

PREPARED FOR: Starlight Investm 1400-3280 Bloor

Starlight Investments 1400-3280 Bloor Street West, Centre Tower Toronto, Ontario M8X 2X3

ATTENTION: Matthew Cesta

1485 Williamsport Drive Mississauga, Ontario Grounded Engineering Inc. File No. 24-067 Issued May 22, 2024

TABLE OF CONTENTS

1	INTRODUCTI	ON	1			
2	STUDY AREA	MAP	3			
3	GEOLOGY AN	ND PHYSICAL HYDROGEOLOGY	3			
4	GROUNDWA ⁻	TER ELEVATIONS	4			
	4.1 M ONITO	ORING WELL INFORMATION	4			
	4.2 WELL C	DBSERVATIONS	4			
5	AQUIFER TES	STING	4			
	5.1 PUMPIN	NG TEST	4			
	5.2 SINGLE	WELL RESPONSE TEST (SLUG TEST)	5			
	5.3 LITERAT	TURE	5			
6	SUMP MONI	TORING	5			
7	WATER QUAI	LITY	5			
8	PROPOSED C	CONSTRUCTION METHOD	6			
9	PRIVATE WA	TER DRAINAGE SYSTEM (PWDS)	7			
10	GROUNDWA ⁻	TER EXTRACTION AND DISCHARGE	7			
11	EVALUATION	I OF IMPACT	9			
	11.1	ZONE OF INFLUENCE	9			
	11.2	CITY'S SEWAGE WORKS	9			
	11.3	NATURAL ENVIRONMENT	9			
	11.4	LOCAL DRINKING WATER WELLS	9			
	11.5	CONTAMINATION SOURCE	9			
12	PROPOSED N	MITIGATION MEASURES AND MONITORING PLAN	10			
13	LIMITATIONS	S	10			
14	CLOSURE11					

FIGURES

Figure 1 - Site Location Plan

Figure 2 - Borehole Location Plan - Existing Conditions

Figure 3 - Borehole Location Plan - Proposed Conditions

Figure 4 – Subsurface Profile (Boreholes by Others)

APPENDICES

Appendix A – Factual Information by Previous Consultant (Terraprobe)

Appendix B - Dewatering Calculations

Appendix C – Laboratory Certificate of Analysis (Terraprobe)

1 Introduction

Starlight Investments has retained Grounded Engineering Inc. to provide hydrogeological engineering design advice for their proposed development at 1485 Williamsport Drive, in Mississauga, Ontario.

Grounded has been provided with the following reports and drawings to assist in our scope of work:

- Topographic Survey, "Topographic Plan of Survey of Part of Block G Registered Plan 733, City of Mississauga"; Job No. 16-132-00, dated May 18, 2016, prepared by Schaeffer Dzaldov Purcell Ltd.
- Architectural Drawings, "Pacific Way, Mississauga, Ontario"; Project 21-15, dated June 22, 2023, prepared by Architecture Unfolded
- Geotechnical Report, "1485 Williamsport Drive, Mississauga, Ontario", File 1-22-0531-01, dated Sep 11, 2023, prepared by Terraprobe Inc.
- Hydrogeological Assessment Report, "1485 Williamsport Drive, Mississauga, Ontario", File
 1-22-0531-46, dated Dec 8, 2022, prepared by Terraprobe Inc.

Grounded has been provided with factual borehole information for the subject site from other consultants as listed above. Those borehole logs (Terraprobe Boreholes 8 to 11, and 101 to 105) are provided in a report signed and sealed by professional engineers. As such, this borehole information (appended) is taken as factual for present purposes. Unless noted, borehole labels appended with "TP-" refer to Terraprobe's boreholes.

Grounded is also presently retained to complete additional confirmatory boreholes and provide an updated hydrogeological engineering report at a later date.

Property Information	
Location of Site	1485 Williamsport Drive, Missisauga, Ontario, L4X 1T6
Ownership of Site	Starlight Investments
Site Dimensions (m)	200 x 125± (irregular)
Site Area (m²)	22,000±

Proposed Development	
Number of Building Structures	One
Number of Underground Levels	Tower: One (B1) P1 Extension: One (P1)
Lowest Finished Floor Elevation (FFE)	Tower: Depth 2.4± m / Elev. 137.6± masl P1 Extension: Depth 3.6± m / Elev. 136.4± masl

Proposed Development					
Approx. Base of Foundations Tower**: Depth 9± m / Elev. 132± masl					
	P1 Extension*: Depth 4.6 ± m / Elev. 135.2± masl				
Sub-Grade Area (m ²)	Tower: 1,300±				
	P1 Extension: 1,500±				
Land Use Classification	Residential				

^{*} Assumed spread footings

^{**} Assumed caisson foundations

s for the area
or the area
for the area
by previous consultants to a vere instrumented with four (4)
able monitoring wells
y underway as of the date of this
umented with one (1) monitoring
itional available monitoring wells
s to the City of Use Limits
ls and potential impacts

General Hydrogeological Characterization					
Site Topography	The site has an approximate ground surface elevation of 140± masl.				
Local Physiographic Features	The site is composed of sand and silt deposits.				
Regional Physiographic Features	The site is located in southern portion of the South Slope. The South Slope contains a variety of soils developed upon tills which are sandier in the east and clayey in the west. The South Slope is bounded in the north by the Oak Ridges and in the south by the Iroquois Plain.				
Watershed	The site is located within the Etobicoke Creek Watershed. Locally, groundwater is anticipated to flow northeast towards a branch of Etobicoke Creek.				

General Hydrogeological Characterization					
Surface Drainage	Surface water is expected to flow towards municipal catch basins located on or adjacent to the site, via Williamsport Drive to the Southeast and Havenwood Drive to the Northeast				

2 Study Area Map

A map has been enclosed which shows the following information:

- All monitoring wells identified on site, and within the study area
- All boreholes identified on site
- All buildings identified on site and within the study area
- The site boundaries
- Any watercourses and drainage features within the study area

3 Geology and Physical Hydrogeology

The site stratigraphy, including soil materials, composition and texture are presented in detail on the borehole logs in Appendix A. A summary of stratigraphic units that were encountered at the site is outlined as follows:

Site Stratigraphy							
Stratum/Formation	Depth Range (mbgs)	Elevation Range (masl)	Hydraulic Conductivity (m/s)	Method of Determination			
Earth Fill	0 to 8±	140 to 132±	1 x 10 ⁻⁵	Literature ¹			
Sand	8 to 18±	132 to 122±	2.8 x 10 ⁻⁵	Slug Test			
Bedrock	Beyond 18±	Beyond 122±	1 x 10 ⁻⁷	Literature ¹			

Surface Water								
Surface Water Body	Distance from site (m)	Direction from site	Hydraulically Connected to Site (yes/no)					
Etobicoke Creek	1,300	Northeast	No					

¹ Freeze and Cherry (1979)

4 Groundwater Elevations

4.1 Monitoring Well Information

Well ID	Well Diameter (mm)	Ground Surface (masl)	Top of Screen (masl)	Bottom of Screen (masl)	Screened Geological Unit
TP-10	50	140.3	131.5	128.4	Sands
TP-102	50	140.3	126.3	123.2	Sands
TP-103	50	140.5	133.8	130.7	Sands / Fill
TP-105	50	139.9	133.8	132.3	Sands

4.2 Well Observations

Well ID			G	roundwater E	levation (mas	sl)		
Well ID	2018-03-23	2018-04-03	2018-10-04	2022-09-19	2022-09-30	2022-10-13	2024-04-19	Maximum
TP-10	131.4	131.4	131.6	131.6	131.5	131.5	131.6	131.6
TP-102	-	-	-	132.1	131.5	131.5	131.6	132.1
TP-103	-	-	-	131.5	130.7	130.5	131.5	131.5
TP-105	-	-	-	Dry	Dry	Dry	Dry	Dry

For design purposes, the groundwater table is at Elev. 132± m in the native sands deposit. This unit will yield free-flowing water when penetrated below the groundwater table. There is also perched stormwater in the earth fill which is infiltrating down towards the groundwater table.

Based on the measured groundwater elevations, the anticipated groundwater flow direction at this site is to the Northeast.

Groundwater levels fluctuate with time depending on the amount of precipitation and surface runoff and may be influenced by known or unknown dewatering activities at nearby sites.

5 Aquifer Testing

5.1 Pumping Test

A pumping test was not attempted at the site. Slug tests were conducted and are presented in the section below.

5.2 Single Well Response Test (Slug Test)

The hydraulic conductivities from the monitoring wells were determined based on slug tests (single-well response tests) conducted by Terraprobe. These tests involve rapid removal of water or addition of a "slug" which displaces a known volume of water from a single well, and then monitoring the water level in the well until it recovers.

The hydraulic properties of the strata applicable to the site are as follows:

Well ID	Well Screen Elevation (masl)	Screened Geological Unit	Hydraulic Conductivity (m/s)
TP-10	131.5 - 128.4	Sands	2.8 x 10 ⁻⁵
TP-102	126.3 - 123.2	Sands	1.5 x 10 ⁻⁵

5.3 Literature

According to Freeze and Cherry (1979), the typical hydraulic conductivity of the strata investigated at the site are:

Stratum/Formation	Hydraulic Conductivity (m/s)
Earth Fill	10 ⁻² to 10 ⁻⁶
Sands	10 ⁻² to 10 ⁻⁷
Silts	10 ⁻⁵ to 10 ⁻⁹
Bedrock (Shale)	10 ⁻⁶ to 10 ⁻¹³

6 Sump Monitoring

A new basement structure is proposed for the site. The monitoring of the existing sumps (where present) is excluded from the present scope.

7 Water Quality

One (1) unfiltered groundwater sample was collected (by Terraprobe) and analyzed by a Canadian laboratory accredited and licensed by Standards Council of Canada and or Canadian Associate for Laboratory Accreditation.

The sample was collected directly from Terraprobe Borehole 10 on April 3, 2018. The sample was analyzed for the following parameters:

- Region of Peel Limits for Sanitary and Combined Sewers Discharge (BL-53-2010)
- Region of Peel Limits for Storm Sewer Discharge (BL-53-2010)

City of Mississauga – Limits for Storm Sewer Use – (BL-0046-2022)

The groundwater sample **exceeded** the **Peel Limits for Storm Sewer Discharge** for the following parameters:

- Total Suspended Solids (Limit 15 mg/L, Result 679 mg/L)
- Chloroform (Limit 0.002 mg/L, Result 0.0240 mg/L)
- Total Copper (Limit 0.05 mg/L, Result 0.05059 mg/L)
- Total Manganese (Limit 0.05 mg/L, Result 1.20 mg/L)
- Total Phosphorus (Limit 0.4 mg/L, Result 0.810 mg/L)
- Total Zinc (Limit 0.04 mg/L, Result 0.094 mg/L)

The groundwater sample also **exceeded** the **Peel Limits for Sanitary and Combined Sewer Discharge** for the following parameters:

Total Suspended Solids (Limit 350 mg/L, Result 679 mg/L)

The groundwater sample also **exceeded** the **Mississauga Limits for Storm Sewer Discharge** for the following parameters:

- Total Suspended Solids (Limit 15 mg/L, Result 679 mg/L)
- Total Aluminum (Limit 1 mg/L, Results 38.9 mg/L)
- Total Copper (Limit 0.04 mg/L, Result 0.05059 mg/L)
- Total Phosphorus (Limit 0.4 mg/L, Result 0.810 mg/L)

A new unfiltered groundwater sample will be collected by Grounded upon completion of the additional confirmatory boreholes and included in the updated hydrogeological engineering report at a later date.

8 Proposed Construction Method

The proposed shoring at the site is assumed to consist of conventional soldier piling and lagging for present purposes.

For design purposes, the stabilized groundwater table is at Elev. 132± m, which is well below the bulk and foundation excavation levels for the proposed tower B1 and P1 parking extension. There is infiltrated stormwater in the fill. On this basis, it is expected that groundwater if encountered will be of limited extent. Groundwater may be allowed to drain into the excavation and then pumped out. In open excavations, it is anticipated that seepage volumes will be limited to the extent that temporary pumping will sufficiently control any groundwater seepage. Regardless, excavation delays will occur as seepage (however limited) is controlled. These delays should be anticipated in the construction schedule.

The City of Mississauga will require a Discharge Agreement in the short term, if any water is to be discharged to the storm or sanitary sewers during construction.

9 Private Water Drainage System (PWDS)

If the proposed development consists of drained foundations, then a private water drainage system will be required. The total sub floor drain area will be approximately 1,300m² for the tower B1 level and 1,500m² for the P1 extension, based on the drawings which have been provided.

If the development is designed with a private water drainage system, the drainage system is a critical structural element since it keeps water pressure from acting on the basement walls and floor slab. As such, the sump that ensures the performance of this system must have a duplexed pump arrangement for 100% pumping redundancy and these pumps must be on emergency power. The size of the sump should be adequate to accommodate the estimated groundwater seepage. It is anticipated that the groundwater seepage can be controlled with typical, widely available, commercial/residential sump pumps.

10 Groundwater Extraction and Discharge

Analyses were conducted for both short-term and long-term dewatering scenarios. Bulk and foundation excavations for the proposed tower B1 and P1 extension are well above the design groundwater table at the site (Elev. 132± m). As such, short- and long-term groundwater dewatering is not anticipated. Minor seepage may be encountered.

However, if the excavation is exposed to the elements, storm water will have to be managed. The short-term control of groundwater should consider stormwater management from rainfall events. A dewatering system should be designed to consider the removal of rainfall from the excavation. A design storm of 25 mm has been used in the quantity estimates. Additionally, as required by Ontario Regulation 63/16, a plan for discharge must consider the conveyance of stormwater from a 100-year storm. The additional volume that will be generated in the occurrence of a 100-year storm event is approximately 122,000 L for the proposed tower and 139,000 L for the proposed P1 extension (261,000 L total).

As the proposed tower basement and P1 extension are drained structures, their sub-slab drainage system must account for long term infiltration of infiltrated stormwater in the long term.

The quantity estimates for both short- and long-term conditions are presented below and in the appendices.

	Short	Term (Constru	ction) Steady State	e Groundwater Qu	antity	
Proposed Development		Groundwater page	Design Rainfall	l Event (25mm)		al Daily Water ings
	L/day	L/min	L/day	L/min	L/day	L/min
Tower B1	-	-	33,000	22.9	33,000	22.9
P1 Extension	-	-	37,000	25.7	37,000	25.7
Total	-	-	70,000	48.6	70,000	48.6

	Long	g Term (Permar	ent) Steady State	Groundwater Qua	antity	
Proposed Development		Groundwater page	Estimated Stormwater – I Event (•	Estimated Tot Tak	•
	L/day	L/min	L/day	L/min	L/day	L/min
Tower B1			6,000	4.2	6,000	4.2
P1 Extension	-	-	6,000	4.2	6,000	4.2
Total			12,000	8.4	12,000	8.4

Regulatory Requirements	
Environmental Activity and Sector Registry (EASR) Posting	Not Required
Short Term Permit to Take Water (PTTW)	Not Required
Long Term Permit to Take Water (PTTW)	Not Required
Short Term Discharge Agreement City of Mississauga/Region of Peel	Required
Long Term Discharge Agreement City of Mississauga/Region of Peel	Required

Please note:

- The proposed pump schedule for short term construction dewatering has not been completed. As such, the actual peak short term discharge rate is not available at the time of writing this report. The pump schedule must be specified by either the dewatering contractor retained or the mechanical consultant.
- The proposed pump schedule for long term permanent drainage has not been completed.
 As such the actual peak long term discharge rate is not available at the time writing of this report. The pump schedule must be specified by the mechanical consultant.
- On-site containment (infiltration gallery/dry well etc.) has not been considered as part of the proposed development at this time. If this option is considered, additional work will have to be conducted (i.e. infiltration testing).

