

De Zen Realty Company Ltd.

HYDROGEOLOGICAL ASSESSMENT

PROPOSED MIXED-USE DEVELOPMENT

120, 128, 142, 154, 158 Queen Street South, and 169 Crumbie Street Mississauga, Ontario

23 February 2024

CH244.00

<u>Digital Distribution</u> De Zen Realty Company Ltd. Terrapex Environmental Ltd.

Terrapex Environmental Ltd.90 Scarsdale RoatToronto, Ontario, M3B 2R7Telephone:(416) 245-0011Facsimile:(416) 245-0012Email:toronto@terrapex.com

EXECUTIVE SUMMARY

Terrapex Environmental Ltd. (Terrapex) was retained by De Zen Realty Company Ltd. to review hydrogeological conditions for the proposed redevelopment planned for the adjoining properties (the Site) of 120, 128, 142, 154, 158 Queen Street South and 169 Crumbie Street in Mississauga, Ontario.

Phase One of the development, also known as Buildings 1A and 1B complex, is the focus of construction dewatering and foundation drainage estimates herein. Additional buildings are planned for construction for the remainder of the site. These buildings will have separated underground parking garage structures that will each extend to three below grade levels.

A network of seventeen groundwater monitoring wells was drilled at thirteen locations with broad distribution across the Site. Groundwater levels were measured for between five and seven monitoring events. Single well hydraulic tests were performed on six monitoring wells. One groundwater sample was analysed for municipal bylaws that regulate discharges to sanitary and storm sewers.

For the Buildings 1A and 1B complex, the lowest P3 slab will be set at approximately 151.1 metres above sea level (masl). The depth of excavation will be approximately 11.4 metres below grade (mbg). The shallowest depth to the water table encountered was 0.3 mbg, indicating that the construction excavation and the underground parking structure will experience groundwater seepage that will need to be managed.

The anticipated maximum rate of groundwater seepage of 90,300 L/day and a larger stormwater event of 160,700 litres) to be managed during construction combined will be approximately 251,000 L/day, which will require an Environmental Activity and Sector Registry (EASR) to be issued by the provincial government. The foundation drains in post-construction could experience a maximum rate of 86,400 L/day, which is considered groundwater taking under provincial regulations, thus a Permit to Take Water (PTTW) will be required.

Groundwater quality was acceptable for discharge to the Peel Region's sanitary/combined sewer. Groundwater quality was acceptable for discharge to the City of Mississauga's storm sewer with treatment for manganese and phenolics. Elevated manganese and phenolics are widespread across the site. The elevated manganese is in dissolved form that would require ongoing chemical treatment. Monitoring for organic chemicals during construction is advised due to possible presence of contaminated groundwater on site or in the vicinity.

Pre-construction and post-construction consist of impervious cover over the entire site, both allowing negligible amounts of recharge. Low impact development (LID) measures to improve infiltration are not feasible due to the parking garages ultimately occupying the entire site. Also, the low permeability clayey soil would limit the success of attempts to achieve significant recharge.

TABLE OF CONTENTS

EXEC	UTIVE SUMMARY	. 2
1.0	BACKGROUND	. 1
2.0	LOCATION AND SETTING	.1
 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 	LOCATION AND PROPERTY DIMENSIONS PRESENT LAND USE PROPOSED DEVELOPMENT SITE TOPOGRAPHY DRAINAGE REGIONAL GEOLOGY SENSITIVE ECOLOGICAL RECEIVERS GROUNDWATER SUPPLY WELLS	. 1 . 2 . 2 . 2 . 2
3.0	FIELD PROGRAM	. 3
3.1 3.2 3.3 3.4 3.5	DRILLING AND BOREHOLES MONITORING WELLS GROUNDWATER LEVEL MEASUREMENTS GROUNDWATER SAMPLING HYDRAULIC CONDUCTIVITY TESTS	. 3 . 4 . 4 . 4
4.0	OBSERVATIONS	. 5
4.1 4.2	SUBSURFACE MATERIALS AND HYDROSTRATIGRAPHY GROUNDWATER LEVELS	
5.0	ANALYSIS	. 6
5.1 5.2 5.3 5.4	HYDRAULIC CONDUCTIVITY HYDRAULIC GRADIENT GROUNDWATER QUALITY BUILDING GEOMETRY AND HYDROGEOLOGY	. 7 . 7
6.0	DEWATERING AND FOUNDATION DRAINAGE	. 8
6.1 6.2 6.3	RATES PREDICTIONS RADIUS OF INFLUENCE AND SENSITIVE RECEIVERS	10
7.0	WATER BALANCE ASPECTS 1	10
7.1 7.2	PRE-CONSTRUCTION AND POST-CONSTRUCTION INFILTRATION	-
8.0	CLOSURE	11
9.0	REFERENCES1	13

TABLE OF CONTENTS

FIGURES

Figure 1	Site Location Map
Figure 2	Site Vicinity Plan within 100 m
Figure 3	Site Vicinity Plan within 500 m
Figure 4	Locations of Investigations
Figure 5	Shallow Groundwater Regime
Figure 6	Deeper Groundwater Regime
Figure 7	Cross Section – West to East
Figure 8	Cross Section – South to North

TABLES

Table 1	Monitoring Well Construction Details
Table 2	Observed Groundwater Levels
Table 3	Summary of Groundwater Quality
Table 4	Forecasted Construction Dewatering Rate for Buildings 1A and 1B Garage
Table 5	Forecasted Foundation Drainage Rate for Buildings 1A and 1B Garage

APPENDICES

Appendix I	Figures
Appendix II	Tables
Appendix III	Borehole Report Records
Appendix IV	Laboratory Record of Groundwater Quality
Appendix V	Grain Size Analyses
Appendix VI	Hydraulic Conductivity Testing

1.0 BACKGROUND

Terrapex Environmental Ltd. (Terrapex) was retained by De Zen Realty Company Limited to prepare this hydrogeological assessment for the proposed mixed-use development of the adjoining properties (site) of 120, 128, 142, 154, and 158 Queen Street South, and 169 Crumbie Street, in Mississauga, Ontario, which is in the Region of Peel. This assessment herein is intended to satisfy hydrogeological requirements that are part of the development submissions process administered by the municipality.

Companion studies were undertaken by Terrapex, including a Phase Two Environmental Site Assessment and a geotechnical study, which are reported under separate covers.

2.0 LOCATION AND SETTING

2.1 LOCATION AND PROPERTY DIMENSIONS

The Site is situated on the southwest side of Queen Street South. The general location is mapped on Figure 1. The Site is irregularly shaped, roughly rectangular, and covers an area of approximately 42,000 m², with dimensions of 312 m by 182 m, oriented northwest - southeast.

2.2 PRESENT LAND USE

The Site presently hosts various one and two-storey buildings with commercial use, which are located along the borders to the northwest, south, and east. The remaining central and eastern areas are mostly asphalt-paved open-air parking and driving lanes. Grass lawns with scattered trees, are located in the eastern portion and around buildings in the southern portion. The general Site layout is shown on Figures 2 and 4.

The surrounding area is developed with diverse mixed commercial, residential, and institutional uses. Conditions in the vicinity are shown at different scales on Figure 2 and 3. Local land uses essentially consist of the following features.

- **Southeast:** A mixture of single-family dwellings, low-rise commercial / retail buildings, and residential townhouse blocks. Further away is a mixture of single-family dwellings, low-rise commercial / retail buildings. Further east is Streetsville Memorial Park in a corridor flanking the Credit River.
- *Northwest:* Canadian Pacific Railway Tracks, followed by neighbourhoods of single-family dwellings and Dolphin Senior Public School.
- **Northeast:** Low-rise commercial along Queen Street South. Across Church Street is the Credit River and a corridor of treed areas. Some scattered single-family dwellings, retirement residences and townhouse blocks.
- **Southwest:** Canadian Pacific Railway and GO Transit railway. An apartment under development along Rutledge Road. A treed swale area corridor along Mullet Creek. A neighbourhood of single-family dwellings with some townhouse blocks. Light industrial uses west of the railway to Joymar Drive and south of Tannery Street.

2.3 PROPOSED DEVELOPMENT

The proposed development will demolish the existing buildings that will be replaced with eight buildings ranging in height from approximately 2 to 18 storeys. These structures will be constructed in several progressive phases. Phase One of the development, the Buildings 1A and 1B complex, will be the first portion to be constructed, which will rise to approximately six storeys above grade. The footprint of the garage underlying the Buildings 1A and 1B complex is approximately 6,430 m². The subsurface parking garage of Buildings 1A and 1B will extend down to three subsurface levels.

The reminder of the site will eventually include underground parking garage structures that will extend to three levels below grade. The layouts of the additional garages are still in a preliminary design stage.

2.4 SITE TOPOGRAPHY

Topographic mapping indicates the grade descends southward, from approximately 163.7 metres above sea level (masl) at the northeast corner to approximately 159.7 masl at the southwestern corner (David B. Searles Surveying Ltd., 2023). The grade elevations at the borehole locations ranged between 160.0 masl to 163.7 masl, as surveyed by Terrapex using a Global Navigation Satellite System (GNSS) receiver relative to a local geodetic datum.

2.5 DRAINAGE

Surface water features are absent on site. Stormwater is managed by the municipal stormwater management system of catch basins and piped drainage.

Surface water features within 500 m include the Credit River that is located approximately 265 m to the east and Mullet Creek that is located approximately 150 m to the west. Mullet Creek discharges into the Credit River, which discharges to Lake Ontario.

2.6 REGIONAL GEOLOGY

The Site is mapped as resting upon clay to silt textured till derived from glacial lake deposits or shale (Ontario Geological Survey, 2010). See Section 5.1 for soil conditions encountered, which is consistent with the information reported in the available mapping.

The underlying bedrock is the Georgian Bay Formation that is dominantly shale and limestone (Ontario Geological Survey, 2007). Shale is found in deeper boreholes across the site, as described in Section 5.1.

Additional information on soils in the vicinity of the Site is also available from reports of wells in the database maintained by the Ministry of the Environment, Conservation and Parks (MECP).

2.7 SENSITIVE ECOLOGICAL RECEIVERS

Designated sensitive ecological areas, such as Areas of Natural and Scientific Interest (ANSI) or Environmentally Significant Areas (ESA's), are absent within 500 m of the Site. Undesignated

woodlands are present approximately 30 m to the west and 100 m to the east. There are no wetlands with or without special designation in proximity.

2.8 GROUNDWATER SUPPLY WELLS

A review of the MECP water well database reports two historic wells within approximately 500 metres of the subject property, which included one commercial well supply (No. 4902143). This well was installed in September 1963 prior to local urbanization. The supply wells are likely demolished and so no longer in use to be adversely affected.

The site was reviewed under the provincial Source Water Protection mapping (MECP, 2023) for possible location inside various types of sensitive groundwater classifications. The Site rests on an aquifer classified as a Highly Vulnerable Aquifer, with a score of 6. No layer that could function as an aquifer was encountered by on-site drilling down to bedrock.

3.0 FIELD PROGRAM

The following describes the methodology and locations of investigation in the field program. Observations are provided in Section 4 and interpretations are provided in Section 5.

3.1 DRILLING AND BOREHOLES

Eighteen (18) boreholes were advanced by Profile Drilling Inc., under the supervision of Terrapex personnel between 16 January and 9 February 2023. All boreholes were drilled using hollow stem augers with split spoon sampling method to approximate depths ranging from 10.1 to 13.9 metres below ground (mbg).

Grain-size analyses were carried out on four soil samples using sieve and hydrometer methods by Terrapex's geotechnical laboratory.

Various consultants drilled on Site between 1988 and 2014 advanced sixty (60) boreholes to depths ranging from 1.2 to 10.9 mbg. However, those boreholes were not reviewed for this study.

3.2 MONITORING WELLS

Terrapex installed seventeen (17) monitoring wells at thirteen (13) different locations that are designated MW101, MW101(S), MW102, MW103, MW103(S), MW104 through MW108, MW112, MW113, MW113(S), MW115, MW116, MW118, and MW118(S). The suffix of "S" designates a well installed at a shallower depth beside the adjacent deeper well of the same name. The bottoms of well screens ranged in depth from 4.5 to 11.2 mbg.

Monitoring wells constructed in Terrapex programs used environmental grade, 50 mm diameter, Schedule 40, PVC piping with machine-slotted (10 slot) screens at the bottom. Each monitoring well was covered by a flush-mount casing, except for wells MW103, MW103(S), and MW104, which were covered by monument casings. The well components and their relationships to adjacent stratigraphy are shown in the borehole records provided in Appendix III and well construction details are reported in Table 1.

The well locations and elevations of the top of the standpipe and grade were surveyed by Terrapex using a Global Navigation Satellite System (GNSS) receiver. The GNSS model used was a Topcon HiPer V GNSS Receiver.

Previous consultants installed twelve piezometers and six monitoring wells between February 1988 and March 2014. These piezometers and wells were not a part of this assessment. Refer to the original reports for well construction details by other consultants.

Monitoring wells, when no longer useful, must eventually be abandoned by a licensed water well contractor. Abandonment must proceed in accordance with Regulation 903 and its amendments issued under the Ontario Water Resources Act. The monitoring wells should remain until the time of construction to be available for observing future seasonal groundwater conditions closer to the time of construction for dewatering planning.

3.3 GROUNDWATER LEVEL MEASUREMENTS

Suites of groundwater levels were measured in the Terrapex monitoring well network on 28 February, 8 and 15 March 2023. Additional measurements occurred either on 4, 18 and/or 30 May 2023 for certain wells. Levels were measured using an electric sounder device with graduated tape. See Table 2 for specific dates for each well.

3.4 GROUNDWATER SAMPLING

The monitoring well selected for groundwater sampling was MW103, which is located at 146 Queen Street South in the northeastern part of the property where formerly was a gas station. The well was developed three times to dry using Waterra tubing and a foot valve prior to sampling on 8 March 2023. The sample was extracted using a low-flow peristaltic pump. Sample water was discharged directly without filtering to pre-cleaned bottles supplied by the laboratory with preservatives as appropriate for parameters. These bottles were iced and held in a cooler under Chain of Custody protocols prior to delivery.

Water quality analysis was performed by AGAT Laboratory of Mississauga, Ontario that is accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA). The analysis suite consisted of the parameters specified under the Regional Municipality of Peel's bylaw 53-2010 for discharging to sewers and the City of Mississauga's bylaw 0046-2022 for discharging to a storm sewer.

To confirm if the exceedances of phenolics and manganese observed in MW103 were representative across the site, additional samples were obtained from MW103, MW101S, MW113S, MW115, and MW118(S). The wells were developed three times to dry using Waterra tubing and a foot valve prior to sampling on 30 May 2023. These bottles were iced and held in a cooler under Chain of Custody protocols prior to delivery to AGAT.

3.5 HYDRAULIC CONDUCTIVITY TESTS

Single well response tests to assess the hydraulic conductivity of formations were performed on monitoring wells MW101S, MW102, MW105, MW113, MW115, and MW118. The test method

applied was a bail test, which is a rapid removal of a volume of water using an elongated bailer. The ensuing rising recovery to static level is observed over time using manual methods and by using Solinst brand leveloggers that were installed to record responses. The loggers recorded at 10 second intervals for 3.5 to 5 hours. A barometric logger was also installed on site to allow removal of barometric pressure effects from the levelogger record.

Test data were analysed using the Aqtesolv software package by the Bouwer and Rice method.

4.0 OBSERVATIONS

4.1 SUBSURFACE MATERIALS AND HYDROSTRATIGRAPHY

The subsurface conditions encountered at each borehole are detailed on the borehole records provided in Appendix III. The following is a summary of stratigraphic layers encountered.

- Asphaltic concrete, sub-base. Apart from MW103 and MW104, all other boreholes encountered asphaltic concrete pavement with a thickness of approximately 0.1 m, with a granular base.
- *Fill*. Fill is present at all boreholes except MW101, extending to approximate depths ranging from 0.7 to 2.9 mbg. The fill texture widely varied, which included crushed limestone, silty sand, sand and gravel, and clayey silt soils. Inclusions of organic material and construction debris were sometimes encountered.
- *Clayey silt till*. Extending below the fill and rests on bedrock. Thickness varies from 8.6 to 11.5 m. Minor sand and gravel content increased downward the bedrock.
- *Bedrock*. Weathered shale was encountered at depths ranging from 10.9 to 13.7 mbg. The corresponding elevations of top of bedrock ranged from 149.1 to 152.7 masl.

The above stratigraphic description is a generalization. Variations could occur in thickness, depth, presence, and texture of units. Granular lenses, although not encountered, are possible. Constructors and dewatering contractors should review the nearest borehole records for specific locations and, if necessary, drill to confirm conditions if critical to their activities.

Sieve and hydrometer grain size analyses were carried out on four soil samples. The curves from the test are provided in Appendix V and size percentages are summarized below.

Borehole Number	Sample Depth and No.	Textural Description	Gravel %	Sand %	Silt %	Clay %
MW106	10.7 mbg (11)	Sand and silt, some gravel, trace to some clay	11.5	42.3	35.8	10.4
MW107	3.1 mbg (5)	Silt and clay, trace sand, trace gravel	3.7	9.8	46.2	40.3
MW107	6.1 mbg (8)	Silt, some sand, some clay, some gravel	14.4	19.1	47.3	19.2
MW108	7.6 mbg (9)	Sand and silt, some clay, trace to some gravel	10	37.2	38.0	14.8

Hydrostratigraphic profiles were prepared for perpendicular orientations in Figures 7 and 8.

4.2 GROUNDWATER LEVELS

Groundwater level observations are presented as depths and as elevations on Table 2. The shallower wells include MW101(S), MW103(S), MW113(S), and MW118(S). The deeper wells include MW101 to MW108, MW112, MW113, MW115, MW116, and MW118. The water table is reflected in wells shallower than 7 mbg.

The average depth to the water table in the shallower wells was 2.8 mbg and the average depth to the water table in the deeper wells 3.5 mbg. The shallowest depth to the water table observed was 0.27 mbg in MW102 in the east-central portion along the northeastern property boundary.

The average elevation of the water table in the shallower wells was 159.5 masl, with the highest observed elevation of the water table was 162.8 masl at MW101S. The average elevation of piezometric head in the deeper wells was 158.7 masl, while the highest observed elevation piezometric head was MW101 at 162.6 masl. The water table geographic trends, as presented on Figure 5, suggest that groundwater rises as high as 162.8 masl in the northern corner and as low as 157.9 masl in the southern corner. The similar geographic trend for the deeper wells is presented in Figure 6.

Groundwater levels naturally fluctuate in response to seasons, to annual variations, and possibly to major storm events. The measurements reported herein occurred during spring, which is typically when is the shallowest depth and highest elevation in the annual seasonal cycle. It is possible that the water table elevation could rise further (become shallower depth) to peak during a wetter period. A suite of groundwater measurements should be obtained in spring 2024 to confirm levels.

5.0 ANALYSIS

5.1 HYDRAULIC CONDUCTIVITY

Hydraulic conductivity is a parameter for quantifying the ability of a soil unit to transmit water. This parameter is necessary for predicting the rates of seepage into excavations to be collected by dewatering efforts during construction and ongoing by foundation drains in post-construction.

The bail tests were interpreted; analysis curves are presented in Appendix VI. The resulting interpreted hydraulic conductivity values are listed below:

- MW101S, 9.3 x 10⁻⁹ m/s
- MW102, 1.2 x 10⁻⁸ m/s
- MW105, 4.1 x 10⁻¹⁰ m/s
- MW113, 3.4 x 10⁻⁹ m/s
- MW115, 2.2 x 10⁻⁹ m/s
- MW118, 1.8 x 10⁻⁷ m/s

The above monitoring wells were screened in a clayey silt till.

5.2 HYDRAULIC GRADIENT

The water table surface is commonly a subdued reflection of the overlying ground surface with shallow groundwater movement parallel to the overlying general grade and toward watercourses. Based on this interpretation and local topography, shallow groundwater in the vicinity of the Site is anticipated to move southeastward.

Equipotential contours of the water table were interpreted using shallower wells, as illustrated on Figure 5. The horizontal hydraulic gradient descends towards the southeast with an average magnitude of approximately 0.03 m/m. As illustrated on Figure 6, the horizontal hydraulic gradient of the deeper groundwater regime also descends towards the south and southeast. Given that watercourses are present offsite to the northeast and southwest, a groundwater flow divide with directions toward the watercourses may be possible within the site but could not be resolved with the network density.

Local variations in topography, soil type, deeper building foundation drains and buried utilities trenches can influence the direction of the horizontal gradient.

Vertical hydraulic gradients were measured by the clusters of MW101, MW103, MW113, and MW118. The two screens were separated by a range of approximately 2 to 5 m in elevation. The gradient direction was consistently downward, which indicates the site functions as a recharge area. Two measurements are suspect (MW118(S) and MW101, both on 18 May 2023, possibly in relation to previous sampling efforts and slow recovery. The average magnitudes of the vertical hydraulic gradient varied from 0.14 m/m at MW113 to 0.55 m/m at MW101.

5.3 GROUNDWATER QUALITY

The reported concentrations of tested parameters for the sample obtained from MW103 are provided in Table 3. The Certificate of Analysis issued by AGAT is provided in Appendix IV. The Certificate of Analysis issued by AGAT for the additional sampling for exceedances is also provided in Appendix IV.

The groundwater quality was acceptable with respect to the criteria for discharge to the Peel Region sanitary sewer without treatment.

The following parameters exceeded the criteria specified under the Peel Region and City of Mississauga bylaw for storm sewer.

- At MW103, total manganese was at a concentration of 0.094 mg/L in March 2023 and 0.056 mg/L in May 2023, which exceed the storm sewer criterion of 0.05 mg/L. The filtered sample in May 2023 was 0.013 mg/L that is acceptable for discharge.
- At MW101(S), MW113(S), MW115 and MW118(S), the total manganese concentration ranged between 0.096 to 0.719 mg/L and the dissolved manganese concentration ranged from 0.088 to 0.702 mg/L. The total and dissolved values for these wells all exceeded the storm sewer criterion of 0.05 mg/L.

- At MW103, the phenolics concentration was 0.061 mg/L in March 2023 and was 0.009 mg/L in May 2023, which exceed the storm sewer criterion of 0.008 mg/L.
- At MW101(S), MW113(S), and MW118(S), the phenolics concentration ranged between 0.009 to 0.011 mg/L, which exceed the storm sewer criterion of 0.008 mg/L. The phenolics concentration MW115 was 0.006 mg/L, which is acceptable.

Thus, for across the site, groundwater quality can be discharged to the storm sewer with treatment for manganese and phenolics.

The datalogger in wells MW101S, MW102, MW105, MW113, and MW118, recorded average groundwater temperatures that were stable, with values ranging from 11.9 to 13.9 °C, depending on the individual well.

5.4 BUILDING GEOMETRY AND HYDROGEOLOGY

The parking garages will extend to three subsurface levels. For the Buildings 1A and 1B complex, the floor elevation of the P3 basement garage slab will be set at approximately 151.1 masl. The surface grade will be at approximately 162.5 masl.

Building footings and elevator cores are typically constructed to a depth of 1.5 m below the lowest slab level. The excavation base elevation for the Buildings 1A and 1B garage is thus anticipated to be at 149.6 masl, with a depth of approximately 12.9 mbg. The excavation for the Buildings 1A and 1B garage will cut from 0.2 0 to 2.0 m into the shale bedrock.

Based on available stratigraphy, some of the other garage excavations extending to three levels may also cut by 1.0 to 2.0 m into the underlying shale bedrock.

Overall for the site, the average depth to water table observed to date was approximately 2.8 mbg, with variation. Thus, the excavation depths will cut deep into the saturated zone, so will require dewatering during construction. Similarly, the finished garages will also be set below the water table, so foundation drains will also receive ongoing groundwater seepage that will need to be discharged to a sewer.

The planned development will include buried municipal infrastructure, such as piped sanitary sewer, storm sewer and potable water. Construction will require excavation trenches, for which the depths are presently not determined.

6.0 DEWATERING AND FOUNDATION DRAINAGE

6.1 RATES PREDICTIONS

The MECP requires a Permit to Take Water (PTTW) or an Environmental Activity and Sector Registry (EASR) for groundwater takings exceeding 50,000 litres per day (L/day). For the purpose of construction, a PTTW is required for dewatering extraction rate for groundwater seepage that exceeds 400,000 L/day. An EASR is required for a rate between 50,000 and 400,000 L/day.

Estimation of the rate of dewatering to counteract groundwater inflows is based on mathematical analogy to a circular well (Powers et al, 2007). The Buildings 1A and 1B garage will be slightly

"C" shaped, with overall dimensions within a rectangle a length of 96.2 m and a width of 77 m. The equivalent radius is based on the excavation footprint area of 6,429 m².

The water level target is 1.0 m below the base of excavation. The calculations anticipate that the subsurface will respond with hydrogeological behaviour similarly to an unconfined aquifer. The formula anticipated geometric conditions, and input values in calculating construction dewatering are specified on Table 4.

The predicted maximum rate of groundwater seepage during construction is 90,300 L/day. This rate should be anticipated as possible on days without precipitation.

The open excavation for the Buildings 1A and 1B garage will capture incident precipitation. The excavation area of 6,429 m² and a relatively large precipitation event of 25 mm will capture approximately 160,725 litres. Such precipitation events are anticipated to recur four to five times per year. Obviously, larger precipitation events would produce larger amounts to manage, although occurring less frequently.

Construction dewatering should anticipate the combined amount of the precipitation rate and the groundwater seepage rate in the application, which is 241,000 L/day. Construction dewatering will require an EASR.

The maximum amount that will be received by foundation drains was calculated using the analysis and values shown on Table 5. The calculation method applied was similar to the construction dewatering calculations except that the water level target is the foundation drain that is typically placed at a depth of 0.3 m below the P3 foundation slab. The forecasted maximum amount of groundwater seepage that will feed foundation drains is 86,400 L/day. The amount assumes that there are no contributions to the foundation drain by stormwater to ventilation or roof components or from a low impact development infiltration measure. The ongoing collection of groundwater by foundation drains is considered a groundwater taking under provincial regulations, so a PTTW will be required.

The methods of dewatering of adjacent soils and bedrock, such as by wellpoints or by collection from sumps within the excavations, should be decided by the construction and dewatering contractors. Berms, ditches, and/or grading should be used during construction to divert stormwater flows from reaching the excavation that would otherwise require pumping.

The calculations are based on conservative assumptions that predict relatively high rates that are less likely but remain possible. The shallowest water table with a vertical buffer for an extreme year was assumed. The hydraulic conductivity that is the highest observed was input, whereas average conditions are more likely to prevail. The values incorporate a factor of safety of 2.0 to allow for unknown conditions, such as a permeable soil horizon between boreholes or just beyond the excavation walls.

The cumulative amounts pumped from the excavation and finished garage structure must be monitored daily to confirm that the requested pumping rates limits stated in the EASR and PTTW are not exceeded. Approval will have to be obtained from the municipality to allow dewatering discharge to the storm sewer or to the sanitary sewer, whichever outlet is proposed as a receiver.

6.2 RADIUS OF INFLUENCE AND SENSITIVE RECEIVERS

The radius of influence is the distance range beyond which the drawdown on groundwater caused by dewatering is not expected to be detectable. The radius of influence is commonly estimated using the formula of Sichart and Kryieleis (Powers et al, 2007), which is noted in Tables 4 and 5.

The radius of influence is anticipated to occur during construction. The radius will be 18 m from the excavation boundary for the Buildings 1A and 1B garage. Some existing buildings across Queen Street South may be within the radius of influence, so should be monitored. No sensitive ecological receivers are situated within the radius of influence. Dewatering activities are not anticipated to adversely affect adjacent properties.

6.3 WATER QUALITY OF DISCHARGE

As noted in Section 5.3, collected groundwater can be discharged to the sanitary sewer without treatment. Collected groundwater can be discharged to the storm sewer with treatment for manganese and phenolics.

The manganese concentration was elevated above the storm sewer criterion in both total and dissolved forms at four of the five monitoring wells tested, indicating that the distribution of elevated manganese is widespread across the site. This result indicates that chemical treatment would be required to sufficiently lower the manganese concentration. Settlement and filtering are likely to be ineffective in lowering the manganese concentration to below the storm sewer criterion.

The phenolics concentration was elevated above the storm sewer criterion at four of the five monitoring wells tested, indicating that the distribution of elevated phenolics is widespread across the site.

Although the phenolics and manganese concentrations were acceptable at one exceptional location for each, due to the widespread presence, elevated phenolics and manganese should still be anticipated for all locations on site.

7.0 WATER BALANCE ASPECTS

7.1 PRE-CONSTRUCTION AND POST-CONSTRUCTION INFILTRATION

Typically, incident precipitation infiltrates through a pervious soil surface, then moves down through the unsaturated zone and then recharges the shallow groundwater. In turn, this shallow groundwater moves toward watercourses to contribute to baseflow or to replenish aquifers, if present. Impervious surfaces of buildings or paving block infiltration and divert precipitation to become runoff that is then directed to storm sewers.

The pre-construction land use is mostly impervious cover, as occupied by buildings, asphaltpaved driving lanes and paved parking areas, which blocks infiltration. Minor areas of pervious cover, such as grasses and gravel strips, that are present permit only limited rates of infiltration. The post-construction land usage will be entirely covered by impervious surfaces of the new buildings, underlying parking garages, internal roads and driveways. Since, pre-construction and post-construction both allow negligible recharge of the shallow groundwater regime, there will be no significant change to recharge due to development.

The area of open soil near MW103 and MW208 in the northeast is a result of demolition of past structures so is considered temporary. Over the long-term it was considered as paved and built upon.

7.2 LOW IMPACT DEVELOPMENT / AUGMENTED INFILTRATION

Low impact development (LID) measures to promote infiltration are not feasible since the garages and building footprints will essentially span the entire site, along with internal roads. Although the average water table depth of approximately 2.8 mbg might allow sufficient vertical setback for a buried stormwater system, the native soils are dominantly clayey silt that is low permeability, so an LID measure would achieve very limited amounts of infiltration.

8.0 CLOSURE

This report has been completed in accordance with the terms of reference for this project as agreed upon by De Zen Realty Company Limited (the Client) and Terrapex Environmental Ltd. (Terrapex) and generally accepted hydrogeological consulting practices in this area.

The reported information is believed to provide a reasonable representation of the general hydrogeological conditions at the site; however, studies of this nature have inherent limitations. The data were collected at specific locations and conditions may vary at other locations, or with the passage of time. Where applicable, the assessment of the environmental quality of groundwater was limited to a study of those chemical parameters specifically addressed in this report.

Terrapex has relied in good faith on information and representations obtained from the Client and third parties and, except where specifically identified, has made no attempt to verify such information. Terrapex accepts no responsibility for any deficiency or inaccuracy in this report as a result of any misstatement, omission, misrepresentation, or fraudulent act of those providing information. Terrapex shall not be responsible for conditions or consequences arising from relevant facts that were concealed, withheld, or not fully disclosed at the time of the study.

This report has been prepared for the sole use of De Zen Realty Company Limited. Terrapex accepts no liability for claims arising from the use of this report, or from actions taken or decisions made as a result of this report, by parties other than De Zen Realty Company Limited.

Respectfully submitted, TERRAPEX ENVIRONMENTAL LTD.

Andrew Durbano, M.Sc., P.Geo. Hydrogeologist

Brian Theimer, M.Sc., P.Geg 4 OFE

¢,

BRIAN D. THEIMER

PRACTISING MEMBER 0466

Senior Hydrogeologist

1

9.0 REFERENCES

R. Allan Freeze and John A. Cherry. 1979. Groundwater.

Government of Ontario. 2003. Stormwater management planning and design manual.

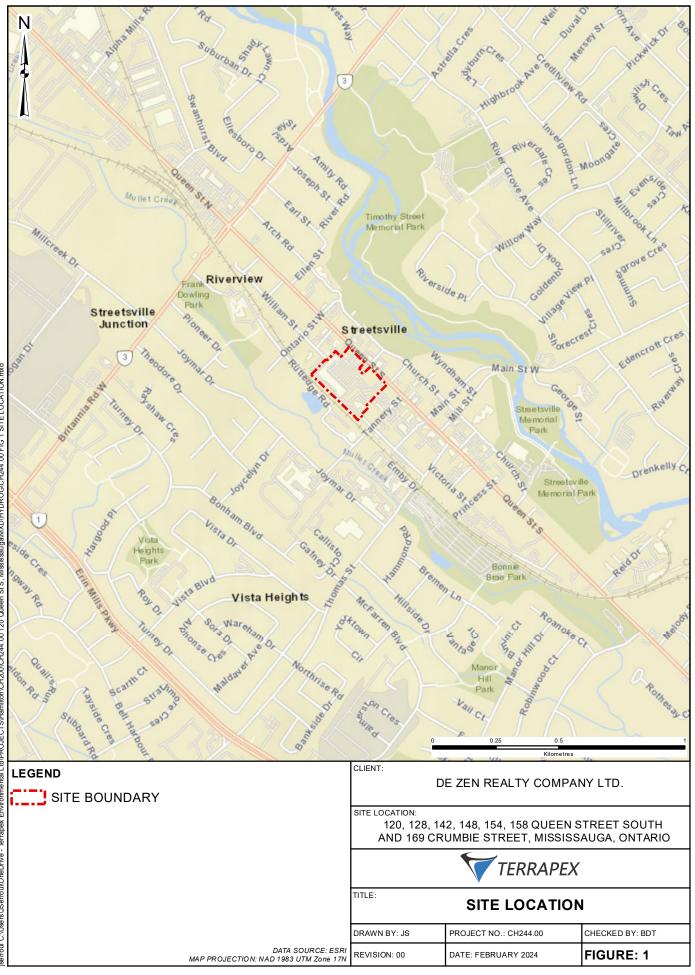
Ministry of the Environment, Conservation and Parks. 2023. "Ontario Source Protection Information Atlas". Interactive mapping application on Internet

Ministry of the Environment, Conservation and Parks. 2023. "Map: Well Records". Interactive mapping application on Internet.

