MASTER FUNCTIONAL SERVICING REPORT

RANGEVIEW OFFICIAL PLAN AMENDMENT

CITY OF MISSISSAUGA PROJECT 2020-4938

JULY 2024

Revision	Description	Prepared		Checked	
Kevision	Description	By	By Date By		Date
4	Fifth Submission (OPA Submission) revised for the Region of Peel	Ishraque Chandan	July 2024	Koryun Shahbikian Ming Gao	May 2024
3	Fourth Submission (OPA Submission)	Ishraque Chandan	May 2024	Koryun Shahbikian	May 2024
2	Third Submission (DMP Submission)	Ishraque Chandan	April 2024	Koryun Shahbikian	April 2024
1	Second Submission	Ishraque Chandan	September 2023	Heather Milukow	September 2023
0	First Submission	Ishraque Chandan	November 2022	Heather Milukow	November 2022

Table of Contents

			<u>PAGE</u>
1	INTRODUCT	ΓΙΟΝ	5
	1.1 Objective	and Location.	5
	1.2 Existing S	Site Conditions	5
	1.3 Backgroun	nd Studies and Documentation	6
	1.4 Proposed	Development	6
2	WATER SUP	PPLY SERVICING	10
	2.1 Existing V	Water Supply Servicing	10
	_	oply Servicing Design Criteria	
	2.3 Proposed	Water Supply Servicing Plan	14
	2.3.1	Interim Scenario	14
	2.3.2	Ultimate Scenario	14
	2.4 Water Der	mands	19
	2.5 Hydraulic	Modeling	19
	2.6 Water Age	e Analysis	21
3	SANITARY S	SERVICING	22
	3.1 Existing S	Sanitary Servicing	22
	3.2 Backgroun	nd Information	22
	3.3 Sanitary D	Design Criteria	23
	3.4 Proposed	Sanitary Servicing Plan	23
	3.4.1	Sanitary Spine Servicing	23
	3.4.2	Ultimate Conditions	25
	3.4.3	Sanitary Demand	25
	3.5 Downstrea	am Capacity Analysis	25
4	STORMWAT	TER MANAGEMENT	30
		Condition & Stormwater Infrastructure	
	4.2 Stormwate	er Management Criteria	32
	4.3 Proposed	Stormwater Management Plan	34
	4.3.1	Allowable Release Rates	35
	4.3.2	Quantity Control	37
	4.3.3	Quality Control	38
	4.3.4	Water Balance and Volumetric Controls	42
	4.3.5	Interim Conditions	44
5	CLOSING DI	FMADKS	10

•	• ,	•			
•	ist	Λt	1 9	h	AC
	1150	VI.	1 a	w	\mathbf{c}

	<u>PAGE</u>
Table 1-1: Estimated Population.	7
Table 2-1: Summary of Water Demands – Rangeview Development	19
Table 2-2: Summary of Modelled System Pressures	20
Table 2-3: Pressure Range (MDD plus Fire Flow Scenario)	21
Table 3-1 Sanitary Demand	25
Table 4-1 City of Mississauga IDF Curve	32
Table 4-2 Allowable Release Rate for Site Plans	36
Table 4-3 Storage Summary	38
Table 4-4 Summary of Retention Targets	42
<u>List of Figures</u>	DACE
Figure 1.1: Location Plan	PAGE 8
Figure 1.2: Development Plan	
Figure 2.1: Existing Water Supply Services	
Figure 2.2: Interim Water Supply – Option 1	
Figure 2.3 Interim Water Supply – Option 2	
Figure 2.4: Ultimate Water Supply Services	
Figure 3.1: Existing Sanitary Servicing	
Figure 3.2: Interim Sanitary Servicing	
Figure 3.3: Ultimate Sanitary Servicing	
Figure 4.1 Pre-Development Drainage & Existing Storm Servicing	
Figure 4.2 Proposed Storm Drainage Plan	
Figure 4.3 Interim Storm Servicing	
Figure 4.4 Ultimate Storm Servicing	
-	

Appendices

Appendix A: Background Information

Appendix B: Water Supply Support Information

Appendix C: Sanitary Servicing Support Information

Appendix D: Stormwater Management Support Information

Appendix E: Engineering Drawings

1 INTRODUCTION

1.1 Objective and Location

Schaeffer and Associates Ltd. (SCE) has been retained to prepare a Master Functional Servicing Report (MFSR) to facilitate the design of the proposed municipal roads and infrastructure to service the Rangeview Development on Lakeshore Road East and Lakefront Promenade, in the City of Mississauga, Region of Peel. The proposed development herein referred to as 'Rangeview Development' falls within the jurisdictional boundary of the Credit Valley Conservation Authority (CVC).

The subject site is approximately 25.7 ha including public roadways and is bound by Lakeshore Road to the northwest, Hydro Rd. to the northeast, East Avenue to the southwest, and Lakeview Park and Douglas Kennedy Park to the southeast. A location plan is provided in **Figure 1.1**. The majority of the site currently consists of employment land. The master plan proposes future right-of-way (ROW), residential site plans, and park areas. The following sections of this report provide strategic information regarding the municipal servicing of the proposed re-developments.

1.2 Existing Site Conditions

Existing site conditions were reviewed using previous planning documents for the subject site. Under existing conditions, the site's land use is predominantly commercial and industrial employment lands. The site land area is also mostly paved impervious spaces (commercial and industrial) with some grassed landscaped areas within the municipal ROW. The site generally grades southwest, ultimately discharging to Lake Ontario. There is a small portion of the subject area that discharges northerly to Lakeshore Road East.

A preliminary geotechnical and hydrogeological investigation was completed by DS Consultants Ltd (Dated September 22, 2023). This investigation revealed that the predominant underlying soils consist of silty clay till and clayey silt till. Based on the monitoring program carried out for the study, water levels were observed at depths within the range of 1.57 m to 1.64 meters as well as some dry readings in boreholes. As such, the proposed low-impact development (LID) should consider groundwater levels. Please see **Appendix A** for the preliminary geotechnical and hydrogeological report.

1.3 Background Studies and Documentation

The following material has been reviewed in order to identify environmental compliance, existing topography, target release rates, and stormwater management criteria, which govern the proposed development within the area of the subject land and form the basis of this report.

- Development Requirements Manual, Transportation and Works Department, City of Mississauga, dated November 2020
- Stormwater Management Criteria, Credit Valley Conservation, dated August 2012.
- Lakeview Village Functional Servicing Report, Lakeview Community Partners Ltd., dated June 2021.
- Lakeview Village Drainage Drawings, Urbantech., dated October 2022.

1.4 Proposed Development

Based on the current development plans for the site, the following development features have been considered:

- Twenty-eight (28) site plan catchments with a mix of residential units;
- Nine (9) Park Blocks;
- Additional public right of way (ROW);

The specific design of each of the proposed blocks is subject to change in the future; however, this report intends to establish the servicing requirements of the study area such that the aforementioned developments may be supported by existing infrastructure and to verify if there will be any requirements for necessary infrastructure improvements in the future. The details of the proposed servicing scheme are provided in the remainder of the report. Refer to **Figure 1.2** for the development plan (ultimate full buildout scenario with all site areas participating).

Access to the subject site is currently provided from Lakeshore Road East, Hydro Road, East Avenue, Lakefront Promenade, and Rangeview Road. It should be noted that the proposed development includes the existing public roads; Rangeview Road, Lakefront Promenade, and East Avenue. It is to be noted that road widening is proposed on Rangeview Road and East Avenue as per the Lakeview master plan. Refer to the memorandum entitled, "Rangeview Development – Servicing Alternatives Memorandum", by SCE (April 2024), for further details regarding the road

widening of Rangeview Road and East Avenue. As shown in **Figure 1.2**, three (3) additional municipal ROWs are proposed, one of the proposed municipal ROW is north of Rangeview Road, parallel to Lakeshore Rd. East, connecting to East Avenue and Hydro Road (Street L). While the second proposed municipal ROW runs parallel with Lakefront Promenade on the east side, connecting to Lakeshore Rd. East and the future Lakeview Village development (Ogden Ave). The third proposed ROW will intersect Rangeview Road and connect to the Lakeview Village development (Street G).

A summary of the approximate area of development and proposed unit count is presented in **Table 1-1** below. At the behest of the Region of Peel, a population density of 2.7 people/unit for apartments and 3.5 people/unit for townhouses was considered. The servicing sections below will discuss interim conditions based on cost sharing and participating land agreements and the ultimate condition in which all landowners are participating.

Table 1-1: Estimated Population

	Parcel	Townhouses	Apartment	Equivalent Population*				
Parcel	Area (Gross)	(Up to 4- Storey)	(4-Storeys +)	Commercial + Institutional	Townhouses	Apartments	Total	
	ha	Units	Units	persons	persons	persons	persons	
	21.94**	530	4770	502	1,856	12,890	15,248	

^{*} The population estimate was performed based on Peel Region criteria and correspondence with Peel Region. [2.7 persons per apartment unit and 3.5 persons per townhouse unit]

^{**}Area excludes East Avenue and Hydro Road Right of Way

PARK

LOCATION PLAN

JULY 2024

SCALE: N.T.S.

