

July 5, 2024

Mr. Andrew Murphy, Vice President, Development 3085 Hurontario Limited Partnership on behalf of Equity Three Holdings Inc. 3300 Bloor Street West, Suite 1800 Toronto, Ontario M8X 2X2

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT UPDATE, 3085 & 3105 HURONTARIO STREET, MISSISSAUGA, ONTARIO

Dear Mr. Murphy,

WSP Canada Inc. (WSP) is pleased to provide 3085 Hurontario Limited Partnership (3085 Hurontario LP) on behalf of Equity Three Holdings Inc. (the "Owner") this update to the Phase Two Environmental Site Assessment ("ESA") for the property located at 3085 and 3105 Hurontario Street in Mississauga, Ontario (the "Site" or "Phase Two Property"). The Phase Two Property is legally described as the following:

Property Identification Number 13157-0183 (LT), Firstly: PT LT 15, CON 1 NDS, TWP TOR, DES AS PT 1 PL 43R33188; SECONDLY: PT LT 15, CON 1 NDS, TWP TOR; PT BLKS A & B, PL LT 9 SAVIGNEY'S PLAN OF COOKSVILLE BEING A SUBDIVISON OF PT OF LT 15 REFERRED TO AS PL TOR-12 DES AS PT 1 PL 43R17198; CITY OF MISSISSAUGA

A plan of survey for the Phase Two Property is provided in Attachment A. The location of the Phase Two Property is provided in Figure 1.

This Phase Two ESA Update is to be read in conjunction with the Phase Two ESA prepared by WSP dated November 1, 2019¹ (the 2019 Phase Two ESA). This Phase Two ESA Update was prepared as it is understood that 3085 Hurontario LP is planning to proceed with an Official Plan Amendment (OPA) / Zoning By-Law (ZBL) application, with the commitment to provide an environmental reliance letter to the City of Mississauga. As the 2019 Phase Two ESA is over 18 months old (the validity timeline of a Phase Two ESA report per Ontario Regulation (O. Reg.) 153/04), an update to the report prepared in 2019 is required in order for WSP to extend reliance.

1.0 BACKGROUND

The Site measured approximately 1.46 hectares and was occupied by two two-storey commercial buildings in the south to southeast portion, a two-level concrete parking structure along the north to northeast portion, and asphalt

¹ WSP Canada Inc. November 1, 2019. 3085 and 3105 Hurontario Street, Mississauga, Ontario, Phase Two Environmental Site Assessment. Prepared for: Equity Three Holdings Inc. Reference Number: 191-02120-01

parking lot along the western portion of the Site. The commercial buildings were occupied by tenants including grocers, offices (i.e., lawyers, travel agencies), salons, retail (clothing and home goods), a print shop, and restaurants.

1.1 Geo-Environmental Reports

1.1.1 2019 Geotechnical Investigation

Soil-Mat Engineers & Consultants Ltd. (Soil-Mat) conducted a geotechnical investigation entitled, "Geotechnical Investigation, Proposed Condominium Development, 3085 Hurontario Street, Mississauga, ON", dated May 2019. The proposed development consisted of four residential towers between 18 and 40 stories in height, with one shared common underground parking level. The following pertinent information was noted:

- Soil-Mat advanced two boreholes (BH1 and BH/MW2), one of which was finished with a monitoring well (MW2) in order to measure static ground water levels. Both boreholes were advanced to the west of the current commercial plaza.
- On May 7, 2019, the static water level in BH2 was reported at 3.0 metres below ground surface (mbgs).
- Based on Soil-Mat's drilling details, shale bedrock was encountered at approximately 2.7 mbgs. The water level in BH2 was therefore within the shale.
- Soil-Mat provided various recommendations regarding the construction of the building.

1.1.2 2019 Phase One ESA

WSP conducted a Phase One ESA entitled, "3085 and 3105 Hurontario Street, Mississauga, ON, Phase One Environmental Site Assessment", dated November 2019, to assess the likelihood of soil and/or groundwater contamination resulting from historical or present activities at the Site and surrounding area. The 2019 Phase One ESA was completed in accordance with O. Reg. 153/04. This included a review of available historical information on the Site and surrounding area, interviews with persons familiar with the Site and a Site reconnaissance. The Potentially Contaminating Activities (PCAs) and Areas of Potential Environmental Concerns (APECs) identified in the 2019 Phase One ESA are summarized in the following table and shown on Figure 2:

Area of Potential Environmental Concern ¹	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity ²	Location of PCA (on- Site or off- Site)	Contaminants of Potential Concern ³	Media Potentially Impacted (Groundwater, soil, and/or Sediment)
APEC 1 – A dry- cleaning facility was located at 25 John Street (approximately 140 m northwest of the Site).	Northwest portion of the Site	#37. Operation of Dry-Cleaning Equipment (where chemicals are used)	Off-site	VOCs	Groundwater

Area of Potential Environmental Concern ¹	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity ²	Location of PCA (on- Site or off- Site)	Contaminants of Potential Concern ³	Media Potentially Impacted (Groundwater, soil, and/or Sediment)
APEC 2 – Historical auto repair shops were located at 3168 Hurontario Street (approximately 200 m west of the Site).	Northwest portion of the Site	#10. Commercial Autobody Shops	Off-site	VOCs, PHCs, BTEX	Groundwater
APEC 3 – Historical auto repair shops were located at 3184 Hurontario Street (approximately 200 m west of the Site).	Northwest portion of the Site	#10. Commercial Autobody Shops	Off-site	VOCs, PHCs, BTEX	Groundwater
APEC 4 – Multiple water, coolant, hydraulic oil, gasoline and diesel spills occurred at 3210 Hurontario Street (approximately 250 m west of the Site).	Northwest portion of the Site	#10. Commercial Autobody Shops	Off-site	VOCs, PHCs, BTEX	Groundwater

Notes:

- Area of potential environmental concern means the area on, in or under a phase one property where one or more contaminants are potentially present, as determined through the phase one environmental site assessment, including through, •(a) identification of past or present uses on, in or under the phase one property, and •(b) identification of potentially contaminating activity.
- 2 Potentially contaminating activity means a use or activity set out in Column A of Table 2 of Schedule D that is occurring or has occurred in a phase one study area.
- 3 Contaminants of potential concern specified using the method groups as identified in the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality", March 9, 2004, amended as of February 19, 2021.

This report was prepared by a Qualified Person and has been relied upon for the Phase Two investigations.

1.1.3 2019 Phase Two ESA

WSP conducted a Phase Two ESA entitled, "3085 and 3105 Hurontario Street, Mississauga, Ontario, Phase Two Environmental Site Assessment" dated November 1, 2019, to assess the presence/absence of environmental impact from the PCAs in the APECs identified in the WSP 2019 Phase One ESA. The 2019 Phase Two ESA was completed in accordance with O. Reg. 153/04. The following pertinent information was noted:

The Phase Two ESA carried out at the Site consisted of drilling two boreholes (BH/MW19-3 and BH/MW19-4), both of which were completed as monitoring wells, to a maximum depth of 4.5 mbgs. The boreholes were advanced until bedrock refusal.

- The soil stratigraphy encountered at the Site generally consisted of topsoil or concrete, underlain by native sand to depths ranging from 2.1 and 3.6 mbgs, followed by a clayer silt layer to a depth of 4.3 mbgs. Shale was encountered in both boreholes at approximately 4.3 mbgs.
- The native sand unit is considered an unconfined overburden aquifer and the clayey silt, a lower permeability unit, isolates the shale below from the overburden aquifer. Groundwater was encountered at depths ranging from 2.51 to 3.13 mbgs (113.0 to 115.13 metres above sea level (masl)) in the three monitoring wells (BH2, BH/MW19-3 and BH/MW19-4) on August 9, 2019.
- Based on the groundwater levels measured, the groundwater flow direction was inferred to be towards the south to southeast. It is noted that the actual groundwater flow direction may vary slightly, as each monitoring well was screened in different stratigraphic units (BH/MW19-3 in the sand layer, BH/MW19-4 in the clayey silt layer, and BH2 in the shale layer).
- The average hydraulic gradient was calculated to be 0.01 m/m in the sand.
- Two soil samples (one surface soil and one subsurface soil sample) were collected for pH analysis. It is noted that no other soil samples were originally proposed to be collected and submitted for chemical analysis as all APECs were related to off-site PCAs. However, elevated vapour readings were measured in BH19-4 S4A at a depth of 3.1 to 3.3 mbgs. Thus, a soil sample and duplicate sample were collected from this location and submitted for chemical analysis of PHCs and VOCs.
- Three groundwater samples (BH/MW19-3, BH/MW19-4 and BH2) and three duplicate samples were collected and submitted for chemical analysis of PHCs, BTEX and/or VOCs. It is noted that no groundwater samples were proposed to be collected from BH/MW19-3. Due to low recovery of groundwater in BH/MW19-4 at the time of sampling, a groundwater sample was collected from BH/MW19-3 instead. However, upon returning to the Site on multiple occasions, groundwater samples from BH/MW19-4 were eventually collected.
- The applicable criteria for the Site was identified as the Table 2 Full Depth Generic Site Condition Standards in a Potable Ground Water Condition for residential property use and coarse-textured soils presented in the MECP document "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 2011 (the "Table 2 Standards").
- Based on the analytical results, the submitted soil and groundwater samples met the Table 2 Standards for the parameters tested.

This report was prepared by a Qualified Person and has been relied upon for the current Phase Two investigation.

It is noted that a Record of Site Condition (RSC# 226638) was subsequently filed for the Site on April 28, 2020, based on the findings of the 2019 Phase One and Two ESA reports. No risk assessment or remediation was required for the Site given that no contaminants of concern were identified in the 2019 Phase Two ESA above the applicable criteria.

1.1.4 2024 Phase One Update

WSP conducted a Phase One ESA Update entitled, "Phase One Environmental Site Assessment Update, 3081, 3085, 3095, and 3105 Hurontario Street, Mississauga, ON", dated April 2024, to assess the likelihood of soil and/or groundwater contamination resulting from historical or present activities at the Site and surrounding area.

The 2019 Phase One ESA Update was completed in accordance with O. Reg. 153/04. No new PCAs resulting in APECs were identified as part of the 2024 Phase One ESA Update.

2.0 SCOPE OF WORK

Activities carried out in association with this assessment consisted of the following:

- Health and Safety Plan: Preparation of a health and safety plan for internal use prior to initiating any field work at the Site.
- **Groundwater Monitoring and Sampling:** Groundwater samples were collected on June 11, 2024. Groundwater samples were submitted for analysis of PHCs, BTEX and VOCs. One duplicate sample was submitted for analysis of the same parameters as the parent sample, and one trip blank was submitted for analysis of PHC F1 and VOCs for quality assurance/quality control ("QA/QC") purposes.
- **Reporting:** WSP compiled and assessed the field and laboratory results from the above-noted activities into this report.

2.1 Deviations from Sampling and Analysis Plan

The Sampling and Analysis Plan, provided in Attachment B, outlines the rationale for the field investigation activities and the associated methodologies used to meet the objectives of the Phase Two ESA Update. This plan dated June 10, 2024 covers the activities undertaken during the Phase Two ESA Update. The deviations from the sampling and analysis plan are described below:

BH/MW19-4 was dry at the time of groundwater sampling, and therefore, no samples were collected from this monitoring well.

3.0 INVESTIGATION METHODOLOGY

The following sections describe the field investigation methodology employed for the Phase Two ESA Update. The fieldwork was carried out on June 11, 2024. The monitoring well locations are presented in Figure 3.