11 Evaluation of Impact

11.1 Zone of Influence

Localized dewatering of an aquifer produces a cone-shaped depression in the groundwater table that extends some distance away from the dewatering point. The lateral distance which the cone of depression extends (i.e., the distance to where drawdown is effectively zero) is known as the Zone of Influence (ZOI).

Considering that bulk and foundation excavation will not extend near or below the groundwater table, positive dewatering is not required, and the ZOI with respect to groundwater seepage is negligible.

11.2 City's Sewage Works

Negative impacts to City's sewage works may occur in terms of the quantity or quality of the groundwater discharged. This report provided the estimated quantity of the water discharge. However, this report does not speak to the sewer capacities. The sewer capacity analysis is provided under a separate cover by the civil consultant.

The quality of the proposed groundwater discharge is provided in Section 7. As noted in that section, a new groundwater sample quality will be collected and tested at a later date.

11.3 Natural Environment

There is no ZOI, per the above sections. As such, no natural waterbodies will be affected. Any groundwater which will be taken from the site will be discharged (if required) into the City's sewer systems and not into any natural waterbody. As such, there will be no impact to the natural environment caused by the water takings at the site.

11.4 Local Drinking Water Wells

The site is located within the municipal boundaries of the City of Mississauga. The site and surrounding area are provided with municipal piped water and sewer supply. There is no use of the groundwater for water supply in this area of Peel Region. As such, there will be no impact to drinking water wells.

11.5 Contamination Source

There is no ZOI, per the above sections. As such, there will be no pumping of groundwater, and the migration of potential contaminants from surrounding sources is not anticipated.

12 Proposed Mitigation Measures and Monitoring Plan

The ZOI is negligible, per the above sections. Negative impacts associated with dewatering are limited to within the ZOI. Therefore, negative impacts are not anticipated. The groundwater elevation will be monitored during construction to ensure that this is the case.

Both the temporary construction dewatering system and the permanent building drainage system must be properly installed and screened to ensure sediments and fines will not be removed, which is typically a primary cause of dewatering related settlement.

13 Limitations

Natural occurrences, the passage of time, local construction, and other human activity all have the potential to directly or indirectly alter the subsurface conditions at or near the project site. Contractual obligations related to groundwater or stormwater control must be considered with attention and care as they relate this potential site alteration.

The preliminary hydrogeological engineering advice provided in this report is based on the factual observations made from the site investigations as reported by Terraprobe. It is intended for use by the owner and their retained design team. If there are changes to the features of the development or to the scope, the interpreted subsurface information, geotechnical engineering design parameters, advice, and discussion on construction considerations may not be relevant or complete for the project. Grounded should be retained to review the implications of such changes with respect to the contents of this report.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Grounded accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report, including consequential financial effects on transactions or property values, or requirements for follow-up actions and costs.

The authorized users of this report are Starlight Investments and their design team, for whom this report has been prepared. Grounded Engineering Inc. maintains the copyright and ownership of this document. Reproduction of this report in any format or medium requires explicit prior authorization from Grounded Engineering Inc. The City of Toronto may also make use of and rely upon this report, subject to the limitations as stated.

14 Closure

If there are any questions regarding the discussion and advice provided, please do not hesitate to contact our office. We trust that this report meets your requirements at present.

For and on behalf of our team,

James Wagner, BASc. Project Coordinator

M. J. BIELASKI H. 100131738

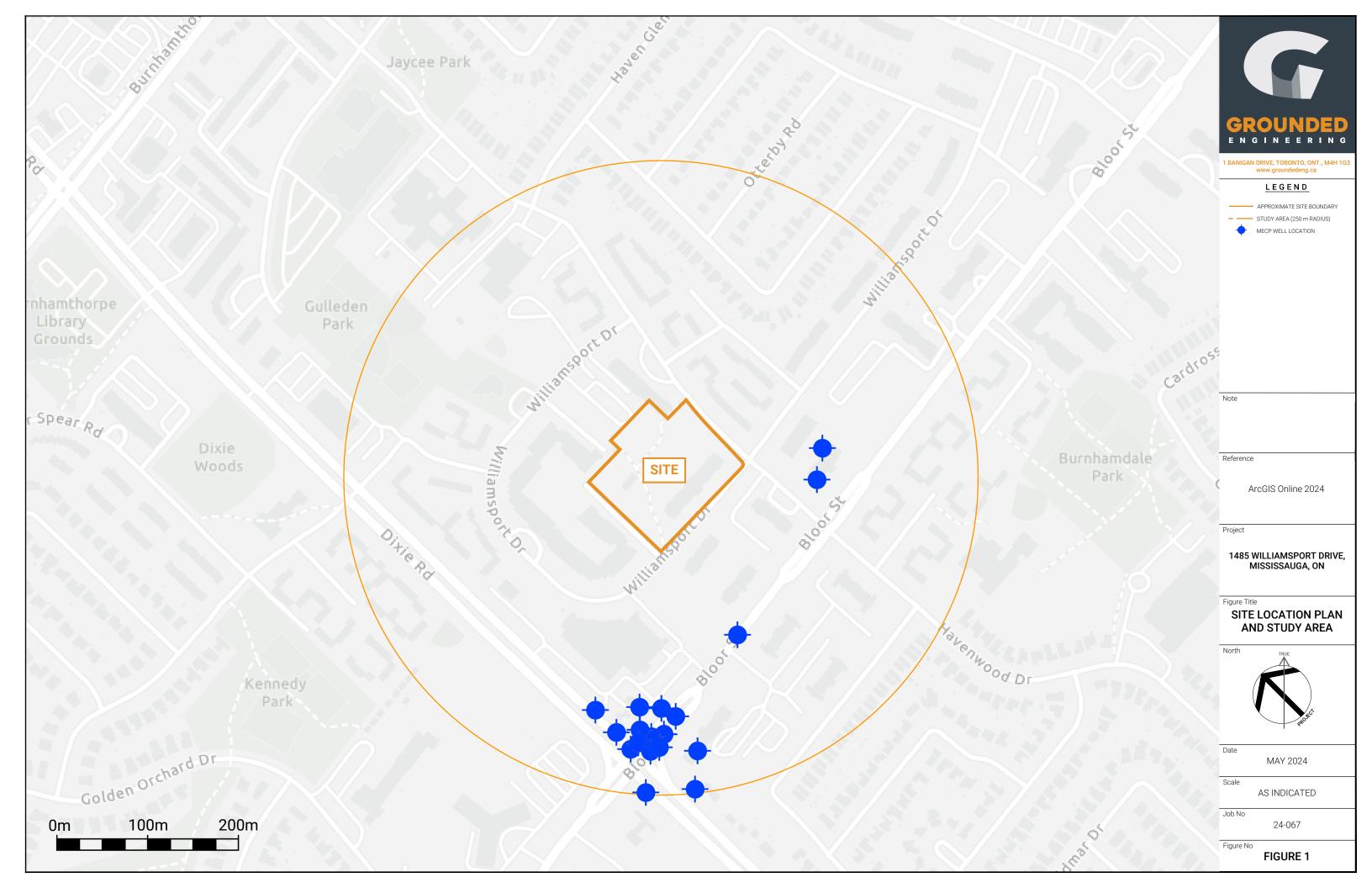
Matthew Bielaski, P.Eng., QPesa/RA

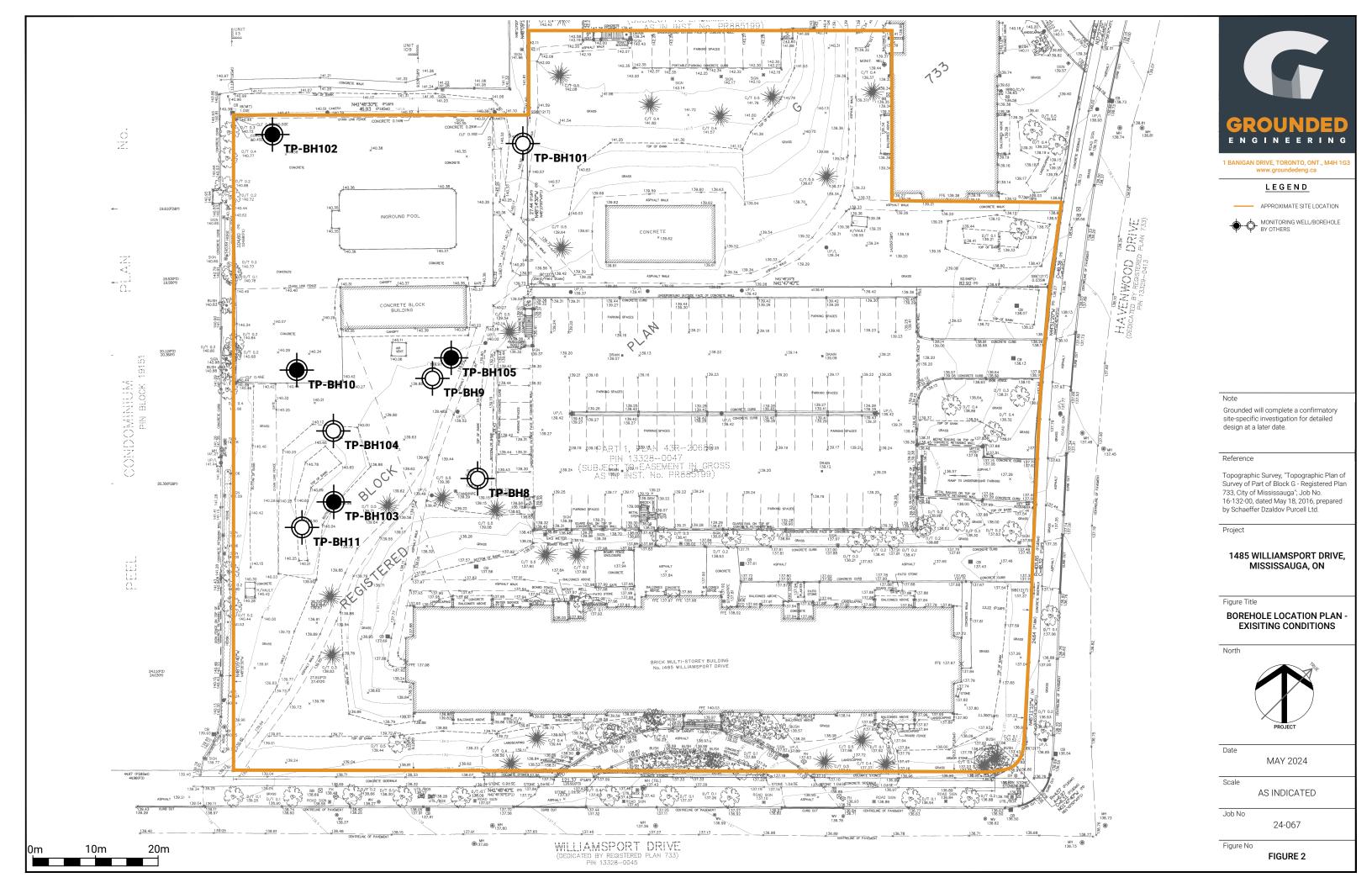
Principal

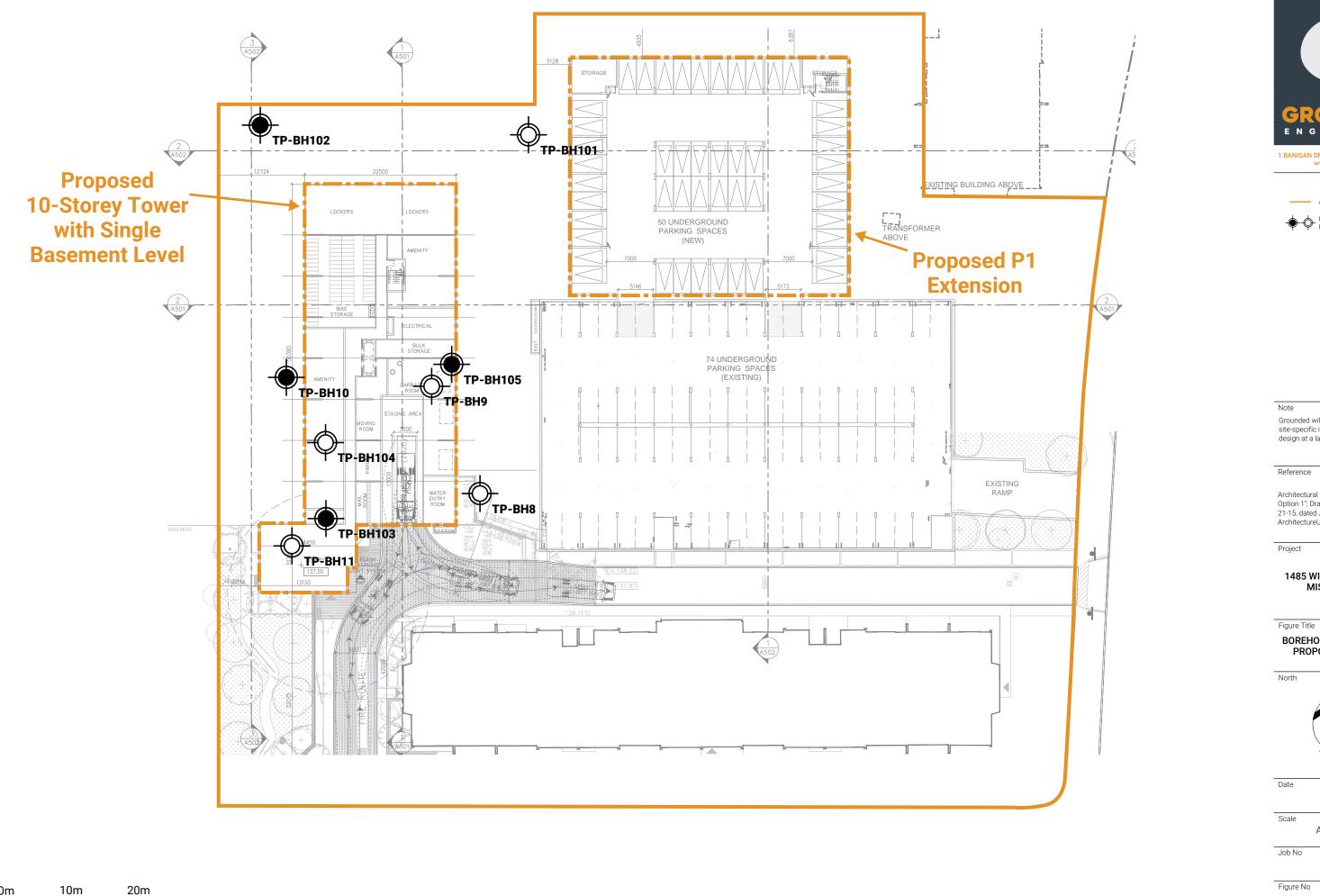
Nick Ng, P.Eng.

