

111 ZENWAY BLVD., UNIT 4, VAUGHAN, ONTARIO, L4H 3H9 TEL: 416.675.0160 FAX: 905 851.1722 office@mccrak.com

1271 DENISON ST., UNIT 45, MARKHAM, ONTARIO, L3R 4B5 TEL: 905.470.0160 FAX: 905.475.6371 denison@mccrak.com

McMASTER INNOVATION PARK - COLABORATORY No. 110A 175 LONGWOOD RD. S., HAMILTON, ONTARIO, L&P OA1 office@mccrak.com

G1187V2

WWW.MCCRAK.COM

DECEMBER 2022

PRELIMINARY GEOHYDROLOGY ASSESSMENT 190 RUTLEDGE ROAD MISSISSAUGA, ONTARIO

DISTRIBUTION:

1 COPY (electronic) FOREST GREEN HOMES

1 COPY McCLYMONT & RAK ENGINEERS, INC.

PREPARED FOR:

FOREST GREEN HOMES 5332 HIGHWAY 7 WOODBRIDGE, ON L4L 1T3

TABLE OF CONTENTS

1.0	INTRODUCTION1
1.1 1.2 1.3 1.4 1.5	SCOPE OF WORK1SITE DESCRIPTION1PROPOSED DEVELOPMENT2PROPERTY OWNERSHIP2REVIEW OF PREVIOUS REPORTS3
2.0	HYDROGEOLOGICAL CONDITIONS 4
2.1 2.2 2.3 2.4	PHYSICAL SETTING
3.0	SCOPE OF INVESTIGATION
3.1 3.2 3.3 3.4 3.5	OVERVIEW OF SITE INVESTIGATION 6 MONITORING WELL INSTALLATION 6 ELEVATION SURVEYING 6 GROUNDWATER SAMPLING 7 GROUNDWATER ANALYSIS 7
4.0	INVESTIGATION RESULTS9
4.1 4.2 4.3 4.4	GEOLOGY 9 GROUNDWATER LEVEL MONITORING 11 GROUNDWATER QUALITY 11 GROUNDWATER DISCHARGE ASSESSMENT 11
5.0	REVIEW AND EVALUATION
5.1 5.1.1 5.2 5.2.1 5.3 5.4 5.5	TEMPORARY DEWATERING ASSESSMENT.13NUMERICAL ANALYSIS14PERMANENT FOUNDATION DRAIN FLOW RATES15NUMERICAL ANALYSIS15MECP PERMIT TO TAKE WATER REQUIREMENT16MUNICIPAL DISCHARGE PERMIT REQUIREMENTS16ENVIRONMENTAL PROTECTION17
6.0	CONCLUSIONS AND RECOMMENDATIONS 19
7.0	REFERENCES
8.0	STATEMENT OF LIMITATIONS23
9.0	CLOSURE

ltem

FIGURES

Drawing No. 1	Borehole Location Plan
Drawing No. 2	Cross Section A-A'
Drawing No. 3	Cross Section B-B'
Drawing No. 4	Private Water Drainage System

TABLES

Table 1	Construction Details and Elevation of Monitoring Wells
Table 2	Groundwater Analytical Results – Peel Region Sewers By-Law Discharge Criteria
Table 3	Groundwater Monitoring Data
Table 4	Discharge Estimation of Construction Dewatering
Table 5	Discharge Estimation of Permanent Drainage System

APPENDICES

_

Appendix A	Legal Survey
Appendix B	Proposed Redevelopment Drawings
Appendix C	Borehole Logs
Appendix D	Certificates of Analysis

1.0 INTRODUCTION

Forest Green Homes (the Client) intends to redevelop the property located at 190 Rutledge Road, Mississauga, Ontario, (hereafter referred to as 'the Site'). McClymont & Rak Engineers Inc. (MCR) was retained to conduct a Geohydrology Assessment for the Site to evaluate the requirements for temporary dewatering and permanent drainage for the proposed redevelopment.

1.1 SCOPE OF WORK

The objectives of the Geohydrology Assessment are to determine the following:

- Hydrogeological conditions of the Site, including the groundwater and phreatic surface, subsurface elevations and flow patterns and the interaction with the design and construction of the proposed development.
- Review the available background information for the Site obtained from MCR's files, engineering and architectural drawings.
- Estimate the potential temporary dewatering flow rates during construction and assessment of potential impacts on the surrounding environment.
- Estimate the long term flow rates from the Private Water Drainage System (PWDS) of the proposed building.
- Assess the permitting requirements for both dewatering and discharge with the Ministry of Environment, Conservation and Parks (MECP) and the Regional Municipality of Peel (the Municipality), respectively.
- Summarize the findings in a Geohydrology Assessment Report.

1.2 SITE DESCRIPTION

The Site is located on the northwest side of Rutledge Road, approximately 785 m southwest of the intersection of Queen Street South and Britannia Road West, in a residential-commercial area of the City of Mississauga, Ontario. The Site is irregular in shape with an area of approximately 6,232 m² and is currently a vacant lot with a one storey building.

The Site is bounded by Rutledge Road to the east and south, and a tree covered area to west and north.

According to a Survey Plan by KRCMAR presented in Appendix A, the Site is legally described as: Part of Lot 4, Concession 5, West of Hurontario Street, City of Mississauga, Regional Municipality of Peel.

1.3 **PROPOSED DEVELOPMENT**

The Site is proposed for residential development consisting of a ten [10] storey building with three to four [3 to 4] levels of below grade parking.

Based on the architectural drawings presented in Appendix B, ground finished floor slab elevation (FFE) will be at 164.00 m, P3 FFE will be at elevations of 153.845 to 150.895 m and partial P4 FFE will be at 150.645 to 149.450 m.

Presently, it is assumed that the proposed buildings can be supported on spread/strip footings founded in weathered shale bedrock. The size of the shoring plan layout was assumed to cover approximately 115 m by 55 m.

With spread/strip footings supporting the structure, a sub-floor Private Water Drainage System (PWDS), with perimeter weeping tile below the P3/P4 slab, will be required. A soldier pile and lagging wall shoring system will be sufficient for the Site except where adjacent structures exist where a caisson wall will be utilized.

1.4 **PROPERTY OWNERSHIP**

The Site is owned by Forest Green Homes and represented by Mr. Renato Gallace, with the following contact information:

Mr. Renato Gallace Project/Construction Manager, Highrise Division 5332 Highway No. 7 Woodbridge, Ontario L4L 1T3 E-mail: <u>renato@fgh.net</u>

1.5 REVIEW OF PREVIOUS REPORTS

The following geo-environmental reports were provided for review prior to initiating the investigation:

• MCR report titled: *Preliminary Geotechnical Report, Proposed Residential Development, 190 Rutledge Road, Mississauga, Ontario,* prepared for Forest Green Homes, dated December 2022.

2.0 HYDROGEOLOGICAL CONDITIONS

2.1 PHYSICAL SETTING

The Site is located in the western portion of the City of Mississauga and is situated in a mixed-use residential and commercial area. The nearest major intersection is Queen Street South and Britannia Road. The nearest surface water body is the Mullet Creek, approximately 20 m west of the Site.

The Site is located at an average geodetic elevation of approximately 156 masl and the natural topography across the Site is generally flat with a gentle slope towards the south.

The Site is bounded by the following properties/features:

North	Tree covered area
South	Rutledge Road
East	Rutledge Road
West	Tree covered area

2.2 TOPOGRAPHY

According to the topographic map, Map 30 M/11, 9th Edition published by Government of Canada; Natural Resources Canada; Earth Sciences Sector; Canada Centre for Mapping and Earth Observation, on July 19, 2013, the natural ground surface at the Site is relatively flat with the surrounding area sloping gently to the southwest.

2.3 REGIONAL GEOLOGY AND HYDROGEOLOGY

According to the geological map entitled "Quaternary Geology of Ontario, Southern Sheet" Map 2556, published by the Ontario Ministry of Development and Mines, dated 1991, the overburden in the study area consists of predominantly silt to silty clay matrix, high in matrix carbonate content and clast poor. The groundwater typically tends to flow south, towards the Credit River.

According to Ontario Ministry of Development and Mines, Map No. 2544, "Bedrock

Geology of Ontario, Southern Sheet, 1991", the bedrock typically consists of Upper Ordovician shale, limestone, dolostone and siltstone. Groundwater tends to flow towards west, towards Mullet Creek.

2.4 LOCAL GEOLOGY AND HYDROGEOLOGY

On a local scale, geological conditions and hydrogeology are similar to the ones at a regional scale. Locally, near surface groundwater flow may be influenced by underground structures (e.g., service trenches, catch basins, and building foundations or surface watercourses). No surface water features are present onsite and there are no Provincially Significant Wetlands in the vicinity of the Site.

3.0 SCOPE OF INVESTIGATION

3.1 OVERVIEW OF SITE INVESTIGATION

- The field investigation included the advancement of eight boreholes (BH 101, in the vicinity of the Site, to BH 104), by MCR in April 2007. The boreholes were advanced to depths ranging from 5.20 to 7.65 m.
- Additional boreholes (201 to 204) were drilled by MCR, in February 2020. The boreholes were advanced to depths ranging from 6.60 to 13.00 m.
- Boreholes 102, 202 and 203 were equipped with monitoring wells for longterm groundwater monitoring and sampling.
- The borehole locations are shown on Drawing No. 1 and the borehole records are presented in Appendix C.
- Groundwater levels were recorded from all available monitoring wells over various dates and the data is presented in Table 1.
- Groundwater samples were collected from BH 202 for chemical analysis of the Municipality of Peel Sewers By-Law criteria.

3.2 MONITORING WELL INSTALLATION

All monitoring wells by MCR were installed with a 50 mm diameter schedule 40 PVC pope and a 3.05 m long slotted well screen. Well screens were surrounded by a silica sand pack to at least 0.6 m above the top of screen with a bentonite seal extending from above the sand pack to within 0.5 m of the ground surface. All monitoring wells were completed with a flush mounted cover at ground surface. Monitoring well installation was done in accordance with the *Ontario Water Resources Act, Sections 35 to 50*.

3.3 ELEVATION SURVEYING

Boreholes 101 to 104 elevations referred to in this report are geodetic and metric and are referenced to the top of the railway crossing, located at the southeast corner of the subject site, with an Elevation of 159.65 m, as per the Preliminary grading plan by Land-Pro Engineering Consultants Inc., issued in January 2004.

Borehole 201 to 204 elevations, referred to in this report, are geodetic and metric, and are referenced to two local benchmarks; a catch basin with a reported elevation of 163.38 m and a manhole with a reported elevation of 160.67 m, based on a survey plan by Land Survey Group dated October 16, 2019.

Borehole elevations are shown on the borehole logs in Appendix C.

3.4 GROUNDWATER SAMPLING

All groundwater sampling activities were conducted in accordance with Ontario Regulation (O.Reg.) 153/04, as amended to O.Reg. 511/09, July 2011. All monitoring wells were developed prior to sampling activities using a Waterra Hydrolift II (HL-1217) inertial lift pump by purging at least three well volumes or until the monitoring well was purged dry. Groundwater samples were obtained at least 24 hours' post-development under static conditions. No samples were field filtered prior to laboratory analysis in accordance with the standard.

3.5 GROUNDWATER ANALYSIS

All groundwater samples were submitted to ALS Laboratory Group (ALS) of Richmond Hill, Ontario, certified by the Canadian Association for Laboratory Accreditation (CALA), for chemical analysis. The Certificates of Analysis received are included in Appendix D. The contact information for the laboratory used is included below.

ALS Laboratory Group

95 West Beaver Creek Road Richmond Hill, ON L4B 1H2

Groundwater samples were submitted for bulk chemical analysis for the criteria provided in the *Regional Municipality of Pell By-Law No. 53-2010.* The results of chemical analysis were compared to the criteria provided in *Table 1 – Limits for Sanitary and Combined Sewers Discharge and Table 2 – Limits for Storm Sewer Discharge.* These guidelines establish the maximum allowable concentrations of specific analytical parameters for water discharged into either the municipal sanitary and/or storm sewer system respectively.

4.0 INVESTIGATION RESULTS

4.1 GEOLOGY

The ground surface elevation of the boreholes ranged from 157.00 masl (BH 101) to 165.40 masl (BH 202). Based on the investigation, the geologic formations beneath the Site are illustrated in the borehole logs (Appendix C) and summarized on a Soil Profile/Drawing No. 2&3, as follows:

Fill: Soft to stiff/loose fill was found at the surface of all boreholes and extended to depths of 1.00 to 9.15 m. The grey to black/brown to black/brown fill consisted of silty clay/clayey silt/sandy silt soils. The fill contained trace to some sand and gravel, trace of organics and rootlets, shale fragments and was in a moist to wet condition.

Due to the nature of fill and for the purpose of offsite disposal, the type/quality and extent of the existing fill should be explored by further test pit investigation.

Organics: A layer of firm peat was found below the fill in borehole 103 and extended to the depth of 3.05 m. The black peat layer was in a moist condition.

Sand: Compact to loose layer of fine to medium sand was detected below fill in borehole 102 and extended to the depth of 2.30 m. The brown sand layer contained trace of silt, gravel and organics and was in a moist condition.

Clayey Silt (Till)/Silty Clay: Firm to hard layer of clayey silt (till)/silty clay was observed below the fill/organics/sand in all boreholes and extend to the depths of 4.25 to 12.20 m. The brown to grey/mottled grey/black clayey silt (till)/silty clay deposit contained wet sandy silt seams, cobbles, some gravel and sand, trace organics and rootlets, oxidized fissures and was in a moist to wet condition.

Sandy Silt Till/Weathered Shale Complex: Grey moist sandy silt till/weathered shale complex was encountered below the clayey silt (till)/silty clay in all boreholes at depths ranging from 4.25 to 12.20 m i.e., elevations 152.75 to 154.25 m and extended to depths 4.55 to 12.95 m, i.e., elevations 150.90 to 152.95 m to the

underlying weathered shale in boreholes 101, 104, 201 to 203 and refusal due to probable shale or limestone in boreholes 102, 103 and 204.

It should be noted that the till/sand soil is an unsorted sediment; therefore, boulders and cobbles are anticipated.

Shale Bedrock: Grey, moist shale bedrock was detected below the sandy silt till/weathered shale complex in all the boreholes except 102, 103 and 204 at about depths of 4.55 to 12.95 m i.e., elevations 150.90 to 152.95 m and extended to extended to the maximum explored depth of the boreholes.

The surface of shale bedrock may vary across the site; therefore, it should be confirmed by further borehole investigation and during the caisson installations, if required.

Groundwater: Upon completion of drilling, boreholes 101, 104, 202, 203 and 204 remained dry. Groundwater was measured at depths ranging from 3.65 to 5.30 m in rest of the boreholes.

On April 30, 2007, and May 01, 2007, groundwater levels were measured, in the monitoring well, at about 10 cm above ground in borehole 102.

On February 19, 2020, groundwater levels were measured, in the monitoring wells, at depths of 8.45 and 6.60 m in boreholes 202 and 203.

On November 03, 2022, groundwater levels were measured, in the monitoring wells, at depths of 9.04 and 4.76 m in boreholes 202 and 203.

On November 16, 2022, groundwater levels were measured, in the monitoring wells, at depths of 9.16 and 4.75 m in boreholes 202 and 203.

The results are summarized on the Record of Borehole Sheets in Appendix C and Table 1.

In addition, the sedimentary bedrock may contain water-bearing bedding planes. When these bedding planes are intercepted by excavation, a substantial amount

of water, often under a hydrostatic head, may be encountered.

4.2 GROUNDWATER LEVEL MONITORING

All groundwater measurement data is presented in the enclosed Table 1. It should be noted that groundwater levels are subject to seasonal fluctuations. All groundwater levels were measured manually using an electric water level meter and with respect to the geodetic borehole elevations within the property boundary. The monitoring wells must be decommissioned, prior to construction, in accordance with Regulation 903 by a qualified contractor.

The interpreted groundwater flow direction is based on the 2022 round of water table elevation measurements, since this event provided water table elevations from the majority of the monitoring wells. Confidence in the groundwater flow direction could be increased with additional rounds of water table elevation measurements. The interpreted local direction of hydraulic movement across the Site is inferred to be in a west direction, towards Mullet Creek.

4.3 GROUNDWATER QUALITY

Groundwater samples collected in November 2022 from BH 202 were analyzed for the Peel Region Sewers By-Law criteria. The results of chemical analysis (Table 2) indicate that the following exceedances were recorded for the *Table 2 Limits for Sanitary & Combined Sewers Discharge:* Total Manganese (5.9 mg/L vs. 0.05 mg/L) and following exceedances were recorded for the *Table 2 Limits for Storm Sewer Discharge:* Total Manganese (5.9 mg/L vs. 0.05 mg/L) and detection limit exceedance for Total Aluminum, Total Arsenic, Total Chromium, Total Copper, Total Nickel, Total Selenium and Total Zinc.

4.4 **GROUNDWATER DISCHARGE ASSESSMENT**

Presently, the groundwater onsite can be discharged to the City sanitary or combined sewer system with a filtration/treatment system for total manganese. A filtration/treatment system for total manganese, total aluminum, total arsenic, total chromium, total copper, total nickel, total selenium and total zinc would also be required prior to discharging to the storm sewer system. A dewatering contractor

should be approached to explore the possibility of treatment if discharge to the storm sewer is required.

5.0 REVIEW AND EVALUATION

5.1 TEMPORARY DEWATERING ASSESSMENT

The excavation for the proposed three to four level underground parking structure will extend into shale bedrock. Positive dewatering such as well points will be required for the proposed excavation. It should be noted that during water drawdown onsite soils might be subject to localized piping, leading to an increase in the volume of both temporary and permanent drainage.

In addition, the (weathered) sedimentary bedrock can be fractured, fissured, or contain water-bearing bedding planes. When these bedding planes are intercepted in rock excavation, a substantial amount of water, often under a significant hydrostatic head, may be encountered. The depths and condition of shale bedrock vary across the Site; therefore, its quality should be confirmed during shoring installation and general excavation through inspections in the field.

For the proposed three to four underground levels, groundwater is required to be drawn down minimum 1 m below the underside of the P4 footing. However, for the purpose of temporary/construction dewatering, given the encountered subsurface conditions, groundwater cannot be lowered with well points below the average top elevation of shale bedrock at approximately 152.25 masl. Localized trenches and sumps can be used within bedrock to lower the water level below the underside of the P4 slab and footings, to an approximate elevation of 146.95 masl. This result is preliminary and should be confirmed during the construction phase and final stage of detailed design.

The average ground water level recorded in the monitoring wells is at an elevation of 156.26 masl, representing an approximate 9.3 m hydrostatic head requiring dewatering. The size of the shoring plan layout was assumed to cover approximately 115 m by 55 m.

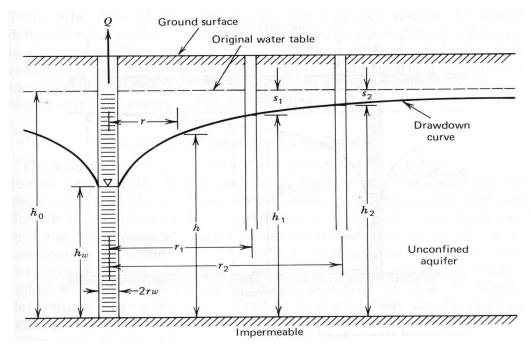
Theoretically, the groundwater drawdown for a single well pumping can be described as:

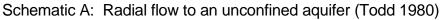
$$Q = -2\pi r K h \frac{dh}{dr} \tag{1}$$

And further we have:

(2)
$$h^{2} = -\frac{Q}{\pi K} \ln(r/r_{w}) + {h_{w}}^{2}$$

Where:


h [m] is the height of the water table above an impervious base


Q [*m*³/*day*] is the rate of pumping discharge

K [m/day] is hydraulic conductivity

R [*m*] is the radius from the centre of well location

 $r_w[m]$ is the radius of pumping well (see Schematic A below).

5.1.1 Numerical Analysis

The abovementioned Site parameters were used to calculate the estimated steady state discharge rate for temporary construction dewatering. Groundwater

monitoring data is presented in Table 3. The calculations for temporary dewatering rates are shown in Table 4.

From the observed soil types and based on soil sample descriptions (*Todd, 1980; Mays, 2001; and Craig, 2004),* the average hydraulic conductivity (K) of the aquifer was estimated at 0.3 m/day.

The estimated steady state discharge rate for temporary construction dewatering was calculated at approximately 193 m³/day (35 USG/min), with a safety factor of 1.5. It should be noted that the initial drawdown pumping rate, due to potential accumulation from rainfall, may be higher and this would be confirmed by the dewatering contractor.

5.2 PERMANENT FOUNDATION DRAIN FLOW RATES

For the proposed redevelopment, it is assumed that the finished floor slab elevation (FFE) at ground will be at an approximate elevation of 164.00 masl. The lowest P4 FFE will be at an approximate elevation of 149.45 masl.

With spread/strip footings, a conventional sub-floor Private Water Drainage System (PWDS) with perimeter/underfloor weeping tile will be required below the P4 level slab. The invert of the PWDS is assumed to be approximately 0.5 m below the FFE of the P4 slab, i.e. at approximately 148.95 masl.

The proposed PWDS is shown on Drawing No. 4. The slotted pipes should slope to a minimum 1% slope. Perimeter drainage pipes, with a positive gravity outlet, should be solid PVC with a minimum 0.5% slope. In addition, silt traps must be provided at convenient/accessible locations.

5.2.1 Numerical Analysis

The abovementioned Site parameters were used to calculate the estimated steady state discharge rate for the PWDS. Groundwater monitoring data is presented in Table 3and calculations for permanent drainage flow rates are shown in Table 5.

From the observed soil types and based on soil sample descriptions (*Todd, 1980; Mays, 2001; and Craig, 2004),* the average hydraulic conductivity (K) of the aquifer

was estimated at 0.3 m/day.

The estimated steady state discharge rate for the PWDS was calculated at approximately 117 m³/day (21 USG/min) with a safety factor of 1.50.

5.3 MECP PERMIT TO TAKE WATER REQUIREMENT

The Permit to Take Water (PTTW) requirements for construction site dewatering have been updated to the current O.Reg.63/16 amendment to Environmental Protection Act. In accordance with the updated regulation, construction site dewatering will require a complete PTTW application when water takings greater than 400,000 L/day are predicted. Groundwater taking between 50,000 L/day and 400,000 L/day will require a PTTW through a limited online application process. Groundwater taking from a proposed building structure by means of a PWDS will require a PTTW when water taking is greater than 50,000 L/day. The complete permit application process for PTTW takes approximately twelve weeks to review and is required prior to applying for the discharge permits.

The anticipated temporary dewatering discharge rate was calculated at approximately 193 m³/day. Therefore, a limited PTTW application will be required to be applied for with the MECP.

The flow rate from the PWDS was calculated at approximately 117 m³/day. Therefore, a complete PTTW application for the PWDS will be required for the proposed developments.

In accordance with the current Ontario Regulation 387/04 for Water Taking, every person to whom a permit has been issued under Section 34 of the Act shall collect and record data on the volume of water taken daily. The data collected shall be measured by a flow meter or calculated using a method acceptable to a Director.

5.4 MUNICIPAL DISCHARGE PERMIT REQUIREMENTS

The Municipality requires that any private water to be discharged into the City sewer system must have a permit or agreement in place in order to discharge; this applies to all water not purchased from the City water supply. For temporary

dewatering during the construction phase, this includes all groundwater and storm water that is collected or encountered during site excavation. For the PWDS, this includes all groundwater that is constantly pumped due to the PWDS elevation located below the groundwater table, or by storm water infiltration.

The groundwater quality samples collected in 2022 indicated that the water onsite could be discharged into the City sanitary and combined sewer system with filtration/treatment for total manganese. A filtration/treatment system for total manganese, total aluminum, total arsenic, total chromium, total copper, total nickel, total selenium and total zinc would also be required prior to discharging to the storm sewer system. Updated groundwater samples should be collected during a pumping test to confirm the current groundwater quality.

A short-term temporary discharge permit must be applied for construction dewatering with the Municipality. A long-term permanent discharge permit must be applied for the proposed PWDS since the drainage system is located below the long-term groundwater elevation. The permanent discharge permit will involve coordination with the mechanical and site servicing consultant to provide calculations and drawing specifications for the ultimate discharge location and the sampling port required by the Municipality.

5.5 ENVIRONMENTAL PROTECTION

The Site is located within the Credit River drainage basin and the river is approximately 0.5 km north of the Site. The Site is located in the City of Mississauga urban environment which obtains its municipal water supply from Lake Ontario. Therefore, there are no potable groundwater users within the vicinity of the Site.

The proposed redevelopment plan will remove the overburden and bedrock within the shoring precinct, to a depth of approximately 15 mbgs. Temporary groundwater dewatering will lower the groundwater table to below the underground parking foundation levels. The extracted water will be discharged into the sanitary sewer, or to the storm sewer with filtration/treatment. Updated groundwater monitoring will be conducted by the dewatering contractor prior to and during construction activities to ensure that no additional adverse groundwater

impacts are identified throughout the project's construction.

6.0 CONCLUSIONS AND RECOMMENDATIONS

McClymont & Rak Engineers Inc. was retained to conduct a Geohydrology Assessment for the Site in relation to the proposed redevelopment. The Site is presently vacant lot with a one storey building.

The Site is proposed for residential development consisting of a ten [10] storey building with three to four [3 to 4] levels of below grade parking.

Based on the architectural drawings presented in Appendix B, ground finished floor slab elevation (FFE) will be at an elevation of 164.00 m, P3 FFE will be at 153.845 to 150.895 m and partial P4 FFE will be at elevations of 150.645 to 149.450 m.

Presently, it is assumed that the proposed building can be supported on spread/strip footings founded in weathered shale bedrock. The size of the shoring plan layout was assumed to cover approximately 115 m by 55 m.

With spread/strip footings supporting the structure, a sub-floor Private Water Drainage System (PWDS), with perimeter weeping tile below the P3/P4 slab, will be required. A soldier pile and lagging wall shoring system will be sufficient for the Site except where adjacent structures exist where a caisson wall will be utilized.

The excavation for the proposed three to four level underground parking structure will extend into shale bedrock. Positive dewatering such as well points will be required for the proposed excavation. Onsite soils might be subject to localized piping during dewatering. It should be noted that during water drawdown onsite soils might be subject to localized piping, leading to an increase in the volume of both temporary and permanent drainage.

In addition, the (weathered) sedimentary bedrock can be fractured, fissured, or contain water-bearing bedding planes. When these bedding planes are intercepted in rock excavation, a substantial amount of water, often under a significant hydrostatic head, may be encountered. The depths and condition of shale bedrock vary across the Site; therefore, its quality should be confirmed during shoring installation and general excavation through inspections in the field.