2020-4938

2 WATER SUPPLY SERVICING

2.1 Existing Water Supply Servicing

The subject site is located in the Region's Pressure District 1 (PD1). Existing water supply infrastructure proximate to the subject site includes:

- 600 mm diameter CPP along the south side of Lakeshore Road East;
- 300 mm diameter PVC along the north side of Lakeshore Road East;
- 2,400 mm diameter CPP watermain along Lakeshore Road East and Lakeshore Promenade;
- 300 mm diameter PVC watermains along East Avenue and Hydro Road;
- 900mm diameter CPP watermains along East Avenue;
- 1500mm diameter CPP watermains along East Avenue;
- 300 mm diameter PVC watermain along Rangeview Road from East Avenue to Lakefront Promenade; and,
- 250 mm diameter PVC watermain along Rangeview Road from Lakefront Promenade to Hydro Road.

The Lakeview Community, located to the south of the Rangeview development, is currently under construction. At the time the Rangeview development is to be constructed, it is expected that the water servicing infrastructure, including the 600 mm diameter watermains proposed along Lakefront Promenade and the 400mm watermain along Hydro Road, to service the Lakeview community will be constructed. **Figure 2.1** shows the existing watermain layout.

2.2 Water Supply Servicing Design Criteria

The following criteria were utilized in the design of the subject site's water distribution system:

- Region of Peel's Design, Specifications & Procedures Manual Watermain Design Criteria (June 2010)
- Ministry of Environment, Conservation and Parks' (MECP) Design Guidelines for Drinking Water Systems (2019)
- City of Mississauga Development Requirements Manual (September 2016)
- Technical memorandum for the Lakeview Community development: "Lakeview Community – Water Modelling Methodology and Analysis" (TMIG, 2021) (Lakeview Community Technical Memorandum)
- E-mail correspondence with the Region

For fire flow demands, the Region's design guidelines do not provide a minimum fire flow demand for townhouses and apartment complexes. Furthermore, building construction and floor area data was not available, so Fire Underwriter Survey (FUS) methods could not be utilized to determine fire flow demands. As such, the City of Vaughan's Engineering Design Criteria & Standard Drawings (December 2020) were referenced for fire flow demand requirements. Once architectural plans become available, calculations shall be performed per FUS standards and the fire flow analysis shall be updated accordingly. For the Lakeview Community south of the subject site, fire flow demands were based on the technical memorandum for the Lakeview Community development, "Lakeview Community – Water Modelling Methodology and Analysis" (TMIG, 2021), and can be referred to in **Appendix B**.

- Equivalent population density of 3.5 persons per unit for townhouses and 2.7 persons per unit for apartments, per e-mail correspondence with the Region (refer to **Appendix B**);
- Equivalent population density of 175 persons per hectare for townhouses and 475 persons per hectare for apartments
- Average Day Demand of 280 L/capita/day for residential developments and 300 L/capita/day for institutional, commercial, and industrial (ICI) developments;

- For residential land use, the Maximum Day Demand and Peak Hour Demand peaking factors shall be 2.0 and 3.0, respectively;
- For commercial land use, the Maximum Day Demand and Peak Hour Demand peaking factors shall be 1.4 and 3.0, respectively;
- Minimum Fire Flow Demand of 317 L/s for multi-unit apartment buildings per City of Vaughan Engineering Design Criteria & Standard Drawings (December 2020)
- Fire Flow Demand of 300 L/s for all buildings within the Lakeview Community development per Technical Memorandum: Lakeview Community – Water Modelling Methodology and Analysis (TMIG, 2021)
- The system shall be designed to provide sufficient flow and pressure to meet the greater of the Fire Flow plus Maximum Day Demand, or the Peak Hourly Demand;
- The minimum pressure under any non-fire demand scenario shall not be less than 275 kPa (40 psi). The minimum residual pressure during the Fire Flow plus Maximum Day Demand scenario shall not be less than 140 kPa (20 psi) at any location in the water distribution system;
- Hazen-Williams coefficients below table:

Pipe Diameter (mm dia.)	Hazen-Williams 'C' Coefficient
150	100
200-250	110
300-600	120
Over 600	130

2.3 Proposed Water Supply Servicing Plan

2.3.1 Interim Scenario

Under the interim scenario, infrastructure cannot be built along the entirety of Street 'L' due to the presence of non-participating landowners within the Rangeview site. As a result, it is proposed to service the parcels fronting Rangeview Road via the watermains along Rangeview Road. Two (2) options are proposed for parcels fronting Lakeshore Road East. Option 1, parcels fronting Lakeshore Road East are proposed be serviced directly from the existing 600 mm diameter watermain along Lakeshore Road East, as per the existing servicing for the current buildings. Should the Region prefer parcels not connecting to the existing 600mm watermain, Option 2 proposes a new 300mm watermain on Lakeshore Road East. However, considering that the existing buildings are already connected to the existing 600mm watermain on Lakeshore, a similar servicing strategy for the new site plans is recommended. This approach would minimize the amount of infrastructure the region needs to maintain. Based on correspondence with the Region and City, the Region does not want parcels connecting to the existing 600mm watermain on Lakeshore Road East, therefore Option 2 is proposed. It is to be noted, there is an existing 300mm watermain on Lakeshore Rd E, located at the north side of the ROW. Servicing the proposed site plans from that watermain will create multiple long service connections crossing the Lakeshore Rd E and that might create some future challenges when BRT is constructed. Given the challenges connecting to the existing 300mm watermain at the north side of the ROW of Lakeshore Road East, Option 2 is proposed. It is recommended the proposed 300mm watermain be constructed before BRT works.

Water supply analysis of the interim water servicing scenario will be completed once the participating and non-participating landowners are confirmed. Refer to **Figure 2.2** and **Figure 2.3** depicting the proposed watermain layouts for interim scenario.

2.3.2 Ultimate Scenario

The water servicing of the ultimate buildout involves a proposed 300mm watermain along Lakeshore Road East and the proposed 300mm diameter watermains along Rangeview Road. The watermains on Rangeview Road are planned to connect to the existing 300mm watermain along East Avenue, the newly proposed 400 mm watermain along Lakefront Promenade, and the 400mm

watermain along Hydro Road for looping benefits. A watermain is also proposed on Street L to provide fire hydrant connections when the road is developed and is not necessitated for water supply demands. Furthermore, new watermains along Ogden Ave. and Street G are proposed to establish a looped system that integrates with the Lakeview Community development. Refer to **Figure 2.4** for the proposed watermain layout for the ultimate scenario.

Generally, connection to existing infrastructure was completed where feasible and permitted. Based on correspondence with the Region, service connections from the proposed site plans to the Region's watermains were not permitted. As such, service connections to the existing 600mm watermain on Lakeshore Road East or the future 600mm watermain on Rangeview Road are not proposed. A new watermain is proposed on Rangeview Road and the existing 250mm-300mm watermains are to be removed or relocated since the watermains are not sized sufficiently or the watermain requires relocation. Based on the water modelling analysis completed by the Region of Peel to service the development areas, including Rangeview development and Lakeview Village development area, a new 400mm watermain is proposed on Hydro Road. Moreover, the Region requires a new future 600 mm watermain along Rangeview Road, between East Avenue and Lakefront Promenade and a new 900 mm feeder mains along East Avenue, south of Rangeview Road.

2.4 Water Demands

Water demands for the proposed development were calculated based on Rangeview site statistics provided by Bousfields Inc., dated July 17, 2023. Equivalent populations were calculated using 2 population density methods: population per hectare, per the Region's Design, Specifications & Procedures Manual – Watermain Design Criteria (June 2010), and population per unit type, per correspondence with the Region on October 3, 2022. The equivalent population calculated using unit type yielded a higher value, thus, to be conservative this value was carried forward for water demand calculations.

Water demands for the Lakeview Community south of the subject site and external lands east of the subject site were calculated using population data from the Lakeview Community Technical Memorandum (TMIG, 2021). Per capita water demands and peaking factors were updated to reflect the latest Region design standards.

Table 2-1 below summarizes the water demands for the Rangeview development. Refer to the detailed water demand calculations for the Rangeview development, Lakeview Community, and external lands in **Appendix B**.

Table 2-1: Summary of Water Demands – Rangeview Development

	Equivalent		Fire		
Land Use	Population 1	Average Day	Max Day	Peak Hour	Flow
	•	L/s	L/s	L/s	L/s
Residential	15,248	49.41	98.83	148.24	317

2.5 Hydraulic Modeling

An InfoWater model was prepared using elevation data from the Lakeview Community Technical Memorandum (TMIG, 2021) and the latest grading plan by SCE. Demands were assigned to the nearest junction within the proposed development.