VCE OF ON THE OF THE

PROFESSIONAL ENGINEER


N. Y.-Q. NG


100510702


100510783 2024-05-23

FIGURES

LEGEND

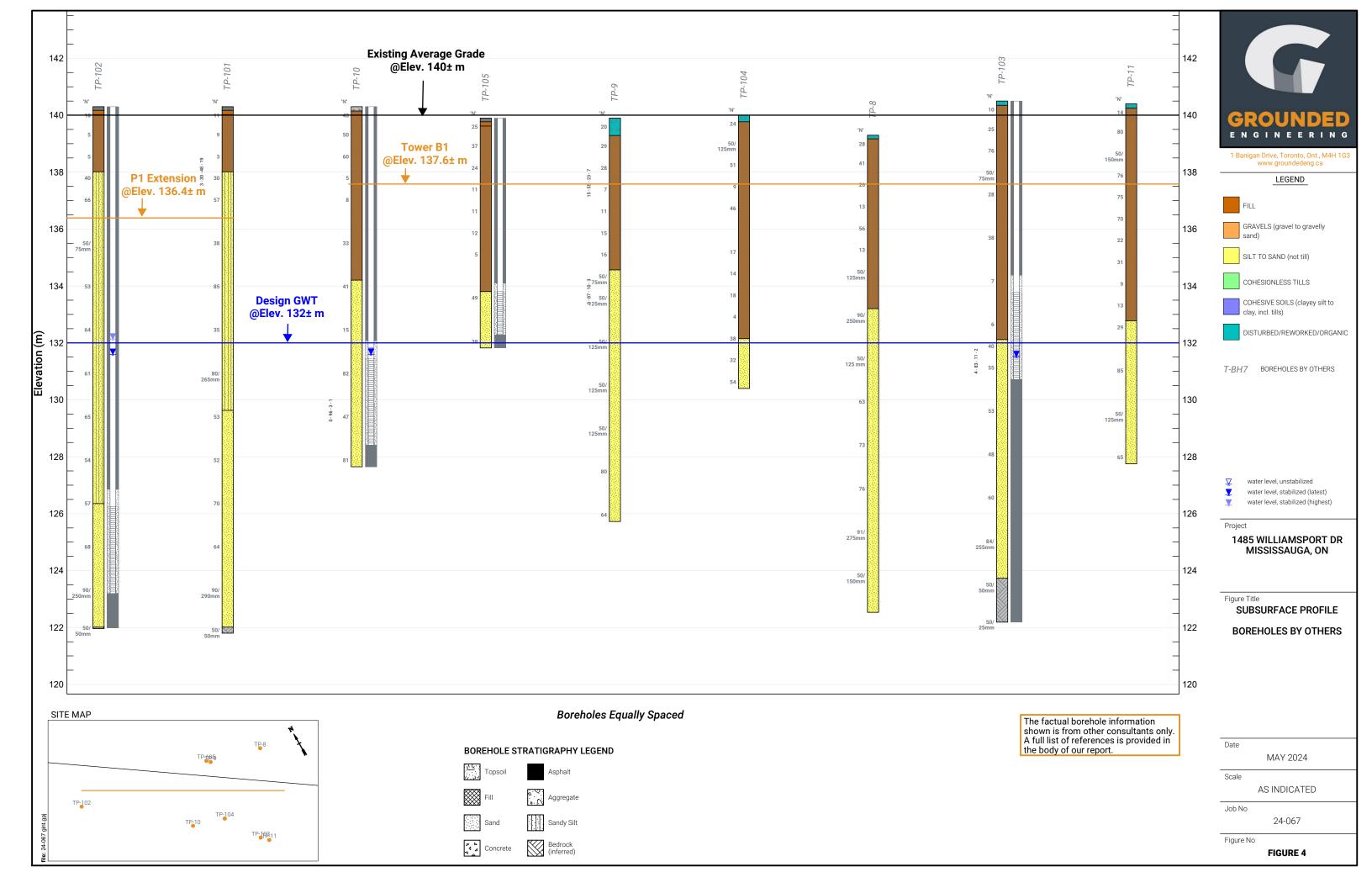
APPROXIMATE SITE LOCATION

Grounded will complete a confirmatory site-specific investigation for detailed design at a later date.

Architectural Drawing, "Basement Plan Option 1"; Drawing No. A300, Job No. 21-15, dated June 22, 2023, prepared by ArchitectureUnfolded

1485 WILLIAMSPORT DRIVE, MISSISSAUGA, ON

BOREHOLE LOCATION PLAN -PROPOSED CONDITIONS



MAY 2024

AS INDICATED

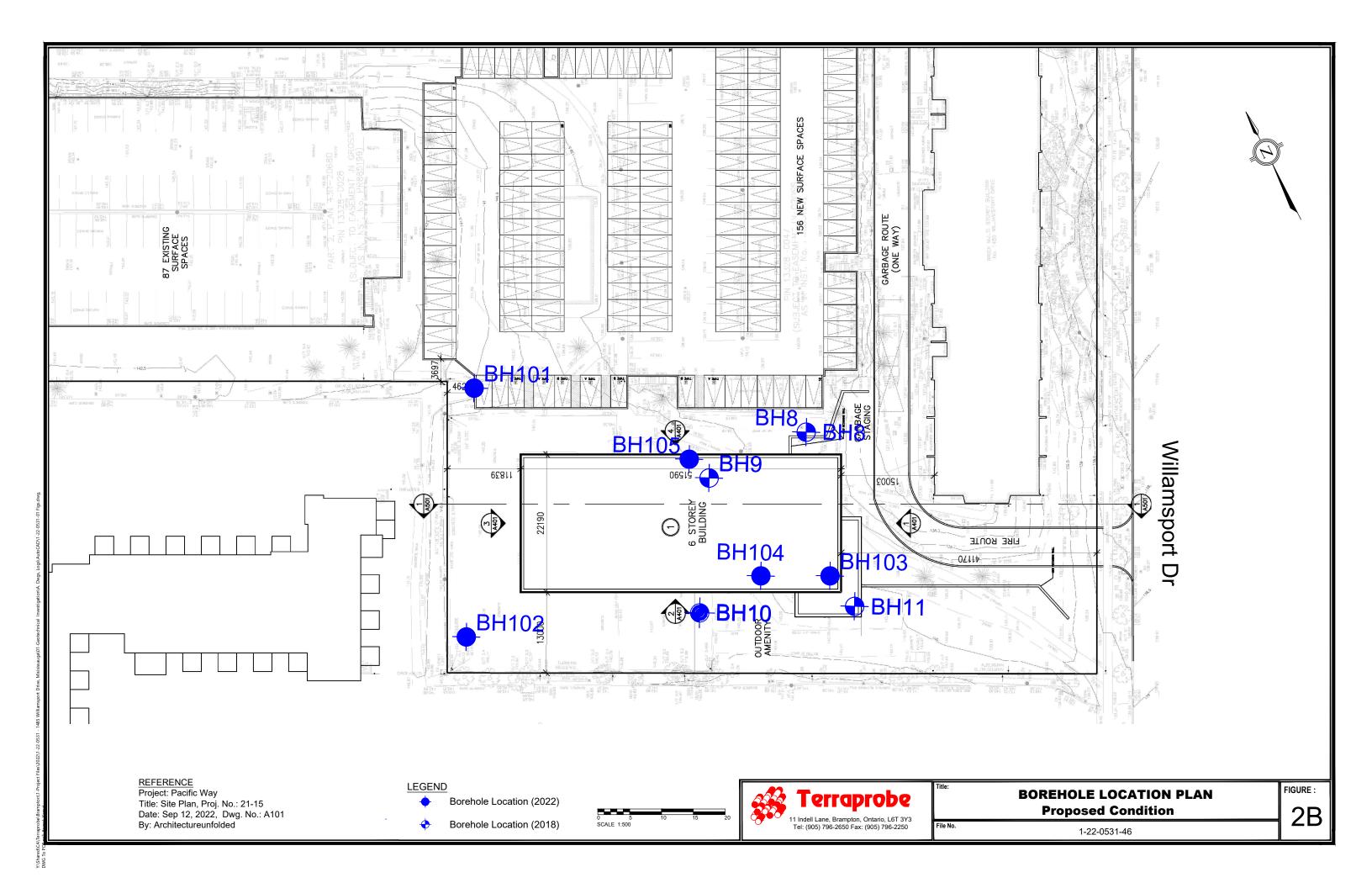

24-067

FIGURE 2

APPENDIX A

split spoon

shelby tube

wash sample

SS

ST

WS

SAMPLING METHODS PENETRATION RESISTANCE

AS auger sample
CORE cored sample
DP direct push
FV field vane
GS grab sample

Standard Penetration Test (SPT) resistance ('N' values) is defined as the number of blows by a hammer weighing 63.6 kg (140 lb.) falling freely for a distance of 0.76 m (30 in.) required to advance a standard 50 mm (2 in.) diameter split spoon sampler for a distance of 0.3 m (12 in.).

Dynamic Cone Test (DCT) resistance is defined as the number of blows by a hammer weighing 63.6 kg (140 lb.) falling freely for a distance of 0.76 m (30 in.) required to advance a conical steel point of 50 mm (2 in.) diameter and with 60° sides on 'A' size drill rods for a distance of 0.3 m (12 in.)."

COHESIONLE	SS SOILS	COHESIVE S	SOILS		COMPOSITIO	N
Compactness	'N' value	Consistency	'N' value	Undrained Shear Strength (kPa)	Term (e.g)	% by weight
very loose loose compact dense very dense	< 4 4 - 10 10 - 30 30 - 50 > 50	very soft soft firm stiff very stiff hard	< 2 2 - 4 4 - 8 8 - 15 15 - 30 > 30	< 12 12 - 25 25 - 50 50 - 100 100 - 200 > 200	trace silt some silt silty sand and silt	< 10 10 – 20 20 – 35 > 35

TESTS AND SYMBOLS

МН	mechanical sieve and hydrometer analysis	∑ -	Unstabilized water level
W, W _C	water content	$oxed{\Psi}$	1 st water level measurement
w _L , LL	liquid limit	$ar{oldsymbol{\Lambda}}$	2 nd water level measurement
w _P , PL	plastic limit	lacksquare	Most recent water level measurement
I _P , PI	plasticity index		Most recent water level measurement
k	coefficient of permeability	3.0+	Undrained shear strength from field vane (with sensitivity)
Υ	soil unit weight, bulk	Cc	compression index
Gs	specific gravity	Cv	coefficient of consolidation
φ'	internal friction angle	m _v	coefficient of compressibility
c'	effective cohesion	е	void ratio
Cu	undrained shear strength		

FIELD MOISTURE DESCRIPTIONS

Damp refers to a soil sample that does not exhibit any observable pore water from field/hand inspection.

Moist refers to a soil sample that exhibits evidence of existing pore water (e.g. sample feels cool, cohesive soil is at or close to plastic limit) but does not have visible pore water

Wet refers to a soil sample that has visible pore water

Project No. : 1-22-0531-01 Client : Starlight Investments Originated by : SM

Date started : March 7, 2017 Project : 1485 Williamsport Drive Compiled by : JH

Sheet No. : 1 of 2 Location: Mississauga, Ontario Checked by: MD

	et ind		LUC	auo				Ontario								Cile	скеа ву : МО
Posit		: E: 613414, N: 4830578 (UTM 17T)						n : Geode									
Rig t	ype	: Truck-mounted				Drilling	Method			-							
(i		SOIL PROFILE			SAMPL		<u>o</u>	Penetration (Blows / 0.3n	Test Value	s		Ŋ.A.	oieture	/ Plasticity	Φ	+	Lab Data
ale (r			go	L		alne	Sca	X Dynamic (Cone		_	Plasti		•	pac our n)	nen	p and ≝a Comments
Depth Scale (m)	Elev	Description	Graphic Log	Number	Туре	SPT 'N' Value	Elevation Scale (m)	1,0 Undrained S		3 <u>0 4</u> ngth (kPa)		Limit	Water	tural Liquid Content Limi	Headspace Vapour (ppm)	Instrument Details	a ~
epth	Depth (m)	Description	aph	N N	È	-	evat	O Unconfir Pocket F	ed	+ Fiel	d Vane Vane	Р	L N	IC LL	[원 ^	ا ق	
_0	139.3	GROUND SURFACE				SP	ΉΞ	40	80 1	20 16		1	0 2	20 30			(MIT) GR SA SI CL
		125mm TOPSOIL	/ ***	1	SS	28	139 –										
-		FILL , sand and silt, trace gravel, trace clay, compact to dense, brown, moist	\otimes	L'	33	20	139										
		compact to derise, brown, moist					-										
-1				2	SS	41						0					
							138 -										
				3	SS	26			/	1		0					
-2				Ě													
			\otimes				137 –		4								
ŀ			\otimes	4	SS	13		<	\downarrow				0				
-3			\otimes				-										
ľ		at 3.0 m, trace rock fragments possible cobble, very dense	\bowtie	5	SS	56	136 -				>)				at 3.0m, spoon wet
ŀ		cobble, very derise		Ľ			100										
		at 3.7 m, compact					-										at 3.7m, light auger grinding to 4.3m
-4				6	SS	13		<									$\bar{\Delta}$
			\otimes				135 –										<u>~</u>
		at 4.6 m, very dense	\bowtie	7A 7B	SS	50 / 125mm	_					0	0				
-5			\otimes	\\B\		(1231111)						J					
							134 -								_		
t																	
-6	133.2						-										
	6.1	SAND, trace silt, trace gravel, trace clay,	- XXX	8	SS	90 /	133 -					0					
ŀ		very dense, light brown, moist		Ľ		250mm	100					Ŭ					
							-										
-7																	
L							132 -										
				9	SS	50 /	_						0				
-8						125mm							_				
							131 -		-						-		
t																	
-9							-										
ľ		at 9.1 m, wet		40			130 -										at 9.1m, spoon wet,
-				10	SS	63	100							0			cave
							-										
- 10	1																
Į.	1						129 –										
				11		70	_										
- 11	1			11	SS	73							0				
1	1						128 –										
Γ																	
- 12	1																
				10	66	70	127 -								_		
ŀ	1			12	SS	76								0			
12							-										
- 13	1		::::				100										
gs.gp	1						126 –										
엄	1	at 13.7 m, grey			0.5	91 /	-										
주 - 14	1		::::	13	SS	275mm								0			
file: 1-22-0531-01 bh logs.gpj							125 –								1		
e: 1-2																	
É																	at 14.9m, very hard

Project No. : 1-22-0531-01 Client : Starlight Investments Originated by : SM

Date started : March 7, 2017 Project : 1485 Williamsport Drive Compiled by : JH

Sheet No. : 2 of 2 Location : Mississauga, Ontario Checked by : MD

Position : E: 613414, N: 4830578 (UTM 17T) Elevation Datum : Geodetic

ig type : Truck-mounted Drilling Method : Solid stem augers

(m)		SOIL PROFILE		Ç	SAMPI	ES	ale	Penetration Test Values (Blows / 0.3m)		Moisture / Plasticity	d)	+	Lab Data
Scale	Elev Depth (m)	Description (continued)	Graphic Log	Number	Туре	SPT 'N' Value	Elevation Sca (m)	X Dynamic Cone 10 20 30 Undrained Shear Strength O Unconfined	40 (kPa) + Field Vane ■ Lab Vane 160	Plastic Natural Liquid Limit Water Content Limit	Headspace Vapour (ppm)	Instrument Details	and Comments GRAIN SIZE DISTRIBUTION (%) (MIT) GR SA SI CL
- -16	122.5	SAND, trace silt, trace gravel, trace clay, very dense, light brown, moist (continued)at 15.2 m, trace shale fragments		14	SS	50 / (150mm)	124 - 123			0			auger grinding to 15.2m, very hard auger grinding to 16.8m at 15.8m, bedrock to 16.2m
'	122.5 16.8	at 16.8 m, inferred weathered bedrock	10	15	AS				-	· · · · · · · · · · · · · · · · · · ·			

END OF BOREHOLE

Unstabilized water level measured at 4.3 m below ground surface; borehole caved to 7.9 m below ground surface upon completion of drilling.