For the proposed three to four underground levels, groundwater is required to be drawn down minimum 1 m below the underside of the P4 footing. However, for the purpose of temporary/construction dewatering, given the encountered subsurface conditions, groundwater cannot be lowered with well points below the average top elevation of shale bedrock at approximately 152.25 masl. Localized trenches and sumps can be used within bedrock to lower the water level below the underside of the P4 slab and footings, to an approximate elevation of 146.95 masl. This result is preliminary and should be confirmed during the construction phase and final stage of detailed design.

The average ground water level recorded in the monitoring wells is at an elevation of 156.26 masl, representing an approximate 9.3 m hydrostatic head requiring dewatering.

The steady state discharge rate for temporary construction dewatering was estimated at approximately 193 m³/day (35 USG/min) for the proposed development. Therefore, based on the amended O.Reg. 63/16 to the Environmental Protection Act, a limited PTTW application through the ESAR will be required from the MECP, and a temporary discharge permit will be required from the Municipality. It should be noted that the initial drawdown pumping rate and accumulation from rainfall will be higher and this should be confirmed by the dewatering contractor.

The estimated steady state discharge rate for the PWDS was calculated at approximately 117 m³/day (21 USG/min) for the proposed development. Therefore, a complete PTTW will be required from the MECP for the PWDS for the development. A long-term permanent discharge permit will be required from the Municipality since the drainage will be installed below the long-term groundwater elevation.

Presently, the groundwater onsite can be discharged to the City sanitary or combined sewer system with a filtration/treatment system for total manganese. A filtration/treatment system for total manganese, total aluminum, total arsenic, total chromium, total copper, total nickel, total selenium and total zinc would also be required prior to discharging to the storm sewer system. A dewatering contractor should be approached to explore the possibility of treatment if discharge to the storm sewer is required.

The application process, where a PTTW is required, can take at least three months for a review by the MECP and is required to be approved prior to applying for discharge permits. It is recommended that applications to the Municipality for discharge permits be applied for at least three months prior to the required start dates. Applications are to be supported by drawings and calculations provided by the mechanical and the site servicing consultant and coordination is required amongst all disciplines.

7.0 REFERENCES

- 1. Ontario Ministry of the Environment. Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act. April15, 2011.
- 2. Ministry of Northern Development and Mines. *Quaternary Geology of Toronto and Southern Ontario Southern, Sheet Map 2504,* 1980.
- 3. Ministry of Northern Development and Mines. *Bedrock Geology of Ontario-Southern Sheet,* 1991.
- 4. D.K. Todd, *Groundwater Hydrology*, 2nd Edition, John Wiley & Sons, New York, 1980.
- 5. L.W. Mays, *Water Resources Engineering*, 1st Edition, John Wiley & Sons, New York, 2001.
- 6. MCR report titled: Preliminary Geotechnical Report, Proposed Residential Development, 190 Rutledge Road, Mississauga, Ontario, prepared for Forest Green Homes, dated December 2022.

8.0 STATEMENT OF LIMITATIONS

McClymont & Rak Engineers, Inc. (MCR) conducted the work associated with this report in accordance with the scope of services, time and budget limitations imposed for this work. The work has been conducted according to reasonable and generally accepted local standards for an environmental consultant at the time of the work. No other warranty or representation, expressed or implied, is included or intended in this report.

The work was designed to provide an overall assessment of the environmental conditions at the Site. The conclusions presented in this report are based on the information obtained during the investigation. The work is intended to reduce the client's risk with respect to environmental impairment. No work can completely eliminate the possibility of further environmental impairment on the Site.

It should be noted that subsurface conditions might vary at locations and depths other than those locations where borings, surveys or explorations were made by MCR. Other contaminants, not tested for in this work, may also potentially be present on the Site. Even with exhaustive investigation, it is not possible to warranty the Site will be free of contaminants. Should conditions, not observed during the work, become apparent, MCR should be immediately notified to assess the situation and conduct additional work, where required. The findings of this report are based on conditions as they were observed at the time of the work.

No assurance is made regarding changes in conditions subsequent to the time of the work. Remediation cost estimates is based on the available information. The estimated costs for remediation only represent the costs for the clean-up of known contaminants that have been identified during the work. Additional costs may be incurred as a result of other contaminants or areas of contamination identified by subsequent work.

Regulatory statutes are subject to interpretation. These statutes and their interpretation may change over time, thus these issues should be reviewed with appropriate legal counsel.

MCR relied on information provided by others in this report. MCR cannot guarantee the accuracy, completeness and reliability of the information provided by others, although MCR staff attempted to seek clarification on information provided and verifies authenticity, where practical.

The report and its attachments were prepared for and made available for the sole use of the client. MCR will not be responsible for any use or interpretation of the information contained in this report by any other party without the prior expressed written consent of MCR.

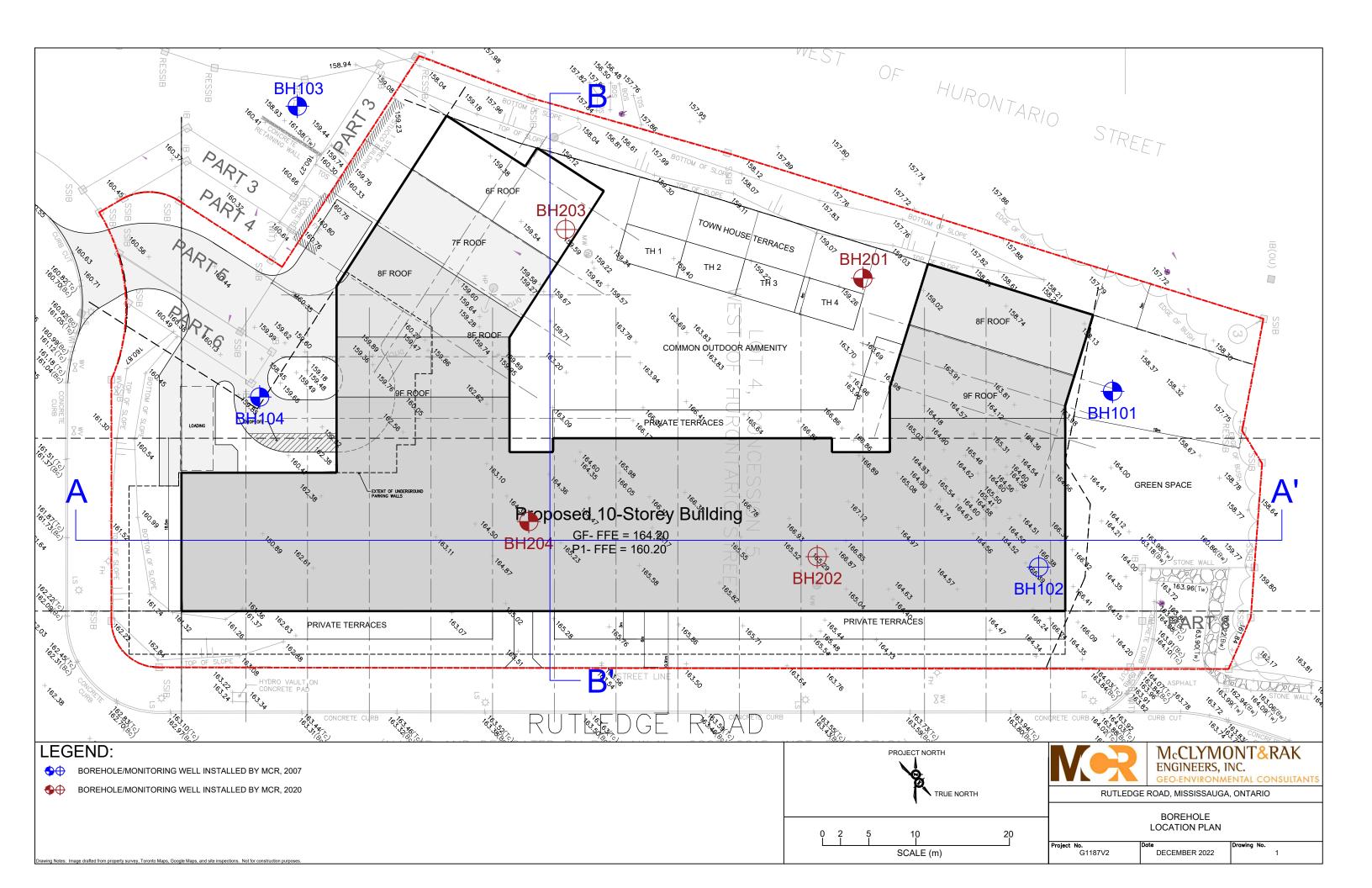
9.0 CLOSURE

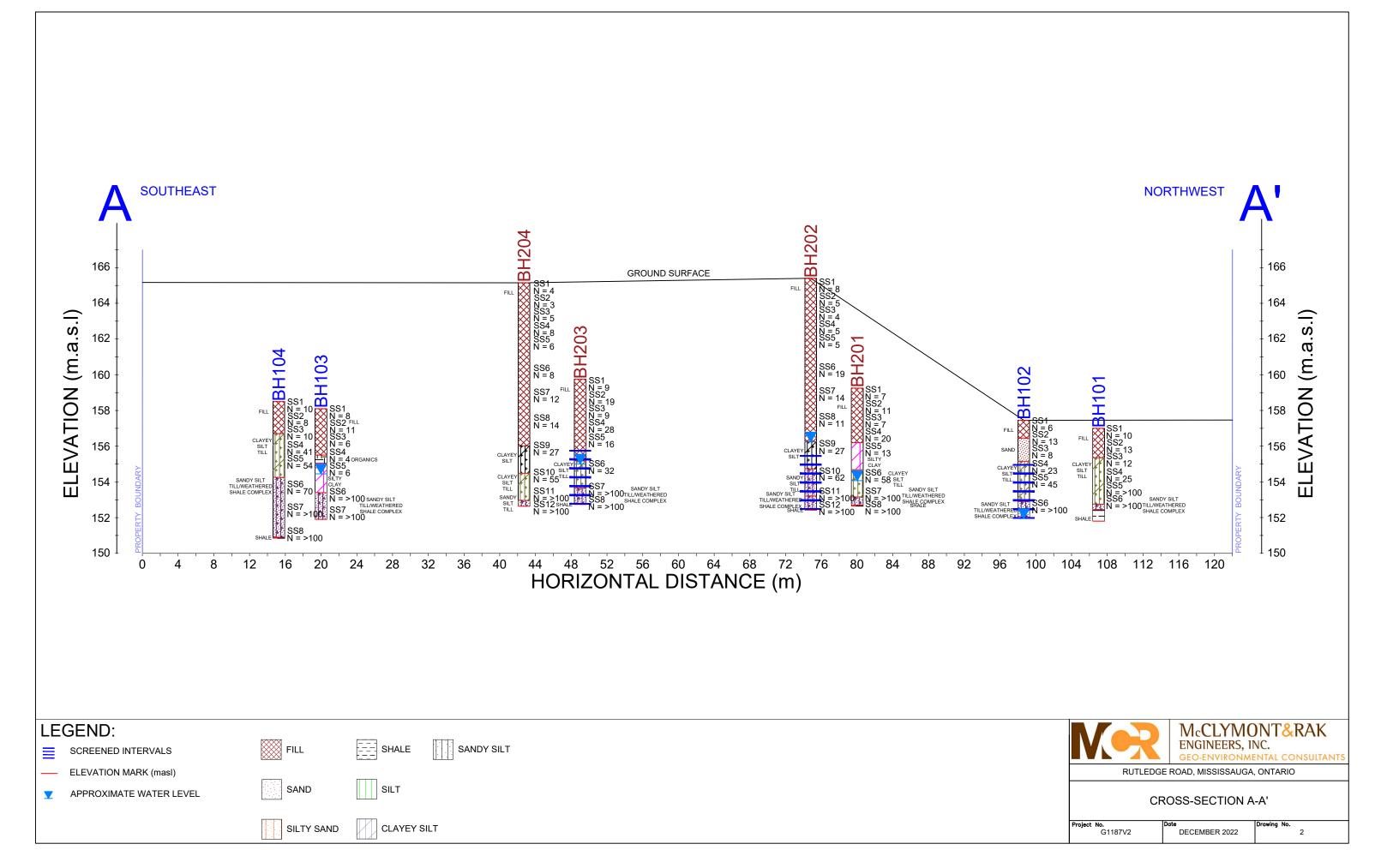
In accordance with your request and authorization, McClymont and Rak Engineers Inc. completed this Geohydrology Assessment Report. This report presented the methodology, findings and conclusions of the investigation. The Statement of Limitations for all work performed as part of this investigation is included.

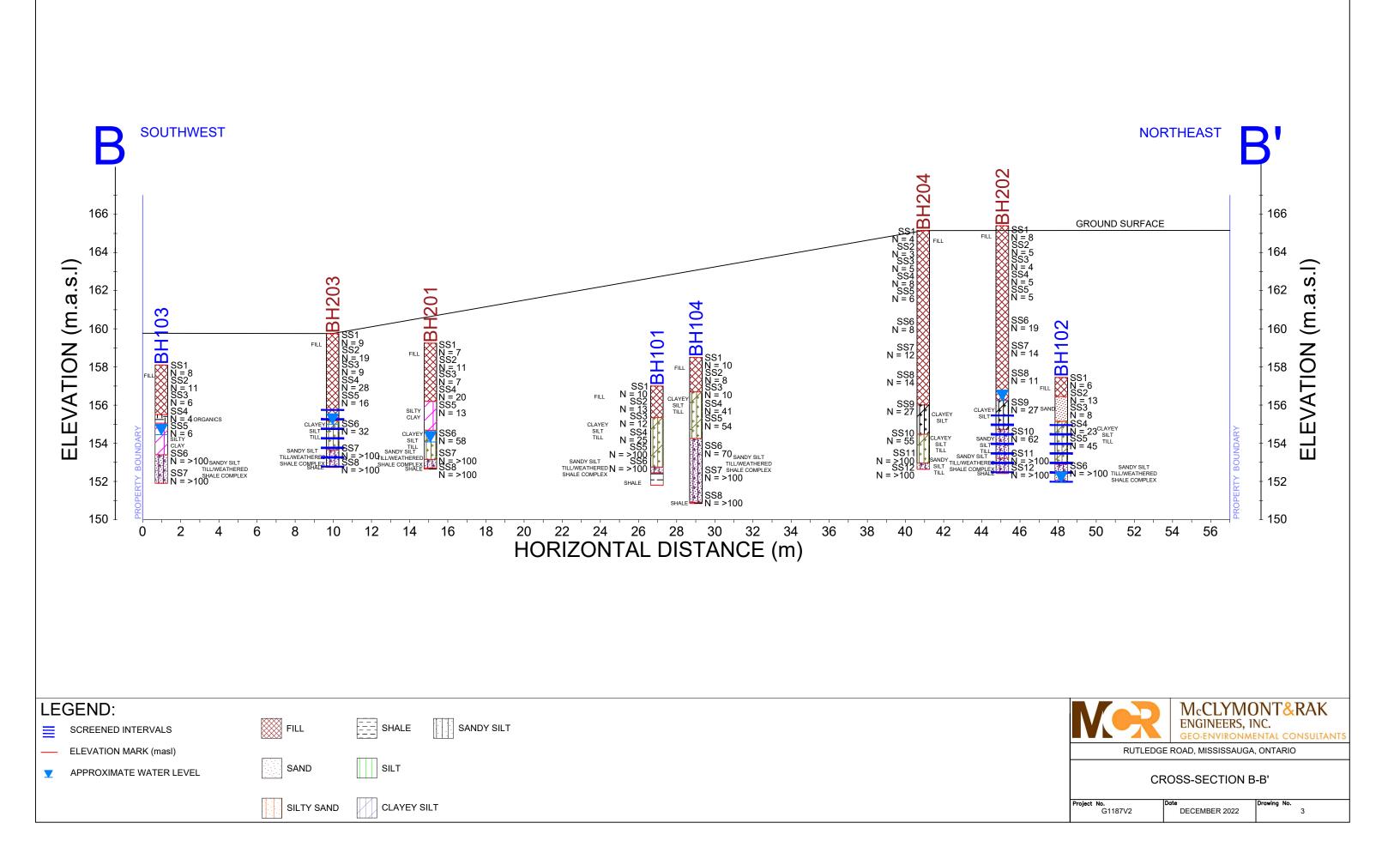
We trust that the information provided in this report is sufficient for your present requirements. Should you have any further questions, please do not hesitate to contact our office. Thank you for retaining McClymont & Rak Engineers, Inc. for this project.

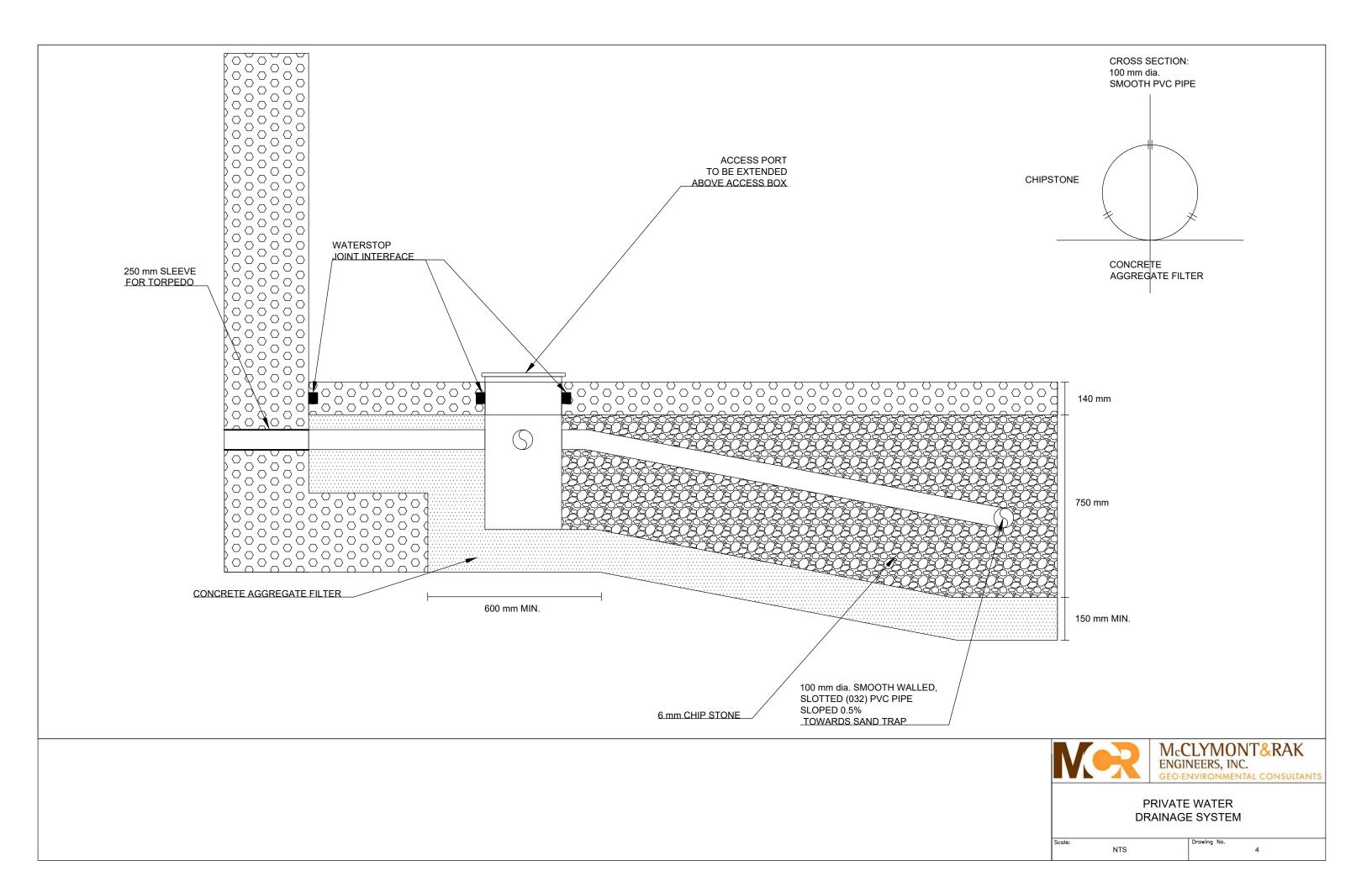
Respectfully, MCCLYMONT & RAK ENGINEERS INC.

Salman Tavassoli


Prepared By: Salman Tavassoli, EIT




Reviewed By: Lad Rak, P.Eng.


Date of Issue: December 12, 2022

FIGURES

TABLES

TABLE 1

CONSTRUCTION DETAILS AND ELEVATION OF MONITORING WELLS

MONITORING WELL ID	GROUND SURFACE ELEVATION (masl)	WATER LEVEL	GROUNDWATER ELEVATION (masl)	DATE OF MEASUREMENT (mm/dd/yyyy)	DEPTH OF WELL (mbgs)	DEPTH OF BENTONITE (mbgs)	LENGTH OF SCREEN (m)	INSIDE DIAMETER OF PIPE (mm)	TOP OF MONITORING WELL	
511.400		-0.10	157.55	04/30/2007					Protective Metal	
BH 102	157.45	-0.10	157.55	05/01/2007	5.50	2.15	3.05	50	Casing	
		8.45	156.95	02/19/2020		9.14		50	Protective Metal Casing	
BH 202	165.40	9.04	156.36	11/03/2022	12.80		3.05			
		9.16	156.24	11/16/2022					Casing	
		6.61	153.14	02/19/2020					Protective Metal	
BH 203	159.75	4.76	154.99	11/03/2022	7.01	3.35	3.05	50	3.05 50 ^P	Casing
		4.75	155.00	11/16/2022					Odding	
Min	157.45	-0.10	153.14	-	5.50	-	-	-	-	
Max	165.40	9.16	157.55	-	12.80	-	-	-	-	
Average	160.87	5.32	155.97	-	8.44	-	-	-	-	

NOTE:

mbgs - meters below ground surface

masl - meters above sea level

N/A - Not Applicable

NF - Not Found

McCLYMONT AND RAK ENGINEERS INC. <u>GEO-ENVIRONMENTAL CONSULTANTS</u>

TABLE 2 GROUNDWATER ANALYTICAL RESULTS - PEEL REGION SEWERS BY-LAW DISCHARGE CRITERIA (By-Law 53-2010) MCR JOB#: G1187V2

SITE ADDRESS: 190 Rutledge Road, Mississauga, Ontario

PARAMETER	UNITS	LIMITS FOR STORM	LIMITS FOR SANITARY & COMBINED SEWERS	BH 202
FARAMETER	UNITS	SEWER DISCHARGE	DISCHARGE	17-Nov-22
pH	pH Units	6.0 - 9.0	5.5 - 10.0	8.08
Total Suspended Solids	mg/L	15	350	9.2
Fluoride (F-)	mg/L	-	10	0.737
Total Kjeldahl Nitrogen (TKN)	mg/L	1	100	0.753
Total Phosphorus (P)	mg/L	0.4	10	0.0196
Sulfate (SO4)	mg/L	-	1500	167
Total Cyanide (CN)	mg/L	0.02	2	<0.0020
Escherichia Coli	CFU/100mL	200	-	<1
Total Aluminum (AI)	mg/L	1	50	<3.00
Total Antimony (Sb)	mg/L	-	5	<0.100
Total Arsenic (As)	mg/L	0.02	1	<0.100
Total Cadmium (Cd)	mg/L	0.008	0.7	<0.00500
Total Chromium (Cr)	mg/L	0.08	5	<0.500
Total Cobalt (Co)	mg/L	-	5	<0.100
Total Copper (Cu)	mg/L	0.05	3	<0.500
Total Lead (Pb)	mg/L	0.12	3	< 0.0500
Total Manganese (Mn)	mg/L	0.05	5	5.9
Total Mercury (Hg)	mg/L	0.0004	0.01	< 0.0000050
Total Molybdenum (Mo)	mg/L	-	5	<0.0500
Total Nickel (Ni)	mg/L	0.08	3	<0.500
Total Selenium (Se)		0.02	1	<0.0500
Total Silver (Ag)	mg/L	0.12	5	< 0.0100
Total Tin (Sn)	mg/L	-	5	<0.100
Total Titanium (Ti)	mg/L	-	5	<0.300
Total Zinc (Zn)	mg/L	0.04	3	<3.00
Biological Oxygen Demand	mg/L mg/L	15	300	<3.0
Total Oil & Grease (Animal/Vegetable)	-	-	150	<5.0
	mg/L	-	15	<5.0
Total Oil & Grease Mineral/Synthetic Phenols-4AAP	mg/L	0.008	1	0.0048
	mg/L	2	10	< 0.50
Benzene	μg/L	2	40	<0.50
Chloroform	µg/L			
1,2-Dichlorobenzene	μg/L	5.6	50 80	< 0.50
1,4-Dichlorobenzene	µg/L	6.8		< 0.50
cis-1,2-Dichloroethylene	µg/L	5.6	4000	< 0.50
Dichloromethane (Methylene Chloride)	μg/L	5.2	2000	<1.0
rrans-1,3-Dichloropropene	µg/L	5.6	140	<0.30
Ethylbenzene	µg/L	2	160	<0.50
Methyl Ethyl Ketone	µg/L	-	8000	<20
Styrene	µg/L	-	200	< 0.50
1,1,2,2-Tetrachloroethane	µg/L	17	1400	<0.50
Tetrachloroethylene	µg/L	4.4	1000	<0.50
Toluene	µg/L	2	270	<0.50
Trichloroethylene	µg/L	8	400	<0.50
Xylene (Total)	μg/L	4.4	1400	<0.50
Bis(2-ethylhexyl)phthalate	μg/L	8.8	12	<2.0
Di-n-butylphthalate	μg/L	15	80	<1.0
Total PCBs	μg/L	0.4	1	<0.063
Nonylphenol	μg/L	-	20	<1.0
Total Nonylphenol Ethoxylates	µg/L	-	200	<2.0

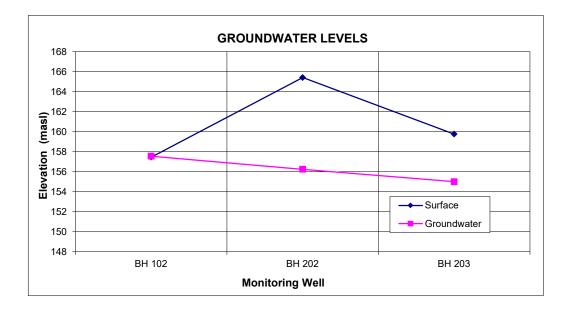
Note:

