.00	1.0	12.0			12.2	0.50	250	42.0	0.96	0.75	210/
	CIKL 5A	ITA	0.77	0.77		1/5		155	155							0.2	155	4.00	1.9	15.0			15.2	0.50	230	72.0	0.00	0.75	5170
STREET A	14A	15A	0.58	46.60					6757		2.83					9.9	6757	3.12	73.9	73.9			83.8	0.20	450	127.5	0.80	0.84	66%
STREET A	15A	16A		46.60					6757		2.83					9.9	6757	3.12	73.9	73.9			83.8	0.20	450	127.5	0.80	0.84	66%
STREET A	16A	17A	1.36	47.96					6757		2.83					10.2	6757	3.12	73.9	73.9			84.1	0.20	450	127.5	0.80	0.84	66%
STREET A	1/A	18A	0.13	48.09					6/5/		2.83					10.2	6/5/	3.12	/3.9	/3.9			84.1	0.20	450	127.5	0.80	0.84	66%
CONDO ROAD O	CTRL 11A	18A	1.09	1.09		175		191	191							0.2	191	4.00	2.7	13.0			13.2	0.50	250	42.0	0.86	0,75	31%
301120110120		2071	1.00																	10.0			10.2	0.00	200			0.70	
STREET A	18A	19A	0.14	49.32					6948		2.83					10.4	6948	3.11	75.7	75.7			86.2	0.20	450	127.5	0.80	0.84	68%
	CTDL 121	101	1.20	1.00		175		242	2.42							6.2	2.42	4.00	2.4	12.0			12.2	0.50	250	42.0	0.00	0.75	220/
CONDO ROAD P	CIRL 12A	19A	1.38	1.38		1/5		242	242							0.3	242	4.00	3.4	13.0			13.3	0.50	250	42.0	0.86	0.75	32%

Urbantech Consulting, A Division of Leighton-Zec Ltd. 3760 14th Avenue, Suite 301 Markham, Ontario L3R 3T7 TEL: 905.946.9461 FAX: 905.946.9595 www.urbantech.com

302.8 l/c/d 0.200 l/s/ha 4.00 1.50 ow for < 1000 ppl = 0.013m³/s 2-5-2)

NOMINAL PIPE SIZE USED

						RESIDENTIA	1				COMMERCE	AI /INDUSTR	TAL/INSTIT	UTIONAL	FLOW CALCULATIONS											PTPF D	ΔΤΔ		
																									DIDF				
STREET	FROM	то		ACC.					ACCUM.		ACC.	EQUIV.	FLOW	EOUIV.	ACCUM.	INFILTRATION	TOTAL	PEAKING	RES.	MIN. RES.	сомм.	ACCUM.	TOTAL	SLOPE	DIAMETER	FULL FLOW	FULL FLOW	ACTUAL	PERCENT
	мн	мн	AREA	AREA	UNITS	DENISTY	DENSITY	POP	RES.	AREA	AREA	POP.	RATE	POP.	EOUIV.		ACCUM.	FACTOR	FLOW	FLOW	FLOW	COMM. FLOW	FLOW			CAPACITY	VELOCITY	VELOCITY	FULL
			(ha)	(ha)	(#)	(P/ha)	(P/unit)		POP.	(ha)	(ha)	(p/ha)	(l/s/ha)		POP.	(l/s)	POP.		(l/s)	(l/s)	(l/s)	(1/s)	(l/s)	(%)	(mm)	(I/s)	(m/s)	(m/s)	(%)
			()	(,	()	(.,)	(, ,			()	()	(F)	(., .,)			(1-7)			(1-1	(1-)	((4-7)	(()	()	(.,-,	(, .)	(, .)	
STREET A	19A	20A	1.78	52.48		175		312	7502		2.83					11.1	7502	3.08	80.9	80.9			92.0	0.20	450	127.5	0.80	0.86	72%
STREET A	204	214		52.48					7502		2.83					11.1	7502	3.08	80.9	80.9			92.0	0.20	450	127.5	0.80	0.86	72%
SINCELLY	20/1	21/(52.10					7502		2.05						7502	5.00	00.5	00.5			52.0	0.20	150	127.5	0.00	0.00	7270
WALKWAY BLOCK	CTRL 13A	21A	1.92	1.92		175		336	336							0.4	336	4.00	4.7	13.0			13.4	0.50	250	42.0	0.86	0.75	32%
STREET A	21A	22A		54.40					7838		2.83					11.4	7838	3.06	84.0	84.0			95.5	0.20	450	127.5	0.80	0.87	75%
STREET A	22A	23A		54.40					7838		2.83					11.4	7838	3.06	84.0	84.0			95.5	0.20	450	127.5	0.80	0.87	75%
CONDO ROAD R	CTRL 14A	23A	1.90	1.90		175		333	333							0.4	333	4.00	4.7	13.0			13.4	0.50	250	42.0	0.86	0.75	32%
STREET A	23A	24A	0.12	56.42					8171		2.83					11.9	8171	3.04	87.1	87.1			98.9	0.20	450	127.5	0.80	0.87	78%
CONDO ROAD S	CTRL 15A	24A	2.17	2.17		175		380	380							0.4	380	4.00	5.3	13.0			13.4	0.50	250	42.0	0.86	0.75	32%
STREET A	24A	25A	0.42	59.01					8551		2.83					12.4	8551	3.02	90.6	90.6			102.9	0.20	450	127.5	0.80	0.88	81%
STREET A	25A	26A		59.01					8551		2.83					12.4	8551	3.02	90.6	90.6			102.9	0.20	450	127.5	0.80	0.88	81%
STREET A	26A	27A		59.01					8551		2.83					12.4	8551	3.02	90.6	90.6			102.9	0.20	450	127.5	0.80	0.88	81%
STREET A	27A	28A		59.01					8551		2.83					12.4	8551	3.02	90.6	90.6			102.9	0.20	450	127.5	0.80	0.88	81%
NINTH LINE	28A	29A		59.01					8551		2.83					12.4	8551	3.02	90.6	90.6			102.9	0.20	450	127.5	0.80	0.88	81%
EXISTING NINTH LINE	A	29A						10750	10750								10750	2.92	110.1	110.1			110.1	0.15	450	110.4	0.69	0.79	100%
NINTH LINE	29A	30A		59.01					19301		2.83					12.4	19301	2.67	180.5	180.5			192.8	0.15	600	237.8	0.84	0.93	81%
NINTH LINE	30A	EX. MH		59.01					19301		2.83					12.4	19301	2.67	180.5	180.5			192.8	0.15	600	237.8	0.84	0.93	81%

APPENDIX B

SWM POND CALCULATIONS

SWM DESIGN CALCULATIONS HYRDO-0: Contributing Drainage Area and Land Use

Project Name: Derry - Britannia Developments Limited Municipality: City of Mississauga Project No.: 20-652 Date: 12-Apr-23 Prepared by: D.L. Checked by: K.R. Submission #: 2nd Submission

SWMF

Contributing Drainage Area

SWMF	Area [ha]	Runoff Coefficient	Imperviousness
			IMP
Condominium Apartments / Townhouses	17.21	0.65	64%
Apartments	1.65	0.9	100%
Future Residential	0.65	0.9	100%
Park	2.54	0.3	14%
School	2.84	0.9	100%
Right of way	3.58	0.9	100%
Total to HW (Development Area)	28.47		71%
Pond Block	2.81	0.90	100%
Total Drainage Area (Quality Control Only)	31.28		73%
Total Drainage Area (Quantity Control Only)	31.28		73%
Total Drainage Area to Pond	31.28		73%

SWM POND DESIGN CALCULATIONS HYDRO-1: Hydrologic Modelling Parameters

Project Name: Derry - Britannia Developments Limited Municipality: City of Mississauga Project No.: 20-652 Date: 12/Apr/23

Prepared by: D.L. Checked by: K.R. Submission Number: 2nd Submission

Post-Development Area (ha)	Imperviousness
31.28	73%

Component	Unit Storage Volume (m³/impe ha)	SWS Unit Release Rate (m ³ /s/ha)	Corrected Unit Release Rate (m³/s/ha)	Target Release Rate (m³/s)
Permanent Pool	N/A	N/A	N/A	N/A
Quality Control	N/A	N/A	N/A	N/A
Extened Detention	275	0.002	0.002	0.063
2-yr	450	0.09	0.0024	0.075
5-yr	600	0.38	0.0102	0.319
100-yr	875	1.02	0.0275	0.860
Regional	1775	1.53	0.0412	1.289

Note: Storage volumes are measured from permanent pool and include extended detention volume of 275m3/imp ha.