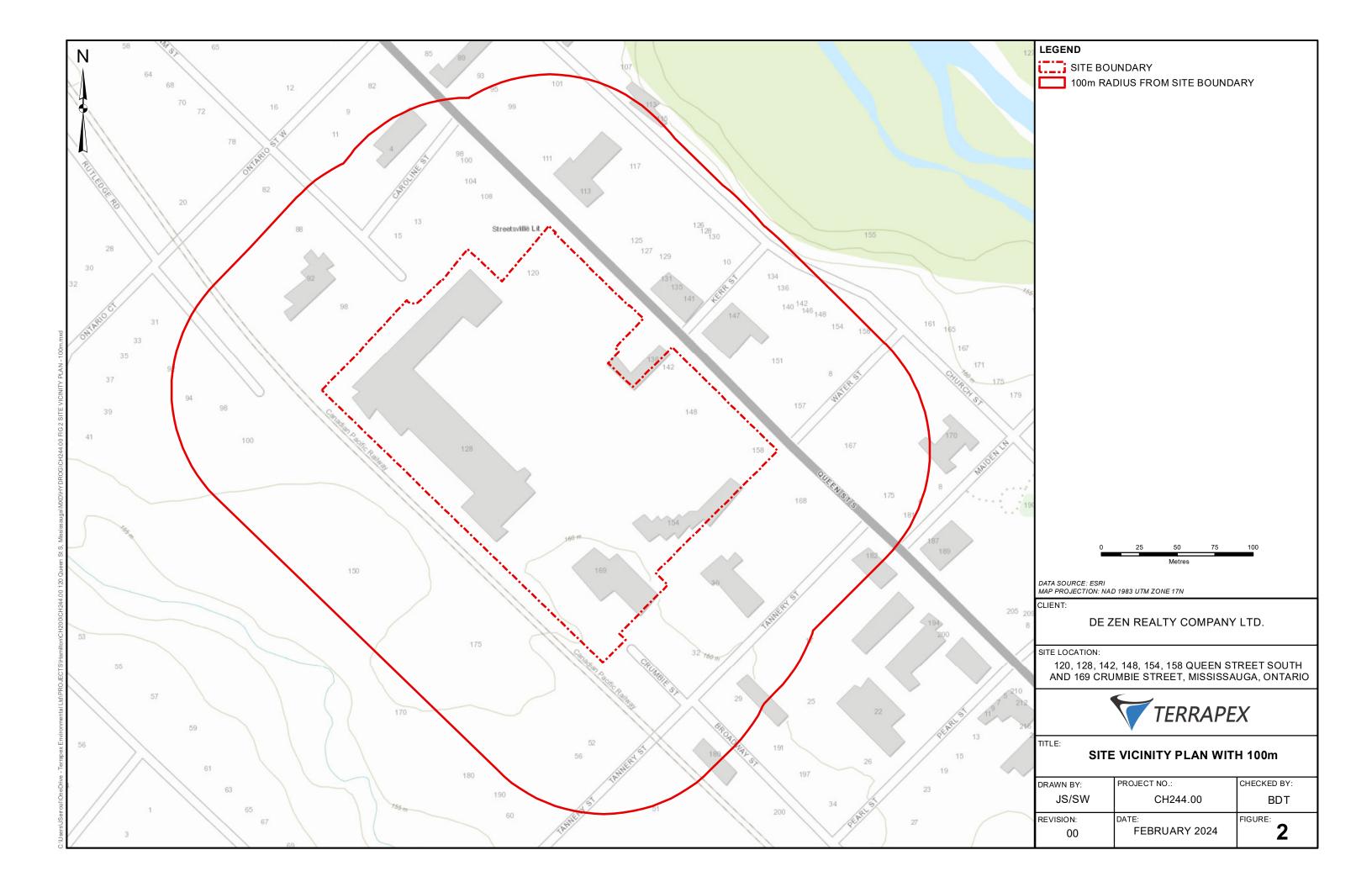
Ministry of the Natural Resources and Forestry. 2023. "Make a Natural Heritage Map". Interactive mapping application on Internet.

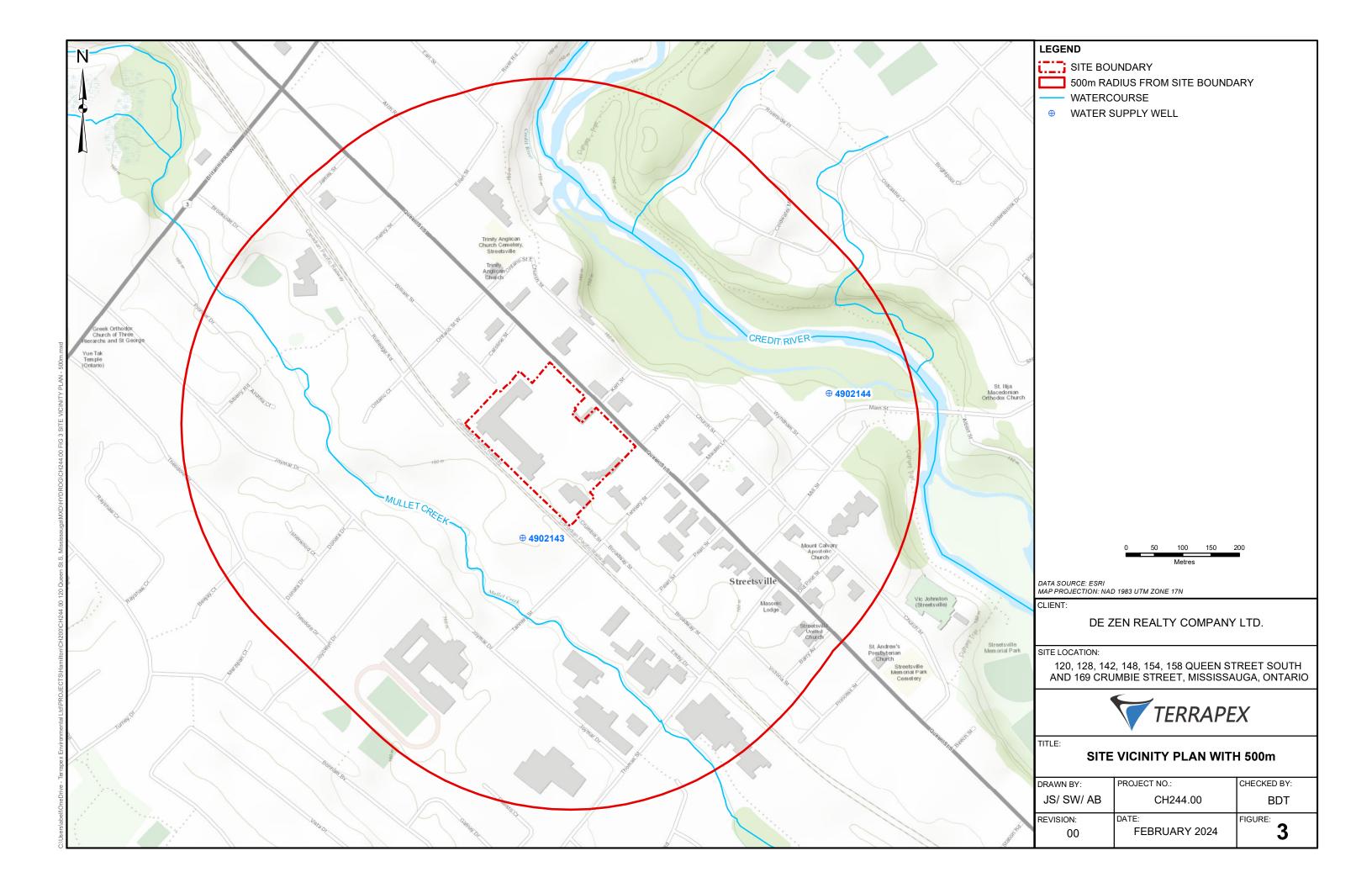
Ontario Geological Survey. 2007. MRD-228. Physiography of Southern Ontario. Referenced to Google Earth.

Ontario Geological Survey. 2010. MRD-128. Surficial geology of Southern Ontario. Referenced to Google Earth.

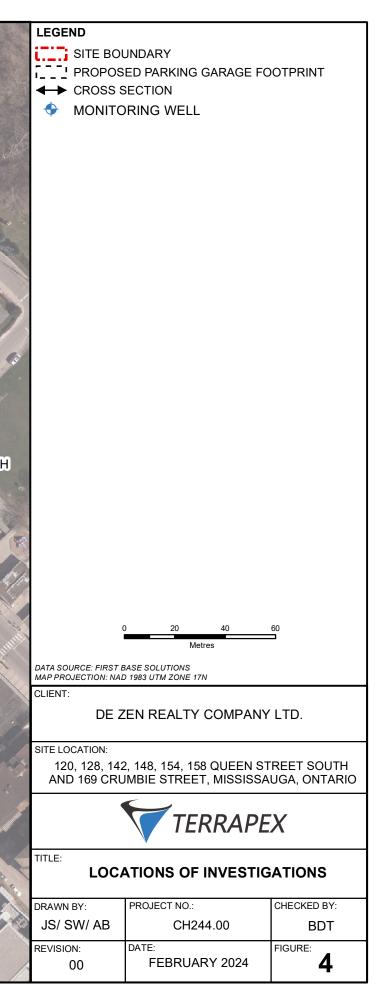

J. Patrick Powers, Arthur Corwin, Paul Schmall, Walter Kaeck. 2007. Construction Dewatering and Groundwater Control. Third Edition.

David B. Searles Surveying Ltd. January 17, 2023. Topographic Information, 128 Queen Street South. City of Mississauga, Regional Municipality of Peel.

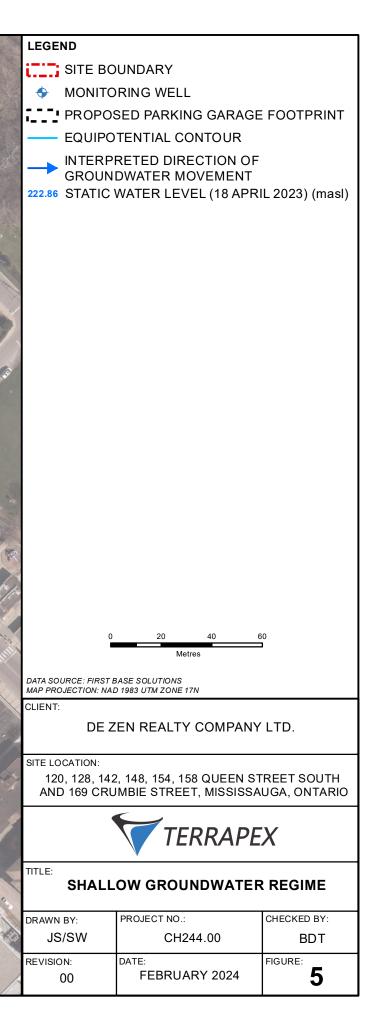

SRM. January 24, 2024. Underground P3. 146 Queen Street South, Mississauga, ON. File D2034. Part of Phase 01 Drawings.


SRM. January 24, 2024. Master Plan. 142-148 Queen Street South, Mississauga, ON. File D2034 Part of Entre Plaza Redevelopment-Streetsville.

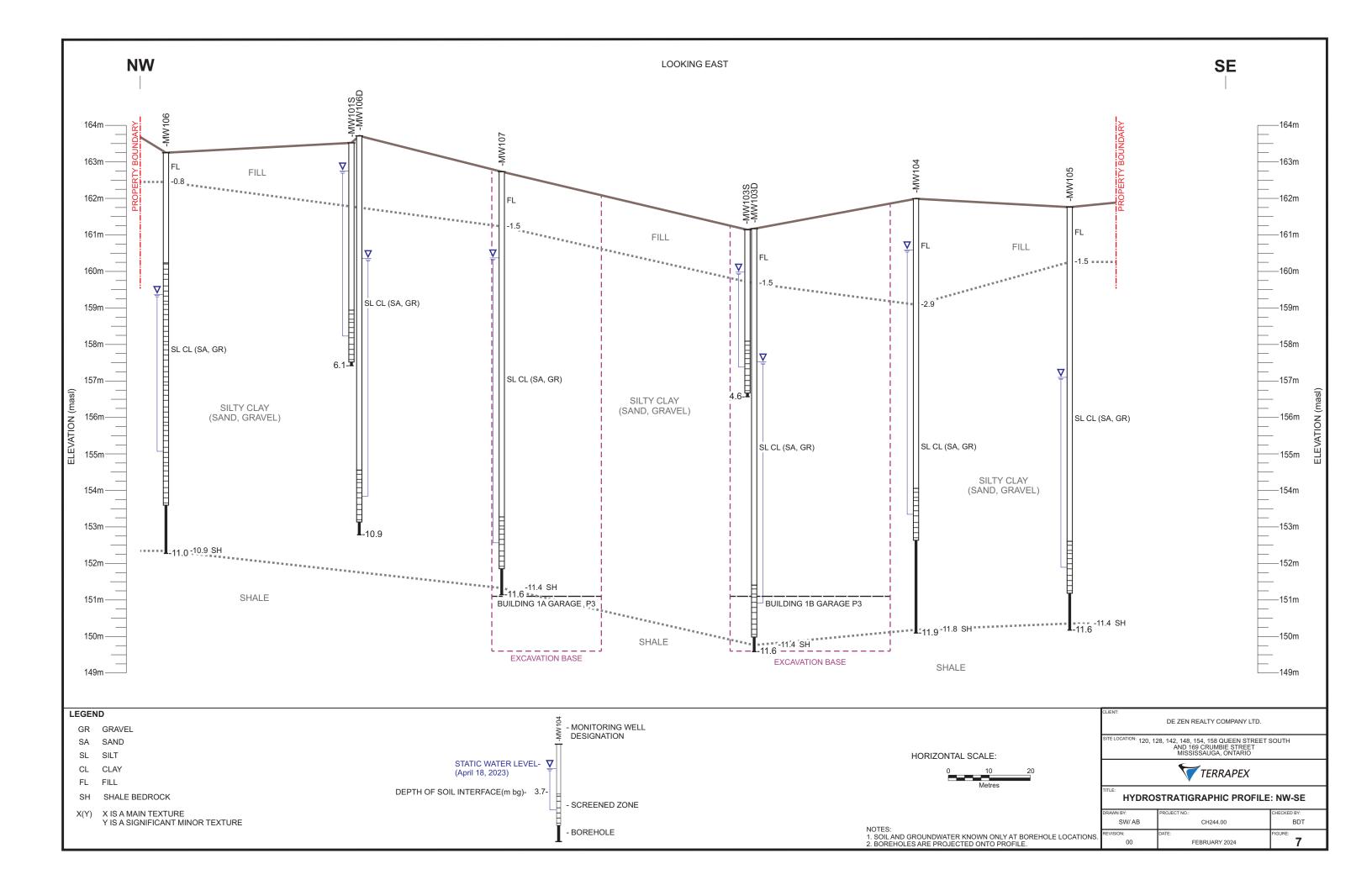

APPENDIX I FIGURES

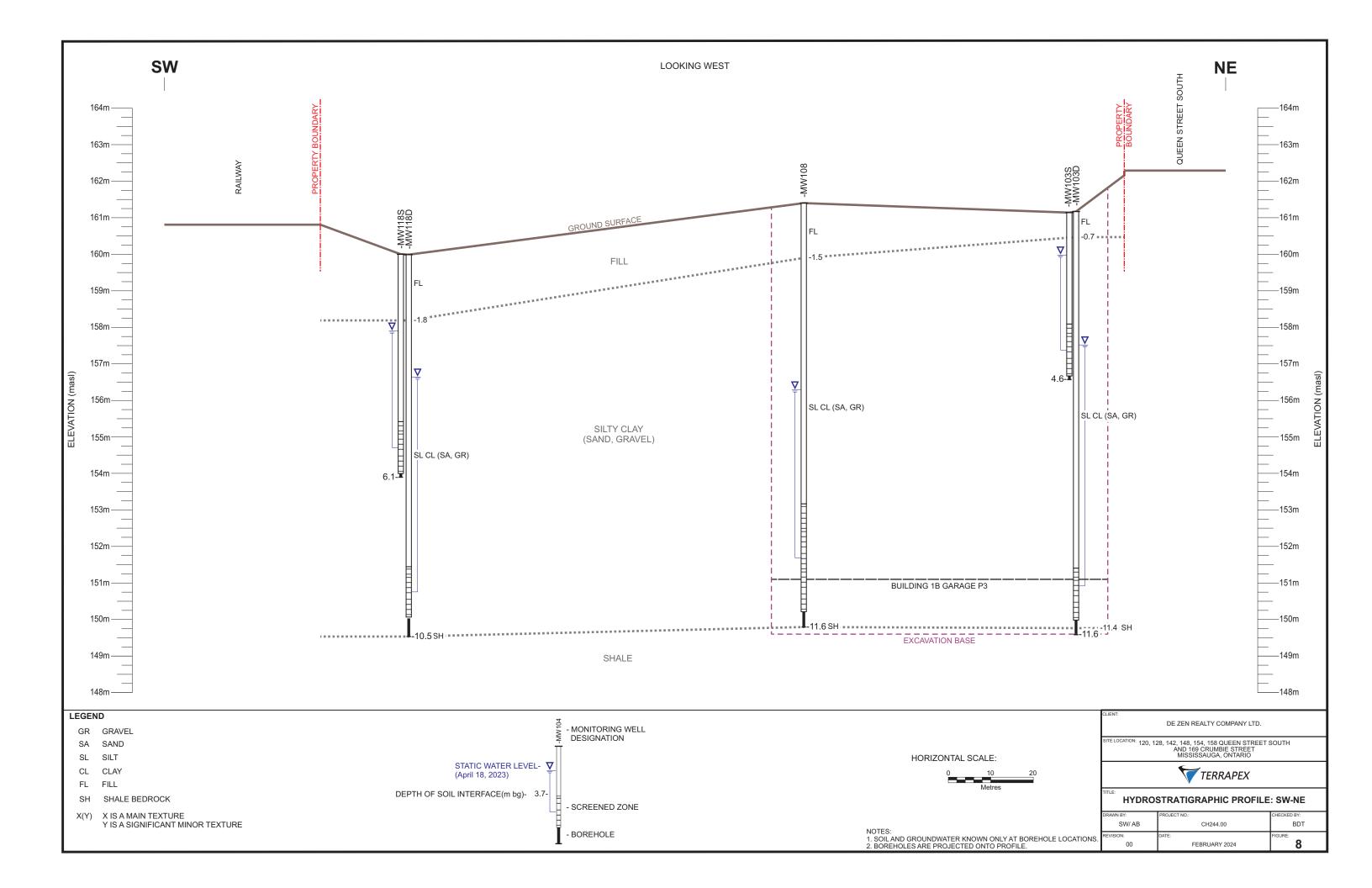


mental Ltd/PROJECTS/Hamilton/CH200/CH244.00 120 Queen St S, MississaugaMXD/HYDROG/CH244.00 FIG 1 SITE LOCATION.mxd jserroul C:\Users\JSerrouf\OneDrive - Terrapex Environ








LEGEND SITE BOUNDARY MONITORING WELL PROPOSED PARKING GARAGE FOOTPRINT - EQUIPOTENTIAL CONTOUR GROUNDWATER MOVEMENT 222.86 STATIC WATER LEVEL (18 APRIL 2023) (masl) NOTE: ELEVATION FOR MAY 18, 2023 USED FOR MW102. WELL WAS COVERED DURING APRIL 18, 2023 MONITORING EVENT. DATA SOURCE: FIRST BASE SOLUTIONS MAP PROJECTION: NAD 1983 UTM ZONE 17N CLIENT: DE ZEN REALTY COMPANY LTD. SITE LOCATION: 120, 128, 142, 148, 154, 158 QUEEN STREET SOUTH AND 169 CRUMBIE STREET, MISSISSAUGA, ONTARIO TERRAPEX TITLE: DEEP GROUNDWATER REGIME PROJECT NO .: CHECKED BY: DRAWN BY: JS/SW CH244.00 BDT **REVISION:** DATE: FIGURE:

FEBRUARY 2024

00

6

APPENDIX II TABLES

TABLE 1Monitoring Well Construction Details120, 128, 142, 148, 154, 158 Queen Street South and 169 Crumbie Street, Mississauga

Position and Depth

Well Desig.	UTM	UTM	Date of	Stick	Depth of	Depth to	Screen	Depth to	Depth to	Depth to
_	Northing	Easting	Construct	Down	Borehole	Well	Length	Screen	Screen	Top Sand
	_	_				Bottom	-	Bottom	Тор	
(m)	(m)	(m)	dd-mmm-yy	(m)	(m bg)	(m bg)	(m)	(m bg)	(m bg)	(m bg)
MW101	4826412	603610	18/19-Jan-23	-0.59	10.90	10.67	1.52	10.57	9.15	8.85
MW101S	4826413	603610	19-Jan-23	-0.16	6.10	6.10	1.52	6.00	4.58	4.28
MW102	4826382	603659	08/09-Feb-23	-0.16	12.10	10.36	1.52	10.26	8.84	8.54
MW103	4826346	603681	07/08-Feb-23	0.99	11.58	11.28	1.52	11.18	9.76	9.46
MW103S	4826346	603681	08-Feb-23	0.82	4.57	4.57	1.52	4.47	3.05	2.75
MW104	4826323	603715	06/07-Feb-23	0.93	11.89	9.45	1.52	9.35	7.93	7.63
MW105	4826284	603728	31-Jan-23	-0.08	11.58	10.67	1.52	10.57	9.15	8.85
MW106	4826420	603551	19/20-Jan-23	-0.09	10.97	9.75	3.05	9.65	6.70	6.40
MW107	4826361	603608	18-Jan-23	-0.09	11.58	10.97	1.52	10.87	9.45	9.15
MW108	4826287	603655	02-Feb-23	-0.10	11.60	11.28	3.05	11.18	8.23	7.93
MW112	4826378	603505	24/25-Jan-23	-0.07	12.30	10.36	1.52	10.26	8.84	8.54
MW113	4826315	603562	16-Jan-23	-0.10	10.10	9.91	1.52	9.81	8.39	8.09
MW113S	4826316	603561	16-Jan-23	-0.08	6.10	6.10	1.52	6.00	4.58	4.28
MW115	4826332	603464	20/24-Jan-23	-0.08	12.04	8.84	1.22	8.74	7.62	7.32
MW116	4826285	603512	25/26-Jan-23	-0.08	11.65	10.06	1.52	9.96	8.54	8.24
MW118	4826197	603627	27-Jan-23	-0.08	10.45	10.06	1.52	9.96	8.54	8.24
MW118S	4826197	603626	27-Jan-23	-0.10	6.10	6.10	1.52	6.00	4.58	4.28

TABLE 1

Monitoring Well Construction Details

120, 128, 142, 148, 154, 158 Queen Street South and 169 Crumbie Street, Mississauga

Key Elevations

Well Desig.	Ground	End of	Top of Pipe	Screen	Screen
	Elev.	Borehole	Elev.	Bottom	Top Elev.
		Elev.		Elev.	
	(m asl)	(m asl)	(m asl)	(m asl)	(m asl)
MW101	163.71	152.81	163.12	153.14	154.56
MW101S	163.52	157.43	163.36	157.53	158.95
MW102	162.79	150.69	162.63	152.52	153.94
MW103	161.17	149.58	162.15	149.99	151.41
MW103S	161.14	156.57	161.96	156.67	158.09
MW104	161.99	150.10	162.92	152.64	154.06
MW105	161.76	150.18	161.67	151.19	152.61
MW106	163.25	152.28	163.16	153.59	156.54
MW107	162.73	151.15	162.64	151.86	153.28
MW108	161.40	149.80	161.30	150.22	153.17
MW112	162.93	150.63	162.86	152.67	154.09
MW113	162.74	152.64	162.65	152.94	154.36
MW113S	162.70	156.60	162.62	156.70	158.12
MW115	162.72	150.68	162.64	153.98	155.10
MW116	162.07	150.42	161.99	152.11	153.53
MW118	159.99	149.54	159.91	150.03	151.45
MW118S	160.00	153.90	159.90	154.00	155.42

Notes:

m asl = metres above sea level

m bg = metres below ground (or grade)

UTM locations and elevations obtained from TOPCON GNSS

Elevations interpolated from survey points

TABLE 2Observed Groundwater Levels120, 128, 142, 148, 154, 158 Queen Street South and 169 Crumbie Stree

Well	Date	Ground	Top Pipe		dwater	Gr'water	
Desig.		Elev.			pth	Elev.	
		(m asl)	(m asl)	(m bmp)	(m bg)	(m asl)	
MW101	28-Feb-23	163.71	163.12	3.89	4.47	159.23	
	08-Mar-23			9.57	10.16	153.55	
	15-Mar-23			8.36	8.94	154.76	
	18-Apr-23			2.77	3.36	160.35	
	18-May-23			0.48	1.07	162.64	
	30-May-23			2.35	2.94	160.77	
MW101S	28-Feb-23	163.52	163.36	0.76	0.91	162.61	
	08-Mar-23			1.48	1.63	161.89	
	15-Mar-23			0.84	0.99	162.53	
	18-Apr-23			0.61	0.77	162.75	
Developed	04-May-23			0.71	0.87	162.65	
	18-May-23			0.73	0.88	162.64	
	30-May-23			0.79	0.94	162.58	
MW102	28-Feb-23	162.79	162.63	0.10	0.26	162.53	
	08-Mar-23			0.26	0.41	162.37	
	15-Mar-23			0.19	0.35	162.44	
	18-Apr-23			Blocked			
	18-May-23			2.19	2.35	160.44	
	30-May-23			2.20	2.36	160.43	
MW103	28-Feb-23	161.17	162.15	4.72	3.73	157.43	
	08-Mar-23			4.88	3.90	157.27	
	15-Mar-23			4.78	3.79	157.38	
	18-Apr-23			4.64	3.65	157.52	
	04-May-23			4.66	3.67	157.50	
	18-May-23			4.74	3.75	157.41	
	30-May-23			4.79	3.81	157.36	
MW103S	28-Feb-23	161.14	161.96	4.57	3.74	157.40	
	08-Mar-23			4.70	3.88	157.26	
	15-Mar-23			4.46	3.64	157.50	
	18-Apr-23			1.98	1.16	159.98	
	18-May-23			1.46	0.64	160.50	
	30-May-23			1.67	0.85	160.29	
MW104	28-Feb-23	161.99	162.92	2.50	1.57	160.42	
	08-Mar-23			2.31	1.38	160.61	
	15-Mar-23			2.31	1.38	160.61	
	18-Apr-23			2.33	1.40	160.59	
	18-May-23			2.43	1.50	160.49	
	30-May-23			3.54	2.60	159.38	

TABLE 2Observed Groundwater Levels120, 128, 142, 148, 154, 158 Queen Street South and 169 Crumbie Stree

Well	Date	Ground	Top Pipe		dwater	Gr'water
Desig.		Elev.	Elev.		pth	Elev.
		(m asl)	(m asl)	(m bmp)	(m bg)	(m asl)
MW105	28-Feb-23	161.76	161.67	6.21	6.29	155.47
	08-Mar-23			5.69	5.77	155.98
	15-Mar-23			5.25	5.34	156.42
	18-Apr-23			4.57	4.65	157.10
	18-May-23			3.65	3.73	158.02
	30-May-23			3.38	3.47	158.29
MW106	28-Feb-23	163.25	163.16	2.52	2.60	160.64
	08-Mar-23			2.39	2.48	160.77
	15-Mar-23			1.62	1.70	161.54
	18-Apr-23			3.79	3.88	159.37
	18-May-23			3.73	3.81	159.43
MW107	28-Feb-23	162.73	162.64	2.15	2.24	160.50
	08-Mar-23			2.09	2.18	160.55
	15-Mar-23			2.19	2.29	160.45
	18-Apr-23			2.27	2.36	160.37
	18-May-23			2.33	2.42	160.31
	30-May-23			2.38	2.47	160.27
MW108	28-Feb-23	161.40	161.30	5.00	5.10	156.30
	08-Mar-23			5.15	5.26	156.14
	15-Mar-23			5.26	5.36	156.04
	18-Apr-23			5.01	5.11	156.29
	18-May-23			5.00	5.10	156.30
	30-May-23			5.06	5.16	156.24
MW112	28-Feb-23	162.93	162.86	2.76	2.83	160.11
	08-Mar-23			2.67	2.74	160.19
	15-Mar-23			2.63	2.70	160.24
	18-Apr-23			2.68	2.75	160.18
	18-May-23			3.50	3.57	159.36
	30-May-23			2.56	2.63	160.30
MW113	28-Feb-23	162.74	162.65	3.63	3.72	159.02
	08-Mar-23			7.17	7.26	155.48
	15-Mar-23			4.46	4.56	158.19
	18-Apr-23			2.72	2.81	159.93
	18-May-23			2.69	2.78	159.96
	30-May-23			2.67	2.76	159.98

TABLE 2Observed Groundwater Levels120, 128, 142, 148, 154, 158 Queen Street South and 169 Crumbie Street

Well Date		Ground	Top Pipe	Groun	Gr'water	
Desig.		Elev.	Elev.		Depth	
		(m asl)	(m asl)	(m bmp)	(m bmp) (m bg)	
MW113S	28-Feb-23	162.70	162.62	1.29	1.37	161.33
	08-Mar-23			4.88	4.97	157.73
	15-Mar-23			2.13	2.21	160.49
	18-Apr-23			1.77	1.85	160.85
Developed	04-May-23			1.96	2.04	160.66
	18-May-23			2.13	2.21	160.49
	30-May-23			1.91	1.99	160.71
MW115	28-Feb-23	162.72	162.64	3.24	3.32	159.40
	08-Mar-23			3.22	3.30	159.42
	15-Mar-23			3.21	3.30	159.43
	18-Apr-23			3.22	3.30	159.42
Developed	04-May-23			3.29	3.37	159.35
	18-May-23			4.37	4.45	158.27
	30-May-23			3.56	3.64	159.08
MW116	28-Feb-23	162.07	161.99	4.15	4.23	157.84
	08-Mar-23			-	-	-
	15-Mar-23			4.16	4.24	157.83
	18-Apr-23			4.22	4.30	157.78
	18-May-23			5.65	5.73	156.34
	30-May-23			4.54	4.62	157.45
MW118	28-Feb-23	159.99	159.91	3.28	3.36	156.63
	08-Mar-23			3.38	3.46	156.53
	15-Mar-23			3.42	3.50	156.50
	18-Apr-23			3.27	3.35	156.64
	18-May-23			3.35	3.43	156.56
	30-May-23			3.36	3.43	156.56
MW118S	28-Feb-23	160.00	159.90	4.73	4.82	155.17
	08-Mar-23			5.05	5.15	154.84
	15-Mar-23			4.87	4.97	155.03
	18-Apr-23			2.00	2.10	157.90
Developed	04-May-23			1.24	1.33	158.66
	18-May-23			4.55	4.64	155.35
	30-May-23			2.68	2.78	157.22

Notes

1. *italics* - wells recovering from previous sampling/development - value is suspect

- 2. m asl = metres above sea level
- 3. m bmp = metres below measurement point
- 4. m bg = metres below ground

TABLE 3Summary of Groundwater Quality120, 128, 142, 148, 154, 158 Queen Street South and 169 Crumbie Street, Mississauga