The following boundary condition was assumed for the water supply analysis:

• The boundary condition utilized in the hydraulic model was sourced from a hydrant test

completed by EBAL Engineering Ltd. on April 23, 2021. The hydrant test, performed at 1000 Lakeshore Road East, Mississauga, yielded a static pressure of 82 psi. The boundary condition was modeled as a fixed-head reservoir with a head of 144.11 m, calculated as the sum of the ground elevation at the residual hydrant of 86.44 m (per the latest grading plan) and the measured static pressure of 82 psi (57.67 m head). Refer to **Appendix B** for the hydrant test results and analysis.

The InfoWater model was used to analyze the post-development system under the following demand scenarios: Average Day Demand, Maximum Day Demand, Peak Hour Demand, and Maximum Day plus Fire Flow Demand. The modeling results demonstrate the water supply system can provide sufficient pressure and flow to the proposed development under normal operational and fire flow scenarios in accordance with MECP and Region design guidelines.

Table 2-2 below summarizes the pressures for each demand scenario. Detailed model outputs are provided in **Appendix B**.

Table 2-2: Summary of Modelled System Pressures

Scenario	Minimum Pressure (psi)	Maximum Pressure (psi)
Average Day	81.92	96.75
Maximum Day	81.77	96.33
Peak Hour	81.48	95.47

Fire flow (Max Day plus Fire Flow Demand) scenario modeling showed that a minimum residual pressure of 20 psi could be maintained for all nodes in the system proximate to the subject site. **Table 2-3** below summarizes the pressure range under the Maximum Day plus Fire Flow scenario.

Table 2-3: Pressure Range (MDD plus Fire Flow Scenario)

	Minimum Pressure	Maximum Pressure
	(psi)	(psi)
Node ID (Min/Max Location)	J230	J198
Residual Pressure	54.58	79.61

2.6 Water Age Analysis

A water age analysis was performed to ensure the proposed system is compliant with water age guidelines. Water turnover was calculated for the entirety of the modeled network as there are no proposed watermains that terminate at dead ends.

To be conservative, an occupancy rate of 20% and the minimum consumption rate (70% of the average day demand) were assumed for the purposes of calculating water age. Given these parameters, a water age of 0.59 days was determined for the entirety of the Rangeview and Lakeview Community water supply systems. Per "Effects of Water Age on Distribution System Water Quality" (AWWA, 2002), a maximum water turnover rate of 3 days is the criteria. With a water age of 0.59 days, the proposed system is less than the maximum allowed turnover rate and therefore meets water age requirements. Refer to the water age analysis in **Appendix B**.

3 SANITARY SERVICING

3.1 Existing Sanitary Servicing

The majority of the site discharges sanitary flow westerly to the Beach Street Pumping Station (PS) via the existing 250mmØ sewers along Rangeview Road and the existing 250mmØ sewer on East Avenue. The remainder of the site, which includes the lots east of Lakeshore Road East and Lakefront Promenade, discharges easterly to the G.E. Booth Wastewater Treatment Facility (WWTF) via the existing 300mmØ sewers along Lakeshore Road East.

It is to be noted that there is another pumping station (Beechwood SPS), located north of Lakeshore Road East and east of Enola Avenue.

For further details, reference can be made to **Figure 3.1** for the existing sanitary services.

3.2 Background Information

SCE previously completed a high-level downstream sanitary sewer analysis for the proposed lands, with an estimated population per parcel. The results of this analysis were presented in a meeting with the Region of Peel in April 2021. The Region recommended that all future flows from the proposed development lands were to be discharged to the Beechwood PS and none of the flows were to be discharged to the Beach Street PS or Lakeview PS. The Region informed SCE that the Beach Street PS would be decommissioned. Therefore, reliance on the Beach Street PS for ultimate servicing is not feasible. The Region further informed SCE that they would be commencing the design of a Capital Project to decommission the Beach Street PS and the Beach Street drainage area flow to be conveyed by a new gravity sewer along Lakeshore Road East to the Beechwood sewage pumping station.

The Region is currently detailed designing the sanitary trunk along Lakeshore Road East connecting the Rangeview Developments to the Beachwood pump station. Based on the collected information from the Region's plan and profile drawings, it was noted that the proposed servicing solution discussed described would be feasible. Reference can be made to **Appendix C** for the profile of this new sewer.

3.3 Sanitary Design Criteria

Reference has been made to the Region of Peel Public Works Design, Specifications & Procedures Manual (March 2017) and correspondence from the Region for the sanitary servicing portion of this report. Please note, the Region informed SCE that a density of 3.5 persons/unit and 2.7 persons/unit were to be considered for townhouses and apartments respectively. The relevant design criteria applicable to the development are summarized below:

•	Average Residential Generation Rate	q = 290 L/person/day
•	Average Non-residential Generation Rate	q = 270 L/person/day
•	Infiltration Allowance	i = 0.26 L/s/ha
•	Population (Townhouse)	P = 3.5 Persons/Unit
•	Population (Apartment)	P = 2.7 Persons/Unit
•	Population (Commercial)	P = 50 Persons/ha
•	Population (Industrial)	P = 70 Persons/ha
•	Harmon Peaking Factor	$M = [1+(14/(4+P(total)^{1/2}))]$

3.4 Proposed Sanitary Servicing Plan

3.4.1 Sanitary Spine Servicing

Under the interim scenario, infrastructure cannot be built along the entirety of Street 'L' due to the presence of non-participating landowners. The configuration of sanitary for the ultimate (full buildout) and the spine servicing is designed such that servicing from the proposed ROW of Street 'L' and Ogden Avenue is not required. It is proposed to incorporate future infrastructure in the ROW of Rangeview Road, East Avenue, Hydro Road, Lakefront Promenade and Lakeshore Road East to service all the blocks in the Rangeview Development. To provide flexibility for the development and for the Rangeview Development to be independent of requiring Street 'L' for servicing, it is proposed the lots fronting Lakeshore Road East be serviced from Lakeshore Road.

To avoid deep sanitary sewers along Lakeshore Road East, it was proposed that north blocks fronting Lakeshore Road East and east of the proposed Ogden Avenue to have sanitary flows collected and discharged the flows to the sanitary trunk going east of Lakeshore Road East. As

discussed in the existing conditions section, a portion of the site discharges to the existing sewers along Lakeshore Road East. Based on a memorandum entitled "Downstream Sanitary Sewer Analysis, Rangeview Road Proposed Development Lands" by SCE, dated September 2023, there was residual capacity for the sanitary trunk sewer going east along Lakeshore Road East (defined as SAN-3 as part of the memorandum). According to the Downstream Sanitary Sewer Analysis, the sanitary trunk sewer running east of Lakeshore Road East has a residual capacity to accommodate 2300 people (under 80% of flow ratio). The proposed population to discharge to the east trunk sewer is 1358 people. Therefore, the existing trunk sewer could safely accommodate the proposed development. Refer to the memorandum enclosed for further details.

For the blocks fronting Lakeshore Road East, west of the proposed Ogden Avenue, it is proposed to collect sanitary flows from the blocks and discharge to proposed sanitary sewers which would connect to the sanitary trunk going west of Lakeshore Road East. On Lakefront Promenade, there is a 2.4m diameter watermain that makes it challenging to have one continuous sanitary sewer along Lakeshore Road East. Therefore, to avoid a deep sanitary sewer network, it is proposed to run the sanitary sewer on Lakeshore Road East, west of the proposed Ogden Avenue, through the south of Lakefront Promenade, loop west of Rangeview Road, north of East Avenue and tie into the flow of the proposed sewers on Lakeshore Road East. Refer to **Figure 3.2** and **Figure 3.3** for a schematic representation of the proposed sanitary servicing.

Generally, connection to existing infrastructure was completed where feasible. The lots on the west side fronting Lakeshore Road East are proposed to be serviced from the existing infrastructure on Lakeshore Road East. On Rangeview Road, Lakeshore Road East (west of proposed Ogden Avenue), and East Avenue new sanitary sewers are proposed. Based on comments received from the Region, it was recommended to size the internal sanitary sewers at 60% capacity in case future applications exceed the proposed populations. In order to accommodate the 60% sizing capacity for the sanitary sewers, the existing 250mm sanitary sewer on Rangeview Road sewers is to be removed and new upsized sewers are proposed. New sanitary sewers are proposed on Lakefront Promenade and East Avenue to support the proposed servicing scheme. Refer to **Appendix C** for the design sheet analysis.

3.4.2 Ultimate Conditions

During ultimate conditions, the site is proposed to service 33 parcels of high-rise buildings, townhouses, and commercial properties. The full build-out of the site is expected to have a design population of approximately 15,248 people. As shown in the ultimate servicing plan in **Figure 3.3**, all future sanitary flows are proposed to follow the same sewer network as the interim conditions via the proposed spine servicing network. Please note that as shown in **Figure 3.3**, a section of the existing sanitary sewer on Lakeshore Road East will be decommissioned.