The Phase Two ESA Update investigation was carried out in general accordance with WSP's standard operating procedures, which conform to the requirements of O. Reg. 153/04.

3.1 Groundwater Monitoring and Sampling

The following field activities were completed on June 11, 2024:

- Groundwater levels were measured at BH2 and BH/MW19-3 using an interface probe. It is noted that the
 groundwater level at BH/MW19-4 could not be measured as the monitoring well was observed to be dry at the
 time of the monitoring event.
- Each monitoring well was purged prior to sample collection. Purging was completed by pumping until water quality parameters stabilized at BH/MW19-3 and by purging to dryness at BH2 which was considered a "low-yield" monitoring well.
- Groundwater samples were collected using low-flow purge methodology into pre-cleaned laboratory-supplied sample containers and stored in a cooler until delivery to AGAT Laboratories under chain of custody

procedures. All groundwater samples and the duplicate sample were submitted for laboratory analyses of PHCs, BTEX, and/or VOCs.

3.2 Applicable Site Condition Standards

The analytical results were compared to the Table 2 Full Depth Generic Site Condition Standards (residential property use, coarse soil texture) presented in the MECP document "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", dated April 15, 2011. The applicable site condition standards were selected based on the following rationale:

- The Phase Two Property and all other properties located, in whole or in part, within 250 metres of the Phase Two Property are supplied by the Regional Municipality of Peel drinking water system. One well, located 200 m north of the Site, was reportedly installed for potable purposes in the 1950s. WSP suspects that this well has since been abandoned or decommissioned; however, Table 2 Standards were applied to the Site as a conservative approach.
- The Phase Two Property is not located in an area designated in a municipal official plan as a wellhead protection area or other designation identified by the municipality for the protection of ground water.
- Based on the 2019 Phase Two ESA, two soil samples were collected and submitted for grain size analysis. The results of the analysis indicated that the sample collected from BH/MW19-3 was considered to be medium/fine textured, and the sample collected from BH19-4 was considered to be coarse-textured. Therefore, the coarse-textured criteria were applied as a more conservative approach.
- The closest permanent water body is Cooksville Creek, located 150 m northeast of the Phase Two Property.
- No features have been identified at the Phase Two Property that would meet the conditions of an environmentally sensitive site, as described in Section 41.
- Based on the 2019 Phase Two ESA, the pH of surface soil is 5≤pH≤9 and the pH of sub-surface soil meets the requirement that 5≤pH≤11.
- The intended use of the Phase Two Property is residential.
- The overburden thickness is greater than 2 m over more than one-third of the Phase Two Property. The reported depth to water is greater than 2.45 mbgs over the entire Phase Two Property.

4.0 REVIEW AND EVALUATION

4.1 Groundwater: Elevations and Flow Direction

The monitoring well construction details and groundwater elevations are summarized in Table 1. The base of the overburden and bedrock groundwater monitoring well screens were installed at approximate elevations 111.94 and 111.56 masl, (3.57 and 4.54 mbgs) respectively. It is noted that the wells were previously installed to intercept the water table as inferred at each location, which resulted in monitoring wells screened in different stratigraphic units.

Monitoring for water levels and free product was completed using an interface probe on June 11, 2024. No evidence of petroleum hydrocarbon free product or sheen in groundwater was observed. It was noted that BH/MW19-4 was dry at the time of the groundwater monitoring event.

The groundwater elevations at each monitoring well are summarized in Table 2. Groundwater elevations ranged from 112.90 and 112.16 masl (2.61 and 3.94 mbgs) on June 11, 2024, from 113.00 and 115.13 masl (2.51 and 3.13 mbgs) on August 9, 2019. Based on the groundwater elevations measured on August 9, 2019, and the interpreted groundwater elevation contours presented in Figure 3, the inferred direction of groundwater flow is towards the southeast. However, the monitoring wells were screened across different stratigraphic layers (BH/MW19-3 in the sand layer, BH/MW19-4 in the clayey silt layer, and BH2 in the shale layer). Therefore, it was noted that the groundwater flow direction may vary slightly.

Seasonal fluctuation in water levels should be expected. Given the limited number of monitoring events, seasonal trends could not be identified; however, shallow groundwater water levels are typically highest following the spring recharge and decline throughout the summer and fall months into the winter.

No underground utility drawings were available for the Phase Two Property. A buried water line centrally located running east to west, and a drain line centrally located running north, east and south were identified on-Site at the time of the 2019 Phase Two ESA. Given water levels at the Site were identified at a minimum of 2.45 mbgs historically, although unlikely due to depth, the presence of subsurface utilities and structures at the Site can affect shallow groundwater flow conditions. However, the subsurface utilities and structures at the Site are not expected to act as preferential pathways promoting the migration of contaminants of concern (COCs) as no COCs are present in groundwater exceeding the applicable standards.

4.2 Groundwater: Quality

A list of groundwater samples submitted for laboratory analysis is provided in Table 3. Certificates of analysis are provided in Attachment C. The analytical results for groundwater samples are summarized in Table 4.

4.2.1 PHCs and BTEX

As part of the 2019 Phase Two ESA, three groundwater samples (BH/MW19-3, BH/MW19-4 and BH2) and two duplicate samples (duplicates of BH/MW19-3 and BH2) were collected and submitted for analysis of PHCs and BTEX. Two additional groundwater samples (BH/MW19-3 and BH2) and a duplicate sample (duplicate of BH/MW19-3) were collected and submitted for analysis of PHCs and BTEX as part of this Phase Two ESA Update. The reported concentrations of the groundwater samples analysed met the Table 2 Standards for PHCs and BTEX.

4.2.2 VOCs

As part of the 2019 Phase Two ESA, two groundwater samples (BH/MW19-4 and BH2) and two duplicate samples (duplicates of BH/MW19-4 and BH2) were collected and submitted for analysis of VOCs. Two additional groundwater samples (BH/MW19-3 and BH2) and a duplicate sample (duplicate of BH/MW19-3) were collected and submitted for analysis of VOCs as part of this Phase Two ESA Update. The reported concentrations of all groundwater samples met the Table 2 Standards for VOCs.

4.3 Data Quality Review

WSP's data quality review included the analytical results of field and laboratory quality assurance samples. The reported concentrations for the trip blank and the relative percent difference (RPD) for the duplicate sample set is within the acceptable control limits. The analytical results for the laboratory quality assurance samples indicate that the results of the internal quality control program were within the laboratory's specified control limits.

Accordingly, the analytical data generated during the investigation are valid and representative and may be used in this Phase Two ESA Update without further qualification.

5.0 CONCLUSIONS

The Phase Two ESA Update investigated the four APECs identified in the 2019 Phase One ESA and 2024 Phase One ESA Update. As the APECs were associated with off-Site PCAs, groundwater was identified as a media of concern for each of the four APECs. Based on the analytical results of the groundwater samples submitted as part of this Phase Two ESA Update, the reported concentrations of the COPCs in groundwater were below the Table 2 Standards.

6.0 LIMITATIONS

This letter report was prepared for the exclusive use of 3085 Hurontario LP. The letter report, which specifically includes all tables, figures and appendices, is based on data and information, collected during conducting the Phase Two ESA Update, and is based solely on the conditions of the property at the time of conducting investigations, supplemented by historical information and data obtained by WSP as described in this letter report.

The assessment of environmental conditions at this Site has been made using the results of field screening techniques and chemical analysis of soil and groundwater samples at a limited number of locations. The Site conditions between sampling locations have been inferred based on conditions observed at the sampling locations. Conditions may vary from these sample locations. Additional study, including further investigation, can reduce the inherent uncertainties associated with this type of study. However, it is never possible, even with exhaustive sampling and testing, to dismiss the possibility that part of a Site may be contaminated and remain undetected.

The services performed as described in this report were conducted in a manner consistent with that level of care and skill normally exercised by other members of the engineering and science professions currently practicing under similar conditions, subject to the time limits and financial and physical constraints applicable to the services.

Any use which a third party makes of this report, or any reliance on, or decisions to be made based on it, are the responsibilities of such third parties. WSP accepts no responsibility for damages, if any, suffered by any third party (other than as noted above) as a result of decisions made or actions based on this letter report.

The content of this letter report is based on information collected during the groundwater sampling activities, our present understanding of the Site conditions, and our professional judgement in light of such information at the time of this report. This letter report provides a professional opinion and therefore no warranty is expressed, implied, or made as to the conclusions, advice and recommendations offered in this report. This letter report does not provide a legal opinion regarding compliance with applicable laws. With respect to regulatory compliance issues, it should be noted that regulatory statutes and the interpretation of regulatory statutes are subject to change.

The findings and conclusions of this report are valid only as of the date of this report. If new information is discovered in future work, including excavations, borings or other studies, WSP should be requested to reevaluate the conclusions of this letter report, and to provide amendments as required.

The monitoring wells installed as part of this project have been constructed using licensed drilling/well contractors employing licensed well technicians. It is owner's responsibility to have a licensed well technician properly abandon all monitoring wells, if required.

Yours truly,

WSP Canada Inc.

Blake D'Souza, BASc Environmental Scientist Leanne Burns, MSc, PEng Senior Principal, Environmental Engineer

BD/RM/LB/cg

Attachments: Figure 1 – Site Plan

Figure 2 - Phase One Conceptual Site Model

Figure 3 – Site Plan and Groundwater Contour Drawing

Figure 4 – Cross Section A-A' Figure 5 – Cross Section B-B'