		Sewers Bylaw MW103		MW103	MW103	MW101S	MW113S	MW115	MW118S	
	Units	Peel Sanitary	Peel Storm	Mis'ga Storm	08-Mar-23	30-May-23	30-May-23	30-May-23	30-May-23	30-May-23
MISCELLANEOUS INORGANIC P	ARAMETER	s								
Fluoride	mg/L	10	-		0.37					
рН	pH units	5.5-10	6.0-9.0	6.0-9.0	7.92					
Total Suspended Solids	mg/L	350	15	15	<10					
Cyanide - Total (CN)	mg/L	2	0.02	0.02	<0.002					
Total Residual Chlorine	mg/L	-	-	1	<0.01					
METALS (Total)	•									
Aluminium (Al)	mg/L	50	-	1	0.485					
Antimony (Sb)	mg/L	5	-	-	<0.020					
Arsenic (As)	mg/L	1	0.02	0.02	<0.015					
Cadmium (Cd)	mg/L	0.7	0.008	0.008	<0.010					
Hexavalent Chromium (Cr VI)	mg/L	-	-	0.04	<0.002					
Chromium (Cr)	mg/L	5	0.08	0.08	<0.015					
Cobalt (Co)	mg/L	5	-	-	<0.020					
Copper (Cu)	mg/L	3	0.05	0.04	<0.010					
Lead (Pb)	mg/L	3	0.120	0.120	<0.020					
Manganese (Mn)	mg/L	5	0.05	0.05	0.094	0.056	0.096	0.497	0.216	0.719
Manganese (Mn) (Dissolved)	mg/L	5	0.05	0.05	n/a	0.013	0.088	0.482	0.167	0.702
Mercury (Hg)	mg/L	0.01	0.0004	0.0004	<0.0002					
Molybdenum (Mo)	mg/L	5	-	-	<0.020					
Nickel (N)	mg/L	3	0.08	0.08	<0.015					
Selenium (Se)	mg/L	1	0.02	0.02	<0.002					
Silver (Ag)	mg/L	5	0.12	0.12	<0.010					
Tin (Sn)	mg/L	5	-	-	<0.025					
Titanium (Ti)	mg/L	5	-	-	0.013					
Zinc (Zn)	mg/L	3	0.04	0.04	<0.020					
MICROBIOLOGICAL AND NUTRI	ENTS									
Escherichia coli	CFU/100 ml	-	200	200	61					
Oil & Grease: Animal+Veg.	mg/L	150	-	-	<0.5					
Oil & Grease: Mineral+Synth	mg/L	15	-	-	<0.5					
Biological Oxygen Demand (BOD)	mg/L	300	15	15	<2					
Phenolics (4AAP)	mg/L	1.0	0.008	0.008	0.061	0.009	0.010	0.013	0.006	0.011
Phosphorus (P)	mg/L	10	0.4	0.4	0.02					
Sulfate (SO4)	mg/L	1500	-	-	104					
Total Kjeldahl Nitrogen (TKN)	mg/L	100	1	1	0.24					

VOLATILE ORGANIC COMPOUNDS

	•				
Benzene	mg/L	0.01	0.002	0.002	<0.0002
Chloroform	mg/L	0.04	0.002	-	<0.0002
Methylene Chloride (Dichloromethane)	mg/L	2	0.0052	-	<0.0001
Dichlorobenzene, 1,2-	mg/L	0.05	0.0056	-	<0.0001
Dichlorobenzene,1,4-	mg/L	0.08	0.0068	-	<0.0001
Dichloroethylene, cis-1,2-	mg/L	4	0.0056	-	<0.0002
Dichloropropene, trans-1,3-	mg/L	0.14	0.0056	-	<0.0003
Ethylbenzene	mg/L	0.16	0.002	0.002	<0.0001
Methyl Ethyl Ketone	mg/L	8.0	-	-	<0.0009
Styrene	mg/L	0.2	-	-	<0.0001
Tetrachloroethane, 1,1,2,2-	mg/L	1.4	0.017	-	<0.0001
Tetrachloroethylene	mg/L	1	0.0044	-	<0.0001
Toluene	mg/L	0.27	0.002	0.002	<0.0002
Trichloroethylene	mg/L	0.4	0.008	-	<0.0002
o-Xylenes	mg/L	-	-	-	<0.0002
m+p-Xylenes	mg/L	-	-	-	<0.0001
Xylenes (Total)	mg/L	1.4	0.0044	0.0044	<0.0001
Polycyclic Aromatic Hydrocarbons	mg/L	-	-	0.002	<0.0003
SEMIVOLATILE ORGANIC COMPC	UNDS				
Bis (2-ethylhexyl) phthalate	mg/L	0.012	0.0088	-	<0.0005
Di-N-Butyl phthalate	mg/L	0.08	0.015	-	<0.0005
MISCELLANEOUS ORGANIC PARA	AMETERS				
Nonylphenols (Total)	mg/L	0.02	-	-	<0.001
Nonylphenol Ethoxylate (Total)	mg/L	0.2	-	-	<0.01
PCBs	mg/L	0.001	0.004	-	<0.0002

Notes

1. Sewer use criteria values based on Peel Region sewer bylaw (53-2010) and City of Mississauga storm sewer bylaw (0046-2022)

2. Bold and italic values at least exceed either Table 1 or Table 2, as highlighted

3. mg/L = milligrams per litre

- 4. CFU/100mL = colony forming units per 100 millilitres
- 5. "-" indicates no established criteria for the parameter
- 6. Mis'ga is City of Mississauga

TABLE 4Forecasted Construction Dewatering Rate for Buildings 1A and 1B Garage120, 128, 142, 148, 154, 158 Queen Street South and 169 Crumbie Street, Mississauga

Parameter		Value	Units	Symbol	Origin of Value	
Aquifer Hydraulic Conditions						
Hydraulic conductivity	Γ	1.8E-07	m/s	К	Highest observed in field tests	
Hydraulic connection to water table	L	Unconfined	I		Interpreted	
Analogous Dewatering Array Dimensions						
Analogous shape		Circle				
Length of excavation	ſ	97.2	m	Х	Estimated from design plans	
Width of excavation		66.1	m	J	Average width, =A / X	
Excavation footprint area to be dewatered	-	6,429	m²	А	Design plans	
Equivalent radius		45.2	m	R _w	= sqrt (A / π)	
Subsurface Vertical Dimensions			_			
Surface grade		162.5	masl	E_{G}	Representative in Buildings 1A and 1B area	
Number of basement levels		3		Ν	Design plans	
P3 slab (upper surface), depth	_	11.4	mbg	D_F	= E _G - E _F	
P3 slab (upper surface), elevation		151.1	masl	E _F	Design plans	
Elevation difference between P3 slab and excavation base		1.5	m	W	Typical design	
Excavation base, elevation	L	149.6	masl	E_{EX}	= E _F - W	
Excavation base, depth		12.9	mbg	D_EX	Assumed 1.5 m deeper than foundation slab surface	
Elevation difference between excavation base and reference datum		5.0	m		Assumed	
Reference datum (for calculation)	_	144.6	masl	E_{RD}	Set at 5 m below base of excavation	
Dewatering Levels and Dimensions						
Water table, elevation		162.2	masl	EW_{HIGH}	= E _G - DW _{SHALL}	
Water table, depth		0.3	m	DW_{SHALL}	Shallowest observed on site	
Buffer for seasonal fluctuation		0.3	m	В	based on observations including spring, limited by	
Water table elevation (pre-pumping level)		162.5	masl	$EW_{HIGHEST}$	= EW _{HIGH} + B. Allows for extreme year	
Height of water table above reference datum		17.9	m	Н	= EW _{HIGHEST} - E _{RD}	
Target dewatering level, elevation		148.6	m asl	EW_{TARG}	Target is 1 m lower than excavation base = E_{EX} - 1.0 Larget is 1 m deeper than excavation base = D_{EX} +	
Target dewatering level, depth		13.9	mbg	DW_{TARG}	1 \cap	
Height of target water level above datum		4.0	m	h _T	= EW _{TARG} - E _{RD}	
Radius of Influence						
Applied equation	R ₀ = 3000 *	(H – h _⊤) * (ŀ	<) ^{0.5}		Sichart and Kryieleis (1930)	
Radius of Influence		17.7	m	Ro	As measured from excavation edge	
Incident Stormwater						
Excavation open area		6,429	m²	А	Excavation design	
Typical large storm		25	mm/day	Ρ _T	Assumed. Typically 4-5 events/year. Larger is possible. = A * P _T	
Stormwater (i.e. from precipitation)		161	m³/day	Q _{STORM}		
Change of units (rounded)		160,725	litres/day	Q _{STORM}		
Estimated Flows to be Managed						
Applied equation	$Q_{GW} = K^* (H^2)$	– h _T ²) / (5.31	x 10 ⁻⁶ * In ((R	Ro+Rw)/Rw))	Powers et. al, 2007	
Groundwater seepage		31.3	litres/min	Q_{GW}	Calculated from values in this sheet	
Change of units		45,118	litres/day	Q_{GW}		
Safety factor		2.0			Allows for unknown conditions between boreholes or beyond the excavation walls	

	2.0			beyond the excavation walls
Groundwater seepage	90,300	litres/day		= Safety Factor x Q _{GW} , rounded
Groundwater seepage plus storm water	251,025	litres/day		= Safety Factor x Q _{GW} + Q _{STORM}
Applicable Regulatory Instrument	EASR			MECP, O.Reg 245/11, O.Reg 387/04; OWRA S.41
Value to specify in regulatory instrument	251,	000	litres/day	If EASR, then value includes stormwater. Otherwise stormwater is not included in this value. Value is rounded.

Notes.

1. Patrick Powers, Arthur Corwin, Paul Schmall, Walter Kaeck. 2007. Construction Dewatering and Groundwater Control. Third Edition.

2. mbg = metres below ground level

3. masl = metres above sea level

Terrapex Environmental Ltd.

TABLE 5

Forecasted Foundation Drainage Rate for Buildings 1A and 1B Garage

120, 128, 142, 148, 154, 158 Queen Street South and 169 Crumbie Street, Mississauga

Parameter	Value	Units	Symbol	Origin of Value
Aquifer Hydraulic Conditions				
Hydraulic conductivity	1.8E-07	m/s	К	Highest observed in field tests
Hydraulic connection to water table				Unconfined
Analogous Dewatering Array Dimensions				
Analogous shape	Circle			
Length of excavation	97.2	m	Х	Estimated from design plans
Width of excavation	66.1	m	J	Average width, =A / X
Internal area to be dewatered	6,429	m ²	А	Design plans
Radius of an equivalent well	45.2	m	R _w	= sqrt (A / π)
Subsurface Vertical Dimensions				
Surface grade (approximate average)	162.5	masl	E _G	Representative in Buildings 1A and 1B area
Number of basement levels	3		Ν	Design plans
P3 slab (upper surface), depth	11.4	mbg	D _F	= E _G - E _F
P3 slab (upper surface), elevation	151.1	masl	E _F	Design plans
Elevation difference between P3 slab and foundation drain	0.3	m		Typical design
Foundation drains, elevation	150.8	masl	E _{EX}	Assumed 0.3 m lower than foundation slab surface
Foundation drains, depth	11.7	mbg	D_EX	Assumed 0.3 m deeper than foundation slab surface
Elevation difference between excavation base and reference datum	5.0	m		Assumed
Reference datum (for calculation)	145.8	masl	E_{RD}	Set at 5 m below foundation drains
Dewatering Levels and Dimensions				
Water table, elevation	162.2	masl	EW_{HIGH}	$= E_G - DW_{SHALL}$
Water table, depth	0.3	m	DW_{SHALL}	Shallowest observed on site
Buffer for seasonal fluctuation	0.3	m	В	Based on observations including spring, limited by grade
Water table elevation (pre-pumping level)	162.5	masl	EW _{HIGHEST}	= EW _{HIGH} + B. Allows for seasonal fluctuation
Height of water table above reference	16.7	m	Н	= EW _{HIGHEST} - E _{RD}
datum Target dewatering level, elevation	150.5	m asl	EW _{TARG}	Target is foundation drains
Target dewatering level, depth	11.7	mbg	DW _{TARG}	Target is foundation drains
Height of target water level above datum	4.7	m	h _T	= EW _{TARG} - E _{RD}
Radius of Influence				
Applied equation	$R_0 = 3000 * (H - h_T) * (K_0 - h_T) + (K_$	() ^{0.5}		Sichart and Kryieleis (1930)
Radius of Influence	15	m	R _o	As measured from excavation edge
Estimated Flows to be Managed				
Applied equation	$Q_{GW} = K^* (H^2 - h_T^2) / (5.3)$	31 x 10 ⁻⁶ * In	((Ro+Rw)/Rw))	Powers et. al, 2007
Groundwater seepage	30.0	litres/min	Q_{GW}	Calculated from values in this sheet
Change of units	43,191	litres/day	Q_{GW}	
Safety factor	2.0			Allow for unknown conditions between boreholes or beyond the excavation walls
Groundwater seepage to foundations, with safety factor	86,400	litres/day		= Safety Factor x Q_{GW} , rounded

Notes.

1 Patrick Powers, Arthur Corwin, Paul Schmall, Walter Kaeck. 2007. Construction Dewatering and Groundwater Control. Third Edition.

2. mbg = metres below ground level

3. masl = metres above sea level

Terrapex Environmental Ltd.

De Zen Realty Company Ltd. CH244.00 Page 2 of 2 APPENDIX III BOREHOLE REPORT RECORDS

	T: De Zen Realty Company Ltd.					DJECT N	IO.: C⊦	1244	.00		1	R		RD OF:
	ESS: 120, 128, 142, 154, 158 Queen St	reet S										0.50		V101
	PROVINCE: Mississauga, ON		NO	RTHING (r	,					. /	60361			. (m) 163.71
	RACTOR: Profile Drilling Inc.				THOD: H			-	-	olit Sp	boon Sa	-		5 / //
	HOLE DIAMETER (cm): 20 WELL DIA		<u> </u>		REEN SLO					_			T	TYPE: Bentonite
SAMPI	LE TYPE AUGER DRIV	EN		CORIN SHEAR ST			NAMIC	CON			SHELB			IT SPOON
GWL (m) GWL (m)	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	(kP 40 80 N-VA (Blows/3	a)● 1 <u>20 160</u> LUE 600mm)●	CO PL	NTENT (%) W.C. LL		SAMPLE NO.	SAMPLE IYPE RECOVERY (%)	CV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL INSTALLATION	REMARKS
S S S S S S S S S S S S S S S S S S S	asphaltic concrete (110 mm)	_ 0	Ш.	20 40	<u>60 80</u>	20 4	0 60 8	<u> </u>	ທີ່ 1A	58	ਨ ਦ <5		≤≤	Bentonite
	granular base (150 mm) stiff to very stiff, moist CLAYEY SILT trace gravel, trace to some sand (TILL)	- 0.5	163 - 162.5 - 162 - 161.5 -	▲ 8 ▲ 18					1B 2 3	88	<5			50 mm monitoring well was installed. Water level measured on March 15, 2023: 8.94 mbg
	brown	-	161 - 160.5 - 160 -	21					5	63 75	<5			
		- 4 - 4.5 	159.5 - 159 - 158.5 -	▲ 13 ▲ 17					7	79	<5			
	grey	- 5.5 	158 - 157.5 - 157 -	1 8					8	67	<5			
	very stiff to hard, very moist, grey CLAYEY SILT some gravel to gravelly some sand to sandy (TILL)	- 7.5 - 7.5 - 8 - 8 - 8 - 8 - 8 - 8 - 7 - 8 - 7 - 8 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	156.5 - 156 - 155.5 - 155.5 -	21					9	67	<5			Sand
		Ļ	154.5 -		$\left \right $					┥│				Screen + Sand
		F		<u>1 7⊉/2</u>		GED BY						ΔTE· 1	88.10])-Jan-23
	TERRAPEX								_					
	V IEKKAPEX					IT BY: E			-				=: 13-	Mar-23
					REV	IEWED E	BY: KC			PAG	E 1 OF	2		

CLIEN	T: De Zen Realty Company Ltd.				PRC	DJECT NO.:	CH244.00				RD OF:
ADDR	ESS: 120, 128, 142, 154, 158 Queen St	reet S								MW	
CITY/F	ROVINCE: Mississauga, ON		NOF	RTHING (n	n): 4826	412.07	EASTIN	G (m):	603610.52	ELEV.	(m) 163.71
CONT	RACTOR: Profile Drilling Inc.				fhod: H	ollow Stem	Auger + S	plit Sp	oon Sampli	ng	
BORE	HOLE DIAMETER (cm): 20 WELL DIAM	METER			REEN SLO	DT #: 10 SAM	ND TYPE: 2				YPE: Bentonite
SAMPI	LE TYPE AUGER DRIV	EN		CORIN SHEAR ST		DYNAM	IC CONE	_	HELBY		T SPOON
GWL (m) GWL (m)	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	(kP 40 80 N-VAI (Blows/3	a) 1 <u>20 160</u> LUE 00mm)	CONTEN (%) PL W.C.	AMPLE NO.	SAMPLE TYPE RECOVERY (%)	CV/TOV (ppm or %LEL) LABORATORY TESTING	WELL	REMARKS
л	hard, very moist, grey to reddish grey	_	- U	20 40	60 80	20 40 60	80 ഗ് 10	ഗ് <u>∝</u> ∏70	<u>රිප</u> ⊇⊨ <5	≥ ≤	
	CLAYEY SILT some gravel to gravelly some sand to sandy (TILL)	- 9.5 - - - 10	154 -								
		- - - - - - -	153.5 - 153 -		7/200						
	END OF BOREHOLE			8 50/50 ▲	7/200			<u></u> 170 10/−			
	TERRAPEX					GED BY: JD T BY: EMZ			LING DATE:		
	Ŧ				REVI	EWED BY: K	(C	PAG	E 2 OF 2		

	e Zen Realty Company Ltd.					DJECT	NO.:	CH24	14.00	0				RD OF:
	120, 128, 142, 154, 158 Queen St	reet S					4		07.					101S
	/INCE: Mississauga, ON		NO					-		vG (m): 603609	9.85	ELEV	. (m) 163.52
	TOR: Profile Drilling Inc. E DIAMETER (cm): 20 WELL DIAM		(om):		HOD: H			-		>		SEA		TYPE: Bentonite
SAMPLE T										<u>_</u>	SHELBY	_	Τ	IT SPOON
GWL (m) Solt SYMBOL		DEPTH (m)	ELEVATION (m)	SHEAR STR (kPa) 40 80 12 N-VALI (Blows/30	ENGTH	C	WATEF ONTER (%) W.C.	R NT	SAMPLE NO.	SAMPLE TYPE	_	LABORATORY TESTING		REMARKS
sol				20 40 6			40 60		SAN	SAN	(ppr	LAB TES	WEI	
	Straight drilled to 6.1 mbg to install monitoring well	0 0.5 1	163.5 - 163 - 163 -										V	Bentonite 50 mm monitoring well was installed. Water level measured on March 15, 2023: 0.99 mbg
		- - - - - - - - - - - - - -	161.5 -											
		- - - - - - 2.5	161.5											
		- 3 	160.5 - 160 - 160 -											
		- - - - -	159.5 –											Sand
		- 4.5 - - - 5	159 - 158.5 -											Screen + Sand
			158 -											
	END OF BOREHOLE	-6	157.5 -											
			•		LOG	GED B	Y: JD				RILLING D	ATE: 1	9-Jan-	23
	TERRAPEX				INPU	T BY:	EMZ			М	ONITORIN	IG DATI	E: 15-I	Mar-23
	▼				REVI	EWED	BY: I	кС		PA	AGE 1 OF	1		

	e Zen Realty Company Ltd.								D.: CH	1244	4.00)			F		ORD OF:
	120, 128, 142, 154, 158 Queen St	reet S															V102
	INCE: Mississauga, ON		NO	RTH	<u> </u>	n): 482							<i>'</i>	03659			7. (m) 162.79
	OR: Profile Drilling Inc.	45755	. (E		THOD: REEN S				-			Spoo	on Sa		-	TYPE: Bentonite
	E DIAMETER (cm): 20 WELL DIAM		<u> </u>				SLOT							ELBY	_	<u> </u>	
SAMPLE TY	AUGER DRIV				CORIN	RENGT	н	WA	AMIC	100 .		ш					IT SPOON
GWL (m) SOIL SYMBOL	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)			120 160		('	/TENT %) /.C. LL		SAMPLE NO.	SAMPLE TYPE	RECOVERY (%)	(ppm or %LEL)	LABORATORY TESTING	WELL INSTALLATION	REMARKS
		<u>В</u> 0		2	0 40	<u>60 80</u>	:		60 8	30	SA	RA SA	뷛ሪ	d d	ΠË	N N	Bentonite
	asphaltic concrete (100 mm) granular base (135 mm)	_ U	162.5 –	4							1			<5		V	
	FILL	- 0.5	102.0	T							'		21 •	-0			50 mm monitoring well was installed.
	firm, very moist, dark brown clayey silt	-	160								ł						Water level measured on March 15, 2023:
	some gravel, some sand	_ _ 1	162 -														0.35 mbg
	stiff to very stiff CLAYEY SILT	-		1	14						2	3	88 <	<5			
deg tr	ace gravel, trace to some sand	_ _ 1.5	161.5 -								ł						
	(TILL)	- 1.0															
		-2	161 -	1	19						3	3	88 <	<5			
			-								╞	Щ					
		-	160.5 -								Ī						
	moist	- 2.5			19						4		′9 <	<5			
	brown		160 -								-	Щ					
		-3									ŀ						
		-	159.5 -	21							5	8	33 <	<5			
		- 3.5															
		-	159 -								ł	Ш					
		-4			12						6	8	88 4	<5			
		_	158.5 -														
		- 4.5															
		-	158 -	8							7		70				
		- 5															
		_	157.5 -			129											
		- 5.5	-			Ē											
		-	157 -														
		-6															
		-	156.5 -														
	moist to very moist grey	- 6.5		1	1						8		92 <	<5			
	57	-	156 -								ł						
		-7															
		-	155.5 -														
		- 7.5	-														
		-	155 -								ļ	\square					
		-8			16						9	8	88 <	<5			
		[154.5 -		\backslash						╞	Щ					
		- 8.5			\mathbb{N}												Sand
	hard, wet, grey CLAYEY SILT	E	154 -														
	some gravel to gravelly	-9														l:=:	Screen + Sand
	some sand to sandy (TILL)	-	153.5		8	8/225					10	\mathbb{T}	4	<5		l:1	
		•	•				GGEI	D BY:	JD	• 1					ATE: (08 & 09	- -Feb-23
	TERRAPEX					INF	PUT B	Y: E	ΛZ			Μ	ONIT	ORIN	G DAT	E: 15-	Mar-23
	V					RE	VIEW	ED B	r: KC			P	AGE	1 OF 2	2		

CLIENT: De Zen Realty Company Ltd.				PRC	DJEC	T NO.:	CH24	4.00	0			F		RD OF:
ADDRESS: 120, 128, 142, 154, 158 Queen St	reet Sou	uth, ar	nd 169 Cru	Imbie S	Street	t							MW	/102
CITY/PROVINCE: Mississauga, ON		NOF	RTHING (m)	: 4826	382.	20	EA	STIN	NG (m):	60365	9.25	ELEV.	(m) 162.79
CONTRACTOR: Profile Drilling Inc.							-			t Sp	oon Sa	ampling	9	
BOREHOLE DIAMETER (cm): 20 WELL DIA				EN SLO					2	_			—	TYPE: Bentonite
	EN		CORING SHEAR STR			DYNAN WATEF		NE			SHELB			T SPOON
SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	(kPa) 40 80 12 N-VALU (Blows/300 20 40 6	20 160 JE Omm)	P	CONTEN (%) L W.C. 40 60	NT	SAMPLE NO.	SAMPLE TYPE	RECOVERY (%)	CV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL	REMARKS
hard, wet, grey CLAYEY SILT some gravel to gravelly some sand to sandy (TILL)	- 10 - 10.5 - 10.5 - 11 - 11 - 11.5	153 - 52.5 - 152 - 51.5 - 151 -		4/225				11		70				
weathered SHALE END OF BOREHOLE			<u>- </u> 5 0/5 Φ ▲							Υ Ο				
TERRAPEX						BY: JD								-Feb-23
						EMZ						NG DAT	E: 15-N	viar-23

	T: De Zen Realty Company Ltd.		a				NO.: C⊦	1244.	00		-	F		ORD OF: V103
	ESS: 120, 128, 142, 154, 158 Queen St PROVINCE: Mississauga, ON	reet S		RTHING (m				FART		(ma);	60368	1 11	1	<u>v 103</u> . (m) 161.17
	RACTOR: Profile Drilling Inc.			`	HOD: H									. (11) 101.17
	HOLE DIAMETER (cm): 20 WELL DIAM		2 (cm):		EEN SLC			-			00113		-	TYPE: Bentonite
							NAMIC			Π	SHELB			IT SPOON
				SHEAR STR (kPa	RENGTH		ATER NTENT (%)			_				
GWL (m) GWL (m)	DESCRIPTION	DEPTH (m)	ELEVATION (m)	40 80 12 N-VAL (Blows/30	UE 0mm)▲		W.C. LL	<	SAMPLE NU.	RECOVERY (%)	CV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL INSTALLATION	REMARKS
- xxx	FILL	_ 0		20 40 6	80 80	20 4	0 60 8	0 0			੦ੁਛ	(-	5 ≤	Bentonite
	firm, moist, brown/dark brown	-	161 -	16 ▲				1	1	58	<5			50 mm monitoring well
	clayey silt trace gravel, trace sand, trace brick	- 0.5												was installed.
	very stiff, moist, brown	-	160.5 -						\vdash					Water level measured on March 15, 2023:
	CLAYEY SILT	- 1												3.79 mbg
	trace gravel, some sand (TILL)	-	160 -	21				2	²	92	<5			
	(1122)	-							μ	4				
		- 1.5	159.5 -						Π					
		_		20				3	3	75	<5			
		-2												
		-	159 -											
		- 2.5							.		_			
		-	158.5 -	21				4	*	79	<5			
		-3							μ	4				
		_ 3	158 -											
		-		22				5	5	83	<5			
		- 3.5												
		-	157.5 -						F					
		-4												
		-	157 -	22				6	³	79	<5			
		-4.5							μ	4				
	stiff to hard, very moist to moist		156.5 -						Г					
	CLAYEY SILT	-		12				7	7	79	<5			
	some gravel to gravelly some sand to sandy	- 5	450											
	(TILL)	-	156 -											
		- 5.5												
			155.5 -											
		-6		$1 \mid \chi$										
		-	155 -						H					
		-		53				8	3	63	<5			
		- 6.5	154.5 -											
	grey	-	104.0											
		-7												
		-	154 -											
		- 												
		-	153.5 -						\vdash					
		t a		41				ļ	•	83	<5			
		-8	153 -								-			
		Ľ							ľ	1				
		- 8.5												
		-	152.5 -	1 \										
	reddish grey	-9] \										
	33	-	152 -	50/75				4	₀॑॑	100	<5			
		F	· · · · ·			ED BY	י חו, י)7 ዲ በያ	3-Feb-23
	TERRAPEX					T BY: E			+					Mar-23
	V IENNAFEA						3Y: KC		+				10-	
							51. NO			TAC	E 1 OF	2		

CLIENT: De Zen Realty Company Ltd.					DJECT NO.	: CH244	.00	-		RD OF:
ADDRESS: 120, 128, 142, 154, 158 Queen St	reet S									/103
CITY/PROVINCE: Mississauga, ON		NO	RTHING (m					603681.44		. (m) 161.17
CONTRACTOR: Profile Drilling Inc.								oon Sampli	-	
BOREHOLE DIAMETER (cm): 20 WELL DIA					DT#: 10 s					TYPE: Bentonite
SAMPLE TYPE AUGER DRIV	EN		SHEAR ST	RENGTH	WAT	AMIC CON		SHELBY		IT SPOON
	DEPTH (m)	ELEVATION (m)	(kPa 40 80 1 N-VAL (Blows/30	20 160 UE 00mm)	CONTI) C. LL	SAMPLE NO. SAMPLE TYPE RECOVERY (%)	CV/TOV (ppm or %LEL) LABORATORY TESTING	WELL	REMARKS
o hard, moist, reddish grey CLAYEY SILT some gravel to gravelly some sand to sandy (TILL) weathered SHALE weathered SHALE END OF BOREHOLE END OF BOREHOLE		151.5 -		/250	20 40 9		<u> </u>	<5		Sand Screen + Sand
					GED BY: J		DRIL	LING DATE:	07 & 08	-Feb-23
TERRAPEX				INPU	т вү: ЕМ	Z	MON	NITORING DA	ATE: 15-1	Mar-23
•				REVI	EWED BY:	KC	PAG	E 2 OF 2		

CLIENT: De Zen Realty Company Ltd.	Straat S	outh o	nd 160 Cr		OJECT		CH2	44.0	0				RD OF: 103S
ADDRESS: 120, 128, 142, 154, 158 Queen CITY/PROVINCE: Mississauga, ON	Sileet S		RTHING (m): 60368			. (m) 161.14
CONTRACTOR: Profile Drilling Inc.				HOD: H					•• (iii	<i>.</i> 00000	0.10		
BOREHOLE DIAMETER (cm): 20 WELL D	IAMETER	R (cm):		EEN SL			-		2		SEA		TYPE: Bentonite
	IVEN			G		DYNA				SHELB	_		IT SPOON
	DEPTH (m)	ELEVATION (m)	SHEAR STF (kPa 40 80 1 N-VAL (Blows/30 20 40	RENGTH 20 160 .UE .00mm)	PL	WATE CONTE (%) . W.C. 40 6	R NT LL	SAMPLE NO.	SAMPLE TYPE	CV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL	REMARKS
Straight drilled to 4.6 mbg to install monitoring well	- 0.5 - 1 - 1.5 - 2.5 - 3 - 3.5	160.5 - 160.5 - 160.5 - 159.5 - 159.5 - 158.5 - 158											Bentonite 50 mm monitoring well was installed. Water level measured on March 15, 2023: 3.64 mbg Sand Screen + Sand
END OF BOREHOLE	-4.5	157											
TERRAPE	×			INPL	GED B JT BY: IEWED	EMZ			M	RILLING E ONITORIN AGE 1 OF	NG DATE		

	T: De Zen Realty Company Ltd.							Г NO.:	CH2	244.	00			F		RD OF:
	ESS: 120, 128, 142, 154, 158 Queen St	reet S														/104
	PROVINCE: Mississauga, ON		NC	RTHI		: 4826			_			. /	60371			. (m) 161.99
	RACTOR: Profile Drilling Inc.									-		olit Sp	boon Sa	-	-	
	HOLE DIAMETER (cm): 20 WELL DIA					EN SLO								_		TYPE: Bentonite
SAMP	LE TYPE AUGER DRIV	EN	E	C SHE	ORING	B ENGTH		DYNAI WATE		CONE	_		SHELB	_		IT SPOON
GWL (m) GWL (m)	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	40	(kPa) 80 12	• 20 160		CONTE (%)				RECOVERY (%)	CV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL INSTALLATION	REMARKS
sol	DESCIVIFICIÓN	DEP'		(BI	ows/300 40 6	Omm)		- W.C. 40 6		MAG			CV/T (ppm	LABO	WELI	
	FILL compact, moist, dark brown to brown gravelly silty sand	_ 0	161.5 -	11	40 0			40 0		1		58	<5			Bentonite 50 mm monitoring well was installed.
	trace clay, some organics		161 -	1 ↓ ↓	3					2	2	58	<5			Water level measured on March 15, 2023: 1.38 mbg
		- - - - 1.5	160.5 -	▲ 10						3,			<5		V	
		2	160 -							31	в					
	FILL very stiff, wet, brown clayey silt trace gravel, some sand	- 2.5	159.5 -		8					4	•	17	<5			
	very stiff to stiff, very moist to moist CLAYEY SILT trace gravel, trace to some sand	-3	159 -	21						5	5	88	<5			
	(TILL)	- 3.5 - - - 4	158.5 - 158 -													
	brown	- 4.5	157.5 -	25						6		50	<5			
		- 5	157 -	12	2					7	,	75	<5			
		- 5.5 	156.5 -													
	grey		156 -		5					8	3	67	<5			
		- 6.5 - - - 7	155.5 - 155 -													
	hard, moist to very moist, grey CLAYEY SILT some gravel to gravelly some sand to sandy	- - - - 7.5	154.5 -													
	(TILL)		154 -		56					ç	•	67				Sand Screen + Sand
		- 8.5	153.5 -													
		-9	153 -	50.	/50 🔺					1	0	75				
						LOG	GED E	BY: JE)		Τ	DRI		ATE: 0	6 & 07	- -Feb-23
	TERRAPEX					INPU	T BY:	EMZ				MOI	NITORIN	IG DAT	E: 15 - 1	Mar-23
	· · · · · · · · · · · · · · · · · · ·					REVI	EWE	DBY:	KC			PAG	E 1 OF	2		