3.4.3 Sanitary Demand

The proposed sanitary demand for the subject site is presented in the table below.

Harmon's Infiltration Total Peak Average Site Discharge Population Peaking Flow (L/s) Demand (L/S) Flow (L/s) (L/s)Factor Townhouse 1856 6.23 17.26 17.26 12890 43.27 119.89 119.89 Apartment 2.77 5.70 Commercial 0.16 0.48 0.48 52 Institutional 450 1.41 4.19 4.19 Total Flow = 147.53

Table 3-1 Sanitary Demand

3.5 Downstream Capacity Analysis

A downstream sanitary sewer capacity analysis has been completed using theoretical design sheets to determine the pre-development and ultimate conditions. Reference has been made to the Region's design criteria to complete the downstream analysis. The purpose of the analysis is to analyze the capacity within the existing downstream sewers and determine if the existing infrastructure can support the flows from the proposed development. The outcome of this analysis will ensure that the sewers can safely convey the flow from the subject site to the outlet location.

Based on the ultimate servicing plan provided in **Figure 3.3**, the existing sewers along Rangeview Road will require upgrades to ensure that there is sufficient capacity to support the anticipated flows from future development. Approximately eight of the existing 250mmØ sewer legs, with a length of 642m, on Rangeview Road will require upgrades. It is to be noted that a sub-trunk sewer, approximately 200 m) is proposed to be constructed along East Avenue (from Rangeview Road to Lakeshore Avenue East). This sub-trunk sewer is proposed to connect to the new trunk sewer on Lakeshore Avenue East, which, as previously discussed, will be designed and constructed by the

Region. As per the design sheet analysis, the 205m sub-trunk sewer on East Avenue is required to be a minimum of 450-525mmØ.

Reference can be made to **Appendix C** for the design sheet analysis.

4 STORMWATER MANAGEMENT

4.1 Existing Condition & Stormwater Infrastructure

The subject site is approximately 25.7 ha including municipal roadways, predominantly commercial and industrial area which is serviced by an existing major and minor system. Based on available topographic surveys and existing drainage, the current minor system consists of a storm sewer network, with primary servicing located within Lakeshore Rd. East, Lakefront Promenade, Rangeview Rd., and Hydro Road. Refer to **Figure 4.1** for the existing drainage and storm servicing. The existing municipal storm sewers around the site are as follows:

- 1) 300mmØ 675mmØ and a 450mmØ-750 mmØ storm sewers in parallel at opposite ends of the road along Lakeshore Road East
- 2) 450mmØ-950mmØ along Hydro Road
- 3) 975mmØ-1200mmØ along Rangeview Road
- 4) 450mmØ-1800mmØ along Lakefront Promenade

Based on the topography and previous planning documents, it was determined that the majority of the subject site ultimately drains to Lake Ontario. Given the proposed developments' proximity to Lake Ontario, quantity control is not required as per City and CVC criteria. However, quantity control and the allowable release rates for the proposed site plans will be restricted based on the 10-year minor flows to storm sewers, as per the City of Mississauga Development Requirements Manual, dated 2020. As per background studies from the Lakeview Village development to the south, an external area of 10.67ha north of the subject site drains into the site area to Lakefront Promenade. The existing external drainage pattern is expected to be maintained in post-development conditions.

It is to be noted a small portion of the development drains to ditches on Lakeshore Road East. These ditches span along the length of the proposed development on Lakeshore Road East.

4.2 Stormwater Management Criteria

Stormwater management criteria for the subject site are to be in accordance with the City of Mississauga, Peel Region, and the Credit Valley Conservation Authority (CVC) design criteria listed below.

Based on the City of Mississauga design criteria:

- Storm sewers shall be designed to convey at least the 10-year return frequency storm without surcharging during any storm return frequency event;
- The minimum pipe diameter for storm sewers is 300mmØ;
- For estimating flows using the Rational Method from storms larger than the 10-year return, the runoff coefficients were increased to account for the increase in runoff due to saturation of the soil as per equations provided in the City of Mississauga design criteria.
- Storm sewers shall be designed using the Rational Method: Q =A*I*R/360, where 'Q' is the flow rate in [m³/s], 'R' is the runoff coefficient (dimensionless), 'A' is the area in [ha], 'I' is rainfall intensity in mm/hr;

Table 4-1 City of Mississauga IDF Curve

Design Storm Event	A	В	C	I (mm/hr)
2-Year	610.0	4.6	0.78	59.9
5-Year	820.0	4.6	0.78	80.5
10-Year	1010.0	4.6	0.78	99.2
25-Year	1160.0	4.6	0.78	113.9
50-Year	1300.0	4.7	0.78	127.1
100-Year	1450.0	4.9	0.78	140.7

I= A/(B+Tc)^C, where minimum time of concentration as per Mississauga Guidelines is Tc = 15mins

- Water Quantity-Site plans to be controlled to the post-development 10-year minor flows;
- Water Quality-Level 1 water quality (enhanced) protection (80% TSS removal) is required;
- Water Balance-The development is not located in the source protection plan's Q1, Q2 wellhead protection area. There is a lake within the vicinity of the proposed development.

Therefore, there is no requirement for a water balance analysis;

• **Volumetric Controls** – 5mm infiltration, filtration, or evapotranspiration is required.

The following sections describe how the subject site area will satisfy the above-mentioned stormwater management criteria.

4.3 Proposed Stormwater Management Plan

The following sections discuss in detail the proposed stormwater management solutions to be incorporated on-site to meet the applicable stormwater management criteria identified in **Section 4.2.**

The majority of the subject site is proposed to ultimately discharge in Lake Ontario as per existing conditions. The proposed SWM scheme considers the ultimate condition and complies with the Lakeview servicing proposed to the south of the subject site.

There was some concern from the municipality and Region on how the Master Plan would be developed due to the non-participating parcels, which disrupt the construction of Street 'L'. To address municipality concerns, the proposed storm servicing was revised such that the development spine remains within the existing right of way (ROW) and eliminates the need for blocks to be serviced from the new proposed municipal road (i.e.: Street 'L').

In order to provide flexibility for the proposed development, it is proposed to the blocks fronting Lakeshore Road East are proposed to be serviced via SWM infrastructure on Lakeshore Road East. Quantity control, quality control, and volumetric controls are proposed at the site plan level. As per the grading plans, a safe overland flow route is provided within the municipal roadways.

Quality control at the site plan level is proposed to be achieved via Jellyfish filters or equivalent measures. For the municipal right of way, quality control is proposed via a treatment train approach with tree pits in conjunction with OGS units to satisfy the required 80% TSS removal. Further details about quality control are presented in **Section 4.3.4**.

Considering the site's close proximity to the Lake, meeting the pre-development water balance is not a required criterion. However, 5mm retention via filtration or infiltration, or re-use is required for volumetric controls as per the City of Mississauga SWM criteria. Additional details about the 5mm retention on-site are presented in **Section 4.3.5**.

4.3.1 Allowable Release Rates

Allowable release rates were established based on the City of Mississauga's IDF parameters. The Rational method was used to calculate release rates as the total development discharges runoff to storm sewers. The allowable release rates for the blocks fronting Lakeshore Road East are to be based on the existing drainage to Lakeshore Road East. As shown in **Figure 4.1**, an area of 1.40ha currently drains to Lakeshore Road East from the existing lot frontage. It is anticipated the existing developments fronting Lakeshore Road East have roof connections draining into the roadway, however, this is unconfirmed due to the lack of available information. It is recommended to have further investigation to confirm the total existing drainage to Lakeshore Road East and as such, the release rates for blocks discharging to Lakeshore Road East (i.e.: post-development catchments 201-to-210, 300, and 301) will be refined at the detailed design stage. The release rates for the blocks fronting Lakeshore Road East were determined by prorating the existing drainage area of 1.40ha.

The allowable release rates for the site plan draining southerly to Lake Ontario were established based on the 10-year storm events using a pre-development runoff coefficient maximum of 0.50, summarized in **Table 4.2**. A minimum time of concentration of 15 minutes was considered as per the City of Mississauga guidelines.

As per background studies from the Lakeview Village development to the south, an external area of 10.67ha north of the subject site drains into the site to Lakefront Promenade. The existing external drainage pattern is expected to be maintained in post-development conditions.

Long-term foundation drainage can be discharged to the storm sewer system provided suitable pretreatment is provided. The hydrogeological report estimated long-term dewatering rates based on the parcels, it was noted a block-wide detailed hydrogeological investigation is required to be completed to recommend the actual design dewatering requirements. The allowable release rates for the site plans were adjusted to consider an assumed groundwater pump rate of 2 L/s for each site plan (higher than the recommendation from the hydrogeological report). This groundwater pump rate is considered to be a conservative dewatering rate estimate, which can be revisited at the site plan approval stage throughout the SPA process. Therefore, the allowable discharge for

the site plans was calculated by reducing the 10-year minor flows by the assumed 2 L/s groundwater pumping rate. The release rate can be adjusted based on the final recommendations of the hydrogeological reports and mechanical engineer on an individual site plan basis throughout the SPA process.