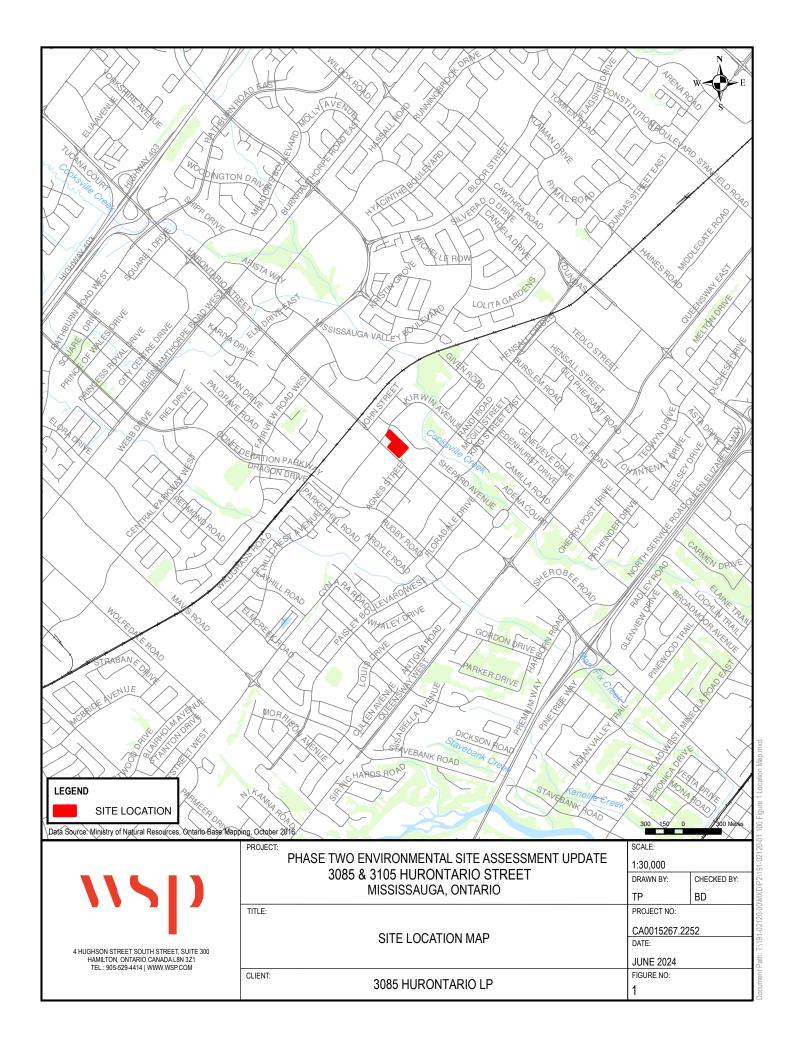
Table 1 – Monitoring Well Installation

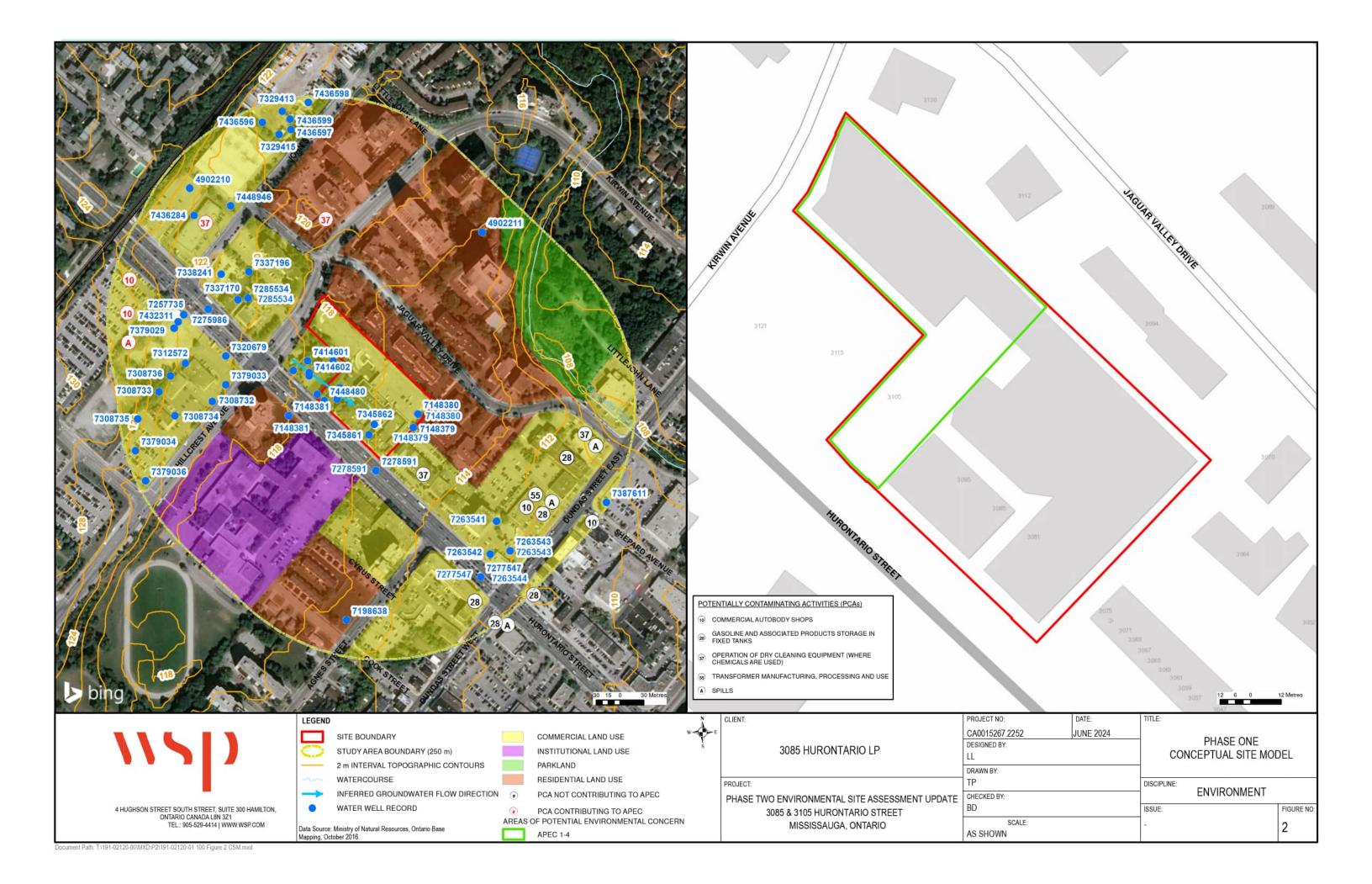
Table 2 - Groundwater Elevations

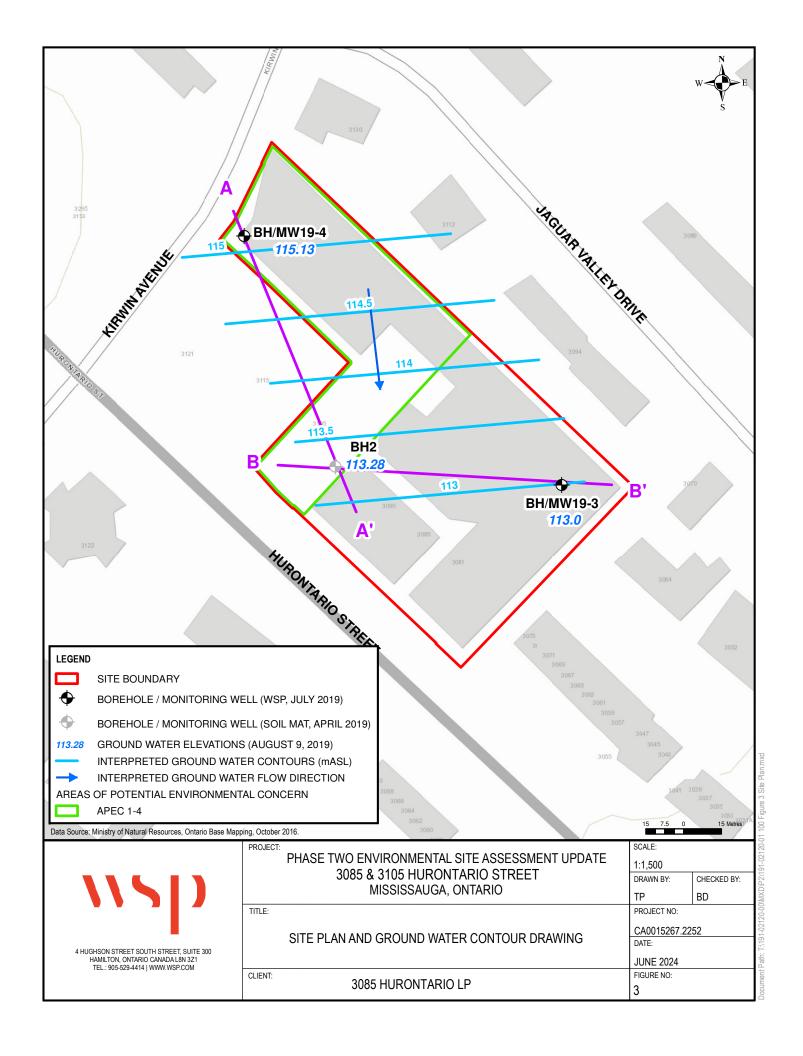
Table 3 – Summary of Groundwater Samples Submitted for Analyses

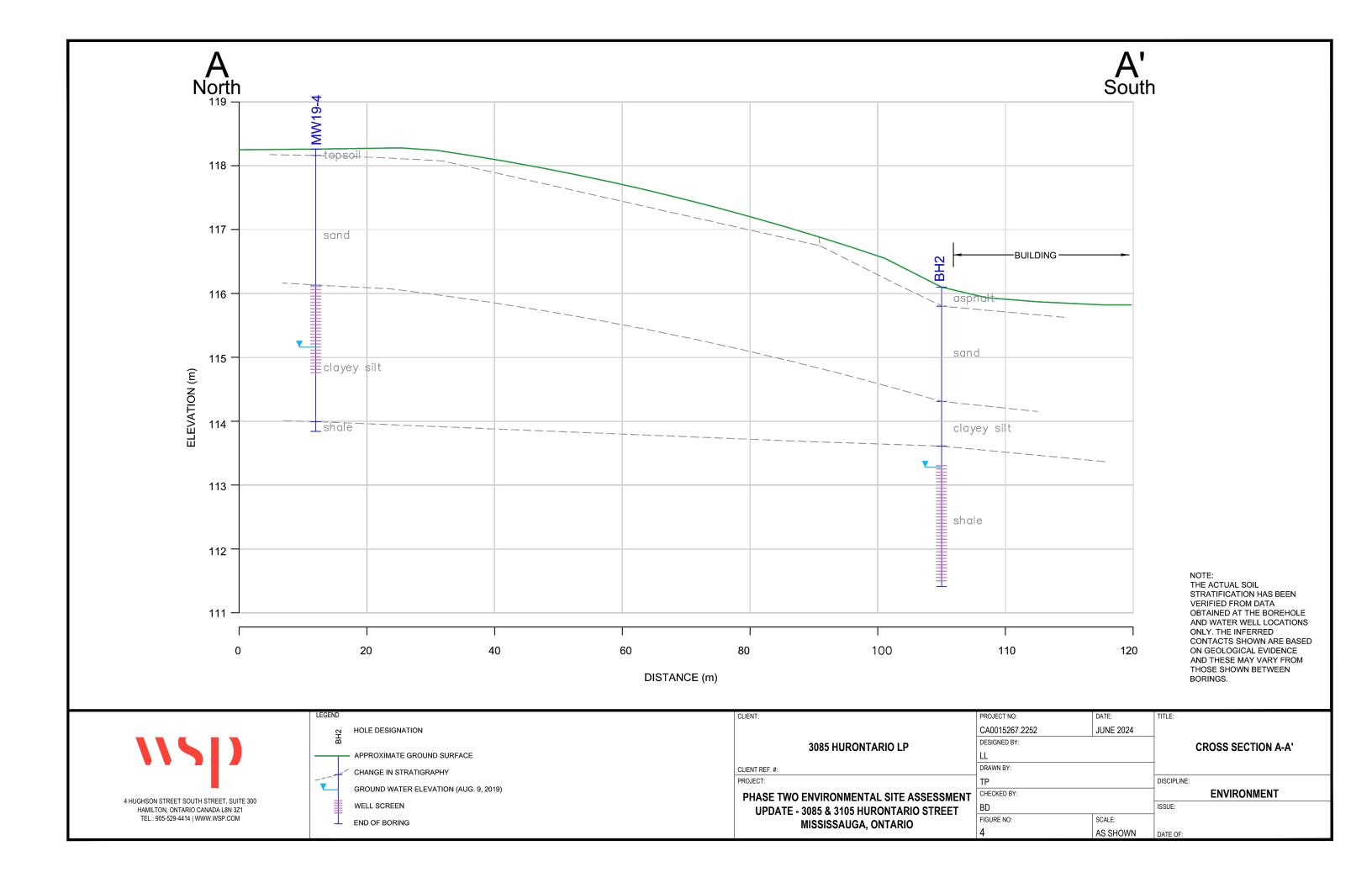
Table 4 – Analytical Results for PHCs and VOCs in Groundwater