Project No. : 1-22-0531-01 Client : Starlight Investments Originated by : MC

Date started : March 14, 2017 Project : 1485 Williamsport Drive Compiled by : JH

Checked by: MD Sheet No. : 1 of 1 Location: Mississauga, Ontario Position : E: 613398, N: 4830582 (UTM 17T) Elevation Datum : Geodetic **Drilling Method** : Truck-mounted Rig type Penetration Test Values (Blows / 0.3m) SOIL PROFILE SAMPLES Lab Data $\widehat{\mathbb{E}}$ Moisture / Plasticity Headspace Vapour (ppm) Instrument Details 'N' Value and X Dynamic Cone Unstabilized Water Level Graphic Log Depth Scale Plastic Limit Natural Water Content Liquid Limit Comments 40 Number 1,0 20 30 Elevation (m) Type Elev Depth (m) Description Undrained Shear Strength (kPa) GRAIN SIZE DISTRIBUTION (%) (MIT) + Field Vane
■ Lab Vane
0 160 O Unconfined
Pocket Penetrometer SPT 0 139.9 **GROUND SURFACE** 8,0 120 GR SA SI CI - 0 71.14 600mm TOPSOIL SS 20 PID: 0 0.6 FILL, silty sand, some gravel, trace clay, 139 loose to compact, brown, moist 2 SS 29 0 PID: 0 3 SS 28 0 -PID: 10 138 -2 7 -PID: 5 15 55 23 7 137 - 3 ...at 3.0 m, silty 5 SS -PID: 5 11 136 6 SS 15 PID: 5 PID: 0 SS 16 135 -5 0 PID: 0 50 / 8 / SS / SAND, trace silt, trace gravel, trace clay, very dense, brown, moist 134 -6 50 / SS -PID: 0 0 87 10 3 9 133 50 / 10 SS PID: 0 25mm 132 8 ∇ 131 9 50 / SS PID: 0 11 0 125mn 130 10 50 / ...at 10.7 m, wet SS PID: 5 12 125mn 129 - 11 128 12 SS 80 PID: 0 127 13 ...at 13.7 m, grey SS 126 64 125.7 14 2

END OF BOREHOLE

Project No. : 1-22-0531-01 Client : Starlight Investments Originated by : JH

Date started : March 15, 2017 Project : 1485 Williamsport Drive Compiled by : JH

Sheet No. : 1 of 1 Location : Mississauga, Ontario Checked by : MD

Position : E: 613383, N: 4830567 (UTM 17T) Elevation Datum : Geodetic

	ηc .	Truck-mounted			1	Drilling	Method	: 8	Solid st	em / h	ollow s	tem au	ıgers							
_		SOIL PROFILE			SAMPI	ES	Φ.	Penetr	ration Te / 0.3m)	st Value	s		Ι.				4)			Lab Data
Depth Scale (m)	Elev Depth (m)	Description	Graphic Log	Number	Туре	SPT 'N' Value	Elevation Scale (m)	X Dy 1 Undrai O U	namic Con 10 2 ned She Inconfined Pocket Per	ne 30 3 ar Stren netromete	gth (kPa + Fie r ■ La	eld Vane b Vane	Plast Limit	ic N Wate	e / Plasti latural er Content	Liquid Limit	Headspace Vapour (ppm)	Instrument Details	abilized er Level	and Comment GRAIN SIZI STRIBUTION (MIT)
)	140.3 140.1	GROUND SURFACE 145mm PC CONCRETE	1 1			S	Н"—		10 8	0 1	20 1	60		10	20	30				GR SA S
	0.2	FILL, sand, some silt, some gravel, trace clay, dense to very dense, brown, moist	P b	1	SS	43	140 -						0							
				2	ss	50	139 –					\ 	0							
				3	SS	60	-						0							
				4	SS	5	138 –	٢					,	Þ					at 2.3 hollow	m, switche stem auge
		at 3.0 m, with pockets of light sand		5	SS	8	137 –	_\						0						
							136 –													
		at 4.6 m, with dark brown layers		6	SS	33	-							0						
							135 -													
	134.2 6.1	SAND, some silt, trace gravel, trace clay, compact to dense, brown, moist		7	SS	41	134 –							0					March March	15, 2018 16, 2018
							133 –			/										
				8	SS	15	-		<				0						∇	
							132 -											7		
		at 9.1 m, very dense		9	SS	82	131 –							C						
0							130 –													
1		at 10.7 m, wet		10	SS	47	- 129 –								0					0 96
2							-												:] :	
	127.7 12.6			11	SS	81	128 –								0				at 12. added	2m, water
		END OF BOREHOLE								<u>Da</u> Mar 23	<u>te</u> . 2018	TER LE	r Deptl 8.9		Elev	ation (n 131.4	<u>n)</u>			
		Unstabilized water level measured at 8.0 m below ground surface; borehole was open upon completion of drilling. 50 mm dia. monitoring well installed.								Apr 3, Oct 4, Sep 19 Sep 30 Oct 13	2018 2018 , 2022 , 2022		8.9 8.7 8.7 8.8 8.8			131.4 131.6 131.6 131.5 131.5				

Project No. : 1-22-0531-01 Client : Starlight Investments Originated by : SM

Date started : March 8, 2017 Project : 1485 Williamsport Drive Compiled by : JH

Sheet No. : 1 of 1 Location: Mississauga, Ontario Checked by: MD

Position : E: 613402, N: 4830551 (UTM 17T) Elevation Datum : Geodetic : Truck-mounted **Drilling Method** : Hollow stem augers Rig type Penetration Test Values (Blows / 0.3m) SOIL PROFILE SAMPLES Scale Lab Data $\widehat{\mathbb{E}}$ Headspace Vapour (ppm) Moisture / Plasticity Instrument Details and 'N' Value X Dynamic Cone Unstabilized Water Level Scale Graphic Log Plastic Limit Natural Water Content Liquid Limit Comments Number 1,0 20 30 40 Elevation (m) Type Elev Depth Description Undrained Shear Strength (kPa) Depth 8 GRAIN SIZE O Unconfined
Pocket Penetrometer → Field Vane

■ Lab Vane DISTRIBUTION (%) (m) SPT 0 (MIT) 140.4 **GROUND SURFACE** 8,0 120 GR SA SI CI - 0 71.14 150mm TOPSOIL SS 14 0 PID: 0 140 SS1 Analysis: OC Pest 0.6 FILL, sand, trace gravel, trace silt, very ...at 0.8m, light auger grinding to 1.5m dense, light brown, damp 2 SS 80 0 PID: 0 139 SS2 Analysis: M&I. PCB SS 50 0 PID: 0 150mn -2 138 4 SS 76 0 -PID: 0 SS -PID: 20 5 75 0 SS5 Analysis: PHC 137 6 SS 70 0 PID: 0 136 ...at 4.6 m, moist, compact to dense 7 -PID: 0 SS 22 0 - 5 ...at 5.2 m, trace brick, trace glass, trace 135 asphalt, dark brown 8 SS 31 PID: 0 φ - 6 ...at 6.1 m. trace cinders PID: 0 SS 9 9 0 134 SS 0 PID: 0 10 13 133 SAND, trace silt, trace gravel, trace clay, compact, light brown, moist SS 29 0 -PID: 0 SS11 Analysis: M&I, PHC 8 132 9 ...at 9.1 m, wet, very dense 12 SS 85 131 0 -PID· ∩ 10 130 50 / SS PID: 0 ...at 10.7m, spoon wet 11 0 125mn ...at 10.7m, water - 11 129 12 SS 65 128 PID: 0 127.8 12.6 **END OF BOREHOLE** Borehole was dry and caved to 7.9 m below ground surface upon completion of drilling.

Project No. : 1-22-0531-01 Client : Starlight Investments Originated by : ZJ

Date started : September 15, 2022 Project : 1485 Williamsport Drive Compiled by : FM

Sheet No. : 1 of 2 Location: Mississauga, Ontario Checked by: HR

_		et inc		LUC	auc				Ontario								Once	SKCU	by : HR
F	Positi		: E: 613375, N: 4830612 (UTM 17T)			ı	Elevati	on Datur	n : Geodeti	С									
F	Rig ty	/ре	: Track-mounted				Drilling	Method	: Solid ste	em auge	ers/mud r	otary							
┢	<u></u>		SOIL PROFILE			SAMPI	LES	Φ	Penetration Te (Blows / 0.3m)	st Values			M-1-4	/ DI- "	4	0			Lab Data
	Depth Scale (m)			ğ				Elevation Scale (m)	➤ Dynamic Cor	ne		•	Moisture			Headspace Vapour (ppm)	Instrument Details	y vel	and
	Sca	Elev	.	Graphic Log	Number)e	SPT 'N' Value	ы (ш	1,0 2	0 3,0	4,0	Plas Lim	suc Na it Water	atural Content	Liquid Limit	ads apo ppn	trun eta	Unstabilized Water Level	Comments
	pth (Depth	Description	ļ ģ	E I	Туре	Ż	/atic	Undrained She O Unconfined Pocket Per	ar Strength	n (kPa) ♣ Field Var	ne	PL N	MC L	L	Hes	Inst D	Unst	GRAIN SIZE DISTRIBUTION (%) (MIT)
		(m) 140.3	GROUND SURFACE	Gr	~		SPT	Ele Ele	Pocket Per40 8	etrometer 0 120	+ Field Var ■ Lab Vane 160	9	10 2	20 3)				(MIT) GR SA SI CI
H	0	140.0	130mm ASPHALTIC CONCRETE	/ 5 . Y			- 0,						1		-				GR SA SI CI
		0.3	150mm AGGREGATE	/ XX	1	SS	11	140 –					φ						
Ī				′ ‱	╢			1											
L	1		FILL, sandy silt to sand and silt, trace gravel, very loose to compact, brown, moist		2	SS	9] -				- ,							
	'			\otimes	<u>_</u>		_	139 -	/										
ŀ					<u> </u>			139 -											
				\otimes	3	SS	3						d						
F	2			\otimes	╢			1											
		138.0 2.3	CANDY OUT come along traces ground	XXX	1			138 –											
ŀ			SANDY SILT, some clay, trace gravel, compact to very dense, brown, moist		4	SS	30						9						3 30 48 19
1	•		, , , , ,					-											
	3				5	SS	E7	407											
L					L	ు	57	137 –				7							
					1			.				/							
F	4				}						/								
					:			136 –			//	_							
ŀ			sand and gravel, wet		<u> </u>						/								
	_		sand and graver, wet		6	SS	38	-			(ф						
F	5							1			\								
L					:			135 -											
]						\								
L	6							-				Π							
			sand and gravel, wet		7	SS	85	134 –											
ŀ					<u> </u>		- 00					/							
								-				/							
F	7				:						- /								
								133 –			_/_	_							
t			wat		<u> </u>														
	0		wet		8	SS	35	-			(0						
Г	8				-														
L								132 -											
]			_											
Ŀ	9										\	∖ l							
			grey		9	SS	80 /	131 -				\							
ŀ						33	265mm												
]			-											
H	10]														
]			130 -				+							
Ţ		129.6 10.7		1111	\vdash														
L	11	10.7	SAND, some silt, trace gravel, trace clay, very dense, brown, wet		10	ss	53	-						0					
	• •		13. 3 30100, 5101111, 1101		1			129 –											
ŀ					1			1 '23-											
								-											
F	12			ļ															
					11	ss	52	128 -					0						
ŀ					<u>!''</u>	- 55	J2												
	12				1			-											
	13				1														
s.gpj]			127 –											
file: 1-22-0531-01 bh logs.gpj					<u> </u>														
01 b	14				12	SS	70						0						
0531					1			126 –											
1-22-					1														
ije:					1			-											
٠ ــــ					1					1 1				1					

Project No. : 1-22-0531-01 Client : Starlight Investments Originated by : ZJ

Date started : September 15, 2022 Project : 1485 Williamsport Drive Compiled by : FM

Sheet No. : 2 of 2 Location: Mississauga, Ontario Checked by: HR

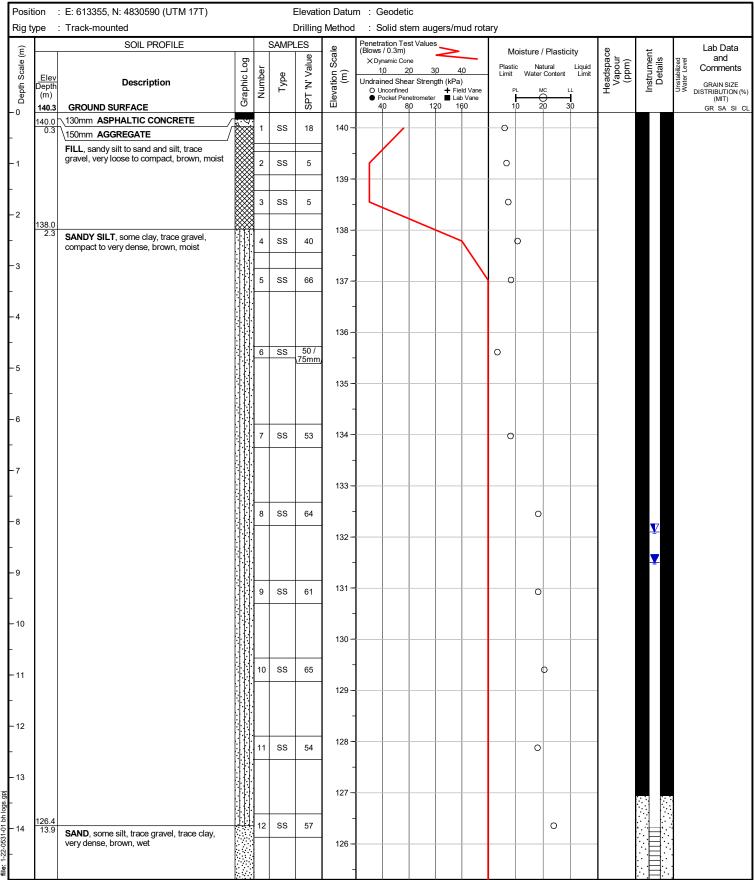
Position : E: 613375, N: 4830612 (UTM 17T) Elevation Datum : Geodetic

Rig type : Track-mounted Drilling Method : Solid stem augers/mud rotary

(F		SOIL PROFILE			SAMPI		<u>o</u>	Penetration Test Values (Blows / 0.3m)	Moisture / Plasticity	Φ	±.	Lab Data
T G Depth Scale (m)	Depth (m)		Graphic Log	Number	Туре	SPT 'N' Value	Elevation Scale (m)	X Dynamic Cone	Plastic Natural Liquid Limit Water Content Limit	Headspace Vapour (ppm)	Instrument Details	and Comments GRAIN SIZE DISTRIBUTION (%) (MIT) GR SA SI CL
		SAND, some silt, trace gravel, trace clay, very dense, brown, wet (continued)		13	SS	64	125 -		0			
- 16 -							- 124 -					
- 17		grey below		14	SS	90 / 290mm	123 -		0			
- - 18	122.0 121.8 18.5		¥22	45	00	50/	- 122 -					
	18.5	INFERRED BEDROCK, shale fragments (GEORGIAN BAY FORMATION)		1 15	SS	50/ \50mm			O			

END OF BOREHOLE

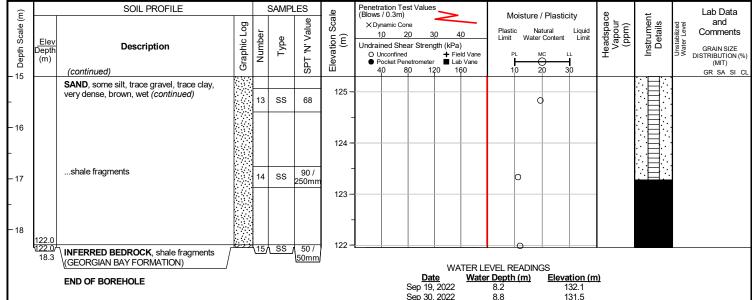
Borehole contained drill water upon completion of drilling. Unstabilized water level and cave not measured.