*Note that Wood staff has indicated that the unit flow rates reported in Table 2.2.2 of the SWS were incorrectly labelled as "unit flow rates"; these were in fact "total flow rates for the modelled area to SWS Pond 294 (37.10 ha). Therefore, the actual / "corrected" unit flow rates are the Table 2.2.2 rates divided by 37.10.

SWM POND DESIGN CALCULATION SWMF-1 TARGET SUMMARY

Prepared by: D.L. Checked by: K.R. Submission #: 2nd Submission

Project Name: Derry - Britannia Developments Limited Municipality: City of Mississauga Project No.: 20-652 Date: 28-Sep-23

SWMF

Pond Layout

	Headwall(s)			1		
	Number of Headwalls:	1		1		
	Drainage Area to HW:	28.5	ha			
	Minor System Flows @ HW:	4.65	m³/s			
Elevation	Storm Event	Surface Area (m ²)	Incr. Volumo (m ³)	Cumulative Volume	Ex. Det. Volume	Stacking Volume
Lievation			inci: volume (m)	(m ³)	(m ³)	(m ³)
185.75	BOTTOM WET CELL	6436	005	005	0	0
185.80		6572	325	325	0	0
185.85		6709	332	657	0	0
185.90		6845	339	996	0	0
185.95		6982	346	1342	0	0
186.00		7118	352	1694	0	0
186.05		7254	359	2054	0	0
186.10		7391	366	2420	0	0
186.15		7527	3/3	2/93	0	0
186.20		7663	380	3172	0	0
186.25		7800	387	3559	0	0
186.30		7936	393	3952	0	0
186.35		8073	400	4353	0	0
186.40		8209	407	4760	0	0
186.45		8345	414	5174	0	0
186.50		8482	421	5594	0	0
186.55		8618	428	6022	0	0
186.60		8755	434	6456	0	0
186.65		8891	441	6897	0	0
186.70		9027	448	7345	0	0
186.75		9164	455	7800	0	0
186.80		9300	462	8261	0	0
186.85		9437	468	8730	0	0
186.90		9573	475	9205	0	0
186.95		9709	482	9687	0	0
187.00		9846	489	10176	0	0
187.05		9982	496	10672	0	0
187.10		10118	503	11174	0	0
187.15		10255	509	11684	0	0
187.20		10391	516	12200	0	0
187.25		10528	523	12723	0	0
187.30		10664	530	13253	0	0
187.35		10800	537	13789	0	0
187.40		10937	543	14333	0	0
187.45		11073	550	14883	0	0
187.50		11210	557	15440	0	0
187.55		11346	564	16004	0	0
187.60		11564	573	16577	0	0
187.65		11783	584	17160	0	0
187.70		12001	595	17755	0	0
187.75	PERM POOL	12219	605	18360	0	0
187.80		12438	616	18977	616	0
187.85		12657	627	19604	1244	0
187.90		12875	638	20242	1882	0
187.95		13094	649	20892	2531	0
188.00		13183	657	21549	3188	0
188.05		13272	661	22210	3850	0
188.10		13361	666	22876	4515	0
188.15		13450	670	23546	5186	0
188.20		13539	675	24221	5860	0
188.25	EXT DET	13629	679	24900	6540	0
188.30		13718	684	25584	7223	684
188.35		13807	688	26272	7911	1372
188.40		13896	693	26964	8604	2064
SWM POND DESIGN CALCULATION SWMF-1 TARGET SUMMARY

Project Name: Derry - Britannia Developments Limited Municipality: City of Mississauga Project No.: 20-652 Date: 28-Sep-23 Prepared by: D.L. Checked by: K.R. Submission #: 2nd Submission

SWMF						
188.45		13985	697	27661	9301	2761
188.50		14074	701	28363	10003	3463
188.55	2-YR	14163	706	29069	10708	4169
188.60		14252	710	29779	11419	4879
188.65		14341	715	30494	12134	5594
188.70		14430	719	31213	12853	6313
188.75		14520	724	31937	13577	7037
188.80	5-YR	14609	728	32665	14305	7765
188.85		14698	733	33398	15038	8498
188.90		14787	737	34135	15775	9235
188.95		14876	742	34877	16516	9977
189.00		14965	746	35623	17262	10723
189.05		15054	750	36373	18013	11473
189.10		15143	755	37128	18768	12228
189.15		15232	759	37887	19527	12987
189.20	100-YR	15321	764	38651	20291	13751
189.25		15411	768	39420	21059	14520
189.30		15500	773	40192	21832	15292
189.35		15589	777	40969	22609	16069
189.40		15678	782	41751	23391	16851
189.45		15767	786	42537	24177	17637
189.50		15856	791	43328	24968	18428
189 55		15945	795	44123	25763	19223
189.60		16034	700	44922	26562	20022
189.65		16123	804	45726	27366	20022
189.70		16212	808	46535	28174	21635
189 75		16301	813	47348	28987	22448
180.80		16301	817	48165	20007	23265
189.85		16480	822	48987	30626	24087
189.90		16569	826	49813	31452	24913
189.95		16658	831	50643	32283	25743
190.00		16747	835	51479	33118	26579
190.00		16836	840	52318	33958	27418
190.10		16925	844	53162	34802	28262
190.15		17014	848	54011	35650	20202
190.10		17103	853	54864	36503	29964
190.25		17102	857	55721	37361	30821
190.20		17282	862	56583	38223	31683
190.35		17371	866	57449	39089	32549
190.40		17460	871	58320	39960	33420
190.45		17549	875	59195	40835	34295
190.50		17638	880	60075	40000	35175
190.55	REGIONAL	17727	884	60959	42500	36059
190.60		17815	889	61847	43487	36947
190.65		17903	893	62740	44380	37840
190.00		17001	807	63638	45277	38738
100.75		18080	902	64540	46170	39640
190.80		18168	906	65446	47085	40546
190.85		18256	911	66356	47996	41456
100.00		18344	915	67271	47330	41430
190.90	EMERGENCY	18432	915	68191	40911	42371
100.00		10402	313		1 90000	40401

Note: Surface area and storage volume are generated from AutoCAD

SWM POND DESIGN CALCULATION SWMF-1 TARGET SUMMARY

Project Name: Derry - Britannia Developments Limited Municipality: City of Mississauga Project No.: 20-652 Date: 28-Sep-23

Prepared by: D.L. Checked by: K.R. Submission #: 2nd Submission

100

SWMF

Discharge
-
0002 m³/s/ha
0024 m ³ /s/ha
0102 m³/s/ha
0275 m³/s/ha
0412 m³/s/ha
)))))))))))))))))))))))))))))))))))))))

** Quantity storage tagets include extended detention storage.

Wet Pond	(REFER: MOECC Stormwater Management Planning and Design Manual 2003,	Table 3.2)

impervious Level (%)	Storage Vol m ³ /ha	Detention m ³ /ha	Permanent Pool m ³ /ha
55%	190	40	150
70%	225	40	185
85%	250	40	210

Interpolated Storage Requirement	
73%	228

73%	228	40	188
		Area [ha]	IMP%
Total Contributing Area		31.28	73%
Quantity Control Only		31.28	73%
Quality Control Only		31.28	73%

Return Period	Stage (m)	Target Discharge (m³/s)	Unit Storage Volume (m3/Imp.ha)	Target Storage based on 31.28 ha @ 73 % IMP (m3)	Provided Volume (Active Storage) (m ³)	Provided Volume (Active storage+ED) (m ³)
PERM POOL	187.75	-	188	5882	18360	
EXT DET (275m ³ /imp ha)	188.25	0.063	275	6313	6540	6540
2-YR	188.55	0.075	450	10330	4169	10708
5-YR	188.80	0.319	600	13774	7765	14305
100-YR	189.20	0.860	875	20087	13751	20291
REGIONAL	190.55	1.289	1775	40748	36059	42599
EMERGENCY	190.95				43291	49830

SWM POND DESIGN CALCULATIONS SWMF-2: Drawdown Time

Project Name: Derry - Britannia Developments Limited Municipality: City of Mississauga Project No.: 20-652 Date: 12-Apr-23 Prepared by: D.L. Checked by: K.R. Submission Number: 2nd Submission

SWMF

Detention Time Calculations

t = (0.66C ₂ h ^{1.5} +2C ₃ h ^{0.5})/2.75Ao	(MOECC Eq'n 4.11)		
t= 174885	Drawdown time in seconds		
t= 48.6	Drawdown time in hours		
$d= 0.205 \\ A_0= 0.0330 \\ h= 0.398$	Diameter of the orifice (m) Cross-sectional area of the orifice (m ²) Maximum water elevation above orifice (m)		
$Q_{ext det} = 0.055$	Proposed extended detention release rate (m ³ /s)		
$Q_{target} = 0.063$	SWS Extended Detenion Target Release Rate		
C ₂ = 2819.15	Slope coefficient from the area-depth linear regression		
C ₃ = 12219	Intercept from the area-depth linear regression		

Pond area-depth relationship:

	Elevation (m)	Area (m ²)	Depth (m)		
PERM POOL	187.75	12219	0.00		
EXT DET	188.25	13629	0.50		
	10 A				
	The drawd	own time fo	r the SWMF is	s 48.6 hours (2 days)	
	The drawdo	wn time is g	greater than th	he target of 48 hours.	