	T: De Zen Realty Company Ltd.					DJECT	NO.:	СН	244	.00			F		RD OF:
	ESS: 120, 128, 142, 154, 158 Queen St	reet S													/104
	ROVINCE: Mississauga, ON		NO	RTHING (m)				_				60371			(m) 161.99
	RACTOR: Profile Drilling Inc.								-	-	olit S	boon S	ampling		
	HOLE DIAMETER (cm): 20 WELL DIAM			7	EN SLO										YPE: Bentonite
SAMPI	LE TYPE AUGER DRIV	EN		CORING SHEAR STRE	NGTH		YNAI WATE					SHELB			T SPOON
GWL (m) SOIL SYMBOL	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	(kPa) 40 80 12 N-VALU (Blows/300	0 160 IE Imm)	▲ C PL	ONTE (%) W.C.	NT LL		SAMPLE NO.	RECOVERY (%)	CV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL	REMARKS
o Sta	hard, very moist, grey to reddish grey	-	-	20 40 60	0 80	20	40 6	0 80		00		09		:⊟::	
	CLAYEY SILT some gravel to gravelly some sand to sandy	- - -	152.5												
	(TILL)	- 10 - -	152												
		- 10.5 - -	151.5	50/50 🔺						11 -	≖ 100				
		- 11 - -	151												
	END OF BOREHOLE	- 11.5 	150.5 -	50/75 🔺						12	100				
	<u> </u>				LOG	GED B	Y: JE)			DRI	LLING [DATE: 0	6 & 07	-Feb-23
	TERRAPEX			-		T BY: EWED						NITORII GE 2 OF	NG DAT	E: 15 - N	lar-23

ITY/PROVINCE: Mississauga, ON ONTRACTOR: Profile Drilling Inc.			ina 169 C	rumbie S	Street								RD OF: 105
		NC	RTHING (r			9	EAS	TIN	G (m): 60372	28.19		. (m) 161.76
			MET	THOD: H	lollow	Stem A	uger	+ S	plit	Spoon S	ampling	9	
OREHOLE DIAMETER (cm): 20 WELL DIA	METER	R (cm):	5 SCF	REEN SLO	от #: 1	10 SAND		E: 2		_	SEA	ALANT	TYPE: Bentonite
AMPLE TYPE AUGER DRIV	/EN		CORIN SHEAR ST			YNAMI		NE .		SHELB	Y	T	IT SPOON
SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	(kP 40 80 N-VA (Blows/3	a)● 1 <u>20 160</u> LUE 600mm)▲	PL	WATER ONTENT (%) W.C. L	L	SAMPLE NO.	SAMPLE TYPE	CV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL	REMARKS
asphaltic concrete (100 mm)	_ 0	· ·	20 40	60 80		40 60	80	<i>w</i>				> =	Bentonite
granular base (150 mm) FILL firm, moist, dark brown sandy clayey silt trace gravel, trace organics	- - 0.5 - - - - - -	161.5 - 161 - 160.5 -	4		4 28 ■			1		6 <5 0 <5			50 mm monitoring wel was installed. Water level measured on March 15, 2023: 5.34 mbg
very stiff, moist CLAYEY SILT trace gravel, trace to some sand (TILL)	- 1.5 2	160 - 159.5 -	15		16			3	ε 	3 <5			
	- 2.5	159 -	20		16 ■			4	ε Π	3 <5			
browr	- 3.5	158.5 - 158 -	1 9		15			5	ε Π	3 <5			
	- 4 - 4 - 4.5	157.5 -	29		12 ■			6	7	5 <5			
	- 5.5	157 - 156.5 -	25		14 ■			7	6	7 <5		Y	
grey	- - - - - - 6.5	156 - 155.5 - 155 -	26		11			8	7	9 <5			
hard, moist, grey CLAYEY SILT some gravel to gravelly some sand to sandy (TILL)	7.5	154.5 - 154 - 153.5 -	35		9			9	ع ا	3 <5			
	- 8.5 - - - - - 9 -	153 - 152.5 -											Sand Screen + Sand
TERRAPEX	,												
					T BY:	EMZ BY: KO				ONITORI		E: 15-I	viar-23

	⊡ De Zen Realty Company Ltd.						T NO.:	CH24	44.00	0			R		RD OF:
ADDRE	ESS: 120, 128, 142, 154, 158 Queen St	reet S													105
CITY/P	ROVINCE: Mississauga, ON		NO	RTHING (r	n): 4826	6283.	69	EA	STIN	√G (r	m):	60372	8.19	ELEV.	(m) 161.76
CONTR	RACTOR: Profile Drilling Inc.			ME	HOD: H	lollov	v Stem	n Auge	er + S	Split	Sp	oon S	ampling	1	
BORE	HOLE DIAMETER (cm): 20 WELL DIA	METER			REEN SL	OT #:	10 s <i>r</i>	AND TY	PE: 2	2	_		SEA		YPE: Bentonite
SAMPL	LE TYPE AUGER DRIV	EN			G	_ 🗖	DYNA		ONE	_	_	HELB	Y _		T SPOON
GWL (m) GWL (m)	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	SHEAR ST (kP 40 80 N-VA (Blows/3 20 40	a) 1 <u>20 160</u> _UE 00mm)	▲ - ₽	WATE CONTE (%) L W.C. 40 6	NT	SAMPLE NO.	SAMPLE TYPE	RECOVERY (%)	CV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL	REMARKS
	hard, moist, grey CLAYEY SILT some gravel to gravelly some sand to sandy (TILL)	- 9.5 - 10 - 10.5		75/2	75	9			10		76	<5			
		- - - - - - - - - - - - - - - - - - -	151 — - - 150.5 —	72/2 50/100 ▲	75	11 ■ 8			11		59				
	veathered SHALE END OF BOREHOLE														
	TERRAPEX				INPU	JT BY	BY: JE : EMZ			Ν	/ON	ITORI	DATE: 3		
					L KEV	IEVVE	D BY:	лU			AG	E 2 OF	2		

	T: De Zen Realty Company Ltd.	reat C	outh o	nd 160 C			NO.: C	CH24	4.00)	-	F		RD OF: V106
	ESS: 120, 128, 142, 154, 158 Queen St PROVINCE: Mississauga, ON	ieet S		RTHING (1						G (m)	60355	51 0.9		(m) 163.25
	RACTOR: Profile Drilling Inc.		טאון	`	m): 4620 THOD: H					. ,				. (11) 103.23
	HOLE DIAMETER (cm): 20 WELL DIAI	METER	R (cm):		REEN SL			-		-	0000		-	TYPE: Bentonite
				CORIN			DYNAMI			Π	SHELB		<u> </u>	IT SPOON
GWL (m) GWL (m)	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	SHEAR ST (kF 40 80 N-VA (Blows/3	TRENGTH Pa) 120 160 LUE 300mm)	PL	WATER CONTENT (%)	- _L	SAMPLE NO.	SAMPLE TYPE RECOVERY (%)		LABORATORY TESTING	WELL	REMARKS
0	asphaltic concrete (110 mm)	_ 0		20 40	60 80	20	40 60	80	0		09		> =	Bentonite
	granular base (150 mm) FILL compact, moist, brown sand and gravel stiff to hard, moist, brown CLAYEY SILT trace gravel, trace to some sand (TILL)	-0.5 -1 -1 -2 -2 -3 -3.5 -3.5 -4	163 - 162.5 - 162.5 - 162.5 - 161.5 - 161.5 - 160.5 - 160.5 - 159.5 -	11 ▲ 10 ▲ 18 20 ▲ 32 ▲		3 18 16 16			1 2 3 4 5	55 63 67 83 55 55	<5 <5 <5 <5 <5		V	50 mm monitoring well was installed. Water level measured on March 15, 2023: 1.70 mbg
	very stiff to hard, moist, grey CLAYEY SILT	- 4.5 - 5 - 5 - 5.5	159 - - 158.5 - - 158 - - - - - - - - - - - - - - - - - - -	▲ 19 ▲ 19		18			7	75				
	some gravel to gravelly some sand to sandy (TILL)	- 6.5 - 7 - 7.5 - 7 - 7.5 - 8 - 8.5	156.5 - 156.5 - 155.5 - 155.5 - 155.5 -	42		8∎			8	75				Sand Screen + Sand
		-9								Π				
		<u> </u>	154 -				Y: JD					1 אַד⊑י	9 8. 20])-Jan-23
	TERRAPEX					JT BY:						NG DAT		
	V ILNNAPEA				BY: K	<u> </u>			GE 1 OF		L. 10-1			
				* * LÜ	, DI. IV	<u> </u>		I'A		4				

	T: De Zen Realty Company Ltd.							OJE		0.:	CH2	244	.00				F		RD OF:
	ESS: 120, 128, 142, 154, 158 Queen St	reet S																	/106
	PROVINCE: Mississauga, ON		NO	RTH	1		4826				_			· ·	-	60355			(m) 163.25
	RACTOR: Profile Drilling Inc.										-	-		plit	Spo	oon S	ampling	-	
	HOLE DIAMETER (cm): 20 WELL DIAM			-			N SL	OT #						_	-		_		YPE: Bentonite
SAMP	LE TYPE AUGER DRIV	EN					NGTH		DY	NAN				_		HELB			T SPOON
GWL (m) SOIL SYMBOL	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	4(4) 0 80 N-V	(Pa) (Pa) (ALUE (ALUE) (300m	160		COI	NTEN (%)	ΙT		SAMPLE NO.	SAMPLE TYPE	RECOVERY (%)	CV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL	REMARKS
, Мал	hard, moist, grey	_		2(60 65	80		0 40	<u>) 60</u>	80		<u>ගි</u> 10		쮼 59	රප <5	ЦЩ	≥≧	
	CLAYEY SILT some gravel to gravelly some sand to sandy	- 9.5	153.5 -					8						Щ`	39	-5			
	(TILL)	- 10	:																
	hard, moist, reddish grey GRAVELLY SANDY CLAYEY SILT	- - - 10.5	153 -																
		_	152.5 -	50	/125			7					11	П.	72				
	weathered SHALE [_			, 129		+	┢		+	+	+	· '	Щ					
	END OF BOREHOLE																		
-			•				LOG	GED	BY:	JD				D	RILI	LING E	DATE: 1	9 & 20	-Jan-23
	TERRAPEX	TERRAPEX							Y: E					Μ	ION	ITORIN	NG DAT	E: 15-N	/lar-23
						F	REV				<c< td=""><td></td><td>\uparrow</td><td></td><td></td><td>2 OF</td><td></td><td></td><td></td></c<>		\uparrow			2 OF			
						1	· · - V			1				• •			-		

	T: De Zen Realty Company Ltd. ESS: 120, 128, 142, 154, 158 Queen St	reet S	South. a	and	169 C				NO.: (CH24	44.0	0		-	R		ORD OF: V107
	PROVINCE: Mississauga, ON					n): 48			9	EA	STI	NG	(m):	60360	08.34		[/] . (m) 162.73
	RACTOR: Profile Drilling Inc.		I		<u> </u>	-							. ,		ampling		< / i
BORE	HOLE DIAMETER (cm): 20 WELL DIAI	METEF	R (cm):	5	SCF	REENS	SLOT	#: 1	0 SAN	ID TY	PE: 2	2			SEA	LANT	TYPE: Bentonite
SAMP	LE TYPE AUGER DRIV	EN			CORIN				YNAM		DNE			SHELB	Y	SPL	IT SPOON
GWL (m) GWL (m)	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	4	(kF	RENGT Pa) 120 160 LUE 800mm))	C	WATER ONTEN (%) W.C.	Т	SAMPLE NO.	SAMPLE TYPE	RECOVERY (%)	CV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL INSTALLATION	REMARKS
sol		E 0		2	0 40	<u>60 80</u>			<u>40 60</u>		SAI	SAI	Ř	(ppi	LAE	NS NS	Bentonite
	asphaltic concrete (125 mm) granular base (160 mm) FILL compact,moist, brown	- 0.5	162.5 -	10			1 [.]	1			1		63	<5			50 mm monitoring wel was installed.
	sand and gravel	- - - - 1	162 -	•			5	21			2A		67	<5			Water level measured on March 15, 2023: 2.29 mbg
	stiff, moist, brown clayey silt trace gravel, trace sand	- - - 1.5	161.5 -					T			2B						
	very stiff, moist, brown CLAYEY SILT trace gravel, trace to some sand	-2	161 -	22				5			3		83	<5		V	
	(TILL)	2.5	160 -	21							4		83	<5			
		-3	159.5 -	21				17			5		83	<5			
		- 3.5 - - - 4	159 -		18		1	4			6A		75	<5			
		- 4.5	158.5 -					17			6В						
			158 - 157.5 -		17			19			7		83	<5			
	stiff to hard, moist, grey CLAYEY SILT	- - - - -	157 -														
	some gravel to gravelly some sand to sandy (TILL)	-6	156.5 -		10		1	1			8		83	<5			
		- 6.5	156 -														
		7.5	155.5 -				2										
			155 -		51 🗎		7				9A 9B		58	<5			
	hard, moist, reddish brown GRAVELLY SANDY CLAYEY SILT	- 8.5	154.5 -														
	(TILL)	-9	153.5 -														Sand
						LO	GGE	D BY	r: JD			Γ	DRIL	LING [DATE: 1	8-Jan	-23
	TERRAPEX					INF	PUTE	BY:	EMZ				MON	ITORI	NG DATI	E: 15-	Mar-23
	¥					RE	VIEV	VED	BY: K	С			PAG	E 1 OF	2		

ADDRESS: 120, 121, 142, 143, 158 Queen Stevet South, and 189 Counsis Stevet. METHOD: Holdow Stam Auger + Spli Specon Sampling Description CONTRACTOR: Profile Dolling Inc. METHOD: Holdow Stam Auger + Spli Specon Sampling Elser.(n): 102.73 RORFILLE DAMETER (m): 0.0 Q VILL DAMETER (m): 0.0 Control With Ministray Queen Start (Ministray Queen Start (Ministra	CLIENT: De Zen Realty Company Ltd.				PRO	DJECT NO	.: CH244	4.00			RD OF:
CONTRACTOR: Profile Dilling Inc. ME THOR: Solid Statut	ADDRESS: 120, 128, 142, 154, 158 Queen St	reet So	uth, a	nd 169 Cr	umbie S	Street				MM	/107
DOREHOLE DUMMETER (m): 20 VELL DUMETER (m): 5 SCREEN SQT #: 10[340-TYPE : BAUMUCONE DERLANT TYPE : Bentonite SAMPLE TYPE AUGER DRIVEN CORNING OWNED TYPE : BUNCONE DRIVEN OPAULANCE ONE OPAULANCE ONE DRIVEN OPAULANCE ONE DRIVENCE ONE OPAULANCE ONE	CITY/PROVINCE: Mississauga, ON		NO								(m) 162.73
SAMPLE TYPE Judger DRIVEN CORNEG DYNAMIC CONE SkeLey Deput TPOON 000									· · · · · · · · · · · · · · · · · · ·	-	
Openant SOIL DESCRIPTION End of an analysis Openant Ope				7					· · · · · ·		
Big DESCRIPTION E Big B	SAMPLE TYPE AUGER DRIV	EN			G RENGTH		AMIC CON				T SPOON
UNAVELLI' SIND' CLATE I SUT 103 11 103 11 63 45 105 102 11 151 100 11 11 100 11 11 100 11 11 100 11	IN SOIL SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m	(kPa 40 80 1 N-VAL (Blows/30 20 40	a) I <u>20 160</u> LUE D0mm) 60 80	(% PL W.	5) C. LL 60 80			WELL INSTALLATION	REMARKS
Weathered STALE Image: State sta	(TILL)	- 10 - 10.5 - 11.5 - 11	52.5 - - - - - - - - - - - - - -	81/		5		11 63	<5		Screen + Sand
LOGGED BY: JD DRILLING DATE: 18-Jan-23 INPUT BY: EMZ MONITORING DATE: 15-Mar-23		_ 11.5		<u>50/100</u>				12111105			
TERRAPEX INPUT BY: EMZ MONITORING DATE: 15-Mar-23											
	~				LOG	GED BY: 、	JD	DRI	LLING DATE:	18-Jan-	23
	TERRAPEX									E: 15-N	Mar-23

	IT: De Zen Realty Company Ltd.						DJECT		CH2	244.	00			F		RD OF:
	ESS: 120, 128, 142, 154, 158 Queen St	reet S							—			()	60205	1.96		V108
	PROVINCE: Mississauga, ON		NO): 4826						. ,	60365	ampling		. (m) 161.39
	RACTOR: Profile Drilling Inc. HOLE DIAMETER (cm): 20 WELL DIAM		2 (cm):	5		EEN SL				-		nit Sp	0001 3		-	TYPE: Bentonite
			<u> </u>					DYNAI				П	SHELB		<u> </u>	IT SPOON
GWL (m) GWL (m)	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	SHEA 40 (BI	AR STR (kPa) 80 12 N-VALU ows/300	ENGTH 20 160 JE 0mm)	C PL	WATE CONTE (%)	R NT LL		Ц		CV/TOV (ppm or %LEL)	LABORATORY TESTING		REMARKS
0	asphaltic concrete (100 mm)	_ 0	ш.	20	40 6	0 80	20	40 6	<u>0 80</u>	0			੦ੁੁ	_i ⊢	5 ≤	Bentonite
	granular base (150 mm) FILL loose, moist, brown sand and gravel, mixed with clayey silt FILL stiff, moist, dark brown clayey silt trace gravel, trace sand very stiff to hard, moist, brown CLAYEY SILT trace gravel, trace to some sand (TILL)	-0.5 -1 -1.5 -2.5 -3.5 -3.5 -4	160.5 - 160.5 - 160.5 - 159.5 - 158.5 - 158.5 -		48					1 2 3 4 5 6	2 · · · · · · · · · · · · · · · · · · ·	50 58 83 38 79 75	<5 <5 <5 <5 <5			50 mm monitoring well was installed. Water level measured on March 15, 2023: 5.36 mbg
	hard, moist, grey CLAYEY SILT some gravel to gravelly some sand to sandy	- 4.5	156.5 - 156.5 - 156 - 155.5 -	24						7	7	79	<5		V	
	(TILL)	- 6.5 - 7 - 7.5	155 - 154.5 - 154 -		58					8	3	79	<5			
		- 8.5	153.5 - 153 - 152.5 -		58 4 60 4					10		83	<5			Sand Screen + Sand
<u>ALYMER</u>		001		GED B	Y: .IГ)	րս	<u>"</u>	_		DATE: 0)2-Feb	-23			
	TERRAPEX						T BY:				+					-23 Mar-23
							EWED				+		E 1 OF		01	
				יוטי.	110			PAC		۷						

	T: De Zen Realty Company Ltd.					JECT N	0.: Cl	H244.	00			F		RD OF:
	ESS: 120, 128, 142, 154, 158 Queen St	reet S												/108
	PROVINCE: Mississauga, ON		NOF	RTHING (m							60365			(m) 161.39
	RACTOR: Profile Drilling Inc.				HOD: H			-		it Sp	oon S		-	
	HOLE DIAMETER (cm): 20 WELL DIAM			2	EEN SLO									YPE: Bentonite
SAMP	LE TYPE AUGER DRIV	EN		CORIN SHEAR STR	G RENGTH		NAMIC ATER				SHELB'			T SPOON
GWL (m) SOIL SYMBOL	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	(kPa 40 80 1 N-VAL (Blows/30) 20 160 UE	▲ CO	NTENT (%) W.C. LL		SAMPLE NO. SAMPLE TYPE	RECOVERY (%)	CV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL	REMARKS
ы Мал	hard, moist, reddish grey	_	- 団 - 152	20 40 6	<u>80 80</u>	20 40	<u>) 60 8</u>	30 6	ồ ổ ⊞	Ē	ତ୍ ବ	ЦЦ	≥≧	
	CLAYEY SILT some gravel to gravelly some sand to sandy (TILL) hard, wet, reddish grey GRAVELLY SANDY CLAYEY SILT	- 9.5	151.5 - - - - - - -	50/75					рв 1А	100				
	(TILL)	- 10.5 	150.5 -						1B	100				
114449722	weathered SHALE			- 50/25 ▲				11	2	₩				
	~	•	· 1		LOG	GED BY:	JD		⊥	DRIL	LING E	DATE: C	2-Feb-	23
	TERRAPEX		INPU	т вү: Е	MZ			MON	IITORII	NG DAT	E: 15 - N	lar-23		
	¥				REVI	EWED B	Y: KC	;		PAG	E 2 OF	2		

	Zen Realty Company Ltd. 120, 128, 142, 154, 158 Queen St	reet S	outh a	and '	169 C		OJEC1		CH2	244.0	00			R		RD OF: 1109
	NCE: Mississauga, ON					n): 482			F	ASTI	NG	(m).	60355	57.00		. (m) 162.83
	DR: Profile Drilling Inc.				T	THOD: 1			-							,
	DIAMETER (cm): 20 WELL DIAI	METER	R (cm):			REEN SL										TYPE: Bentonite
SAMPLE TY			N		CORIN				MIC C	ONE			SHELB	Y	SPL	IT SPOON
GWL (m) SOIL SYMBOL	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	4	(kF 0 80 N-VA Blows/3	800mm)	PL	WATE CONTE (%)	NT	SAMPLE NO.	SAMPLE TYPE	RECOVERY (%)	CV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL INSTALLATION	REMARKS
stiff	DESCRIPTION asphaltic concrete (120 mm) granular base (220 mm) FILL f to very stiff, moist, dark brown clayey silt trace gravel, trace sand very stiff to stiff, moist, brown CLAYEY SILT ace gravel, trace to some sand (TILL) firm, moist, brown CLAYEY SILT firm, moist, brown CLAYEY SILT very stiff to hard, moist, grey CLAYEY SILT some gravel to gravelly some sand to sandy (TILL)	$H_{d=1}$ 0 -0.5 -1 -1.5 -2.5 -3.5 -4.5 -4.5 -5.5 -6.5 -6.5 -7.5	к 162.5 - 162.5 - 162.5 - 161.5 - 161.5 - 160.5 - 160.5 - 159.5 - 159.5 - 158.5 - 157.5 - 157.5 - 157.5 - 156.5 - 155.5 -	22 10 21 25	17 17 12	LÜE 100mm) 60 80		- W.C.		1 24 26 3 4 5 6 7 7 8		50 88 92 63 75 79 79 75	<5 <5 <5 <5 <5 <5 <5	LABOR	MELL NET	Borehole caved at 11.0 mbg and water level at 11.4 mbg upon completion
			155 - 154.5 - 154 -							96	3 	_				
	~	F	103.5				GED E	зү: .IГ)		T			DATE: 1	r 7-Jan-	-23
	TERRAPEX						JT BY:				+			NG DATE: 1		20
											+				<u> </u>	
				L KEV	IEWED	זסי:	NU			PAG	E 1 OF	2				

	T: De Zen Realty Company Ltd.					JECT I	NO.: C	H244	4.00			F		RD OF:
	ESS: 120, 128, 142, 154, 158 Queen St	reet S												109
	PROVINCE: Mississauga, ON		NO	RTHING (m							60355			(m) 162.83
	RACTOR: Profile Drilling Inc.						Stem A	luger	+ S	olit S	poon S	ampling		
	HOLE DIAMETER (cm): 20 WELL DIA			7	EEN SLO			D TYPE						YPE: Bentonite
SAMP	LE TYPE AUGER DRIV	EN		CORING SHEAR STR) ength I		YNAMI VATER				SHELB			T SPOON
GWL (m) SOIL SYMBOL	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	(kPa) 40 80 12 N-VALU (Blows/30)) 20 160 JE 0mm)	PL	WATER DNTENT (%) W.C. L	.L	SAMPLE NO.	RECOVERY (%)	CV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL INSTALLATION	REMARKS
0 4	hard, moist, grey CLAYEY SILT	- 9.5	- - -			20 4	0 60	<u> </u>	<u>م م</u>	71	<5		> =	
	some gravel to gravelly some sand to sandy (TILL)	- 10	153 -						ľ					
	hard, moist, grey GRAVELLY SANDY CLAYEY SILT (TILL)	- - - - 10.5	152.5 -											
		- 11	152 -	52 🔺					11	78	<5			
		151.5 -	50/75 ▲ 50/75 ▲					12	⊥ ⊥ ⊥67	<5				
	weathered SHALE / END OF BOREHOLE		-	50/75▲			\vdash	+	13		<5			
						GED BY				DRI	LLING [DATE: 1	7-Jan-2	23
	TERRAPEX			TBY: E			-+	MO	NITORII	NG DAT	E:			
	*				REVI	EWED	BY: KO	0		PAC	GE 2 OF	2		

SAMPLE TYPE AUGER DRIVEN CORING DYNAMIC CONE SHELBY	
BOREHOLE DIAMETER (cm): 20 WELL DIAMETER (cm): SCREEN SLOT #: SAND TYPE: 5 SAMPLE TYPE AUGER DRIVEN CORING DYNAMIC CONE SHELBY	-
SAMPLE TYPE AUGER DRIVEN CORING DYNAMIC CONE SHELBY	SEALANT TYPE: Bentonite
Ι Ι I <thi< th=""> <thi< th=""> <thi< th=""> <thi< th=""></thi<></thi<></thi<></thi<>	SPLIT SPOON
Image: Solution of the	NOLL REMARKS NOLL REMARKS
asphaltic concrete (100 mm) $ \frac{1}{2}$ $\frac{1}{2}$ $$	
granular base (140 mm) - <td></td>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
CLAYEY SILT trace gravel, trace to some sand (TILL) 101	
hard, moist, grey CLAYEY SILT some gravel to gravelly composition of the source of	
some sand to sandy (TILL) $156.5 - 32$ 11 11 8 83 <5	
LOGGED BY: JD DRILLING DATE	: 06-Feb-23
TERRAPEX INPUT BY: EMZ MONITORING D	DATE:
REVIEWED BY: KC PAGE 1 OF 2	

CLIEN	T: De Zen Re	alty Company				PRC	JEC	T N	D.: C	CH24	4.0	0			F	RECO						
ADDRE	ESS: 120, 128	8, 142, 154, 15	8 Queen St	reet So	outh, a	ind 16	69 Ci	rumb	ie S	Stree	et								BH	11	0	
CITY/P	PROVINCE: Mi	ississauga, ON			NO	RTHI	NG (r	n): 4	826	309	.76		EAS	STIN	NG ((m):	60361	17.01	ELEV.	(m) ´	162.65	
CONT	RACTOR: Pro	file Drilling Inc.					MET	THOD): S	olid	Ster	n Au	iger -	+ Sp	olit	Spo	on Sai	mpling				
BORE		ER (cm): 20	WELL DIAN	/ETER	(cm):		SCF	REEN	SLC	DT #:		SAN	ID TYP	E:				SEA	LANT 1	YPE:	Bentonit	е
SAMPL	LE TYPE	AUGER	DRIV	EN				IG RENG					IC CO	NE			SHELB	Υ		T SPC	ON	
GWL (m) SOIL SYMBOL	DES	SOIL CRIPTIC	N	DEPTH (m)	ELEVATION (m)	40 (Bl	(kP 80 N-VA ows/3	a) 1 <u>20 16</u> LUE 00mm	50)	F	(PL V	VTER ITEN %) /.C.	LL	SAMPLE NO.	SAMPLE TYPE	RECOVERY (%)	CV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL		REMARKS	5
	C some som	rd, moist, grey LAYEY SILT gravel to grave e sand to sand (TILL)	y 	- 9.5 - 10 - 10.5 - 11.5 - 11.5 	153 - 152.5 - 152.5 - 151.5 - 151.5 - 150.5 - 150 - 149.5 -	20	40 46 77/:	250				60		10		₩ 67 75 100	5√ 55		NI NI			
		TED	DADEV							GED								DATE: 0		23		
		TER	RAPEX							ТВҮ								NG DAT	E:			
		•						I R	FVI	FWF	D B	Y: K	С		1	PAG	E 2 OF	2				

	T: De Zen Realty Company Ltd. ESS: 120, 128, 142, 154, 158 Queen St	reet S	outh. a	and 16	69 Cru		OJEC ^T Street		СН	244	.00		_	F		RD OF:
	PROVINCE: Mississauga, ON): 4826			E	EAS	TIN	G (m): 6036	71.39		(m) 161.04
	RACTOR: Profile Drilling Inc.					·							, oon Sa		1	
	HOLE DIAMETER (cm): 20 WELL DIAI	METER	R (cm):			EEN SL			AND T						ALANT 1	TYPE: Bentonite
	LE TYPE AUGER DRIV				ORINO			DYNA					SHELE		SPLI	T SPOON
GWL (m) GWL (m)	SOIL	DEPTH (m)	ELEVATION (m)	SHEA 40 (Bl	AR STR (kPa) 80 12	ENGTH 20 160 JE 0mm)	PI	WATE CONTE (%) _ W.C 40 6	R NT			SAMPLE TYPE	CV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL INSTALLATION	REMARKS
50°.0	asphaltic concrete (100 mm)	0	161							í †						
	granular base (150 mm) FILL stiff to very stiff, moist, brown clayey silt very stiff to stiff, moist CLAYEY SILT trace gravel, trace to some sand	- 0.5	160.5 - 160 -								2	7	3 <5 5 <5			
	(TILL)	- 1.5 	159.5 - 159 -		8						3	7	5 <5			
	brown	- 2.5 - - - 3	158.5 - 158 -		8						4	ε Π	3 <5			
		- 3.5	157.5 -	20							5	7	5 <5			
		-4 	157 - 156.5 -		4						6	н в П	3 <5			
		- 5	156 -		4						7	E c	7 <5			
	grey	- 6.5	155.5 - 155 - 154.5 -								8	7	1 <5			
	hard, grey, moist CLAYEY SILT some gravel to gravelly some sand to sandy (TILL)	7.5	154 - 153.5 - 153 -		55						9	7	5 <5			
		- 8.5 - - - - - 9 - -	152.5 - 152 -													
			LOG	GED E	3Y: J[)			D	RILLING	DATE: 🤇	30 & 31	-Jan-23			
	TERRAPEX		INPU	JT BY:	EMZ				Μ	ONITOR	ING DAT	E:				
	v					REV	IEWED	DBY:	KC			P/	GE 1 O	2		

	T: De Zen Realty Company Ltd.					DJECT	NO.: (CH24	4.00			F		RD OF:
	ESS: 120, 128, 142, 154, 158 Queen St	reet S					_	-						<u>111</u>
	ROVINCE: Mississauga, ON		NO	RTHING (m)				-			60367		ELEV.	(m) 161.04
	RACTOR: Profile Drilling Inc.				IOD: S			-		t Spc	on Sar			
BORE	HOLE DIAMETER (cm): 20 WELL DIAM				EN SLO	DT #:	SAN	ND TYF	E:					YPE: Bentonite
SAMPL	LE TYPE AUGER DRIV	EN					YNAM	IC CO	NE	_	SHELB	Y _		T SPOON
GWL (m) GWL (m)	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	SHEAR STR (kPa) 40 80 12 N-VALL (Blows/300	0 160 JE)mm)	▲ C	WATER ONTEN (%) W.C.	T LL	SAMPLE NO.	RECOVERY (%)	CV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL INSTALLATION	REMARKS
0 10	hard, grey, moist	-		20 40 60	080	20 ·	<u>40 60</u>	80	10	71	<5		> ≤	
	CLAŸEŶ SILT some gravel to gravelly some sand to sandy (TILL)	- 9.5 - - - 10	151.5 - - - - - - - - - - - - - - - - - - -											
	()	- - - 10.5	150.5 -											
		- - - 11 -	150 -	50/100 🔺						60	<5			
	rock fragments	149.5 -	50/75 🔺					12	100					
	weathered SHALE /	- 12	149 -	<u> </u>					13/==	- 100				
	END OF BOREHOLE													
									Ц					
				ļ		GED B1				DRI	LLING D	DATE: 3	0 & 31	-Jan-23
	TERRAPEX				INPU	T BY:	EMZ			MOI	NITORII	NG DAT	E:	
	¥		REVI	EWED	BY: K	C		PAG	SE 2 OF	2				

	T: De Zen Realty Company Ltd.	traat S	outh a	and 16			DJEC1		CH	1244	.00		_	F		RD OF: V112
	ESS: 120, 128, 142, 154, 158 Queen S PROVINCE: Mississauga, ON	areet S): 4826				۲۵۵.		G (m)	: 60350	15 26		(m) 162.93
	RACTOR: Profile Drilling Inc.		1.00		. ,							. /	oon Sa			
	HOLE DIAMETER (cm): 20 WELL DIA	METER	R (cm):	5		EEN SLO		_							ALANT	TYPE: Bentonite
SAMP		/EN			ORING			DYNA		CON	ΙE		SHELB	Y	SPL	IT SPOON
GWL (m) SOIL SYMBOL	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	40 (BI	AR STRI (kPa) 80 12 N-VALU ows/300 40 60	20 160 JE Omm)	Pl	WATE CONTE (%) _ W.C 40 (ENT	0	SAMPLE NO.	SAMPLE TYPE RECOVERY (%)	CV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL INSTALLATION	REMARKS
5592\	asphaltic concrete (100 mm)	_ 0	<u> </u>		40 60	<u> </u>		40 0			<u> </u>	<u>т</u>				Bentonite
	granular base (150 mm) FILL compact, moist, brown sandy silt very stiff to stiff, moist CLAYEY SILT trace gravel, trace to some sand (TILL)	 	162.5 - 162 - 161.5 - 161.5 -	10 26 23							1 2 3	63 63 63	3 <5			50 mm monitoring wel was installed. Water level measured on March 15, 2023: 2.70 mbg
	browr	- 2.5	160.5 - 160 -	24							4	83	3 <5		V	
		- 3 - - - 3.5 -	159.5 -	294							5	83	3 <5			
	grey	- 4.5 - - -	159 - 158.5 - 158 -								6	88				
	very stiff to hard, moist, grey CLAYEY SILT some gravel to gravelly some sand to sandy (TILL)	5.5 - - - - - - - - - - - - - - - - - -	157.5 - 157 - 156.5 -	28							8	83	3 <5			
		- 7 - 7.5 - 7.5 	156 - 155.5 - 155 - 155 -		60	x					9	10	0 <5			
	hard, moist, grey	- 9	154 -													Sand Screen + Sand
						LOG	GED E	3Y: J	D			DR	ILLING I	DATE: 2	24 & 25	5-Jan-23
	TERRAPEX				[INPU	IT BY:	EM	<u>z</u>			МС	NITORI	NG DAT	E: 15-	Mar-23
	V					REVI	EWED	DBY:	кс	_		PA	GE 1 OF	2		