1-22-0531-01 bh logs.gpj

Project No. : 1-22-0531-01 Client : Starlight Investments Originated by : ZJ

Date started : September 14, 2022 Project : 1485 Williamsport Drive Compiled by : FM

Sheet No. : 1 of 2 Location: Mississauga, Ontario Checked by: HR


Project No. : 1-22-0531-01 Originated by: ZJ Client : Starlight Investments

Date started : September 14, 2022 Project : 1485 Williamsport Drive Compiled by: FM

: 2 of 2 Checked by: HR Sheet No. Location: Mississauga, Ontario

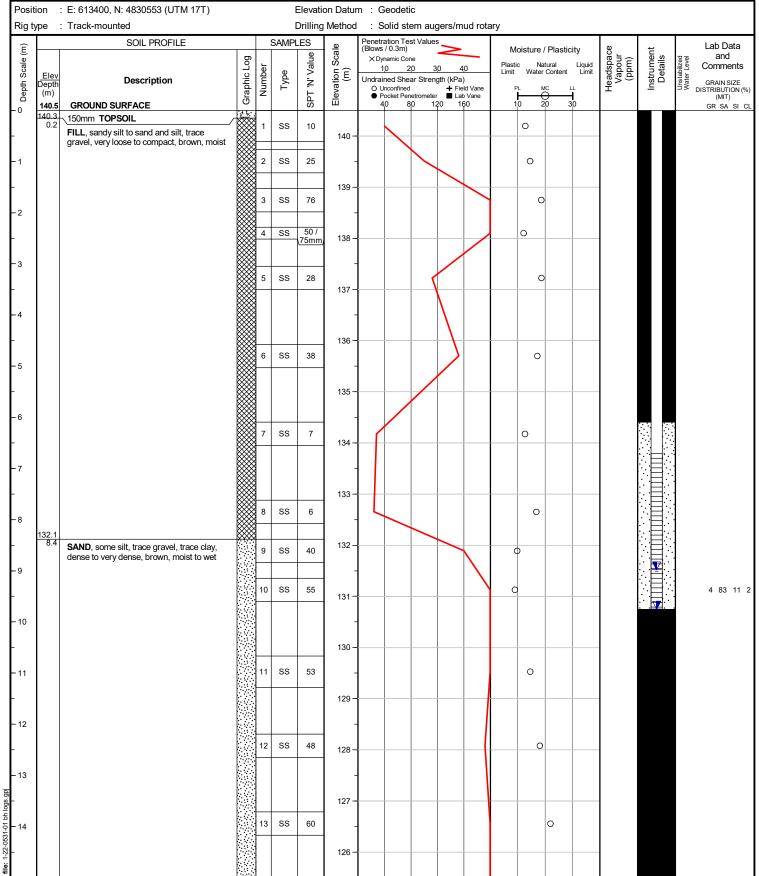
Position : E: 613355, N: 4830590 (UTM 17T) Elevation Datum : Geodetic

Drilling Method Rig type Track-mounted : Solid stem augers/mud rotary

END OF BOREHOLE

Borehole contained drill water upon completion of drilling. Unstabilized water level and cave not measured.

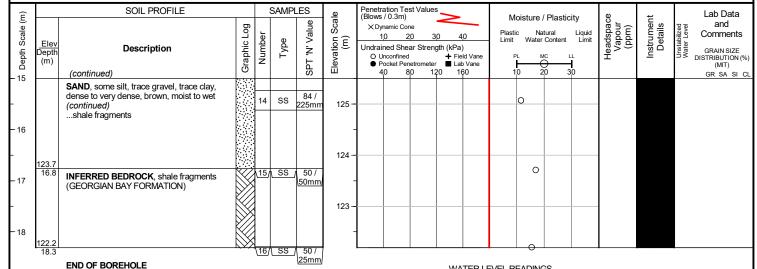
50 mm dia. monitoring well installed.


<u>Date</u> Sep 19, 2022 Sep 30, 2022 8.8 131.5 Oct 13, 2022 131.5

Project No. : 1-22-0531-01 Client : Starlight Investments Originated by : ZJ

Date started : September 12, 2022 Project : 1485 Williamsport Drive Compiled by : FM

Sheet No. : 1 of 2 Location: Mississauga, Ontario Checked by: HR


Project No. : 1-22-0531-01 Client : Starlight Investments Originated by: ZJ

Date started : September 12, 2022 Project : 1485 Williamsport Drive Compiled by: FM

Sheet No. :2 of 2 Location: Mississauga, Ontario Checked by: HR

Position : E: 613400, N: 4830553 (UTM 17T) Elevation Datum : Geodetic

Drilling Method Rig type Track-mounted : Solid stem augers/mud rotary

Borehole contained drill water upon completion of drilling. Unstabilized water level and cave not measured.

50 mm dia. monitoring well installed.

Elevation (m) 131.5 130.8 130.5 <u>**Date</u>** Sep 19, 2022</u> 9.8 10.0 Sep 30, 2022 Oct 13, 2022

Project No. : 1-22-0531-01 Client : Starlight Investments Originated by : ZJ

Date started : September 13, 2022 Project : 1485 Williamsport Drive Compiled by : FM

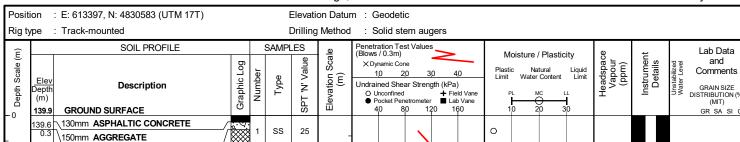
Sheet No. : 1 of 1 Location : Mississauga, Ontario Checked by : HR

Position : E: 613393, N: 4830564 (UTM 17T) Elevation Datum : Geodetic

· [SOIL PROFILE			SAMPI		<u>e</u>	Penetration To (Blows / 0.3m)	est Value:	<u> </u>		Ma	isture / P	Daeticity	Φ	t	Lab Data
- [Elev Depth (m)	Description GROUND SURFACE	Graphic Log	Number	Туре	SPT 'N' Value	Elevation Scale (m)	X Dynamic Co	one 20 3 ear Strend d netrometer	0 4 <u>0</u> gth (kPa) ♣ Field	Vane /ane	Plastic Limit PL PL 10	Natur Water Co		Headspace Vapour (ppm)	Instrument Details	and Comment of the state of the
	139.8	230mm TOPSOIL	7, 14				140										
	0.2	FILL, sandy silt to sand and silt, trace gravel, loose to very dense, brown, moist		1	SS	24 50 /	-					0					
				2	SS	125mm	139 -					0					
				3	SS	51	138 -					0					
				4	SS	9	-					0					
			\bowtie				137 -										
				5	SS	46	-				>		0				
							136 –										
				6	ss	17	135 –						0				
			\otimes				100	/									
				7	SS	14	-					c					
		trace wood pieces		8	SS	18	134 -					C	5				
				9	SS	4	133 -						0)			
	132.2			16		20	-										
	7.8	SAND , some silt, trace gravel, trace clay, dense to very dense, brown, wet		10	SS	38	132 -			7			0				
				11	SS	32	131 –							0			⊽
	130.4 9.6			12	SS	54	-						0				

END OF BOREHOLE

Unstabilized water level measured at 8.5 m below ground surface; borehole caved to 8.5 m below ground surface upon completion of drilling.


2-0531-01 bh logs.gpj

: 1-22-0531-01 Originated by: ZJ Project No. Client : Starlight Investments

Date started : September 13, 2022 Project : 1485 Williamsport Drive Compiled by: FM

Checked by: HR Sheet No. : 1 of 1 Location: Mississauga, Ontario

END OF BOREHOLE

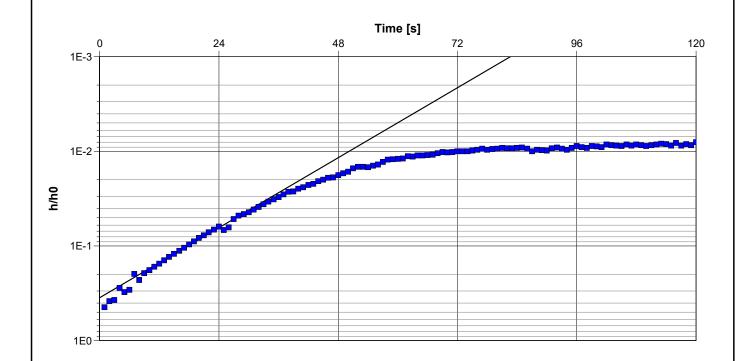
Unstabilized water level measured at 7.3 m below ground surface; borehole was open upon completion of drilling.

50 mm dia. monitoring well installed.

WAT	ΈR	LE	VEL	RE	Αľ	DING	S

<u>Date</u>	Water Depth (m)	Elevation (m)
Sep 19, 2022	dry	n/a
Sep 30, 2022	dry	n/a
Oct 13, 2022	dry	n/a

Slug Test Analysis Report Appendix D


Project: 1485 Williamsport Drive

Number: 1-22-0531-46

Client: Starlight Investments

Location: MississaugaSlug Test: BH 10Test Well: BH 10Test Conducted by: DHTest Date: 9/30/2022Analysis Performed by: JSBBH 10 - FHTAnalysis Date: 10/21/2022

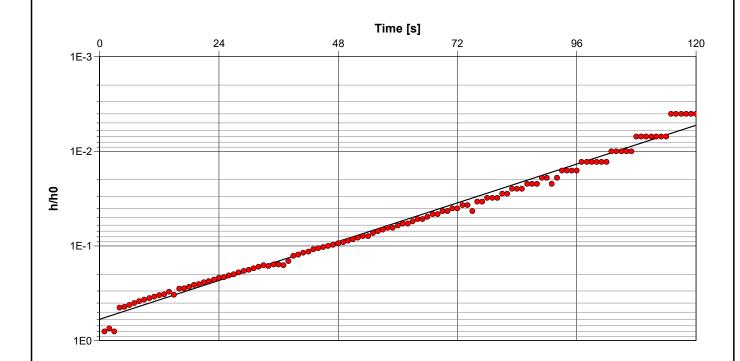
Aquifer Thickness: 3.10 m

Calculation using Bouwer & Rice

Observation Well	Hydraulic Conductivity [m/s]	
BH 10	2.75 × 10 ⁻⁵	

Slug Test Analysis Report

Appendix D


Project: 1485 Williamsport Drive

Number: 1-22-0531-46

Client: Starlight Investments

Location: MississaugaSlug Test: BH 102Test Well: BH102Test Conducted by: AATest Date: 10/27/2022Analysis Performed by: JSBBH 102 FHTAnalysis Date: 10/28/2022

Aquifer Thickness: 3.10 m

Calculation using Bouwer & Rice

Observation Well	Hydraulic Conductivity [m/s]	
BH102	1.53 × 10 ⁻⁵	

APPENDIX B

	TOWER B1	- Sŀ	ORT TERM - PILE	& LAGGING	
Excavation D	imensions [m]			Rainfall Data	
N-S	58		Year	2	100
E-W	23		Hour	3	12
Area (m2)	1293.75		Depth (mm)	25	94
Perimeter (m)	160		Depth (m)	0.025	0.094
S	Section		Flow [m3/day]	Length [m]	Volume [L/day]
	Base		0	57.5	-
	Sides		0	160	-
(extra row if s	sides are different)			0	-
	Total				-
Factor of	of Safety	3.0			-
	_				
Storm Events			Summary	L/day	L/min
2 Year [L/day]	100 Year [L/day]		Groundwater	-	-
32,344	122,000		Rainfall	33,000	22.9
			Total	33,000	22.9

	TOWER B1 -	LO	NG TERM - PILE 8	& LAGGING	
Excavation Di	mensions [m]			Rainfall Data	
N-S	58		Year	2	100
E-W	23		Hour	3	12
Area (m2)	1293.75		Depth (mm)	25	94
Perimeter (m)	160		Depth (m)	0.025	0.094
	-				
S	ection		Flow [m3/day]	Length [m]	Volume [L/day]
	Base		0	57.5	-
;	Sides		0	160	-
(extra row if s	ides are different)			0	-
	Total				-
Factor o	of Safety 3	3.0			-
Infiltratio	on [L/day]		Summary	L/day	L/min
	6000		Groundwater	-	-
			Infiltration	6,000	4.2
			Total	6,000	4.2

	P1 EXTENSIO	N - :	SHORT TERM - PIL	E & LAGGING	
Excavation D	imensions [m]			Rainfall Data	
N-S	42		Year	2	100
E-W	36		Hour	3	12
Area (m2)	1473.25		Depth (mm)	25	94
Perimeter (m)	154		Depth (m)	0.025	0.094
S	ection		Flow [m3/day]	Length [m]	Volume [L/day]
	Base		0	41.5	-
!	Sides		0	154	-
(extra row if s	ides are different)			0	-
	Total				-
Factor of	of Safety	3.0			-
	_				
Storm Events			Summary	L/day	L/min
2 Year [L/day]	100 Year [L/day]		Groundwater	ı	-
36,831	139,000		Rainfall	37,000	25.7
			Total	37,000	25.7

	P1 EXTENSION	- LONG TERM - PILI	E & LAGGING	
Excavation Di	mensions [m]		Rainfall Data	
N-S	42	Year	2	100
E-W	36	Hour	3	12
Area (m2)	1473.25	Depth (mm)	25	94
Perimeter (m)	154	Depth (m)	0.025	0.094
S	ection	Flow [m3/day]	Length [m]	Volume [L/day]
	Base	0	41.5	-
	Sides	0	154	-
(extra row if s	ides are different)		0	-
	Total			-
Factor o	f Safety 3.0)		-
Infiltratio	n [L/day]	Summary	L/day	L/min
	5775	Groundwater	-	-
		Infiltration	6,000	4.2
		Total	6,000	4.2

APPENDIX C

CA14045-APR18 R1

1-18-0071-46 1485 Willaimsport

Prepared for

Terraprobe Inc

First Page

CLIENT DETAILS	S	LABORATORY DETAI	ILS
Client	Terraprobe Inc	Project Specialist	Deanna Edwards, B.Sc, C.Chem
		Laboratory	SGS Canada Inc.
Address	11 Indell Lane, Brampton	Address	185 Concession St., Lakefield ON, K0L 2H0
	Canada, L6T 3Y3		
	Phone: (905) 796-2650. Fax:(905) 796-2250		
Contact	Zenith Wong	Telephone	705-652-2000
Telephone	(905) 796-2650	Facsimile	705-652-6365
Facsimile	(905) 796-2250	Email	deanna.edwards@sgs.com
Email	zwong@terraprobe.ca	SGS Reference	CA14045-APR18
Project	1-18-0071-46 1485 Willaimsport	Received	04/03/2018
Order Number		Approved	04/09/2018
Samples	Ground Water (1)	Report Number	CA14045-APR18 R1
		Date Reported	04/09/2018