Table 4-2 Allowable Release Rate for Site Plans

Catchment #*	Area (ha)	Pre- Development Runoff Coefficient	Post Development Runoff Coefficient	Allowable Discharge (10-year minor flows) (L/s)**	Groundwater Dewatering Rate (L/s)	Adjusted Allowable Release Rate (10-year flows – Groundwater pumping) (L/s)***
				A	В	C = A - B
201	0.52	0.25	0.90	7.24	2.00	5.24
202	0.76	0.25	0.90	10.59	2.00	8.59
203	0.39	0.25	0.90	5.43	2.00	3.43
204	0.39	0.25	0.90	5.43	2.00	3.43
205	0.48	0.25	0.90	6.69	2.00	4.69
206	0.54	0.25	0.90	7.52	2.00	5.52
207	0.93	0.25	0.90	11.96	2.00	9.96
208	0.92	0.25	0.90	11.82	2.00	9.82
209	0.58	0.25	0.90	8.08	2.00	6.08
210	0.84	0.25	0.90	11.70	2.00	9.70
211	0.86	0.50	0.90	118.45	2.00	116.45
212	0.20	0.50	0.90	27.55	2.00	25.55
213	0.40	0.50	0.90	55.09	2.00	53.09
214	0.34	0.50	0.90	46.83	2.00	44.83
215	0.82	0.50	0.90	112.94	2.00	110.94
216	0.19	0.50	0.90	26.17	2.00	24.17
217	0.36	0.50	0.90	49.58	2.00	47.58
218	0.58	0.50	0.90	79.88	2.00	77.88
219	0.57	0.50	0.90	78.51	2.00	76.51
220	1.00	0.50	0.90	137.73	2.00	135.73
221	1.30	0.50	0.90	179.05	2.00	177.05
222	0.74	0.50	0.90	101.92	2.00	99.92
223	0.82	0.50	0.90	112.94	2.00	110.94
224	0.46	0.50	0.90	63.36	2.00	61.36
225	0.38	0.50	0.90	52.34	2.00	50.34
226	0.61	0.50	0.90	84.02	2.00	82.02
227	0.32	0.50	0.90	44.07	2.00	42.07
228	0.35	0.50	0.90	48.21	2.00	46.21

^{*}Release rates for catchments 201-to 210, 300, and 301 to be refined at the detailed design stage

^{**}The allowable Discharge was calculated using a pre-development runoff coefficient of 0.50.

^{***}The adjusted allowable release rate = 10-year minor flows – Groundwater pumping rate

4.3.2 Quantity Control

In order to achieve the release rates, set up in **Section 4.3.1**, quantity control is proposed at the site plan level. Due to the close proximity of Lake Ontario, no quantity control is proposed for the park and municipal right of way. The established release rate for each site plan and the required storage are presented in **Table 4-3** below. The quantity control requirement on the site plan can be met via underground storage combined with an orifice control device.

As part of the City of Mississauga Road improvements, Lakeshore Road East is planned to be urbanized. In existing conditions, there is a ditch along Lakeshore Road East along the length of the proposed development. The ultimate cross-section drawings for Lakeshore Road East provided by the city, demonstrate the existing ditch is to be removed during ultimate conditions. It is anticipated the existing blocks frontages along Lakeshore Road East will be captured by catch basins and storm infrastructure, which are currently draining to the ditch. It is proposed for the lots fronting Lakeshore Road East to be serviced from the SWM infrastructure on Lakeshore Road as part of road improvements. If the site plans fronting Lakeshore Road East wish to proceed development before the City's Road improvement works, a local storm sewer can be proposed in coordination with the City and Region based on the ultimate Lakeshore Road East Road improvement plans.

The proposed SWM strategy comprises of a LID plan within the ROW and various servicing from different jurisdictions (ie: City and Region) along the ROW. Based on correspondence with the city, general servicing is required to be in typical ROW locations. Given the comprehensive servicing requirements and proposed ROW widening of Rangeview Road and East Avenue, many of the existing storm sewers require relocation or upsizing. Therefore, new storm sewers are proposed for East Avenue, Hydro Road, Lakefront Promenade and Rangeview Road to follow the City Criteria. The existing storm sewers along these ROWs are to be removed or relocated.

Table 4-3 Storage Summary

Catchment #*	Area (ha)	Post-Development Runoff Coefficient Adjusted Allowable Discharge (L/s)		Required On-site storage (m³)
201	0.52	0.90	5.24	319.08
202	0.76	0.90	8.59	458.59
203	0.39	0.90	3.43	243.51
204	0.39	0.90	3.43	243.51
205	0.48	0.90	4.69	295.83
206	0.54	0.90	5.52	330.71
207	0.93	0.90	9.96	565.81
208	0.92	0.90	9.82	560.00
209	0.58	0.90	6.08	353.96
210	0.84	0.90	9.70	505.10
211	0.86	0.90	116.45	199.82
212	0.20	0.90	25.55	48.18
213	0.40	0.90	53.09	94.10
214	0.34	0.90	44.83	80.31
215	0.82	0.90	110.94	190.63
216	0.19	0.90	24.17	45.89
217	0.36	0.90	47.58	84.90
218	0.58	0.90	77.88	135.47
219	0.57	0.90	76.51	133.17
220	1.00	0.90	135.73	232.00
221	1.30	0.90	177.05	300.95
222	0.74	0.90	99.92	172.24
223	0.82	0.90	110.94	190.63
224	0.46	0.90	61.36	107.89
225	0.38	0.90	50.34	89.50
226	0.61	0.90	82.02	142.36
227	0.32	0.90	42.07	75.72
228	0.35	0.90	46.21	82.61

^{*}Release rates and storage for catchments 201-to 210, 300, and 301 to be refined at the detailed design stage

4.3.3 Quality Control

As per the quality control requirements of the City of Mississauga and CVC, the proposed developments require the provision of an enhanced level of quality treatment (i.e., 80% TSS removal) on-site.

In order to achieve an enhanced level of treatment for the site, different strategies have been

proposed based on each block's land use. The strategies for each land-use type are described in the following sections below.

4.3.3.1 Private Site Plan Block Treatment

Within the private site plan blocks, treatment can be provided through various options based on the proposed land use. Given the variety of options for treatment within private developments, it is proposed that all site plan blocks provide 80% TSS removal (enhanced level) at the site level.

- 1. Treatment Train Approach (i.e. Bioswale/Retention/Infiltration Unit + OGS Unit)
- 2. Centralized Filtration Units (ie: jellyfish or equivalent)

Note that the use of the above-mentioned options should be considered on a per-site plan basis and should be further explored during each block's specific design. Considerations for each site plan block option are further discussed in this section.

Option 1. Bioswale/Retention/Infiltration Unit + OGS Unit

In option 1, site plans where spatial factors are favourable, flows can be directed to surface-level bioretention facilities (such as bioswales or rain gardens) where an initial treatment layer can be provided. These facilities can be sized to provide a minimum of 60% TSS removal. Flows that have been treated by these facilities can then be directed to an on-site OGS for an additional layer of treatment (50% TSS removal). This approach would provide a treatment train to provide a minimum of 80% TSS prior to flows leaving the site.

Option 2. Centralized Filtration Units

In cases where infiltration-based treatment is not feasible, a centralized proprietary treatment unit can be provided within the private site and sized to provide an enhanced level of treatment (80% TSS removal) to site flows before discharging to the municipal sewers. Any proposed treatment units should be sized as per each block's specific site plan design.

Groundwater Treatment

It was determined from the hydrogeological report groundwater discharge to the storm sewers

requires treatment. Treatment options for groundwater discharge include but are not limited to the settlement of suspended solids and specialized filtration. Groundwater treatment for each site plan block can be finalized throughout the SPA process when detailed information from a mechanical engineer and treatment specialists becomes available.

4.3.3.2 Public Park Block Treatment

In general, public park blocks are considered to be made up of predominantly clean vegetated pervious areas. The proposed parks will enhance the area as it is increasing the green space from existing conditions. As a result, it is expected that limited to no treatment will be required to achieve 80% TSS removal. Should some level of treatment be required, LID measures such as vegetated filter strips or swales can be incorporated into the park's design in order to ensure an enhanced level of quality treatment is obtained.

4.3.3.3 Public Right-of-Way Treatment

Within the public right-of-way areas, quality treatment is generally more constrained as a result of paved roadway areas which occupy the majority of the ROW.

Since an enhanced level of quality treatment is required, various options were developed based on the detailed review of the feasible LID measures and groundwater levels on site. These options include:

- 1. Centralized OGS units and tree pits/tree trenches;
- 2. Perforated catchbasin lead and OGS;

The final selection of these options will be made based on discussions with the City. These options are discussed in further detail in the following sections.