BOLD

Exceeds Criteria - Peel Region Sanitary By-Law

BOLD Non-Detect Exceeds Criteria - Peel Region Sanitary By-Law

BOLD Exceeds Criteria - Peel Region Storm By-Law


BOLD Non-Detect Exceeds Criteria - Peel Region Storm By-Law

Project:	Proposed Residential Development
Location:	190 Rutledge Road, Mississauga, Ontario
Date:	December-22
Project #:	G1187V2

TABLE 3 GROUNDWATER MONITORING DATA

Surface	Wate	r Level	Monitoring Date	
Elevation	Depth	Elevation		NOTES
(masl)	(mbgs)	(masl)	(mm/dd/yyyy)	NOTES
157.45	-0.10	157.55	05/01/2007	
165.40	9.16	156.24	11/16/2022	
159.75	4.75	155.00	11/16/2022	
	Elevation (masl) 157.45 165.40	Elevation Depth (masl) (mbgs) 157.45 -0.10 165.40 9.16	Elevation Depth Elevation (masl) (mbgs) (masl) 157.45 -0.10 157.55 165.40 9.16 156.24	Elevation Depth Elevation (masl) (mbgs) (masl) (mm/dd/yyyy) 157.45 -0.10 157.55 05/01/2007 165.40 9.16 156.24 11/16/2022

Average	160.87	4.60	156.26	
Max			157.55	

Project: **Proposed Residential Development** Location: 190 Rutledge Road, Mississauga, Ontario Date: December-22 Project #: G1187V2

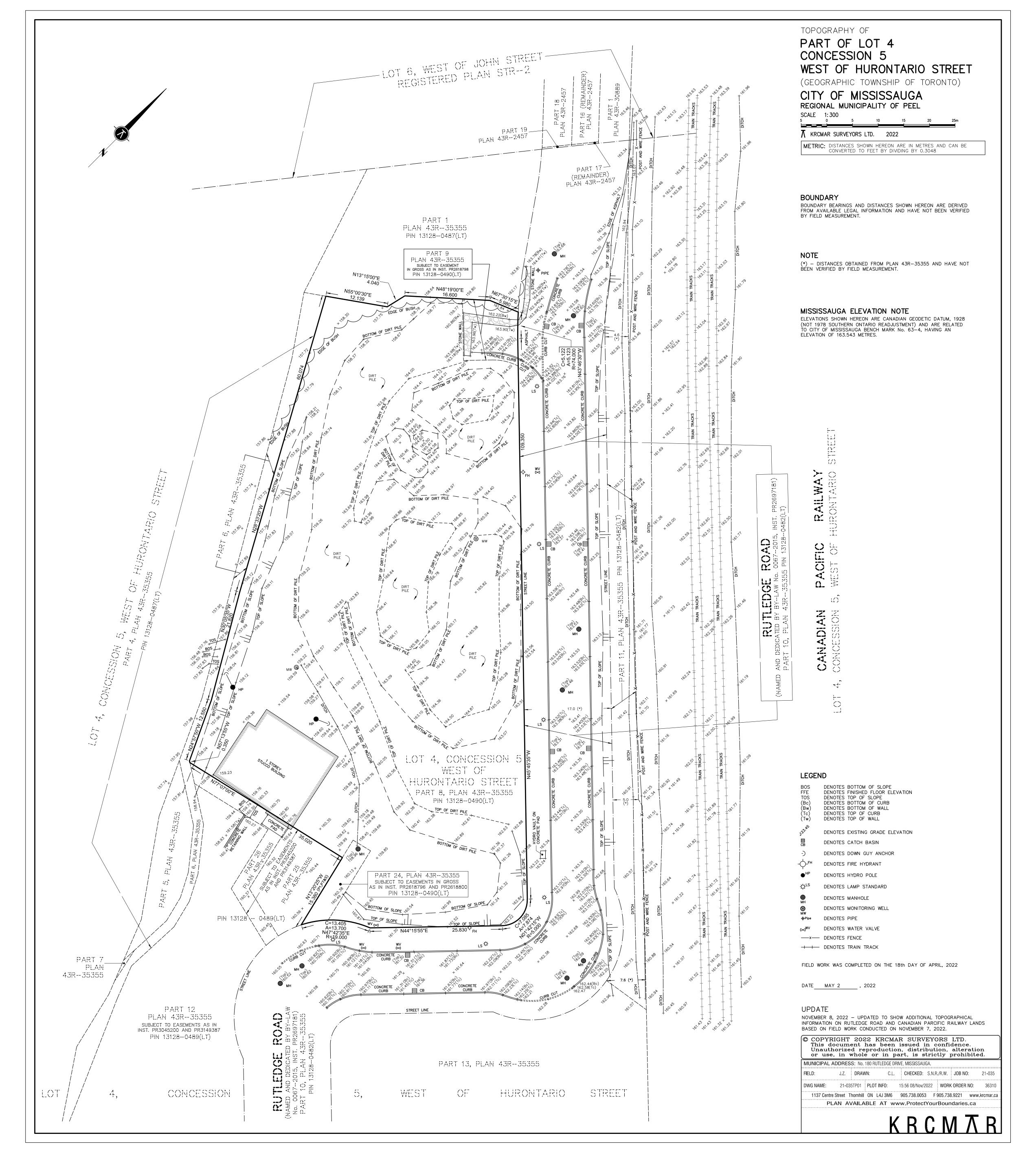
TABLE 4 DISCHARGE ESTIMATION OF CONSTRUCTION DEWATERING OF M 5 DEVELOPMENT

Site Parameters		Units
Initial Water Level before Dewatering	156.26	(m)
Lowest Water Level during Construction Dewatering	146.95	(m)
Length of Site X	115.00	(m)
Width of Site W	55.00	(m)
Equivalent Radius r _e	44.87	(m)
Hydraulic Conductivity of Aquifer (k)	0.30	(m/day)
Aquifer Bottom Elevation	145.95	(m)
Applied Radius of Influence (Ro)	52.06	(m)
Height btw Initial Water Level and Aquifer Bottom (H)	10.31	(m)
Height btw Lowest Water Level and Aquifer Bottom (hw)	1.00	(m)
Radius of Influence (R)	96.93	(m)
Factor of Safety (FS)	1.50	

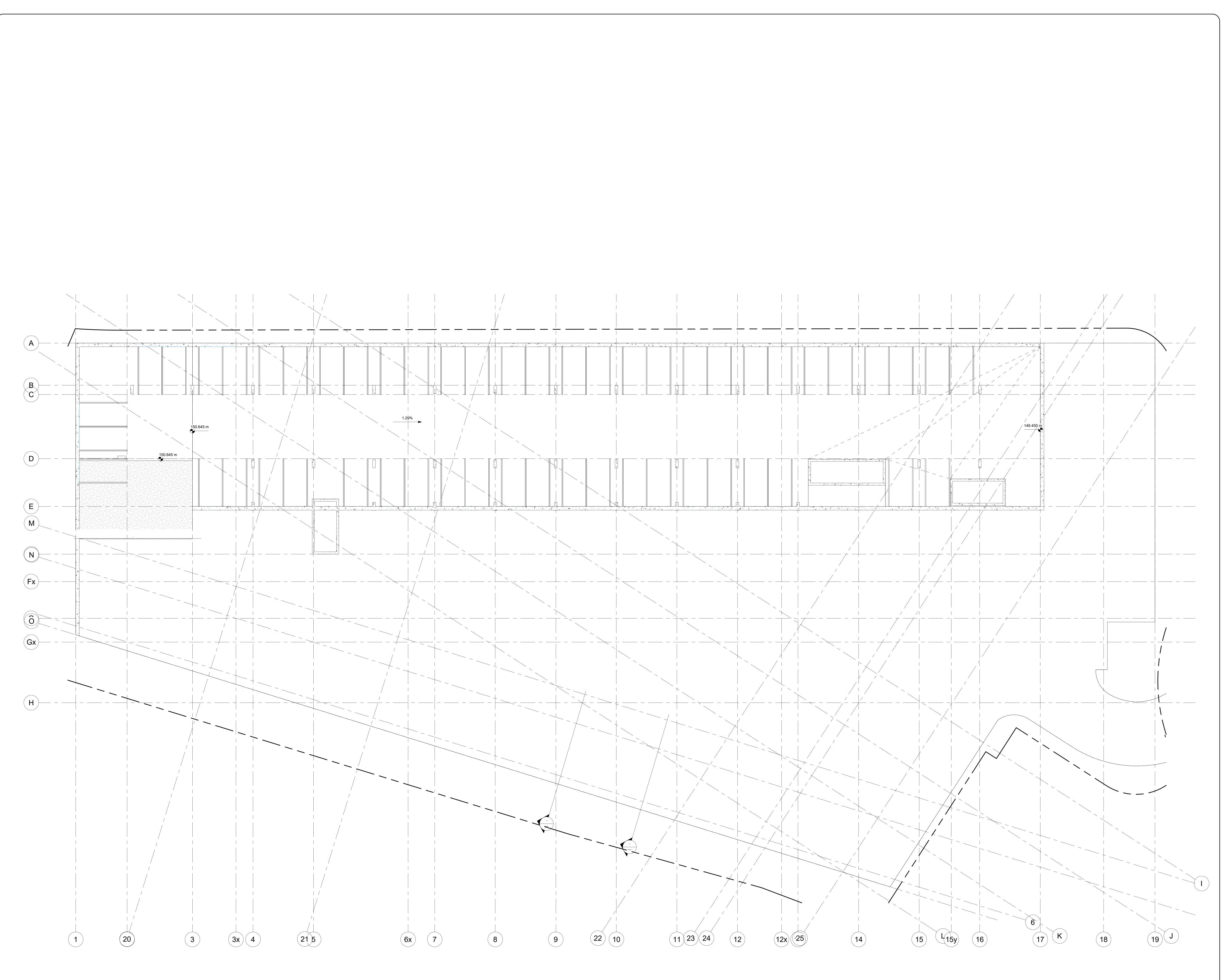
$$Q = \frac{\pi k (H^2 - h_w^2)}{Ln(R/r)}$$

Estimated steady-state discharge of dewatering	193.39 (m ³ /day)
	35 (USG/min)

Project: **Proposed Residential Development** Location: 190 Rutledge Road, Mississauga, Ontario Date: December-22 Project #: G1187V2

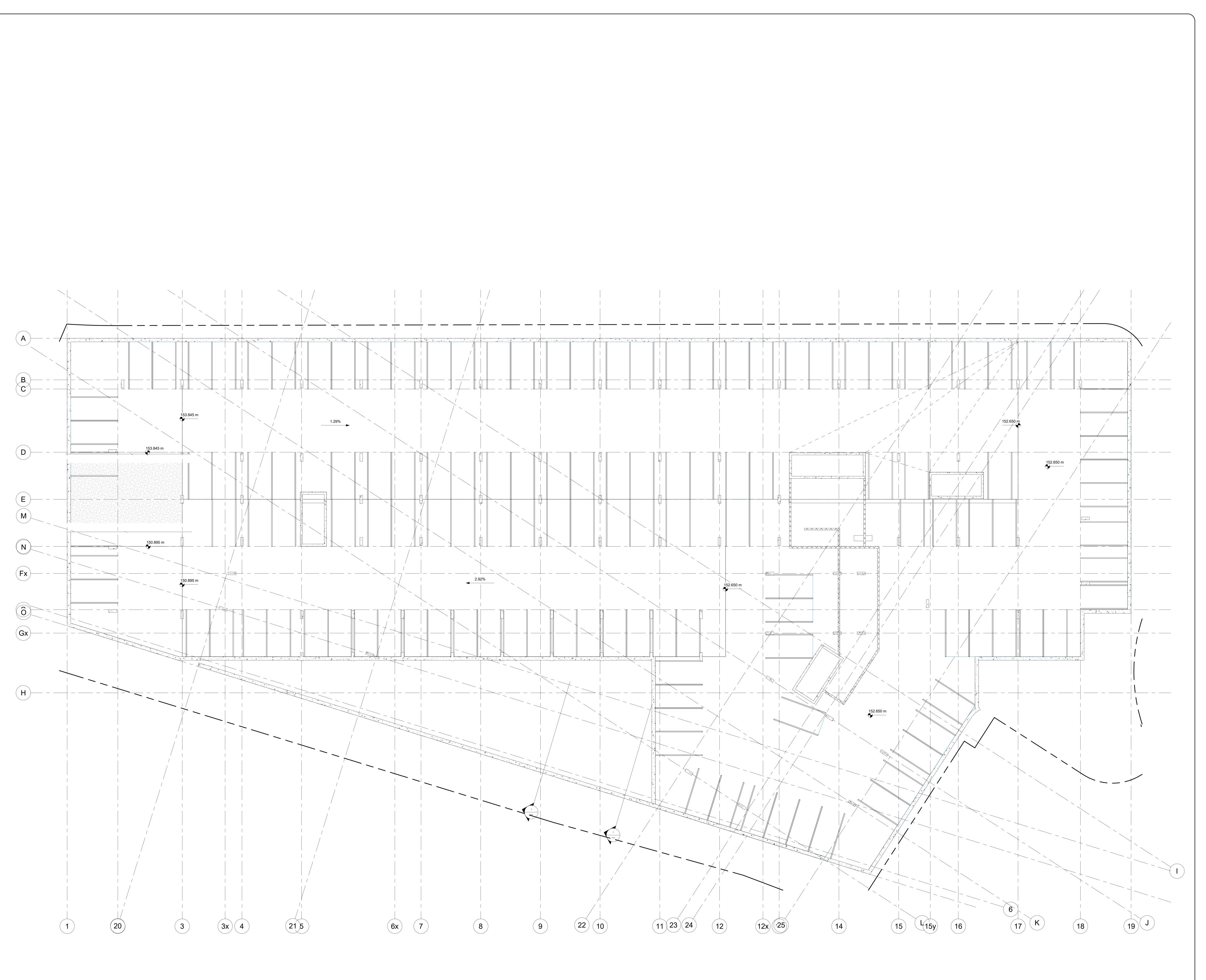

TABLE 5 DISCHARGE ESTIMATION OF PERMANENT DRAINAGE SYSTEM OF M 5 DEVELOPMENT

Site Parameters		Units
Initial Water Level before Dewatering	156.26	(m)
Lowest Water Level under PDS conditions	148.95	(m)
Length of Site X	115.00	(m)
Width of Site W	55.00	(m)
Equivalent Radius r _e	44.87	(m)
Hydraulic Conductivity of Aquifer (k)	0.30	(m/day)
Aquifer Bottom Elevation	148.95	(m)
Applied Radius of Influence (Ro)	40.88	(m)
Height btw Initial Water Level and Aquifer Bottom (H)	7.31	(m)
Height btw Lowest Water Level and Aquifer Bottom (h _{w)}	0.00	(m)
Radius of Influence (R)	85.75	(m)
Factor of Safety (FS)	1.50	


$$Q = \frac{\pi k (H^2 - h_w^2)}{Ln(R/r)}$$

Estimated steady-state discharge of dewatering	116.74 (m ³ /day)
	21 (USG/min)

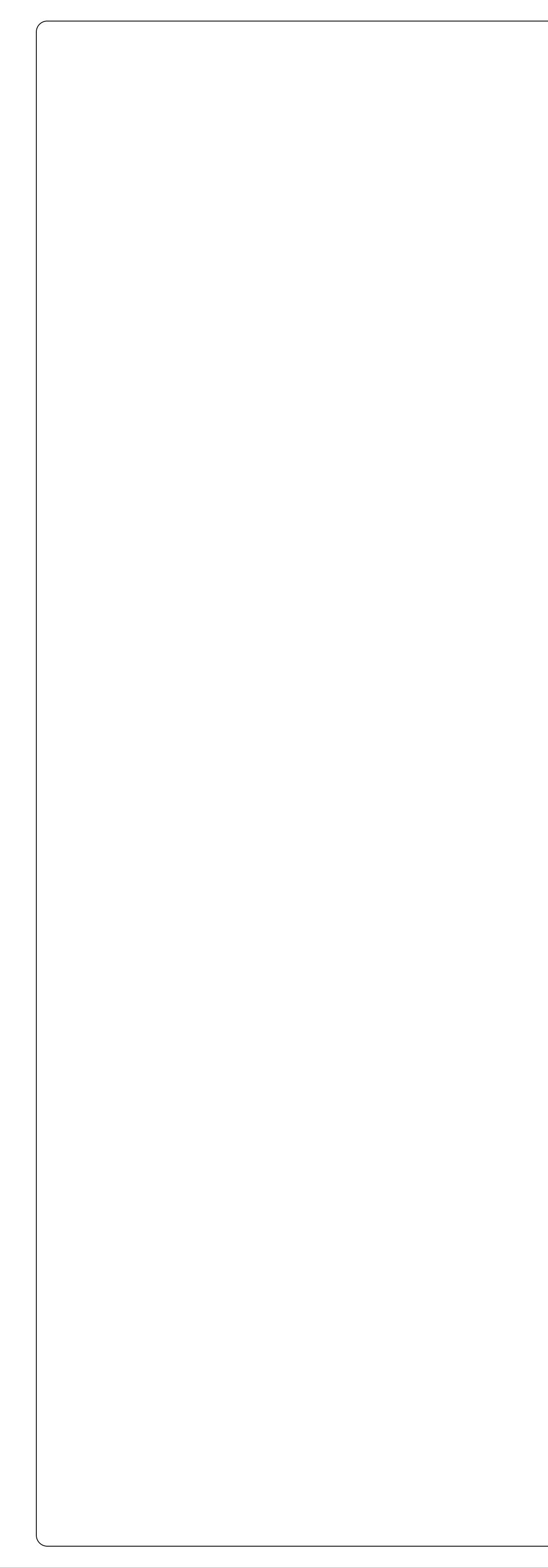
APPENDIX A



APPENDIX B

	IS	SUED FOR		
1				
NO.	DATE	DESC	RIPTION	
REVISION			y all dimensions and be	
responsi	or must cheo ble for same ommencing v	. Reporting	y all dimensions and be any discrpancies to the Arc	chitect
All drawin	ngs, prints a t and must b	nd specifica be returned	ations are the property of the to him on completion of wo	e vrk.
Latest dr	awings only e not to be s	to be used	for construction.	
	י ווטנ נס be s	ບລາ ບ ປ.		
	_{BIO} ASSO	Ja.		
RNO	ARCHIEC	IS Z	насилистически	
(interest of the second	HANIE PUP FOSS	MAI MIN)
	LICENCE 5061	MAI MAI		
		Ç	BAL	
		6 Leswyn	CHITECT INC Road, Toronto, Ontario M6, 116 256 4440 fx: 416 256	A 1K2
				-
CLIENT				
PROJEC	T NAME			Vic 2
			RUTLEDO	GE RD.
DRAWN	BY			СМ
CHECKE				RP, PP
DATE SCALE				4/28/22 1 : 125
DWG. TI	TLE			
			P4 PL/	۹N
PROJEC	ΤΝΟ			
	•			
ſ	22-03	3	A200	

22-03


DATE ISS	SUED FOR		
	T		
1 NO. DATE		RIPTION	
NO. DATE REVISIONS	DESC	RIPTION	
Contractor must chec responsible for same.	k and verify Reporting	/ all dimensions and b any discrpancies to th	be ne Architect
before commencing v All drawings, prints ar	vork.		
ARchitect and must b Latest drawings only	e returned to be used t	to him on completion	of work.
Prints are not to be so	aled.		
ASSO	4		
S ARCHITECT	s/z	Model: House	
HANNER FOSSA LICENCE 5061	MAI 37		
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
			_
GIL	6 L ASMA/P		NC. 10 M6A 1K2
	ph: 4	16 256 4440 fx: 41	6 256 4449
CLIENT			
PROJECT NAME		RUT	Vic 2
			2 10
DRAWN BY			CN
CHECKED BY DATE			RP, PI 04/28/22
SCALE DWG. TITLE			1 : 125
		P3 F	'LAN
PROJECT NO.		A 00	1
22-03	,)	A20	I

DATE	ISSUED FOR	
1		
NO. DATE	DESC	RIPTION
REVISIONS		
responsible for s	ame. Reporting	all dimensions and be any discrpancies to the Architect
before commend	cing work.	
ARchitect and m	ust be returned	tions are the property of the to him on completion of work.
Latest drawings	only to be used t	or construction.
Prints are not to	pe scaled.	
ARHO AS		ε
8 ARCH	TECTS Z	the second second
HANIGH	OSSAMAI JI	
HANNING THE LICE	OSSAMAI	
G		BAL
	6 Leswyn F	
	ph: 4	16 256 4440 fx: 416 256 4449
CLIENT		
PROJECT NAME	Ξ	Vic 2
		RUTLEDGE RD.
DRAWN BY		СМ
CHECKED BY		RP, PP 04/28/22
DATE SCALE		04/28/22 1 : 125
DWG. TITLE		
		P2 PLAN
PROJECT NO.		A202
22-0		$(\Lambda (M (Y)))$

DATE	ISSUED FOR	
1 DATE	DESC	RIPTION
REVISIONS	check and verify	y all dimensions and be
responsible for s before commend	ame. Reporting cing work.	any discrpancies to the Architect
All drawings, prir ARchitect and m Latest drawings	ust be returned	ations are the property of the to him on completion of work. for construction.
Prints are not to	be scaled.	
ARIO AS	isoci	
O ARCEN	ECIS/2	A CAREEL AND A CAR
Lice Handrey Lice	OSSAMAI	
G		
	6 Leswyn ph: 4	Road, Toronto, Ontario M6A 1K2 16 256 4440 fx: 416 256 4449
<u>.</u>		
CLIENT		
PROJECT NAME	E	Vic 2 RUTLEDGE RD.
DRAWN BY CHECKED BY		CM RP, PP
DATE SCALE		04/28/22 1 : 125
DWG. TITLE		P1 PLAN
PROJECT NO.		
22-1	03	A203

	SSUED FOR	
	Exterior Finish	
7 Wir	ndow Wall Spandrel Panel	
BUILDING MATERIA SELECTIO	LS/CLADDING	
AND COL	ENTATIVE OF SIZE OR OF MATERIALS 1	
BE CHOS	EN AT A LATER DAT	E
1 NO. DATE	DESCRIPTION	
REVISIONS Contractor must che	eck and verify all dimensions and be	Arch:
	e. Reporting any discrpancies to the work. and specifications are the property of be returned to him on completion of to be used for construction.	
Prints are not to be s		J. I.
REIO ASSO	Cla	
O ARCHIEC	TS 2	
Licence 11, 5061	unning and a second sec	
	6 Leswyn Road, Toronto, Ontario M ph: 416 256 4440 fx: 416 2	06A 1K2 56 4449
 CLIENT		
PROJECT NAME		Vic
	RUTLE	
DRAWN BY CHECKED BY		Autho
DATE SCALE DWG. TITLE		06/29/2 1 : 15
	WEST COL ELEVATI	
		~1
PROJECT NO.	• • • • •	
22-03	3 A306	

17	18 19 1 1 1 1 1 1 1 1 1 1	NOTE: BUILDIN MATERIA SELECT REPRES AND COI BE CHOS
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 NO. DATE REVISIONS Contractor must of responsible for sar before commencin All drawings, prints ARchitect and must Latest drawings or Prints are not to be Prints are not to be ARCHITE ARCHITE The prints are not to be The prints are not to be ARCHITE The prints are not to be <
	Level 04 (174.50) ? Level 03 (171.50) ? Level 02 (168.50) ? Level 01 - Ground (164.00) ? P1 (160.20) ?	CLIENT CLIENT PROJECT NAME DRAWN BY CHECKED BY DATE SCALE DWG. TITLE
I	ı I	PROJECT NO.