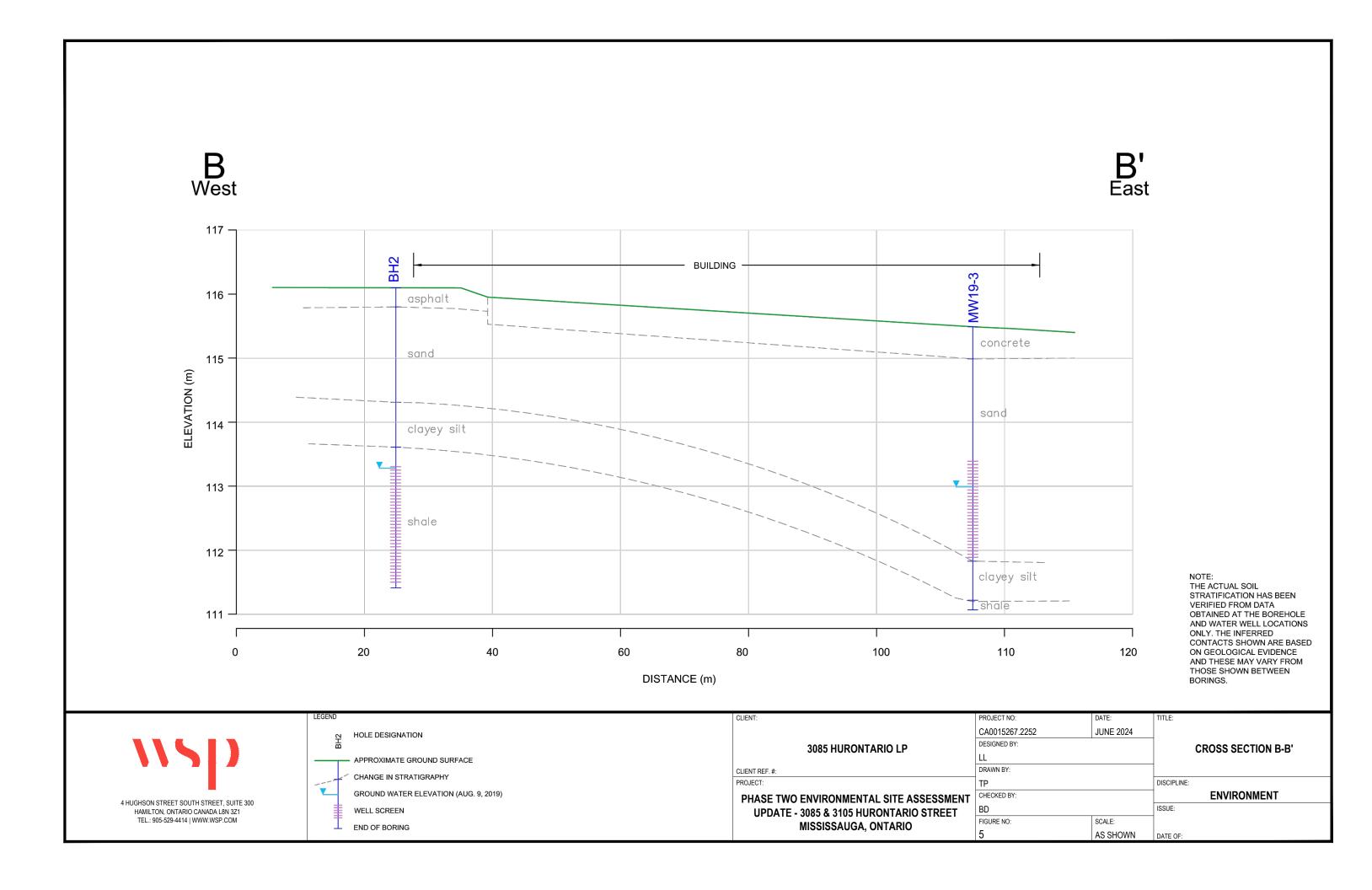
Attachment A - Plan of Survey


Attachment B - Sampling and Analysis Plan


Attachment C - Certificate of Analyses


c:\users\gld_cguiao\downloads\ca0015267.2252-l-rev1-final ph two up 3085 & 3105 hurontario st, miss-5july2024.docx




Figures

Mr. Andrew Murphy
3085 Hurontario Limited Partnership on behalf of Equity Three Holdings Inc.

Project No. CA0015267.2252 (2000)

July 5, 2024

Tables

Table 1: Monitoring Well Installation Phase Two Environmental Site Assessment Update 3085 and 3105 Hurontario Street, Mississauga, ON

Monitoring Well ID	BH/MW19-3	BH/MW19-4	BH2
Installed By	WSP	WSP	SOIL MAT
Installation Date	2019-07-03	2019-07-03	2019-04-08
Well Status	Active	Active	Active
Easting	NA	611465	611503
Northing	NA	4826526	4826436
Well Inner Diameter (mm)	32	32	50
Top of Pipe Elevation (m)	115.44	118.18	116.01
Ground Surface Elevation (m)	115.51	118.26	116.10
Bottom of Concrete Seal/Top of Bentonite Seal (mBGS)	0.50	0.50	0.50
Bottom of Concrete Seal/Top of Bentonite Seal (mASL)	115.01	117.76	115.60
Bottom of Bentonite Seal/Top of Sand Pack (mBGS)	1.53	1.53	2.15
Bottom of Bentonite Seal/Top of Sand Pack (mASL)	113.98	116.73	113.95
Top of Well Screen (mBGS)	2.13	2.13	2.75
Top of Well Screen (mASL)	113.38	116.13	113.35
Screen Length (m)	1.5	1.5	1.5
Bottom of Screen (mBGS)	3.57	3.57	4.54
Bottom of Screen (mASL)	111.94	114.69	111.56

Notes

2024-07-05 Page 1 of 1

^{1.} All elevations are given in metres above sea level (mASL).

^{2.} UTM coordinates and elevations were surveyed on July 22, 2019 by WSP. GPS coordinates could not be taken for MW19-3, due to interference of the parking structure.

^{3.} Well construction details for BH2 were provided in Soil Mat's 2019 Report.

Table 2: Groundwater Elevations Phase Two Environmental Site Assessment Update 3085 and 3105 Hurontario Street, Mississauga, ON

Monitoring Well ID	BH/MW19-3	BH/MW19-4	BH2
Date			
2019-07-03	113.06	DRY	113.04
2019-07-08	113.06	DRY	112.68
2019-07-16	NM	114.81	NM
2019-08-09	113.00	115.13	113.28
2024-06-11	112.90	DRY	112.16

Notes:

- 1. NM Not Measured
- 2. All elevations are given in metres above sea level (mASL).

2024-07-05 Page 1 of 1

Table 3: Summary of Groundwater Samples Submitted for Analysis Phase Two Environmental Site Assessment Update 3085 and 3105 Hurontario Street, Mississauga, Ontario

Location ID	Sample ID	Date	Sample Depth	Analyses Completed	Field Observations
			(mbgs)		
BH/MW19-3	MW19-3	2024-06-11	2.13 - 3.57	PHC F1-F4, BTEX, VOCs	Slightly cloudy, no odor, no sheen
BH/MW19-3	DUP1	2024-06-11	2.13 - 3.57	PHC F1-F4, BTEX, VOCs	Slightly cloudy, no odor, no sheen
ВН2	BH2	2024-06-11	2.75 - 4.54	PHC F1-F4, BTEX, VOCs	Clear, no odor, no sheen
QA/QC	Trip Blank	2024-06-11	NA	F1 PHC, VOCs	NA

Notes:

Notes:
mbgs - metres below ground surface
BTEX - Benzene, Toluene, Ethylbenzene, and Xylenes
PHCs - Petroleum Hydrocarbons
VOCs - Volatile Organic Compounds
QA/QC - Quality Assurance/Quality Control
NA - Not Applicable

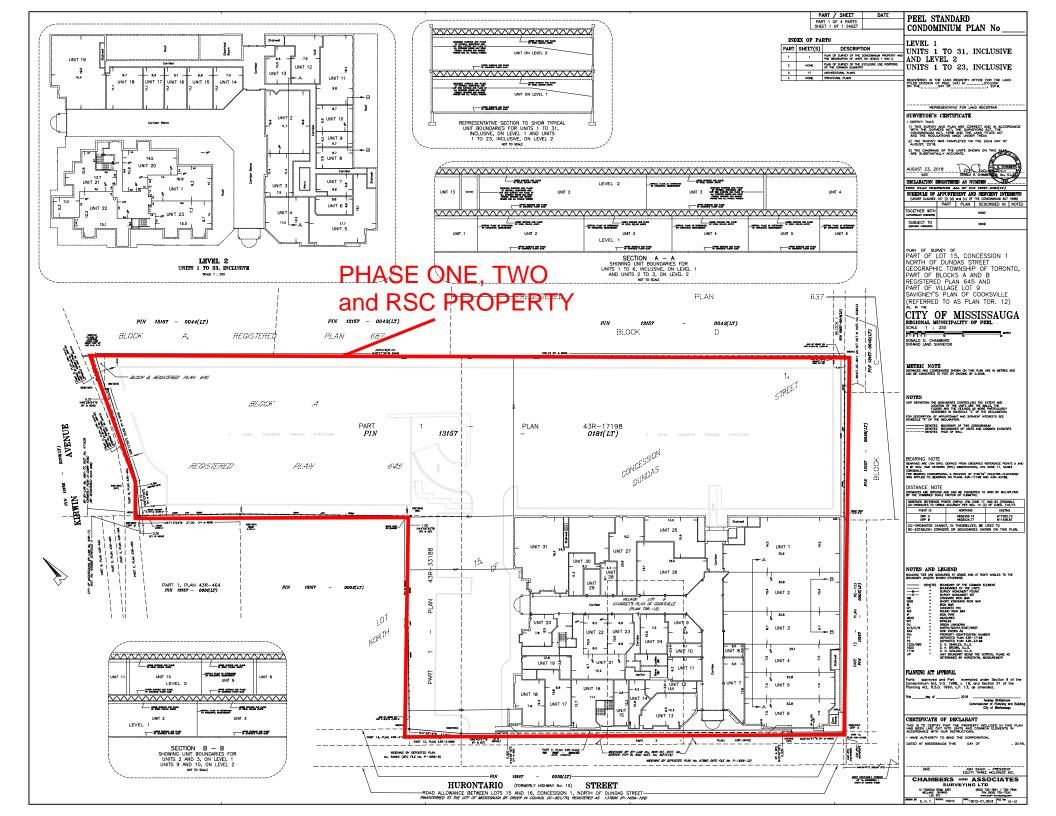
2024-07-05 Page 1 of 1

Table 4: Groundwater Data Phase Two Environmental Site Assessment Update 3085 and 3105 Hurontario Street, Mississauga, ON