Option 1 – Tree Pits/Tree Trenches within Boulevards + OGS

The inclusion of infiltration within the City's public right of way allows for both quality treatment and stormwater retention, which assists in reducing the erosion potential and impact on water balance as a result of development.

Based on the review of the preliminary hydrogeological report by DS Consultants Ltd on September 22, 2023, the groundwater levels varied between 1.57 m to 1.64 m under the existing

ground elevation and some dry readings; thus, it is anticipated an infiltration-based tree pit wouldn't be feasible; therefore, a filter-based tree pit is proposed.

A typical tree pit filter design will be incorporated within areas with ample boulevard room for planting space and placed along the roadway, upstream of proposed catch basins. In this scheme, flows will first be directed to a tree pit via a curb cut along the road. Once the flows are diverted to the tree pits, they can filter through the proposed engineered soil media (sized to provide a minimum 60% TSS removal based on volumes prescribed by MOE Table 3-2), from where the flows can be collected and diverted to the storm sewer system or be infiltrated.

Based on the MOE Table 3.2, the filter beds need to be sized for 20m^3 /ha to achieve 60% TSS removal. A downstream OGS unit will be provided to ensure that a minimum of 50% TSS removal is achieved, providing a total of 80% TSS removal when used in conjunction with tree pits (50% + $(1.0 - 0.5) \times 60\%$) = 80%). The sizing of the OGS units will be completed in the detailed design stage.

For ROW areas that are not treated by the OGS, the tree pits are to be sized to provide the entire 80% TSS removal as per MOE Table 3.2.

LIDs along Lakefront Promenade are proposed to satisfy the higher of the 5mm retention for volumetric controls or required TSS removal for quality. See **Appendix D** for details. Refer to the table below Summary of Retention Targets for the Municipal ROW.

Option 2 – Perforated CB lead + OGS

Flows captured by a typical roadside catch basin can be infiltrated via a perforated pipe system. to provide 60% TSS removal. The catch basin lead can be perforated and appropriately sized to enable infiltration with the excess draining directly to the sewer system. Alternatively, an exfiltration pipe can be proposed at the catch basin with excess flow overflowing to the storm sewer system via a CB lead placed strategically at a higher location.

Paired with the perforated CB lead and an OGS sized for 50% TSS removal to complete the

treatment train in achieving 80% TSS removal $(50\% + (1.0 - 0.5) \times 60\%) = 80\%$).

4.3.4 Water Balance and Volumetric Controls

The Rangeview Development area was checked as per the Ontario Source Water Protection areas; the site was found to be outside of any source water well-head protection areas. Given the proximity of the site to Lake Ontario, there is no requirement for a water balance analysis. Furthermore, most of the subject site is developed under existing conditions and mainly consists of impervious commercial and industrial areas. Since it is proposed to provide nine park blocks and various landscaped areas within the subject site, it is expected that the development will provide a net reduction in impervious areas and an overall benefit to the water balance.

However, as stipulated in the City of Mississauga, on-site retention via infiltration, filtration, or water re-use of the first 5mm of rainfall should be retained on-site to mitigate water balance and volumetric impacts of development. The sections below discuss strategies to satisfy the volumetric requirements. The table below summarizes the required retention volumes for each portion of the proposed development.

Table 4-4 Summary of Retention Targets

Description	Catchment #	Area (ha)	Runoff Coefficient	Volumetric Requirement (m³)*
Site Plan	201	0.52	0.90	26.00
Site Plan	202	0.76	0.90	38.00
Site Plan	203	0.39	0.90	19.50
Site Plan	204	0.39	0.90	19.50
Site Plan	205	0.48	0.90	24.00
Site Plan	206	0.54	0.90	27.00
Site Plan	207	0.93	0.90	46.50
Site Plan	208	0.92	0.90	46.00
Site Plan	209	0.58	0.90	29.00
Site Plan	210	0.84	0.90	42.00
Site Plan	211	0.86	0.90	43.00
Site Plan	212	0.20	0.90	10.00
Site Plan	213	0.40	0.90	20.00

Description	Catchment #	Area (ha)	Runoff Coefficient	Volumetric Requirement (m³)*
Site Plan	214	0.34	0.90	17.00
Site Plan	215	0.82	0.90	41.00
Site Plan	216	0.19	0.90	9.50
Site Plan	217	0.36	0.90	18.00
Site Plan	218	0.58	0.90	29.00
Site Plan	219	0.57	0.90	28.50
Site Plan	220	1.00	0.90	50.00
Site Plan	221	1.30	0.90	65.00
Site Plan	222	0.74	0.90	37.00
Site Plan	223	0.82	0.90	41.00
Site Plan	224	0.46	0.90	23.00
Site Plan	225	0.38	0.90	19.00
Site Plan	226	0.61	0.90	30.50
Site Plan	227	0.32	0.90	16.00
Site Plan	228	0.35	0.90	17.50
Municipal ROW	401	0.20	0.90	10.00
Municipal ROW	402	0.19	0.90	9.50
Municipal ROW	403	0.18	0.90	9.00
Municipal ROW	404	0.71	0.90	35.50
Municipal ROW	405	0.82	0.90	41.00
Municipal ROW	406	0.23	0.90	11.50
Municipal ROW	407	0.27	0.90	13.50
Municipal ROW	408	0.29	0.90	14.50
Municipal ROW	409	0.52	0.90	26.00
Municipal ROW	410	0.61	0.90	30.50
Municipal ROW	411	0.18	0.90	9.00
Municipal ROW	412	0.16	0.90	8.00
Municipal ROW	413	0.32	0.90	16.00
Municipal ROW	414	0.44	0.90	22.00
Municipal ROW	415	0.50	0.90	25.00
Municipal ROW	416	0.21	0.90	10.50
Municipal ROW	417	0.21	0.90	10.50
Municipal ROW	418	0.34	0.90	17.00
Municipal ROW	419	0.15	0.90	7.50

^{*}Volumetric Requirement= TIMP x 5mm x Area x 10

4.3.4.1 Private Site Plan Block Retention

Runoff can be infiltrated via infiltration-based LIDs or reused within private site plans via

rainwater harvesting tanks. Site reuse can include a combination of irrigation, greywater, mechanical cooling, or infiltration where possible. The specific site uses and retention designs should be confirmed per each private site plan block's specific servicing design. Infiltration-based LIDs should be supported by site-specific groundwater conditions.

4.3.4.2 Public Park Block Retention

Due to the nature of the park design, with the increased landscape and reduced level of imperviousness from existing conditions, it is not proposed to provide any retention on the park blocks.

4.3.4.3 Public Right of Way Retention

In order to achieve the required retention volume presented in **Table 4.4** the use of infiltration or filtration-based techniques within the public boulevard is required.

LIDs to be used along the public right of way can include tree pits (as described in Section 5.3.2) which can be sized to retain the greater of 5mm retention volumes or quality control. However, considering the site consists of high groundwater levels, the use of infiltration LIDs may be challenging. In scenarios where groundwater constraints present infiltration concerns, the tree pits can be designed for filtration.

4.3.5 Interim Conditions

Under the interim scenario, infrastructure cannot be built along the entirety of Street 'L' due to the presence of non-participating landowners. Thus, as shown in **Figure 4.3**, there are three (3) proposed cul-du sacs on Street L based on the current participating lands. The configuration of storm servicing for the ultimate (full buildout) scenario is designed such that servicing from Street 'L' is not necessitated. The proposed SWM scheme considers the interim phase and ensures no impediment to the drainage flow from the existing developments. The interim condition is subject to meeting the applicable stormwater management criteria identified in **Section 4.2**.

5 CLOSING REMARKS

This report illustrates the comprehensive servicing strategy for the Rangeview study area. The proposed municipal servicing strategy has been proposed to satisfy the City of Mississauga and CVC guidelines, and this strategy will be used by future developments for their respective detailed servicing designs. The proposed servicing strategy updated such that the development spine remains within the existing right of way (ROW) and eliminates the need for blocks to be serviced from the new proposed municipal road Street 'L' and Ogden Avenue.

The key servicing components are summarized below.

Water Supply Servicing

- The developments within subject site are proposed to be serviced by connecting to the existing watermains along Lakeshore Road East, and to the proposed watermains along Rangeview Road.
- 600 mm diameter watermains along Lakefront Promenade and 400mm watermains along Hydro Road are expected as part of the Lakefront Community development;
- A watermain is proposed along Street 'L' to provide hydrant coverages;
- New watermains along Ogden Ave. and Street G are proposed to establish a looped system that integrates with the Lakeview Community development;
- The interim condition have been proposed depending on the agreements with the nonparticipating landowners.

Sanitary Servicing

- The subject site will be serviced as per the details outlined in the Interim and Ultimate Servicing Plan.
- A downstream sanitary capacity analysis has been completed to analyze the sewers during the Ultimate Servicing Plan. As discussed in **Section 3.5**, upgrades will be required for the existing sewers along Rangeview Road and a pipe size has been provided for the new sub trunk sewer along East Avenue.