From the graph below, after 48 hours, approximately 79.5% of the SWM Facility has drained.

SWM POND DESIGN CALCULATIONS SWMF-3: Sediment Forebay Sizing

Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Friday, Nov 26 2021

20 ROW Capacity Calculation

User-defined		Highlighted	
Invert Elev (m)	= 195.4900	Depth (m)	= 0.1197
Slope (%)	= 0.4000	Q (cms)	= 0.5757
N-Value	= Composite	Area (sqm)	= 0.6471
		Velocity (m/s)	- 0.8897
Calculations		Wetted Perim (m)	= 8.2970
Compute by:	Q vs Depth	Crit Depth, Yc (m)	= 0.1219
No. Increments	= 20	Top Width (m)	= 8.1596
		EGL (m)	= 0.1601

(Sta, El, n)-(Sta, El, n)... (0.0000, 195.7560)-(5.8000, 195.6400, 0.013)-(5.9500, 195.6400, 0.013)-(6.0000, 195.4900, 0.013)-(10.0000, 195.5700, 0.013)-(14.0000, 195.4900, 0.013)-(14.150 -(14.2000, 195.6400, 0.013)-(20.0000, 195.7560, 0.013)

Depth	Q	Area	Veloc	Wp	Yc	TopWidth
(m)	(cms)	(sqm)	(m/s)	(m)	(m)	(m)
0.0133	0.002	0.009	0.1709	1.3633	0.0122	1.3480
0.0266	0.010	0.036	0.2714	2.7267	0.0244	2.6959
0.0399	0.029	0.081	0.3557	4.0900	0.0366	4.0439
0.0532	0.062	0.143	0.4309	5.4533	0.0518	5.3919
0.0665	0.112	0.224	0.5000	6.8167	0.0640	6.7398
0.0798	0.182	0.323	0.5646	8.1781	0.0792	8.0859
0.0931	0.293	0.431	0.6815	8.2314	0.0914	8.1241
0.1064	0.425	0.539	0.7893	8.2642	0.1067	8.1419
0.1197	0.576	0.647	0.8897	8.2970	0.1219	8.1596
0.1330	0.744	0.756	0.9841	8.3299	0.1372	8.1773
0.1463	0.928	0.865	1.0737	8.3627	0.1524	8.1951
0.1596	1.049	0.980	1.0699	9.5320	0.1676	9.3600
0.1729	1.189	1.114	1.0677	10.8625	0.1798	10.6902
0.1862	1.361	1.265	1.0760	12.1930	0.1920	12.0205
0.1995	1.565	1.433	1.0917	13.5235	0.2073	13.3507
0.2128	1.802	1.620	1.1125	14.8522	0.2195	14.6791
0.2261	2.074	1.824	1.1372	16.1827	0.2347	16.0093
0.2394	2.382	2.045	1.1647	17.5132	0.2499	17.3395
0.2527	2.729	2.285	1.1942	18.8437	0.2621	18.6698
0.2660	3.115	2.542	1.2252	20.1742	0.2660	20.0000

Energy	
(m)	
0.0148	
0.0304	
0.0464	
0.0627	
0.0793	
0.0961	
0.1168	
0.1382	
0.1601	
0.1824	
0.2051	
0.2180	
0.2310	
0.2452	
0.2603	
0.2759	
0.2921	
0.3086	
0.3254	
0.3426	

APPENDIX C

LID CALCULATIONS

SWM DESIGN CALCULATIONS SWM-01: 5 mm Retention Calculation

Project Name: Derry-Britannia Development Municipality: City of Mississauga Project No.: 20-652 Date: 10-Apr-23 Prepared by: D.L. Checked by: K.R Submission #: 2nd Submission

Retention Calculation based on Additional 150 mm Top Soil

Lot Type	Number of Lots ¹	Lot Area (m²)	Pervious Area ² (m ²)	Impervious Area (m²)	Cumulative Lot Area (m ²)	Cumulative Pervious Area Area (m ²)	Cumulative Impervious Area (m ²)
35' Lot (Rear Lane Detached)	27	225	112	112	6067	3033	3033
21' Lot (Dual Frontage Townhouse)	75	95	34	61	7053	2519	4534
21' Lot (back-to- back Townhouse)	212	97	35	62	20488	7317	13171
20' (Street Townhouse)	289	147	53	95	42483	15173	27311
20' (Rear lane Townhouse)	28	118	42	76	3303	1180	2124
Appartments	2	8250	0	8250	16500	0	16500
Total	633	8931	275	8656	95894	29222	66672

¹The number of lots are based on the Draft Plan by GSAI Inc. dated on February 17, 2023

²Pervious areas are calculated based on runoff coefficient in the City of Mississauga's Secion 8 - Storm Drainage Design Requirements

A = Total Site Area (ha)	31.28 ha
Imp. = Total Sites Imperviousness	73 %
A _{imp.} = Total Impervious Area (ha)	22.83 ha
S = 5mm Required Storage	5 mm
V = Total Required Retention Volume	1142 m ³
t = Retention Time	48 hours
D_s = Proposed Additional Top Soil Depth n = Assumed Porosity A_p = Total Pervious Lot Area R_s = Total Retention in Topsoil	0.15 m 0.4 29222 m ² 1753 m ³

Total Retention Depth for the Entire Site 7.7 mm

SWM DESIGN CALCULATIONS ADDITIONAL LID: INFILTRATION TRENCH

Project Name: Derry-Britannia Development Municipality: City of Mississauga Project No.: 20-652 Date: 2023-03-27 Prepared by: D.L. Checked by: K.R Submission # 2nd Submission

TABLE: LID PERFORMANCE AND ON-SITE RETENTION¹

LID	түре	TOTAL LID CAPTURE AREA (m ²)	TOTAL LID LENGTH (m)	TOTAL LID SURFACE AREA ² (m ²)	MAX. LID DEPTH ³ (m)	PROPOSED LID DEPTH (m)	TOTAL LID VOL ⁴ (m ³)	TOTAL STORAGE VOL ⁵ (m³)	EQUIV RAINFALL DEPTH ⁶ (mm)	% of Total Annual Rainfall Depth Captured ⁷
	Soakaway Pits	13300	998	751		1.2	901	360	27.1	95.2
	Re-Use (High Density Blocks)	16500						82.0	5.0	46.7
	Rear Yard Infiltration Trench	63995	2073	3214		1.5	4660	1864	29.1	95.7
	Greenstorm (School and Public Parks)	53500						2100	39.3	100.0
							Total	4406	m³	

¹The LID trench is included in meeting the targets for 27mm as demonstrated in FSR Section 5.3

²Refer to Dwg 5.3 for LID Details

³Proposed LID Depth is assumed based on typical trench depth

⁴Total LID Volume = Total LID Surface Area x Proposed LID Depth

⁵Total LID Storage Volume = Total LID Volume x 0.40 (Porosity)

⁶Equivalent Rainfall Depth = Total LID Storage Volume / Total LID Capture Area

⁷% Total Annual Rainfall Depth Captured is y-value using "Equivalent Rainfall Depth" as x-value as input in dervied non-linear relationship from Figure 1a included below

A = Total Site Area (ha)	31.28	ha
Imp. = Total Sites Imperviousness	73	%
A _{imp.} = Total Impervious Area (ha)	22.83	ha
D _{reg} = Runoff Depth Capture Required (mm)	27	mm
V _{req} = Runoff Volume Capture Required	6164	m ³

V _{tot} = Total Volume Provided	4406	m³	See above for calculation
Total Equialent Runoff Capture Provided for the Entire Site =	19.3	mm	(in addition to runoff capture from topsoil)

<u>APPENDIX D</u>

DRAWINGS

<u>APPENDIX E</u>

HYDROLOGICAL MODEL VALIDATION

Project Name: Derry - Britannia Developments Limited Municipality: City of Mississauga Project No.: 20-652 Date: 10-Apr-23