DATE	ISSUED FOR	
DATE		
	Exterior	Finish
6	Window Wall V	ísion Panel
7	Window Wall S	
NOTE: BUILDI	NG	
	IALS/CL/ TIONS AI	
REPRE	SENTAT	IVE OF SIZE
	JSEN AT	A LATER DATE
		A LATER DATE
1		A LATER DATE
1 NO. DATE REVISIONS		CRIPTION
1 NO. DATE REVISIONS	check and veri	
1 NO. DATE REVISIONS Contractor must responsible for s before commend All drawings, prin ARchitect and m	check and veri ame. Reporting cing work.	Image: constraint of the state in the property of the state in the prope
1 NO. DATE REVISIONS Contractor must responsible for s before commend All drawings, prin ARchitect and m	check and veri ame. Reporting cing work. nts and specific nust be returned only to be used	Image: constraint of the state in the property of the property of the state in the property of the state in the property of the pr
1 NO. DATE REVISIONS Contractor must responsible for s before commend All drawings, prin ARchitect and m Latest drawings	check and veri ame. Reporting cing work. nts and specific nust be returned only to be used	Image: constraint of the state in the property of the state in the prope
1 NO. DATE REVISIONS Contractor must responsible for s before commend All drawings, prin ARchitect and m Latest drawings	check and veri be scaled.	Image: constraint of the state in the property of the state in the prope
1 NO. DATE REVISIONS Contractor must responsible for s before commend All drawings, prin ARchitect and m Latest drawings Prints are not to	check and veri ame. Reporting be scaled.	Image: constraint of the state in the property of the state in the prope
1 NO. DATE REVISIONS Contractor must responsible for s before commend All drawings, prin ARchitect and m Latest drawings Prints are not to	check and veri ame. Reporting be scaled.	Image: constraint of the state in the property of the state in the prope
1 NO. DATE REVISIONS Contractor must responsible for s before commend All drawings, prin ARchitect and m Latest drawings Prints are not to	check and veri ame. Reporting cing work. Ints and specific oust be returned only to be used be scaled.	Image: constraint of the state in the property of the state in the prope
1 NO. DATE REVISIONS Contractor must responsible for s before commend All drawings, prin ARchitect and m Latest drawings Prints are not to	check and veri ame. Reporting be scaled.	Image: constraint of the state in the property of the state in the prope
1 NO. DATE REVISIONS Contractor must responsible for s before commend All drawings, prin ARchitect and m Latest drawings Prints are not to	check and veri ame. Reporting DES check and veri ame. Reporting be scaled.	CRIPTION fy all dimensions and be g any discrpancies to the Architect ations are the property of the to him on completion of work. for construction.
1 NO. DATE REVISIONS Contractor must responsible for s before commend All drawings, prin ARchitect and m Latest drawings Prints are not to	check and veri ame. Reporting DES check and veri ame. Reporting be scaled.	CRIPTION fy all dimensions and be grany discrpancies to the Architect ations are the property of the I to him on completion of work. I for construction.
1 NO. DATE REVISIONS Contractor must responsible for s before commend All drawings, prin ARchitect and m Latest drawings Prints are not to	check and veri ame. Reporting DES check and veri ame. Reporting be scaled.	CRIPTION fy all dimensions and be g any discrpancies to the Architect ations are the property of the to him on completion of work. for construction.
1 NO. DATE REVISIONS Contractor must responsible for s before commend All drawings, prin ARchitect and m Latest drawings Prints are not to	check and veri ame. Reporting DES check and veri ame. Reporting be scaled.	CRIPTION fy all dimensions and be g any discrpancies to the Architect ations are the property of the to him on completion of work. for construction.
1 NO. DATE REVISIONS Contractor must responsible for s before commend All drawings, prin ARchitect and m Latest drawings Prints are not to	check and veri ame. Reporting DES check and veri ame. Reporting be scaled.	CRIPTION fy all dimensions and be g any discrpancies to the Architect ations are the property of the to him on completion of work. for construction.
1 NO. DATE REVISIONS Contractor must responsible for s before commend All drawings, prin ARchitect and m Latest drawings Prints are not to	check and veri ame. Reporting DES check and veri ame. Reporting be scaled.	CRIPTION fy all dimensions and be g any discrpancies to the Architect ations are the property of the to him on completion of work. for construction.
1 NO. DATE REVISIONS Contractor must responsible for s before commend All drawings, prin ARchitect and m Latest drawings Prints are not to	check and veri ame. Reporting DES check and veri ame. Reporting be scaled.	CRIPTION fy all dimensions and be g any discrpancies to the Architect ations are the property of the to him on completion of work. for construction.
1 1 NO. DATE REVISIONS Contractor must responsible for s before commend All drawings, prin ARchitect and m Latest drawings Prints are not to	check and veri ame. Reporting DES check and veri ame. Reporting be scaled.	CRIPTION fy all dimensions and be g any discrpancies to the Architect ations are the property of the to him on completion of work. for construction.
1 1 NO. DATE REVISIONS Contractor must responsible for s before commend All drawings, prin ARchitect and m Latest drawings Prints are not to	check and veri ame. Reporting ing work. Ints and specific only to be used be scaled.	CRIPTION fy all dimensions and be g any discrpancies to the Architect ations are the property of the to him on completion of work. for construction.
CLIENT	check and veri ame. Reporting ing work. Ints and specific only to be used be scaled.	Image: state of the state
CLIENT	check and veri ame. Reporting ing work. Ints and specific only to be used be scaled.	Image: Second
CLIENT PROJECT NAME DRAWN BY CHECKED BY	check and veri ame. Reporting ing work. Ints and specific only to be used be scaled.	Image: Second
CLIENT CLIENT CHECKED BY CHECKED	check and veri ame. Reporting ing work. Ints and specific only to be used be scaled.	CRIPTION fy all dimensions and be g any discrpancies to the Architect ations are the property of the lo him on completion of work. for construction. For construction. CRIPTION Vic 2 RUTLEDGE RD. Author
CLIENT CLIENT CLIENT CREVISIONS CONTACTOR MUSICAL CONTACTOR MUSICA	check and veri ame. Reporting only to be used be scaled.	CRIPTION fy all dimensions and be any discrpancies to the Architect ations are the property of the to him on completion of work. for construction. CRIPTION CRIPTIO
CLIENT CLIENT CHECKED BY CHECKED	check and veri ame. Reporting only to be used be scaled.	Image: Criteria structure Image: Criteria structure
CLIENT CLIENT CHECKED BY CHECKED	check and veri ame. Reporting only to be used be scaled.	CRIPTION fy all dimensions and be any discrpancies to the Architect ations are the property of the to him on completion of work. for construction. CRIPTION CRIPTIO
CLIENT CLIENT CHECKED BY CHECKED	check and veri ame. Reporting only to be used be scaled.	CRIPTION fy all dimensions and be any discrpancies to the Architect ations are the property of the to him on completion of work. for construction. CRIPTION CRIPTIO

APPENDIX C

PR	OJ	JEC		EC	OR	D	O	- 1	BC	DRE	HC	C	E	10	1				N		YMONT & RAK
LO	CA		N : Ville Condominiums, 180 Rutled	dge F	Road, N	liss	issa	uga	a, O	ntario									_		NEERS, INC.
		RTED) : April 26, 2007 TED : April 26, 2007																	SHEET [·] DATUM	Geodetic
ш	6	OD	SOIL PROFILE			SA	MPL	ES		RGANIC ppm)	VAP	OUR		NGS ⊗	SHEA	R STRE nat V	ENGTH	: Cu, Kl	Pa Q-X J-▲	.0	
UEPTH SUALE (metres)		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.3m			200 [hexar 40	30 ne) 60	0 40		2 WAT wp	0 4 ER CC		60 	80 I	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
			GROUND SURFACE	S S	157.00											-					
			FILL: silty clay, some gravel, trace of fine to coarse sand, trace of organics, grey to black, moist, stiff.			1	ss	10													
						2	ss	13													
2	ŋ	GER	CLAYEY SILT TILL: some gravel and sand, trace of organics and rootlets, oxidized fissures, disturbed in the upper 150 mm, brown to grey, moist, stiff to hard.		_ 155.35 1.65	3	ss	12													
	POWER BORING	SOLID STEM AUGER				4	SS	25													
	đ	IOS	-sandy silt seam, brown, wet at 3.43 m depth. -cobbles at 3.45 m depth.			5	SS	>100	C												
4			SANDY SILT TILL/WEATHERED SHALE COMPLEX: grey, moist. SHALE: limestone fragments, grey, moist.		152.75 4.25 152.45 4.55		SS	>100	D												
			End of Borehole: Auger Refusal. Note: 1)Borehole remained dry on completion of drilling.		_ 151.80 _ 5.20																
6																					
8																					
	•		GROUNDWATER ELEVATIO		Ţ		EEP ER L			INST	ALLA	ATIC	DN				ED :				

	ROJ		r : G1187A2						Ontario			YMONT & RAK INEERS, INC.
				U	·			Ū				1 OF 1 Geodetic
	-	- 1	SOIL PROFILE			SA	MPL	ES	ORGANIC VAPOUR READINGS	SHEAR STRENGTH: Cu, KPa	1	Geodelic
DEPTH SCALE (metres)			DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	(ppm) ⊗ <u>100 200 300 400</u> % LEL - (hexane) □ <u>20 40 60 80</u>	mat V - Q - ★ rem V - U - 20 40 60 80 WATER CONTENT, PERCENT wp I W 10 20 30 40	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
			GROUND SURFACE FILL:		157.45						_	
- - -			silty clay, some sand and gravel, brown, to grey, moist, firm to stiff. SAND: fine to medium, trace of silt and gravel,		_ 156.45. 1.00	2	SS SS					bentonite -
			trace of silt and gravel, trace of organics, brown, moist, compact to loose.			3	SS	8				
-2	RING	STEM AUGER			_ 155.15. 2.30	· ·						3 m Long5.30 20 mm ID PVC Riser 155.00
	POWER BORING	SOLID STEM	CLAYEY SILT TILL: some sand and gravel, oxidized fissures, brown, moist, very stiff to hard. -silt grey to black, trace of organics, wet in the upper 159 mm.			4	ss	23				
						5	ss	45				Silica sand
-4												
			SANDY SILT TILL/ WEATHERED SHALE COMPLEX: grey, moist.		_ 152.90. 4.55	6	SS	>100				3 m Long 20 mm ID Well Screen
-6			-shale/limestone at 5.5 m depth. End of Borehole: Auger Refusal. Note: 1)Water level was measured at 5.3 m on completion of drilling.		_ 151.95 _ 5.50							∑ 151.95
-			 2)Combustible vapour reading was 130 ppm at 2.3 m depth in open borehole. 3)Water level was measured at +0.1 m on April 30, 2007. 4)Water level was measured at +0.1 m on May 1, 2007. 									
-8												-
 												.
-												
È												
1			GROUNDWATER ELEVATIO					ים/כ	IAL INSTALLATION			
			- SHALLOW/SINGLE INSTALLATIO WATER LEVEL: 5.3 m bgs	NN		VATI				LOGGED : AL CHECKED : LM		

MCR LOG ENVIRONMENTAL 1187A.GPJ 11-18-22

		EC ^T	r : G1187A2						SOREHOLE 10	3		YMONT & RAK INEERS, INC.
ST	AR	TE		5	,			5	, -		SHEET DATUM	1 OF 1 Geodetic
щ	ģ		SOIL PROFILE			SA	MPL	ES	ORGANIC VAPOUR READINGS (ppm) &	SHEAR STRENGTH: Cu, KPa nat V - Q - rem V - U -	<u>ہ</u> ا	
DEPTH SCALE (metres)			DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	100 200 300 400 % LEL - (hexane) □ 20 40 60 80	1000 - 0 0<		PIEZOMETER OR STANDPIPE INSTALLATION
			GROUND SURFACE	- 	158.10						_	
ŀ			silty clay/clayey silt, trace of gravel and sand, trace of organics and rootlets, brown, moist to wet, firm to stiff.			1	ss	8				
ŀ												
╞						2	ss	11				
ļ												
-						3	ss	6				
-2								-				-
ŀ								-				
ŀ	ŋ	GER	ORGANICS:		155.50 2.60	4	SS	4				
ŀ	BORIN	STEM AUGER	peat, black moist, firm.		155.05 3.05							
ŀ	POWER BORING	SOLID ST	SILTY CLAY: some organics, peat, brown, moist to wet. firm.		5.05	5	ss	6				
ŀ	<u>а</u>	so										$\overline{\Delta}$
-4												-
ŀ												
ŀ			-sand and gravel,wet at 4.55 m depth.		153.40 4.70			-				
ŀ			SANDY SILT TILL/WEATHERED SHALE COMPLEX: moist.		4.70	6	SS	>100				
ŀ												
ŀ												
-6												-
ŀ			limestone at 6.2 m depth. End of Borehole, Auger Refusal.		151.90. 6.20	7	- 55	>10C				
-			Note: 1)Water level was measured at 3.65 m on									
ŀ			completion of drilling. 2)Combustible vapour reading was 110 ppm at 3.05 m depth in open borehole. 3)Combustible vapour reading was 120 ppm at 4.75									
ŀ			3)Combustible vapour reading was 120 ppm at 4.75 m depth in open borehole.									
ŀ												
-8												-
ŀ												
[
ŀ												
ŀ												
[
Ŀ												
			GROUNDWATER ELEVATION $\overline{\Sigma}$ SHALLOW/SINGLE INSTALLATION			,		ים/נ	IAL INSTALLATION			
			- SHALLOW/SINGLE INSTALLATIC WATER LEVEL: 3.65 m bgs	JN			ERL			LOGGED : AL CHECKED : LM		

MCR LOG ENVIRONMENTAL 1187A.GPJ 11-18-22

Г

RECORD OF BOREHOLE 104

G1187A2 PROJECT LOCATION

Ville Condominiums, 180 Rutledge Road, Mississauga, Ontario

MC CLYMONT & RAK ENGINEERS, INC.

STARTED	
STARLED	

April 30, 2007 COMPLETED : April 30, 2007 SHEET 1 OF 1 DATUM Geodetic

щ		Q Q	SOIL PROFILE			SA	MPL	ES	ORG (ppr		VAPO	OUR F		NGS Ø	SHEA	R STR nat V rem V		H: Cu,	KPa Q - X U - 4	c , c	0
DEPTH SCALE (metres)		BORING METHOD		LOT		~		3m			200	300					′-● 40	60	U - 4 80	ADDITIONAL	PIEZOMETE OR
PTH (meti		DNG	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	ТҮРЕ	BLOWS/0.3m		.EL - (I	hexan	ne)	[TER CO	ONTEN	T, PEI	RCENT	r Ē	STANDPIPE
В		BOR		STRA	(m)	R		BLO	2	0	40	60	80)	wp 1			30	- wl 40	A	5
			GROUND SURFACE		158.50																
			FILL: silty clay with organics, trace of gravel and sand, trace of rootlets, shale fragments, dark brown to brown, moist to wet, stiff to firm					10													
			dark brown to brown, moist to wet, stiff to firm			1	SS	10													
						2	ss	8													
			CLAYEY SILT TILL:	×	156.70 1.80	3	SS	10													
-2			some sand, trace of gravel, trace of rootlets and organics in the upper 100 mm,		1.00	\vdash															
			fissured, brown, moist, stiff to hard.			<u> </u>															
						4	SS	41													
					1	\vdash															
						\vdash															
	U	ЯË	-some gravel, oxidized fissures below 3.35 m depth.]	5	SS	54													
	POWER BORING	1 AUG																			
-4	/ER B	STEN																			
7	POV	SOLID STEM AUGER			154.25 4.25																
		S	SANDY SILT TILL/WEATHERED SHALE COMPLEX: grey, moist.		4.25																
			groy, mola.			6	SS	70													
			-moist to dry at 4.85 m depth.			Ŀ															
					, ,																
6						7	SS	100													
						-	33	100													
			SHALE:	127.[:	150.90 15 0:99 7.65	8	ss	>100													
8			weathered, grey, moist. End of Borehole.	1																	
-			Note: 1)Borehole remained dry on completion of drilling.																		
	۱ ــــــــــــــــــــــــــــــــــــ	1	GROUNDWATER ELEVATIO) NS	!					I							1				1
			$\overline{ au}$ shallow/single installation	DN	Ţ	- D	EEP	/DL	JAL IN	ISTA	ALLA		N			LOGG	ED :	AL			
			WATER LEVEL: m bgs				ER L									CHEC					

	RECORD OF BOREHOLE 201 PROJECT : G1187V-2 MC CLYMONT & RAK																			
				ntori														N		YMONT & RAK INEERS, INC.
			u u u u	ntari	0													S	HEET	1 OF 1
co	DMF	PLE	TED : February 18, 2020																ATUM	Geodetic
щ	C C	101	SOIL PROFILE			SA	MPL	.ES	ORGANI (ppm)	C VA	POUF	REAL	DINGS ⊗	SHEA	R STRE	ENGTH:	Cu, KF	2 2 - X	_ <u>0</u>	
DEPTH SCALE (metres)		MET		гот		R).3m	100	200	30	00 4	100		10 4		30 8	B0	ADDITIONAL LAB. TESTING	PIEZOMETER OR
EPTH (me		SNING	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	ТҮРЕ	BLOWS/0.3m	% LEL ·	(hex	ane)			WAT	ER CO		, PERC	ENT WI	AB. TE	STANDPIPE INSTALLATION
ā		5 n		STR	(m)	z		BLO	20	40	6	0	80	wp 1	0 2	:0 :	30 4	40	4 7	
┣			GROUND SURFACE FILL:		159.25			-												
ŀ			silty clay, trace of sand and organics, brown, moist, firm to stiff.			1	ss	7												-
[-
ł																				-
t						2	SS	11												-
ŀ																				-
ł						3	ss	7												-
-2								Ĺ												-
- 					_ 156.96. 2.29															-
ł			silty clay, trace of sand and gravel, trace of shale fragments and organics brown to grey, moist to wet, stiff.		2.29	4	ss	20												-
-		К																		-
ŀ	POWER BORING	SOLID STEM AUGER	SILTY CLAY:		_ 156.20 3.05															-
[ER BC	STEM	trace of sand and gravel, brown, mottled grey, moist to wet, stiff. -trace of organics in the upper 350 mm.			5	ss	13												-
ŀ	POWE	OLID (-trace of organics in the upper 350 mm.																	
-4		SC																		-
[⁴																				
ŀ					154.68															-
ļ.			CLAYEY SILT TILL: some sand, trace of gravel,		_ 154.68. 4.57	6	ss	58												
\mathbf{F}			oxidized fissures, brown, moist, hard.																	
ł																				⊻ .
[-
ŀ																				-
-6			SANDY SILT TILL/WEATHERED SHALE	ИИ	_ 153.15. 6.10	7	SS	>100												-
-			COMPLEX: grey, wet, very dense.	5	152 70															-
ł			SHALE: grey, moist.		152.70 15 2:55 6.60	8	ss	>100												-
F			End of Borehole. Auger Refusal.																	-
ŀ			Note: 1) Water level was measured at 5.18 m bgs on completion of drilling.																	-
[completion of drilling.2) Combustible vapour reading was 25 ppm at 4.6 m depth in open borehole.																	-
ŀ																				-
-8																				-
-																				-
ł																				
F																				-
ł																				
ĺ																				
ŀ																				-
┢──	-		GROUNDWATER ELEVATIO	NS		I	I		I				1	I	I	1	I	1	1	
			$\overline{ au}$ shallow/single installatio	N	Ţ	DE	EEP	י/DL	IAL INST	ALI	ATI	ON			LOGGE	ED :	FR			
			WATER LEVEL: 5.18 m bgs		V	VATI	ER L	EVE	L:						CHECK		LM			

MCR LOG ENVIRONMENTAL 1187V2.GPJ 11-16-22

	arte Mple	D : February 18, 2020 TED : February 18, 2020															1 OF 1 Geodetic
ш	OD	SOIL PROFILE			SA	MPL	ES	ORGANIC VA (ppm)	POUR	READINGS ⊗	SHEAF	R STRE nat V - rem V -	NGTH:	Cu, KPa Q	×	. (7)	
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	100 200 100 200 % LEL - (hex 20 40	ane)	0 400	20) 4 I ER COI	0 6 NTENT	0 80 , PERCE) INT wl	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
	POWER BORING SOLID STEM AUGER	GROUND SURFACE FILL: sandy silt, trace of clay and gravel, brown, moist, loose. silty clay, trace of sand and gravel, brown, moist, soft to stiff. -trace of plastics pieces at 2.3 m depth. -trace of organics and cinders, black below 4.55 m depth. -trace of brick pieces at 7.6 m depth.		<u>165.40</u> 164.64 0.76	1 2 3 4 5 6 6 7	SS SS	8 5 4 5 5 19 14										Protectives, 10 Metal Casing Bentonite 9.75 m Long 20 mm ID PVC Riser
8 10 12		CLAYEY SILT: trace of sand and gravel, brown, mottled grey, moist to wet, very stiff. -trace of organics in the upper 300 mm. SANDY SILT TILL: some clay, trace of gravel, brown, moist, very dense. SANDY SILT TILL/WEATHERED SHALE COMPLEX: grave moist year doago		- 156.26 9.14 - 154.73 10.67 - 153.21 12.19	9 10 11	SS	27										∑ 156.26 Silics Sand 155.65 3.05 m Long 50 mm ID Well Screen 152.60
14 16 18		grey, moist, very dense. SHALE: grey, moist. End of Borehole. Auger Refusal. Note: 1) Borehole remained dry on completion of drilling. 2) Combustible vapour reading was 15 ppm at 4.6 m and 85 ppm at 9.2 m depth in open borehole. 3) Water level was measured at 8.45 m bgs on February 19, 2020. 4) Water level was measured at 9.04 m bgs on November 3, 2022. 5) Water level as measured at 9.16 m bgs on November 16, 2022.		152.45 1 <u>82.45</u> 12.98	-12	- 88-	>100										

	ROJE	CT : G1187V-2			D	O	FI	BOREHO	LE	203	3		YMONT & RAK INEERS, INC.
ST	CATI	ED : February 18, 2020	Untari	0								SHEET	1 OF 1
	1	ETED : February 18, 2020						ORGANIC VAPOL	IR REAL	DINGS	SHEAR STRENGTH: Cu KPa	-	Geodetic
DEPTH SCALE (metres)	BORING METHOD	SOIL PROFILE DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	1BER	TYPE	BLOWS/0.3m	(ppm)	300 41 1	80 80	SHEAR STRENGTH: Cu, KPa nat V - ● Q - X rem V - ● U - A 20 40 60 80 WATER CONTENT, PERCENT wp I → ○ U - A WM - I wI 10 20 30 40		PIEZOMETER OR STANDPIPE INSTALLATION
_		GROUND SURFACE FILL:		159.75					—				Protective
-		silty clay, trace of sand and gravel, brown, moist, stiff.			1	SS	9						Metal Casing
- - -					2	SS	19						Bentonite
- - -2					3	SS	9						- - 3.96 m Long
													20 mm ID PVC Riser
-					4	SS	28						
	POWER BORING	I -trace of shale fragments and plastics pieces below 3.05 m depth.			5	SS	16						156.40 Silics Sand
- -4 -													155.79
		CLAYEY SILT TILL: some sand, trace of gravel, brown, moist, hard.		_ 155.18 4.57	6	SS	32						3.05 m Long 50 mm ID
-6				_ 153.65, 6.10									
		SANDY SILT TILL/WEATHERED SHALE COMPLEX: grey, moist, very dense.	 5	6.10	7	SS	>100						
- -				_ 15 <u>2.74</u> ,			>100						152.74
-		SHALE: grey, moist. End of Borehole. Auger Refusal.	/	152.74 152.93 7.02									
-8		Note: 1) Borehole remained dry on completion of drilling. 2) Combustible vapour reading was 25 ppm at 4.6 m depth in open borehole. 3) Water level was measured at 6.61 m bgs on February 19, 2020. 4) Water level was measured at 4.76 m bgs on November 3, 2022. 5) Water level was measured at 4.75 m bgs on November 16, 2022.											
-													
		GROUNDWATER ELEVATION $\overline{\Sigma}$ shallow/single installation					ים/רי	JAL INSTALLAT					
		WATER LEVEL: 4.75 m bgs	N		- De Vate						LOGGED : FR CHECKED : LM		

MCR LOG ENVIRONMENTAL 1187V2.GPJ 11-16-22

				EC	OR	D	O	=	BOREHOLE 204			
	ROJ OCA			ntari	0							'MONT & RAK NEERS, INC.
	TAR) : February 13, 2020	man	0						SHEET 1	OF 1
C	-		TED : February 13, 2020			1			ORGANIC VAPOUR READINGS	SHEAR STRENGTH: CIL KPa	DATUM	Geodetic
DEPTH SCALE (metres)		BURING METHUU	SOIL PROFILE	L.			MPL		(ppm) & 100 200 300 400	SHEAR STRENGTH: Cu, KPa nat V - ♥ Q - X rem V - ♥ U - ▲ 20 40 60 80	NAL	PIEZOMETER
PTH S (metre		א NG	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	түре	BLOWS/0.3m	% LEL - (hexane)	WATER CONTENT, PERCENT	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
DE		РСН		STRA	(m)	NN	F	BLO	20 40 60 80	wp - O ^W wi 10 20 30 40	LA	-
-			GROUND SURFACE FILL:	**	165.15	1	SS	4				
			silty clay, trace of sand and gravel, brown, moist, soft to stiff. -trace of rootlets in the upper 250 mm.									
F						2	SS	3				
-2						3	SS	5				-
ŀ						4	SS	8				
F			-trace of red shale fragments at 3.05 m depth.			5	SS	6				
-4												-
ŀ		۲				6	SS	8				
-6	RING	AUGE										
F°	POWER BORING	STEM AUGER	-trace of organics and rootlets below 6.1 m depth.			7	SS	12				-
ŀ	POW	SOLID (
ł			-trace of shale fragments and grey below 7.6 m			8	SS	14				
-8			depth.					•••				-
ŀ					_ 156.01. 9.14							
-			CLAYEY SILT: trace of sand and gravel, grey, moist, very stiff.		9.14	9	SS	27				
-10			-trace of organics in the upper 200 mm.									-
ŀ			CLAYEY SILT TILL: some sand, trace of gravel,		_ 154.48. 10.67	10	SS	55				
ŀ			oxidized stains, brown, moist, hard.									
-12			SANDY SILT TILL:		_ 152.96. 12.19 _ 152.64. _ 12.51	11	SS	>100				-
ł			some clay, trace of gravel and shale fragments, grey, moist, very dense. End of Borehole. Auger Refusal due to Probable		12.51	12	SS	>100				
-			Shale Bedrock.									
-14			1) Borehole remained dry on completion of drilling. 2) Combustible vapour reading was 110 ppm at 10.7 m depth in open borehole.									-
-												
ł												
-16												-
16-22												
-11-												
5 18												-
۲۲ 118 1												
MCR LOG ENVIRONMENTAL 1187/2.GPJ 11-16-22												
DG EN			GROUNDWATER ELEVATION $\overline{\Sigma}$ SHALLOW/SINGLE INSTALLATION			יח	=FP	יח/	JAL INSTALLATION			
ACR L(WATER LEVEL: m bgs			VATI				LOGGED : FR CHECKED : LM		

APPENDIX D

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS (GUIDELINE EVALUATION)

Work Order	: WT2222208	Page	: 1 of 7
Client	: McClymont & Rak Engineers Inc.	Laboratory	: Waterloo - Environmental
Contact	: Richard Sukhu	Account Manager	Emily Smith
Address	: 111 Zenway Blvd. Unit 4 Vaughan ON Canada L4H 3H9	Address	: 60 Northland Road, Unit 1 Waterloo, Ontario Canada N2V 2B8
Telephone	: 416 675 0160	Telephone	: +1 519 886 6910
Project	: 1187	Date Samples Received	: 17-Nov-2022 16:13
PO	:	Date Analysis Commenced	: 17-Nov-2022
C-O-C number	: 20-1007464	Issue Date	: 28-Nov-2022 15:57
Sampler	: CLIENT		
Site	:		
Quote number	: 2022 Price List		
No. of samples received	: 1		
No. of samples analysed	: 1		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Guideline Comparison

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Amanda Ganouri-Lumsden	Department Manager - Microbiology and Prep	Microbiology, Waterloo, Ontario	
Amaninder Dhillon	Team Lead - Semi-Volatile Instrumentation	Organics, Waterloo, Ontario	
Greg Pokocky	Supervisor - Inorganic	Inorganics, Waterloo, Ontario	
Greg Pokocky	Supervisor - Inorganic	Metals, Waterloo, Ontario	
Jocelyn Kennedy	Department Manager - Semi-Volatile Organics	Organics, Waterloo, Ontario	
Katrina Zwambag	Business Manager - Environmental	LCMS, Waterloo, Ontario	
Manuel TavaraTello	Supervisor - Semi-Volatile Extractions	Organics, Waterloo, Ontario	
Sanja Risticevic	Department Manager - LCMS	LCMS, Waterloo, Ontario	
Sarah Birch	VOC Section Supervisor	Organics, Waterloo, Ontario	

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guidelines are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Key : LOR: Limit of Reporting (detection limit).

Unit	Description
µg/L	micrograms per litre
CFU/100mL	colony forming units per hundred millilitres
mg/L	milligrams per litre
pH units	pH units

- greater tha

<: less than.

Red shading is applied where the result is greater than the Guideline Upper Limit or the result is lower than the Guideline Lower Limit. For drinking water samples, Red shading is applied where the result for E.coli, fecal or total coliforms is greater than or equal to the Guideline Upper Limit .