	scs		Sample ID	BH2	DUP1 (Duplicate of BH2)	BH2	MW19-3	DUP2 (Duplicate of BH19-3)	MW19-3	DUP1 (Duplicate of MW19-3	MW19-4	MW19-4	DUP3 (Duplicate of BH19-4)	·	Trip Blank
		S	ample Medium	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW
	Table 2		Sample Date	2019-07-08	2019-07-08	2024-06-11	2019-07-16	2019-07-16	2024-06-11	2024-06-11	2019-07-16	2019-08-09	2019-07-16	2019-07-08	2024-06-11
_ (1)	Groundwater	Screen In	terval (mBGS)	2.75-4.54	2.75-4.54	2.75-4.54	2.13-3.57	2.13-3.57	2.13-3.57	2.13-3.57	2.13-3.57	2.13-3.57	2.13-3.57	NA	NA
Parameter (1)	(µg/L)	00.00	, ,												
	Full		Sampled by	WSP	WSP	WSP	WSP	WSP	WSP	WSP	WSP	WSP	WSP	WSP	WSP
	Coarse	Labor	atory Report #	19T489576	19T489576	24T161069	19T493233	19T493233	24T161069	24T161069	19T493233	19T503378	19T493233	19T489576	24T161069
	All Types of Property	Labora	ory Sample ID	331832	331833	5923914	355324	355338	5923908	5923915	355339	424884	355341	331834	5923916
	Use	UNITS	RDL												
PETROLEUM HYDROCARBONS (PHCs)		00	DE												
Petroleum Hydrocarbons F1	750	ug/L	25	<25	<25	<25	<25	<25	<25	<25		<25			<25
Petroleum Hydrocarbons F1 minus BTEX	750	ug/L	25		-	<25	_		<25	<25	-	_	-		<25
Petroleum Hydrocarbons F2	150	ug/L	100	<100	<100	<100	<100	<100	<100	<100	-	<100	-	-	
Petroleum Hydrocarbons F3	500	ug/L	100	<100	<100	<100	<100	<100	<100	<100	-	190	-	-	_
Petroleum Hydrocarbons F4	500	ug/L	100	<100	<100	<100	<100	<100	<100	<100	-	<100	-	-	-
VOLATILE ORGANIC COMPOUNDS (VO		3/-2	.30	.00	.00	.00	.00	.00	.00	.00					
Acetone	2700	ug/L	5	<1.0	<1.0	<1.0	-		<1.0	<1.0	<4.0	-	<4.0	<1.0	<1.0
Benzene	5	ug/L	0.5	<0.20	<0.20	<0.20	< 0.20	<0.20	<0.20	<0.20	<0.80	< 0.20	<0.80	<0.20	<0.20
Bromodichloromethane	16	ug/L	0.5	<0.20	<0.20	<0.20	-	-	0.2	<0.20	<0.80	-	<0.80	<0.20	<0.20
Bromoform	25	ug/L	0.5	<0.10	<0.10	<0.10	_	-	<0.10	<0.10	< 0.40	-	<0.40	<0.10	<0.10
Bromomethane	0.89	ug/L	0.5	<0.20	<0.20	<0.20	_	-	<0.20	<0.20	<0.80	-	<0.80	<0.20	<0.20
Carbon Tetrachloride	0.79	ug/L	0.2	<0.20	<0.20	<0.20	_	-	<0.20	<0.20	<0.79	-	<0.79	<0.20	<0.20
Chlorobenzene	30	ug/L	0.5	<0.10	<0.10	<0.10	_	-	<0.10	<0.10	<0.40	-	<0.40	<0.10	<0.10
Chloroform	2.4	ug/L	0.5	<0.20	<0.20	<0.20			<0.20	<0.20	<0.80		<0.80	<0.20	<0.20
Dibromochloromethane	25	ug/L	0.5	<0.10	<0.10	<0.10			<0.10	<0.10	< 0.40		<0.40	<0.10	<0.10
Dichlorobenzene. 1.2-	3	ug/L	0.5	<0.10	<0.10	<0.10	_	-	<0.10	<0.10	< 0.40	-	<0.40	<0.10	<0.10
Dichlorobenzene, 1,3-	59	ug/L	0.5	<0.10	< 0.10	< 0.10	-	-	< 0.10	<0.10	< 0.40	-	< 0.40	< 0.10	< 0.10
Dichlorobenzene, 1,4-	1	ug/L	0.5	<0.10	<0.10	<0.10	_	-	<0.10	<0.10	< 0.40	-	<0.40	<0.10	<0.10
Dichlorodifluoromethane	590	ug/L	1	<0.20	<0.20	< 0.40	-	-	< 0.40	<0.40	<0.80	-	<0.80	<0.20	< 0.40
Dichloroethane, 1.1-	5	ug/L	0.5	< 0.30	< 0.30	< 0.30	-	-	< 0.30	< 0.30	<1.20	-	<1.20	< 0.30	< 0.30
Dichloroethane, 1,2-	1.6	ug/L	0.5	<0.20	< 0.20	< 0.20	-	-	< 0.20	< 0.20	<0.80	-	<0.80	< 0.20	< 0.20
Dichloroethylene. 1.1-	1.6	ug/L	0.5	<0.30	< 0.30	< 0.30	_	-	< 0.30	< 0.30	<1.20	-	<1.20	< 0.30	< 0.30
Dichloroethylene, 1,2-cis-	1.6	ug/L	0.5	<0.20	<0.20	<0.20	-		<0.20	<0.20	<0.80	-	<0.80	<0.20	<0.20
Dichloroethylene, 1,2-trans-	1.6	ug/L	0.5	< 0.20	< 0.20	< 0.20	-	-	< 0.20	< 0.20	< 0.80	-	< 0.80	< 0.20	< 0.20
Dichloropropane, 1,2-	5	ug/L	0.5	<0.20	< 0.20	< 0.20	-	-	< 0.20	< 0.20	<0.80	-	< 0.80	< 0.20	< 0.20
Dichloropropene,1,3-	0.5	ug/L	0.5	< 0.30	< 0.30	< 0.10	-	-	< 0.10	< 0.10	< 0.50	-	< 0.50	< 0.30	< 0.10
Ethylbenzene	2.4	ug/L	0.5	<0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.40	< 0.10	< 0.40	< 0.10	< 0.10
Ethylene Dibromide	0.2	ug/L	0.2	<0.10	< 0.10	< 0.10	-	-	< 0.10	< 0.10	< 0.20	-	< 0.20	< 0.10	< 0.10
Hexane (n)	51	ug/L	1	< 0.20	< 0.20	< 0.20	-	-	< 0.20	< 0.20	<0.80	-	< 0.80	< 0.20	< 0.20
Methyl Ethyl Ketone	1800	ug/L	5	<1.0	<1.0	<1.0	-	-	<1.0	<1.0	<4.0	-	<4.0	<1.0	<1.0
Methyl Isobutyl Ketone	640	ug/L	5	<1.0	<1.0	<1.0	-	-	<1.0	<1.0	<4.0	-	<4.0	<1.0	<1.0
Methyl tert-Butyl Ether MTBE)	15	ug/L	2	<0.20	< 0.20	< 0.20	-	-	< 0.20	< 0.20	<0.80	-	<0.80	< 0.20	< 0.20
Methylene Chloride	50	ug/L	5	< 0.30	< 0.30	< 0.30	-	-	< 0.30	< 0.30	<1.20	-	<1.20	< 0.30	< 0.30
Styrene	5.4	ug/L	0.5	<0.10	<0.10	<0.10	_	-	<0.10	<0.10	<0.40	-	<0.40	<0.10	<0.10
Tetrachloroethane, 1,1,1,2-	1.1	ug/L	0.5	<0.10	<0.10	<0.10	-	-	<0.10	<0.10	<0.40	-	<0.40	<0.10	<0.10
Tetrachloroethane, 1,1,2,2-	1 1	ug/L	0.5	<0.10	<0.10	<0.10	-	-	<0.10	<0.10	<0.40	-	<0.40	<0.10	<0.10
Tetrachloroethylene	1.6	ug/L	0.5	<0.20	<0.20	<0.20	-	-	<0.20	<0.20	<0.80	-	<0.80	<0.20	<0.20
Toluene	24	ug/L	0.5	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.80	<0.20	<0.80	<0.20	<0.20
Trichloroethane, 1,1,1-	200	ug/L	0.5	< 0.30	< 0.30	<0.30	-0.20	-0.20	< 0.30	<0.30	<1.20	-0.20	<1.20	< 0.30	< 0.30
Trichloroethane, 1,1,1-	4.7	ug/L	0.5	<0.20	<0.20	<0.20			<0.20	<0.20	<0.80		<0.80	<0.20	<0.20
Trichloroethylene	1.6	ug/L	0.5	<0.20	<0.20	<0.20	-		<0.20	<0.20	<0.80		<0.80	<0.20	<0.20
Trichlorofluoromethane	150	ug/L	1	<0.40	<0.40	<0.40	-		<0.40	<0.40	<1.60		<1.60	<0.40	<0.40
Vinyl Chloride	0.5	ug/L	0.5	<0.40	<0.17	<0.17	-		<0.40	<0.17	<0.50		<0.50	<0.17	<0.40
viriyi Ornorluc	300	ug/L	0.5	<0.17	<0.20	<0.17	<0.20	<0.20	<0.17	<0.20	<0.80	<0.20	<0.80	<0.17	<0.17

- 1. All concentrations in µg/L, unless indicated otherwise.
 2. Table 2 SCS = Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (April 15, 2011) Table 2: Full Depth Generic Site Condition Standards for Use in a Potable Groundwater Condition, All Types of Property Use. Coarse textured soil
- 3. GW Groundwater
- 4. mBGS metres below ground surface
- 5. RDL Reportable Detection Limit
- 6. NA Not Applicable
- 7. Yellow highlighting indicates that parameter concentration exceeds the Table 2 SCS.

Page 1 of 1 2024-07-05


Mr. Andrew Murphy
3085 Hurontario Limited Partnership on behalf of Equity Three Holdings Inc.

Project No. CA0015267.2252 (2000)

July 5, 2024

ATTACHMENT A

Plan of Survey

Project No. CA0015267.2252 (2000) July 5, 2024

ATTACHMENT B

Sampling and Analysis Plan

MEMORANDUM

DATE June 10, 2024 **Project No.** CA0015267.2252 (2000)

TO Nicholas Ho

CC Leanne Burns, P.Eng.

FROM Rica Esmirna Maliwat, P.Eng.

EMAIL ricaesmirna.maliwat@wsp.com

SAMPLING AND ANALYSIS PLAN – GROUNDWATER MONITORING AND SAMPLING – JUNE 2024, 3085 AND 3105 HURONTARIO STREET, MISSISSAUGA, ONTARIO

WSP Canada Inc. (WSP) was retained by 3085 Hurontario Limited Partnership (3085 Hurontario LP) to complete groundwater monitoring and sampling at 3085 and 3105 Hurontario Street, Mississauga, Ontario (the Site).

As required by the Ontario Regulation (O. Reg.) 153/04, this Site-specific sampling and analysis plan (SAP), which includes WSP's Quality Assurance Program (QAP) and standard operating procedures (SOP) is to be developed for each environmental field investigation activity. The SAP is a required component of the Phase Two ESA report that outlines the proposed field work, identifies the number and location of samples to be collected, specifies which SOPs will be used, and the quality assurance measures to be implemented during the field work. All field work will be completed in accordance with the requirements of the SAP, QAP and SOPs.

A Phase One ESA and Phase Two ESA was conducted by WSP in 2019. Based on information obtained as part of the 2019 Phase Two ESA, the concentrations of the contaminants of potential concern in soil and groundwater at the locations sampled were below the applicable standards. A Record of Site Condition (RSC) ID 226638 dated April 28, 2020 was subsequently filed for the Site. It is understood that 3085 Hurontario LP is in the process of working with the City of Mississauga on land conveyances as part of the redevelopment of the Site. The City of Mississauga requires reliance on the Phase One and Two ESA reports and given that the reports are over 18 months old (the validity timeline of Phase One and Two ESA reports per Ontario Regulation 153/04), updates to the reports prepared in 2019 are required in order to provide reliance.

Low-flow groundwater sampling of existing monitoring wells is recommended to obtain current groundwater conditions at the Site.

Three existing wells were sampled during the 2019 Phase Two ESA. During a site visit completed in December 2023, the monitoring well identified as BH/MW19-3 could not be accessed as the monitoring well lid was damaged. Furthermore, BH/MW19-4 could not be found and BH2 was observed to be dry at that time. As such, WSP will repair monitoring well BH/MW19-3. WSP will then complete a groundwater sampling event which will include the measurement of water levels using an interface probe at accessible wells and the measurement of water quality field parameters (pH, conductivity and temperature).