CLIENT: De Zen Realty Company Ltd.				PRC	JECT I	NO.:	CH24	44.0	0			F		RD OF:
ADDRESS: 120, 128, 142, 154, 158 Queen St	reet S	outh, ar	id 169 Cru	mbie S	treet								MW	/112
CITY/PROVINCE: Mississauga, ON		NOF	THING (m)	: 4826	378.03	3	EA	STIN	NG (I	m):	60350	5.26	ELEV.	(m) 162.93
CONTRACTOR: Profile Drilling Inc.			METH	IOD: S	olid Ste	em A	uger	+ Sp	olit S	Spoo	on Sar	npling		
BOREHOLE DIAMETER (cm): 20 WELL DIA	METER	R (cm): 5	SCRE	EN SLO) T #: 1	0 SAI	ND TY	PE: 2	2			SEA	LANT T	YPE: Bentonite
SAMPLE TYPE AUGER DRIV	EN) 	ם <u>ר</u>	YNAN		ONE	_		HELB	<u>۲</u>	SPLI	T SPOON
	DEPTH (m)	ELEVATION (m)	SHEAR STRE (kPa) 40 80 12 N-VALU (Blows/300 20 40 60	0 160 JE)mm)	▲ CC PL	VATER ONTEN (%) W.C.	IT LL	SAMPLE NO.	SAMPLE TYPE	RECOVERY (%)	CV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL	REMARKS
CLAYEY SILT	-	153.5 -	58		4			10		100	<5		:::	
some gravel to gravelly some sand to sandy (TILL)	- 9.5 - 10 - 10.5 - 11.5 - 11.5 - 12 - 12	153 -	50/50 ▲					11		100	<0			
END OF BOREHOLE														
TERRAPEX			-		GED BY							NG DATE: 2		-Jan-23 /lar-23
v					EWED		<c< td=""><td></td><td>F</td><td>PAGI</td><td>E 2 OF</td><td>2</td><td></td><td></td></c<>		F	PAGI	E 2 OF	2		

	T: De Zen Realty Company Ltd.					DJECT N	10.: CH	1244.	00			F		RD OF:
	ESS: 120, 128, 142, 154, 158 Queen S	treet S										0.01		V113
	PROVINCE: Mississauga, ON		NO	RTHING (n	,					. ,	60356			. (m) 162.74
	RACTOR: Profile Drilling Inc.				HOD: H			-		olit Sp	boon S		-	
	HOLE DIAMETER (cm): 20 WELL DIA		<u> </u>	7	EEN SLO					П	SHELB		<u> </u>	TYPE: Bentonite
GWL (m) GWL (m)	LE TYPE AUGER DRIV SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	CORIN SHEAR STI (kPa 40 80 1 N-VAL (Blows/30	RENGTH	w CO	NAMIC ATER NTENT (%) W.C. LL		_	RECOVERY (%)	CV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL WSTALLATION	IT SPOON REMARKS
So		巴 0		20 40			<u>) 60 8</u>	0 v		K H	(p C	IE:	N N N	Dontonito
	asphaltic concrete (120 mm) granular base (250 mm) FILL stiff, moist, dark brown clayey silt	- 0.5	162.5 -	12				1	1	75	<5			Bentonite 50 mm monitoring well was installed. Water level measured on March 15, 2023:
	trace gravel, trace sand	- - 1 - - - - 1.5	161.5 -	10				2	2	50	<5			4.56 mbg
	very stiff, moist, brown CLAYEY SILT trace gravel, trace to some sand (TILL)	-2	161 - 160.5 -	20				3	3	92	<5			
		- - 2.5 - - - 3	160 -	▲ 19				4	4	79	<5			
		- 3.5	159.5 - 159.5 -	▲ 19				5	5	83	<5			
		- - 4 - - - 4.5	158.5 -	22				e	6	75	<5		V	
		- - - - - - -	158 - 157.5 -	17				7	7	75	<5			
	very stiff to hard, moist, grey CLAYEY SILT some gravel to gravelly some sand to sandy (TILL)	- 5.5 - - - - - - - - - - - - - - - - - -	157 - 156.5 -											
	()	- - 6.5 - - - - - 7	156 -	18				3	3	83	<5			
		- - - - - -	155.5 - 155 -	50/125				ę	• []	27	<5			Sand
		- 8 - - - - - 8.5	154.5 -											Screen + Sand
		- - - - - -	154 - 153.5 -											
						GED BY			+			DATE: 1		
	TERRAPEX					T BY: E			+				E: 15-I	Mar-23
					REVI	EWED E	Y: KC			PAG	GE 1 OF	2		

	CLIENT: De Zen Realty Company Ltd.	traat C	outh or	ad 160 Cr			NO.: (CH24	4.00)		F		RD OF:
OKTRACTOR: Profile Dilling Inc. METHOD: Holdweiter Auger + Spitt Spono Sampling. DREHOLE DUAMETER (m): 20 WELL DUAMETER (m): 20 SEALANT TYPE: Bentonite MURE TYPE AUGER OPENAL OPENAL SEALANT TYPE: Bentonite MURE TYPE AUGER OPENAL OPENAL OPENAL SEALANT TYPE: Bentonite MURE TYPE AUGER OPENAL OPENAL OPENAL SEALANT TYPE: Bentonite MURE TYPE AUGER OPENAL OPENAL OPENAL SEALANT TYPE: Bentonite MURE TYPE AUGER Image: Auger Aug		ueel S					<u> </u>		OTIN). 60251	SO 01		
OREHOLE DUMETER (m): 20 VELL DUMETER (m): 5 SCREEN SQT #: 10 SNOT VF: 2 DELAUNT VF: Bendance MULET TYPE ALIGER DRIVEN CORNEC DRIVEN SELL WITTER: BOUND 00 SOLL 0			NO					-					•	(m) 102.74
AMPLE TYPE AUGE DRIVEN CORNE CONE DELLEY SPUT SPOON SOIL SOIL S CRIPTION S SOIL S SOI	-) (a:) -					-			Spoon S		-	VDE. Bontonite
SOIL DESCRIPTION E				7			-					_		
very stiff to had, molt, grey some gravel to gravely some star to samoly (TLL) 0.5 153 END OF BOREHOLE 10 5050 157 0 END OF BOREHOLE 10 5050 157 0				SHEAR STF (kPa 40 80 1 N-VAL	RENGTH 1) 20 160 UE	v ▲ cc	VATER DNTEN (%)	т		_				
	very stiff to hard, moist, grey	-		20 40 6								LAB TES		
	some sand to sandy (TILL)		153 -											
TERRAPEX INPUT BY: EMZ MONITORING DATE: 15-Mar-23	END OF BOREHOLE													
	TEDDADEV	 ,												
REVIEWED BY: KC PAGE 2 OF 2								íC					L. 10-N	

CLIENT: De Zen Realty Company Ltd.	04				OJECT	NO.:	CH24	4.00					RD OF: 113S
ADDRESS: 120, 128, 142, 154, 158 Queen	Street S		nd 169 Cr RTHING (m			3		OTINI	(m);	60356			
CITY/PROVINCE: Mississauga, ON CONTRACTOR: Profile Drilling Inc.		NO		HOD: H					s (m):	00300	1.43	ELEV	. (m) 162.69
BOREHOLE DIAMETER (cm): 20 WELL D		R (cm):		EEN SL			-				SEA		TYPE: Bentonite
	IVEN		7			DYNAN			Π	SHELBY	_	Г	IT SPOON
(W) SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	SHEAR STF (kPa 40 80 1 N-VAL (Blows/30	RENGTH 20 160 .UE .00mm)	PL	WATEF CONTEN (%) W.C.	R NT LL		SAMPLE ITPE RECOVERY (%)	CV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL	REMARKS
Straight drilled to 6.1 mbg to install monitoring well	- 0.5 - 0.5 - 1 - 1.5 - 2.5 - 3 - 3.5 - 4 - 4.5 - 5.5	162.5 - 162.5 - 162.5 - 161.5 - 161.5 - 161.5 - 161.5 - 161.5 - 161.5 - 159.5 - 159	20 40 4			40 60							Bentonite 50 mm monitoring well was installed. Water level measured on March 15, 2023: 2.21 mbg Sand Screen + Sand
END OF BOREHOLE	-6	157 -											
TERRAPE	X			INPL	GED B JT BY: IEWED	EMZ			MON				23 Mar-23

	T: De Zen Realty Company Ltd. ESS: 120, 128, 142, 154, 158 Queen Str	reet S	outh, a	and 169 Cr			NO.: C	H24	4.00)			F		RD OF: 114
	ROVINCE: Mississauga, ON			ORTHING (m			7	EAS	STIN	IG (I	m):	60361	3.77		(m) 161.11
CONT	RACTOR: Profile Drilling Inc.			MET	HOD: S	olid St	em Au	ger +	- Sp	olit S	Spoo	on Sar	npling		
BORE	HOLE DIAMETER (cm): 20 WELL DIAM	/ETEF	R (cm):	SCR	EEN SLO	DT #:	SAN) TYP	E:				SEA	LANT T	YPE: Bentonite
SAMP	E TYPE AUGER DRIVE	EN		CORIN			YNAMI	ссо	NE		5	HELB	۲ Y		T SPOON
GWL (m) SOIL SYMBOL	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	SHEAR STI (kPa 40 80 1 N-VAL (Blows/30 20 40	a)● 20 160 .UE 00mm)	CI PL	WATER ONTENT (%) W.C. L 40 60	.L	SAMPLE NO.	SAMPLE TYPE	RECOVERY (%)	CV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL INSTALLATION	REMARKS
	asphaltic concrete (100 mm) granular base (170 mm) FILL firm, moist, dark brown clayey silt race gravel, some sand, some organics stiff to very stiff, moist CLAYEY SILT trace gravel, trace to some sand (TILL) brown	- 0.5 1.5 1.5 2.5 2.5 	161 - 160.5 - 160 - 159.5 - 158.5 - 158.5 - 157.5 - 157.5 - 156.5 - 156.5 -	 ▲ 8 23 ▲ 18 ▲ 18 ▲ 12 ▲ 12 					1 2 3 4 5 6 7		 42 46 67 71 67 63 67 	<5 <5 <5 <5 <5 <5 <5			
	grey hard, moist, grey CLAYEY SILT some gravel to gravelly some sand to sandy (TILL)	- 5.5 - 6.5 - 6.5 - 7.5 - 7.5 - 8.5 - 8.5 - 9	155.5 - 155 - 154.5 - 154 - 153.5 - 153.5 - 152.5 - 152.5 -	53					9		67	<5 <5			
_		_	_		LOGO	GED B	r: JD				DRIL	LING	DATE: 3	1-Jan-	23
	TERRAPEX		INPU	T BY:	EMZ			Ν	MON	ITORI	NG DAT	E:			
	V				REVI	EWED	BY: K	С		F	PAG	E 1 OF	2		

	T: De Zen Realty Company Ltd.					JECT I	NO.: (CH24	4.00)			R		RD OF: 114
	ESS: 120, 128, 142, 154, 158 Queen St ROVINCE: Mississauga, ON	ieel S		RTHING (m			7		0.11			03613	77		(m) 161.11
	RACTOR: Profile Drilling Inc.		INU											ELEV.	(m) 101.11
	HOLE DIAMETER (cm): 20 WELL DIA		(om):		EEN SLC					JIII C	poon	Sam			YPE: Bentonite
	E TYPE AUGER DRIV						YNAM				ец	ELBY	3EA		T SPOON
SOIL SYMBOL SOIL SOIL STAND	SOIL		ELEVATION (m)	SHEAR STR (kPa) 40 80 12 N-VAL	ENGTH) 20 160	V ▲ CC	VATER DNTEN (%)	т		SAMPLE TYPE			LABORATORY TESTING		REMARKS
SOIL S	DESCRIPTION	DEPTH (m)	ELEV,	(Blows/30)	0mm)		W.C. 10 60		SAMP	SAMP	RE CO CV/TC	o mqq)	LABOI TESTI	WELL INSTA	
	hard, moist, grey CLAYEY SILT some gravel to gravelly some sand to sandy	- - - -	151.5 -												
	(TILL)	- 10 - - -	151 -												
		- 10.5	150.5 -	50/100 ▲					11	Ш	100				
	ock fragments	- 11.5	150 -												
		- 12	149.5 - - - - - - - - - - - - - - - - - - -												
	weathered SHALE / END OF BOREHOLE	-		<u> 50/5</u> 0 ▲				+	12		<u>10</u> 9				
	E -				LOGO	GED BY	 ′:JD						ATE: 3	1-Jan-2	23
	TERRAPEX				INPU	T BY: I	EMZ			Ν	IONIT	ORINO	g date		
	V				REVI	EWED	BY: K	C		F	AGE	2 OF 2	2		

	⊡ De Zen Realty Company Ltd. SS: 120, 128, 142, 154, 158 Queen S	treet S	outh a	und 169 Cri		DJECT Street	NO.: C	H24	4.00)	_			ORD OF: V115
	ROVINCE: Mississauga, ON			RTHING (m			3	FA	STIN	IG (r	n)· 60:	3464.51		. (m) 162.72
	RACTOR: Profile Drilling Inc.		1	`	,						,	n Samplir		. (,
	OLE DIAMETER (cm): 20 WELL DIA	METEF	R (cm):		EEN SLO			-					-	TYPE: Bentonite
							YNAMI			ſ	SHE			IT SPOON
GWL (m) SOIL SYMBOL	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	SHEAR STR (kPa) 40 80 12 N-VALU (Blows/30 20 40 6	RENGTH 20 160 UE 0mm)	PL	WATER ONTENT (%) W.C. I	_L		SAMPLE TYPE	RECOVERY (%) CV/TOV		WELL	REMARKS
5573) 55730	asphaltic concrete (120 mm)	0					40 00		1A		33 <		1	Bentonite
	granular base (170 mm) FILL firm, moist, brown/dark brown clayey silt trace gravel, some sand	- 0.5 - 1 - 1 - 1 - 1 - 1	162.5 - 162 - 161.5 -	6		514 18 18			1B 1C 2		67 <	5		50 mm monitoring wel was installed. Water level measured on March 15, 2023: 3.30 mbg
	stiff to hard, moist, brown	2	161 - 160.5 -	4		22			3		63 <	5		
	CLAYEY SILT trace gravel, trace to some sand (TILL)	- 2.5	160 -	8		20			4		67 <	5		
		- 3.5	159.5 -	20		16			5		63 <	5	V	
		- - - - - - - - - - - - - - - - - - -	158.5 -	30		15			6		58 <	5		
		- 5	158 - 157.5 -	40		15			7		50 <	5		
	hard, grey CLAYEY SILT some gravel to gravelly some sand to sandy (TILL) moist	- 5.5 - 6 - 6.5 - 7	156.5 - 156.5 - 156 -	33 ▲		10			8		63 <{	5		
	wet	- 7.5 - 8 - 8.5 - 9	155.5 - 155.5 - 154.5 -	30		14 ■ 5			9		77 <t 00</t 	5		Sand Screen + Sand
		-	153.5 -		$ \rangle$					\square				
					LOG	GED BY	r: JD			D	RILLIN	G DATE:	20 & 24	1-Jan-23
	TERRAPEX				INPU	T BY:	EMZ			Ν	IONITC	RING DA	TE: 15-	Mar-23
	¥				REVI	EWED	<u>BY:</u> K	2		P	AGE 1	OF 2		

CLIEN	Г: De Zen Realty Company L	td.						PRC	JEC	CT N	0.:	CH	244	1.00				F		RD OF:
ADDRE	ESS: 120, 128, 142, 154, 158	Queen Street	t South, a	and	169	Cru	umb	ie S	Stree	et									MW	/115
	ROVINCE: Mississauga, ON		NC	DRTH	-							_			-		60346			(m) 162.72
	RACTOR: Profile Drilling Inc.												-			t Sp	oon S	ampling	-	
		WELL DIAMET			-			SLC	DT #	: 10										TYPE: Bentonite
SAMPL	E TYPE AUGER	DRIVEN		I SH		RIN(G ENG	тн									SHELB			T SPOON
GWL (m) GWL (m)	SOIL DESCRIPTIC		ELEVATION (m)	4	(0 8 N-' (Blow	(kPa 0 1: VAL s/30) 20 16	i0)		WA CON (PL V) 40	%) V.C.	LL		SAMPLE NO.	SAMPLE TYPE	RECOVERY (%)	CV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL	REMARKS
	hard, moist, grey GRAVELLY SANDY CLAYE (TILL)	EY SILT = 9. - 10 - 11 - 11 - 11	153 -) 152.5 -).5 152 - 1 151.5 -	50)/125)/100	63 5 4	90		9 7 5					11 12 13 14						
	weathered SHALE		2	50	/125	5 🔺			4					15	Π	80				
	END OF BOREHOL																			
							L	COC	GED	BY:	JD				[DRII	LING D	DATE: 2	20 & 24	-Jan-23
	TERR	RAPEX					IN	IPU	ТВ	': El	ΜZ				ſ	NON	ITORI	NG DAT	E: 15 - 1	Mar-23
1	V						R	FVI	FWF	D B	Y: k	$\langle C \rangle$			F	PAG	E 2 OF	2		

	T: De Zen Realty Company Ltd. ESS: 120, 128, 142, 154, 158 Queen St	reet S	outh a	and 16	9 Cru	4		⁻ NO.:	СН	244.	.00		_	F		ORD OF: V116
	PROVINCE: Mississauga, ON					: 4826			F	EAST	TIN	G (m)	. 60351	2.35		. (m) 162.07
	RACTOR: Profile Drilling Inc.				. ,				_					ampling		. (,
	HOLE DIAMETER (cm): 20 WELL DIAM	NETER	R (cm):			EN SLO			-	-			•		-	TYPE: Bentonite
	LE TYPE AUGER DRIV				RING	}				CON	IE		SHELB	Y	SPL	IT SPOON
GWL (m) SOIL SYMBOL	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	40 N (Blo	(kPa) 80 12	20 160 JE 0mm) [▲]	PL	WATE CONTE (%) . W.C. 40 6	NT LL		SAMPLE NO.	SAMPLE TYPE	CV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL INSTALLATION	REMARKS
	asphaltic concrete (120 mm)	_ 0	162 -	-	40 6			40 0		<u> </u>	<u>,</u>	Ť				Bentonite
	granular base (150 mm) FILL stiff to firm, moist, brown/black clayey silt trace gravel, trace sand, trace organics	- - - - - - - -	161.5 -								1	6: 				50 mm monitoring wei was installed. Water level measured on March 15, 2023: 4.24 mbg
		- 1.5	161 - 160.5 -								2	6				
	very stiff to hard, moist, brown CLAYEY SILT trace gravel, trace to some sand	- 2 - 2 	160 - 159.5 -								3					
	(TILL)		159.5 -								4	7: 				
			158.5 - 158 -	20							5	7: 7:				
		- - - - - - - -	157.5 -								6				V	
	very stiff to hard, moist, grey	- 5	157 - 156.5 -								7	8	3 <5			
	CLAYEY SILT some gravel to gravelly some sand to sandy (TILL)	- 	156 -								-					
		- 6.5 	155.5 - 155 -	26							8	7!	5 <5			
		- - - - - -	154.5 -													
		- 8	154 - 153.5 -		55 ▲					2	9	7!	5 <5			Sand Screen + Sand
			153.5 -	- 50/12	25						10		5			
						LOG	GED E	BY: JE)			DF	ILLING [DATE: 2	25 & 26	6-Jan-23
	TERRAPEX					INPU	T BY:	EMZ				М	NITORI	NG DAT	E: 15-	Mar-23
	V					REVI	EWED) BY:	кс			PA	GE 1 OF	2		

CLIENT: De Zen Realty Company Ltd.				PRO	DJECT N	0.: CI	-1244	.00			F		RD OF:
ADDRESS: 120, 128, 142, 154, 158 Queen	Street S	outh, a	nd 169 Cru	umbie S	Street							MW	/116
CITY/PROVINCE: Mississauga, ON		NO	RTHING (m): 4826	285.16		EAS	TING	(m):	60351	2.35	ELEV.	(m) 162.07
CONTRACTOR: Profile Drilling Inc.			MET	HOD: H	ollow St	tem Au	uger	+ Sp	lit Sp	boon S	ampling	9	
BOREHOLE DIAMETER (cm): 20 WELL D	IAMETER	R (cm):	5 SCR	EEN SLO	o T #: 10	SAND	TYPE	: 2			SEA	LANT T	YPE: Bentonite
SAMPLE TYPE AUGER DR	IVEN	<u>r</u>		G	DY	NAMIC		IE	_	SHELB	Y _		T SPOON
SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	SHEAR STF (kPa 40 80 1: N-VAL (Blows/30) 20 160 UE (0mm)	CON PL V	(%) V.C. LL	-	SAMPLE NO. SAMPLE TYPE	RECOVERY (%)	CV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL	REMARKS
hard, moist, grey	- 9.5	-	20 40 6	<u>80 80</u>	20 40	<u> 60 8</u>	30			08		_> <u>=</u> ∷⊟∷	
some gravel to gravelly some sand to sandy (TILL)	- - - - - - - - - - - - - - - - - - -	152.5 - - - 152 - - - - - - - - - - - - - - - - - - -	50/100 ▲					11 🎞	_100				
rock fragments	- 11 - - - 11.5	151 - - - - - 150.5 -											
weathered SHALE END OF BOREHOLE		100.0	50/75				$+\uparrow$	12, 🖽	몓				
	-1	1		LOG	GED BY:	JD			DRI	LING E	DATE: 2	25 & 26	-Jan-23
TERRAPE	X			INPU	т вү: Е	MZ			MON	NITORI	NG DAT	E: 15-N	lar-23
V				REVI	EWED B	Y: KC	;		PAG	E 2 OF	2		

LIENT: De Zen Realty Company Ltd. DDRESS: 120, 128, 142, 154, 158 Queen	Street S	South. a	and 169 Cru		CT NO.:	CH24	44.00)	-	R		RD OF: 117
ITY/PROVINCE: Mississauga, ON			ORTHING (m			EA	ASTIN	IG (m)	60355	50.62		(m) 162.01
ONTRACTOR: Profile Drilling Inc.			`	HOD: Solie		-		. ,				
	IAMETER	R (cm):		EEN SLOT		AND TY						YPE: Bentonite
	IVEN	7	CORING	3	DYNA		ONE		SHELB	Y	SPLI	T SPOON
SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	SHEAR STR (kPa) 40 80 12 N-VALI (Blows/30 20 40 6	● 20 160 JE 0mm)	WATE CONTE (%) PL W.C. 20 40 6	NT	SAMPLE NO.	SAMPLE TYPE RECOVERY (%)	CV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL INSTALLATION	REMARKS
asphaltic concrete (100 mm)	0	162	15									
granular base (150 mm) FILL very stiff to firm, moist, brown clayey silt trace gravel, trace sand	- 0.5	161.5 - 161 - 160.5 -	9				1 2A 2B 3A	67 67 67	<5			
very stiff to hard, moist, brown	2	160 -					3В					
CLAYEY SILT trace gravel, trace to some sand (TILL)	- - - 2.5 -	159.5 -	19				4A 4B	65	5 <5			
	- - - - - - - 3.5	159 - 158.5 -	21				5	58	<5			
	-4	158 -	31				6	 71	<5			
	- - - -	157.5 -	40				7		s <5			
	- - - -	157 -										
very stiff to hard, moist, grey CLAYEY SILT		156.5 -										
some gravel to gravelly some sand to sandy (TILL)	- 6	156 -	22				8	83	< <5			
	- 6.5 - -	155.5 -										
	- 7 - - -	155 -										
	- 7.5	154.5 -	50				9	75	5 <5			
	- 8	154 -						Щ,				
	- 8.5	153.5 -										
	- 9 - -	153 -	50/125 🔺				10	10	<u> </u>			
				LOGGE	DBY: JE)		DR	ILLING [DATE: 2	6-Jan-2	23
TERRAPE	1			INPUT E						NG DATI	_	

CLIEN	T: De Zen Realty Company Ltd.				PRO	DJECT N	0.: C⊦	1244.	00			R		RD OF:
ADDR	ESS: 120, 128, 142, 154, 158 Queen St	reet S	outh, a	nd 169 C	rumbie S	Street							BH	117
CITY/F	PROVINCE: Mississauga, ON		NO	RTHING (m): 4826	249.77		EAST	ING	(m):	60355	0.62	ELEV.	(m) 162.01
CONT	RACTOR: Profile Drilling Inc.			ME	THOD: S	olid Ste	m Aug	er + S	Split	Spoo	on Sar	npling		
BORE	HOLE DIAMETER (cm): 20 WELL DIAM	METER			REEN SLO	DT #:	SAND	TYPE:				SEA		YPE: Bentonite
SAMP	LE TYPE AUGER DRIV	EN					NAMIC	CON			HELB	Y _		T SPOON
CML (m) CML (m)	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	40 80 N-VA (Blows/3	300mm)	PL \	(%) N.C. LL		SAMPLE NO.	RECOVERY (%)	CV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL INSTALLATION	REMARKS
	hard, moist, grey CLAYEY SILT some gravel to gravelly some sand to sandy (TILL) rock fragments weathered SHALE / END OF BOREHOLE	- 9.5	Ш 152.5 - 152 - 151.5 - 151.5 - 151.5 -	20 40			V.C. LL) 60 8	1		100	<pre>5</pre>		MEL NET	
l	~	l	I		1060	GED BY:						DATE: 2	6-,lan-'	23
	TERRAPEX					TBY: E						NG DATI		
	V IERRAPEA													
					REVI	EWED B	Y: KC			PAG	E 2 OF	2		

	T: De Zen Realty Company Ltd. ESS: 120, 128, 142, 154, 158 Queen St	reet S	outh, a	and 1	169 Ci			Г NO.:	CH2	244.(00		-	F		ord of: V118
	PROVINCE: Mississauga, ON					n): 4826			E	AST	INC	G (m):	60362	6.89		/. (m) 159.99
CONT	RACTOR: Profile Drilling Inc.				MET	HOD: H	lollow	Stem	Aug	jer +	S	olit S	poon S	ampling	9	
BORE	HOLE DIAMETER (cm): 20 WELL DIAI	METER	R (cm):	5	SCF	REEN SL	OT #:	10 SA	ND T	YPE:	2			SEA		TYPE: Bentonite
SAMP	LE TYPE AUGER DRIV	EN			CORIN			DYNAN			<u> </u>		SHELB	Y	SPL	IT SPOON
	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	4((E	(kP 0 80 N-VA Blows/3	120 160	_ P	WATEF CONTEN (%) L W.C. 40 60	IT LL	SAMPI F NO		SAMPLE IYPE RECOVERY (%)	CV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL INSTALLATION	REMARKS
5000	asphaltic concrete (100 mm)	0		- A	0 40	<u>60 80</u>	<u> </u>	40 60	80	1/		42				Bentonite
	granular base (150 mm) FILL firm, moist, grey/black clayey silt trace gravel, trace sand some organics stiff to very stiff, moist, brown	- 0.5	159.5 - 159 - 158.5 -		13		13 11 22			1E 2 3		63				50 mm monitoring we was installed. Water level measured on March 15, 2023: 3.50 mbg
	CLAYEY SILT trace gravel, trace to some sand (TILL)	-22.5	158 - 157.5 - 157 -	25			15			4		88	<5			
		- 3.5	156.5 -	22			16			5		83	<5		Y	
		- 4 - 4.5 - 5	156 - 155.5 - 155 -		17		14 14			6		88				
	very stiff to hard, moist, grey CLAYEY SILT some gravel to gravelly some sand to sandy (TILL)	- - - - - - - - - - - - - - - - - - -	154.5 - 154 - 153.5 - 153 -	23			11			8		92	<5			
		- 7.5 - 8 - 8 - 8 - 8.5 - 8.5 - 9	152.5 - 152 - 151.5 - 151 -		43		12			9		75	<5			Sand Screen + Sand
		-														
	~							BY: JD			\downarrow			DATE: 2		
	TERRAPEX					INPL	JT BY:	EMZ				MO	NITORII	NG DAT	E: 15-	Mar-23
	*					REV	IEWE	DBY:	<c< td=""><td></td><td></td><td>PAG</td><td>GE 1 OF</td><td>2</td><td></td><td></td></c<>			PAG	GE 1 OF	2		

CLIENT: De Zen Realty Company Ltd.					DJECT	NO.:	CH24	4.00)					RD OF:
ADDRESS: 120, 128, 142, 154, 158 Queen St	reet S													118
CITY/PROVINCE: Mississauga, ON		NOR	THING (m								3626.8		LEV. (m) 159.99
CONTRACTOR: Profile Drilling Inc.							-			Spoo	n Sam	-		
BOREHOLE DIAMETER (cm): 20 WELL DIA			2	EEN SLO					<u>?</u>					PE: Bentonite
SAMPLE TYPEAUGERDRIV	EN		CORINO SHEAR STR	G RENGTH	1	YNAM WATER	2				ELBY			SPOON
Image: Solid state SOIL Description Description hard, moist, grey CLAYEY SILT	DEPTH (m)	ELEVATION (m)	(kPa) 40 80 12 N-VALI (Blows/30) 20 160 UE 0mm)	▲ Ci PL	ONTEN (%) W.C.	IT LL	SAMPLE NO.	SAMPLE TYPE	RECOVERY (%) CV/TOV	(ppm or %LEL) LABORATORY	TESTING	WELL INSTALLATION	REMARKS
μα hard, moist, grey	-	-	20 40 6			<u>40 60</u>	80	0 10			은 그 :5	F \$	≤ <u> </u>	
some gravel to gravelly some sand to sandy with rock fragments (TILL)	- 9.5 - - - - - - - - - - - - - - - - - - -	150.5 -	50/75		6			11		100				
END OF BOREHOLE			50/7.5 ▲					-11-						
TERRAPEX	<u> </u>				GED BY						NG DATI ORING [
V				REVI	EWED	BY: K	(C		Р	AGE 2	2 OF 2			

ADDRESS: 120, 128, 142, 154, 158 Queen S	Street S								0				RD OF:
													<u>118S</u>
CITY/PROVINCE: Mississauga, ON CONTRACTOR: Profile Drilling Inc.		NC		1): 4826 HOD: H					NG (n	n): 60362	0.22	ELEV	. (m) 159.99
BOREHOLE DIAMETER (cm): 20 WELL DI		3 (cm).		EEN SL			-		2		SEA		TYPE: Bentonite
	VEN	E ST				DYNAN				SHELBY	_	—	T SPOON
	DEPTH (m)	ELEVATION (m)	SHEAR STF (kPa 40 80 1 N-VAL (Blows/30	RENGTH 20 160 UE 00mm)	PL	WATEI CONTEI (%) W.C.	R NT LL	SAMPLE NO.		RECOVERY (%) CV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL	REMARKS
Straight drilled to 6.1 mbg to install monitoring well	- 0.5 - 1 - 1.5 - 2.5 - 3 - 3.5 - 4.5	Щ 159.5 - 159.5 - 158.5 - 158.5 - 157.5 - 156.5 - 156.5 - 156.5 -	(Blows/30			W.C. 40 6		SAM	SAM	REC CV/T (PPm	LABG	WEI	Bentonite 50 mm monitoring well was installed. Water level measured on March 15, 2023: 4.97 mbg Sand
END OF BOREHOLE	- 5.5	155 -											
TERRAPE>	(INPU	GED B IT BY: EWED	EMZ			М	RILLING D ONITORIN AGE 1 OF	IG DATE		