Qualifiers

Qualifier	Description
BODL	Limit of Reporting for BOD was increased to account for the largest volume of sample
	tested.
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical
	Conductivity.
DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).
DLIS	Detection Limit Adjusted due to insufficient sample.
PEHR	Parameter exceeded recommended holding time on receipt: Proceeded with analysis as requested.

Analytical Results

			Client sample ID	BH202						
Sub-Matrix: Groundwater (Matrix: Water)		S	ampling date/time	17-Nov-2022 09:00						
Analyte	Method	LOR	Unit	WT2222208-001		MISSUB STM	RMPSUB SAN	RMPSUB STM		
Physical Tests										
рН	E108	0.10	pH units	8.08		6 - 9 pH units	5.5 - 10 pH units	6 - 9 pH units	 	
solids, total suspended [TSS]	E160	3.0	mg/L	9.2		15 mg/L	350 mg/L	15 mg/L	 	
Anions and Nutrients										
fluoride	E235.F	0.020	mg/L	0.737	DLDS		10 mg/L		 	
Kjeldahl nitrogen, total [TKN]	E318	0.050	mg/L	0.753		1 mg/L	100 mg/L	1 mg/L	 	
phosphorus, total	E372-U	0.0020	mg/L	0.0196		0.4 mg/L	10 mg/L	0.4 mg/L	 	
sulfate (as SO4)	E235.SO4	0.30	mg/L	167	DLDS				 	
Cyanides										
cyanide, strong acid dissociable (total)	E333	0.0020	mg/L	<0.0020		0.02 mg/L	2 mg/L	0.02 mg/L	 	
Inorganics										
chlorine, total	E326	0.050	mg/L	<0.050	PEHR	1 mg/L			 	
Microbiological Tests										
coliforms, Escherichia coli [E. coli]	E012A.EC	1	CFU/100mL	Not Detected		200 CFU/100mL		200 CFU/100mL	 	
Total Metals										
aluminum, total	E420	0.0030	mg/L	<3.00	DLHC	1 mg/L	50 mg/L		 	
antimony, total	E420	0.00010	mg/L	<0.100	DLHC		5 mg/L		 	
arsenic, total	E420	0.00010	mg/L	<0.100	DLHC	0.02 mg/L	1 mg/L	0.02 mg/L	 	
cadmium, total	E420	0.0000050	mg/L	<0.00500	DLHC	0.008 mg/L	0.7 mg/L	0.008 mg/L	 	
chromium, total	E420	0.00050	mg/L	<0.500	DLHC	0.08 mg/L	5 mg/L	0.08 mg/L	 	
cobalt, total	E420	0.00010	mg/L	<0.100	DLHC		5 mg/L		 	
copper, total	E420	0.00050	mg/L	<0.500	DLHC	0.04 mg/L	3 mg/L	0.05 mg/L	 	
lead, total	E420	0.000050	mg/L	<0.0500	DLHC	0.12 mg/L	3 mg/L	0.12 mg/L	 	
manganese, total	E420	0.00010	mg/L	5.90	DLHC	0.05 mg/L	5 mg/L	0.05 mg/L	 	
mercury, total	E508	0.0000050	mg/L	<0.000050		0.0004 mg/L	0.01 mg/L	0.0004 mg/L	 	
molybdenum, total	E420	0.000050	mg/L	<0.0500	DLHC		5 mg/L		 	
nickel, total	E420	0.00050	mg/L	<0.500	DLHC	0.08 mg/L	3 mg/L	0.08 mg/L	 	
selenium, total	E420	0.000050	mg/L	<0.0500	DLHC	0.02 mg/L	1 mg/L	0.02 mg/L	 	
silver, total	E420	0.000010	mg/L	<0.0100	DLHC	0.12 mg/L	5 mg/L	0.12 mg/L	 	
tin, total	E420	0.00010	mg/L	<0.100	DLHC		5 mg/L		 	

Page	:	4 of 7
Work Order	:	WT2222208
Client	:	McClymont & Rak Engineers Inc.
Project	:	1187

Project

Analyte	Method	LOR	Unit	WT2222208-001 (Continued)	MISSUB STM	RMPSUB SAN	RMPSUB STM			
Total Metals - Continued				(Continued)	011	UAN	011		1	
titanium, total	E420	0.00030	mg/L	<0.300 D	_HC	5 mg/L				
zinc, total	E420	0.0030	mg/L	<3.00 D	-HC 0.04 mg/L	3 mg/L	0.04 mg/L			
Speciated Metals										
chromium, hexavalent [Cr VI],	E532	0.00050	mg/L	<0.00050						
total										
Aggregate Organics										
biochemical oxygen demand [BOD]	E550	2.0	mg/L	<3.0 ^B	DDL 15 mg/L	300 mg/L				
carbonaceous biochemical oxygen demand [CBOD]	E555	2.0	mg/L	<3.0 ^B	DDL	300 mg/L	15 mg/L			
oil & grease (gravimetric)	E567	5.0	mg/L	<5.0						
oil & grease, animal/vegetable (gravimetric)	EC567A.SG	5.0	mg/L	<5.0		150 mg/L				
oil & grease, mineral (gravimetric)	E567SG	5.0	mg/L	<5.0		15 mg/L				
phenols, total (4AAP)	E562	0.0010	mg/L	0.0048	0.008 mg/L	1 mg/L	0.008 mg/L			
Volatile Organic Compound	S									
benzene	E611D	0.50	µg/L	<0.50	2 µg/L	10 µg/L	2 µg/L			
chloroform	E611D	0.50	µg/L	<0.50		40 µg/L	2 µg/L			
dichlorobenzene, 1,2-	E611D	0.50	µg/L	<0.50		50 µg/L	5.6 µg/L			
dichlorobenzene, 1,4-	E611D	0.50	µg/L	<0.50		80 µg/L	6.8 µg/L			
dichloroethylene, cis-1,2-	E611D	0.50	µg/L	<0.50		4000 µg/L	5.6 µg/L			
dichloromethane	E611D	1.0	µg/L	<1.0		2000 µg/L	5.2 µg/L			
dichloropropylene, trans-1,3-	E611D	0.30	µg/L	<0.30		140 µg/L	5.6 µg/L			
ethylbenzene	E611D	0.50	µg/L	<0.50	2 µg/L	160 µg/L	2 µg/L			
methyl ethyl ketone [MEK]	E611D	20	µg/L	<20		8000 µg/L				
styrene	E611D	0.50	µg/L	<0.50		200 µg/L				
tetrachloroethane, 1,1,2,2-	E611D	0.50	µg/L	<0.50		1400 µg/L	17 µg/L			
tetrachloroethylene	E611D	0.50	µg/L	<0.50		1000 µg/L	4.4 µg/L			
toluene	E611D	0.50	µg/L	<0.50	2 µg/L	270 µg/L	2 µg/L			
trichloroethylene	E611D	0.50	µg/L	<0.50		400 µg/L	8 µg/L			
xylene, m+p-	E611D	0.40	µg/L	<0.40						
xylene, o-	E611D	0.30	µg/L	<0.30						
xylenes, total	E611D	0.50	µg/L	<0.50	4.4 µg/L	1400 µg/L	4.4 µg/L			
Volatile Organic Compound	s Surrogates									
bromofluorobenzene, 4-	E611D	1.0	%	84.6						
difluorobenzene, 1,4-	E611D	1.0	%	98.5						

Page	:	5 of 7
Work Order	:	WT2222208
Client	:	McClymont & Rak Engineers Inc.
Project		1187

Analyte	Method	LOR	Unit	WT2222208-001 (Continued)	MISSUB STM	RMPSUB SAN	RMPSUB STM		
Polycyclic Aromatic Hydroca	arbons								
acenaphthene	E641A	0.010	µg/L	<0.010				 	
acenaphthylene	E641A	0.010	µg/L	<0.010				 	
anthracene	E641A	0.010	µg/L	<0.010				 	
benz(a)anthracene	E641A	0.010	µg/L	<0.010				 	
benzo(a)pyrene	E641A	0.0050	µg/L	<0.0050				 	
benzo(b+j)fluoranthene	E641A	0.010	µg/L	<0.010				 	
benzo(g,h,i)perylene	E641A	0.010	µg/L	<0.010				 	
benzo(k)fluoranthene	E641A	0.010	µg/L	<0.010				 	
chrysene	E641A	0.010	µg/L	<0.010				 	
dibenz(a,h)anthracene	E641A	0.0050	µg/L	<0.0050				 	
fluoranthene	E641A	0.010	µg/L	<0.010				 	
fluorene	E641A	0.010	µg/L	<0.010				 	
indeno(1,2,3-c,d)pyrene	E641A	0.010	µg/L	<0.010				 	
methylnaphthalene, 1-	E641A	0.010	µg/L	<0.010				 	
methylnaphthalene, 2-	E641A	0.010	µg/L	<0.010				 	
naphthalene	E641A	0.050	µg/L	<0.050				 	
phenanthrene	E641A	0.020	µg/L	<0.020				 	
pyrene	E641A	0.010	µg/L	<0.010				 	
PAHs, total (CCME Sewer 18)	E641A	0.070	µg/L	<0.070	2 µg/L			 	
chrysene-d12	E641A	0.1	%	89.4				 	
naphthalene-d8	E641A	0.1	%	91.4				 	
phenanthrene-d10	E641A	0.1	%	97.9				 	
Phthalate Esters									
bis(2-ethylhexyl) phthalate [DEHP]	E655F	2.0	µg/L	<2.0		12 µg/L	8.8 µg/L	 	
di-n-butyl phthalate	E655F	1.0	µg/L	<1.0		80 µg/L	15 µg/L	 	
Semi-Volatile Organics Surro	ogates								
fluorobiphenyl, 2-	E655F	1.0	%	83.1				 	
terphenyl-d14, p-	E655F	1.0	%	96.3				 	
Phenolics Surrogates									
tribromophenol, 2,4,6-	E655F	0.20	%	105				 	
Nonylphenols									
nonylphenol diethoxylates [NP2EO]	E749B	0.10	µg/L	<0.10				 	
nonylphenol ethoxylates, total	E749B	2.0	µg/L	<2.0		200 µg/L		 	

Page	:	6 of 7
Work Order	:	WT2222208
Client	:	McClymont & Rak Engineers Inc.
Project		1187

Analyte	Method	LOR	Unit	WT2222208-001 (Continued)	MISSUB STM	RMPSUB SAN	RMPSUB STM			
Nonylphenols - Continued	onylphenols - Continued									
nonylphenol monoethoxylates [NP1EO]	E749B	2.0	µg/L	<2.0						
nonylphenols [NP]	E749A	1.0	µg/L	<1.0		20 µg/L				
Polychlorinated Biphenyls										
Aroclor 1016	E687	0.020	µg/L	<0.021	_IS					
Aroclor 1221	E687	0.020	µg/L	<0.021 D	_IS					
Aroclor 1232	E687	0.020	µg/L	<0.021 D	_IS					
Aroclor 1242	E687	0.020	µg/L	<0.021 D	_IS					
Aroclor 1248	E687	0.020	µg/L	<0.021 D	_IS					
Aroclor 1254	E687	0.020	µg/L	<0.021 D	_IS					
Aroclor 1260	E687	0.020	µg/L	<0.021 D	_IS					
Aroclor 1262	E687	0.020	µg/L	<0.021 D	_IS					
Aroclor 1268	E687	0.020	µg/L	<0.021 D	_IS					
polychlorinated biphenyls [PCBs], total	E687	0.060	µg/L	<0.063	.IS	1 µg/L	0.4 µg/L			
decachlorobiphenyl	E687	0.1	%	67.3						
tetrachloro-m-xylene	E687	0.1	%	88.6						

Please refer to the General Comments section for an explanation of any qualifiers detected.

Page	:	7 of 7
Work Order	:	WT2222208
Client	:	McClymont & Rak Engineers Inc.
Project	1	1187

Summary of Guideline Breaches by Sample

SampleID/Client ID	Matrix	Analyte	Analyte Summary	Guideline	Category	Result	Limit
BH202	Water	aluminum, total		MISSUB	STM	<3.00	1 mg/L
	Water	arsenic, total		MISSUB	STM	<0.100	0.02 mg/L
	Water	chromium, total		MISSUB	STM	<0.500	0.08 mg/L
	Water	copper, total		MISSUB	STM	<0.500	0.04 mg/L
	Water	manganese, total		MISSUB	STM	5.90 mg/L	0.05 mg/L
	Water	nickel, total		MISSUB	STM	<0.500	0.08 mg/L
	Water	selenium, total		MISSUB	STM	<0.0500	0.02 mg/L
	Water	zinc, total		MISSUB	STM	<3.00	0.04 mg/L
	Water	manganese, total		RMPSUB	SAN	5.90 mg/L	5 mg/L
	Water	arsenic, total		RMPSUB	STM	<0.100	0.02 mg/L
	Water	chromium, total		RMPSUB	STM	<0.500	0.08 mg/L
	Water	copper, total		RMPSUB	STM	<0.500	0.05 mg/L
	Water	manganese, total		RMPSUB	STM	5.90 mg/L	0.05 mg/L
	Water	nickel, total		RMPSUB	STM	<0.500	0.08 mg/L
	Water	selenium, total		RMPSUB	STM	<0.0500	0.02 mg/L
	Water	zinc, total		RMPSUB	STM	<3.00	0.04 mg/L

Kev:

MISSUB	Ontario Mississauga Storm Sewer Use By-Law (0046-2022) (March 2022)
STM	Mississauga Storm Sewer (0046-2022)
RMPSUB	Ontario Reg.Mun. of Peel Sewer Bylaw #53-2010 (APR, 2019)
SAN	Peel Sanitary Sewer (53-2010)
STM	Peel Storm Sewer (53-2010)

	QUALITY CONTROL INTERPRETIVE REPORT						
Work Order	:WT2222208	Page	: 1 of 13				
Client	McClymont & Rak Engineers Inc.	Laboratory	: Waterloo - Environmental				
Contact	: Richard Sukhu	Account Manager	: Emily Smith				
Address	: 111 Zenway Blvd. Unit 4	Address	: 60 Northland Road, Unit 1				
	Vaughan ON Canada L4H 3H9		Waterloo, Ontario Canada N2V 2B8				
Telephone	: 416 675 0160	Telephone	: +1 519 886 6910				
Project	: 1187	Date Samples Received	: 17-Nov-2022 16:13				
PO	:	Issue Date	: 28-Nov-2022 15:57				
C-O-C number	: 20-1007464						
Sampler	: CLIENT						
Site	:						
Quote number	: 2022 Price List						
No. of samples received	:1						
No. of samples analysed	:1						

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers Outliers : Quality Control Samples

• No Method Blank value outliers occur.

- No Duplicate outliers occur.
- Laboratory Control Sample (LCS) outliers occur please see following pages for full details.
- Matrix Spike outliers occur please see following pages for full details.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• Quality Control Sample Frequency Outliers occur - please see following pages for full details.

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: Water

Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Method	Result	Limits	Comment
aboratory Control Sample (LCS) Recoveries								
Volatile Organic Compounds QC-752755-002 methyl ethyl ketone [MEK] 78-93-3 E611D 135 % MES 70.0-130% Recovery greater than upper control limit								
Result Qualifiers								
Qualifier	Description							
MES		0 , ()	< 10% absolute) for < 10% of ana					

Multi-Element Scan / Multi-Parameter Scan (considered acceptable as per OMOE & CCME).

Volatile Organic Compounds	Anonymous	Anonymous	methyl ethyl ketone [MEK]	78-93-3	E611D	143 % ^{MES}	60.0-140%	Recovery greater than upper data quality objective		
Result Qualifiers Qualifier	Description									
MES		• • •	by < 10% absolute) for < 10% of analyt dered acceptable as per OMOE & CCM							

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Εv	aluation: × =	Holding time excee	edance ; 🔹	<pre>< = Within</pre>	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	e Holding Times		Eval
			Date	Rec	Actual			Rec	Actual	
Aggregate Organics : Biochemical Oxygen Demand - 5 day										
HDPE [BOD HT-4d] BH202	E550	17-Nov-2022					18-Nov-2022	4 days	1 days	✓
Aggregate Organics : Biochemical Oxygen Demand (Carbonaceous) - 5 day									<u> </u>	
HDPE [BOD HT-4d] BH202	E555	17-Nov-2022					18-Nov-2022	4 days	1 days	✓
Aggregate Organics : Mineral Oil & Grease by Gravimetry									I I	
Amber glass (hydrochloric acid) BH202	E567SG	17-Nov-2022	21-Nov-2022	28 days	4 days	~	21-Nov-2022	40 days	0 days	~
Aggregate Organics : Oil & Grease by Gravimetry				1						
Amber glass (hydrochloric acid) BH202	E567	17-Nov-2022	21-Nov-2022	28 days	4 days	~	21-Nov-2022	40 days	0 days	✓
Aggregate Organics : Phenols (4AAP) in Water by Colorimetry									· · · ·	
Amber glass total (sulfuric acid) [ON MECP] BH202	E562	17-Nov-2022	22-Nov-2022				22-Nov-2022	28 days	5 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE [ON MECP] BH202	E235.F	17-Nov-2022	18-Nov-2022				22-Nov-2022	28 days	5 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE [ON MECP] BH202	E235.SO4	17-Nov-2022	18-Nov-2022				22-Nov-2022	28 days	5 days	4

latrix: Water					Ev	/aluation: × =	Holding time exce	edance ; •	= Within	Holding Tin
Analyte Group	Method	Sampling Date	Ext	traction / Pr	reparation			Analysis		
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid) [ON MECP]										
BH202	E318	17-Nov-2022	22-Nov-2022				22-Nov-2022	28 days	5 days	1
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid) [ON MECP]										
BH202	E372-U	17-Nov-2022	22-Nov-2022				23-Nov-2022	28 days	6 days	1
Cyanides : Total Cyanide										
UV-inhibited HDPE - total (sodium hydroxide)										
BH202	E333	17-Nov-2022	25-Nov-2022				25-Nov-2022	14 days	8 days	~
norganics : Total Chlorine (Residual) by DPD Colourimetry								_		
HDPE [ON MECP]										
BH202	E326	17-Nov-2022					23-Nov-2022	0.25	144 hrs	*
								hrs		EHTR-FN
Vicrobiological Tests : E. coli (MF-mFC-BCIG)				1						
Sterile HDPE (Sodium thiosulphate) [ON MECP]										
BH202	E012A.EC	17-Nov-2022					18-Nov-2022	48 hrs	26 hrs	1
Nonylphenols : Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode										
Amber glass/Teflon lined cap - LCMS										
BH202	E749B	17-Nov-2022	18-Nov-2022	7 days	1 days	1	18-Nov-2022	7 days	0 days	1
Nonylphenols : Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negati	ve Mode			1	_			1		
Amber glass/Teflon lined cap - LCMS						,				,
BH202	E749A	17-Nov-2022	18-Nov-2022	7 days	1 days	1	18-Nov-2022	7 days	0 days	1
Phthalate Esters : BNA (Ontario Sanitary Sewer SVOC Target List) by GC-MS										
Amber glass/Teflon lined cap [ON MECP]			00.11				04.01 000-	10 .		
BH202	E655F	17-Nov-2022	23-Nov-2022	14	7 days	1	24-Nov-2022	40 days	1 days	1
				days						
Physical Tests : pH by Meter										
HDPE [ON MECP]										
BH202	E108	17-Nov-2022	18-Nov-2022				19-Nov-2022	14 days	2 days	1

nalyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)	Wethod	Sampling Date	Preparation Holding Tim		g Times	nes Eval	Analysis Date	Holding Times		Eval
			Date	Rec	Actual			Rec	Actual	
hysical Tests : TSS by Gravimetry										
HDPE [ON MECP] BH202	E160	17-Nov-2022					18-Nov-2022	7 days	1 days	*
olychlorinated Biphenyls : PCB Aroclors by GC-MS				1	1 1				II	
Amber glass/Teflon lined cap BH202	E687	17-Nov-2022	18-Nov-2022	14 days	1 days	~	21-Nov-2022	40 days	3 days	1
olycyclic Aromatic Hydrocarbons : PAHs by Hexane LVI GC-MS										
Amber glass/Teflon lined cap (sodium bisulfate) BH202	E641A	17-Nov-2022	21-Nov-2022	14 days	4 days	~	22-Nov-2022	40 days	1 days	1
peciated Metals : Total Hexavalent Chromium (Cr VI) by IC										
HDPE - total (NaOH+Buf) [ON MECP] BH202	E532	17-Nov-2022					18-Nov-2022	28 days	1 days	1
otal Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid) BH202	E508	17-Nov-2022	18-Nov-2022				18-Nov-2022	28 days	1 days	~
otal Metals : Total metals in Water by CRC ICPMS										
HDPE total (nitric acid) BH202	E420	17-Nov-2022	17-Nov-2022				18-Nov-2022	180 days	1 days	1
olatile Organic Compounds : VOCs (Eastern Canada List) by Headspace GC-MS										
Glass vial (sodium bisulfate) BH202	E611D	17-Nov-2022	22-Nov-2022				22-Nov-2022	14 days	5 days	✓

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

Rec. HT: ALS recommended hold time (see units).

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water Quality Control Sample Type			on: × = QC freque	ount			
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Frequency (%)	Evaluation
Laboratory Duplicates (DUP)							
Biochemical Oxygen Demand - 5 day	E550	748642	1	19	5.2	5.0	1
Biochemical Oxygen Demand (Carbonaceous) - 5 day	E555	748643	1	20	5.0	5.0	
E. coli (MF-mFC-BCIG)	E012A.EC	748768	0	13	0.0	5.0	x
Fluoride in Water by IC	E235.F	749331	1	6	16.6	5.0	
Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode	E749B	748472	1	9	11.1	5.0	
Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode	E749A	748473	1	9	11.1	5.0	
pH by Meter	E108	749333	1	19	5.2	5.0	<u> </u>
Phenols (4AAP) in Water by Colorimetry	E562	752318	1	12	8.3	5.0	<u> </u>
Sulfate in Water by IC	E235.SO4	749332	1	6	16.6	5.0	~
Total Chlorine (Residual) by DPD Colourimetry	E326	754070	1	2	50.0	5.0	
Total Cyanide	E333	757482	1	19	5.2	5.0	
Total Hexavalent Chromium (Cr VI) by IC	E532	748542	1	12	8.3	5.0	~
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	751924	1	4	25.0	5.0	1
Total Mercury in Water by CVAAS	E508	748497	1	9	11.1	5.0	1
Total metals in Water by CRC ICPMS	E420	748283	1	6	16.6	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	752317	1	12	8.3	5.0	✓
TSS by Gravimetry	E160	748400	1	20	5.0	4.7	1
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	752755	1	20	5.0	5.0	✓
Laboratory Control Samples (LCS)							
Biochemical Oxygen Demand - 5 day	E550	748642	1	19	5.2	5.0	1
Biochemical Oxygen Demand (Carbonaceous) - 5 day	E555	748643	1	20	5.0	5.0	✓
BNA (Ontario Sanitary Sewer SVOC Target List) by GC-MS	E655F	755346	1	2	50.0	5.0	1
Fluoride in Water by IC	E235.F	749331	1	6	16.6	5.0	1
Mineral Oil & Grease by Gravimetry	E567SG	748135	1	8	12.5	5.0	1
Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode	E749B	748472	1	9	11.1	5.0	1
Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode	E749A	748473	1	9	11.1	5.0	1
Oil & Grease by Gravimetry	E567	748136	1	11	9.0	5.0	1
PAHs by Hexane LVI GC-MS	E641A	750859	1	7	14.2	5.0	✓
PCB Aroclors by GC-MS	E687	749048	1	10	10.0	4.7	✓
pH by Meter	E108	749333	1	19	5.2	5.0	1
Phenols (4AAP) in Water by Colorimetry	E562	752318	1	12	8.3	5.0	✓
Sulfate in Water by IC	E235.SO4	749332	1	6	16.6	5.0	✓
Total Chlorine (Residual) by DPD Colourimetry	E326	754070	1	2	50.0	5.0	✓
Total Cyanide	E333	757482	0	19	0.0	5.0	×
Total Hexavalent Chromium (Cr VI) by IC	E532	748542	1	12	8.3	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	751924	1	4	25.0	5.0	~

alsglobal.com

Matrix: Water Quality Control Sample Type			on: × = QC freque			<u> </u>			
	Method	QC Lot #	QC	ount Regular	Actual	Frequency (%)	Evaluation		
Analytical Methods	Method	QC L01 #	QC	Regular	Actual	Expected	Evaluation		
Laboratory Control Samples (LCS) - Continued									
Total Mercury in Water by CVAAS	E508	748497	1	9	11.1	5.0	✓		
Total metals in Water by CRC ICPMS	E420	748283	1	6	16.6	5.0	✓		
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	752317	1	12	8.3	5.0	✓		
TSS by Gravimetry	E160	748400	1	20	5.0	4.7	✓		
/OCs (Eastern Canada List) by Headspace GC-MS	E611D	752755	1	20	5.0	5.0	✓		
Method Blanks (MB)									
Biochemical Oxygen Demand - 5 day	E550	748642	1	19	5.2	5.0	1		
Biochemical Oxygen Demand (Carbonaceous) - 5 day	E555	748643	1	20	5.0	5.0	~		
BNA (Ontario Sanitary Sewer SVOC Target List) by GC-MS	E655F	755346	1	2	50.0	5.0	~		
E. coli (MF-mFC-BCIG)	E012A.EC	748768	1	13	7.6	5.0			
Fluoride in Water by IC	E235.F	749331	1	6	16.6	5.0			
Vineral Oil & Grease by Gravimetry	E567SG	748135	1	8	12.5	5.0	<u> </u>		
Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode	E749B	748472	1	9	11.1	5.0			
Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode	E749A	748473	1	9	11.1	5.0			
Dil & Grease by Gravimetry	E567	748136	1	11	9.0	5.0			
PAHs by Hexane LVI GC-MS	E641A	750859	1	7	14.2	5.0			
PCB Aroclors by GC-MS	E687	749048	1	10	10.0	4.7			
Phenols (4AAP) in Water by Colorimetry	E562	752318	1	12	8.3	5.0			
Sulfate in Water by IC	E235.SO4	749332	1	6	16.6	5.0			
Total Chlorine (Residual) by DPD Colourimetry	E326	754070	1	2	50.0	5.0			
Total Cyanide	E333	757482	0	19	0.0	5.0	*		
Total Hexavalent Chromium (Cr VI) by IC	E532	748542	1	12	8.3	5.0			
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	751924	1	4	25.0	5.0			
Total Mercury in Water by CVAAS	E508	748497	1	9	11.1	5.0			
Total metals in Water by CRC ICPMS	E420	748283	1	6	16.6	5.0			
Total Phosphorus by Colourimetry (0.002 mg/L)	E420	752317	1	12	8.3	5.0			
TSS by Gravimetry	E160	748400	1	20	5.0	4.7	 ✓		
VOCs (Eastern Canada List) by Headspace GC-MS	E 100	752755	1	20	5.0	5.0	 ✓		
Matrix Spikes (MS)	LOTID	102100	· · ·	20	0.0	0.0	v		
Matrix Spikes (MS) Fluoride in Water by IC	E005 E	749331	1	6	16.6	5.0			
Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode	E235.F	749331	1	9	11.1	5.0	<u> </u>		
	E749B	748472	1	9	11.1	5.0	<u> </u>		
Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode	E749A			-			<u> </u>		
Phenols (4AAP) in Water by Colorimetry	E562	752318	1	12 6	8.3	5.0	<u> </u>		
Sulfate in Water by IC	E235.SO4	749332		-	16.6	5.0	<u> </u>		
Fotal Chlorine (Residual) by DPD Colourimetry	E326	754070	1	2	50.0	5.0	<u> </u>		
Fotal Cyanide	E333	757482	1	19	5.2	5.0	<u> </u>		
Fotal Hexavalent Chromium (Cr VI) by IC	E532	748542	1	12	8.3	5.0	✓		
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	751924	1	4	25.0	5.0			
Total Mercury in Water by CVAAS	E508	748497	1	9	11.1	5.0	✓		