Prepared by: D.L. Checked by: K.R. Submission #: 2nd Submission

	VO Flow Results [m3/s]											
VO ID 237	Future NoSWM Ex Reg Control AMC III			Future NoSWM All ExSWM AMC II			Future SWM Ex Reg Control AMC III			Future SWM All SWM AMC II		
(Downstream	2B	5B	5B - 2B	2C	5C	5C - 2C	3B	6B	6B - 3B	3C	6C	6C - 3C
of Pond)	Original	Updated	Difference	Original	Updated	Difference	Original	Updated	Difference	Original	Updated	Difference
2-YR				3.644	4.047	0.403				0.471	1.144	0.673
5-YR				5.371	5.937	0.566				0.803	1.761	0.958
10-YR				7.296	7.907	0.611				1.182	2.359	1.177
25-YR				8.781	9.945	1.164				1.674	2.910	1.236
50-YR				10.139	11.414	1.275				2.188	3.473	1.285
100-YR				12.367	13.163	0.796]			2.787	4.237	1.450
REGIONAL	7 098	7 118	0.020	5 232	6 858	1 626	3 626	3 682	0.056	3 469	3 5 1 9	0.050

						VO Flow Resu	ılts [m3/s]					
VO ID 74	Future N	oSWM Ex Reg	Control AMC III	Future I	NoSWM All E	xSWM AMC II	Future SWM Ex Reg Control AMC III			Future SWM All SWM AMC II		
(Sixteen Mille	2B	5B	5B - 2B	2C	5C	5C - 2C	3B	6B	6B - 3B	3C	6C	6C - 3C
Creek - East)	Original	Updated	Difference	Original	Updated	Difference	Original	Updated	Difference	Original	Updated	Difference
2-YR				4.161	4.502	0.341				3.775	3.760	-0.015
5-YR				7.356	7.354	-0.002				7.389	7.360	-0.029
10-YR				12.603	12.600	-0.003				12.782	12.693	-0.089
25-YR				18.334	18.326	-0.008				18.639	18.511	-0.128
50-YR				24.046	24.020	-0.026				24.468	24.280	-0.188
100-YR]			30.887	30.882	-0.005]			31.349	31.118	-0.231
REGIONAL	103.807	103.772	-0.035	72.269	72.243	-0.026	101.798	101.625	-0.173	72.892	72.355	-0.537

VO ID 104		VO Flow Results [m3/s]											
VOID 104	Future NoSWM Ex Reg Control AMC III			Future N	Future NoSWM All ExSWM AMC II			Future SWM Ex Reg Control AMC III			Future SWM All SWM AMC II		
(Sixteen wille	2B	5B	5B - 2B	2C	5C	5C - 2C	3B	6B	6B - 3B	3C	6C	6C - 3C	
Creek - East and	Original	Updated	Difference	Original	Updated	Difference	Original	Updated	Difference	Original	Updated	Difference	
westj													
2-YR				6.730	7.024	0.294				5.591	5.588	-0.003	
5-YR				11.526	11.525	-0.001				11.277	11.243	-0.034	
10-YR				19.616	19.609	-0.007				19.472	19.378	-0.094	
25-YR				27.908	27.891	-0.017				27.827	27.692	-0.135	
50-YR				36.252	36.199	-0.053				36.168	35.980	-0.188	
100-YR				45.910	45.904	-0.006				45.829	45.597	-0.232	
REGIONAL	147.560	147.543	-0.017	111.120	111.078	-0.042	142.176	141.996	-0.180	109.727	109.185	-0.542	

richard bartolo Ä Plotted

3 Last Saved By: richard.bartolo Plotted: 2016-12-14 Plotte	150 125.00 (147 218.00	27.00 139 58.00 144 28.00 144 28.00 301 552 302 11.25 302 12.23 302 12.25 304 304 304 304 304 305 304 304 304 304 305 304 304 304 304 304 304 305 304 304 304 304 304 304 304 304	ECLINTON AX-W HWY 403		SCALE VALID ONLY FOR 24"x36" VERSION
Last Saved: 2016-12-		NINTH LINE SCOPED SUBWATERSHED STUDY CITY OF MISSISSAUGA	VisualOTTHYMO SUBCATCHMENT BOUNDARY PLAN (FUTURE CONDITIONS)	amec foster wheeler	Scale 1:16000

APPENDIX F

WATER & WASTEWATER CALCULATIONS

April 19, 2023

Project No. 17003-54

Sent via email Derry Britannia Developments Ltd. Attn: Mr. Craig Scarlett Mattamy Homes c/o Urbantech Consulting 3760 14th Avenue, Suite 301 Markham, ON L3R 3T7

Subject: Derry Britannia Development Water and Wastewater Calculations City of Mississauga, Region of Peel

Dear Mr. Scarlett,

Municipal Engineering Solutions ("MES") was retained by Derry Britannia Developments Ltd. to calculate the water demands and sanitary flow for the proposed Derry Britannia Development in the City of Mississauga (Region of Peel). As part of this assignment MES was requested to calculate the flow requirements for the proposed development using Region of Peel, Fire Underwriters Survey, provincial and industry design standards to complete the Region's Water and Wastewater Modelling Demand Table.

Development Background

The development site is located on the west side of Ninth Line, between Britannia Road West and Derry Road West in the City of Mississauga. The development consists of townhouses, two residential apartment buildings and an elementary school. The development will have a total of 823 townhouses and 400 apartment units.

The development is located within two water pressure zones. The southern part of the development is in water Zone 4A and the northern part of the development is in water Zone 5A, divided at approximately Saratoga Way. The proposed water connection for Zone 4A will be from the existing 300 mm watermain on Ninth Line at Osprey Boulevard. Two proposed water connections for Zone 5A will be from the existing 300 mm watermain on Beacham Street (extended along Ninth Line to the development) and from the existing 150 mm watermain on Doug Leavens Boulevard.

The proposed sanitary connection will be to the existing 900 mm sanitary sewer along Ninth Line south of Osprey Boulevard.

⁵⁵ Gilbank Drive, Aurora, Ontario L4G 6H9

Tel: 905.726.1016 Cell: 416.434.0186 Fax: 905.726.1225

Equivalent Population Serviced

To calculate the equivalent population for the proposed development MES used population densities outlined in the Region of Peel "*Water and Wastewater Modelling Demand Table, January 2023*" and "*Sanitary Sewer Design Criteria, March 2017*". **Table 1** summarizes the residential and institutional population densities.

Type of Development	Equivalent Population Density
Apartments	3.00 People/unit
Townhouse	3.40 People/unit
School	¹ / ₂ x number of students *

Table 1	– Equiva	lent Pop	ulation	Density

Source: Region of Peel Water and Wastewater Medelling Demand Table (January 2023) *Source: Region of Peel Sanitary Seewer Design Criteria (March 2017)

600 students minimum for Junior Public Schools and 900 students minimum for Senior Public Schools

The equivalent population for the site was calculated to be 4448 people. Detailed calculations are attached.

Domestic Water Usage

The domestic water demands for the development were calculated using the design criteria outlined in the Region of Peel "*Watermain Design Criteria, June 2010*". **Table 2** summarizes the average daily demand and peaking factors used for this analysis.

Table	2 .	- Water	Desian	Factors
IUNIO		TT ator	Doorgin	1 401010

Type of Development	Average Daily Demand	Maximum Daily Demand Peaking Factor	Peak Hourly Demand Peaking Factor
Residential	280 L/capita/day	2.0	3.0
Institutional	300 L/capita/day	1.4	3.0

Source: Region of Peel Watermain Design Criteria, 2010

Utilizing the equivalent population data from Table 1 and the corresponding Maximum Day and Peak Hour data from Table 2 the water demands for this development were calculated. The calculated demands for the development are summarized in **Table 3**. Detailed water demand calculations are attached.

Fable 3 – Water Demand fo	or the Derry	y Britannia	Development
---------------------------	--------------	-------------	-------------

	Average Day Demand (L/s)	Maximum Day Demand (L/s)	Peak Hour Demand (L/s)
Water Demands Zone 4A (Residential and ICI)	4.05	8.11	12.16
Water Demands Zone 5A (Residential and ICI)	10.46	19.99	31.39

Fire Flow Demands

The fire demands for the development were calculated using the Fire Underwriters Survey ("FUS") formula outlined in the '*Water Supply For Public Fire Protection Guideline*', dated 2020. The minimum required fire flow for each area of the development is shown in **Table 4**. Detailed calculations are attached.

Type of Development	Fire Flow (L/s)
Row Townhouses	350
Back to Back Townhouses	300
Apartments	233
School	217

Table 4 - Fire Flow Requirements

As noted, the fire flow in Table 4 above was calculated using the FUS formula. **Table 5** below summarizes the criteria utilized to calculate the fire flow requirements as well as the assumptions made. These minimum fire flow requirements are estimates only as the buildings have not yet been designed.

The townhouse blocks are assumed to be of wood-frame construction with no sprinklers. Fire walls will be required for every 600 m^2 footprint of the building. Should additional fire walls be included in the units then only firewalls with a fire resistive rating of 2 or more hours as per the current edition of the National Building Code of Canada would be considered to reduce the required fire flow for the buildings.