CLIENT: De Zen Realty Company Ltd.				PR	OJEC	T NO.	: CH	1244	.00			R		RD OF:
ADDRESS: 120, 128, 142, 154, 158 Queen St	reet So	outh, a	nd 169 Cr	umbie	Stree	t								201
CITY/PROVINCE: Mississauga, ON		NO	RTHING (m	n):				EAS	TING	(m):			ELEV.	(m)
CONTRACTOR: 3D				HOD: 8	8" HO	LLOV	VSTE	EM						
BOREHOLE DIAMETER (cm): - WELL DIAM	<i>I</i> ETER	(cm):	5 SCR	EEN SL	OT #:	10 s	SAND .	TYPE	: SIL	-				YPE: BENTONITE
SAMPLE TYPE AUGER DRIVE	EN			G	, 🗖			CON	IE	_	SHELB	Y _		T SPOON
(III) TORINAS TIOS INST DESCRIPTION	DEPTH (m)	ELEVATION (m)	SHEAR STI (kPa 40 80 1 N-VAL (Blows/30 20 40	a)● 1 <u>20 160</u> _UE 00mm)▲	- F	WATI CONTI (%) L W.C	ENT) C. LL	0	SAMPLE NO. SAMPLE TYPE	RECOVERY (%)	CV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL INSTALLATION	REMARKS
brown CLAYEY SILTY SAND gravels	-0.5 -1 -1.5 -2.5 -3.5 -3.5 -3.5 -4.5													
moist, dark brown	- 5 - - - - - - - - - - - - - - - - - -													
TERRAPEX				INPL	GED JT BY	SW		I		MON		DATE: 5 NG DATE		3

CLIEN	г: De Zen Realty Company Ltd.				PR	OJEC	Γ NO.:	CH2	244.0	0		R		RD OF:
ADDR	ESS: 120, 128, 142, 154, 158 Queen St	reet So	outh, a	nd 169 C	rumbie	Street							MW	202
	ROVINCE: Mississauga, ON		NO	RTHING (NG (m	ı):		ELEV.	(m)
	RACTOR: 3D				THOD: 8									
	HOLE DIAMETER (cm): - WELL DIAM			7	REEN SL								Т	YPE: BENTONITE
SAMPL	LE TYPE AUGER DRIV	EN	K	CORIN SHEAR ST		_	DYNA WATE	MIC C						T SPOON
GWL (m) GWL (m)	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	(kF 40 80	°a)● <u>120 160</u> LUE 300mm)▲	P	WATE CONTE (%) L W.C 40 6	NT	SAMPLE NO.	SAMPLE TYPE	RECOVERY (%) CV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL INSTALLATION	REMARKS
	Ioose, brown CLAYEY SILTY SAND gravels moist, greyish brown	- 0 - 0.5 - 1 - 1.5 - 2.5 - 3.5 - 3.5 - 4 - 5.5 - 5.5 - 6												
	<u> </u>				LOG		3Y: K	 P			RILLING	DATE: 5	-Jun-2	3
	TERRAPEX					JT BY:					ONITORI			
						IEWEI					AGE 1 OF			
							רט כ.				JE I UF	1		

ADDRESS: 120, 128, 142, 154, 158 Queen Street South, and 169 Crumble Street MW203 CITY/PROVINCE: Mississauga, ON NORTHING (m): EASTING (m): ELEV. (m) CONTRACTOR: 30 METHOD: 8" HOLLOWSTEM BOREHOLE DIAMETER (cm): SCREEN SLOT #: 10 SAND TYPE: SILICA SEALANT TYPE: BELAN SPLIT SPOON SAMPLE TYPE AUGER DRIVEN ORING DYNAMIC CONE SHELBY SPLIT SPOON Umage: Solid of the street of	
CONTRACTOR: 3D METHOD: 8" HOLLOWSTEM BOREHOLE DIAMETER (cm): - WELL DIAMETER (cm): 5 SCREEN SLOT #: 10 SAND TYPE: SILICA SEALANT TYPE: BEN SAMPLE TYPE AUGER DRIVEN CORING DYNAMIC CONE SHELBY SPLIT SPOON SOIL DESCRIPTION UNALLE (KPA) 40 80 120 160 N'VALUE (Blows300mm) 20 40 60 80 40 40 40 40 40 40 40 40 40 40 40 40 40	
BOREHOLE DIAMETER (cm): - WELL DIAMETER (cm): 5 SCREEN SLOT #: 10 SAND TYPE: SILICA SEALANT TYPE: BEN SAMPLE TYPE AUGER DRIVEN CORING DYNAMIC CONE SHELBY SPLIT SPOON SOIL DESCRIPTION U 0 0 0 0 0 0 0 0 0 0 0 0 0	
SAMPLE TYPE AUGER DRIVEN CORING DINAMIC CONE SHELBY SPLIT SPOON Image: Solid organ service of the service of	
Image: Solution of the second seco	TONITE
SOIL DESCRIPTION Image: Content Budge: Content Budge: Content Budge: Content Budge: Content (%) Content (%) Content (%) Content Budge: Content (%) Content (%)<	
CLAYEY SILTY silty sand, gravels -0.5 -1 -1 -1.5 -2 greyish brown -2.5 -3.5 -3.5	ARKS
sand greyish -4 -4.5 -4.5 -5 -5 -5.5 -6 -6 END OF BOREHOLE -6 -6	
Imply by:	

CLIEN	T: De Zen Realty Company	Ltd.			PR	OJECT	NO.:	CH24	4.00)				RD OF:
ADDR	ESS: 120, 128, 142, 154, 15	8 Queen Street	South, a	and 169 Cr	umbie	Street							MW	204
CITY/F	PROVINCE: Mississauga, ON	1	NC	ORTHING (m						G (m):			ELEV.	(m)
	RACTOR: 3D	1			HOD: 8									
	HOLE DIAMETER (cm): 20	WELL DIAMETE	5		EEN SL					-			Г	YPE: BENTONITE
SAMPI	LE TYPE AUGER	DRIVEN		CORIN SHEAR STI	G RENGTH		YNAN WATEF				SHELB'			T SPOON
GWL (m) SOIL SYMBOL	SOIL DESCRIPTI		ELEVATION (m)	(kPa 40 80 1 N-VAL (Blows/30	a)● <u>20 160</u> _UE _00mm)▲	PL	ONTEN (%) W.C.	NT	SAMPLE NO.	SAMPLE TYPE RECOVERY (%)	CV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL	REMARKS
1.00	STRAIGHT DRILL TO			20 40	60 80	20	40 60	080	0,	0 12	03		>=	
	END OF BOREHC	- 0.5 - 1 - 1.5 - 2 - 2.5 - 3 - 3.5 - 4 - 4.5 - 5 - 5.5 - 6												
						GED B		>				DATE: 1		23
	TER	RAPEX			INPL	JT BY:	SW			MO	NITORII	NG DATE	- :	
	*				REV	IEWED	BY:			PAC	GE 1 OF	1		

CLIENT: De Zen Realty Company Ltd.				JECT NO.:	CH24	4.00			R		RD OF:
ADDRESS: 120, 128, 142, 154, 158 Queen S	treet Sou			reet					I		205
CITY/PROVINCE: Mississauga, ON		NORTHING (STIN	G (m):			ELEV.	(m)
CONTRACTOR: 3D			THOD: 8"						0.54		
BOREHOLE DIAMETER (cm): WELL DIA SAMPLE TYPE AUGER DRIV			REEN SLO						- · · · · · · · · · · · · · · · · · · ·		
SAMPLE TYPE AUGER DRIV	DEPTH (m)	E SHEAR S SHEAR S (kF 2011 40 80 N-VA (Blows/3	NG TRENGTH Pa) 120 160 ALUE 300mm) 60 80	DYNA WATE CONTE (%) PL W.C 20 40 6	ENT		SAMPLE TYPE RECOVERY (%)	CV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL WETALLATION	T SPOON
FILL loose, brown sand, gravels	- 0 					1		<5ppm			
dense, greyish brown CLAYEY SILT trace sand, gravels	- 1 	9				2		<5ppm	SVOC PAH M&I SVOC		
browr	-22.5	27				3		<5ppm <5ppm	PAH M&I		
mois		32				5		<5ppm	BTEX F1-F4		
	- 3.5 - - - 4 -	>50				6	5	<5ppm	VOC		
	- 4.5 - - - - - - - - - - - - - - - - - - -	22				7	60	<5ppm	BTEX F1-F4 VOC		
END OF BOREHOLE	- 5.5 - - - 6	>50				8	5	<5ppm			
			LOGGI	ED BY: K	. <u>.</u> Р	· 1	DRI	LLING [DATE: 2-	-JUN-2	23
TERRAPEX	,		INPUT	BY: SW			МО	NITORI	NG DATE	: -	
v			REVIE	WED BY:			PAC	GE 1 OF	1		

CLIEN	IT: De Zen Realty Company	' Ltd.				PRO	DJECT	NO.:	CH2	44.0	0			R		RD OF:
ADDR	ESS: 120, 128, 142, 154, 15	58 Queen St	reet So	outh, a	and 169 Cr	umbie S	Street								MW	/206
CITY/F	PROVINCE: Mississauga, Ol	N		NC	RTHING (m	ı):			EA	ASTI	NG (m):			ELEV	. (m)
	RACTOR: 3D	1				HOD: 8										
	HOLE DIAMETER (cm): -	WELL DIA				EEN SLO		_						_		TYPE: BENTONITE
SAMP	LE TYPE AUGER	DRIV	EN	E	CORIN SHEAR STR			YNAN WATEF		ONE		_	SHELB			IT SPOON
GWL (m) GWL (m)	SOIL DESCRIPTI	ON	DEPTH (m)	ELEVATION (m)	(kPa 40 80 1 N-VAL (Blows/30 20 40 6	a)● 20 160 .UE 00mm)▲	CC PL	ONTEN (%) W.C. 40 60	IT LL	SAMPLE NO.	SAMPLE TYPE	RECOVERY (%)	CV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL INSTALLATION	REMARKS
	loose, brown SAND trace gravel		- 0 - - 0.5							1		30	10ppm	M&I PAH		DUP MW906
	compact, brown CLAYEY SAND trace gravel		- - - - - - - - - - - - - - - - - - -		▲ 3					2		60	<5ppm	M&I PAH	···	
		wet, brown	- 2		10					3		60	<5ppm	BTEX F1-F4 VOC		
		watery	- 2.5		• 7					4		70	<5ppm			
	dense		- 3.5		35					5		90	<5ppm			
			-4 		27					6		90	<5ppm			
	END OF BOREHO	greyish	- 5		20					7		40	<5ppm			
		_														
							GED BY		•		[DRIL	LING E	DATE: 9	-JUN-2	23
	TER	RAPEX				INPU	T BY:	SW			Ν	NON	IITORII	NG DATE	- :	
	¥					REVI	EWED	BY:			F	PAG	E 1 OF	1		

CLIEN	т: De Zen Realty Company Ltd.				PR	DJECT	NO.:	CH24	4.00			R		RD OF:
	ESS: 120, 128, 142, 154, 158 Q	ueen Street So				Street								207
	ROVINCE: Mississauga, ON		NO	RTHING (m						G (m):			ELEV.	(m)
	RACTOR: 3D				HOD: 8									
BOREH		ELL DIAMETER			EEN SLO					_				YPE: BENTONITE
SAMPL	E TYPE AUGER	DRIVEN		CORING SHEAR STR			OYNAN WATEF				SHELB	Y _		T SPOON
GWL (m) GWL (m)	SOIL DESCRIPTION	B	ELEVATION (m)	SHEAR STR (kPa 40 80 1: N-VALI (Blows/30 20 40 6	● 20 160 JE 0mm)	PL	WATER CONTEN (%) W.C. 40 60	NT LL	SAMPLE NO.	SAMPLE TYPE RECOVERY (%)	CV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL INSTALLATION	REMARKS
	brown CLAYEY SILTY SAND trace gravel	- 0.5 - 1 - 1.5 - 2 - 2.5 - 3 - 3.5 - 4 - 4.5 - 5 - 5.5 - 6												
┝──┴								 >	1 1					3
						GED B		-				DATE: 6		0
	TERRA	NPEX				T BY:						NG DATE	=: -	
L					REV	EWED	BY:			PAC	GE 1 OF	1		

CLIEN	T: De Zen Realty Company L	_td.			PR	OJECT	NO.:	CH24	4.00					RD OF:
ADDRE	ESS: 120, 128, 142, 154, 158	Queen Street So	outh, a	nd 169 Cr	umbie \$	Street							MW	208
	PROVINCE: Mississauga, ON		NC	RTHING (m						G (m):			ELEV.	(m)
	RACTOR: 3D				HOD: 8									
		WELL DIAMETER	N	7	EEN SL					_			Г	YPE: BENTONITE
SAMPL	LE TYPE AUGER	DRIVEN	<u> </u>	CORIN SHEAR STR	G		YNAN WATEF				SHELB			T SPOON
GWL (m) SOIL SYMBOL	SOIL DESCRIPTIC	DE	ELEVATION (m)	(kPa 40 80 1 N-VAL (Blows/30 20 40 0	a)● 20 160 .UE 00mm)▲	C PL	W.C. 40 60	NT LL	SAMPLE NO.	SAMPLE TYPE RECOVERY (%)	CV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL	REMARKS
	Ioose, moist, brown CLAYEY SILTY SAN trace gravel	0 0 0.5 -1 -1.5 -2 -2.5 -3 -3.5 -4 -4.5 -5 -5.5 -6						80						
	~ .	I			LOG	GED B	Y: KP)		DRI	LLING D	DATE: 6	-Jun-23	3
	TERF	RAPFX				IT BY:						NG DATE		
						IEWED								
							DT.			PAC	GE 1 OF	1		

APPENDIX IV LABORATORY RECORD OF GROUNDWATER QUALITY

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED 90 SCARSDALE RD TORONTO, ON M3B2R7 (905) 474-5265 ATTENTION TO: Andrew Durbano PROJECT: CH244.00 AGAT WORK ORDER: 23T003974 MICROBIOLOGY ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer TRACE ORGANICS REVIEWED BY: Pinkal Patel, Report Reviewer WATER ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer DATE REPORTED: Mar 15, 2023 PAGES (INCLUDING COVER): 24 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

lember of: Association of Professional Engineers and Geoscientists of Alberta
(APEGA)
(Alexandre Function Agencie) to the protoner (Association (A)(FALA))

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Page 1 of 24

AGAT WORK ORDER: 23T003974 PROJECT: CH244.00 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

SAMPLING SITE: 120-158 Queen St.S, Mississauga

ATTENTION TO: Andrew Durbano

SAMPLED BY:KP, AP

				E. Coli
				DATE REPORTED: 2023-03-15
SA	MPLE DES	CRIPTION:	MW103-D	
	SAM	PLE TYPE:	Water	
	DATES	SAMPLED:	2023-03-08 10:30	
Unit	G/S	RDL	4836772	
CFU/100mL			0	
	Unit	SAMF DATE S Unit G / S		SAMPLE TYPE: Water DATE SAMPLED: 2023-03-08 10:30 Unit G / S RDL 4836772

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

4836772 Escherichia coli RDL = 1 CFU/100mL.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 23T003974 PROJECT: CH244.00 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

SAMPLING SITE: 120-158 Queen St.S, Mississauga

ATTENTION TO: Andrew Durbano

SAMPLED BY:KP, AP

Fecal Coliforms in Water								
DATE RECEIVED: 2023-03-0	8				DATE REPORTED: 2023-03-15			
	SA	MPLE DES	CRIPTION:	MW103-D				
		SAM	PLE TYPE:	Water				
		DATE	SAMPLED:	2023-03-08 10:30				
Parameter	Unit	G/S	RDL	4836772				
Fecal Coliform	CFU/100mL	0		61				

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Peel Storm By-Law 53-2010

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4836772 Fecal Coliforms RDL = 1 CFU/100mL

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 23T003974 PROJECT: CH244.00 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

SAMPLING SITE: 120-158 Queen St.S, Mississauga

ATTENTION TO: Andrew Durbano

SAMPLED BY:KP, AP

				Mississa	uga Storm - Organics
DATE RECEIVED: 2023-03-08					DATE REPORTED: 2023-03-15
	5	SAMPLE DES		MW103-D	
			PLE TYPE:	Water	
		DATE	SAMPLED:	2023-03-08 10:30	
Parameter	Unit	G/S	RDL	4836772	
Benzene	mg/L	0.002	0.0002	<0.0002	
Toluene	mg/L	0.002	0.0002	<0.0002	
Ethylbenzene	mg/L	0.002	0.0001	<0.0001	
m & p-Xylene	mg/L		0.0002	<0.0002	
o-Xylene	mg/L		0.0001	<0.0001	
Xylenes (Total)	mg/L	0.0044	0.0001	<0.0001	
Acenaphthene	mg/L		0.00010	<0.00010	
Acenaphthylene	mg/L		0.00011	<0.00011	
Anthracene	mg/L		0.00007	<0.00007	
Benzo(a)anthracene	mg/L		0.00008	<0.0008	
Benzo(a)pyrene	mg/L		0.001	<0.001	
Benzo(b)fluoranthene	mg/L		0.00003	<0.00003	
Benzo(ghi)perylene	mg/L		0.00006	<0.00006	
Benzo(k)fluoranthene	mg/L		0.00006	<0.00006	
Chrysene	mg/L		0.00005	<0.00005	
Dibenzo(a,h)anthracene	mg/L		0.00009	<0.00009	
Fluoranthene	mg/L		0.00012	<0.00012	
Fluorene	mg/L		0.0002	<0.0002	
Indeno(1,2,3-cd)pyrene	mg/L		0.00003	<0.00003	
Naphthalene	mg/L		0.0003	<0.0003	
Phenanthrene	mg/L		0.00011	<0.00011	
Pyrene	mg/L		0.00012	<0.00012	
Total PAHs	mg/L	0.002	0.0003	<0.0003	
1,2-Dichlorobenzene	mg/L	0.0056	0.0001	<0.0001	
1,4-Dichlorobenzene	mg/L	0.0068	0.0001	<0.0001	
Dichloromethane	mg/L	0.0052	0.0001	<0.0001	
Tetrachloroethylene	mg/L	0.0044	0.0001	<0.0001	
Trichloroethylene	mg/L	0.0076	0.0002	<0.0002	
Tetrachloroethene	mg/L	0.017	0.0002	<0.0002	

Certified By:

Jinkal Jata

AGAT WORK ORDER: 23T003974 PROJECT: CH244.00 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

SAMPLING SITE: 120-158 Queen St.S, Mississauga

ATTENTION TO: Andrew Durbano

SAMPLED BY:KP, AP

Mississauga Storm - Organics								
DATE RECEIVED: 2023-03-	08			DATE REPORTED: 2023-03-15				
	SA	AMPLE DESCRIPTION:	MW103-D					
		SAMPLE TYPE:	Water					
		DATE SAMPLED:	2023-03-08 10:30					
Parameter	Unit	G/S RDL	4836772					
PCBs	mg/L	0.0004 0.0002	<0.0002					
Surrogate	Unit	Acceptable Limits						
Foluene-d8	% Recovery	50-140	113					
1-Bromofluorobenzene	% Recovery	50-140	74					
Acridine-d9	%	50-140	85					
Naphthalene-d8	%	50-140	97					
Ferphenyl-d14	%	50-140	70					
Decachlorobiphenyl	%	50-140	102					

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to City of Mississauga - Storm Sewer Discharge

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4836772 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

Analysis performed at AGAT Toronto (unless marked by *)

Jimkal Jota

AGAT WORK ORDER: 23T003974 PROJECT: CH244.00 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

SAMPLING SITE: 120-158 Queen St.S, Mississauga

SAMPLED BY:KP, AP

Peel Region Sanitary - Organics									
DATE RECEIVED: 2023-03-08							DATE REPORTED: 2023-03-15		
			SAMPLE DE	SCRIPTION: MPLE TYPE:	MW103-D Water				
				E SAMPLED:	2023-03-08 10:30				
Parameter	Unit	G / S: A	G / S: B	RDL	4836772				
Oil and Grease (animal/vegetable) in water	mg/L	150		0.5	<0.5				
Oil and Grease (mineral) in water	mg/L	15		0.5	<0.5				
Methylene Chloride	mg/L	2	0.0052	0.0003	<0.0003				
Methyl Ethyl Ketone	mg/L	8.0		0.0009	<0.0009				
cis-1,2-Dichloroethylene	mg/L	4	0.0056	0.0002	<0.0002				
Chloroform	mg/L	0.04	0.002	0.0002	<0.0002				
Benzene	mg/L	0.01	0.002	0.0002	<0.0002				
Trichloroethylene	mg/L	0.4	0.008	0.0002	<0.0002				
Toluene	mg/L	0.27	0.002	0.0002	<0.0002				
Tetrachloroethene	mg/L	1	0.0044	0.0002	<0.0002				
trans-1,3-Dichloropropene	mg/L	0.14	0.0056	0.0003	<0.0003				
Ethylbenzene	mg/L	0.16	0.002	0.0001	<0.0001				
1,1,2,2-Tetrachloroethane	mg/L	1.4	0.017	0.0001	<0.0001				
Styrene	mg/L	0.2		0.0001	<0.0001				
1,2-Dichlorobenzene	mg/L	0.05	0.0056	0.0001	<0.0001				
1,4-Dichlorobenzene	mg/L	0.08	0.0068	0.0001	<0.0001				
m & p-Xylene	mg/L			0.0002	<0.0002				
o-Xylene	mg/L			0.0001	<0.0001				
Xylenes (Total)	mg/L	1.4	0.0044	0.0001	<0.0001				
PCBs	mg/L	0.001	0.0004	0.0002	<0.0002				
Di-n-butyl phthalate	mg/L	0.08	0.015	0.0005	<0.0005				
Bis(2-Ethylhexyl)phthalate	mg/L	0.012	0.0088	0.0005	<0.0005				
NP2EO	mg/L			0.01	<0.01				
NP1EO	mg/L			0.01	<0.01				
4n-NP	mg/L			0.001	<0.001				
NP	mg/L			0.001	<0.001				
Nonylphenols	mg/L	0.02		0.001	<0.001				
Nonylphenol Ethoxylates	mg/L	0.2		0.01	<0.01				

Certified By:

Jinkal Jota

%

%

Certificate of Analysis

ATTENTION TO: Andrew Durbano

SAMPLED BY:KP. AP

AGAT WORK ORDER: 23T003974 PROJECT: CH244.00

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

SAMPLING SITE: 120-158 Queen St.S, Mississauga

	•									
		Peel Re	gion Sanitary - C	Organics						
DATE RECEIVED: 2023-03	-08			DATE REPORTED: 2023-03-15						
		SAMPLE DESCRIPTION:	MW103-D							
		SAMPLE TYPE:	Water							
		DATE SAMPLED:	2023-03-08 10:30							
Surrogate	Unit	Acceptable Limits	4836772							
Toluene-d8	% Recovery	50-140	113							
4-Bromofluorobenzene	% Recovery	50-140	74							
Decachlorobiphenyl	%	50-140	102							
2,4,6-Tribromophenol	%	50-140	88							
2-Fluorophenol	%	50-140	97							

RDL - Reported Detection Limit; G / S - Guideline / Standard: A Refers to Peel Sanitary By-Law 53-2010, B Refers to Peel Storm By-Law 53-2010 Comments:

50-140

50-140

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 4836772 Oil and Grease animal/vegetable is a calculated parameter. The calculated value is the difference between Total O&G and Mineral O&G.

70

68

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

Analysis performed at AGAT Toronto (unless marked by *)

Chrysene-d12

phenol-d6 surrogate

Imkal Jorta

Certified By:

AGAT WORK ORDER: 23T003974 PROJECT: CH244.00 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

SAMPLING SITE: 120-158 Queen St.S, Mississauga

ATTENTION TO: Andrew Durbano

SAMPLED BY:KP, AP

BOD (5) mg/l Total Suspended Solids mg/l Total Residual Chlorine mg/l Cyanide, SAD mg/l Phenols mg/l Total Phosphorus mg/l	DATE t G / S iits 6.0-9.0 - 15 - 15	CRIPTION: IPLE TYPE: SAMPLED: RDL NA 2 10	MW103-D Water 2023-03-08 10:30 4836772 7.92 <2	DATE REPORTED: 2023-03-15
pH pH Ur BOD (5) mg/l Total Suspended Solids mg/l Total Residual Chlorine mg/l Cyanide, SAD mg/l Phenols mg/l Total Phosphorus mg/l	SAM DATE t G / S tits 6.0-9.0 - 15 - 15	PLE TYPE: SAMPLED: RDL NA 2	Water 2023-03-08 10:30 4836772 7.92	
pHpH UrBOD (5)mg/lTotal Suspended Solidsmg/lTotal Residual Chlorinemg/lCyanide, SADmg/lPhenolsmg/lTotal Phosphorusmg/l	DATE t G / S iits 6.0-9.0 - 15 - 15	SAMPLED: RDL NA 2	2023-03-08 10:30 4836772 7.92	
pHpH UrBOD (5)mg/lTotal Suspended Solidsmg/lTotal Residual Chlorinemg/lCyanide, SADmg/lPhenolsmg/lTotal Phosphorusmg/l	t G / S its 6.0-9.0 - 15 - 15	RDL NA 2	10:30 4836772 7.92	
pHpH UrBOD (5)mg/lTotal Suspended Solidsmg/lTotal Residual Chlorinemg/lCyanide, SADmg/lPhenolsmg/lTotal Phosphorusmg/l	its 6.0-9.0 - 15 - 15	NA 2	4836772 7.92	
pHpH UrBOD (5)mg/lTotal Suspended Solidsmg/lTotal Residual Chlorinemg/lCyanide, SADmg/lPhenolsmg/lTotal Phosphorusmg/l	its 6.0-9.0 - 15 - 15	NA 2	7.92	
BOD (5) mg/l Total Suspended Solids mg/l Total Residual Chlorine mg/l Cyanide, SAD mg/l Phenols mg/l Total Phosphorus mg/l	- 15 - 15	2		
Total Suspended Solidsmg/lTotal Residual Chlorinemg/lCyanide, SADmg/lPhenolsmg/lTotal Phosphorusmg/l	_ 15		<2	
Total Residual Chlorinemg/lCyanide, SADmg/lPhenolsmg/lTotal Phosphorusmg/l		10		
Cyanide, SAD mg/l Phenols mg/l Total Phosphorus mg/l	_ 1.0	10	<10	
Phenols mg/l Total Phosphorus mg/l		0.01	0.01	
Total Phosphorus mg/l	_ 0.02	0.002	<0.002	
	0.008	0.001	0.061	
Chromium VI mg/s	0.4	0.02	0.02	
	_ 0.04	0.002	<0.002	
Total Aluminum mg/l	1.0	0.010	0.485	
Total Arsenic mg/l	0.02	0.015	<0.015	
Total Cadmium mg/l	0.008	0.005	<0.005	
Total Chromium mg/l	0.08	0.015	<0.015	
Total Copper mg/l	0.04	0.010	<0.010	
Total Lead mg/l	0.12	0.020	<0.020	
Total Manganese mg/l	_ 2.0	0.020	0.094	
Total Mercury mg/l	0.0004	0.0002	<0.0002	
Total Nickel mg/l	0.08	0.015	<0.015	
Total Selenium mg/l		0.002	<0.002	
Total Silver mg/l		0.010	<0.010	
Total Zinc mg/l	0.2	0.020	<0.020	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to City of Mississauga - Storm Sewer Discharge

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4836772 Residual Chlorine: Due to the instability of chlorine in aqueous solutions, the results reported may be biased low and should be reviewed with discretion.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 23T003974 PROJECT: CH244.00 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

SAMPLING SITE: 120-158 Queen St.S, Mississauga

ATTENTION TO: Andrew Durbano

SAMPLED BY:KP, AP

Peel Sanitary Sewer Use By-Law - Inorganics								
DATE RECEIVED: 2023-03-08					DATE REPORTED: 2023-03-15			
	SA	AMPLE DES	CRIPTION:	MW103-D				
		SAM	PLE TYPE:	Water				
		DATES	SAMPLED:	2023-03-08 10:30				
Parameter	Unit	G/S	RDL	4836772				
рН	pH Units	5.5-10	NA	7.92				
CBOD (5)	mg/L	300	2	<2				
Total Suspended Solids	mg/L	350	10	<10				
Fluoride	mg/L	10	0.05	0.37				
Sulphate	mg/L	1500	0.10	104				
Cyanide, SAD	mg/L	2	0.002	<0.002				
Phenols	mg/L	1.0	0.002	0.061				
Total Phosphorus	mg/L	10	0.02	0.02				
Total Kjeldahl Nitrogen	mg/L	100	0.10	0.24				
Total Aluminum	mg/L	50	0.010	0.485				
Total Antimony	mg/L	5	0.020	<0.020				
Total Arsenic	mg/L	1	0.015	<0.015				
Total Cadmium	mg/L	0.7	0.010	<0.010				
Total Chromium	mg/L	5	0.015	<0.015				
Total Cobalt	mg/L	5	0.020	<0.020				
Total Copper	mg/L	3	0.010	<0.010				
Total Lead	mg/L	3	0.020	<0.020				
Total Manganese	mg/L	5	0.020	0.094				
Total Mercury	mg/L	0.01	0.0002	<0.0002				
Total Molybdenum	mg/L	5	0.020	<0.020				
Total Nickel	mg/L	3	0.015	<0.015				
Total Selenium	mg/L	1	0.002	<0.002				
Total Silver	mg/L	5	0.010	<0.010				
Total Tin	mg/L	5	0.025	<0.025				
Total Titanium	mg/L	5	0.010	0.013				
Total Zinc	mg/L	3	0.020	<0.020				

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Peel Sanitary By-Law 53-2010

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. Analysis performed at AGAT Toronto (unless marked by *)

CAGAT Laboratories	Exceedance Summary AGAT WORK ORDER: 23T003974 . PROJECT: CH244.00	5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com
CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED	ATTENTION TO: Andrew Durbano	http://www.agailabs.com

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
4836772	MW103-D	ON Mississauga SM	Mississauga Storm Sewer Use Bylaw- Inorganics	Phenols	mg/L	0.008	0.061
4836772	MW103-D	ON Peel SM	Fecal Coliforms in Water	Fecal Coliform	CFU/100mL	0	61

Quality Assurance

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

PROJECT: CH244.00

SAMPLING SITE: 120-158 Queen St.S, Mississauga

AGAT WORK ORDER: 23T003974

ATTENTION TO: Andrew Durbano

SAMPLED BY:KP, AP

Microbiology Analysis

RPT Date: Mar 15, 2023			C	DUPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recoverv	Lin	ptable nits	Recoverv	Lim	ptable nits
		ld					Value	Lower	Upper	,		Upper	,		Upper
E. Coli															

Escherichia coli - DC Agar 4837055 0 0 NA

Comments: NA - % RPD Not Applicable.