COMMENTS

RL - SGS Reporting Limit

Temperature of Samples upon receipt: 4 degrees C

Cooling Agent present: Yes Custody seal present: No

Chain of Custody Number: 01065

SIGNATORIES

Deanna Edwards, B.Sc, C.Chem

searra Edwards

SGS Canada Inc. 185 Concession St., Lakefield ON, K0L 2H0

t 705-652-2000 f 705-652-6365

www.sgs.com

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-8
Exceedance Summary	9
QC Summary	10-19
Legend	20
Annexes	21-22

CA14045-APR18 R1

Client: Terraprobe Inc

Project: 1-18-0071-46 1485 Willaimsport

PACKAGE: SANSEW - General Chemis	stry (WATER)		Sa	mple Number	8
			8	Sample Name	SW-UF
1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Di	ischarge - BL_53_2010		s	Sample Matrix	Ground Water
2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Disc	charge - BL_53_2010			Sample Date	03/04/2018
Parameter	Units	RL	L1	L2	Result
General Chemistry					
Biochemical Oxygen Demand (BOD5)	mg/L	2	300	15	< 4↑
Total Suspended Solids	mg/L	2	350	15	679
Total Kjeldahl Nitrogen	as N mg/L	0.5	100	1	< 0.5
CKAGE: SANSEW - Metals and Inorganics				mple Number	8
			8	Sample Name	SW-UF
1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Di	ischarge - BL_53_2010			Sample Matrix	Ground Water
2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Disc	charge - BL_53_2010			Sample Date	03/04/2018
Parameter	Units	RL	L1	L2	Result
letals and Inorganics					
Fluoride	mg/L	0.06	10		0.24
Cyanide (total)	mg/L	0.01	2	0.02	< 0.01
Sulphate	mg/L	2	1500		40
Aluminum (total)	mg/L	0.001	50		38.9
Antimony (total)	mg/L	0.0002	5		0.0007
Arsenic (total)	mg/L	0.0002	1	0.02	0.0104
Cadmium (total)	mg/L	0.00000	0.7	0.008	0.000195
		3			
Chromium (total)	mg/L	0.00003	5	0.08	0.0319
Copper (total)	mg/L	0.00002	3	0.05	0.05059
Cobalt (total)	mg/L	0.00000	5		0.0233
		4			
Lead (total)	mg/L	0.00001	3	0.12	0.0271

Zinc (total)

FINAL REPORT

CA14045-APR18 R1

Client: Terraprobe Inc

Project: 1-18-0071-46 1485 Willaimsport

Project Manager: Zenith Wong

Samplers: Bob Racher

DAGKAGE CANGEW Matala and last			Sai	mple Number	8
PACKAGE: SANSEW - Metals and Inc	organics		Sai	inhie izaumei	0
(WATER)					
			S	Sample Name	SW-UF
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer	Discharge - BL_53_2010		s	ample Matrix	Ground Water
2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Discharge - BL_53_2010 Sample D				Sample Date	03/04/2018
Parameter	Units	RL	L1	L2	Result
Metals and Inorganics (continued)					
Manganese (total)	mg/L	0.00001	5	0.05	1.20
Molybdenum (total)	mg/L	0.00001	5		0.00244
Nickel (total)	mg/L	0.0001	3	0.08	0.0361
Phosphorus (total)	mg/L	0.003	10	0.4	0.810
Selenium (total)	mg/L	0.00004	1	0.02	0.00057
Silver (total)	mg/L	0.00005	5	0.12	0.00006
Tin (total)	mg/L	0.00001	5		0.0140
Titanium (total)	mg/L	0.00005	5		0.343

0.002

mg/L

3

0.04

CA14045-APR18 R1

Client: Terraprobe Inc

Project: 1-18-0071-46 1485 Willaimsport

PACKAGE: SANSEW - Microbiology	(WATER)		Sa	ample Number	8
				Sample Name	SW-UF
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sew	ver Discharge - BL_53_2010		8	Sample Matrix	Ground Water
L2 = SANSEW / WATER / Peel Table 2 - Storm Sewer	Discharge - BL_53_2010			Sample Date	03/04/2018
Parameter	Units	RL	L1	L2	Result
Microbiology					
Fecal Coliform	cfu/100mL	-			0
E. Coli	cfu/100mL	-		200	0
PACKAGE: SANSEW - Nonylphenol	and Ethoxylates		Sa	ample Number	8
(WATER)					
			\$	Sample Name	SW-UF
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sew	ver Discharge - BL 53 2010		\$	Sample Matrix	Ground Water
L2 = SANSEW / WATER / Peel Table 2 - Storm Sewer	_			Sample Date	03/04/2018
Parameter	Units	RL	L1	L2	Result
Nonylphenol and Ethoxylates					
Nonylphenol	mg/L	0.001	0.02		< 0.001
7.	-		0.02		< 0.01
Nonylphenol Ethoxylates	mg/L	0.01	0.2		< 0.01
Nonylphenol diethoxylate	mg/L	0.01			
Nonylphenol monoethoxylate	mg/L	0.01			< 0.01
PACKAGE: SANSEW - Oil and Great	ise (WATER)		Sa	ample Number	8
	, ,		5	Sample Name	SW-UF
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sew	ver Discharge - BL_53_2010		5	Sample Matrix	Ground Water
L2 = SANSEW / WATER / Peel Table 2 - Storm Sewer	Discharge - BL_53_2010			Sample Date	03/04/2018
Parameter	Units	RL	L1	L2	Result
Oil and Grease					
Oil & Grease (total)	mg/L	2			< 2
Oil & Grease (animal/vegetable)	mg/L	4	150		< 4
Oil & Olease (allillial/veyelable)	IIIg/L	7	130		

CA14045-APR18 R1

Client: Terraprobe Inc

Project: 1-18-0071-46 1485 Willaimsport

PACKAGE: SANSEW - Oil and Grease (\	WATER)		Sa	ample Number	8
				Sample Name	SW-UF
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Disc	charge - BL_53_2010			Sample Matrix	Ground Water
L2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Discha	arge - BL_53_2010			Sample Date	03/04/2018
Parameter	Units	RL	L1	L2	Result
Oil and Grease (continued)					
Oil & Grease (mineral/synthetic)	mg/L	4	15		< 4
DACKACE CANCELL Other (ODD) (MA	ATED)		S	ample Number	8
PACKAGE: SANSEW - Other (ORP) (WA	AIER)			•	SW-UF
				Sample Name	
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Disc	-			Sample Matrix	Ground Water
L2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Discha				Sample Date	03/04/2018
Parameter	Units	RL	L1	L2	Result
Other (ORP)					
рН	no unit	0.05	10	9	7.40
Mercury (total)	mg/L	0.00001	0.01	0.0004	< 0.00001
			_		
PACKAGE: SANSEW - PCBs (WATER)				ample Number	8
				Sample Name	SW-UF
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Disc	charge - BL_53_2010			Sample Matrix	Ground Water
L2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Dischar	arge - BL_53_2010			Sample Date	03/04/2018
Parameter	Units	RL	L1	L2	Result
PCBs					
Polychlorinated Biphenyls (PCBs) - Total	mg/L	0.0001	0.001	0.0004	< 0.0001
PACKAGE: SANSEW - Phenols (WATER	₹)		Sa	ample Number	8
				Sample Name	SW-UF
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Disc	charge - BL 53 2010			Sample Matrix	Ground Water
L2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Discha				Sample Date	03/04/2018
Parameter	Units	RL	L1	L2	Result
	01110				

CA14045-APR18 R1

Client: Terraprobe Inc

Project: 1-18-0071-46 1485 Willaimsport

	·					
PACKAGE: SANSEW - Phenols (WATER)			Sa	mple Number	8	
			8	Sample Name	SW-UF	
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Discha	SEW / WATER / Peel Table 1 - Sanitary Sewer Discharge - BL_53_2010 Sample					
L2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Discharg	ge - BL_53_2010			Sample Date	03/04/2018	
Parameter	Units	RL	L1	L2	Result	
Phenols						
4AAP-Phenolics	ma/l	0.002	1	0.008	< 0.002	
i Honorio	g/L	0.002		0.000		
PACKAGE: SANSEW - SVOCs (WATER)			Sa	mple Number	8	
			8	Sample Name	SW-UF	
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Discha	arge - BL 53 2010		8	Sample Matrix	Ground Water	
L2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Discharg	-			Sample Date	03/04/2018	
Parameter	Units	RL	L1	L2	Result	
SVOCs						
		0.000	0.00	0.045	< 0.002	
di-n-Butyl Phthalate	mg/L	0.002	0.08	0.015	< 0.002	
Bis(2-ethylhexyl)phthalate	mg/L	0.002	0.012	0.0088	< 0.002	
PACKAGE: SANSEW - VOCs (WATER)			Sa	mple Number	8	
			5	Sample Name	SW-UF	
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Discha	orgo Pl 52 2010			Sample Matrix	Ground Water	
L2 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Discharge				Sample Date	03/04/2018	
Parameter	Units	RL	L1	L2	Result	
	Office	IXL.			Result	
VOCs						
Chloroform	mg/L	0.0005	0.04	0.002	0.0240	
1,2-Dichlorobenzene	mg/L	0.0005	0.05	0.0056	< 0.0005	
1,4-Dichlorobenzene	mg/L	0.0005	0.08	0.0068	< 0.0005	
The state of the s		0.0005	4	0.0056	< 0.0005	
cis-1,2-Dichloroethene	mg/L	0.0003	4	0.0000		
cis-1,2-Dichloroethene trans-1,3-Dichloropropene	mg/L mg/L	0.0005	4	0.0000	< 0.0005	

CA14045-APR18 R1

Client: Terraprobe Inc

Project: 1-18-0071-46 1485 Willaimsport

Project Manager: Zenith Wong

PACKAGE: SANSEW - VOCs (WATER)			Sa	mple Number	8
			5	Sample Name	SW-UF
1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Disc	scharge - BL_53_2010		8	Sample Matrix	Ground Water
2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Disch	narge - BL_53_2010			Sample Date	03/04/2018
Parameter	Units	RL	L1	L2	Result
/OCs (continued)					
1,1,2,2-Tetrachloroethane	mg/L	0.0005	1.4	0.017	< 0.0005
Methyl ethyl ketone	mg/L	0.02	8		< 0.02
Styrene	mg/L	0.0005	0.2		< 0.0005
Tetrachloroethylene (perchloroethylene)	mg/L	0.0005	1	0.0044	< 0.0005
Trichloroethylene	mg/L	0.0005	0.4	0.008	< 0.0005
Trichloroethylene PACKAGE: SANSEW - VOCs - BTEX (W		0.0005		0.008 ample Number	< 0.0005 8
		0.0005	Sa		
	VATER)	0.0005	Sa	mple Number	8
PACKAGE: SANSEW - VOCs - BTEX (W	VATER) scharge - BL_53_2010	0.0005	Sa (ample Number Sample Name	8 SW-UF
PACKAGE: SANSEW - VOCs - BTEX (W	VATER) scharge - BL_53_2010	0.0005	Sa (ample Number Sample Name Sample Matrix	8 SW-UF Ground Water
PACKAGE: SANSEW - VOCs - BTEX (W 1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Disch. 2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Disch.	VATER) scharge - BL_53_2010 narge - BL_53_2010		Sa S	ample Number Sample Name Sample Matrix Sample Date	8 SW-UF Ground Water 03/04/2018
PACKAGE: SANSEW - VOCs - BTEX (W 1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Disch 2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Disch Parameter	VATER) scharge - BL_53_2010 narge - BL_53_2010		Sa S	ample Number Sample Name Sample Matrix Sample Date	8 SW-UF Ground Water 03/04/2018
PACKAGE: SANSEW - VOCs - BTEX (W 1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Disch 2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Disch Parameter /OCs - BTEX	VATER) scharge - BL_53_2010 narge - BL_53_2010 Units	RL	Sa S S	ample Number Sample Name Sample Matrix Sample Date L2	8 SW-UF Ground Water 03/04/2018 Result
PACKAGE: SANSEW - VOCs - BTEX (W 1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Disch. Parameter OCS - BTEX Benzene	VATER) scharge - BL_53_2010 narge - BL_53_2010 Units mg/L	RL 0.0005	Sa	Sample Number Sample Name Sample Matrix Sample Date L2	8 SW-UF Ground Water 03/04/2018 Result < 0.0005
PACKAGE: SANSEW - VOCs - BTEX (W 1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Disch 2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Disch Parameter OCS - BTEX Benzene Ethylbenzene	VATER) scharge - BL_53_2010 narge - BL_53_2010 Units mg/L mg/L	RL 0.0005 0.0005	Sa \$ \$ L1 0.01 0.16	Sample Number Sample Name Sample Matrix Sample Date L2 0.002 0.002	8 SW-UF Ground Water 03/04/2018 Result < 0.0005 < 0.0005
PACKAGE: SANSEW - VOCs - BTEX (W 1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Discher 2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Discher Parameter /OCs - BTEX Benzene Ethylbenzene Toluene	VATER) scharge - BL_53_2010 narge - BL_53_2010 Units mg/L mg/L mg/L	RL 0.0005 0.0005 0.0005	Sa £1 0.01 0.16 0.27	Sample Number Sample Name Sample Matrix Sample Date L2 0.002 0.002 0.002	8 SW-UF Ground Water 03/04/2018 Result < 0.0005 < 0.0005 < 0.0005

EXCEEDANCE SUMMARY

-						
					SANSEW / WATER	SANSEW / WATER
					/ Peel Table 1 -	/ Peel Table 2 -
					Sanitary Sewer	Storm Sewer
					Discharge -	Discharge -
					BL_53_2010	BL_53_2010
	Parameter	Method	Units	Result	L1	L2

SW-UF

Chloroform	EPA 5030B/8260C	mg/L	0.0240		0.002
Total Suspended Solids	SM 2540D	mg/L	679	350	15
Copper	SM 3030/EPA 200.8	mg/L	0.05059		0.05
Manganese	SM 3030/EPA 200.8	mg/L	1.20		0.05
Phosphorous	SM 3030/EPA 200.8	mg/L	0.810		0.4
Zinc	SM 3030/EPA 200.8	mg/L	0.094		0.04

20180409 9 / 22

QC SUMMARY

Anions by discrete analyzer

Method: US EPA 375.4 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Sulphate	DIO0097-APR18	mg/L	2	<2	1	20	102	80	120	107	75	125

Biochemical Oxygen Demand

Method: SM 5210 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		м	atrix Spike / Re	ſ.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Biochemical Oxygen Demand (BOD5)	BOD0006-APR18	mg/L	2	< 2	6	30	92	70	130	110	70	130

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-[ENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	:
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recove	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Cyanide (total)	SKA0030-APR18	mg/L	0.01	<0.01	ND	10	98	90	110	90	75	125

20180409

QC SUMMARY

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	latrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recove	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0090-APR18	mg/L	0.06	<0.06	ND	10	101	90	110	106	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ry Limits 6)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury (total)	EHG0004-APR18	mg/L	0.00001	< 0.1	ND	20	103	80	120	NV	70	130