CONTACT INFORMATION

Rica Esmirna Maliwat – cell – 437-928-3714

SITE ACCESS REQUIREMENTS

Access	Information
Client Contact	James Doracin (905-802-3792)
Site Access Representative	Neena (647-966-7250)
Access/Hours of Work	Unrestricted access Groundwater Monitoring and Sampling Field Work – access to Site beginning at 8:00 am
Site Check-In Procedure	Check-in with Rica Esmirna Maliwat (437-928-3714) on arrival and departure
Photography	Permitted
On-Site Orientation or Training	None required

GENERAL PROJECT REQUIREMENTS

- Review and sign-off on the Site-specific health and safety plan at the beginning of the project. Document daily conditions and tailgate meetings on the Field Level Risk Assessment form.
- Complete a Daily Field Log to document the date, time work progress, weather conditions, work area physical conditions and potential risks/concerns, any disruptions, deviations and/or delays, any incidents that occurred and any other relevant information to the project. Identified risks/concerns at the Site are to be discussed with Rica (437-928-3714).
- Follow standard operating procedures and use standard field forms (forms attached). The complete field deliverable must be provided within one business day of the field work.
- Initial calibration of field equipment should be performed at the start of each field day with a daily check of calibration using a standard of known concentration (record on field form).
- Ensure to bring the following equipment to the field: pen, field forms, camera, permanent marker, measuring tape, oil/water interface meter, plastic bucket, brush, gloves, spray containing Liquinox or Alconox solution, spray bottle containing analyte-free water, paper towels.
- Clean disposable Nitrile gloves will be used at each sampling location to prevent crosscontamination.
- All non-dedicated sampling equipment (e.g., oil/water interface meters) will be decontaminated between sampling locations. Sampling equipment in contact with soil or groundwater will be cleaned with a brush; washed with a laboratory-grade detergent solution (e.g., phosphate-free LiquiNox or AlcoNox) and thoroughly rinsed with analyte-free water.
- Groundwater sample containers will be supplied by AGAT. Sample containers will be available for pickup at their Mississauga warehouse by Monday June 10 end of day. Groundwater sampling equipment will be supplied by Maxim Environmental and will be available for pickup at their Mississauga warehouse by Monday June 10 end of day.

Schedule

Groundwater Monitoring and Sampling – June 11, 2024 @ 8 AM

GROUNDWATER SAMPLING

- Find locations of the wells identified as BH2 and BH/MW19-4 on the northwestern portion of the Site. If these wells are accessible and water is found within the wells, please contact Rica immediately.
- If BH2 and BH/MW19-4 cannot be sampled, proceed with the repair of monitoring well BH/MW19-3. The repair is to be completed by WSP staff (Kyle Waldie and Jason Yuke).
- Purge each accessible well (three in total) in accordance with our SOP.
- To measure the water level, open the J-plug and allow air in the casing to vent and the water level to stabilize. Do not move or remove any tubing that may be in the well. Measure water levels from the top of PVC pipe. Measure the readings twice consecutively. Collect a round of water level measurements using the oil/water interface meter. Use the "Static Water Level Field Form". Please also include the measurements of the top of pipe to the ground surface (i.e., the "stickup" or "stickdown").
- The multi-parameter meter should be initially calibrated by the equipment supplier and thereafter at the start of each day. Check calibration to known pH and conductivity at mid-day. If equipment is out of calibration (i.e., reading is off by more than 10%), call Rica.
- Collect groundwater samples using a peristaltic pump by stabilizing the water quality parameters as per WSP's standard operating procedure and measuring field chemistry parameters (i.e., temperature, pH, electrical conductivity) after each well volume. Record evidence of or absence of sheen or odours. Minimize disturbance of the water column to avoid mobilizing sediment into the sample.
- Collect quality assurance samples as indicated in Table 1. The duplicate groundwater samples should be labelled in a manner in which the laboratory cannot readily identify the sample as a duplicate.
- Submit one trip blank sample for analysis of VOCs and PHC F1.
- If the interface probe indicates free product is present, use a bailer to check if there is free product within the monitoring well. Call Rica if you see or suspect product in the monitoring well.
- Use the "Groundwater Sample Collection" form to collect all data during groundwater sampling.
- Samples do not need to be submitted on sampling day provided you keep them on ice during the day and/or refrigerate them overnight (i.e., keep them cold from collection to submission).
- Send Rica a photo of the chain of custody to review prior to submission.

TABLE 1: GROUNDWATER SAMPLING PLAN

Monitor ID	Field Parameter Measurements	Groundwater Analyses to be Requested	QA/QC Samples
BH/MW19-3			1 field duplicate sample for
BH/MW19-4	pH, EC, temp	PHC, VOC	PHC and VOC
BH2	, , , , , , , , , , , , , , , , , , ,		1 trip blank for VOC and PHC F1

Wastewater generated during groundwater monitoring will be discharged to the nearby surface unless suspected contaminants are present (i.e., sheen or odours), in which case the wastewater will be stored on-Site in containers for disposal by the Client.

CHAIN-OF-CUSTODY

Chain-of-Custody Item	Information
Analytical Laboratory	AGAT, Mississauga
Generic Site Condition Standards	O.Reg. 153/04 Table 2 residential/parkland/institutional property use, coarse-textured soil (groundwater)
Use Record of Site Condition Analytical Procedure	Yes
Turn-Around Time	Regular turnaround
WSP Reporting Contact	Rica Esmirna Maliwat (ricaesmirna.maliwat@wsp.com)
WSP Billing Contact	CAPayablesInvoice@wsp.com
Is an EQuiS EDD Required	Yes

MANAGEMENT OF INVESTIGATION DERIVED WASTE

- Label containers for waste management purposes, include WSP, project number, date and drum contents (purge water)
- Discuss best location to store waste containers with site supervisor/manager (should be secure as possible from public access, accessible to a waste hauler and convenient for the tenants).
- Record inventory of waste containers on Daily Field Log.

SPECIAL INSTRUCTIONS

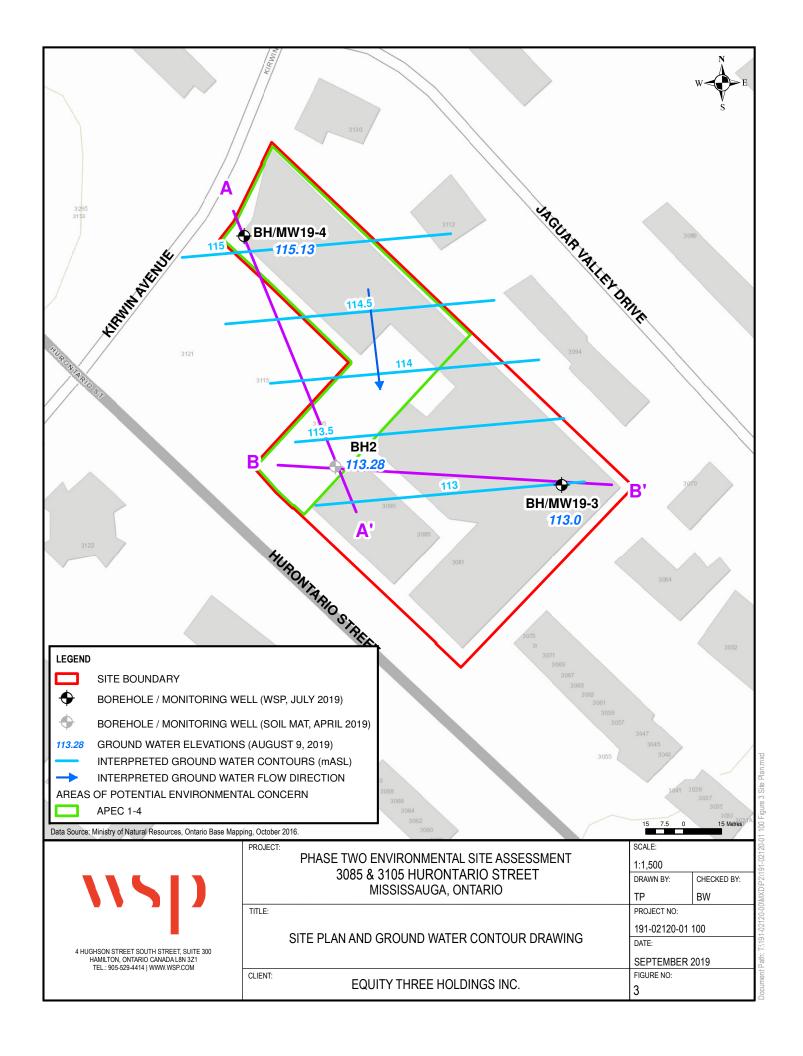
- Check-in with Rica (437-928-3714) at start and end of each workday.
- Submit fieldnotes (including field logs, calibration records, field forms, and chain-of-custody forms).

■ The use of ink for recording field notes is recommended to ensure the legibility of scanned field forms. Scan field notes at resolution and contrast settings that ensure the scanned documents are easily legible.

- Use standard field forms (not field books).
- Include a daily log for every day of field work.
- Save field notes (including daily logs, field forms, field logs, calibration records, and chain-of-custody documents) as a single .pdf document with the following file name "PROJECT_NUMBER Field Notes COMPLETION_DATE" (for example, "1712345 Field Notes April 27, 2021.pdf", where COMPLETION_DATE represents the last date of field work associated with the sampling event).
- Sort pages in the .pdf document by form type and in chronological order with daily logs at the front to simplify review.
- Provide field notes to Rica.

Attachments: Appendix A - Well Location Plan

https://wsponlinecan.sharepoint.com/sites/ca-ca00152672252/shared documents/05. technical/phase two esa/2024-06-10 gw sampling/ca0015267.2252-m-rev0-sap-gw sampling-3085 hurontario-10feb2024.docx


Project No. CA0015267.2252 (2000)

June 10, 2024

APPENDIX A

Well Location Plan

July 5, 2024

ATTACHMENT C

Certificates of Analysis

CLIENT NAME: WSP CANADA INC. 2 INTERNATIONAL BLVD SUITE 201 ETOBICOKE, ON M9W1A2

(416) 798-0065

ATTENTION TO: Rica Esmirna Maliwat

PROJECT: CA001526.2252

AGAT WORK ORDER: 24T161069

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: Jun 20, 2024

PAGES (INCLUDING COVER): 10 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

<u>^No</u>	<u>tes</u>	
1		
1		
1		
1		
1		
1		
	·	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

Page 1 of 10

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

SAMPLING SITE:3085, 3105 HURONTARIO ST.

Certificate of Analysis

AGAT WORK ORDER: 24T161069

PROJECT: CA001526.2252

ATTENTION TO: Rica Esmirna Maliwat

SAMPLED BY:NH

O. Reg. 153(511) - PHCs F1 - F4 (with VOC) (Water)

DATE RECEIVED: 2024-06-11							DATE REPORTED: 2024-06-20
	5	SAMPLE DESC	RIPTION:	MW19-3	BH2	DUP1	
		SAMP	LE TYPE:	Water	Water	Water	
		DATE S	AMPLED:	2024-06-11 12:10	2024-06-11 12:50	2024-06-11	
Parameter	Unit	G/S	RDL	5923908	5923914	5923915	
F1 (C6 to C10)	μg/L	750	25	<25	<25	<25	
F1 (C6 to C10) minus BTEX	μg/L	750	25	<25	<25	<25	
F2 (C10 to C16)	μg/L	150	100	<100	<100	<100	
F3 (C16 to C34)	μg/L	500	100	<100	<100	<100	
F4 (C34 to C50)	μg/L	500	100	<100	<100	<100	
Gravimetric Heavy Hydrocarbons	μg/L		500	NA	NA	NA	
Sediment				1	1	1	
Surrogate	Unit	Acceptabl	e Limits				
Toluene-d8	%	50-1	40	102	100	102	
Terphenyl	% Recovery	60-1	40	68	104	100	

Comments:

RDL - Reported Detection Limit: G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

5923908-5923915 The C6-C10 fraction is calculated using Toluene response factor.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and nC34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16 - C50 and are only determined if the chromatogram of the C34 - C50 Hydrocarbons indicated that hydrocarbons >C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6-C50 results are corrected for BTEX contribution.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153/04, results are considered valid without determining the PAH contribution if not requested by the client.