Fecal Coliforms in Water

Fecal Coliform	4836772 4836772	61	59	3.3%
----------------	-----------------	----	----	------

AGAT QUALITY ASSURANCE REPORT (V1)

Page 11 of 24

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific tests tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

PROJECT: CH244.00

SAMPLING SITE: 120-158 Queen St.S, Mississauga

AGAT WORK ORDER: 23T003974

ATTENTION TO: Andrew Durbano

SAMPLED BY:KP, AP

Trace Organics Analysis

Trace Organics Analysis															
RPT Date: Mar 15, 2023			0	UPLICATE			REFEREN	NCE MA	TERIAL	METHOD	BLANK		MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery		ptable nits	Recovery		ptable nits
							value	Lower	Upper		Lower	Upper		Lower	Upper
Peel Region Sanitary - Organics															
Oil and Grease (animal/vegetable) in water	4833404		< 0.5	< 0.5	NA	< 0.5	99%	70%	130%	111%	70%	130%	109%	70%	130%
Oil and Grease (mineral) in water	4833404		< 0.5	< 0.5	NA	< 0.5	93%	70%	130%	84%	70%	130%	81%	70%	130%
Methylene Chloride	4836772		< 0.0003	< 0.0003	NA	< 0.0003	102%	50%	140%	92%	60%	130%	86%	50%	140%
Methyl Ethyl Ketone	4836772		< 0.0009	< 0.0009	NA	< 0.0009	80%	50%	140%	109%	50%	140%	104%	50%	140%
cis-1,2-Dichloroethylene	4836772		< 0.0002	< 0.0002	NA	< 0.0002	86%	50%	140%	94%	60%	130%	90%	50%	140%
Chloroform	4836772		< 0.0002	< 0.0002	NA	< 0.0002	104%	50%	140%	95%	60%	130%	114%	50%	140%
Benzene	4836772		< 0.0002	< 0.0002	NA	< 0.0002	89%	50%	140%	103%	60%	130%	77%	50%	140%
Trichloroethylene	4836772		< 0.0002	< 0.0002	NA	< 0.0002	80%	50%	140%	92%	60%	130%	84%	50%	140%
Toluene	4836772		< 0.0002	< 0.0002	NA	< 0.0002	102%	50%	140%	118%	60%	130%	97%	50%	140%
Tetrachloroethene	4836772		< 0.0002	< 0.0002	NA	< 0.0002	84%	50%	140%	96%	60%	130%	80%	50%	140%
trans-1,3-Dichloropropene	4836772		< 0.0003	< 0.0003	NA	< 0.0003	79%	50%	140%	75%	60%	130%	115%	50%	140%
Ethylbenzene	4836772		< 0.0001	< 0.0001	NA	< 0.0001	95%	50%	140%	112%	60%	130%	90%	50%	140%
1,1,2,2-Tetrachloroethane	4836772		< 0.0001	< 0.0001	NA	< 0.0001	112%	50%	140%	107%	60%	130%	111%	50%	140%
Styrene	4836772		< 0.0001	< 0.0001	NA	< 0.0001	105%	50%	140%	118%	60%	130%	99%	50%	140%
1,2-Dichlorobenzene	4836772		< 0.0001	< 0.0001	NA	< 0.0001	97%	50%	140%	98%	60%	130%	82%	50%	140%
1,4-Dichlorobenzene	4836772		< 0.0001	< 0.0001	NA	< 0.0001	112%	50%	140%	119%	60%	130%	97%	50%	140%
m & p-Xylene	4836772		< 0.0002	< 0.0002	NA	< 0.0002	98%	50%	140%	114%	60%	130%	95%	50%	140%
o-Xylene	4836772		< 0.0001	< 0.0001	NA	< 0.0001	111%	50%	140%	111%	60%	130%	106%	50%	140%
PCBs	4840241		< 0.0002	< 0.0002	NA	< 0.0002	92%	50%	140%	73%	50%	140%	86%	50%	140%
Di-n-butyl phthalate	4792695		< 0.0005	< 0.0005	NA	< 0.0005	68%	50%	140%	74%	50%	140%	77%	50%	140%
Bis(2-Ethylhexyl)phthalate	4792695		< 0.0005	< 0.0005	NA	< 0.0005	70%	50%	140%	73%	50%	140%	86%	50%	140%
NP2EO	4822675		< 0.01	< 0.01	NA	< 0.01	92%	50%	130%	104%	50%	130%	100%	50%	130%
NP1EO	4822675		< 0.01	< 0.01	NA	< 0.01	106%	50%	130%	99%	50%	130%	98%	50%	130%
4n-NP	4822675		< 0.001	< 0.001	NA	< 0.001	79%	50%	130%	97%	50%	130%	90%	50%	130%
NP	4822675		< 0.001	< 0.001	NA	< 0.001	94%	50%	130%	116%	50%	130%	110%	50%	130%
Mississauga Storm - Organics															
Benzene	4836772		< 0.0002	< 0.0002	0.0%	< 0.0002	89%	50%	140%	103%	60%	130%	77%	50%	140%
Toluene	4836772		< 0.0002	< 0.0002	0.0%	< 0.0002	102%	50%	140%	118%	60%	130%	97%	50%	140%
Ethylbenzene	4836772		< 0.0001	< 0.0001	0.0%	< 0.0001	95%	50%	140%	112%	60%	130%	90%	50%	140%
m & p-Xylene	4836772		< 0.0002	< 0.0002	0.0%	< 0.0002	98%	50%	140%	114%	60%	130%	95%	50%	140%
o-Xylene	4836772		< 0.0001	< 0.0001	0.0%	< 0.0001	111%	50%	140%	111%	60%	130%	106%	50%	140%
Acenaphthene	4840741	~	< 0.00010	< 0.00010	NA	< 0.00010) 85%	50%	140%	77%	50%	140%	90%	50%	140%
Acenaphthylene	4840741		< 0.00011	< 0.00011	NA	< 0.00012	1 91%	50%	140%	74%	50%	140%	93%	50%	140%
Anthracene	4840741	~	< 0.00007	< 0.00007	NA	< 0.00007	7 102%	50%	140%	101%	50%	140%	109%	50%	140%
Benzo(a)anthracene	4840741	~	< 0.00008	< 0.00008	NA	< 0.00008	3 101%	50%	140%	73%	50%	140%	100%	50%	140%
Benzo(a)pyrene	4840741		< 0.001	< 0.001	NA	< 0.001	65%	50%	140%	77%	50%	140%	68%	50%	140%
Benzo(b)fluoranthene	4840741	~	< 0.00003	< 0.00003	NA	< 0.00003	3 76%	50%	140%	110%	50%	140%	75%	50%	140%
Benzo(ghi)perylene	4840741	~	< 0.00006	< 0.00006	NA	< 0.00006	87%	50%	140%	74%	50%	140%	87%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 12 of 24

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

PROJECT: CH244.00

SAMPLING SITE: 120-158 Queen St.S, Mississauga

AGAT WORK ORDER: 23T003974 ATTENTION TO: Andrew Durbano SAMPLED BY:KP, AP

Trace Organics Analysis (Continued)

PARAMETER Batch Sample Id Dup #1 Dup #2 RPD Method Blank Method Measured Value Acceptable Limits Acceptable Limits <th></th> <th></th> <th></th> <th>0</th> <th></th> <th></th> <th></th> <th>`</th> <th></th> <th></th> <th>,</th> <th></th> <th></th> <th></th> <th></th> <th></th>				0				`			,					
PARAMETER Batch Sample Id Dup #1 Dup #2 RPD RPD Measure Value Limits Lower Recovery Upper Limits Lower Upper Batch 4840741 <0.00005	RPT Date: Mar 15, 2023				UPLICATE	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
Id Id<	PARAMETER	Batch		Dup #1	Dup #2	RPD					Recovery	Lie		Recovery		
Chrysene4840741< 0.00005			Ia					value	Lower	Upper		Lower	Upper		Lower	Upper
Dibenzo(a,h)anthracene 4840741 < 0.00009<0.00009NA< 0.00009105%50%140%83%50%140%89%50%140%Fluoranthene 4840741 < 0.00012	Benzo(k)fluoranthene	4840741	~	< 0.00006	< 0.00006	NA	< 0.0000	6 71%	50%	140%	82%	50%	140%	78%	50%	140%
Fluoranthene 4840741 < 0.00012 < 0.00012 NA < 0.00012 105% 50% 140% 99% 50% 140% 99% 50% 140% 99% 50% 140% 99% 50% 140% 99% 50% 140% 99% 50% 140% 99% 50% 140% 108% 50% 140% 108% 50% 140% 108% 50% 140% 108% 50% 140% 108% 50% 140% 108% 50% 140% 108% 50% 140% 108% 50% 140% 108% 50% 140% 108% 50% 140% 103% 50% 140% 103% 50% 140% 103% 50% 140% 103% 50% 140%	Chrysene	4840741	~	< 0.00005	< 0.00005	NA	< 0.0000	5 88%	50%	140%	78%	50%	140%	75%	50%	140%
Fluorene 4840741 < 0.0002 < 0.0002 NA < 0.0002 71% 50% 140% 79% 50% 140% 108% 50% 140% Indeno(1,2,3-cd)pyrene 4840741 < 0.0003	Dibenzo(a,h)anthracene	4840741	•	< 0.00009	< 0.00009	NA	< 0.0000	9 105%	50%	140%	83%	50%	140%	89%	50%	140%
Indeno(1,2,3-cd)pyrene 4840741 < 0.00003 < 0.0003	Fluoranthene	4840741		< 0.00012	< 0.00012	NA	< 0.00012	2 105%	50%	140%	99%	50%	140%	99%	50%	140%
Naphthalene 4840741 < 0.0003 < 0.0003 NA < 0.0003 103% 50% 140% 78% 50% 140% 84% 50% 140% Phenanthrene 4840741 < 0.00011	Fluorene	4840741		< 0.0002	< 0.0002	NA	< 0.0002	71%	50%	140%	79%	50%	140%	108%	50%	140%
Phenanthrene 4840741 < 0.00011 < 0.00011 NA < 0.00011 64% 50% 140% 77% 50% 140% 98% 50% 140% Pyrene 4840741 < 0.00012 < 0.00012	Indeno(1,2,3-cd)pyrene	4840741	•	< 0.00003	< 0.00003	NA	< 0.0000	3 108%	50%	140%	74%	50%	140%	103%	50%	140%
Pyrene 4840741 < 0.00012 < 0.00012 NA < 0.00012 94% 50% 140% 90% 50% 140% 73% 50% 140% 1,2-Dichlorobenzene 4836772 < 0.0001	Naphthalene	4840741		< 0.0003	< 0.0003	NA	< 0.0003	103%	50%	140%	78%	50%	140%	84%	50%	140%
1,2-Dichlorobenzene 4836772 < 0.0001	Phenanthrene	4840741		< 0.00011	< 0.00011	NA	< 0.0001	1 64%	50%	140%	77%	50%	140%	98%	50%	140%
1,4-Dichlorobenzene 4836772 < 0.0001	Pyrene	4840741		< 0.00012	< 0.00012	NA	< 0.00012	2 94%	50%	140%	90%	50%	140%	73%	50%	140%
Dichloromethane 4836772 < 0.0001 < 0.0001 0.0% < 0.0001 97% 50% 140% 80% 60% 130% 77% 50% 140% Tetrachloroethylene 4836772 < 0.0001	1,2-Dichlorobenzene	4836772		< 0.0001	< 0.0001	0.0%	< 0.0001	97%	50%	140%	98%	60%	130%	82%	50%	140%
Tetrachloroethylene 4836772 < 0.0001	1,4-Dichlorobenzene	4836772		< 0.0001	< 0.0001	0.0%	< 0.0001	112%	50%	140%	119%	60%	130%	97%	50%	140%
Trichloroethylene 4836772 < 0.0002 < 0.0002 0.0002 72% 50% 140% 100% 60% 130% 80% 50% 140%	Dichloromethane	4836772		< 0.0001	< 0.0001	0.0%	< 0.0001	97%	50%	140%	80%	60%	130%	77%	50%	140%
• • • • • • • • • • • • • • • •	Tetrachloroethylene	4836772		< 0.0001	< 0.0001	0.0%	< 0.0001	82%	50%	140%	96%	60%	130%	94%	50%	140%
Tetrachloroethene 4836772 < 0.0002 < 0.0002 0.0% < 0.0002 84% 50% 140% 96% 60% 130% 80% 50% 140%	Trichloroethylene	4836772		< 0.0002	< 0.0002	0.0%	< 0.0002	72%	50%	140%	100%	60%	130%	80%	50%	140%
	Tetrachloroethene	4836772		< 0.0002	< 0.0002	0.0%	< 0.0002	84%	50%	140%	96%	60%	130%	80%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

Imkal Jata

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Page 13 of 24

Quality Assurance

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

PROJECT: CH244.00

SAMPLING SITE: 120-158 Queen St.S, Mississauga

AGAT WORK ORDER: 23T003974

ATTENTION TO: Andrew Durbano

SAMPLED BY:KP, AP

Water Analysis

RPT Date: Mar 15, 2023		C	DUPLICATE	1		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE	
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery		ptable nits	Recovery		ptable nits
		iù					value	Lower	Upper		Lower	Upper		Lower	Uppe
Peel Sanitary Sewer Use By-Law	- Inorganic	s													
pH	4840758		8.00	8.00	0.0%	NA	100%	90%	110%						
CBOD (5)	4836772 4	4836772	<2	<2	NA	< 2	100%	75%	125%						
Total Suspended Solids	4837634		<10	<10	NA	< 10	102%	80%	120%						
Fluoride	4836013		<0.05	<0.05	NA	< 0.05	101%	70%	130%	99%	80%	120%	104%	70%	130%
Sulphate	4836013		26.8	26.6	0.7%	< 0.10	99%	70%	130%	100%	80%	120%	99%	70%	130%
Cyanide, SAD	4814314		<0.002	<0.002	NA	< 0.002	105%	70%	130%	91%	80%	120%	107%	70%	130%
Phenols	4837507		0.004	0.003	NA	< 0.002	99%	90%	110%	102%	90%	110%	99%	80%	120%
Total Phosphorus	4838836		0.04	0.03	NA	< 0.02	101%	70%	130%	91%	80%	120%	96%	70%	130%
Total Kjeldahl Nitrogen	4832290		0.74	0.82	10.3%	< 0.10	106%	70%	130%	101%	80%	120%	95%	70%	130%
Total Aluminum	4836772 4	4836772	0.485	0.488	0.6%	< 0.010	96%	70%	130%	112%	80%	120%	126%	70%	130%
Total Antimony	4836772 4	4836772	<0.020	<0.020	NA	< 0.020	109%	70%	130%	106%	80%	120%	109%	70%	130%
Total Arsenic	4836772 4	4836772	<0.015	<0.015	NA	< 0.015	100%	70%	130%	99%	80%	120%	105%	70%	130%
Total Cadmium	4836772 4	4836772	<0.010	<0.010	NA	< 0.010	102%	70%	130%	103%	80%	120%	106%	70%	130%
Total Chromium	4836772 4	4836772	<0.015	<0.015	NA	< 0.015	100%	70%	130%	106%	80%	120%	112%	70%	130%
Total Cobalt	4836772 4	4836772	<0.020	<0.020	NA	< 0.020	104%	70%	130%	107%	80%	120%	112%	70%	130%
Total Copper	4836772 4	4836772	<0.010	<0.010	NA	< 0.010	101%	70%	130%	103%	80%	120%	107%	70%	130%
Total Lead	4836772 4	4836772	<0.020	<0.020	NA	< 0.020	100%	70%	130%	97%	80%	120%	97%	70%	130%
Total Manganese	4836772 4	4836772	0.094	0.101	NA	< 0.020	102%	70%	130%	109%	80%	120%	118%	70%	130%
Total Mercury	4836346		<0.0002	<0.0002	NA	< 0.0002	101%	70%	130%	98%	80%	120%	98%	70%	130%
Total Molybdenum	4836772 4	4836772	<0.020	<0.020	NA	< 0.020	104%	70%	130%	113%	80%	120%	118%	70%	130%
Total Nickel	4836772 4	4836772	<0.015	<0.015	NA	< 0.015	101%	70%	130%	99%	80%	120%	105%	70%	130%
Total Selenium	4836772 4	4836772	<0.002	0.003	NA	< 0.002	100%	70%	130%	103%	80%	120%	108%	70%	130%
Total Silver	4836772 4	4836772	<0.010	<0.010	NA	< 0.010	100%	70%	130%	104%	80%	120%	107%	70%	130%
Total Tin	4836772 4	4836772	<0.025	<0.025	NA	< 0.025	103%	70%	130%	102%	80%	120%	103%	70%	130%
Total Titanium	4836772 4	4836772	0.013	0.010	NA	< 0.010	96%	70%	130%	115%	80%	120%	118%	70%	130%
Total Zinc	4836772 4	4836772	<0.020	<0.020	NA	< 0.020	103%	70%	130%	107%	80%	120%	113%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Mississauga Storm Sewer Use Bylaw- Inorganics														
BOD (5)	4838836	5	6	NA	< 2	101%	75%	125%						
Chromium VI	4833414	<0.002	<0.002	NA	< 0.002	102%	70%	130%	106%	80%	120%	107%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific tests tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Certified By:

Page 14 of 24

Quality Assurance

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

PROJECT: CH244.00

SAMPLING SITE: 120-158 Queen St.S, Mississauga

AGAT WORK ORDER: 23T003974

ATTENTION TO: Andrew Durbano

SAMPLED BY:KP, AP

Water Analysis (Continued)

RPT Date: Mar 15, 2023			C	UPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recoverv	Lin	ptable nits	Recoverv	Lin	ptable nits
		Id	1				Value	Lower	Upper	,	Lower	Upper		Lower	Upper

AGAT QUALITY ASSURANCE REPORT (V1)

Page 15 of 24

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific tests tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

AGAT WORK ORDER: 23T003974

PROJECT: CH244.00

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

ATTENTION TO: Andrew Durbano

Sample ID	Sample Description	Sample Type	Date Sampled	Date Received
4836772	MW103-D	Water	08-MAR-2023	08-MAR-2023
	E. Coli			
	Parameter	Date Prepa	red Date Anal	yzed Initials
	Escherichia coli - DC Agar	09-MAR-20)23 10-MAR-2	023 PK
	-			
	Fecal Coliforms in Water			
	Parameter	Date Prepa	red Date Anal	yzed Initials
	Fecal Coliform	09-MAR-20	023 10-MAR-2	023 PK
	Mississauga Storm - Organics			
	Parameter	Date Prepa	red Date Anal	yzed Initials
	Benzene	10-MAR-20	023 10-MAR-2	023 AG
	Toluene	10-MAR-20)23 10-MAR-2	023 AG
	Ethylbenzene	10-MAR-20	023 10-MAR-2	023 AG
	m & p-Xylene	10-MAR-20	023 10-MAR-2	023 AG
	o-Xylene	10-MAR-20	023 10-MAR-2	023 AG
	Xylenes (Total)	10-MAR-20	023 10-MAR-2	023 SYS
	Toluene-d8	10-MAR-20	023 10-MAR-2	023 AG
	4-Bromofluorobenzene	10-MAR-20	023 10-MAR-2	.023 AG
	Acenaphthene	15-MAR-20)23 15-MAR-2	023 SB
	Acenaphthylene	15-MAR-20)23 15-MAR-2	023 SB
	Anthracene	15-MAR-20)23 15-MAR-2	023 SB
	Benzo(a)anthracene	15-MAR-20)23 15-MAR-2	023 SB
	Benzo(a)pyrene	15-MAR-20)23 15-MAR-2	
	Benzo(b)fluoranthene	15-MAR-20)23 15-MAR-2	023 SB
	Benzo(ghi)perylene	15-MAR-20)23 15-MAR-2	
	Benzo(k)fluoranthene	15-MAR-20)23 15-MAR-2	023 SB
	Chrysene	15-MAR-20)23 15-MAR-2	
	Dibenzo(a,h)anthracene	15-MAR-20)23 15-MAR-2	023 SB
	Fluoranthene	15-MAR-20)23 15-MAR-2	023 SB
	Fluorene	15-MAR-20)23 15-MAR-2	
	Indeno(1,2,3-cd)pyrene	15-MAR-20)23 15-MAR-2	
	Naphthalene	15-MAR-20)23 15-MAR-2	
	Phenanthrene	15-MAR-20)23 15-MAR-2	023 SB
	Pyrene	15-MAR-20)23 15-MAR-2	
	Total PAHs	15-MAR-20)23 15-MAR-2	023 SB
	Acridine-d9	15-MAR-20)23 15-MAR-2	023 SB
	Naphthalene-d8	15-MAR-20		023 SB
	Terphenyl-d14	15-MAR-20)23 15-MAR-2	023 SB
	1,2-Dichlorobenzene	10-MAR-20)23 10-MAR-2	.023 AG
	1,4-Dichlorobenzene	10-MAR-20)23 10-MAR-2	.023 AG
	Dichloromethane	10-MAR-20)23 10-MAR-2	

AGAT WORK ORDER: 23T003974 PROJECT: CH244.00 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

	ME: TERRAPEX ENVIRONMENTAL LIM			1244.00	ATTENTION TO: Andrew Durbano	http://www.agatla
Sample ID	Sample Description	Sample Type	Date Sampled	Date Received		
836772	MW103-D	Water	08-MAR-2023	08-MAR-2023		
030772	WW 105-D	Water	00-WAR-2023	00-IMAI - 2023		
	Mississauga Storm - Organics					
	Parameter	Date Prepa	red Date Analy	zed Initials		
	Tetrachloroethylene					
	Trichloroethylene	10-MAR-20				
	Tetrachloroethene	10-MAR-20				
	PCBs	14-MAR-20)23 15-MAR-20			
	Decachlorobiphenyl	14-MAR-20				
	Mississauga Storm Sewer Use Bylaw- Inc	irganics				
	Parameter	Date Prepa	red Date Analy	zed Initials		
	pH	10-MAR-20				
	BOD (5)	10-MAR-20				
	Total Suspended Solids	10-MAR-20	023 10-MAR-20			
	Total Residual Chlorine	10-MAR-20	023 10-MAR-20)23 NP		
	Cyanide, SAD	10-MAR-20	023 10-MAR-20)23 BG		
	Phenols	09-MAR-20	09-MAR-20	023 WZ		
	Total Phosphorus	10-MAR-20	023 10-MAR-20)23 XL		
	Chromium VI	09-MAR-20	09-MAR-20			
	Total Aluminum	09-MAR-20	09-MAR-20	023 DW		
	Total Arsenic	09-MAR-20	09-MAR-20	D23 DW		
	Total Cadmium	09-MAR-20	09-MAR-20	023 DW		
	Total Chromium	09-MAR-20	09-MAR-20	D23 DW		
	Total Copper	09-MAR-20	09-MAR-20	023 DW		
	Total Lead	09-MAR-20	09-MAR-20	D23 DW		
	Total Manganese	09-MAR-20	09-MAR-20	D23 DW		
	Total Mercury	09-MAR-20	09-MAR-20	023 DL		
	Total Nickel	09-MAR-20	09-MAR-20	023 DW		
	Total Selenium	09-MAR-20	09-MAR-20	023 DW		
	Total Silver	09-MAR-20	09-MAR-20			
	Total Zinc	09-MAR-20	09-MAR-20	D23 DW		
	Peel Region Sanitary - Organics					
	Parameter	Date Prepa	red Date Analy	zed Initials		
	Oil and Grease (animal/vegetable) in water	15-MAR-20)23 15-MAR-20	23 RMK		
	Oil and Grease (mineral) in water	15-MAR-20)23 15-MAR-20	23 RMK		
	Methylene Chloride	10-MAR-20	023 10-MAR-20	023 AG		
	Methyl Ethyl Ketone	10-MAR-20)23 10-MAR-20			
	cis-1,2-Dichloroethylene	10-MAR-20)23 10-MAR-20)23 AG		
	Chloroform	10-MAR-20	023 10-MAR-20	23 AG		
	Benzene	10-MAR-20)23 10-MAR-20			

Trichloroethylene

10-MAR-2023

10-MAR-2023

AG

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

AGAT WORK ORDER: 23T003974 PROJECT: CH244.00

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

ATTENTION TO: Andrew Durbano

Sample ID	Sample Description	Sample Type	Da	ate Sampled	Date Received
4836772	MW103-D	Water	08	3-MAR-2023	08-MAR-2023
	Peel Region Sanitary - Organics				
	Parameter	Date Prep	ared	Date Analyzed	Initials
	Toluene	10-MAR-2	2023	10-MAR-2023	AG
	Tetrachloroethene	10-MAR-2	2023	10-MAR-2023	AG
	trans-1,3-Dichloropropene	10-MAR-2	2023	10-MAR-2023	AG
	Ethylbenzene	10-MAR-2	2023	10-MAR-2023	AG
	1,1,2,2-Tetrachloroethane	10-MAR-2	2023	10-MAR-2023	AG
	Styrene	10-MAR-2	2023	10-MAR-2023	AG
	1,2-Dichlorobenzene	10-MAR-2	2023	10-MAR-2023	AG
	1,4-Dichlorobenzene	10-MAR-2		10-MAR-2023	AG
	m & p-Xylene	10-MAR-2		10-MAR-2023	AG
	o-Xylene	10-MAR-2		10-MAR-2023	AG
	Xylenes (Total)	10-MAR-2		10-MAR-2023	SYS
	Toluene-d8	10-MAR-2		10-MAR-2023	AG
	4-Bromofluorobenzene	10-MAR-2		10-MAR-2023	AG
	PCBs	14-MAR-2		15-MAR-2023	LSP
	Decachlorobiphenyl	14-MAR-2		15-MAR-2023	LSP
	Di-n-butyl phthalate	15-MAR-2		15-MAR-2023	SB
	Bis(2-Ethylhexyl)phthalate	15-MAR-2		15-MAR-2023	SB
	2,4,6-Tribromophenol	15-MAR-2		15-MAR-2023	SB
	2-Fluorophenol	15-MAR-2		15-MAR-2023	SB
	Chrysene-d12	15-MAR-2		15-MAR-2023	SB
	phenol-d6 surrogate	15-MAR-2		15-MAR-2023	SB
	NP2EO	10-MAR-2		10-MAR-2023	CA
	NP1EO	10-MAR-2		10-MAR-2023	CA
	4n-NP	10-MAR-2			CA
	4n-NP NP	10-МАК-2 10-МАК-2		10-MAR-2023	CA
				10-MAR-2023	
	Nonylphenols	10-MAR-2		10-MAR-2023	CA
	Nonylphenol Ethoxylates	10-MAR-2	2023	10-MAR-2023	CA
	Peel Sanitary Sewer Use By-Law - Inorganio	~e			
	Parameter	Date Prep	ared	Date Analyzed	Initials
		· · · · ·			
	pH CBOD (5)	10-MAR-2		10-MAR-2023	ND
	CBOD (5)	10-MAR-2		15-MAR-2023	PK
	Total Suspended Solids	10-MAR-2		10-MAR-2023	VD
	Fluoride	09-MAR-2		09-MAR-2023	LC
	Sulphate	09-MAR-2		09-MAR-2023	LC
	Cyanide, SAD	10-MAR-2		10-MAR-2023	BG
	Phenols	09-MAR-2		09-MAR-2023	WZ
	Total Phosphorus	10-MAR-2		10-MAR-2023	XL
	Total Kjeldahl Nitrogen	10-MAR-2	2023	10-MAR-2023	SK

AGAT WORK ORDER: 23T003974 PROJECT: CH244.00

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Andrew Durbano

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

Sample ID	Sample Description	Sample Type	Date Sampled	Date Received
4836772	MW103-D	Water	08-MAR-2023	08-MAR-2023

Peel Sanitary Sewer Use By-Law - Inorganics			
Parameter	Date Prepared	Date Analyzed	Initials
Total Aluminum	09-MAR-2023	09-MAR-2023	DW
Total Antimony	09-MAR-2023	09-MAR-2023	DW
Total Arsenic	09-MAR-2023	09-MAR-2023	DW
Total Cadmium	09-MAR-2023	09-MAR-2023	DW
Total Chromium	09-MAR-2023	09-MAR-2023	DW
Total Cobalt	09-MAR-2023	09-MAR-2023	DW
Total Copper	09-MAR-2023	09-MAR-2023	DW
Total Lead	09-MAR-2023	09-MAR-2023	DW
Total Manganese	09-MAR-2023	09-MAR-2023	DW
Total Mercury	09-MAR-2023	09-MAR-2023	DL
Total Molybdenum	09-MAR-2023	09-MAR-2023	DW
Total Nickel	09-MAR-2023	09-MAR-2023	DW
Total Selenium	09-MAR-2023	09-MAR-2023	DW
Total Silver	09-MAR-2023	09-MAR-2023	DW
Total Tin	09-MAR-2023	09-MAR-2023	DW
Total Titanium	09-MAR-2023	09-MAR-2023	DW
Total Zinc	09-MAR-2023	09-MAR-2023	DW

Method Summary

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED		AGAT WORK ORDER: 23T003974	
PROJECT: CH244.00		ATTENTION TO: Andrew Durbano	
SAMPLING SITE:120-158 Queen St.S, Mississauga		SAMPLED BY:KP, AP	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Microbiology Analysis			
Escherichia coli - DC Agar	MIC-93-7010	MOE Method E3407	MF/INCUBATOR
Fecal Coliform	MIC-93-7000	SM 9222 D	MF/INCUBATOR

Method Summary

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

PROJECT: CH244.00

AGAT WORK ORDER: 23T003974 ATTENTION TO: Andrew Durbano

SAMPLING SITE: 120-158 Queen St.S, Mississauga		SAMPLED BY:KP, AP	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Benzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	P & T GC/MS
Ethylbenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	P & T GC/MS
m & p-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5001	modified from EPA 5030B & EPA 8260D	CALCULATION
Toluene-d8	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Acenaphthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Acenaphthylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(a)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(a)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(b)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(ghi)perylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(k)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Chrysene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Dibenzo(a,h)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Fluorene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Naphthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Phenanthrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Total PAHs	ORG-91-5105	modified from EPA 3510C and EPA 8270E	CALCULATION
Acridine-d9	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Naphthalene-d8	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS

Method Summary

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

PROJECT: CH244.00

SAMPLING SITE: 120-158 Queen St.S, Mississauga

AGAT WORK ORDER: 23T003974 ATTENTION TO: Andrew Durbano

SAMPLING SITE:120-158 Queen St.S, Mississauga		SAMPLED BY:KP, AP	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Terphenyl-d14	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
1,2-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Dichloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Tetrachloroethene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
PCBs	ORG-91-5112	EPA SW-846 3510 & 8082	GC/ECD
Decachlorobiphenyl	ORG-91-5112	modified from EPA SW846 3510C & 8082A	GC/ECD
Oil and Grease (animal/vegetable) in water		EPA SW-846 3510C & SM5520	BALANCE
Oil and Grease (mineral) in water	VOL-91-5011	EPA SW-846 3510C & SM 5520	BALANCE
Methylene Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
cis-1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
trans-1,3-Dichloropropene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
PCBs	ORG-91-5112	modified from EPA SW-846 3510C & 8082A	GC/ECD
Di-n-butyl phthalate	ORG-91-5114	modified from EPA SW-846 3510C & 8270E	GC/MS
Bis(2-Ethylhexyl)phthalate	ORG-91-5114	modified from EPA SW-846 3510C & 8270E	GC/MS
2,4,6-Tribromophenol	ORG-91-5114	modified from EPA 3510C and EPA 8270E modified from EPA 2510C and EPA	GC/MS
2-Fluorophenol	ORG-91-5114	modified from EPA 3510C and EPA 8270E modified from EPA 2510C and EPA	GC/MS
Chrysene-d12	ORG-91-5114	modified from EPA 3510C and EPA 8270E	GC/MS
phenol-d6 surrogate	ORG-91-5114	modified from EPA 3510C and EPA 8270E	GC/MS
NP2EO	ORG-91-5122	modified ASTM D7485-16	HPLC
	ORG-91-5122	modified ASTM D7485-16	HPLC
4n-NP	ORG-91-5122	modified ASTM D7485-16	HPLC
NP	ORG-91-5122	modified ASTM D7485-16	HPLC

Method Summary

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

PROJECT: CH244.00

SAMPLING SITE: 120-158 Queen St.S, Mississauga

AGAT WORK ORDER: 23T003974 ATTENTION TO: Andrew Durbano

SAMPLING SITE: 120-158 Queen St.S, Mississauga		SAMPLED BY:KP, AP	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Nonylphenols	ORG-91-5122	modified ASTM D7485-16	CALCULATION
Nonylphenol Ethoxylates Water Analysis	ORG-91-5122	modified ASTM D7485-16	CALCULATION
рН	INOR-93-6000	modified from SM 4500-H+ B	PC TITRATE
BOD (5)	INOR-93-6006	Modified from SM 5210 B	DO METER
Total Suspended Solids	INOR-93-6028	modified from EPA 1684,ON MOECC E3139,SM 2540C,D	BALANCE
Total Residual Chlorine	INOR-93-6060	modified from SM 4500-CL- G	SPECTROPHOTOMETER
Cyanide, SAD	INOR-93-6051	modified from MOECC E3015; SM 4500-CN- A, B, & C	TECHNICON AUTO ANALYZER
Phenols	INOR-93-6072	modified from SM 5530 D	LACHAT FIA
Total Phosphorus	INOR-93-6022	modified from SM 4500-P B and SM 4500-P E	SPECTROPHOTOMETER
Chromium VI	INOR-93-6073	modified from SM 3500-CR B	LACHAT FIA
Total Aluminum	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Arsenic	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Cadmium	MET -93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Chromium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Copper	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Lead	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Manganese	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Mercury	MET-93-6100	modified from EPA 245.2 and SM 3112 B	² CVAAS
Total Nickel	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Selenium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Silver	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Zinc	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
CBOD (5)	INOR-93-6006	Modified from SM 5210 B	DO METER
Fluoride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Sulphate	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Total Kjeldahl Nitrogen	INOR-93-6048	modified from EPA 351.2 and SM 4500-NORG D	LACHAT FIA
Total Antimony	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Cobalt	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Molybdenum	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Tin	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Titanium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS

	a	Lab	orat	orie	2S Ph	M : 905.71	ississa 2 510	5835 Co uga, On D Fax: 9 ebearth	tario L 105,711	4Z 1Y2 2 5122				y Use		y 5700	347	74	
Chain of Custody Rec			-	-	king Water Chain of Custody Form (potat	ole water	consum	ed by hur	nans)	÷		1.		ty: ratures:		11		(+	2.)
Report Information: Company:	mv. Ltd		10 50		gulatory Requirements: check all applicable boxes)		1	1				Custo Notes	dy Seal I .:			Yes	ndu		□n/A
Address: Phone: Reports to be sent to: 1. Email: Address: 647 - 460.9 Address: 647 - 460.9 Address: Address: 647 - 460.9		pex. con	8 24 1		egulation 153/04 Excess Soils R4 Indicate One Ind/Com Res/Park Agriculture exture (Check One) ICoarse IFine	3	Peel Sa	. Water ectives	Storyn Missis Quality PWQO)	n, setuga	sto		Ar TAT TAT (Rus 3 Busin Days	h Surcharg	(es Apply	5 to 7 B 2 Busin Days ush Sure	usiness ess	Days	
the st A O	yeen st-s,M	Ississange	<u>a. </u>	Rec	this submission for a cord of Site Condition?	Cei		Guide te of		sis		For	*TAT is	exclusive	e of we	ior notific eekends blease c	and stat	tutory h	
AGAT Quote #:	PO:PO:	be billed full price for an	alysis.	Sam	aple Matrix Legend	rvi, boc	0.	Reg 153				0. R 55	SB	Reg 406 Backage	Sulphide	Lann	TANCO.		tion (Y/N)
Invoice Information: Company: Contact: Address: Email: Turepex (m Andrew Duu Contact: 90 Scarsdale	vironmental ibano / Bril	an Their	per.com	GW O P S SD SW	Ground Water Oil Paint Soil Sediment Surface Water	Field Filtered - Metals, Hg, CrVI, DOC	s & Inorganics	- C	FT-+4 PRUS			Disposal Characteriz	V&I □ VOCs □ AB Soils SPLP Rain	aracterization	Moisture D	Saw bang &	c admessiss		Potentially Hazardous or High Concentration (Y/V)
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	YN	Metals	Metals	PAHS	PCBs	NOC	Aroclors Landfill [Excess Soi	Excess DH. IC	Corros	Rel	3		Potenti
MW103-D	\$1323	10:30 AM AM PM	24	62	lab preserve toical	Y										77			
	and the second	AM				-		-	-										
and the state of the second	T OF ALL ST	AM PM			bottle for Oil and Grase -		1122					in an	The second		1	- 1		-	
	STREET THE STREET	AM PM			Instructed by Linda		0.0	1	1				-10						1
	OR INCO II	AM PM			Benthelet	5 . N			100				10			10	1		-
	1	AM PM		Hadden and									- 9	17					
		AM PM								1100		100	000	5.k					
	and the second second	AM PM	10 00			1				1				-					
		AM PM				3								-		-			
and the second states and the	ommi i somi dati	AM PM	10.0	1	CR. TRANK	7,7 1				T			- 72					1.000	125
Sumples Relinquished By (Print Name and Sign):	tures.	Bate 32	3 Time	°, yo	Samples Received by (Print Name and Sign):					Date			Time						4:41 pm
Samples Relinquished By (Print Namo and Sign):		Date	Time	_	Samples Received By (Print Name and Sign):	+	-	-		Date		67. 63.	Time	c	Nº:	Page	13	_ of	96
Desuming ID: DIV-78-1514-002								Pir	k Copy	- Clien	tIY	ellow Cop	y - AGAT	I White		- AGAT			April 21, 2022