The apartment buildings are assumed to be of fire-resistive construction and fully sprinklered. Any townhouses attached to or within these buildings are assumed to be of the same construction, fire-resistive and fully sprinklered. The school is assumed to be of non-combustible construction with a fully supervised sprinkler system. The building areas for these buildings are not yet know and are estimated.

Once the detailed design data (specifics) for these building(s) are finalized the assumptions noted in Table 5 and in the FUS calculation must be reviewed and confirmed by the appropriate designer and any design/criteria changes required are to be reported to MES.

	Type of Development		
	Townhouses	<u>Apartments</u>	<u>School</u>
Type of Construction	Wood Frame Construction	Fire-Resistive Construction	Non Combustible Construction
Occupancy Type	Limited Combustible	Limited Combustible	Limited Combustible
Fire Protection (Sprinkler/Firewalls)	2-hour rated firewall every 600m ² of footprint	Fully Sprinklered (Unsupervised)	Fully Sprinklered (Supervised)
Area Considered	Townhouses Total Effective Area for each building is the area between firewalls. Assume a 3 storey townhouses, 1800 m ² between firewalls: Total Building Area 1,800 m ² Effective Area (FUS) 1,800 m ²	Apartments Total Effective Area for each building is calculated as the largest two adjoining floors plus 50% of any floors immediately above them up to a maximum of eight. Assume a 10 storey apartment building with 60% lot coverage: Total Building Area 49,200 m ² Effective Area (FUS) 29,520 m ²	School Total Effective Area for the building is calculated as the largest two adjoining floors plus 50% of any floors immediately above them up to a maximum of eight. Assume a 3 storey school with 40% lot coverage: Total Building Area 33,960 m ² Effective Area (FUS) 28,300 m ²

Table 5 – FUS Criteria/Assumptions

Note: For Additional Information on FUS Criteria Refer to Water Supply for Public Protection Guide, Fire Underwriters Survey, 2020

Hydrant Test

Hydrant tests were performed along Ninth Line on July 19th, 2022 by Watermark Solutions Ltd. The results of the hydrant tests are attached.

Source: Fire Underwriters Survey, 2020

The results of the hydrant test indicate that the theoretical available fire flow at 140 kPa (20 psi) from the existing hydrants is approximately 197 L/s (3,116 USgpm) for Zone 4A and 196 L/s (3,109 USgpm) for Zone 5A. The available flows at the proposed hydrants within the development have not been calculated.

Watermain Hydraulic Modelling

The intent of this report is to complete the Region's Water and Wastewater Modelling Demand Table. It should be noted that water hydraulic modeling will be required within the development to ensure that the required fire flows are met at the proposed hydrants within the development.

The observed flows from the hydrant tests (196 L/s at 20 psi) are lower than the maximum day plus fire flow requirements for the development (358-370 L/s at 20 psi). Depending on the final design of the buildings, modifications to the design of the buildings may be required to reduce the fire flow required for those buildings, such as the addition of firewalls or a sprinkler system.

Given the low fire flows available for this development for these types of buildings, the required fire flows for each of the buildings must be discussed and confirmed by the Region.

Sanitary Sewer Flow

The sanitary flow for the development was calculated using the design criteria outlined in the Region of Peel "*Sanitary Sewer Design Criteria, March 2017*". **Table 6** summarizes the sanitary flow and infiltration allowance used for this analysis.

Type of Development	Sewage Flow
Domestic Sewage Flow	302.8 L/capita/day
Peak Flow Factor	Harmon Formula
Infiltration	0.0002 m³/sec/Ha

Table 6 - Sanitary Design Factors

The sanitary flow rate for this development was taken from STD. DWG. 2-9-2 in the Sanitary Sewer Design Criteria, utilizing the equivalent population rounded up to the next value in the table (4500 people). The infiltration allowance was then added to this value, based on the total site area of 27.6 Ha. The calculated sanitary flow for the development is summarized in **Table 7**. Detailed sanitary flow calculations are attached.

Table 7 –	Total	Sanitary	Flow
-----------	-------	----------	------

	Sanitary Flow (L/s)
Total Sanitary Sewer Effluent	57.32

Conclusions/Recommendations

Please see the Region's Water and Wastewater Modelling Demand Tables attached for the projected water and sanitary flow rates for the proposed development. A Modelling Demand Table has been created for each of the two water pressure areas; Zone 4A and Zone 5A.

Once the building designs have been finalized the required fire flow for each building will need to be verified to determine the minimum required fire flow for the development as per the Fire Underwriters Survey. The

required fire flows for this site must be discussed and confirmed by the Region. Regardless, buildings will need to be designed to suit the fire flow available to the site.

Watermain hydraulic modelling will be required for the internal watermains to ensure that the minimum required fire flows can be met at each of the hydrants within the development.

We trust you find this report satisfactory. Should you have any questions or require further clarification, please call.

Yours truly,

Municipal Engineering Solutions

Kristin St-Jean, P.Eng. /KS

Attachments:

Region of Peel Design Criteria Fire Underwriters Survey (FUS) Calculations Water and Wastewater Modelling Demand Table (Zone 4A) Hydrant Test Results (Zone 4A) Domestic Water Usage Calculations (Zone 4A) Water and Wastewater Modelling Demand Table (Zone 5A) Hydrant Test Results (Zone 5A) Domestic Water Usage Calculations (Zone 5A) Sanitary Sewer Flow Calculations

Equivalent Population by Unit

Tune of Dovelonment	Equivalent Population Density	
	(Person/Unit)	
Apartments	3.00	
Townhouses	3.40	

Source: Region of Peel Water and Wastewater Modelling Demand Table, January 2023

Equivalent Population by Area

Tune of Development	Equivalent Population Density	
	(Persons/Ha)	
Senior Public School	900 students minimum	
Senior Public School (Equiv. Pop Sanitary)	1/2 x number of students	

Source: Region of Peel Sanitary Sewer Design Criteria, March 2017

Water Design Factors

Residential		
Average Daily Demand (L/person/day)	280	
Maximum Day Factor	2.0	
Peak Hour Factor	3.0	
Industrial, Commercial and Institutional (ICI)		
Average Daily Demand (L/person/day)	300	
Maximum Day Factor	1.4	
Peak Hour Factor	3.0	

Sanitary Design Factors

Design Flow	Sewage Flow
Domestic Sewage Flow	302.8 L/capita/day
Peak Flow Factor	Harmon Formula
Domestic Sewage Flow (<1000 persons)	0.013 m ³ /sec
Infiltration by Hectare	0.0002 m ³ /sec/Ha

Source: Region of Peel Sanitary Sewer Design Criteria, March 2017

	FUS CALCULATION									
Proje Proje Proje Date	ect: ect Number: ect Location: :	Derry Britanr 17003-54 Region of Pe April 2023	nia Deve el (Miss	elopment sissauga)		Building T Firewalls/S Number of	ype/Bloc Sprinkler: f Units/Ur	k # : nit #'s		Townhouses None
1.0	FUS Formula									
$RFF = 220C\sqrt{A}$ where: RFF = required fire flow in litres per min C = the Coefficient related to the type of A = the Total Effective Floor Area (m ²) of NBC Occupancy Type of Construction ^b Protection (for C below 1.0) Footprint area Storeys C = A = F =							ute; f construc excluding Group C Wood F 600.0 3 1.5 1800.0 14000	tion; and basements Frame Cons na sq. metres Total Effec L/min (roun	at least 50% t truction Typ tive Area ^a	oelow grade) ^a e V
20		iustmont							,	
2.0	Occupancy Au	justment		יד A	ype of O Hazard Adjusted	ccupancy ^c Allowance Fire Flow	Limit -0 -2100 11900	ted Combus .15 L/min L/min	tible	
3.0	Sprinkler Adju	stment								
4.0	NFPA 13 sprink Standard Water Fully Supervise	ler standard Supply d system	NO NO NO	0% 0%	0% Sprinl	kler Credit	0	L/min		
	. ,									
	Construction Ty, North Side Length (f South Side Length (f East Side Length (f West Side Length (f	pe of the Expo stance to Build t) by height in stance to Build t) by height in stance to Build t) by height in stance to Build t) by height in	ing (m) storeys ing (m) storeys ing (m) storeys ing (m) storeys	Iding Face: 0 to 3 na 0 to 3 na 10.1 to 20 na 10.1 to 20 na Exp tal Requi	Type V Percent 25% 25% 15% 15% osures \$ ired Fin	Total* 75% *max 75% Surcharge re Flow (rounded)	8930 21000 350	L/min L/min L/sec		
a) b) c)	 (rounded) 350 L/sec a) For buildings with a construction coefficient from 1.0 to 1.5, consider 100% of all floor areas. For buildings with a construction coefficient below 1.0 (vertical openings are inadequately protected), consider the two largest adjoining floors plus 50% of each of any floors immediately above them up to a maximum of eight. If the vertical openings and exterior vertical communications are properly protected, consider only the area of the largest floor plus 25% of each of the two immediately adjoining floors. b) Wood Frame=1.5, Mass Timber= 0.8 to 1.5, Ordinary=1.0, Noncombustible=0.8, Fire-Resistive=0.6 c) Noncombustible=-25%, Limited Combustible=-15%, Combustible=0%, Free Burning=+15%, Rapid Burning=+25% 									