Page	:	9 of 13
Work Order	:	WT2222208
Client	:	McClymont & Rak Engineers Inc.
Project	:	1187

Matrix: Water		Evaluation	ion: ★ = QC frequency outside specification; ✓ = QC frequency within specificat						
Quality Control Sample Type			Count			Frequency (%)			
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation		
Matrix Spikes (MS) - Continued									
Total metals in Water by CRC ICPMS	E420	748283	1	6	16.6	5.0	1		
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	752317	1	12	8.3	5.0	✓		
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	752755	1	20	5.0	5.0	✓		

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
E. coli (MF-mFC-BCIG)	E012A.EC	Water	ON E3433 (mod)	Following filtration (0.45 µm), and incubation at 44.5±0.2°C for 24 hours, colonies exhibiting characteristic morphology of the target organism are enumerated.
	Waterloo -			
	Environmental			
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally $20 \pm 5^{\circ}$ C). For high accuracy test results,
	Waterloo -			pH should be measured in the field within the recommended 15 minute hold time.
	Environmental			
TSS by Gravimetry	E160	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at $104 \pm 1^{\circ}$ C, with gravimetric measurement of the
	Waterloo -			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
	Environmental			brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Waterloo -			
	Environmental			
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Waterloo -			
	Environmental			
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	Water	Method Fialab 100, 2018	TKN in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde).
,	Waterloo -			This method is approved under US EPA 40 CFR Part 136 (May 2021).
	Environmental			
Total Chlorine (Residual) by DPD Colourimetry	E326	Water	APHA 4500-CI G (mod)	Chlorine (residual), as free or total, is analyzed using the DPD colourimetric method. The recommended hold time for this test is 15 minutes and field testing is recommended
	Waterloo -			when determining Chlorine concentrations at the time of sampling.
	Environmental			
				Chlorine if present in a sample container after sampling can be rapidly consumed by any
				inorganic or organic matter in the sample and dissipates rapidly into headspace.
				Laboratory results may be requested when chlorine concentrations that may be present
				at the time of laboratory analysis are required for the interpretation of other laboratory
				analysis where the presence of Chlorine may affect results. e.g. laboratory toxicity testing

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Total Cyanide	E333	Water	ISO 14403 (mod)	Total or Strong Acid Dissociable (SAD) Cyanide is determined by Continuous Flow Analyzer (CFA) with in-line UV digestion followed by colourmetric analysis.
	Waterloo -			
	Environmental			Method Limitation: High levels of thiocyanate (SCN) may cause positive interference (up
	Environmontal			to 0.5% of SCN concentration).
Total Phosphorus by Colourimetry (0.002	E372-U	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated
mg/L)				persulfate digestion of the sample.
	Waterloo -			
	Environmental			
Total metals in Water by CRC ICPMS	E420	Water	EPA 200.2/6020B	Water samples are digested with nitric and hydrochloric acids, and analyzed by
			(mod)	Collision/Reaction Cell ICPMS.
	Waterloo -			
	Environmental			Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered
				by this method.
Total Mercury in Water by CVAAS	E508	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction
				with stannous chloride, and analyzed by CVAAS
	Waterloo -			
	Environmental			
Total Hexavalent Chromium (Cr VI) by IC	E532	Water	APHA 3500-Cr C (Ion	Hexavalent Chromium is measured by Ion chromatography-Post column reaction and UV
			Chromatography)	detection.
	Waterloo -			
	Environmental			Results are based on an un-filtered, field-preserved sample.
Biochemical Oxygen Demand - 5 day	E550	Water	APHA 5210 B (mod)	Samples are diluted and incubated for a specified time period, after which the oxygen
				depletion is measured using a dissolved oxygen meter.
	Waterloo -			
	Environmental			Free chlorine is a negative interference in the BOD method; please advise ALS when
				free chlorine is present in samples.
Biochemical Oxygen Demand (Carbonaceous)	E555	Water	APHA 5210 B (mod)	Samples are diluted and incubated for a specified time period, after which the oxygen
- 5 day				depletion is measured using a dissolved oxygen meter. Nitrification inhibitor is added to
	Waterloo -			samples to prevent nitrogenous compounds from consuming oxygen resulting in only
	Environmental			carbonaceous oxygen demand being reported by this method.
				Free chlorine is a negative interference in the BOD method; please advise ALS when
				free chlorine is present in samples.
Phenols (4AAP) in Water by Colorimetry	E562	Water	EPA 9066	This automated method is based on the distillation of phenol and subsequent reaction of
				the distillate with alkaline ferricyanide (K3Fe(CN)6) and 4-amino-antipyrine (4-AAP) to
	Waterloo -			form a red complex which is measured colorimetrically.
	Environmental			
Oil & Grease by Gravimetry	E567	Water	BC MOE Lab Manual	The entire water sample is extracted with hexane and the extract is evaporated to
			(Oil & Grease) (mod)	dryness. The residue is then weighed to determine Oil and Grease.
	Waterloo -			
	Environmental			

Page	:	12 of 13
Work Order	1	WT2222208
Client	:	McClymont & Rak Engineers Inc.
Project	:	1187

Waterico - Environmental Waterico - Environmental (Oil & Grease) (mod) which the extract is evaporated to dyness. The residue is then weigh Mineral Oil and Grease. VOCs (Eastern Canada List) by Headspace GC-MS E511D Water Waterico - Environmental Water Waterico - Environmental Volatile Organic Compounds (VOCs) are analyzed by static headspace vials and are heated and a headspace in accoding with Henry's law. PAHs by Hexane LVI GC-MS E541A Water Waterico - Environmental EPA 8270E (mod) Polycyclic Aromatic Hydrocarbons (PAHs) are analyzed by large volum GC-MS. BNA (Ontario Sanitary Sewer SVOC Target Lat) by GC-MS E655F Water Waterico - Environmental EVA 8270E (mod) BNA are analyzed by GC-MS. PCB Aroclors by GC-MS E687 Water Waterico - Environmental EVA 8270E (mod) POB Aroclors are analyzed by GC-MS. Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode F249A Water Waterico - Environmental J. Chrom A849 (1999) PA7-482 An aliquot of 5.0 ± 0.10 mL of filtered sample is spiked with analyzed by LC-MS/MS. Nonylphenol Ethoxylates in Water by LC-MS-MS Negative Mode E249B Water Waterico - Environmental J. Chrom A849 (1999) PA7-482 Water samples are filtered and analyzed on LCMS/MS by direct injection. PA7-482 Paparation Methods Method Crease by Gravimental <t< th=""><th>alytical Methods</th><th>Method / Lab</th><th>Matrix</th><th>Method Reference</th><th>Method Descriptions</th></t<>	alytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Waterico - Environmental Mineral Oli and Grease. Mineral Oli and Grease. VOCs (Eastern Canada List) by Headspace GC-MS E611D Water Waterioo - Environmental Waterio O EPA 8280D (mod) Volatile Organic Compounds (VOCs) are analyzed by static head Samples are prepared in headspace wides and are headed and a headspace autosampler, causing VOCs to partition between the acue the headspace autosampler, causing VOCs to partition between the acue environmental PAHs by Hexare LVI GC-MS EE414 Water EPA 8270E (mod) Polycyclic Aronatic Hydrocarbons (PAHs) are analyzed by large volum GC-MS. BNA (Ontario Sanitary Sewer SVOC Target List) by GC-MS E655F Water EPA 8270E (mod) BNA are analyzed by GC-MS. POB Aroctors by GC-MS E687 Water Waterloo - Environmental PCB Aroctors are analyzed by GC-MS. POB Aroctors by GC-MS E687 Water J. Chrom A840 (1909) p.467-482 An aliquot of 5.0 ± 0.10 mL of filtered sample is spiked with Nonylphenol Diethoxylate Mode Norylphenol Ethoxylates in Water by LC-MS-MS Negative Mode E749A Water J. Chrom A840 (1909) p.467-482 An aliquot of 5.0 ± 0.10 mL of filtered sample is spiked with Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode E749B Water J. Chrom A840 (1909) p.467-482 An aliquot of 5.0 ± 0.10 mL of filtered and analyzed on LCMS/MS by direct injection. <td>eral Oil & Grease by Gravimetry</td> <td>E567SG</td> <td>Water</td> <td>BC MOE Lab Manual</td> <td>The entire water sample is extracted with hexane, followed by silica gel treatment after</td>	eral Oil & Grease by Gravimetry	E567SG	Water	BC MOE Lab Manual	The entire water sample is extracted with hexane, followed by silica gel treatment after
Environmental Water FPA 8280D (mod) Volatile Organic Compounds (VOGs) are analyzed by static headspace vials and are heated and a headspace actusampler, causing VOCs to partition between the aque the headspace actusampler, causing VOCs to partition between the aque the headspace actusampler, causing VOCs to partition between the aque the headspace actusampler, causing VOCs to partition between the aque the headspace actusampler, causing VOCs to partition between the aque the headspace actusampler, causing VOCs to partition between the aque the headspace actusampler, causing VOCs to partition between the aque the headspace actusampler, causing VOCs to partition between the aque the headspace actusampler, causing VOCs to partition between the aque the headspace actusampler, causing VOCs to partition between the aque the headspace actusampler, causing VOCs to partition between the aque the headspace actusampler, causing VOCs to partition between the aque the headspace actusampler, causing VOCs to partition between the aque the headspace actusampler, causing VOCs to partition between the aque the headspace actusampler, causing VOCs to partition between the aque the headspace actusampler, causing VOCs to partition between the aque the headspace actusampler, causing VOCs to partition between the aque the headspace actusampler, causing VOCs to partition between the aque the headspace actusampler, causing VOCs to partition between the aque the headspace actusampler, causing VOCs to partition between the aque the headspace actus methods actuation on the Mentop on the Advetore on the Adv				(Oil & Grease) (mod)	which the extract is evaporated to dryness. The residue is then weighed to determine
VOCs (Eastern Canada List) by Headspace GC-MS E611D Water EPA 8280D (mod) Volatile Organic Compounds (VOCs) are analyzed by static hea Samples are prepared in headspace vials and are heated and a headspace autoscampler, causing VOCs to particino between the aque the headspace in accordance with Henry's law. PAHs by Hexane LVI GC-MS E641A Water EPA 8270E (mod) Polycyclic Aromatic Hydrocarbons (PAHs) are analyzed by large volum GC-MS. BNA (Ontario Sanitary Sever SVOC Target List) by GC-MS E655F Water EPA 8270E (mod) BNA are analyzed by GC-MS. PCB Aroclors by GC-MS E697 Water EPA 8270E (mod) BNA are analyzed by GC-MS. PCB Aroclors by GC-MS E697 Water EPA 8270E (mod) BNA are analyzed by GC-MS. Norylphenol, Octyphenol and BPA in Water by LC-MS-MS Negative Mode E749A Water J. Chrom A849 (1999) p.467-482 An aliquot of 5.0 ± 0.10 mL of filtered sample is spiked with Norylphenol Diethoxylates in Water by LC-MS-MS Negative Mode E749B Water J. Chrom A849 (1999) p.467-482 Water analyzed by LC-MS/MS. Animal & Vegetable Oil & Grease by Gravimetry EC567.SG Water APHA 5520 (mod) Animal & vegetable oil and grease is calculated as follows: Oil & Grease manalyzed by LC-MS/MS. Preparation Methods Method / Lab Matrix APHA 5520 (mod) Animal & vegetable oil and grease is calculated as follows: Oil & Grease minus Mineral Oil & Grease (gravimetric)		Waterloo -			Mineral Oil and Grease.
GC-MS Waterio - Environmental EAR 10 - Environmental Samples are prepared in headspace vials and are heated and a headspace autosampler, causing VOCs to partition between the aque the headspace in accordance with Henry's isw. PAHs by Hexane LVI GC-MS E641A Water EPA 8270E (mod) Polycyclic Aromatic Hydrocarbons (PAHs) are analyzed by large volum GC-MS. BNA (Ontario Sanitary Sewer SVOC Target List) by GC-MS E655F Water EPA 8270E (mod) BNA are analyzed by GC-MS. BNA (Ontario Sanitary Sewer SVOC Target List) by GC-MS E655F Water EPA 8270E (mod) BNA are analyzed by GC-MS. Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode E687 Water EPA 8270E (mod) PCB Aroclors are analyzed by GC-MS. Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode E749A Water I. Chrom A849 (1990) p.467-482 An a ilquot of 5.0 ± 0.10 mL of filtered sample is spiked with nalyzed by LC-MS/MS. Nonylphenol Ethoxylates in Water by LC-MS-MS Negative Mode E749B Water J. Chrom A849 (1990) p.467-482 Water analyzed on LCMS/MS by direct injection. Preparation Methods Method / Lab Matrix APHA 5520 (mod) Animal & vegetable oil and grease is calculated as follows: Oil & Grease innus Mineral Oil & Grease (gravimetric) Waterio - Environmental E7318 Water APHA 4500-Norg D (mod) Samples are filtered and analyzed on LCMS/MS by direct injection.					
Waterioo- Environmental Waterioo- Environmental E641A Water Waterioo- Environmental EPA 8270E (mod) Polycyclic Aromatic Hydrocarbons (PAHs) are analyzed by large volum GC-MS. BNA (Ontario Sanitary Sewer SVOC Target List) by GC-MS E655F Water Waterioo- Environmental EPA 8270E (mod) BNA are analyzed by GC-MS. PCB Aroclors by GC-MS E683F Water Waterioo- Environmental EPA 8270E (mod) PCB Aroclors are analyzed by GC-MS. PCB Aroclors by GC-MS E683F Water Waterioo- Environmental EPA 8270E (mod) PCB Aroclors are analyzed by GC-MS. Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode E749A Water Waterioo- Environmental J. Chrom A849 (1989) P.467-482 An aliquot of 5.0 ± 0.10 mL of filtered sample is spiked with Nonylphenol Diethoxylate in 30.6, and Bisphenol A 13C12 internal analyzed by LC-MS/MS. Nonylphenol Ethoxylates in Water by LC-MS-MS Negative Mode E749B Water Waterioo- Environmental J. Chrom A849 (1989) P.467-482 Water samples are filtered and analyzed on LCMS/MS by direct injection. PA7-482 Animal & Vegetable Oil & Grease by Gravimetry EC567A:SG Water Waterioo - Environmental APHA 5520 (mod) Animal & wegetable oil and grease is calculated as follows: Oil & Gre minus Mineral Oil & Grease (gravimetric) Preparetion Methods EP318 Waterioo - Environmental APHA 4500-Norg D (mod) Samples are digested at high temperature using Sulfuic Acid with which converts organic nitrogen	Cs (Eastern Canada List) by Headspace	E611D	Water	EPA 8260D (mod)	
Environmental Mater Environmental Mater EPA 8270E (mod) Polycyclic Aromatic Hydrocarbons (PAHs) are analyzed by large volum GC-MS. PAHs by Hexane LVI GC-MS E641A Water EPA 8270E (mod) Polycyclic Aromatic Hydrocarbons (PAHs) are analyzed by large volum GC-MS. BNA (Ontario Sanitary Sewer SVOC Target List) by GC-MS E655F Water EPA 8270E (mod) BNA are analyzed by GC-MS. PGB Aroclors by GC-MS E657 Water EPA 8270E (mod) BNA are analyzed by GC-MS. PGB Aroclors by GC-MS E687 Water EPA 8270E (mod) PCB Aroclors are analyzed by GC-MS. Norrylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode E749A Water J. Chrom A849 (1999) p.467-482 An aliquot of 5.0 ± 0.10 mL of filtered sample is spiked with Annylphenol Ethoxylates in Water by LC-MS-MS Positive Mode E749B Water J. Chrom A849 (1999) p.467-482 Water samples are filtered and analyzed on LCMS/MS by direct injection. Environmental Animal & Vegetable OI & Grease by Gravimetry E749B Water J. Chrom A849 (1999) p.467-482 Animal & vegetable oi and grease is calculated as follows: Oil & Grease minus Mineral Oil & Grease (gravimetric) CMS/MS by direct injection. P.467-482 Digestion for TKN in water E2657A.SG	-MS				Samples are prepared in headspace vials and are heated and agitated on the
PAHs by Hexane LVI GC-MS E841A Water EPA 8270E (mod) Polycyclic Aromatic Hydrocarbons (PAHs) are analyzed by large volum. GC-MS. BNA (Ontario Sanitary Sewer SVOC Target List) by GC-MS E655F Water EPA 8270E (mod) BNA are analyzed by GC-MS. Ust) by GC-MS E655F Water EPA 8270E (mod) BNA are analyzed by GC-MS. Ust) by GC-MS E687 Water EPA 8270E (mod) BNA are analyzed by GC-MS. Vaterioo - Environmental EFAR Water PCB Aroclors are analyzed by GC-MS. Norylphenol, Octlyphenol and BPA in Water by LC-MS-MS Negative Mode E749A Water Waterioo - Environmental J. Chrom A849 (1999) P.467-482 An aliquot of 5.0 ± 0.10 mL of filtered sample is spiked with Norylphenol Diethoxylate 13C6, and Bisphenol A 13C12 internal analyzed by LC-MS/MS. Norylphenol Ethoxylates in Water by LC-MS-MS Positive Mode E749B Water Waterioo - Environmental J. Chrom A849 (1999) P.467-482 Water samples are filtered and analyzed on LCMS/MS by direct injection. Animal & Vegetable Oil & Grease by Gravimetry EC567A SG Water Waterioo - Environmental APHA 5520 (mod) Animal & vegetable oil and grease is calculated as follows: Oil & Gre minus Mineral Oil & Grease (gravimetric) Preparation Methods Method Llab Matrix APHA 4500-Norg D (mod) Samples are digested at high temperature using Sulfuric Acid with which converts organic nitrogen sources to Ammonia, which is then q analytical					headspace autosampler, causing VOCs to partition between the aqueous phase and
Waterioo - Environmental EASF Water EPA 8270E (mod) BNA are analyzed by GC-MS. BNA (Ontario Sanitary Sewer SVOC Target List) by GC-MS E655F Water EPA 8270E (mod) BNA are analyzed by GC-MS. PCB Aroclors by GC-MS E687 Waterioo - Environmental PCB Azorolors are analyzed by GC-MS. Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode E749A Water J. Chrom A849 (1999) P.467-482 An aliquot of 5.0 ± 0.10 mL of filtered sample is spiked with Nonylphenol Diethoxylate 13C6, and Bisphenol A 13C12 internal analyzed by LC-MS/MS. Nonylphenol Ethoxylates in Water by LC-MS-MS Negative Mode E749B Water Waterioo - Environmental J. Chrom A849 (1999) P.467-482 Water samples are filtered and analyzed on LCMS/MS by direct injection. Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode EC567A.SG Water Waterioo - Environmental APHA 5520 (mod) Animal & vegetable oil and grease is calculated as follows: Oil & Grease (gravimetry) Preparation Methods Method / Lab Matrix Method Reference Method Descriptions Digestion for TKN in water E7318 Water APHA 4500-Norg D (mod) Samples are digested at high temperature using Sulfuric Acid with which converts organic nitrogen sources to Ammonia, which is then q analytical method as TKN. This method is unsuitable for samples conta analytical method as TKN. This method is unsuitable for samples conta analytical method as TKN. This method is unsuitable for samples conta analyticala					
Environmental Environmental EPA 8270E (mod) BNA are analyzed by GC-MS. BNA (Ontario Sanitary Sever SVOC Target List) by GC-MS E655F Water Waterloo - Environmental EPA 8270E (mod) BNA are analyzed by GC-MS. PCB Aroclors by GC-MS E687 Water Waterloo - Environmental EPA 8270E (mod) PCB Aroclors are analyzed by GC-MS. Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode E749A Water Waterloo - Environmental J. Chrom A849 (1999) p.467-482 An aliquot of 5.0 ± 0.10 mL of filtered sample is spiked with Nonylphenol Diethoxylate 13C6, and Bisphenol A 13C12 internal analyzed by LC-MS/MS. Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode E749B Water Waterloo - Environmental J. Chrom A849 (1999) p.467-482 Water samples are filtered and analyzed on LCMS/MS by direct injection. Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode EC567A.SG Water Waterloo - Environmental APHA 5520 (mod) Animal & vegetable oil and grease is calculated as follows: Oil & Grease minus Mineral Oil & Grease (gravimetric) Waterloo EP318 Water Waterloo - Environmental APHA 4550-Norg D (mod) Samples are digested at high temperature using Suffuric Acid with which converts organic nitrogen sources to Ammonia, which is then q analytical method as TKN. This method is unsultable for samples corota of nitrate. If nitrate exceeded TKN concentrati	⊣s by Hexane LVI GC-MS	E641A	Water	EPA 8270E (mod)	Polycyclic Aromatic Hydrocarbons (PAHs) are analyzed by large volume injection (LVI) GC-MS.
BNA (Ontario Sanitary Sewer SVOC Target List) by GC-MS E655F Water EPA 8270E (mod) BNA are analyzed by GC-MS. PCB Aroclors by GC-MS E687 Water contention EPA 8270E (mod) PCB Aroclors are analyzed by GC-MS. PCB Aroclors by GC-MS E687 Water contention EPA 8270E (mod) PCB Aroclors are analyzed by GC-MS. Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode E749A Water contention J. Chrom A849 (1999) An aliquot of 5.0 ± 0.10 mL of filtered sample is spiked with Nonylphenol Diethoxylate in Water by LC-MS-MS Negative Mode E749B Water contention J. Chrom A849 (1999) Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode E749B Water contention J. Chrom A849 (1999) Water samples are filtered and analyzed on LCMS/MS by direct injection. Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode EC567A.SG Water one tenvironmental APHA 5520 (mod) Animal & vegetable oil and grease is calculated as follows: Oil & Grease by Gravimetric) Gravimetry Waterloo - tenvironmental Method / Lab Method Reference Method Reference Digestion for TKN in water EP318 Water APHA 4500-Norg D (mod) Samples are digested at high temperature using Sulfuric Acid with which converts organic nitrogen sources to Ammonia, which is then q analytical method as TKN. This method is unsuitable for samples conta of nitrate.					
List) by GC-MS Waterioo - Environmental PCB Aroclors by GC-MS E687 Water PCB Aroclors by GC-MS E687 Water Nonylphenol, Octylphenol and BPA in Water E749A Water by LC-MS-MS Negative Mode Waterioo - Environmental J. Chrom A849 (1999) Nonylphenol Ethoxylates in Water by LC-MS-MS Negative Mode E749B Water Lot-MS-MS Positive Mode E749B Water Waterioo - Environmental J. Chrom A849 (1999) Water samples are filtered and analyzed by LC-MS/MS by direct injection. Animal & Vegetable Oil & Grease by Gravimetry EC567A.SG Water APHA 5520 (mod) Peparation Methods Method / Lab Matrix Method Reference Pigestion for TKN in water EP318 Water APHA 4500-Norg D (mod) Samples are digested at high temperature using Sulfuric Acid with which converts organic nitrogen sources to Ammonia, which is then q analytical method as TKN. This method as TKN. This method is unsuitable for samples cont acid and the samples cont acid program on more, environmental					
EnvironmentalEnvironmentalImage: Constraint of the		E655F	Water	EPA 8270E (mod)	BNA are analyzed by GC-MS.
PCB Aroclors by GC-MS E687 Water EPA 8270E (mod) PCB Aroclors are analyzed by GC-MS Nonylphenol, Octylphenol and BPA in Water E749A Water J. Chrom A849 (1999) An aliquot of 5.0 ± 0.10 mL of filtered sample is spiked with Nonylphenol Diethoxylate 13C6, and Bisphenol A 13C12 internal analyzed by LC-MS/MS. Nonylphenol Ethoxylates in Water by E749B Water J. Chrom A849 (1999) An aliquot of 5.0 ± 0.10 mL of filtered sample is spiked with analyzed by LC-MS/MS. Nonylphenol Ethoxylates in Water by E749B Water J. Chrom A849 (1999) Vater samples are filtered and analyzed on LCMS/MS by direct injection. LC-MS-MS Positive Mode E749B Water J. Chrom A849 (1999) Vater samples are filtered and analyzed on LCMS/MS by direct injection. Animal & Vegetable Oil & Grease by EC567A.SG Water APHA 5520 (mod) Animal & vegetable oil and grease is calculated as follows: Oil & Grease (gravimetric) Waterloo - Environmental Matrix Method Reference Method Descriptions Preparation Methods Method / Lab Matrix APHA 4500-Norg D (mod) Samples are digested at high temperature using Sulfuric Acid with which converts organic nitrogen sources to Ammonia, which is then q analytical method as TKN. This method is unsuitable for samples conta of nitrate. If nitrate exceeds TKN concentration by ten times or more,		Waterloo -			
Waterloo - EnvironmentalWaterloo - EnvironmentalJ. Chrom A849 (1999) p.467-482An aliquot of 5.0 ± 0.10 mL of filtered sample is spiked with Nonylphenol Diethoxylate 13C6, and Bisphenol A 13C12 internal analyzed by LC-MS/MS.Nonylphenol Ethoxylates in Water by LC-MS-MS Positive ModeE749BWaterloo - EnvironmentalJ. Chrom A849 (1999) p.467-482An aliquot of 5.0 ± 0.10 mL of filtered sample is spiked with Nonylphenol Diethoxylate 13C6, and Bisphenol A 13C12 internal analyzed by LC-MS/MS.Nonylphenol Ethoxylates in Water by LC-MS-MS Positive ModeE749BWaterloo - EnvironmentalJ. Chrom A849 (1999) p.467-482Water samples are filtered and analyzed on LCMS/MS by direct injection. EnvironmentalAnimal & Vegetable Oil & Grease by GravimetryEC567A.SG Waterloo - EnvironmentalWaterloo - EnvironmentalAPHA 5520 (mod)Animal & vegetable oil and grease is calculated as follows: Oil & Grea minus Mineral Oil & Grease (gravimetric)Peparation MethodsMethod / LabMatrixMethod ReferenceMethod DescriptionsDigestion for TKN in waterEP318 Waterloo - EnvironmentalAPHA 4500-Norg D (mod)Samples are digested at high temperature using Sulfuric Acid with which converts organic nitrogen sources to Ammonia, which is then en of nitrate with of as TKN. This method is unsultable for samples conta of nitrate. If nitrate exceeds TKN concentration by ten times or more, of nitrate.					
EnvironmentalEnvironmentalNonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative ModeE749AWater Waterloo - EnvironmentalJ. Chrom A849 (1999) p.467-482An aliquot of 5.0 ± 0.10 mL of filtered sample is spiked with Nonylphenol Diethoxylate 13C6, and Bisphenol A 13C12 internal analyzed by LC-MS/MS.Nonylphenol Ethoxylates in Water by LC-MS-MS Positive ModeE749BWater Waterloo - EnvironmentalJ. Chrom A849 (1999) p.467-482Water samples are filtered and analyzed on LCMS/MS by direct injection. P.467-482Animal & Vegetable Oil & Grease by GravimetryEC567A.SGWater Waterloo - EnvironmentalAPHA 5520 (mod)Animal & vegetable oil and grease is calculated as follows: Oil & Grea minus Mineral Oil & Grease (gravimetric)Digestion for TKN in waterEP318 Waterloo - EnvironmentalMatrixMethod Reference (mod)Method DescriptionsDigestion for TKN in waterWaterloo - EnvironmentalAPHA 4500-Norg D (mod)Samples are digested at high temperature using Sulfuric Acid with which converts organic nitrogen sources to Ammonia, which is then eq analytical method as TKN. This method is unsultable for samples cont analytical method as TKN. Concentration by ten times or more, environmental	B Aroclors by GC-MS	E687	Water	EPA 8270E (mod)	PCB Aroclors are analyzed by GC-MS
Nonylphenol, Octylphenol and BPA in Water E749A Water J. Chrom A849 (1999) An aliquot of 5.0 ± 0.10 mL of filtered sample is spiked with by LC-MS-MS Negative Mode Waterloo - Environmental J. Chrom A849 (1999) An aliquot of 5.0 ± 0.10 mL of filtered sample is spiked with Nonylphenol Ethoxylates in Water by E749B Water J. Chrom A849 (1999) Water samples are filtered and analyzed on LCMS/MS by direct injection. LC-MS-MS Positive Mode E749B Waterloo - Image: spiked with p.467-482 Water samples are filtered and analyzed on LCMS/MS by direct injection. Animal & Vegetable Oil & Grease by EC567A.SG Water APHA 5520 (mod) Animal & vegetable oil and grease is calculated as follows: Oil & Grease (gravimetric) Vaterloo - Environmental Matrix Method Reference Method Descriptions Digestion for TKN in water EP318 Water APHA 4500-Norg D (mod) Samples are digested at high temperature using Sulfuric Acid with which converts organic nitrogen sources to Ammonia, which is its en analytical method as TKN. This method is unsuitable for samples conta of nitrate. If nitrate exceeds TKN concentration by ten times or more,		Waterloo -			
Instrumentation Instrumentation <thi< td=""><td></td><td>Environmental</td><td></td><td></td><td></td></thi<>		Environmental			
EnvironmentalImage: Construction of the term of term of the term of term		E749A	Water		
Nonylphenol Ethoxylates in Water by LC-MS-MS Positive ModeE749BWaterJ. Chrom A849 (1999) p.467-482Water samples are filtered and analyzed on LCMS/MS by direct injection. P.467-482Animal & Vegetable Oil & Grease by GravimetryEC567A.SGWaterAPHA 5520 (mod)Animal & vegetable oil and grease is calculated as follows: Oil & Grea minus Mineral Oil & Grease (gravimetric)Preparation MethodsMethod / LabMatrixMethod ReferenceMethod DescriptionsDigestion for TKN in waterEP318WaterAPHA 4500-Norg D (mod)Samples are digested at high temperature using Sulfuric Acid with which converts organic nitrogen sources to Ammonia, which is then q analytical method as TKN. This method is unsuitable for samples conta of nitrate. If nitrate exceeds TKN concentration by ten times or more,		Waterloo -			analyzed by LC-MS/MS.
LC-MS-MS Positive ModeLT NDD. Gritomini e is (1605)LT NDD. Gritomini e is (1605)LC-MS-MS Positive ModeWaterloo - EnvironmentalP.467-482Animal & Vegetable Oil & Grease by GravimetryEC567A.SGWaterAPHA 5520 (mod)Animal & vegetable oil and grease is calculated as follows: Oil & Grease minus Mineral Oil & Grease (gravimetric)Preparation MethodsMethod / LabMatrixMethod ReferenceMethod DescriptionsDigestion for TKN in waterEP318WaterAPHA 4500-Norg D (mod)Samples are digested at high temperature using Sulfuric Acid with which converts organic nitrogen sources to Ammonia, which is then q analytical method as TKN. This method is unsuitable for samples conta of nitrate. If nitrate exceeds TKN concentration by ten times or more,					
Waterloo - EnvironmentalWaterloo - EnvironmentalAPHA 5520 (mod)Animal & vegetable oil and grease is calculated as follows: Oil & Great minus Mineral Oil & Grease (gravimetric)Animal & Vegetable Oil & Grease by GravimetryEC567A.SGWaterAPHA 5520 (mod)Animal & vegetable oil and grease is calculated as follows: Oil & Great minus Mineral Oil & Grease (gravimetric)Waterloo - EnvironmentalWaterloo - EnvironmentalMatrixMethod ReferenceMethod DescriptionsDigestion for TKN in waterEP318WaterAPHA 4500-Norg D (mod)Samples are digested at high temperature using Sulfuric Acid with which converts organic nitrogen sources to Ammonia, which is then q analytical method as TKN. This method is unsuitable for samples conta of nitrate. If nitrate exceeds TKN concentration by ten times or more,	nylphenol Ethoxylates in Water by	E749B	Water	J. Chrom A849 (1999)	Water samples are filtered and analyzed on LCMS/MS by direct injection.
EnvironmentalEnvironmentalAnimal & Vegetable Oil & Grease by GravimetryEC567A.SG Waterloo - EnvironmentalWaterAPHA 5520 (mod)Animal & vegetable oil and grease is calculated as follows: Oil & Grease minus Mineral Oil & Grease (gravimetric)Preparation MethodsMethod / LabMatrixMethod ReferenceMethod DescriptionsDigestion for TKN in waterEP318WaterAPHA 4500-Norg D (mod)Samples are digested at high temperature using Sulfuric Acid with which converts organic nitrogen sources to Ammonia, which is then q analytical method as TKN. This method is unsuitable for samples conta of nitrate. If nitrate exceeds TKN concentration by ten times or more,	MS-MS Positive Mode			p.467-482	
Animal & Vegetable Oil & Grease by GravimetryEC567A.SG Waterloo - EnvironmentalWaterAPHA 5520 (mod)Animal & vegetable oil and grease is calculated as follows: Oil & Gre minus Mineral Oil & Grease (gravimetric)Preparation MethodsMethod / LabMatrixMethod ReferenceMethod DescriptionsDigestion for TKN in waterEP318 Waterloo - EnvironmentalWaterAPHA 4500-Norg D (mod)Samples are digested at high temperature using Sulfuric Acid with which converts organic nitrogen sources to Ammonia, which is then q analytical method as TKN. This method is unsuitable for samples conta of nitrate. If nitrate exceeds TKN concentration by ten times or more,					
Gravimetry Waterloo - Environmental Matrix Method Reference Method Descriptions Digestion for TKN in water EP318 Waterloo - Environmental Waterloo - Environmental APHA 4500-Norg D (mod) Samples are digested at high temperature using Sulfuric Acid with which converts organic nitrogen sources to Ammonia, which is then q analytical method as TKN. This method is unsuitable for samples conta of nitrate. If nitrate exceeds TKN concentration by ten times or more,					
Waterloo - Environmental Waterloo - Environmental Method Reference Method Descriptions Digestion for TKN in water EP318 Water APHA 4500-Norg D (mod) Samples are digested at high temperature using Sulfuric Acid with which converts organic nitrogen sources to Ammonia, which is then q analytical method as TKN. This method is unsuitable for samples conta of nitrate. If nitrate exceeds TKN concentration by ten times or more,	с ,	EC567A.SG	Water	APHA 5520 (mod)	Animal & vegetable oil and grease is calculated as follows: Oil & Grease (gravimetric)
Environmental Environmental Method / Lab Matrix Method Reference Method Descriptions Digestion for TKN in water EP318 Water APHA 4500-Norg D (mod) Samples are digested at high temperature using Sulfuric Acid with which converts organic nitrogen sources to Ammonia, which is then q analytical method as TKN. This method is unsuitable for samples conta of nitrate. If nitrate exceeds TKN concentration by ten times or more,	ivimetry				minus Mineral Oil & Grease (gravimetric)
Preparation Methods Method / Lab Matrix Method Reference Method Descriptions Digestion for TKN in water EP318 Water APHA 4500-Norg D (mod) Samples are digested at high temperature using Sulfuric Acid with which converts organic nitrogen sources to Ammonia, which is then q analytical method as TKN. This method is unsuitable for samples conta of nitrate. If nitrate exceeds TKN concentration by ten times or more,					
Digestion for TKN in water EP318 Water APHA 4500-Norg D Samples are digested at high temperature using Sulfuric Acid with which converts organic nitrogen sources to Ammonia, which is then q analytical method as TKN. This method is unsuitable for samples conta of nitrate. If nitrate exceeds TKN concentration by ten times or more,		Environmental			
Waterloo - Environmental Environmental Image: Complete and angle to any organic introgen sources to Ammonia, which is then q	paration Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Waterloo - analytical method as TKN. This method is unsuitable for samples conta Environmental of nitrate. If nitrate exceeds TKN concentration by ten times or more,	estion for TKN in water	EP318	Water	APHA 4500-Norg D	Samples are digested at high temperature using Sulfuric Acid with Copper catalyst,
Environmental of nitrate. If nitrate exceeds TKN concentration by ten times or more,				(mod)	which converts organic nitrogen sources to Ammonia, which is then quantified by the
		Waterloo -			analytical method as TKN. This method is unsuitable for samples containing high levels
biased low.		Environmental			of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be
Digestion for Total Phosphorus in water EP372 Water APHA 4500-P E (mod). Samples are heated with a persulfate digestion reagent.	estion for Total Phosphorus in water	EP372	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
Waterloo -		Waterloo -			
Environmental		Environmental			