20180409 11 / 22

QC SUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ма	atrix Spike / Ref	
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ry Limits %)
						(74)	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0020-APR18	mg/L	0.00005	<0.00005	14	20	101	90	110	95	70	130
Aluminum (total)	EMS0020-APR18	mg/L	0.001	<0.001	ND	20	103	90	110	NV	70	130
Arsenic (total)	EMS0020-APR18	mg/L	0.0002	<0.0002	3	20	103	90	110	94	70	130
Cadmium (total)	EMS0020-APR18	mg/L	0.000003	<0.000003	16	20	101	90	110	99	70	130
Cobalt (total)	EMS0020-APR18	mg/L	0.000004	<0.000004	2	20	101	90	110	NV	70	130
Chromium (total)	EMS0020-APR18	mg/L	0.00003	<0.00003	2	20	102	90	110	NV	70	130
Copper (total)	EMS0020-APR18	mg/L	0.00002	<0.00002	0	20	101	90	110	NV	70	130
Manganese (total)	EMS0020-APR18	mg/L	0.00001	<0.00001	1	20	102	90	110	NV	70	130
Molybdenum (total)	EMS0020-APR18	mg/L	0.00001	<0.00001	3	20	104	90	110	94	70	130
Nickel (total)	EMS0020-APR18	mg/L	0.0001	<0.0001	0	20	101	90	110	NV	70	130
Lead (total)	EMS0020-APR18	mg/L	0.00001	<0.00001	2	20	98	90	110	NV	70	130
Antimony (total)	EMS0020-APR18	mg/L	0.0002	<0.0002	1	20	96	90	110	102	70	130
Selenium (total)	EMS0020-APR18	mg/L	0.00004	<0.00004	4	20	99	90	110	84	70	130
Tin (total)	EMS0020-APR18	mg/L	0.00001	<0.00001	2	20	103	90	110	NV	70	130
Titanium (total)	EMS0020-APR18	mg/L	0.00005	<0.00005	2	20	102	90	110	NV	70	130
Zinc (total)	EMS0020-APR18	mg/L	0.002	<0.002	2	20	103	90	110	NV	70	130

20180409

QC SUMMARY

Metals in aqueous samples - ICP-OES

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	:
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recover	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Phosphorus (total)	EMS0020-APR18	mg/L	0.003	<0.003	1	20	100	90	110	NV	70	130

Microbiology

Method: SM 9222D | Internal ref.: ME-CA-IENVIMIC-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dupli	cate	LCS/Spike Blank			Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	-	Spike Recovery		ery Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
E. Coli	BAC9027-APR18	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							
Fecal Coliform	BAC9027-APR18	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							

20180409 13 / 22

QC SUMMARY

Nonylphenol and Ethoxylates

Method: ASTM D7065-06 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-015

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Nonylphenol diethoxylate	GCM0031-APR18	mg/L	0.01	< 0.01			107	55	120			
Nonylphenol Ethoxylates	GCM0031-APR18	mg/L	0.01	< 0.01								
Nonylphenol monoethoxylate	GCM0031-APR18	mg/L	0.01	< 0.01			100	55	120			
Nonylphenol	GCM0031-APR18	mg/L	0.001	< 0.001			74	55	120			

Oil & Grease

Method: MOE E3401 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Ref	f.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (total)	GCM0045-APR18	mg/L	2	<2			102	75	125			

20180409 14 / 22

QC SUMMARY

Oil & Grease-AV/MS

Method: MOE E3401/SM 5520F | Internal ref.: ME-CA-[ENV]GC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery	Recover	=
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (animal/vegetable)	GCM0045-APR18	mg/L	4	< 4			NA	70	130			
Oil & Grease (mineral/synthetic)	GCM0045-APR18	mg/L	4	< 4			NA	70	130			

рΗ

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		м	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	•
						(%)	Recovery (%)	Low	High	(%)	Low	High
pH	EWL0037-APR18	no unit	0.05	NA	1		102			NA		

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Re	ī.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0025-APR18	mg/L	0.002	<0.002	ND	10	103	90	110	NA	75	125

20180409

QC SUMMARY

Polychlorinated Biphenyls

Method: MOE E3400/EPA 8082A | Internal ref.: ME-CA-IENVIGC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Polychlorinated Biphenyls (PCBs) - Total	GCM0058-APR18	mg/L	0.0001	<0.0001	NSS	30	115	60	140	NSS	60	140

Semi-Volatile Organics

Method: EPA 3510C/8270D | Internal ref.: ME-CA-IENVIGC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	:
	Reference			Blank	RPD	AC (%)	Spike	Recover	•	Spike Recovery	Recove	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Bis(2-ethylhexyl)phthalate	GCM0050-APR18	mg/L	0.002	< 0.002	NSS	30	85	50	140	NSS	50	140
di-n-Butyl Phthalate	GCM0050-APR18	mg/L	0.002	< 0.002	NSS	30	89	50	140	NSS	50	140

20180409

QC SUMMARY

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		М	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Suspended Solids	EWL0044-APR18	mg/L	2	< 2	6	10	100	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Re	of.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ery Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen	SKA0024-APR18	as N mg/L	0.5	<0.5	3	10	99	90	110	107	75	125

20180409 17 / 22

QC SUMMARY

Volatile Organics

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ery Limits
						(13)	(%)	Low	High	(%)	Low	High
1,1,2,2-Tetrachloroethane	GCM0060-APR18	mg/L	0.0005	<0.0005	ND	30	102	60	130	98	50	140
1,2-Dichlorobenzene	GCM0060-APR18	mg/L	0.0005	<0.0005	ND	30	105	60	130	98	50	140
1,4-Dichlorobenzene	GCM0060-APR18	mg/L	0.0005	<0.0005	ND	30	105	60	130	98	50	140
Benzene	GCM0060-APR18	mg/L	0.0005	<0.0005	ND	30	102	60	130	97	50	140
Chloroform	GCM0060-APR18	mg/L	0.0005	<0.0005	ND	30	104	60	130	98	50	140
cis-1,2-Dichloroethene	GCM0060-APR18	mg/L	0.0005	<0.0005	ND	30	99	60	130	94	50	140
Ethylbenzene	GCM0060-APR18	mg/L	0.0005	<0.0005	ND	30	103	60	130	97	50	140
m-p-xylene	GCM0060-APR18	mg/L	0.0005	<0.0005	ND	30	103	60	130	96	50	140
Methyl ethyl ketone	GCM0060-APR18	mg/L	0.02	<0.02	ND	30	103	50	140	100	50	140
Methylene Chloride	GCM0060-APR18	mg/L	0.0005	<0.0005	ND	30	103	60	130	98	50	140
o-xylene	GCM0060-APR18	mg/L	0.0005	<0.0005	ND	30	103	60	130	96	50	140
Styrene	GCM0060-APR18	mg/L	0.0005	<0.0005	ND	30	104	60	130	97	50	140
Tetrachloroethylene	GCM0060-APR18	mg/L	0.0005	<0.0005	ND	30	102	60	130	95	50	140
(perchloroethylene)												
Toluene	GCM0060-APR18	mg/L	0.0005	<0.0005	ND	30	101	60	130	96	50	140
trans-1,3-Dichloropropene	GCM0060-APR18	mg/L	0.0005	<0.0005	ND	30	108	60	130	100	50	140
Trichloroethylene	GCM0060-APR18	mg/L	0.0005	<0.0005	ND	30	102	60	130	97	50	140

20180409

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. **Matrix Spike Qualifier**: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20180409

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

20180409 20 / 22

Request for Laboratory Services and CHAIN OF CUSTODY

No: 01065

SGS Environment, - Lakefield: 185 Concession St., Lakefield, ON KOL 2H0 Phone: 705-652-2000 Toll Free: 877-747-7658 Fax: 705-652-6365

Page / of /

Relinquished by (NAME):

Signature:

0 = 9 8 7 6 5 4 3 2 1

SGS

SAMPLE INTEGRITY REPORT

Project Number: 1-18-0071-46	19.6				Y				
SGS Sample 10 CA 14045 - April 6	ONTARIO REGU	LATION 153	/04						
Date / Time Sampled April 3/18/13:3	0								
Client Sample ID	ALL Submission General	Sample Integrit	v Violations						
Temperature >10 C upon receipt if not sampled same day									
No evidence of cooling trend initiated if sampled same day									
Chain of Custody not submitted									
Chain of Custody incomplete						1			8
Chain of Custody not signed / dated		alc	. (api	red bot	/			
Chain of Custody not a current version		CHOC	/ /(COI	0 00			1	. A
Bottles / Samples listed on CoC but not received		0.0	111-	10	mt	tle		-not	-needs
Bottles / Samples received but not listed on the CoC	T.	Cr	VI,	14	POI	110		GA	100
Sample container received empty			K	DUT 1	101	10)	10	00	per
Sai	mple Specific Sampi				TON	rial	7		10000
Sample received past hold time									blow
Incorrect preservation (including no preservation where required)									191/
Headspace present in VOC vial (aqueous)									M
Sample(s) received frozen									
Bottle(s) broken or damaged in transport									
Discrepancy between sample label and chain of custody									
Analysis requirements absent / unclear									
Missing or incorrect sample label(s)									
Inappropriate sample container used									
Insufficient number of bottles received									
Limited sample volume									
Insufficient sample volume									
Sample contains multiple phases									
	Sedimen	-	_	0 - 181 - 181					
Groundwater samples contain visible sediment / particulate									0
Groundwater contains greater than 1cm of sediment / particulate matter in bottle									
Additional Comments/Remarks:				١					
No issues upon receipt		Initials:		ULA					
				1 11	-				

CA14045-APR18 R1

1-18-0071-46 1485 Willaimsport

Prepared for

Terraprobe Inc

First Page

CLIENT DETAILS	S	LABORATORY DETAIL	LS
Client	Terraprobe Inc	Project Specialist	Deanna Edwards, B.Sc, C.Chem
		Laboratory	SGS Canada Inc.
Address	11 Indell Lane, Brampton	Address	185 Concession St., Lakefield ON, K0L 2H0
	Canada, L6T 3Y3		
	Phone: (905) 796-2650. Fax:(905) 796-2250		
Contact	Zenith Wong	Telephone	705-652-2000
Telephone	(905) 796-2650	Facsimile	705-652-6365
Facsimile	(905) 796-2250	Email	deanna.edwards@sgs.com
Email	zwong@terraprobe.ca	SGS Reference	CA14045-APR18
Project	1-18-0071-46 1485 Willaimsport	Received	04/03/2018
Order Number		Approved	04/09/2018
Samples	Ground Water (1)	Report Number	CA14045-APR18 R1
		Date Reported	11/02/2022

COMMENTS

RL - SGS Reporting Limit

Temperature of Samples upon receipt: 4 degrees C

Cooling Agent present: Yes Custody seal present: No

Chain of Custody Number: 01065

SIGNATORIES

Deanna Edwards, B.Sc, C.Chem

searra Edwards

SGS Canada Inc. 185 Concession St., Lakefield ON, K0L 2H0

t 705-652-2000 f 705-652-6365

www.sgs.com

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-6
Exceedance Summary	7
QC Summary	8-16
Legend	17
Annexes	18-19

Client: Terraprobe Inc

Project: 1-18-0071-46 1485 Willaimsport

Project Manager: Zenith Wong

MATRIX: WATER			Sample Number	8
			Sample Name	SW-UF
L1 = SANSEW / WATER / Mississauga Sewer Use ByLaw -	Storm Sewer - BL_0046	_2022	Sample Matrix	Ground Water
			Sample Date	03/04/2018
Parameter	Units	RL	L1	Result
General Chemistry				
Biochemical Oxygen Demand (BOD5)	mg/L	2	15	< 4↑
Total Suspended Solids	mg/L	2	15	679
Total Kjeldahl Nitrogen	as N mg/L	0.5		< 0.5
Metals and Inorganics				
Fluoride	mg/L	0.06		0.24
Cyanide (total)	mg/L	0.01	0.02	< 0.01
Sulphate	mg/L	2		40
Aluminum (total)	mg/L	0.001	1	38.9
Antimony (total)	mg/L	0.0002		0.0007
Arsenic (total)	mg/L	0.0002	0.02	0.0104
Cadmium (total)	mg/L	0.000003	0.008	0.000195
Chromium (total)	mg/L	0.00003	0.08	0.0319
Copper (total)	mg/L	0.00002	0.04	0.05059
Cobalt (total)	mg/L	0.000004		0.0233
Lead (total)	mg/L	0.00001	0.12	0.0271
Manganese (total)	mg/L	0.00001	2	1.20
Molybdenum (total)		0.00001		0.00244
Nickel (total)	mg/L	0.0001	0.08	0.0361
Phosphorus (total)	mg/L	0.003	0.4	0.810
Selenium (total)		0.00004	0.02	0.00057
Silver (total)		0.00005	0.12	0.00006
Tin (total)		0.00001		0.0140

CA14045-APR18 R1

Client: Terraprobe Inc

Project: 1-18-0071-46 1485 Willaimsport

Project Manager: Zenith Wong

MATRIX: WATER			Sample Number	8
			Sample Name	SW-UF
L1 = SANSEW / WATER / Mississauga Sewer Use Byl	Law - Storm Sewer - BL_0046_	2022	Sample Matrix	Ground Water
			Sample Date	03/04/2018
Parameter	Units	RL	L1	Result
Metals and Inorganics (continued)				
Titanium (total)	mg/L	0.00005		0.343
Zinc (total)	mg/L	0.002	0.2	0.094
Microbiology				
Fecal Coliform	cfu/100mL	0		0
E. Coli	cfu/100mL	0	200	0
Nonylphenol and Ethoxylates				
Nonylphenol	mg/L	0.001		< 0.001
Nonylphenol Ethoxylates	mg/L	0.01		< 0.01
Nonylphenol diethoxylate	mg/L	0.01		< 0.01
Nonylphenol monoethoxylate	mg/L	0.01		< 0.01
Oil and Grease				
Oil & Grease (total)	mg/L	2		< 2
Oil & Grease (animal/vegetable)	mg/L	4		< 4
Oil & Grease (mineral/synthetic)	mg/L	4		< 4

Client: Terraprobe Inc

Project: 1-18-0071-46 1485 Willaimsport

Project Manager: Zenith Wong

MATRIX: WATER			Sample Number	8
WATEN			Sample Name	SW-UF
L1 = SANSEW / WATER / Mississauga Sewer Use ByLaw -	Storm Sewer - BL 0046	2022	Sample Matrix	Ground Water
ET = SANGEW / WATER / Mississauga Sewer Use ByLaw	Storm Sewer - DL_0040_	2022	Sample Date	03/04/2018
Parameter	Units	RL	L1	Result
Other (ORP)				
рН	no unit	0.05	9	7.40
Mercury (total)	mg/L	0.00001	0.0004	< 0.00001
PCBs				
Polychlorinated Biphenyls (PCBs) - Total	mg/L	0.0001	0.0004	< 0.0001
Phenois				
4AAP-Phenolics	mg/L	0.002	0.008	< 0.002
SVOCs				
di-n-Butyl Phthalate	mg/L	0.002		< 0.002
Bis(2-ethylhexyl)phthalate	mg/L	0.002		< 0.002
VOCs				
Chloroform	mg/L	0.0005		0.0240
1,2-Dichlorobenzene	mg/L	0.0005	0.0056	< 0.0005
1,4-Dichlorobenzene	mg/L	0.0005	0.0068	< 0.0005
cis-1,2-Dichloroethene	mg/L	0.0005		< 0.0005
trans-1,3-Dichloropropene	mg/L	0.0005		< 0.0005
Methylene Chloride	mg/L	0.0005		< 0.0005
1,1,2,2-Tetrachloroethane	mg/L	0.0005	0.017	< 0.0005
Methyl ethyl ketone	mg/L	0.02		< 0.02
Styrene	mg/L	0.0005		< 0.0005
Tetrachloroethylene (perchloroethylene)	mg/L	0.0005	0.0044	< 0.0005
Trichloroethylene	mg/L	0.0005	0.0076	< 0.0005