				FUS	CAL	CULATI	ON		
Proje Proje Proje Date	Project:Derry Britannia DevelopmentBuilding TProject Number:17003-54Firewalls/SProject Location:Region of Peel (Mississauga)Number ofDate:April 2023					ype/Bloc Sprinkler: f Units/Ur	k # nit #'s	Back to Back Townhouses Firewall every 600 sq.m footprint	
1.0	FUS Formula								
$RFF = 220C\sqrt{A}$ where: RFF = required fire flow in litres per min C = the Coefficient related to the type of A = the Total Effective Floor Area (m ²) (MBC Occupancy Type of Construction ^b Protection (for C below 1.0) Footprint area Storeys C = A = F =							ute; f construct excluding l Group C Wood F 600.0 3 1.5 1800.0 14000	tion; and basements rame Cons na sq. metres Total Effec L/min (roun	at least 50% below grade) ^a struction Type V stive Area ^a
2.0		liuctmont						•	
2.0	Occupancy Ad	ijusunent		Typ H Ad	be of Oo Hazard I justed	ccupancy [°] Allowance Fire Flow	Limit -0. -2100 11900	ed Combus 15 L/min L/min	stible
3.0	Sprinkler Adju	stment							
4.0	NFPA 13 sprink Standard Water Fully Supervise Exposure Adju	kler standard r Supply d system	NO NO NO	0% 0% 0%	0% Sprink	kler Credit	0	L/min	
	Construction Ty North Side Length (f South Side Length (f East Side Length (f West Side Length (f	pe of the Expo stance to Build t) by height in stance to Build t) by height in stance to Build t) by height in stance to Build t) by height in	beed Buildin storeys storeys storeys ling (m) 1 storeys ling (m) 1 storeys	ng Face: T P 0 to 3 na Firewall na 0.1 to 20 na 0.1 to 20 na Expos	ype V Percent 25% 0% 15% 15% sures \$	Total* 55% *max 75% Surcharge	6550	L/min	
			Tota	l Require	ed Fi	(rounded)	18000 300	L/min L/sec	
aj bj cj) For buildings with a con protected), consider the communications are pro Wood Frame=1.5, Mass) Noncombustible=-25%,	struction coefficient e two largest adjoinin operly protected, con i Timber= 0.8 to 1.5, (Limited Combustible	from 1.0 to 1.5, o g floors plus 50% sider only the ar Ordinary=1.0, No =-15%, Combust	consider 100% of 6 of each of any f ea of the largest incombustible=0. ible=0%, Free Bu	all floor ar loors imm floor plus .8, Fire-Res irning=+15	reas. For buildings ediately above the 25% of each of the sistive=0.6 %, Rapid Burning=	with a constru em up to a max e two immedia +25%	ction coefficient imum of eight. If tely adjoining flo	below 1.0 (vertical openings are inadequately the vertical openings and exterior vertical ors.

				FUS	5 CAL	CULAT	ON		
Proje Proje Proje Date	ect: ect Number: ect Location: :	Derry Britanr 17003-54 Region of Pe April 2023	ia Develo el (Missis	opment ssauga)		Building T Firewalls/S Number of	ype/Bloc Sprinkler: f Units/Ur	k # nit #'s	Apartments/Stacked Townhouses Sprinklered Blocks 8N and 13S, 140-200 units
1.0 FUS Formula $RFF = 220C\sqrt{A}$ where: RFF = required fire flow in litres p C = the Coefficient related to the t A = the Total Effective Floor AreaNBC OccupType of ConstrucProtection (for C below Footprint Store						tres per min o the type of Area (m ²) e Occupancy Instruction ^b below 1.0) otprint area Storeys	ute; construct excluding I Group C Fire-Res 4920.0 10	tion; and basements sistive Con na sq. metres (number c	at least 50% below grade) ^a struction Type I s (assumes 60% lot coverage) of storeys unkown)
$A = 29520.0 \text{ Total Effective Area}^{a}$ $F = 23000 \text{ L/min (rounded)}$									
2.0	Occupancy Ad	ljustment		Ty A	/pe of Oo Hazard .djusted	ccupancy ^c Allowance Fire Flow	Limit -0. -3450 19550	ed Combu 15 L/min L/min	stible
	NFPA 13 sprin Standard Wate Fully Supervise	kler standard r Supply d system	YES YES NO	Credit 30% 10% 0%	Total 40% Sprink	kler Credit	7820	L/min	
4.0	Exposure Adju Construction Ty North Side Di Length (f South Side Di Length (f West Side Di Length (f West Side	Istment Pe of the Expo stance to Build t) by height in stance to Build t) by height in stance to Build t) by height in stance to Build t) by height in	ing (m) storeys ing (m) storeys ing (m) storeys ing (m) storeys	ding Face: 3.1 to 10 over 100 over 30 over 30 over 30 over 30 over 30 over 30 over 30 over 100	Type I-II Percent 11% 0% 0% 0%	(unprotecte Total* 11%	ed) 2150	L/min	
	Exposures Surcharge Total Required Fire Flow (rounded)							L/min L/min L/sec	
a)	For buildings with a con protected), consider th communications are pr	nstruction coefficient f e two largest adjoinin operly protected, con	from 1.0 to 1.9 g floors plus 5 sider only the	5, consider 100% i0% of each of any area of the large	of all floor ar y floors imme st floor plus 2	eas. For buildings ediately above the 25% of each of the	with a constru em up to a max e two immediat	ction coefficient imum of eight. I tely adjoining flo	t below 1.0 (vertical openings are inadequately f the vertical openings and exterior vertical pors.

c) Noncombustible=-25%, Limited Combustible=-15%, Combustible=0%, Free Burning=+15%, Rapid Burning=+25%

				FUS	5 CAL	CULAT	ION		
Proje Proje Proje Date:	ect: ect Number: ect Location: :	Derry Britanr 17003-54 Region of Pe April 2023	nia Devel eel (Missia	opment ssauga)		Building 1 Firewalls/ Number o	Гуре/Block	# #'s	Elementary School Sprinklered
1.0	FUS Formula								
RF	F = 220Cv	\sqrt{A} where:	RFF = r C = the A = the	equired fire Coefficient Total Effect Typ Protectic	flow in li related to ive Floor NBC C De of Cor on (for C Foc	tres per mir o the type o Area (m ²) Occupancy Instruction ^b below 1.0) otprint area Storeys C =	nute; f construction excluding bas Group C Non-combus 11320.0 so 3 0.8	n; and sements stible Co na g. metres	at least 50% below grade) ^a nstruction Type II (assumes 40% lot coverage)
						A =	28300.0 To	otal Effec	ctive Area ^a
						F =	30000 L/	min (roun	ded)
2.0	Occupancy A	djustment		۲۱ ۲	/pe of Oo Hazard djusted	ccupancy ^c Allowance Fire Flow	Limited -0.15 -4500 L/ 25500 L /	Combus 5 min 7 min	stible
3.0	Sprinkler Adju	Istment							
4.0	NFPA 13 sprin Standard Wate Fully Supervise	kler standard r Supply ed system ustment	YES YES YES	30% 10% 10%	50%	kler Credit	12750 L/	min	
	Construction Ty North Side Length (' South Side Di Length (' East Side Di Length (' West Side Di	ype of the Expo stance to Build (t) by height in stance to Build (t) by height in stance to Build (t) by height in stance to Build (t) by height in	ing (m) storeys ing (m) storeys ing (m) storeys ing (m)	ding Face: over 30 na over 30 na over 30 na over 30	Type I-II Percent 0% 0%	(unprotecta Total*	ed)		
	Length (it) by height in	storeys	na		* 750/			
				Exp	osures S	*max 75% Surcharge	0 L/	min	
			Tot	al Requi	red Fi	(rounded)	13000 L 217 L	/min /sec	
a) b) c)	For buildings with a co protected), consider th communications are p Wood Frame=1.5, Mas Noncombustible=-25%	nstruction coefficient le two largest adjoinin roperly protected, con s Timber= 0.8 to 1.5, (, Limited Combustible	from 1.0 to 1. g floors plus 5 sider only the Drdinary=1.0, =-15%, Comb	5, consider 100% 50% of each of an e area of the large Noncombustible ustible=0%, Free	of all floor an y floors imme st floor plus =0.8, Fire-Res Burning=+15	eas. For building ediately above th 25% of each of th istive=0.6 %, Rapid Burning	s with a constructio tem up to a maximu te two immediately =+25%	n coefficient ım of eight. If adjoining flo	below 1.0 (vertical openings are inadequately the vertical openings and exterior vertical ors.