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Oil & Grease Extraction for Gravimetry	EP567	Water	BC MOE Lab Manual	The entire water sample is extracted with hexane by liquid-liquid extraction.
			(Oil & Grease) (mod)	
	Waterloo -			
	Environmental			
VOCs Preparation for Headspace Analysis	EP581	Water	EPA 5021A (mod)	Samples are prepared in headspace vials and are heated and agitated on the
				headspace autosampler. An aliquot of the headspace is then injected into the
	Waterloo -			GC/MS-FID system.
	Environmental			
PHCs and PAHs Hexane Extraction	EP601	Water	EPA 3511 (mod)	Petroleum Hydrocarbons (PHCs) and Polycyclic Aromatic Hydrocarbons (PAHs) are
				extracted using a hexane liquid-liquid extraction.
	Waterloo -			
	Environmental			
BNA Extraction	EP655	Water	EPA 3510C (mod)	SVOCs are extracted from aqueous sample using DCM liquid-liquid extraction.
	Waterloo -			
	Environmental			
Pesticides, PCB, and Neutral Extractable	EP660	Water	EPA 3511 (mod)	Samples are extracted from aqueous sample using an organic solvent liquid-liquid
Chlorinated Hydrocarbons Extraction				extraction.
	Waterloo -			
	Environmental			
Preparation of Nonylphenol and Nonylphenol	EP749	Water	J. Chrom A849 (1999)	An aliquot of $5.0 \pm 0.10 \text{ mL}$ of filtered sample is spiked with Nonylphenol-D4,
Ethoxylates			p.467-482	Nonylphenol Diethoxylate 13C6, and Bisphenol A 13C12 internal standards and
	Waterloo -			analyzed by LC-MS/MS.
	Environmental			

ALS Canada Ltd.

QUALITY CONTROL REPORT Work Order Page : 1 of 15 WT2222208 Client : McClymont & Rak Engineers Inc. Laboratory : Waterloo - Environmental Richard Sukhu Account Manager : Emily Smith Contact Address Address : 111 Zenway Blvd. Unit 4 :60 Northland Road, Unit 1 Vaughan ON Canada L4H 3H9 Waterloo, Ontario Canada N2V 2B8 Telephone Telephone :+1 519 886 6910 Project Date Samples Received :17-Nov-2022 16:13 :1187 PO Date Analysis Commenced :17-Nov-2022 :----C-O-C number Issue Date :20-1007464 :28-Nov-2022 15:57 Sampler : CLIENT 416 675 0160 Site · ____ Quote number 2022 Price List No. of samples received :1 No. of samples analysed :1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Amanda Ganouri-Lumsden	Department Manager - Microbiology and Prep	Waterloo Microbiology, Waterloo, Ontario
Amaninder Dhillon	Team Lead - Semi-Volatile Instrumentation	Waterloo Organics, Waterloo, Ontario
Greg Pokocky	Supervisor - Inorganic	Waterloo Inorganics, Waterloo, Ontario
Greg Pokocky	Supervisor - Inorganic	Waterloo Metals, Waterloo, Ontario
locelyn Kennedy	Department Manager - Semi-Volatile Organics	Waterloo Organics, Waterloo, Ontario
Katrina Zwambag	Business Manager - Environmental	Waterloo LCMS, Waterloo, Ontario
/lanuel TavaraTello	Supervisor - Semi-Volatile Extractions	Waterloo Organics, Waterloo, Ontario
Sanja Risticevic	Department Manager - LCMS	Waterloo LCMS, Waterloo, Ontario
Sarah Birch	VOC Section Supervisor	Waterloo Organics, Waterloo, Ontario

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		,
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 748400)										
WT2222102-002	Anonymous	solids, total suspended [TSS]		E160	30.0	mg/L	3530	3540	0.396%	20%	
Physical Tests (QC	Lot: 749333)										
WT2222184-001	Anonymous	рН		E108	0.10	pH units	7.99	7.99	0.00%	4%	
Anions and Nutrien	ts (QC Lot: 749331)										
WT2222191-001	Anonymous	fluoride	16984-48-8	E235.F	0.020	mg/L	0.379	0.377	0.437%	20%	
Anions and Nutrien	ts (QC Lot: 749332)										
WT2222191-001	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	15.3	15.0	2.24%	20%	
Anions and Nutrien	ts (QC Lot: 751924)										
TY2204131-001	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	2.53	2.63	3.77%	20%	
Anions and Nutrien	ts (QC Lot: 752317)										
TY2204009-037	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0030	<0.0020	0.0010	Diff <2x LOR	
Cyanides (QC Lot:	757482)										
WT2222062-001	Anonymous	cyanide, strong acid dissociable		E333	0.0020	mg/L	<0.0020	<0.0020	0	Diff <2x LOR	
		(total)									
Inorganics (QC Lot WT2222058-001	Anonymous	chlorine, total	7782-50-5	E326	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
Total Metals (QC L	-										
TY2204072-001	Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	<0.0030	<0.0030	0	Diff <2x LOR	
	,	antimony, total	7440-36-0	E420	0.00010	mg/L	0.00075	0.00075	0.0000002	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.125	0.126	0.933%	20%	
		cadmium, total	7440-43-9	E420	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
		chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		cobalt, total	7440-48-4	E420	0.00010	mg/L	0.00026	0.00028	0.00001	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00050	mg/L	0.00085	0.00085	0.000001	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.0180	0.0184	2.06%	20%	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00679	0.00682	0.401%	20%	
		nickel, total	7440-02-0	E420	0.00050	mg/L	0.00123	0.00125	0.00002	Diff <2x LOR	
		selenium, total	7782-49-2	E420	0.000050	mg/L	0.000070	0.000061	0.000009	Diff <2x LOR	
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	

Page :	4 of 15
Work Order :	WT2222208
Client :	McClymont & Rak Engineers Inc.
Project :	1187

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Total Metals (QC Lo	ot: 748283) - continued										
TY2204072-001	Anonymous	tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	0	Diff <2x LOR	
Total Metals (QC Lo	ot: 748497)										
WT2222033-001	Anonymous	mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
Speciated Metals (QC Lot: 748542)										
WT2222058-001	Anonymous	chromium, hexavalent [Cr VI], total	18540-29-9	E532	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
Aggregate Organics	s (QC Lot: 748642)										
WT2222196-001	Anonymous	biochemical oxygen demand [BOD]		E550	2.0	mg/L	3.2	3.2	0.0%	30%	
Aggregate Organics	s (QC Lot: 748643)										
WT2222170-002	Anonymous	carbonaceous biochemical oxygen demand [CBOD]		E555	2.0	mg/L	<2.0	<2.0	0.0%	30%	
Aggregate Organics	s (QC Lot: 752318)										
WT2222208-001	BH202	phenols, total (4AAP)		E562	0.0010	mg/L	0.0048	0.0046	0.0002	Diff <2x LOR	
Volatile Organic Co	mpounds (QC Lot: 7527	55)									
WT2222192-001	Anonymous	benzene	71-43-2	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		chloroform	67-66-3	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichlorobenzene, 1,2-	95-50-1	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichlorobenzene, 1,4-	106-46-7	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichloroethylene, cis-1,2-	156-59-2	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichloromethane	75-09-2	E611D	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR	
		dichloropropylene, trans-1,3-	10061-02-6	E611D	0.30	µg/L	<0.30	<0.30	0	Diff <2x LOR	
		ethylbenzene	100-41-4	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		methyl ethyl ketone [MEK]	78-93-3	E611D	20	µg/L	<20	<20	0	Diff <2x LOR	
		styrene	100-42-5	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		tetrachloroethane, 1,1,2,2-	79-34-5	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		tetrachloroethylene	127-18-4	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		toluene	108-88-3	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		trichloroethylene	79-01-6	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		xylene, m+p-	179601-23-1	E611D	0.40	µg/L	<0.40	<0.40	0	Diff <2x LOR	
		xylene, o-	95-47-6	E611D	0.30	µg/L	<0.30	<0.30	0	Diff <2x LOR	
Nonylphenols (QC	Lot: 748472)										
WT2222187-002	Anonymous	nonylphenol diethoxylates [NP2EO]	n/a	E749B	0.17	µg/L	<0.17	<0.17	0	Diff <2x LOR	
		nonylphenol monoethoxylates [NP1EO]	n/a	E749B	2.0	μg/L	<2.0	<2.0	0	Diff <2x LOR	

Page	:	5 of 15
Work Order	:	WT2222208
Client	:	McClymont & Rak Engineers Inc.
Project	:	1187

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Nonylphenols (QC L	_ot: 748473)										
WT2222187-002	Anonymous	nonylphenols [NP]	84852-15-3	E749A	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 748400)					·	
solids, total suspended [TSS]		E160	3	mg/L	<3.0	
Anions and Nutrients (QCLot: 749331)						
fluoride	16984-48-8	E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 749332)						
sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 751924)						
Kjeldahl nitrogen, total [TKN]		E318	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 752317)						
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	<0.0020	
norganics (QCLot: 754070)						
chlorine, total	7782-50-5	E326	0.05	mg/L	<0.050	
/licrobiological Tests (QCLot: 748768)						
coliforms, Escherichia coli [E. coli]		E012A.EC	1	CFU/100mL	<1	
otal Metals (QCLot: 748283)						
aluminum, total	7429-90-5	E420	0.003	mg/L	<0.0030	
antimony, total	7440-36-0	E420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2	E420	0.0001	mg/L	<0.00010	
cadmium, total	7440-43-9	E420	0.000005	mg/L	<0.000050	
chromium, total	7440-47-3	E420	0.0005	mg/L	<0.00050	
cobalt, total	7440-48-4	E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8	E420	0.0005	mg/L	<0.00050	
lead, total	7439-92-1	E420	0.00005	mg/L	<0.000050	
manganese, total	7439-96-5	E420	0.0001	mg/L	<0.00010	
molybdenum, total	7439-98-7	E420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0	E420	0.0005	mg/L	<0.00050	
selenium, total	7782-49-2	E420	0.00005	mg/L	<0.000050	
silver, total	7440-22-4	E420	0.00001	mg/L	<0.000010	
tin, total	7440-31-5	E420	0.0001	mg/L	<0.00010	
titanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030	
zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
otal Metals (QCLot: 748497)					1	
mercury, total	7439-97-6	E508	0.000005	mg/L	<0.000050	

Sub-Matrix: Water

Special Matala (QCL0: 74842) 1544-28-0 652 0.0000 mpl. <0.0000	Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Aggregate Organics (QCL01: 74815) E678C mg 01.8 greese, mean (greatwite) E678C 5 mg/L <5.0							
af & gress, mixed (gravinatic) E8750 5 mgl, <50 Aggregate Organics (OCLot.7 18150) E567 5 mgl, <5.0	chromium, hexavalent [Cr VI], total	18540-29-9	E532	0.0005	mg/L	<0.00050	
Aggregate Organics (QCLot: 748138) Soft Model Model Soft Model Mod	Aggregate Organics (QCLot: 748135	5)					
init & graves (gravimetric) ES67 S mgL <5.00 Aggraged Organics (QCLot: 748642) ES50 2 mgL <2.0 Aggraged Organics (QCLot: 748643) ES50 0.01 mgL <2.0 Aggraged Organics (QCLot: 752318) ES52 0.01 mgL <0.001 Volatile Organics (QCLot: 752318) ES52 0.01 mgL <0.001 Volatile Organics (QCLot: 752765) ES52 0.01 mgL <0.05 µgL <0.05 Volatile Organics (QCLot: 752765) ES52 ES110 0.5 µgL <0.05 dicholocotarsen, 1.2 ES50 ES110 0.5 µgL <0.05 dicholocotarsen, 1.2 1065452 ES110 0.5 µgL <0.05 dicholocotarsen, 1.2 1065452 ES110 0.5 µgL <0.05 <	oil & grease, mineral (gravimetric)		E567SG	5	mg/L	<5.0	
Aggrogia Organics (QCLot: 748642) ESS 2 mg/L <2.0	Aggregate Organics (QCLot: 748136	5)					
Doctomical oxygen demand [BOD] ESS0 2 mg/L <2.0 Aggregato Organics (OCL0t: 748643) caboraceosa blanemial (BSOD) ESS5 2 mg/L <2.0	oil & grease (gravimetric)		E567	5	mg/L	<5.0	
Aggregate Organics (QCLot: 748643) E555 Z mgl. K-2.0 mgl. Aggregate Organics (QCLot: 752318)	Aggregate Organics (QCLot: 748642	2)					
Carbonaceous biochemical oxygen demand (CBOD) E555 2 mg/L <2.0	biochemical oxygen demand [BOD]		E550	2	mg/L	<2.0	
Aggregate Organics (QCL ot: 752318) EE62 0.001 mg/L <0.001	Aggregate Organics (QCLot: 748643	3)					
phenols, total (4AAP) E62 0.001 mgL <0.000 Volatile Organic Compounds (QCLot: 752755)	carbonaceous biochemical oxygen demand [0	CBOD]	E555	2	mg/L	<2.0	
Volatile Organic Compounds (QCLot: 752755) benzene 71-43-2 E611D 0.5 µg/L 40.50 chloroform 67-66-3 E611D 0.5 µg/L 40.50 dichlorobenzene, 1,2- 95-80-1 E611D 0.5 µg/L 40.50 dichlorobenzene, 1,4- 104-47- E611D 0.5 µg/L 40.50 dichlorobenzene, 1,2- 156-59-2 E611D 0.5 µg/L 40.50 dichlorobenzene, 1,3- 10061-02-6 E611D 0.5 µg/L 40.50 dichloroptroplene, trans-1,3- 10061-02-6 E611D 0.5 µg/L 40.50 methyl entyl kotone (MEK) 78-93-3 E611D 0.5 µg/L 40.50 tetrachloroethane, 1,1,2,2- 79-34-5 E611D 0.5 µg/L 40.50 tetrachloroethylene 108-48-3 E611D 0.5 µg/L 40.50 tetra	Aggregate Organics (QCLot: 752318	3)					
benzene 71-43-2 E611D 0.5 μg/L <0.50 chloroform 67.66.3 E611D 0.5 μg/L <0.50	phenols, total (4AAP)		E562	0.001	mg/L	<0.0010	
chloroform 67-663 E611D 0.5 μg/L <0.50 dichlorobenzene, 1,2- 95-50-1 E611D 0.5 μg/L <0.50	Volatile Organic Compounds (QCLo	ot: 752755)					
dichlorobenzene, 1,2. 95-50. E511D 0.5 µg/L <0.50 dichlorobenzane, 1,4. 106467. E611D 0.5 µg/L <0.50	benzene	71-43-2	E611D	0.5	µg/L	<0.50	
dichlorobenzene, 1,4- 108-46-7 E611D 0.5 µg/L <0.50 dichlorobenzene, 1,4- 156-59-2 E611D 0.5 µg/L <0.50	chloroform	67-66-3	E611D	0.5	µg/L	<0.50	
dichloroethylene, dis-1,2- 156-59-2 E11D 0.5 µg/L <0.50 µg/L <t< td=""><td>dichlorobenzene, 1,2-</td><td>95-50-1</td><td>E611D</td><td>0.5</td><td>µg/L</td><td><0.50</td><td></td></t<>	dichlorobenzene, 1,2-	95-50-1	E611D	0.5	µg/L	<0.50	
Initial of the second	dichlorobenzene, 1,4-	106-46-7	E611D	0.5	µg/L	<0.50	
dichloropropylene, trans-1,3- 10061-02-6 E611D 0.3 µg/L <0.30	dichloroethylene, cis-1,2-	156-59-2	E611D	0.5	µg/L	<0.50	
ethylenzene 100414 EfilD 0.5 μg/L <0.50 methyl ethyl ketone [MEK] 78-93-3 E611D 20 μg/L <20	dichloromethane	75-09-2	E611D	1	µg/L	<1.0	
methy methy <th< td=""><td>dichloropropylene, trans-1,3-</td><td>10061-02-6</td><td>E611D</td><td>0.3</td><td>µg/L</td><td><0.30</td><td></td></th<>	dichloropropylene, trans-1,3-	10061-02-6	E611D	0.3	µg/L	<0.30	
styrene 100-425 EfilD 0.5 µg/L <0.50 tetrachloroethane, 1,1,2,2- 79-34-5 E611D 0.5 µg/L <0.50	ethylbenzene	100-41-4	E611D	0.5	µg/L	<0.50	
trachloroethane, 1,1,2,2- 79-34-5 E61D 0.5 µg/L <0.50 tetrachloroethylene 127-18-4 E61D 0.5 µg/L <0.50	methyl ethyl ketone [MEK]	78-93-3	E611D	20	µg/L	<20	
tetrachloroethylene 127-18-4 En 10 0.5 µg/L <0.50 toluene 108-88-3 E611D 0.5 µg/L <0.50	styrene	100-42-5	E611D	0.5	µg/L	<0.50	
followe <	tetrachloroethane, 1,1,2,2-	79-34-5	E611D	0.5	µg/L	<0.50	
trichloroethylene 79-016 E611D 0.5 µg/L <0.50 xylene, m+p- 179601-231 E611D 0.4 µg/L <0.40	tetrachloroethylene	127-18-4	E611D	0.5	µg/L	<0.50	
Arrow Arrow <t< td=""><td>toluene</td><td>108-88-3</td><td>E611D</td><td>0.5</td><td>µg/L</td><td><0.50</td><td></td></t<>	toluene	108-88-3	E611D	0.5	µg/L	<0.50	
xylene, o- 95-47-6 E611D 0.3 µg/L <0.30 Polycyclic Aromatic Hydrocarbons (QCLot: 750859) acenaphthene 83-32-9 E641A 0.01 µg/L <0.010	trichloroethylene	79-01-6	E611D	0.5	µg/L	<0.50	
Polycyclic Aromatic Hydrocarbons (QCLot: 750859) Edita 0.01 µg/L <0.010 acenaphthene 83-32-9 Edita 0.01 µg/L <0.010	xylene, m+p-	179601-23-1	E611D	0.4	µg/L	<0.40	
acenaphthene 83-32-9 E641A 0.01 µg/L <0.010 acenaphthylene 208-96-8 E641A 0.01 µg/L <0.010	xylene, o-	95-47-6	E611D	0.3	µg/L	<0.30	
acenaphthene 83-32-9 E641A 0.01 µg/L <0.010 acenaphthylene 208-96-8 E641A 0.01 µg/L <0.010	Polycyclic Aromatic Hydrocarbons	(QCLot: 750859)					
anthracene 120-12-7 E641A 0.01 μg/L <0.010 benz(a)anthracene 56-55-3 E641A 0.01 μg/L <0.010			E641A	0.01	µg/L	<0.010	
benz(a)anthracene 56-55-3 E641A 0.01 µg/L <0.010 benzo(a)pyrene 50-32-8 E641A 0.005 µg/L <0.0050	acenaphthylene	208-96-8	E641A	0.01	µg/L	<0.010	
benzo(a)pyrene 50-32-8 E641A 0.005 µg/L <0.0050	anthracene	120-12-7	E641A	0.01	µg/L	<0.010	
	benz(a)anthracene	56-55-3	E641A	0.01	µg/L	<0.010	
	benzo(a)pyrene	50-32-8	E641A	0.005	µg/L	<0.0050	
	benzo(b+j)fluoranthene	n/a	E641A	0.01		<0.010	