Storm Servicing

- Quantity control is proposed at a site plan level. Quantity controls for proposed site plan developments will include the capture and control of peak flows from storm events up to and including the 100-year storm to the 10-year sewer capacity.
- Quality controls will be provided within each site plan block to meet the enhanced level of treatment. For the public right of way, various options were reviewed to provide an enhanced level of treatment. Currently, it is proposed to implement a tree pit filtration/infiltration strategy with an end-of-pipe OGS to achieve an enhanced level of treatment.
- The retention of 5mm on-site can be achieved in each block through the use of infiltration or re-use systems within site plans, while the ROW can make use of infiltration/filtration via roadside tree pits.

We trust that you will find this material satisfactory, and we are looking forward to receiving your comments soon. Should you have any questions or comments, please do not hesitate to contact us.

Respectfully Submitted,

SCHAEFFER & ASSOCIATES LTD.

Ishra Jue (handa

Ishraque Chandan, EIT. Water Resource Analyst

Ming Gao, P.Eng.
Water Resource Engineer

Rangeview Development Master Plan

Concept Plan V7

LOG Approved

Rangeview Estates Precinct Area

Mississauga ON

April 2024

Rangeview Development Master Plan

RANGEVIEW ESTATES PRECINCT

Ownership Map

- Dorsay (Lakeshore) Inc. Dorsay (Lakefront Promenade) Dorsay (Rangeview) Inc.
- Elgroup Holdings Inc. Elias Bros. Construction Limited
- Rangeview 1035 Holding Inc. Rangeview 1045 Holding Inc. 1207238 Ontario Limited Inc.
- 2120412 Ontario Inc.
- Whiterock 880 Rangeview Inc.
- 447111 Ontario Limited
- 1127792 Ontario Limited
- ILSCO of Canada Company
- Kotyck Investments Ltd.

Rangeview Estates Precinct Area (Gross Area = ~25.67 ha)

Non-Participating Landowners – Existing Parcel Lines

Concept Plan

Built Form Typology

Rangeview Development Master Plan

Building Heights (Storeys) + Statistics

Total Residential Units ± 5,300 units

Low-rise (Up to 4-St) 13% ± 689 units

- Traditional Townhouse Blocks (3-ST) ± 46 units
- Stacked Townhouse Blocks (4-ST) = ± 76 units
- Back-to-Back Townhouse Blocks (3-ST) ± 136 units
- Stacked Back-to-Back Townhouse Blocks (4-ST)
 ± 272 units
 - Apartment (4-ST)
 ± 159 units

Mid-rise Buildings (5- to 8-ST) 31% ± 1,633 units

Tall Buildings (9- to 15-ST) **56% ± 2,978 units**

Assumptions

- 1 Residential Gross Floor Area (GFA) for Apartments, Mid-rise and Tall Building based on 86% of the Gross Construction Area (GCA)
- 2 Approximate Unit Count for Apartments, Mid-rise and Tall Building based on an 81.29 sq.m. unit size
- 3 Individual Stacked Townhouse module = 2 units

Legend

Rangeview Estates Precinct Area

– – Existing Parcel Lines

Low-rise (Up to 4-Storeys)

Mid-rise / Podium (Tall Building) (5- to 8-Storeys)

Tower Element (Tall Building) (Up to 15-Storeys)

Building Height (Storeys)

Unit Count Statistics

Landowners	Total Parcel Area (Excluding Public Roads and Park)	Townhouse Unit Count	Apartment Unit Count	Mid-rise Building Unit Count	Tall Building Unit Count	Total Unit Count
Dorsay (Lakeshore) Inc. Dorsay (Lakefront Promenade) Inc. Dorsay (Rangeview) Inc. (Dorsay Development Corp.)	3.43 ha	210	-	324	642	1,176
Elgroup Holdings Inc. Elias Bros. Construction Limited (Leonard Elia)	2.66 ha	76	-	466	346	888
Rangeview 1035 Holding Inc. Rangeview 1045 Holding Inc. 1207238 Ontario Limited Inc. (Bert Rebelo - Oasis Convention)	0.79 ha	-	54	-	354	408
2120412 Ontario Inc. (Jason Segato - Xtreme Tire)	0.60 ha	-	58	-	180	238
Whiterock 880 Rangeview Inc. (Dream Unlimited Corp.)	1.29 ha	52	-	233	-	285
447111 Ontario Limited (Norstar Group)	0.71 ha	36	-	136	-	172
1127792 Ontario Limited (Dino Collini)	0.38 ha	-	-	148	-	148
ILSCO of Canada Company (Thomas Quinn)	0.59 ha	-	-	85	170	255
Kotyck Investments Ltd. (Michael Kotyck)	0.34 ha	-	-	-	186	186
Non-Participating	5.85 ha	163	47	234	1,100	1,544
TOTALS	16.64 ha	537	159	1,626	2,978	5,300

Preliminary Hydrogeological Investigation Proposed Residential and Commercial Buildings Rangeview Estates Precinct Development Mississauga, Ontario

PREPARED FOR: Rangeview Landowners Group Inc.

Project #: 22-200-100 **Date:** September 22, 2023

DS CONSULTANTS LTD.

6221 Highway 7, Unit 16 Vaughan, Ontario, L4H 0K8 Telephone: (905) 264-9393 www.dsconsultants.ca **22-200-100** September 22, 2023

Rangeview Estates Precinct Development C/O Rangeview Landowners Group Inc. Rangeview Road Mississauga, ON

RE: Preliminary Hydrogeological Investigation-Rangeview Estates Precinct Development, Rangeview Road and Surrounding Area, Mississauga, ON

DS Consultants Limited (DS) was retained by Rangeview Landowners Group Inc. to complete a preliminary hydrogeological investigation of the proposed development on Rangeview Road and the surrounding area in Mississauga, Ontario (Site). The site is located nearby about 3.5 kilometers east of Port Credit. The site is currently occupied by commercial and industrial buildings. Based on the conceptual plan, the site will be developed with low to mid-rise residential and commercial buildings with 1 to 3 levels of underground parking/basement. Also, it is DS's understanding installation of local site servicing will be part of the larger development. The report includes an overview of the existing geological and hydrogeological conditions at the Site and the surrounding area and provides a preliminary assessment of the hydrogeological constraints and impacts of the proposed development on the local groundwater.

Based on the results of our investigation, the following summary of conclusions and recommendations are presented:

- Based on the MECP water wells records search, there are 244 water wells registered within 500 meters
 of the Site. One (1) water well is noted as a water supply for industrial use. All other well records as
 registered as test hole, monitoring well, not in use, dewatering well or unknown. DS conducted a doorto-door survey to confirm the water supply well. No wells were confirmed to have existed during the
 survey. The study area is fully serviced with municipal water and therefore, no groundwater users
 are expected in the area.
- 2. In total, 22 boreholes were drilled across the site by DS Consultants Ltd. (DS) as part of the preliminary hydrogeological investigation concurrently with the geotechnical investigation in August 2022. All boreholes were advanced to depths ranging from 2.5 to 8.2 meters below the ground surface (mbgs). A total of nine (9) drilled boreholes were converted into monitoring wells and screened in overburden and shale bedrock at depths ranging from 3.0 to 8.2 mbgs.
- 3. The study area (500 m radius) lies within the Iroquois Plain physiographic region of southern Ontario and is characterized by the Bevelled Till Plains physiographic landform. The surficial geology in the study area is dominated by clayey silt till deposits and coarse-textured glaciolacustrine deposits of sand, gravel, silt, and clay. The soils at the Site consist of asphalt and heterogeneous fill materials, followed by clayey silt till/ silty clay with interbedded sandy silt/silty sand seam and shale bedrock of the Georgian Bay Formation. Bedrock depth varies from about 2.2 m to 6.1 meters below the existing ground surface at the Site.

- 4. DS measured the groundwater levels in all wells on September 20, 2022. Groundwater levels in overburden monitoring wells were found between 1.57 mbgs and 1.64 mbgs and in bedrock wells at 2.29 mbgs. The groundwater levels at the Site can be subject to seasonal fluctuations. Groundwater flow direction is expected to be south towards Lake Ontario.
- 5. Single well response tests (SWRTs) were completed at three (3) monitoring wells with sufficient water to estimate hydraulic conductivity (k) for the representative geological units in which the wells are completed. The reported hydraulic conductivity values (k) for overburden range between 5.3×10^{-6} and 1.1×10^{-7} m/s and weathered shale/ shale bedrock is 2.5×10^{-6} m/s.
- 6. Construction Dewatering: Short-term and Long-term Discharge
 - DS understands that the proposed development concept will have up to three (3) levels of underground parking (P3). It is estimated that a conventional pile/lag shoring system will be used up to weathered shale bedrock and the excavation within the shale bedrock will be open cut (unsealed) for the proposed underground construction.
 - Based on the k-values of soils or rock for the site and surrounding areas, the dewatering flow
 rates within the assumed excavation area are expected to be low to medium. However, flow
 rates can be affected by any recharge from near Lake Ontario. Also, a secondary permeability of
 bedrock can contribute higher flow rate.
 - It is DS's understanding that a parcel/block-wise detailed hydrogeological investigation will be carried out in the future as per the actual design to estimate dewatering requirements. The preliminary estimated short-term and long-term discharge rates are presented in the table below.