NA = Not Applicable

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amounts

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukoloj

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

SAMPLING SITE:3085, 3105 HURONTARIO ST.

Certificate of Analysis

AGAT WORK ORDER: 24T161069

PROJECT: CA001526.2252

SAMPLED BY:NH

ATTENTION TO: Rica Esmirna Maliwat

O. Reg. 153(511) - PHCs F1/BTEX (Water)

				o. 110g. 100(0	TI) THOST INDICK (Water)
DATE RECEIVED: 2024-06-11					DATE REPORTED: 2024-06-20
	S	AMPLE DES SAM	CRIPTION: PLE TYPE:	TRIP BLANK Water	
		DATE	SAMPLED:	2024-06-11	
Parameter	Unit	G/S	RDL	5923916	
Benzene	μg/L	5.0	0.20	<0.20	
Toluene	μg/L	24	0.20	<0.20	
Ethylbenzene	μg/L	2.4	0.10	<0.10	
m & p-Xylene	μg/L		0.20	<0.20	
o-Xylene	μg/L		0.10	<0.10	
Xylenes (Total)	μg/L	300	0.20	<0.20	
F1 (C6 to C10)	μg/L	750	25	<25	
F1 (C6 to C10) minus BTEX	μg/L	750	25	<25	
Surrogate	Unit	Acceptable Limits			
Toluene-d8	% Recovery	60-	140	102	

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Potable Ground Water - All Types of Comments:

Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

5923916 The C6-C10 fraction is calculated using Toluene response factor.

Total C6-C10 results are corrected for BTEX contributions.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

Extraction and holding times were met for this sample.

NA = Not Applicable

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPoprikolof

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

SAMPLING SITE:3085, 3105 HURONTARIO ST.

Certificate of Analysis

AGAT WORK ORDER: 24T161069

PROJECT: CA001526.2252

ATTENTION TO: Rica Esmirna Maliwat

SAMPLED BY:NH

O. Reg. 153(511) - VOCs (with PHC) (Water)

DATE RECEIVED: 2024-06-11								DATE REPORTED: 2024-06-20
		SAMPLE DESC	CRIPTION:	MW19-3	BH2	DUP1	TRIP BLANK	
		SAME	PLE TYPE:	Water	Water	Water	Water	
		DATE S	SAMPLED:	2024-06-11 12:10	2024-06-11 12:50	2024-06-11	2024-06-11	
Parameter	Unit	G/S	RDL	5923908	5923914	5923915	5923916	
Dichlorodifluoromethane	μg/L	590	0.40	<0.40	<0.40	<0.40	<0.40	
Vinyl Chloride	μg/L	0.5	0.17	<0.17	<0.17	<0.17	<0.17	
Bromomethane	μg/L	0.89	0.20	<0.20	<0.20	<0.20	<0.20	
Trichlorofluoromethane	μg/L	150	0.40	<0.40	<0.40	< 0.40	<0.40	
Acetone	μg/L	2700	1.0	<1.0	<1.0	<1.0	<1.0	
1,1-Dichloroethylene	μg/L	1.6	0.30	< 0.30	< 0.30	< 0.30	<0.30	
Methylene Chloride	μg/L	50	0.30	< 0.30	< 0.30	< 0.30	<0.30	
trans- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	<0.20	<0.20	<0.20	
Methyl tert-butyl ether	μg/L	15	0.20	<0.20	<0.20	<0.20	<0.20	
1,1-Dichloroethane	μg/L	5	0.30	< 0.30	< 0.30	< 0.30	<0.30	
Methyl Ethyl Ketone	μg/L	1800	1.0	<1.0	<1.0	<1.0	<1.0	
cis- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	<0.20	<0.20	<0.20	
Chloroform	μg/L	2.4	0.20	<0.20	<0.20	<0.20	<0.20	
1,2-Dichloroethane	μg/L	1.6	0.20	<0.20	<0.20	<0.20	<0.20	
1,1,1-Trichloroethane	μg/L	200	0.30	< 0.30	< 0.30	< 0.30	<0.30	
Carbon Tetrachloride	μg/L	0.79	0.20	<0.20	<0.20	<0.20	<0.20	
Benzene	μg/L	5.0	0.20	<0.20	<0.20	<0.20	<0.20	
1,2-Dichloropropane	μg/L	5	0.20	<0.20	<0.20	<0.20	<0.20	
Trichloroethylene	μg/L	1.6	0.20	<0.20	<0.20	<0.20	<0.20	
Bromodichloromethane	μg/L	16	0.20	<0.20	<0.20	<0.20	<0.20	
Methyl Isobutyl Ketone	μg/L	640	1.0	<1.0	<1.0	<1.0	<1.0	
1,1,2-Trichloroethane	μg/L	4.7	0.20	<0.20	<0.20	<0.20	<0.20	
Toluene	μg/L	24	0.20	<0.20	<0.20	<0.20	<0.20	
Dibromochloromethane	μg/L	25	0.10	<0.10	<0.10	<0.10	<0.10	
Ethylene Dibromide	μg/L	0.2	0.10	<0.10	<0.10	<0.10	<0.10	
Tetrachloroethylene	μg/L	1.6	0.20	<0.20	<0.20	<0.20	<0.20	
1,1,1,2-Tetrachloroethane	μg/L	1.1	0.10	<0.10	<0.10	<0.10	<0.10	
Chlorobenzene	μg/L	30	0.10	<0.10	<0.10	<0.10	<0.10	
Ethylbenzene	μg/L	2.4	0.10	<0.10	<0.10	<0.10	<0.10	

Certified By:

NPopukolet

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

SAMPLING SITE:3085, 3105 HURONTARIO ST.

Certificate of Analysis

AGAT WORK ORDER: 24T161069

PROJECT: CA001526.2252

ATTENTION TO: Rica Esmirna Maliwat

SAMPLED BY:NH

O. Reg. 153(511) - VOCs (with PHC) (Water)

DATE RECEIVED: 2024-06-11								DATE REPORTED: 2024-06-20
		AMPLE DES	CRIPTION:	MW19-3	BH2	DUP1	TRIP BLANK	
		SAM	PLE TYPE:	Water	Water	Water	Water	
		DATE	SAMPLED:	2024-06-11 12:10	2024-06-11 12:50	2024-06-11	2024-06-11	
Parameter	Unit	G/S	RDL	5923908	5923914	5923915	5923916	
n & p-Xylene	μg/L		0.20	<0.20	<0.20	<0.20	<0.20	
Bromoform	μg/L	25	0.10	<0.10	<0.10	<0.10	<0.10	
Styrene	μg/L	5.4	0.10	<0.10	<0.10	<0.10	<0.10	
1,1,2,2-Tetrachloroethane	μg/L	1	0.10	<0.10	<0.10	<0.10	<0.10	
o-Xylene	μg/L		0.10	<0.10	<0.10	<0.10	<0.10	
I,3-Dichlorobenzene	μg/L	59	0.10	<0.10	<0.10	<0.10	<0.10	
I,4-Dichlorobenzene	μg/L	1	0.10	<0.10	<0.10	<0.10	<0.10	
1,2-Dichlorobenzene	μg/L	3	0.10	<0.10	<0.10	<0.10	<0.10	
1,3-Dichloropropene	μg/L	0.5	0.30	< 0.30	< 0.30	< 0.30	<0.30	
(ylenes (Total)	μg/L	300	0.20	<0.20	<0.20	<0.20	<0.20	
n-Hexane	μg/L	51	0.20	<0.20	<0.20	<0.20	<0.20	
Surrogate	Unit	Acceptab	le Limits					
Toluene-d8	% Recovery	50-	140	102	100	102	102	
4-Bromofluorobenzene	% Recovery	50-	140	79	87	82	84	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

5923908-5923916 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

Quality Assurance

CLIENT NAME: WSP CANADA INC. PROJECT: CA001526.2252

AGAT WORK ORDER: 24T161069
ATTENTION TO: Rica Esmirna Maliwat

SAMPLING SITE:3085, 3105 HURONTARIO ST.