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Polycyclic Aromatic Hydrocarbons (Q	CLot: 750859) - contin	ued				
benzo(g,h,i)perylene	191-24-2	E641A	0.01	µg/L	<0.010	
benzo(k)fluoranthene	207-08-9	E641A	0.01	µg/L	<0.010	
chrysene	218-01-9	E641A	0.01	µg/L	<0.010	
dibenz(a,h)anthracene	53-70-3	E641A	0.005	µg/L	<0.0050	
fluoranthene	206-44-0	E641A	0.01	µg/L	<0.010	
fluorene	86-73-7	E641A	0.01	µg/L	<0.010	
indeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.01	µg/L	<0.010	
methylnaphthalene, 1-	90-12-0	E641A	0.01	µg/L	<0.010	
methylnaphthalene, 2-	91-57-6	E641A	0.01	µg/L	<0.010	
naphthalene	91-20-3	E641A	0.05	µg/L	<0.050	
phenanthrene	85-01-8	E641A	0.02	µg/L	<0.020	
pyrene	129-00-0	E641A	0.01	µg/L	<0.010	
Phthalate Esters (QCLot: 755346)						
bis(2-ethylhexyl) phthalate [DEHP]	117-81-7	E655F	2	µg/L	<2.0	
di-n-butyl phthalate	84-74-2	E655F	1	µg/L	<1.0	
Nonylphenols (QCLot: 748472)						
nonylphenol diethoxylates [NP2EO]	n/a	E749B	0.1	µg/L	<0.10	
nonylphenol monoethoxylates [NP1EO]	n/a	E749B	2	µg/L	<2.0	
Nonylphenols (QCLot: 748473)						
nonylphenols [NP]	84852-15-3	E749A	1	µg/L	<1.0	
Polychlorinated Biphenyls (QCLot: 74	9048)					
Aroclor 1016	12674-11-2	E687	0.02	µg/L	<0.020	
Aroclor 1221	11104-28-2	E687	0.02	µg/L	<0.020	
Aroclor 1232	11141-16-5	E687	0.02	µg/L	<0.020	
Aroclor 1242	53469-21-9	E687	0.02	µg/L	<0.020	
Aroclor 1248	12672-29-6	E687	0.02	µg/L	<0.020	
Aroclor 1254	11097-69-1	E687	0.02	µg/L	<0.020	
Aroclor 1260	11096-82-5	E687	0.02	µg/L	<0.020	
Aroclor 1262	37324-23-5	E687	0.02	µg/L	<0.020	
Aroclor 1268	11100-14-4	E687	0.02	µg/L	<0.020	

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water						Laboratory Co	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 748400)									
solids, total suspended [TSS]		E160	3	mg/L	150 mg/L	107	85.0	115	
Physical Tests (QCLot: 749333)									
pH		E108		pH units	7 pH units	101	98.0	102	
Anions and Nutrients (QCLot: 749331)									
fluoride	16984-48-8	E235.F	0.02	mg/L	1 mg/L	99.2	90.0	110	
Anions and Nutrients (QCLot: 749332)									
sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	105	90.0	110	
Anions and Nutrients (QCLot: 751924)									
Kjeldahl nitrogen, total [TKN]		E318	0.05	mg/L	4 mg/L	99.8	75.0	125	
Anions and Nutrients (QCLot: 752317)									
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	0.53 mg/L	104	80.0	120	
Inorganics (QCLot: 754070)									
chlorine, total	7782-50-5	E326	0.05	mg/L	0.27584 mg/L	105	75.0	125	
Total Metals (QCLot: 748283)									
aluminum, total	7429-90-5		0.003	mg/L	0.1 mg/L	104	80.0	120	
antimony, total	7440-36-0		0.0001	mg/L	0.05 mg/L	103	80.0	120	
arsenic, total	7440-38-2		0.0001	mg/L	0.05 mg/L	106	80.0	120	
cadmium, total	7440-43-9		0.000005	mg/L	0.005 mg/L	97.7	80.0	120	
chromium, total	7440-47-3		0.0005	mg/L	0.0125 mg/L	102	80.0	120	
cobalt, total	7440-48-4		0.0001	mg/L	0.0125 mg/L	103	80.0	120	
copper, total	7440-50-8		0.0005	mg/L	0.0125 mg/L	99.8	80.0	120	
lead, total	7439-92-1		0.00005	mg/L	0.025 mg/L	102	80.0	120	
manganese, total	7439-96-5		0.0001	mg/L	0.0125 mg/L	101	80.0	120	
molybdenum, total	7439-98-7		0.00005	mg/L	0.0125 mg/L	97.7	80.0	120	
nickel, total	7440-02-0		0.0005	mg/L	0.025 mg/L	102	80.0	120	
selenium, total	7782-49-2		0.00005	mg/L	0.05 mg/L	102	80.0	120	
silver, total	7440-22-4		0.00001	mg/L	0.005 mg/L	93.7	80.0	120	
tin, total	7440-31-5		0.0001	mg/L	0.025 mg/L	100	80.0	120	
titanium, total	7440-32-6		0.0003	mg/L	0.0125 mg/L	99.1	80.0	120	
zinc, total	7440-66-6	E42U	0.003	mg/L	0.025 mg/L	102	80.0	120	

Page : 10 of 15 Work Order : WT2222208 Client : McClymont & Rak Engineers Inc. Project : 1187

Sub-Matrix: Water						Laboratory Co	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Total Metals (QCLot: 748497)									
mercury, total	7439-97-6	E508	0.000005	mg/L	0.0001 mg/L	98.7	80.0	120	
Speciated Metals (QCLot: 748542)									
chromium, hexavalent [Cr VI], total	18540-29-9	E532	0.0005	mg/L	0.025 mg/L	96.0	80.0	120	
Aggregate Organics (QCLot: 748135)									
oil & grease, mineral (gravimetric)		E567SG	5	mg/L	100 mg/L	85.2	70.0	130	
Aggregate Organics (QCLot: 748136)									
oil & grease (gravimetric)		E567	5	mg/L	200 mg/L	90.9	70.0	130	
Aggregate Organics (QCLot: 748642)									
biochemical oxygen demand [BOD]		E550	2	mg/L	198 mg/L	89.6	85.0	115	
Aggregate Organics (QCLot: 748643)									
carbonaceous biochemical oxygen demand [CBOD]		E555	2	mg/L	198 mg/L	94.6	85.0	115	
Aggregate Organics (QCLot: 752318)						1			
phenols, total (4AAP)		E562	0.001	mg/L	0.02 mg/L	95.0	85.0	115	
					-				
Volatile Organic Compounds (QCLot: 75275	(5)					1			
benzene	71-43-2	E611D	0.5	μg/L	100 µg/L	109	70.0	130	
chloroform	67-66-3	E611D	0.5	μg/L	100 µg/L	109	70.0	130	
dichlorobenzene, 1,2-	95-50-1	E611D	0.5	μg/L	100 µg/L	101	70.0	130	
dichlorobenzene, 1,4-	106-46-7	E611D	0.5	µg/L	100 µg/L	93.4	70.0	130	
dichloroethylene, cis-1,2-	156-59-2	E611D	0.5	µg/L	100 µg/L	92.9	70.0	130	
dichloromethane	75-09-2	E611D	1	μg/L	100 µg/L	106	70.0	130	
dichloropropylene, trans-1,3-	10061-02-6		0.3	μg/L	100 µg/L	99.0	70.0	130	
ethylbenzene	100-41-4		0.5	μg/L	100 µg/L	98.7	70.0	130	
methyl ethyl ketone [MEK]	78-93-3	E611D	20	μg/L	100 µg/L	# 135	70.0	130	MES
styrene	100-42-5	E611D	0.5	μg/L	100 µg/L	102	70.0	130	
tetrachloroethane, 1,1,2,2-	79-34-5		0.5	μg/L	100 μg/L	111	70.0	130	
tetrachloroethylene	127-18-4		0.5	μg/L	100 μg/L	96.4	70.0	130	
toluene	108-88-3		0.5	μg/L	100 μg/L	99.3	70.0	130	
trichloroethylene	79-01-6		0.5	μg/L	100 μg/L	98.9	70.0	130	
xylene, m+p-	179601-23-1		0.4	μg/L	200 µg/L	93.9	70.0	130	
xylene, o-	95-47-6		0.3	μg/L	200 μg/L	104	70.0	130	
				10-	ka.r				
Delvevelie Aremetie Uvelre cerkere (001 st	750950)								
Polycyclic Aromatic Hydrocarbons (QCLot: acenaphthene	750859) 83-32-9	E641A	0.01	μg/L	0.5263 µg/L	93.9	50.0	140	
	00 02 0			r-0' =	0.0200 pg/L	00.0			

Page : 11 of 15 Work Order : WT2222208 Client : McClymont & Rak Engineers Inc. Project : 1187

Sub-Matrix: Water						Laboratory Co	ontrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifie
Polycyclic Aromatic Hydrocarbons (QCL	.ot: 750859) - continue	d							
acenaphthylene	208-96-8	E641A	0.01	µg/L	0.5263 µg/L	91.6	50.0	140	
anthracene	120-12-7	E641A	0.01	μg/L	0.5263 µg/L	83.4	50.0	140	
benz(a)anthracene	56-55-3	E641A	0.01	μg/L	0.5263 µg/L	97.4	50.0	140	
benzo(a)pyrene	50-32-8	E641A	0.005	μg/L	0.5263 µg/L	85.0	50.0	140	
benzo(b+j)fluoranthene	n/a	E641A	0.01	μg/L	0.5263 µg/L	80.7	50.0	140	
benzo(g,h,i)perylene	191-24-2	E641A	0.01	μg/L	0.5263 µg/L	117	50.0	140	
benzo(k)fluoranthene	207-08-9	E641A	0.01	μg/L	0.5263 µg/L	97.7	50.0	140	
chrysene	218-01-9	E641A	0.01	µg/L	0.5263 µg/L	111	50.0	140	
dibenz(a,h)anthracene	53-70-3	E641A	0.005	µg/L	0.5263 µg/L	106	50.0	140	
fluoranthene	206-44-0	E641A	0.01	µg/L	0.5263 µg/L	103	50.0	140	
fluorene	86-73-7	E641A	0.01	µg/L	0.5263 µg/L	98.2	50.0	140	
indeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.01	µg/L	0.5263 µg/L	119	50.0	140	
methylnaphthalene, 1-	90-12-0	E641A	0.01	µg/L	0.5263 µg/L	94.5	50.0	140	
methylnaphthalene, 2-	91-57-6	E641A	0.01	µg/L	0.5263 µg/L	92.8	50.0	140	
naphthalene	91-20-3	E641A	0.05	µg/L	0.5263 µg/L	93.2	50.0	140	
phenanthrene	85-01-8	E641A	0.02	µg/L	0.5263 µg/L	95.4	50.0	140	
pyrene	129-00-0	E641A	0.01	µg/L	0.5263 µg/L	102	50.0	140	
Phthalate Esters (QCLot: 755346)									
bis(2-ethylhexyl) phthalate [DEHP]	117-81-7	E655F	2	µg/L	6.4 µg/L	106	50.0	140	
di-n-butyl phthalate	84-74-2	E655F	1	µg/L	6.4 µg/L	108	50.0	140	
Nonylphenols (QCLot: 748472)									
nonylphenol diethoxylates [NP2EO]	n/a	E749B	0.1	μg/L	1 µg/L	102	75.0	125	
nonylphenol monoethoxylates [NP1EO]	n/a	E749B	2	μg/L	20 µg/L	119	75.0	125	
Nonylphenols (QCLot: 748473)									
nonylphenols [NP]	84852-15-3	E749A	1	μg/L	10 µg/L	98.6	75.0	125	
Polychlorinated Biphenyls (QCLot: 7490	48)								
Aroclor 1016	12674-11-2	E687	0.02	μg/L	0.2 µg/L	97.0	60.0	140	
Aroclor 1221	11104-28-2	E687	0.02	µg/L	0.2 μg/L	97.0	60.0	140	
Aroclor 1232	11141-16-5	E687	0.02	µg/L	0.2 μg/L	97.0	60.0	140	
Aroclor 1242	53469-21-9	E687	0.02	µg/L	0.2 µg/L	97.0	60.0	140	
Aroclor 1248	12672-29-6	E687	0.02	μg/L	0.2 µg/L	81.4	60.0	140	
Aroclor 1254	11097-69-1	E687	0.02	µg/L	0.2 µg/L	98.4	60.0	140	
Aroclor 1260	11096-82-5	E687	0.02	µg/L	0.2 µg/L	92.9	60.0	140	

Page	:	12 of 15
Work Order	:	WT2222208
Client	:	McClymont & Rak Engineers Inc.
Project	:	1187

Sub-Matrix: Water						Laboratory Co.	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Polychlorinated Biphenyls (QC	CLot: 749048) - continued								
Aroclor 1262	37324-23-5	E687	0.02	µg/L	0.2 µg/L	92.9	60.0	140	
Aroclor 1268	11100-14-4	E687	0.02	µg/L	0.2 µg/L	92.9	60.0	140	

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

ub-Matrix: Water			-				Matrix Spil	ke (MS) Report		
					Sp	ike	Recovery (%)	Recovery	Limits (%)	
aboratory sample. D	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
	ients (QCLot: 749331)									1
WT2222191-001	Anonymous	fluoride	16984-48-8	E235.F	1.01 mg/L	1 mg/L	101	75.0	125	
Anions and Nutr	ients (QCLot: 749332)									
WT2222191-001	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	102 mg/L	100 mg/L	102	75.0	125	
nions and Nutr	ients (QCLot: 751924)								1	1
TY2204131-001	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	ND mg/L	2.5 mg/L	ND	70.0	130	
Anions and Nutr	ients (QCLot: 752317)									
TY2204009-037	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0888 mg/L	0.1 mg/L	88.8	70.0	130	
Cyanides (QCLo	ot: 757482)									
WT2222062-001	Anonymous	cyanide, strong acid dissociable (total)		E333	0.229 mg/L	0.25 mg/L	91.8	75.0	125	
norganics (QCI	_ot: 754070)									1
WT2222058-001	Anonymous	chlorine, total	7782-50-5	E326	0.250 mg/L	0.27584 mg/L	90.6	70.0	130	
otal Metals (Q	CLot: 748283)									1
WT2221819-015	Anonymous	aluminum, total	7429-90-5	E420	0.102 mg/L	0.1 mg/L	102	70.0	130	
		antimony, total	7440-36-0	E420	0.0512 mg/L	0.05 mg/L	102	70.0	130	
		arsenic, total	7440-38-2	E420	0.0519 mg/L	0.05 mg/L	104	70.0	130	
		cadmium, total	7440-43-9	E420	0.00468 mg/L	0.005 mg/L	93.6	70.0	130	
		chromium, total	7440-47-3	E420	0.0125 mg/L	0.0125 mg/L	100	70.0	130	
		cobalt, total	7440-48-4	E420	0.0128 mg/L	0.0125 mg/L	102	70.0	130	
		copper, total	7440-50-8	E420	0.0120 mg/L	0.0125 mg/L	96.2	70.0	130	
		lead, total	7439-92-1	E420	0.0250 mg/L	0.025 mg/L	100	70.0	130	
		manganese, total	7439-96-5	E420	ND mg/L	0.0125 mg/L	ND	70.0	130	
		molybdenum, total	7439-98-7	E420	0.0120 mg/L	0.0125 mg/L	95.6	70.0	130	
		nickel, total	7440-02-0	E420	0.0249 mg/L	0.025 mg/L	99.5	70.0	130	
		selenium, total	7782-49-2	E420	0.0518 mg/L	0.05 mg/L	104	70.0	130	
		silver, total	7440-22-4	E420	0.00447 mg/L	0.005 mg/L	89.4	70.0	130	
					J. –					
		tin, total	7440-31-5	E420	0.0228 ma/L	0.025 ma/L	91.4	70.0	130	
			7440-31-5 7440-32-6	E420 E420	0.0228 mg/L 0.0123 mg/L	0.025 mg/L 0.0125 mg/L	91.4 98.7	70.0 70.0	130 130	

Page : 14 of 15 Work Order : WT2222208 Client : McClymont & Rak Engineers Inc. Project : 1187

Matrix Spike (MS) Report Sub-Matrix: Water Spike Recovery (%) Recovery Limits (%) Laboratory sample Client sample ID Analyte CAS Number Method Concentration Target MS Low High Qualifier ID Total Metals (QCLot: 748497) - continued WT2222109-001 Anonymous mercury, total 7439-97-6 E508 0.000103 mg/L 0.0001 mg/L 103 70.0 130 ----Speciated Metals (QCLot: 748542) WT2222058-001 Anonymous chromium, hexavalent [Cr VI], total 18540-29-9 E532 0.0384 mg/L 0.04 mg/L 96.0 70.0 130 ----Aggregate Organics (QCLot: 752318) WT2222208-001 BH202 phenols, total (4AAP) E562 0.0216 mg/L 0.02 mg/L 108 75.0 125 --------Volatile Organic Compounds (QCLot: 752755) WT2222192-001 Anonymous benzene 71-43-2 E611D 140 112 µg/L 100 µg/L 112 60.0 ---chloroform 67-66-3 E611D 113 µg/L 100 µg/L 113 60.0 140 ---dichlorobenzene. 1.2-95-50-1 E611D 106 µg/L 100 µg/L 106 60.0 140 ---dichlorobenzene, 1,4-E611D 100 µg/L 106-46-7 60.0 140 95.6 µg/L 95.6 ____ dichloroethylene, cis-1,2-156-59-2 E611D 95.1 µg/L 60.0 140 100 µg/L 95.1 ---dichloromethane 75-09-2 E611D 110 µg/L 100 µg/L 110 60.0 140 ---dichloropropylene, trans-1,3-10061-02-6 E611D 101 µg/L 100 µg/L 101 60.0 140 ---ethylbenzene 100-41-4 E611D 60.0 103 µg/L 100 µg/L 103 140 ---methyl ethyl ketone [MEK] 78-93-3 E611D MES 143 µg/L 100 µg/L 143 60.0 140 styrene 100-42-5 E611D 104 µg/L 100 µg/L 104 60.0 140 ---tetrachloroethane, 1,1,2,2-79-34-5 E611D 60.0 140 120 µg/L 100 µg/L 120 ---tetrachloroethylene E611D 100 µg/L 127-18-4 95.7 µg/L 95.7 60.0 140 ---toluene 108-88-3 E611D 104 µg/L 60.0 140 100 µg/L 104 ---trichloroethylene 79-01-6 E611D 98.4 µg/L 100 µg/L 98.4 60.0 140 ---xylene, m+p-E611D 200 µg/L 179601-23-1 193 µg/L 96.7 60.0 140 ---xylene, o-95-47-6 E611D 109 140 109 µg/L 100 µg/L 60.0 ----Nonylphenols (QCLot: 748472) WT2222187-002 Anonymous nonylphenol diethoxylates [NP2EO] n/a E749B 1.03 µg/L 103 60.0 140 1 µg/L ---nonylphenol monoethoxylates [NP1EO] n/a E749B 13.0 µg/L 20 µg/L 65.1 60.0 140 ----Nonylphenols (QCLot: 748473) WT2222187-002 Anonymous nonylphenols [NP] E749A 84852-15-3 11.6 µg/L 10 µg/L 116 60.0 140 -----

Qualifiers

Description

Qualifier MES

Data Quality Objective was marginally exceeded (by < 10% absolute) for < 10% of analytes in a Multi-Element Scan / Multi-Parameter Scan (considered acceptable as per OMOE & CCME).

Page	:	15 of 15
Work Order	11	WT2222208
Client	:	McClymont & Rak Engineers Inc.
Project	:	1187

ALS)	www.alsglobal.com	Canada Toll	da Toli Free: 1 800 668 9878	Page	Environm	
					- Waterloo	
Report To	Contact and company name below will appear on the final report	Reports / Recipients	Recipients	Turnaround Time (TAT) Requested	Work Oc	
Company:	McClumont & Rak	Select Report Format: 🕅 PDF	🗋 exca. 🔲 EDD (DIGITAL)	Routine [R] If received by 3pm M-F - no surcharges apply	N Toder Reference	
Contact:	1	Merge QC/QCI Reports with COA	A C N C N A	4 day [P4] if received by 3pn M-F - 20% rush surcharge minimu		
Phane:	-	K Compare Results to Criteria on Report - 1	provide details below if tox checked	🔲 3 day (P3) if received by 3pm M-F - 25% rush surcharge minim	ROZZ	
	Company address below will appear on the final report	Select Distribution: X Evalt. D Mall. D Fax		D 2 day (P2) if received by 3pm M-F - 50% rush surcharge minin		
Street:	ZENWAY	Email 1 or Fax MSU K HUL	she e maank. com	L LUCY (C) IN TRACEWORY 3011 PTF - JUANS 10511 SUCTORING INITIAL SAME day [E2] if "RECEIVED to LOBIN M-S - 200% rush surcharge."		
City/Province:	VAUGHAN					
Postal Code:		Email 3		Date and Time Required for all E&P TATs.		
Invoice To Si	Same as Report To 🕅 YES 🔲 NO	Involce R	nvolce Recipients	For all tests with rush TATs requested, P		
0	Copy of Involce with Report	Select Invoice Distribution: X B	EMAIL 🖸 MAIL 🗂 FAX	Analys		
Company:				Indicate Filtered (F), Preserved (P) or Filtered a		
Contact:		Email 2				
	Project Information	Oil and Gas Require	OII and Gas Required Fields (client use)		10	
ALS Account # / Quote #	luote #	AFE/Cost Center:	PO#		ая	
:# qop	87	Major/Minor Code:	Routing Code:		39'	
PO / AFE:		Requisitioner:			ч Я(
rsd:		Location:)T2	
			Company		5 D 3	
ALS LAD WORK	ALS LAD WORK DIDEF # (ALS USE ONLY);	ALS CONTACT:	Oanpret.		an	
ALS Sample #	Sample Identification and/or Coordinates		Time Sample Type	235 215 311 WN1	AMA (
	(This description will appear on the report)	(X4-uuuu-co)			3	
	BH202	Lo Λ' 17	Oa GW	21 X		
						_
					Particular State	
		Notes / Specify Limits for result evaluation by selecting from drop-down below	ing from drop-down below	SAMPLEF	ALS (ALS use only)	
nunking	i asei	(Excel COC only)		Cooling Method: Cooling Method	C FROZEN COOLING INITIATED	_
Are samples taken t	Are samples taken from a Regulated DW System?			fied on Sample Receipt	-	
					Sample Custody Seals Intact: 🛛 YES 🗍 WA	
Are samples for hur	Are samples for human consumption/ use?			NITTAL COOLER TEMPERATURES "C	ERAT	
		INTER SUBJECT	SHIDNENT PECEPTION (AL Succontu)			
Released by:	Date: Time: Time:	Received by	Date:	Time Received by () , M Date: .	Time:	
		TWN				_
REFER TO BACK PA		wrr s of this form the user acknowledges and agrees with	the Terms and Conditions as specified on 1		VW-106 N-400	
1. If any water samples	1. If any waler samples are taken from a Regulated Drinking Water (DW) System. please submit using an Authorized DW COC form.	an Authorized DW COC form.	(-		
	CC-094 1 - 30x47	LOO-NO throe-			06-143 05-558	