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED 90 SCARSDALE RD TORONTO, ON M3B2R7 (905) 474-5265 ATTENTION TO: Brian Theimer PROJECT: CH244.00 AGAT WORK ORDER: 23T030554 WATER ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer DATE REPORTED: Jun 07, 2023 PAGES (INCLUDING COVER): 7 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes		

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

Ν

lember of: Association of Professional Engineers and Geoscientists of Alberta	
(APEGA)	
Western Enviro-Agricultural Laboratory Association (WEALA)	
Environmental Services Association of Alberta (ESAA)	

Page 1 of 7

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Certificate of Analysis

AGAT WORK ORDER: 23T030554 PROJECT: CH244.00 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

SAMPLING SITE: 120 Queen St. South, Mississauga

ATTENTION TO: Brian Theimer

SAMPLED BY:BV/VS

Inorganic Chemistry (Water)											
DATE RECEIVED: 2023-05-31								[DATE REPORTI	ED: 2023-06-07	
				S/	ESCRIPTION:	MW101S Water	MW113S Water	MW118S Water	MW115 Water	MW103 Water	
Parameter	Unit	G / S: A	G / S: B	DA1 G / S: C	E SAMPLED:	2023-05-30 14:30 5030543	2023-05-30 14:45 5030547	2023-05-30 15:00 5030548	2023-05-30 15:15 5030549	2023-05-30 15:30 5030550	
Dissolved Manganese	mg/L				0.002	0.088	0.482	0.702	0.167	0.013	
Total Manganese	mg/L	5	0.05	2.0	0.020	0.096[B-C]	0.497[B-C]	0.719[B-C]	0.216[B-C]	0.056[B-C]	
Phenols	mg/L	1.0	0.008	0.008	0.002	0.010[C-A]	0.013[C-A]	0.011[C-A]	0.006[<b]< td=""><td>0.009[C-A]</td><td></td></b]<>	0.009[C-A]	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: A Refers to Peel Sanitary By-Law 53-2010, B Refers to Peel Storm By-Law 53-2010, C Refers to City of Mississauga - Storm Sewer Discharge

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Exceedance Summary

AGAT WORK ORDER: 23T030554 PROJECT: CH244.00

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

ATTENTION TO: Brian Theimer

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
5030543	MW101S	ON Mississauga SM	Inorganic Chemistry (Water)	Phenols	mg/L	0.008	0.010
5030543	MW101S	ON Peel SM	Inorganic Chemistry (Water)	Phenols	mg/L	0.008	0.010
5030543	MW101S	ON Peel SM	Inorganic Chemistry (Water)	Total Manganese	mg/L	0.05	0.096
5030547	MW113S	ON Mississauga SM	Inorganic Chemistry (Water)	Phenols	mg/L	0.008	0.013
5030547	MW113S	ON Peel SM	Inorganic Chemistry (Water)	Phenols	mg/L	0.008	0.013
5030547	MW113S	ON Peel SM	Inorganic Chemistry (Water)	Total Manganese	mg/L	0.05	0.497
5030548	MW118S	ON Mississauga SM	Inorganic Chemistry (Water)	Phenols	mg/L	0.008	0.011
5030548	MW118S	ON Peel SM	Inorganic Chemistry (Water)	Phenols	mg/L	0.008	0.011
5030548	MW118S	ON Peel SM	Inorganic Chemistry (Water)	Total Manganese	mg/L	0.05	0.719
5030549	MW115	ON Peel SM	Inorganic Chemistry (Water)	Total Manganese	mg/L	0.05	0.216
5030550	MW103	ON Mississauga SM	Inorganic Chemistry (Water)	Phenols	mg/L	0.008	0.009
5030550	MW103	ON Peel SM	Inorganic Chemistry (Water)	Phenols	mg/L	0.008	0.009
5030550	MW103	ON Peel SM	Inorganic Chemistry (Water)	Total Manganese	mg/L	0.05	0.056

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

PROJECT: CH244.00

SAMPLING SITE: 120 Queen St. South, Mississauga

AGAT WORK ORDER: 23T030554

ATTENTION TO: Brian Theimer

SAMPLED BY: BV/VS

Water Analysis

						,											
RPT Date: Jun 07, 2023	DUPLICATE					REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE					
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured			Recovery	7 ⁷			Acceptable Limits	Recovery	Lin	eptable nits
		ld					Value	Lower	Upper	Lower		Upper	Lower	Upper			
Inorganic Chemistry (Water)																	
Dissolved Manganese	5030057		0.009	0.010	NA	< 0.002	95%	70%	130%	107%	80%	120%	101%	70%	130%		
Total Manganese	5027962		<0.020	<0.020	NA	< 0.020	95%	70%	130%	92%	80%	120%	95%	70%	130%		
Phenols	5031924		0.003	0.003	NA	< 0.002	94%	90%	110%	96%	90%	110%	98%	80%	120%		

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Page 4 of 7

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

CLIENT NAME: TERRAPEX ENVIRONMENTAL LIMITED

Time Markers

AGAT WORK ORDER: 23T030554 PROJECT: CH244.00 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Brian Theimer

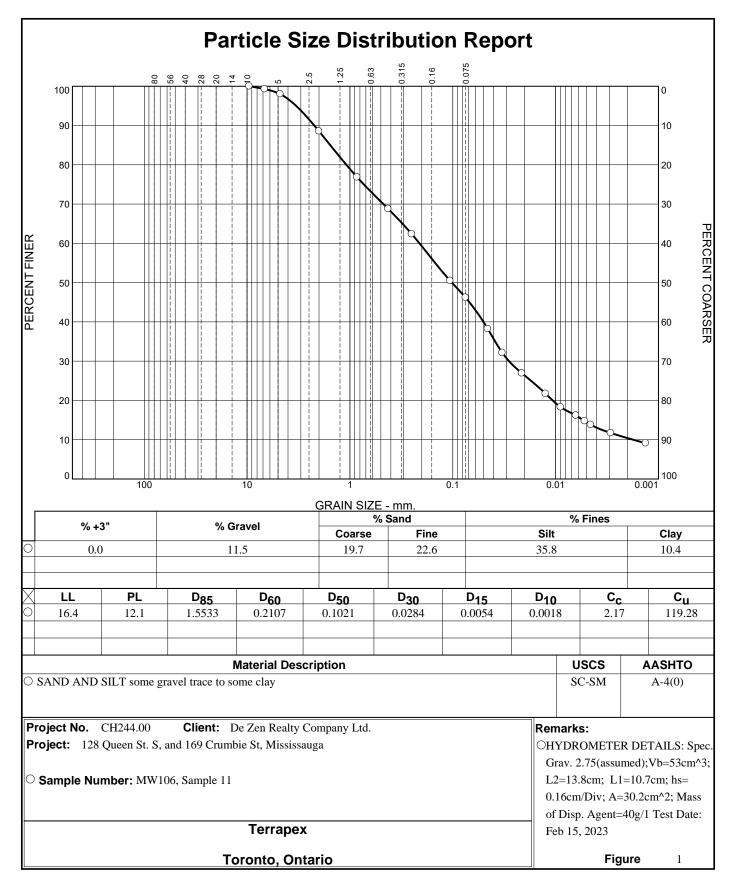
Sample ID	Sample Description	Sample Type	Dat	e Sampled	Date Received
5030543	MW101S	Water	30-	MAY-2023	31-MAY-2023
	Inorganic Chemistry (Water)				
	Parameter	Date Pre	epared	Date Analyze	d Initials
	Dissolved Manganese	02-JUN	-2023	02-JUN-2023	DW
	Total Manganese	01-JUN	-2023	01-JUN-2023	DW
	Phenols	01-JUN	-2023	01-JUN-2023	WZ
5030547	MW113S	Water	30-	MAY-2023	31-MAY-2023
	Inorganic Chemistry (Water)				
	Parameter	Date Pre	epared	Date Analyze	d Initials
	Dissolved Manganese	02-JUN	-2023	02-JUN-2023	DW
	Total Manganese	01-JUN	-2023	01-JUN-2023	DW
	Phenols	01-JUN	-2023	01-JUN-2023	WZ
5030548	MW118S	Water	30-	MAY-2023	31-MAY-2023
	Inorganic Chemistry (Water)				
	Parameter	Date Pre	epared	Date Analyze	d Initials
	Dissolved Manganese	02-JUN	-2023	02-JUN-2023	DW
	Total Manganese	01-JUN	-2023	01-JUN-2023	DW
	Phenols	01-JUN	-2023	01-JUN-2023	WZ
5030549	MW115	Water	30-	MAY-2023	31-MAY-2023
	Inorganic Chemistry (Water)				
	Parameter	Date Pre	epared	Date Analyze	d Initials
	Dissolved Manganese	02-JUN		02-JUN-2023	
	Total Manganese	01-JUN		01-JUN-2023	
	Phenols	01-JUN	-2023	01-JUN-2023	WZ
5030550	MW103	Water	30-	MAY-2023	31-MAY-2023
	Inorganic Chemistry (Water)				
	Parameter	Date Pre	epared	Date Analyze	d Initials
	Dissolved Manganese	02-JUN	-2023	02-JUN-2023	DW
	Total Manganese	01-JUN	-2023	01-JUN-2023	DW

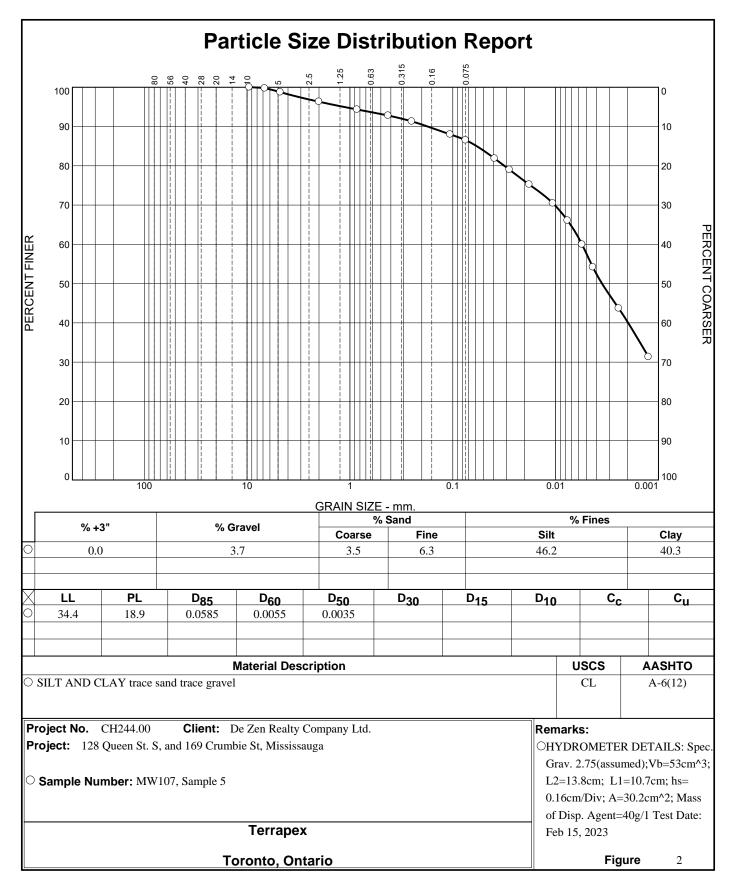
01-JUN-2023

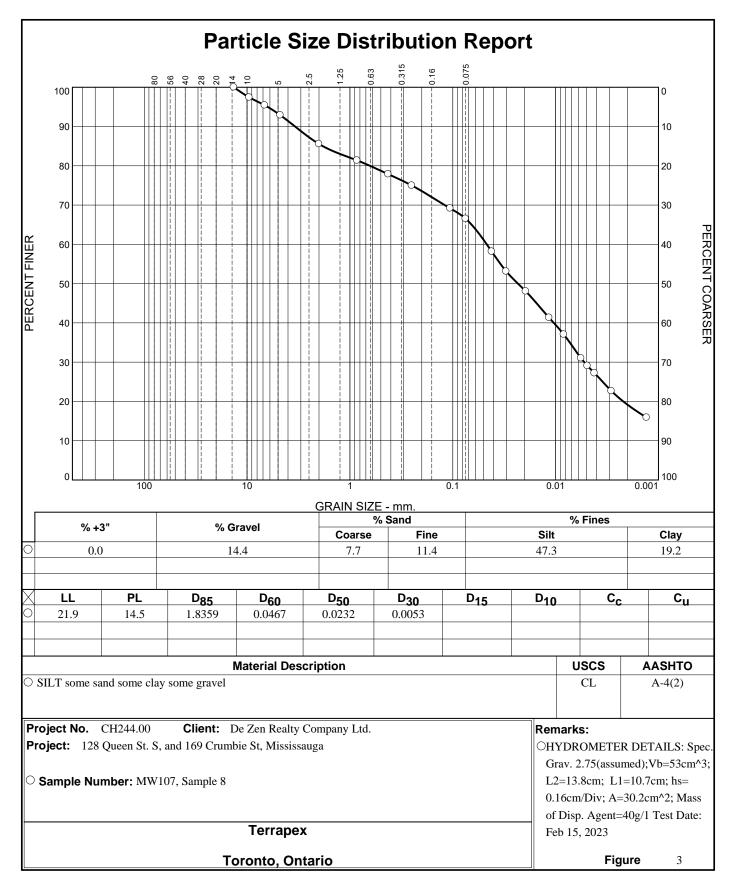
Phenols

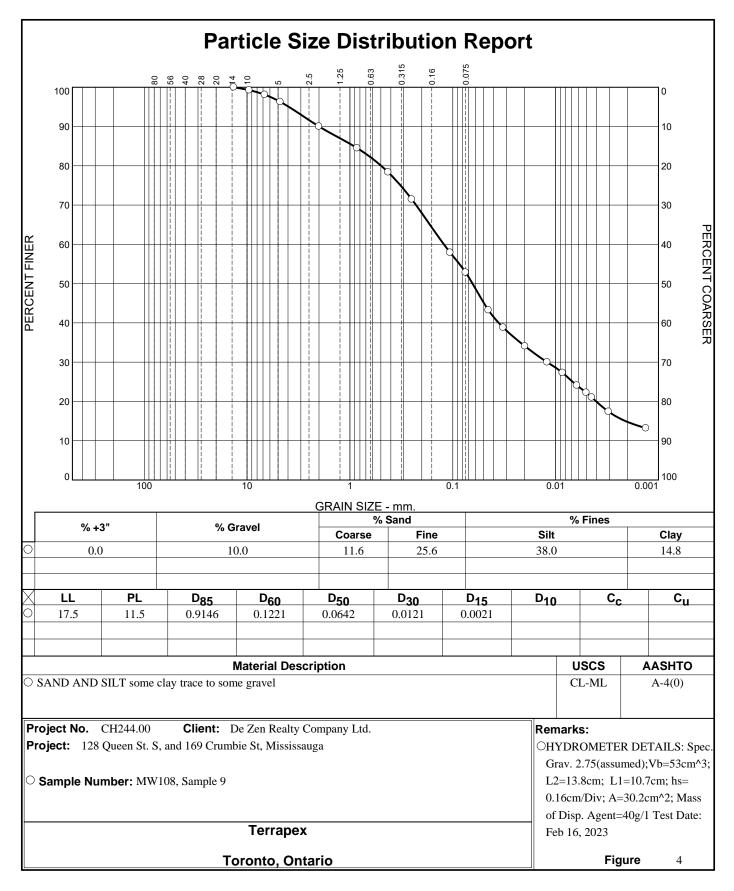
01-JUN-2023

WZ

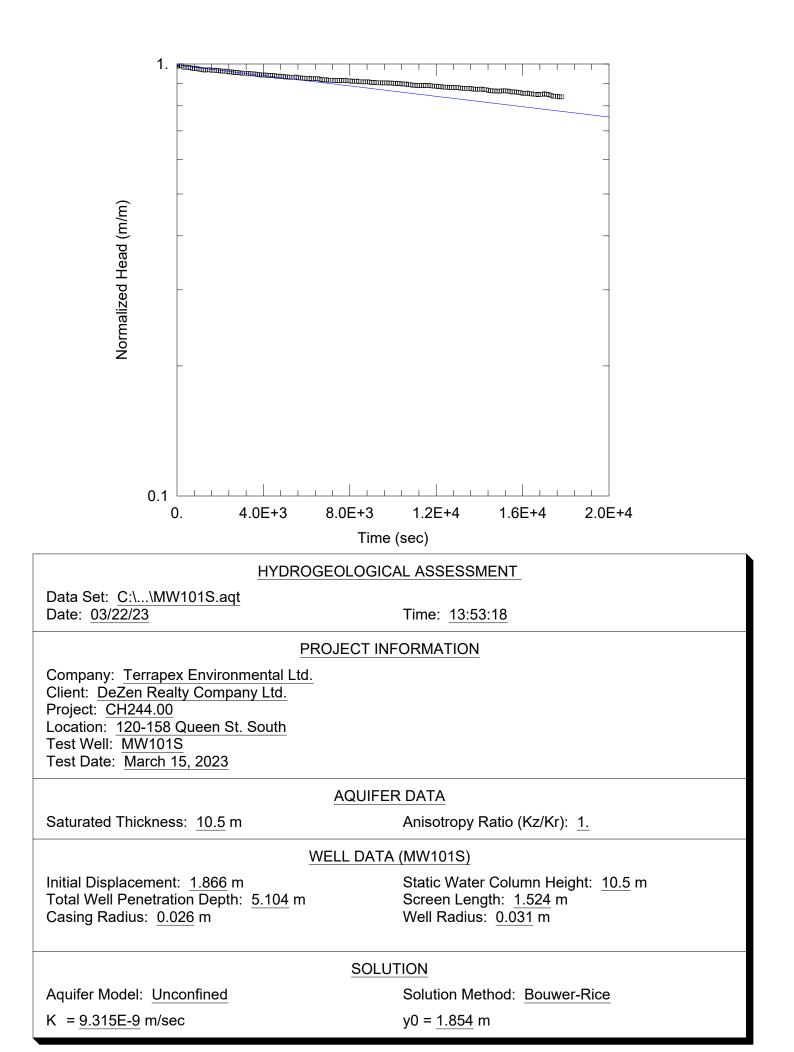

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

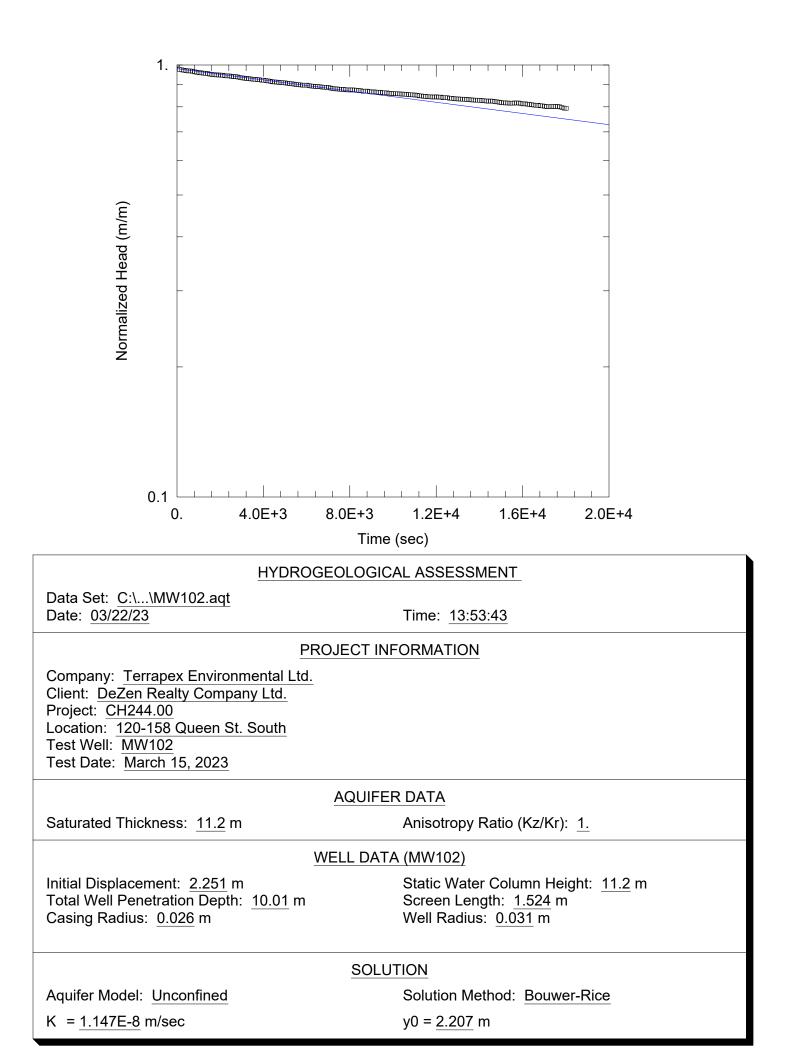

Method Summary

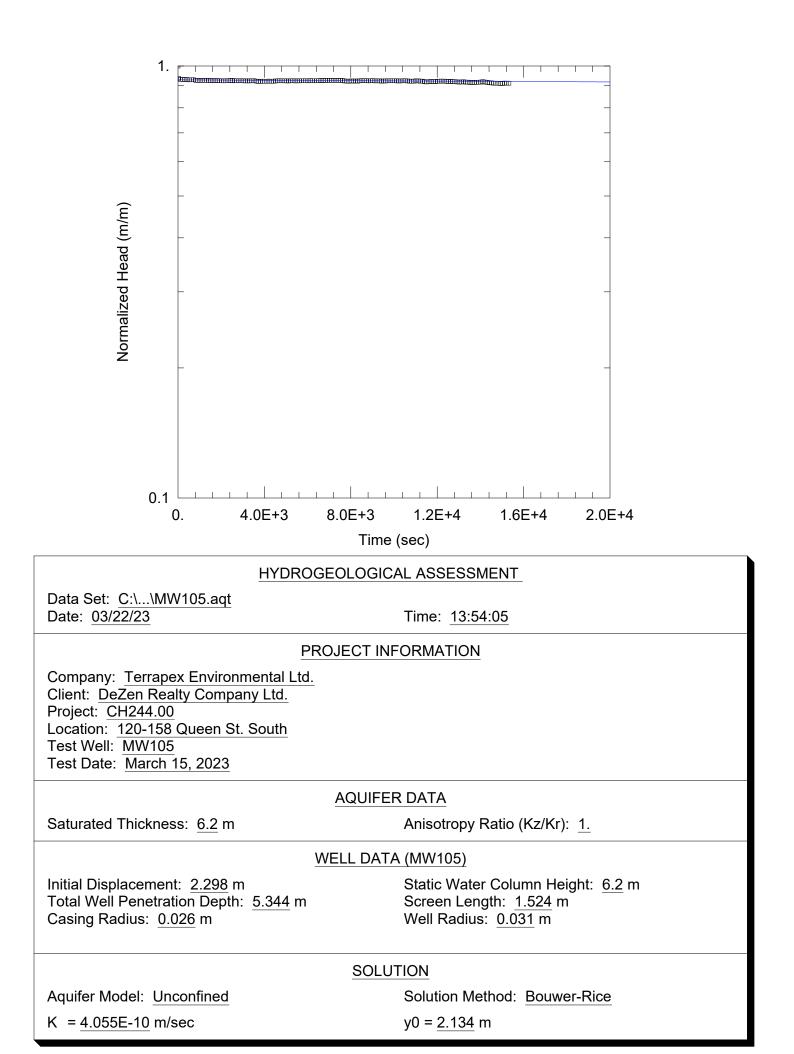

CLIENT NAME: TERRAPEX ENVIRONME	NTAL LIMITED	AGAT WORK ORDER: 23T030554						
PROJECT: CH244.00		ATTENTION TO: Brian Theimer						
SAMPLING SITE: 120 Queen St. South, M	ississauga	SAMPLED BY:BV/VS						
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
Water Analysis	1	L						
Dissolved Manganese	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Total Manganese	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Phenols	INOR-93-6072	modified from SM 5530 D	LACHAT FIA					

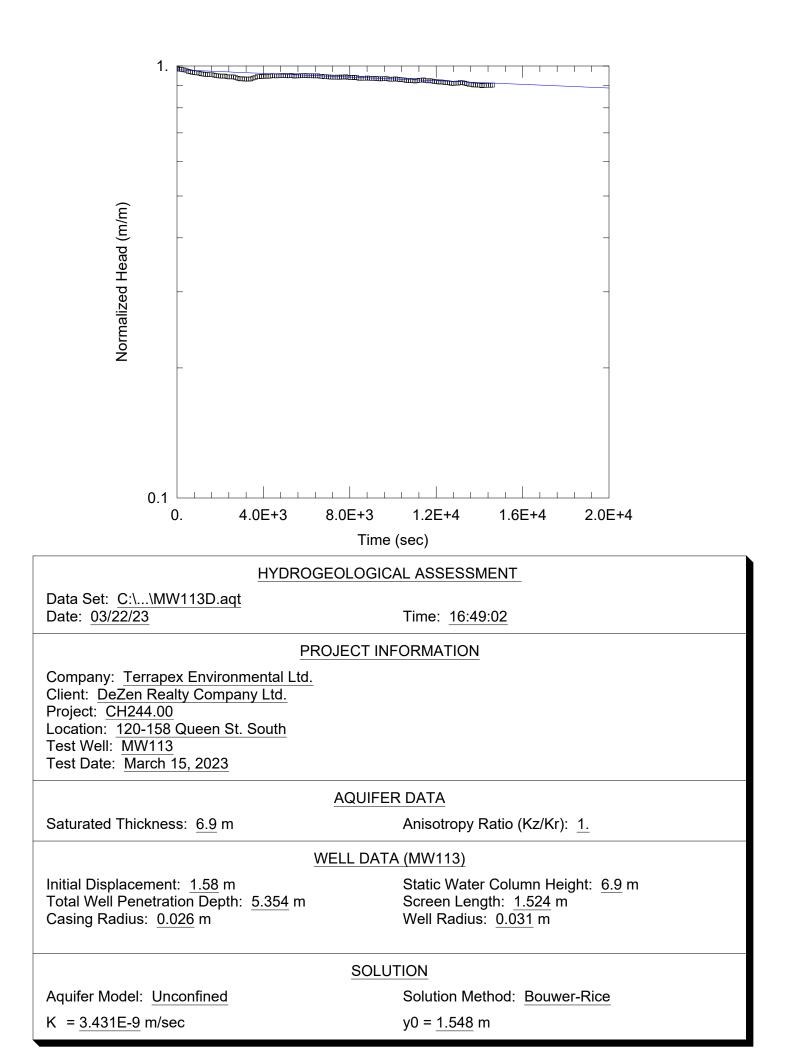

AGAT Laborate	
Report Information: Company: Termpex Environmental Ltd. Contact: Brian Theinner Address: 90 Scarsdale Road Tormbo, ON M3B & R. Phone: Reports to be sent to: 1. Email: 2. Email: Project Information: Project:	Coarse Mississavga Stor Indicate One Days Days Day Is this submission for a Report Guideline on Certificate of Analysis OR Date Required (Rush Surcharges May Apply): Please provide prior notification for rush TAT
Site Location: 120 Queen St. South, Mississau ja Outlet #: Sampled By: BV/VS AGAT Quote #: 775958 PO: Please note: If quotation number is not provided, client will be billed full price for analysis Invoice Information: Bill To Same: Yes No Company: Contact: Address: Email: accounts payable Of clipapeX · Com	Activity Assessement DA1 DA2 DAR DAV Remediation DRE DRX DR DR DR Respectively assessement DA1 DA2 DAR DAV Remediation DR DRX DR DR Respectively Hydroges S3 Meass (exc) Hydroges S4 Meas
Sample IdentificationDate SampledTime Sampled# of ContainersSampled Matri Matri Matri Matri Multi25Date SampledTime Sampled# of ContainersSampled Matri Matri Matri Multi25MW113512:45 pm3GU GU GU Multi25MW118512:00 pm3GU GU GUMW11853:15 pm3GU GUMW103V3:30 pm3GU GU	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Samples Relinguished By (Print Name and Sign): Date Time Samples Relinguished By (Print Name and Sign): Date Time Samples Relinguished By (Print Name and Sign): Date Time	Samples Received By (Print Name and Sign): Samples Received By (Print Name and Sign): Samples Received By (Print Name and Sign): Date

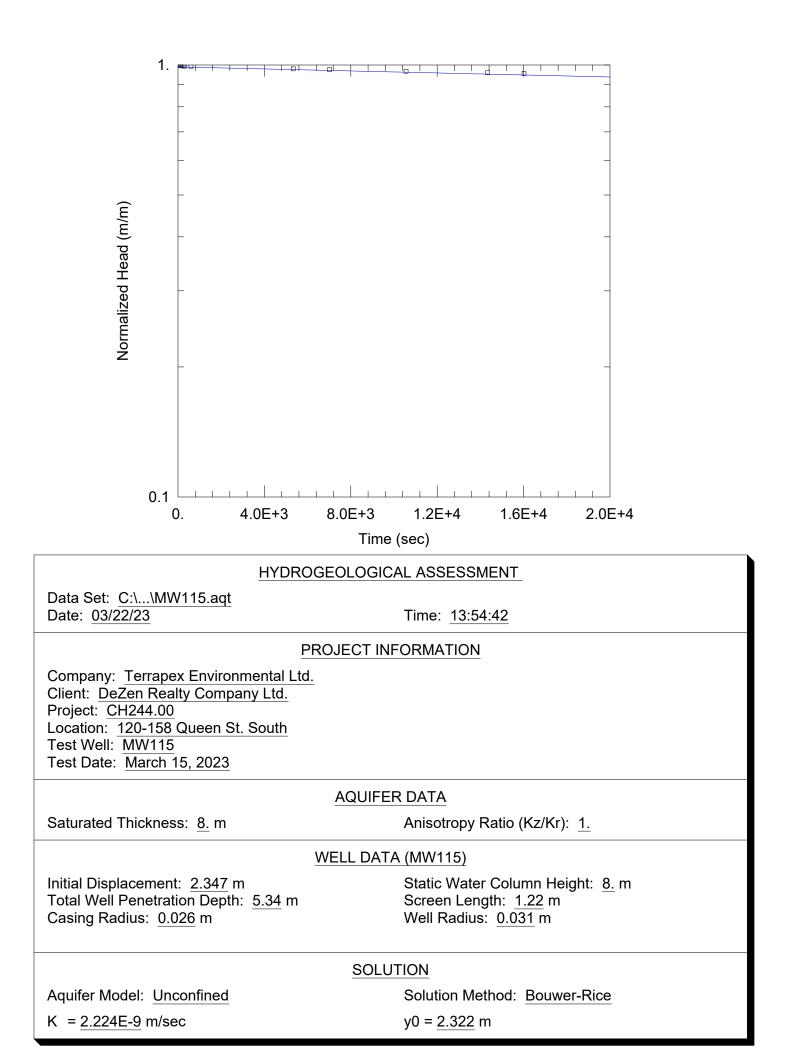
APPENDIX V GRAIN SIZE ANALYSES










APPENDIX VI HYDRAULIC CONDUCTIVITY TESTING