55 Gilbank Drive, Aurora, Ontario L4G 6H9

Water and Wastewater Modelling Demand Table - Site Plan applications

Version - January 2023

·	Water	Zone 4A				
	units	persons				
Proposed Residential ¹⁾						
Singles/Semis						
townhouses	368	1251				
large apartments (>750sqft)						
small apartments (<=750sqft)						
Total Proposed Residential	368	1251				
Proposed Institutional Population ²⁾						
Proposed Employment Population ³⁾						
Total	368	1251				
Proposed GFA (commercial/retail) (sqm)						

WATER CONNECTION

Hyc	Irant flow test						
	Hydrant flow test locations 4)	Ninth Line and Osprey Boulevard					
		(Zone 4A)					
		Pressure	Flow (in I/s)	Timo			
		(kPa)	11000 (111/5)	TIME			
	Minimum water pressure	_ 367 kPa _	159 l/s	11:10 AM			
	Maximum water pressure	552 kPa	0 l/s	11:10 AM			

	Water demands								
No.		Demand (in I/s)							
	Demand type	Use 1 ⁶⁾	Use 2 ⁶⁾	Use 3 ⁶⁾	Total				
1	Average day flow	4.05 l/s			4.05 l/s				
2	Maximum day flow	8.11 l/s			8.11 l/s				
3	Peak hour flow	_ 12.16 l/s _			12.16 l/s				
4	Fire flow ⁵⁾	350 I/s			350 l/s				
Ana	Analysis								
5	Maximum day plus fire flow	358.11 l/s			358.11 l/s				

WASTEWATER CONNECTION

		Discharge Location ⁷⁾	Flow
6	Wastewater sewer effluent (in I/s)	See Modelling Demand T	able
7	Wastewater sewer effluent (in I/s)	for Water Zone 5A	
8	Wastewater sewer effluent (in I/s)		
9	Total Wastewater sewer effluent (in I/s)		

¹⁾ For the design flow calculations, please consider the following PPU's, which are found in the Region of Peel 2020 DC Background Study

□Singles/Semi – 4.2

□Multiples (Townhouses) – 3.4

 \Box Large Apartments (larger than 750 square feet) – 3.0

- \Box Small Apartments (equal to or less than 750 square feet) 1.6
- ²⁾ refer to Region of Peel design criteria
- ³⁾ For the commercial and industrial design flow calculations, please use your site specific estimated population or the most current Ontario Building Code Occupant Load determination
- ⁴⁾ Please include the graphs associated with the hydrant flow test information table
- ⁴⁾ Hydrant flow tests should be performed within 2 years of submisison to the Region.
- The Region will not permit hydrant flow tests during the winter, please check with the Region for scheduling
- ⁵⁾ Please reference the Fire Underwriters Survey Document
- ⁶⁾ Please identify the flows for each use type, if applicable
- ⁷⁾ Please include drainage plan for multiple discharge locations

The calculations should be based on the development proposal All required calculations must be submitted with the demand table submission Table shall include Professional Engineer's signature and stamp Site servicing concept shall be included

This table will be deemed complete when all the above is submitted and/or included. Modelling will commence with a complete table.

Hydrant Flow Test Report

Residual Hydrant Number

								Operator:		Colin F	owell
Da	ite:	19-Jul-22		Time:	11:	10 AM					
			•					Witness:		Region	of Peel
Res	idual Tes	st Hydrant:	wes	st of 5868 Os	sprey Blvo	d (on Ninth Li	ne)]			
Γ	Hydra	nt Number:			349034 NFPA Colour C			Code: CLASS AA - BLUE			
		Owner:		Re	gion of P	eel					
	STATIC PRESSURE:			80	psi	552	кРа	Pressure D	rop		
I	RESIDUAL PRESSURE 1:			57	psi	393	кРа	28.8%			
I	RESIDUA	AL PRESSU	RE 2:	53.2	psi	367	кРа	33.5%			
					_			-			Hydrant Number
	Flow Hydrants: A				next hyd	drant north of	Ospr	ey Blvd on Nin	th Line	•	349033
	E		В								
_			С								
ſ	Hydrant	Flow Dev	vice	Outlet	Flow Rate 1					Flow R	ate 2
	No.	TIOW Dev		Dia. (in.)	Read	ling (psi)		(USGPM)	Re	ading (psi)	(USGPM)
ſ	А	Pitot		2.5		20		698		14	584
	Α	Pitot		2.5		20		698		14	584
	А	HoseMon	ster	4"				0		1400	1350
	Total Flow (USGPM)				139	5			251	7	
[Total Flow (I	/seco	nd)	88				15	9	
_	Available	Flow At Tes	st Hydr	ant at 20 ps	2	,342		USGPM		3,890	USGPM
						148		L/second		245	L/second

Average Projection at 20 PSI

USGPM

3,116

Comments/Discrepencies/Diagram:

Assuming booster pumps were called on during Flow Rate 2.

Hydrant Flow Test Report

Residual Hydrant Number

								Operator:		Colin P	owell	
D	ate:	19-Jul-22		Time:	1	0:35 AM						
			•					Witness:		Region of	of Peel	
Res	sidual Tes	st Hydrant:	wes	t of 3979 Fo	xwood A	ve (on Ninth L	ine)]				
	Hydra	nt Number:			2027902			NFPA Colour Code: CLAS		CLASS	AA - BLUE	
		Owner:		Re	gion of	Peel						
								-				
	STATIC PRESSURE: 7			79	psi	545	kPa	Pressure D	rop			
	RESIDUA	L PRESSU	RE 1:	59	psi	407	kPa	25.3%				
	RESIDUA	L PRESSU	RE 2:	52.5	psi	362	kPa	33.5%				
			I					-			Hydrant Number	
	Flow Hydrants: A					3969 Fo	xwoo	d Avenue			2027913	
			В									
			С									
	Hydrant		de a	Outlet	Flow Rate 1					Flow R	ate 2	
	No.	Flow Dev	lice	Dia. (in.)	Rea	ading (psi)		(USGPM)	Reading (psi)		(USGPM)	
	Α	Pitot		2.5		18		662		10	493	
	Α	Pitot		2.5		18		662		10	493	
	А	HoseMon	ster	4"				0		1250	1350	
	Total Flow (USGPM)				132	24			233	37		
	Total Flow (L/second)			84					14	7		
	Available	Flow At Tes	st Hydr	ant at 20 ps		2,374		USGPM 3,600		3,600	USGPM	
						150		L/second		227	L/second	

Average Projection at 20 PSI

USGPM

2,987

Comments/Discrepencies/Diagram:

Assuming booster pumps were called on during Flow Rate 2

TOWNHOUSES

Population (Residential)

Unit Type	No. of Units	People/Unit	Population (Res)	
Townhouses (Block 5)	316	3.40	1074.4	
Townhouses (Freehold)	52	3.40	176.8	
Residential Population	1251			

Water Demands

Demand Type	Population	Demand Rate		
Average Day (Residential)	1251	280 L/capita/day		
Average Day Water Demand	Townhousos	350280 L/day		
Average Day water Demand	Townhouses	4.05 L/s		

Water Demands

Demand Type	Peaking Factor (Res)	Water Demands (Res)
Average Day		4.05 L/s
Maximum Day	2.0	8.11 L/s
Peak Hour	3.0	12.16 L/s

TOTAL

1251

Total Demands

Demand Type	Demand (L/s)
Average Day	4.05
Maximum Day	8.11
Peak Hour	12.16

Water and Wastewater Modelling Demand Table - Site Plan applications

Version - January 2023

Water	Zone	5A
vvalor	20110	<i>U</i> / (

	units	persons
Proposed Residential ¹⁾		
Singles/Semis		
townhouses	455	1547
large apartments (>750sqft)		
small apartments (<=750sqft)	400	1200
Total Proposed Residential	855	2747
Proposed Institutional Population ²⁾		450
Proposed Employment Population ³⁾		
Total	855	3197
Proposed GFA (commercial/retail) (sq	m)	

WATER CONNECTION

Hyd	Irant flow test						
	Hydrant flow test locations ⁴⁾	3945 Doug Leavens Boulevard					
		at Ninth Line (Zone 5A)					
		Pressure	Flow (in I/c)	Timo			
		(kPa)	1 10w (iii 1/s)	TIME			
	Minimum water pressure	_ 321 kPa	159 l/s	9:55 AM			
	Maximum water pressure	600 kPa	0 l/s	9:55 AM			