CA14045-APR18 R1

Client: Terraprobe Inc

Project: 1-18-0071-46 1485 Willaimsport

Project Manager: Zenith Wong

Samplers: Bob Racher

MATRIX: WATER	Sample Number	8

Sample Name SW-UF

			Sample	Name SW-UF
1 = SANSEW / WATER / I	dississauga Sewer Use ByLaw - Storm Sewer - BL_0046_20	022	Sample	Matrix Ground Water
			Sample	Date 03/04/2018
Parameter	Units	RL	L1	Result
/OCs - BTEX				
Benzene	mg/L	0.0005	0.002	< 0.0005
Ethylbenzene	mg/L	0.0005	0.002	< 0.0005
Toluene	mg/L	0.0005	0.002	< 0.0005
Xylene (total)	mg/L	0.0005	0.0044	< 0.0005
m-p-xylene	mg/L	0.0005		< 0.0005
o-xylene	mg/L	0.0005		< 0.0005

EXCEEDANCE SUMMARY

SW-UF

Total Suspended Solids	SM 2540D	mg/L	679	15
Aluminum	SM 3030/EPA 200.8	mg/L	38.9	1
Copper	SM 3030/EPA 200.8	mg/L	0.05059	0.04
Phosphorus	SM 3030/EPA 200.8	mg/L	0.810	0.4

20221102 7 / 19

QC SUMMARY

Anions by discrete analyzer

Method: US EPA 375.4 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	I.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Sulphate	DIO0097-APR18	mg/L	2	<2	1	20	102	80	120	107	75	125

Biochemical Oxygen Demand

Method: SM 5210 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Re	ī.
	Reference		Blank	RPD	AC (%)	Spike		ry Limits %)	Spike Recovery		ry Limits %)	
					(%)	(%)	Recovery (%)	Low	High	(%)	Low	High
Biochemical Oxygen Demand (BOD5)	BOD0006-APR18	mg/L	2	< 2	6	30	92	70	130	110	70	130

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-[ENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	latrix Spike / Ref	ī.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Cyanide (total)	SKA0030-APR18	mg/L	0.01	<0.01	ND	10	98	90	110	90	75	125

20221102 8 / 19

QC SUMMARY

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	ry Limits %)
			(%)	Recovery (%)	Low	High	(%)	Low	High			
Fluoride	EWL0090-APR18	mg/L	0.06	<0.06	ND	10	101	90	110	106	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (M)	Spike		ry Limits %)	Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury (total)	EHG0004-APR18	mg/L	0.00001	< 0.1	ND	20	103	80	120	NV	70	130

QC SUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ery Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0020-APR18	mg/L	0.00005	< 0.1	14	20	101	90	110	95	70	130
Aluminum (total)	EMS0020-APR18	mg/L	0.001	< 0.1	ND	20	103	90	110	NV	70	130
Arsenic (total)	EMS0020-APR18	mg/L	0.0002	< 0.1	3	20	103	90	110	94	70	130
Cadmium (total)	EMS0020-APR18	mg/L	0.000003	< 0.1	16	20	101	90	110	99	70	130
Cobalt (total)	EMS0020-APR18	mg/L	0.000004	< 0.1	2	20	101	90	110	NV	70	130
Chromium (total)	EMS0020-APR18	mg/L	0.00003	< 0.1	2	20	102	90	110	NV	70	130
Copper (total)	EMS0020-APR18	mg/L	0.00002	< 0.1	0	20	101	90	110	NV	70	130
Manganese (total)	EMS0020-APR18	mg/L	0.00001	< 0.1	1	20	102	90	110	NV	70	130
Molybdenum (total)	EMS0020-APR18	mg/L	0.00001	< 0.1	3	20	104	90	110	94	70	130
Nickel (total)	EMS0020-APR18	mg/L	0.0001	< 0.1	0	20	101	90	110	NV	70	130
Lead (total)	EMS0020-APR18	mg/L	0.00001	< 0.1	2	20	98	90	110	NV	70	130
Phosphorus (total)	EMS0020-APR18	mg/L	0.003	< 0.1	1	20	100	90	110	NV	70	130
Antimony (total)	EMS0020-APR18	mg/L	0.0002	< 0.1	1	20	96	90	110	102	70	130
Selenium (total)	EMS0020-APR18	mg/L	0.00004	< 0.1	4	20	99	90	110	84	70	130
Tin (total)	EMS0020-APR18	mg/L	0.00001	< 0.1	2	20	103	90	110	NV	70	130
Titanium (total)	EMS0020-APR18	mg/L	0.00005	< 0.1	2	20	102	90	110	NV	70	130
Zinc (total)	EMS0020-APR18	mg/L	0.002	< 0.1	2	20	103	90	110	NV	70	130

QC SUMMARY

Microbiology

Method: SM 9222D | Internal ref.: ME-CA-[ENV]MIC-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dupl	licate	LC	S/Spike Blank		M	atrix Spike / Re	f.
	Reference	eference Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery		ory Limits %)		
						(%)	Recovery (%)	Low	High	(%)	Low	High
E. Coli	BAC9027-APR18	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							
Fecal Coliform	BAC9027-APR18	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							

Nonylphenol and Ethoxylates

Method: ASTM D7065-06 | Internal ref.: ME-CA-IENVIGC-LAK-AN-015

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ма	atrix Spike / Re	ef.
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits 6)	Spike Recovery		ery Limits
				(%)	Recovery (%)	Low	High	(%)	Low	High		
Nonylphenol diethoxylate	GCM0031-APR18	mg/L	0.01	< 0.01			107	55	120			
Nonylphenol Ethoxylates	GCM0031-APR18	mg/L	0.01	< 0.01								
Nonylphenol monoethoxylate	GCM0031-APR18	mg/L	0.01	< 0.01			100	55	120			
Nonylphenol	GCM0031-APR18	mg/L	0.001	< 0.001			74	55	120			

QC SUMMARY

Oil & Grease

Method: MOE E3401 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		М	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	-
						Recovery (%)	Low	High	(%)	Low	High	
Oil & Grease (total)	GCM0045-APR18	mg/L	2	<2			102	75	125			

Oil & Grease-AV/MS

Method: MOE E3401/SM 5520F | Internal ref.: ME-CA-IENVIGC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recover	•	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (animal/vegetable)	GCM0045-APR18	mg/L	4	< 4			NA	70	130			
Oil & Grease (mineral/synthetic)	GCM0045-APR18	mg/L	4	< 4			NA	70	130			

pΗ

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		N	latrix Spike / Ref	•
	Reference	Reference		Blank	RPD	AC (%)	Spike	Recove	ry Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0037-APR18	no unit	0.05	NA	1 102		102			NA		

20221102 12 / 19

QC SUMMARY

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	ry Limits %)
				(%)	(%)	Recovery (%)	Low	High	(%)	Low	High	
4AAP-Phenolics	SKA0025-APR18	mg/L	0.002	<0.002	ND	10	103	80	120	NA	75	125

Polychlorinated Biphenyls

Method: MOE E3400/EPA 8082A | Internal ref.: ME-CA-[ENVIGC-LAK-AN-001

Parameter	QC batch	Units	RL	Method Blank	Duj	plicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference				RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Polychlorinated Biphenyls (PCBs) -	GCM0058-APR18	mg/L	0.0001	<0.0001	NSS	30	115	60	140	NSS	60	140
Total												

20221102 13 / 19

QC SUMMARY

Semi-Volatile Organics

Method: EPA 3510C/8270D | Internal ref.: ME-CA-[ENV]GC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LCS/Spike Blank		Matrix Spike / Ref.			
	Reference			Blank	RPD	AC (%)	Spike		ry Limits %)	Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Bis(2-ethylhexyl)phthalate	GCM0050-APR18	mg/L	0.002	< 0.002	NSS	30	85	50	140	NSS	50	140
di-n-Butyl Phthalate	GCM0050-APR18	mg/L	0.002	< 0.002	NSS	30	89	50	140	NSS	50	140

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	:
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Suspended Solids	EWL0044-APR18	mg/L	2	< 2	6	10	100	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen	SKA0024-APR18	as N mg/L	0.5	<0.5	3	10	99	90	110	107	75	125

20221102 14 / 19

QC SUMMARY

Volatile Organics

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recove	•	Spike Recovery		ery Limits %)
						(70)	(%)	Low	High	(%)	Low	High
1,1,2,2-Tetrachloroethane	GCM0060-APR18	mg/L	0.0005	<0.0005	ND	30	102	60	130	98	50	140
1,2-Dichlorobenzene	GCM0060-APR18	mg/L	0.0005	<0.0005	ND	30	105	60	130	98	50	140
1,4-Dichlorobenzene	GCM0060-APR18	mg/L	0.0005	<0.0005	ND	30	105	60	130	98	50	140
Benzene	GCM0060-APR18	mg/L	0.0005	<0.0005	ND	30	102	60	130	97	50	140
Chloroform	GCM0060-APR18	mg/L	0.0005	<0.0005	ND	30	104	60	130	98	50	140
cis-1,2-Dichloroethene	GCM0060-APR18	mg/L	0.0005	<0.0005	ND	30	99	60	130	94	50	140
Ethylbenzene	GCM0060-APR18	mg/L	0.0005	<0.0005	ND	30	103	60	130	97	50	140
m-p-xylene	GCM0060-APR18	mg/L	0.0005	<0.0005	ND	30	103	60	130	96	50	140
Methyl ethyl ketone	GCM0060-APR18	mg/L	0.02	<0.02	ND	30	103	50	140	100	50	140
Methylene Chloride	GCM0060-APR18	mg/L	0.0005	<0.0005	ND	30	103	60	130	98	50	140
o-xylene	GCM0060-APR18	mg/L	0.0005	<0.0005	ND	30	103	60	130	96	50	140
Styrene	GCM0060-APR18	mg/L	0.0005	<0.0005	ND	30	104	60	130	97	50	140
Tetrachloroethylene	GCM0060-APR18	mg/L	0.0005	<0.0005	ND	30	102	60	130	95	50	140
(perchloroethylene)												
Toluene	GCM0060-APR18	mg/L	0.0005	<0.0005	ND	30	101	60	130	96	50	140
trans-1,3-Dichloropropene	GCM0060-APR18	mg/L	0.0005	<0.0005	ND	30	108	60	130	100	50	140
Trichloroethylene	GCM0060-APR18	mg/L	0.0005	<0.0005	ND	30	102	60	130	97	50	140

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20221102 16 / 19

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

20221102 17 / 19

Request for Laboratory Services and CHAIN OF CUSTODY

No: 01065

SGS Environment, - Lakefield: 185 Concession St., Lakefield, ON KOL 2H0 Phone: 705-652-2000 Toll Free: 877-747-7658 Fax: 705-652-6365

Health and Safety	- London: 657 Consortium Cou	ırt, London, ON, N6E 2S8 Pho	London: 657 Consortium Court, London, ON, N6E 2S8 Phone: \$19-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361 Web: www.ca.sgs.com	om
Properties D. Rende	Lab	Laboratory Information Section Lab use only	Lab use only	RI ida - Shohi W
040518	Custody Seal Intact:	Custody Seal Intact: Y (Circle)	Cooling Agent Present: WN Type: Record Cooling Agent Present: WN Type: 13.20	LABLIMS#: 4X3-C
PORT INFORM	INVOICE INI	INVOICE INFORMATION	PROJECT INFORMATION	
Company: Terreprobe Inc.	(same as Report Information)	ation)		
X	Company:		Project #: 1-18-0071-46 Site Location/ID:1485	Williamsport
	Contact:		UT	ED
promotor on	Address:		TAT's are quoted in business days (exclude statutory holidays & weekends). Regular TAT (5-7days) Samples received after 3pm or on weekends: TAT begins the next business day	tutory holidays & weekends). TAT begins the next business day
TO COM			RUSH TAT (Additional Charges May Apply) 1 Day	2 Days 3-4 Days
Fax:	Phone:		PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION	E PRIOR TO SUBMISSION
Email: y quare terraprobe ca	Email: Prossice terraprobe-ca	aprepe ca	Specify Due Date: Rush Confirmation ID:	
	REGULATIONS		DRINKING WATER SAMPLES (POTABLE WATER FOR HUMAN CONSUMPTION) MUST BE	CONSUMPTION) MUST BE
Regulation 153 (2011):	Other Regulations:		SUBMITTED WITH AGO DKINKING WATER CHAIN OF COOLOG	T COOLOGI
□ Table 1 □ Res/Park Soil Texture: □ Table 2 □ Ind/Com □ Coarse	☐ Reg 347/558 (3 Day min TAT) ☐ PWQO ☐ MMER	n TAT) Sanitary Storm	ANALYSIS REQUESTED	2
☐ Table 3 ☐ Agri/Other ☐ Medium ☐ Table ☐ Fine	CCME Other:	Municipality: Ree Rej	18 W	COMMENTS: Field Filtered (F)
RECORD OF SITE CONDITION (RSC)) DYES DNO		- Us	Preserved (P)
SAMPLE IDENTIFICATION	DATE TIME SAMPLED SAMPLED	# OF MATRIX	Sewer	
1 SW-UF	Apr 3/18 13:30	0 16 610	*	Not Filtered.
3				
4				
5				
6				
7				To All and a second line
00				
9				
Observations/Comments/Special Instructions				
Sampled By (NAME): Bob Racher	Signature:	No.	Date: 04/03/18 (mm/dd/y)	(mm/dd/yy) Pink Copy - Client
7		THE WAY		

Relinquished by (NAME):

Signature:

SGS

SAMPLE INTEGRITY REPORT

Project Number: 1-18-0071-46	19.6				X-1				
SGS Sample 10 CA 14045 - April 6	ONTARIO REGU	ILATION 153,	/04						
Date / Time Sampled April 3/18/13:3	0								
Client Sample ID	ALL Submission General	Sample integrit	v Violations						
Temperature >10 C upon receipt if not sampled same day									
No evidence of cooling trend initiated if sampled same day									
Chain of Custody not submitted									
Chain of Custody incomplete						1			8
Chain of Custody not signed / dated		alc	. (api	red bot	/			
Chain of Custody not a current version		CHOC	/ /((0)	0 00			1	. A
Bottles / Samples listed on CoC but not received		0.0	111-	10	mt	tle		-not	-needs
Bottles / Samples received but not listed on the CoC	T.	Cr	VI,	14	POI	110		GA	100
Sample container received empty			K	out 1	101	10)	10	00	per
Sai	mple Specific Sampi				TON	rial	7		10000
Sample received past hold time									blow
Incorrect preservation (including no preservation where required)									191/
Headspace present in VOC vial (aqueous)									M
Sample(s) received frozen									
Bottle(s) broken or damaged in transport									
Discrepancy between sample label and chain of custody									
Analysis requirements absent / unclear									
Missing or incorrect sample label(s)									
Inappropriate sample container used									
Insufficient number of bottles received									
Limited sample volume									
Insufficient sample volume									
Sample contains multiple phases									
	Sedimen		_	10 10 10 10 10 10 10 10 10 10 10 10 10 1					
Groundwater samples contain visible sediment / particulate									0
Groundwater contains greater than 1cm of sediment / particulate matter in bottle									
Additional Comments/Remarks:				١					
No issues upon receipt		Initials:		ULA					
				1 11	-				