SAMPLED BY:NH

			Trac	e Or	ganio	cs Ar	nalys	is							
RPT Date: Jun 20, 2024			Г	DUPLICATE			REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
DADAMETER		Sample	5	D #0	222	Method Blank	Measured		ptable		Lir	ptable			ptable
PARAMETER	Batch	ld	Dup #1	Dup #2	RPD		Value	Lower	Upper	Recovery	Lower	Upper	Recovery	Lower	Upper
O. Reg. 153(511) - PHCs F1 - F	4 (with VOC) (Water)	•						•						
F1 (C6 to C10)	5929087		56	54	NA	< 25	100%	60%	140%	105%	60%	140%	68%	60%	140%
F2 (C10 to C16)	5923646		284	299	NA	< 100	74%	60%	140%	75%	60%	140%	65%	60%	140%
F3 (C16 to C34)	5923646		<100	<100	NA	< 100	79%	60%	140%	106%	60%	140%	79%	60%	140%
F4 (C34 to C50)	5923646		<100	<100	NA	< 100	79%	60%	140%	108%	60%	140%	90%	60%	140%
O. Reg. 153(511) - VOCs (with	PHC) (Water)														
Dichlorodifluoromethane	5929087		< 0.40	< 0.40	NA	< 0.40	62%	50%	140%	60%	50%	140%	71%	50%	140%
Vinyl Chloride	5929087		<0.17	<0.17	NA	< 0.17	62%	50%	140%	95%	50%	140%	117%	50%	140%
Bromomethane	5929087		<0.20	<0.20	NA	< 0.20	77%	50%	140%	99%	50%	140%	105%	50%	140%
Trichlorofluoromethane	5929087		<0.40	< 0.40	NA	< 0.40	85%	50%	140%	88%	50%	140%	100%	50%	140%
Acetone	5929087		<1.0	<1.0	NA	< 1.0	83%	50%	140%	99%	50%	140%	89%	50%	140%
1,1-Dichloroethylene	5929087		<0.30	<0.30	NA	< 0.30	77%	50%	140%	107%	60%	130%	102%	50%	140%
Methylene Chloride	5929087		<0.30	< 0.30	NA	< 0.30	115%	50%	140%	110%	60%	130%	117%	50%	140%
trans- 1,2-Dichloroethylene	5929087		<0.20	<0.20	NA	< 0.20	71%	50%	140%	92%	60%	130%	84%	50%	140%
Methyl tert-butyl ether	5929087		<0.20	<0.20	NA	< 0.20	87%	50%	140%	90%	60%	130%	88%	50%	140%
1,1-Dichloroethane	5929087		<0.30	<0.30	NA	< 0.30	87%	50%	140%	105%		130%	98%	50%	140%
Methyl Ethyl Ketone	5929087		<1.0	<1.0	NA	< 1.0	69%	50%	140%	105%	50%	140%	88%	50%	140%
cis- 1,2-Dichloroethylene	5929087		<0.20	<0.20	NA	< 0.20	67%	50%	140%	81%	60%	130%	69%	50%	140%
Chloroform	5929087		<0.20	<0.20	NA	< 0.20	93%	50%	140%	98%	60%	130%	79%	50%	140%
1,2-Dichloroethane	5929087		<0.20	<0.20	NA	< 0.20	86%	50%	140%	79%	60%	130%	75%	50%	140%
1,1,1-Trichloroethane	5929087		<0.30	<0.30	NA	< 0.30	72%	50%	140%	74%	60%	130%	67%	50%	140%
Carbon Tetrachloride	5929087		<0.20	<0.20	NA	< 0.20	76%	50%	140%	78%	60%	130%	71%	50%	140%
Benzene	5929087		1.24	1.09	12.9%	< 0.20	77%	50%	140%	80%	60%	130%	87%	50%	140%
1,2-Dichloropropane	5929087		<0.20	<0.20	NA	< 0.20	80%	50%	140%	72%	60%	130%	68%	50%	140%
Trichloroethylene	5929087		<0.20	<0.20	NA	< 0.20	84%	50%	140%	76%	60%	130%	79%	50%	140%
Bromodichloromethane	5929087		<0.20	<0.20	NA	< 0.20	81%	50%	140%	75%	60%	130%	67%	50%	140%
Methyl Isobutyl Ketone	5929087		<1.0	<1.0	NA	< 1.0	61%	50%	140%	91%	50%	140%	90%	50%	140%
1,1,2-Trichloroethane	5929087		<0.20	<0.20	NA	< 0.20	95%	50%	140%	88%	60%	130%	83%	50%	140%
Toluene	5929087		51.0	42.1	19.1%	< 0.20	87%	50%	140%	78%	60%	130%	82%	50%	140%
Dibromochloromethane	5929087		<0.10	<0.10	NA	< 0.10	88%	50%	140%	83%	60%	130%	71%	50%	140%
Ethylene Dibromide	5929087		<0.10	<0.10	NA	< 0.10	83%	50%	140%	83%	60%	130%	82%	50%	140%
Tetrachloroethylene	5929087		<0.20	<0.20	NA	< 0.20	91%	50%	140%	82%	60%	130%	82%	50%	140%
1,1,1,2-Tetrachloroethane	5929087		<0.10	<0.10	NA	< 0.10	89%	50%	140%	83%		130%	76%	50%	140%
Chlorobenzene	5929087		<0.10	<0.10	NA	< 0.10	91%	50%	140%	76%		130%	75%	50%	140%
Ethylbenzene	5929087		0.12	0.10	NA	< 0.10	93%		140%	75%		130%	79%	50%	140%
m & p-Xylene	5929087		0.31	0.26	NA	< 0.20	95%		140%	79%		130%	79%	50%	
Bromoform	5929087		<0.10	<0.10	NA	< 0.10	93%	50%	140%	94%	60%	130%	81%	50%	140%
Styrene	5929087		<0.10	<0.10	NA	< 0.10	76%		140%	60%		130%	65%	50%	140%
1,1,2,2-Tetrachloroethane	5929087		<0.10	<0.10	NA	< 0.10	103%	50%		99%		130%	88%	50%	140%
o-Xylene	5929087		0.16	0.16	NA	< 0.10	97%		140%	78%		130%	79%		140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 6 of 10

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: WSP CANADA INC. PROJECT: CA001526.2252

AGAT WORK ORDER: 24T161069
ATTENTION TO: Rica Esmirna Maliwat

SAMPLING SITE:3085, 3105 HURONTARIO ST.

SAMPLED BY:NH

	Trace Organics Analysis (Continued)														
RPT Date: Jun 20, 2024			DUPLICATE			REFERENCE MATERIAL			METHOD	BLANK	SPIKE	MATRIX SPIKE			
PARAMETER	DADAMETED Retch *****P** Dun #1 Dun #2 DDD ******** **********		Measured		ptable nits	Recovery	1 1 10	ptable nits	Recovery	Lin	eptable mits				
FARAMETER		ld			, -		Value	Lower	Upper	,	Lower	Upper	,	Lower	Upper
1,3-Dichlorobenzene	5929087		<0.10	<0.10	NA	< 0.10	110%	50%	140%	92%	60%	130%	85%	50%	140%
1,4-Dichlorobenzene	5929087		<0.10	<0.10	NA	< 0.10	105%	50%	140%	90%	60%	130%	86%	50%	140%
1,2-Dichlorobenzene	5929087		<0.10	<0.10	NA	< 0.10	106%	50%	140%	87%	60%	130%	84%	50%	140%
n-Hexane	5929087		<0.20	<0.20	NA	< 0.20	79%	50%	140%	93%	60%	130%	80%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

Method Summary

CLIENT NAME: WSP CANADA INC. PROJECT: CA001526.2252 AGAT WORK ORDER: 24T161069 ATTENTION TO: Rica Esmirna Maliwat

SAMPLING SITE:3085, 3105 HURONTARIO ST.

SAMPLED BY:NH

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
Trace Organics Analysis		1						
F1 (C6 to C10)	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/FID					
F1 (C6 to C10) minus BTEX	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/FID					
Toluene-d8	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
F2 (C10 to C16)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID					
F3 (C16 to C34)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID					
F4 (C34 to C50)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID					
Gravimetric Heavy Hydrocarbons	VOL-91-5010	modified from MOE PHC-E3421	BALANCE					
Terphenyl	VOL-91-5010	modified from MOE PHC-E3421	GC/FID					
Sediment			N/A					
Benzene	VOL-91-5010	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS					
Toluene	VOL-91-5010	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS					
Ethylbenzene	VOL-91-5010	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS					
m & p-Xylene	VOL-91-5010	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS					
o-Xylene	VOL-91-5010	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS					
Xylenes (Total)	VOL-91-5010	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS					
F1 (C6 to C10)	VOL-91-5010	modified from MOE E3421	(P&T)GC/FID					
F1 (C6 to C10) minus BTEX	VOL-91-5010	modified from MOE E3421	(P&T)GC/FID					
Toluene-d8	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/MS					
Dichlorodifluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Vinyl Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Bromomethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Trichlorofluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Acetone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
1,1-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Methylene Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
trans- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Methyl tert-butyl ether	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
1,1-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Methyl Ethyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
cis- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Chloroform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
1,2-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					

Method Summary

CLIENT NAME: WSP CANADA INC. PROJECT: CA001526.2252

AGAT WORK ORDER: 24T161069
ATTENTION TO: Rica Esmirna Maliwat
SAMPLED BY:NH

SAMPLING SITE:3085, 3105 HURONTARIO ST.

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE						
1,1,1-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Carbon Tetrachloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Benzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
1,2-Dichloropropane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Trichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Bromodichloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Methyl Isobutyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
1,1,2-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Toluene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Dibromochloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Ethylene Dibromide	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Tetrachloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
1,1,1,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Chlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Ethylbenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
m & p-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Bromoform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Styrene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
1,1,2,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
o-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
1,3-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
1,4-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
1,2-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
1,3-Dichloropropene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Xylenes (Total)	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
n-Hexane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
4-Bromofluorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						

WAP CANADA

416 798 0065 Fax

RICH ESMIRNA MAUNAT

TORONTO, ON, & MON JAZ

ricaesmirna maliwat @ wep.com

INTERNATIONAL BLUD, SUITE 201

Chain of Custody Record

Report Information:

Company:

Contact:

Address:

Phone:

1. Email:

2. Email:

Reports to be sent to:

Have feedback? Scan here for a quick survey!

Regulatory Requirements:

Regulation 406

☐Res/Park

CCME

Agriculture

Regulation 558

If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans)

(Please check all applicable boxes)

Regulation 153/04

Ind/Com

Res/Park

Coarse

Fine

☐ Agriculture

Soil Texture (Check One)

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webearth agatlabs.com

Sewer Use

Other

Sanitary Storm

Region

Prov. Water Quality

Objectives (PWQO)

Indicate One

Laboratory	use un	ly
Work Order #:	247	161
		2011

Cooler Quantity:	1 m-	d	
Arrival Temperatures	9.2	19.41	01.6
Depot Temperatures	i:		
Custody Spal Intact:	Tolor	FINO	EIN/A

Cooler Quantity:	1 m-ed
Arrival Temperature	es: 9.2 19.41 9.6
Depot Temperature	es:
Custody Seal Intact	t: Nes 🗆 No 🗆 N/A
Notes: 1005	e i(t
Turnaround Ti	me (TAT) Required:
Regular TAT	5 to 7 Business Days
Rush TAT (Rush Surc	harges Apply)
3 Business Days	2 Business Days Next Business
OR Date Re	equired (Rush Surcharges May Apply):
	provide prior notification for rush TAT
*TAT is exclu	sive of weekends and statutory holidays
For 'Same Day' a	analysis, please contact your AGAT CSR
0. Reg 406 0. R	teg 2
	5

Project Information: Project: CA 0015267 2752 Site Location: 3085, 3105 HURONTARIO ST. Sampled By: NH AGAT Quote #: PO: Please note: If quotation number is not provided, client will be billed full price for analysis. Invoice Information: Bill To Same: Yes No Company: Company: Contact: Address: Email: CAPayables To bace Quisp con		0	Is this submission for a Record of Site Condition (RSC)? Yes No			Report Guideline on Certificate of Analysis Yes No							Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays For 'Same Day' analysis, please contact your AGAT CSR								Ę		
		Leg	Legal Sample Sample Matrix Legend GW Ground Water SD Sediment O Oil SW Surface Water P Paint R Rock/Shale S Soil		0.	Reg 1	53					Reg 4		O. Reg 558							(N/N) uoi:		
		GW O P			& Inorganics	. □ CrVI, □ Hg, □ HWSB	F1-F4 PHCs			Aroclors	Regulation 406 Characterization Package pH, Metals, BTEX, F1-F4	C.	Regulation 406 SPLP Rainwater Leach mSPLP: ☐ Metals ☐ VOCs ☐ SVOCs ☐ OC	Landfill Disposal Characterization TCLP: TCLP: ☐ M&I ☐ VOCS ☐ ABNS ☐ B(a)P☐ PCBS	Corrosivity: ☐ Moisture ☐ Sulphide	(U					Potentially Hazardous or High Concentration (Y/N)		
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Field Filtered - Metals, Hg.	Metals	Metals		VOC	PAHS	PCBs: A	Regulation pH, Metals,	EC, SAR	Regulation mSPLP: □	Landfill Disp TCLP: 🗆 M&I	Corrosi	PHC					Potentia
1. MW19-3	11 JUNE/2	1210 8	5	GW					×	×			B# 1										
2. BHZ		1250 8	5	1			50		×	×										CLAY			
3. DUPI		AM PM	5						×	×			H		-3		-						
4. TRIP BLANK	V	AM PM	3	V						×								×					_
5.		AM PM																					
6.	W 11154	AM PM																					
7.		AM PM					-				- 1		1111		- 5-			Ш					
8.		AM PM													710		1					-	_
9.		AM PM					17 =						HA.		- 1								
10.		AM PM											H							П			
11.		AM PM											4				1 =						
Samples Relinquished By (Print Name and Sign): NICHOLAS 110 Samples Relinquished By (Print Name and Sign):		Date JUN Date	E/14 Time	60	Samples Received By (Print Name and Sign): Samples Received By (Print Name and Sign):		- (D)		Date	N	11	Ť	ime L(`.) ime	0		ŀ	Page _	1	of		

Samples Relinquished By (Print Name and Sign)