	Water demands						
No.							
	Demand type	Use 1 ⁶⁾	Use 2 ⁶⁾	Use 3 ⁶⁾	Total		
1	Average day flow	8.90 l/s	1.56 l/s		10.46 l/s		
2	Maximum day flow	_ 17.80 l/s _	2.19 l/s		19.99 l/s		
3	Peak hour flow	_ 26.71 l/s _	4.69 l/s		31.39 l/s		
4	Fire flow ⁵⁾	350 l/s	217 l/s		350 l/s		
Ana	Analysis						
5	Maximum day plus fire flow	367.80 l/s	219.19 l/s		369.99 l/s		

WASTEWATER CONNECTION

		Discharge Location ⁷⁾	Flow
6	Wastewater sewer effluent (in I/s)	Ninth Line	57.32 l/s
7	Wastewater sewer effluent (in I/s)		
8	Wastewater sewer effluent (in I/s)		
9	Total Wastewater sewer effluent (in I/s)		

¹⁾ For the design flow calculations, please consider the following PPU's, which are found in the Region of Peel 2020 DC Background Study

□Singles/Semi – 4.2

□Multiples (Townhouses) – 3.4

 \Box Large Apartments (larger than 750 square feet) – 3.0

- \Box Small Apartments (equal to or less than 750 square feet) 1.6
- ²⁾ refer to Region of Peel design criteria
- ³⁾ For the commercial and industrial design flow calculations, please use your site specific estimated population or the most current Ontario Building Code Occupant Load determination
- ⁴⁾ Please include the graphs associated with the hydrant flow test information table
- ⁴⁾ Hydrant flow tests should be performed within 2 years of submisison to the Region.
- The Region will not permit hydrant flow tests during the winter, please check with the Region for scheduling
- ⁵⁾ Please reference the Fire Underwriters Survey Document
- ⁶⁾ Please identify the flows for each use type, if applicable
- ⁷⁾ Please include drainage plan for multiple discharge locations

The calculations should be based on the development proposal All required calculations must be submitted with the demand table submission Table shall include Professional Engineer's signature and stamp Site servicing concept shall be included

This table will be deemed complete when all the above is submitted and/or included. Modelling will commence with a complete table.

Hydrant Flow Test Report

Residual Hydrant Number

								Operator:		Colin P	owell
Dat	e:	19-Jul-22		Time:	g):55 AM					
_								Witness:		Region of	of Peel
<u>Resi</u>	dual Tes	st Hydrant:	/drant: 3945			vens Blvd.					
	<u>Hydra</u>	nt Number:			202786	61		NFPA Colour	Code:	CLASS	AA - BLUE
		<u>Owner:</u>		Re	egion of	Peel					
	STA	TIC PRESS	URE:	87	psi	600	kPa	Pressure D	rop		
R	RESIDUA	AL PRESSU	RE 1:	67.5	psi	465	kPa	22.4%			
R	RESIDUA	AL PRESSU	RE 2:	46.5	psi	321	kPa	46.6%			
						-		-			Hydrant Number
	Flow Hydrants: A				6562 Lisgar Drive					2027859	
	В										
			С								
F	lydrant		vice	Outlet	Flow Rate 1					Flow R	ate 2
	No.	TIOW Dev		Dia. (in.)	Rea	ading (psi)		(USGPM)	Re	ading (psi)	(USGPM)
	А	Pitot		2.5		23		748		14	584
	А	Pitot		2.5		23		748		14	584
	А	HoseMon	ster	4"				0			1350
	Total Flow (USGPM)				1496		2517				
	Total Flow (L/second)				94	4			15	9	
A	vailable	Flow At Tes	st Hydi	rant at 20 ps		2,914		USGPM		3,304	USGPM
						184		L/second		208	L/second

Average Projection at 20 PSI

USGPM

3,109

Comments/Discrepencies/Diagram:

Assuming booster pumps were called on during Flow Rate 2

Hydrant Flow Test Report

Residual Hydrant Number

								Operator:		Colin F	owell
D	ate:	19-Jul-22		Time:	9	:30 AM					
	-							Witness:		Region	of Peel
Res	sidual Te	st Hydrant:		3979 I	Beachai	m Street					
	<u>Hydra</u>	nt Number:			202784	-5		NFPA Colour	Code:	CLASS	AA - BLUE
		<u>Owner:</u>		Re	gion of	Peel					
	STA	TIC PRESS		83	nsi	572	kPa	Pressure D	ron		
	RESIDUA	AL PRESSU	RE 1:	66	psi	455	kPa	20.5%	ισρ		
	RESIDUA	L PRESSU	RE 2:	56	psi	386	kPa	32.5%			
								-	-		Hydrant Number
	Flow Hydrants: A				3931 Beacham Street						2027844
	В										
			С								
	Hydrant		de a	Outlet	Flow Rate 1					Flow R	ate 2
	No.	Flow Dev	lice	Dia. (in.)	Rea	ading (psi)		(USGPM)	Rea	ading (psi)	(USGPM)
	Α	Pitot		2.5		25		780		15	604
	Α	Pitot		2.5		25		780	15		604
	Α	HoseMon	ster	4"				0			1450
	Total Flow (USGPM)				150	60			265	58	
		Total Flow (I	/seco	nd)		98	8			16	8
	Available	Flow At Tes	st Hydi	ant at 20 ps		3,165		USGPM		4,201	USGPM
						200		L/second		265	L/second

Average Projection at 20 PSI

USGPM

3,683

Comments/Discrepencies/Diagram:

Assuming booster pumps were called on during Flow Rate 2

TOWNHOUSES and APARTMENTS

Population (Residential)

Unit Type	No. of Units	People/Unit	Population (Res)
Townhouses (Block 1)	167	3.40	567.8
Townhouses (Block 3)	53	3.40	180.2
Townhouses (Block 4)	72	3.40	244.8
Townhouses (Freehold)	45	3.40	153.0
Future TH (Block 6)	118	3.40	401.2
Apartments (8N/13S)	400	3.00	1200.0
Residential Population	2747		

Water Demands

Demand Type Population		Demand Rate
Average Day (Residential)	2747	280 L/capita/day
Average Day Mater Demand	Townhousos	769160 L/day
Average Day water Demand	Townhouses	8.90 L/s

Water Demands

Demand Type	Peaking Factor (Res)	Water Demands (Res)
Average Day		8.90 L/s
Maximum Day	2.0	17.80 L/s
Peak Hour	3.0	26.71 L/s

SCHOOL

Population (ICI)

Unit Type	Site Area (Ha)	People/Ha	Population (ICI)
Institutional	2.833		450 *
ICI Population			450

* Student population assumed to be 1/2 x 900 students (Junior/Senior Public School) from Sanitary Sewer Design Criteria (rev March 2017)

Water Demands

Demand Type	Population	Demand Rate
Average Day (ICI)	450	300 L/capita/day
Average Day Water Demand School		135000 L/day
		1.56 L/s

Water Demands

Demand Type	Peaking Factor (ICI)	Water Demands (ICI)
Average Day		1.56 L/s
Maximum Day	1.4	2.19 L/s
Peak Hour	3.0	4.69 L/s

TOTAL

Population

Total Population	3197

Demand Type	Demand (L/s)
Average Day	10.46
Maximum Day	19.99
Peak Hour	31.39

APARTMENTS AND TOWNHOUSES

Population (Residential)

Unit Type	No. of Units	People/Unit	Population (Res)
Townhouses	823	3.40	2798.2
Apartments	400	3.00	1200.0
Residential Population			3998

Population (ICI)

Unit Type	Site Area (Ha)	Population (ICI)
Retail	2.833	450 *
ICI Population	2	450

* Student population assumed to be 1/2 x 900 students (Junior/Senior Public School)

Design Flow

Demand Type	Population	Demand Rate
Domestic Flow	4448	302.8 L/capita/day
Average Domestic Sanitary Sewage Flow		1346854.4 L/day
		15.59 L/sec

Peak Flow

3.29
4433427 L/day
51.31 L/s (calculated)
51.80 L/s (STD. DWG. 2-9-2)

The peak domestic sanitary sewage flow was taken from STD. DWG. 2-9-2 based on a population of 4500 people (Sanitary Sewer Design Criteria, March 2017).

Infiltration

Demand Type	Area (Ha)	Demand Rate
Infiltration	27.60	0.0002 m ³ /sec/Ha
Infiltration		5.52 L/s

Total Sanitary Flow

Demand Type	Sanitary Flow
Domestic and Infiltration	57.32 L/s

TOTAL

Population

Total Population	4448
Total Sanitary Flow	
Demand Type	Demand (L/s)
Peak Domestic Flow	57.32

Notes:

Harmon Formula

$$H = 1 + \frac{14}{4 + p^{0.5}}$$

Where: H = Ratio of peak flow to average flow