				Short-teri		Long-term Discharge		
Parcel	Area m²	UG Level	Flow Rate(Q) without a Safety factor L/day	Flow Rate with a Safety factor x 1.5 L/day	Stormwater (10 mm/24 hrs.) L/day	Total Flow Rate L/day	Flow Rate(Q) without a Safety factor L/day	Flow Rate with a Safety factor x 1.5 L/day
Parcel 1	5,200	3	30,000	45,000	52,000	97,000	23,000	34,500
Parcel 2	7,700	2	23,000	34,500	77,000	111,500	16,000	24,000
Parcel 3	3,800	3	27,000	40,500	38,000	78,500	20,000	30,000
Parcel 4	3,800	3	27,000	40,500	38,000	78,500	20,000	30,000
Parcel 5	4,700	3	29,000	43,500	47,000	90,500	22,000	33,000
Parcel 6	5,400	3	31,000	46,500	54,000	100,500	23,000	34,500
Parcel 7	9,300	2	25,000	37,500	93,000	130,500	17,000	25,500
Parcel 8-9	9,200	2	25,000	37,500	92,000	129,500	17,000	25,500

				Short-teri	m Discharge		Long-term	Discharge
Parcel	Area m²	UG Level	Flow Rate(Q) without a Safety factor L/day	Flow Rate with a Safety factor x 1.5 L/day	Stormwater (10 mm/24 hrs.) L/day	Total Flow Rate L/day	Flow Rate(Q) without a Safety factor L/day	Flow Rate with a Safety factor x 1.5 L/day
Parcel 10	5,900	3	32,000	48,000	59,000	107,000	24,000	36,000
Parcel 11	8,300	2	24,000	36,000	83,000	119,000	16,000	24,000
Parcel 12	8,600	2	25,000	37,500	86,000	123,500	16,000	24,000
Parcel 13	2,000	-	-	-	-	-	-	-
Parcel 14	4,000	1	9,000	13,500	40,000	53,500	4,000	6,000
Parcel 15	3,800	3	27,000	40,500	38,000	78,500	20,000	30,000
Parcels 16-17	8,200	2	24,000	36,000	82,000	118,000	16,000	24,000
Parcel 18	1,800	-	-	-	-	-	-	-
Parcel 19	3,600	3	26,000	39,000	36,000	75,000	20,000	30,000
Parcels 20-21	5,800	2	21,000	31,500	58,000	89,500	14,000	21,000
Parcel 22	5,700	2	20,000	30,000	57,000	87,000	14,000	21,000
Parcel 23	10,000	1	13,000	19,500	100,000	119,500	6,000	9,000
Parcel 24	12,900	2	30,000	45,000	129,000	174,000	20,000	30,000
Parcel 25	7,400	3	35,000	52,500	74,000	126,500	27,000	40,500
Parcels 26-27	8,300	2	24,000	36,000	83,000	119,000	16,000	24,000
Parcels 27-28	4,600	2	19,000	28,500	46,000	74,500	12,000	18,000
Parcels 29-30	3,700	3	27,000	40,500	37,000	77,500	20,000	30,000
Parcel 31	6,000	2	21,000	31,500	60,000	91,500	14,000	21,000
Parcel 32	3,300	1	8,000	12,000	33,000	45,000	3,000	4,500
Parcel 33	3,400	3	26,000	39,000	34,000	73,000	19,000	28,500

7. Construction Dewatering: Public ROW (Site Servicing):

- An assumed 100 m long and 2 m wide open cut section was considered for dewatering estimation during the installation of underground utilities such as water main, storm and sanitary sewer and utility access holes. Based on the site servicing drawings provided to DS, the proposed bottom of underground utilities varies between 5-6 mbgs. The highest shallow groundwater level for the site is 84 masl.
- The estimated dewatering rate (short-term) during the installation of underground utilities for the trench (30 m x 2 m) is 14,000 L/day without a safety factor and 21,000 L/day with a safety factor of x1.5. The additional flow rate that may be needed to be removed because of precipitation events (assuming 10 mm/24 hours) would be an additional 1,000 L/day.

The dewatering volume for the section can be change depending on the existing grade and the actual groundwater level encountered during the excavation of the section.

8. Permits Requirements:

In the absence of drawings/site plans and construction sequencing details, DS anticipates that the construction of the proposed construction will be phased. Therefore, permit requirements can be determined once the final design, revised dewatering rates, and construction sequences are available. Below are the regulatory dewatering permit requirements regarding estimated daily discharge volume.

- An EASR or a PTTW is not required for water taking less than 50,000 L/day.
- An Environmental Activity Sector Registration (EASR) is required to be submitted to the Ministry of the Environment, Conservation and Parks (MECP) if the taking of groundwater and stormwater for a temporary construction project is between 50,000 L/day and 400,000 L/ day. The EASR application is an online registry and should be submitted to the MECP before any construction dewatering.
- A PTTW is required to be submitted to the MECP if the taking of groundwater and stormwater
 for a temporary construction project is more than 400,000 L/ day. The PTTW application is also
 an online registry and should be submitted to the MECP 90 days from the start of construction.
- A discharge permit may be required from the City of Mississauga if groundwater is to be sent to the sewer system for short-term (during construction)
- 9. One (1) unfiltered groundwater sample was collected from the monitoring well BH 22-9 on September 22, 2022, and another water sample was collected from monitoring well BH 22-14 between April 17 and May 3, 2023. The groundwater samples were analyzed and compared against the parameters listed in the Region of Peel Wastewater Bylaw (53-2010) and the City of Mississauga Storm Sewer Use Bylaw.
- 10. Groundwater quality analysis indicates that TSS, various total metals and cis- 1,2-Dichloroethene exceeded the sanitary or storm criteria under the Region of Peel's Wastewater Bylaw (53-2010) and the City's Sewer Use Bylaw. Therefore, groundwater at the Site is not suitable for direct discharge to the Region's or the City's sewer system without pre-treatment. Treatment options include but are not limited to the settlement of suspended solids and specialized filtration to remove fines and associated metals.
- 11. The area is fully serviced by a municipal water supply. It is not expected to have any use of groundwater as a source of drinking water within a radius of 500 meters therefore, there will be no short-term impacts on private water wells occurring from dewatering activities.
- 12. Baseline groundwater quality has been assessed and established before construction. However, groundwater quality can change based on several factors (land-use change, spills, natural

variations, site remediation activities, etc.) and should be monitored during construction dewatering and after construction to ensure that water quality meets the guideline or regulations associated with any permits from the MECP and the City/Region.

13. In conformance with Regulation 903 of the Ontario Water Resources Act, the decommissioning of any dewatering system and monitoring wells should be conducted by a licensed contractor under the supervision of a licensed water well technician.

Should you have any questions regarding these findings, please contact the undersigned.

DS Consultants Ltd.

Prepared By:

Reviewed By:

Pradeep Patel, M.Sc. P.Geo.

A-Patel

Hydrogeologist

Martin Gedeon, M.Sc., P.Geo. Senior Hydrogeologist

Marti Cedien

Table of Contents

1.0	INTRO	DUCTION	
	1.1	Purpose	1
	1.2	Scope of Work	1
2.0	FIELD	INVESTIGATION	2
3.0	PHYSIC	CAL SETTING	2
	3.1	Physiography and Drainage	2
	3.2	Geology	
	3.2.1	Quaternary Geology	
	3.2.2	Bedrock Geology	
	3.2.3	Site Geology/Subsurface Soils	
	3.3	Hydrogeology	
	3.3.1	Hydrostratigraphy	3
	3.3.2	Local Groundwater Use	
	3.3.3	Groundwater Conditions	
	3.3.4	Hydraulic Conductivity	4
	3.3.5	Groundwater Quality	
4.0		FRUCTION DEWATERING	
	4.4	Charles and December 1 and December	_
	4.1	Short-term Dewatering Requirements- Buildings	
	4.2	Short-term Dewatering Requirements- Public ROW (Site Servicing)	
	4.3	Long-term Dewatering Requirements- Buildings	
	4.4	Water-taking Permit Requirements	
5.0	POTEN	ITIAL IMPACTS	10
	5.1	Current PTTW Search	10
	5.2	Source Protection Area	10
	5.3	Surface Water	10
	5.4	Local Groundwater Use	10
	5.5	Point of Discharge and Groundwater Quality	11
7.0	LIMITA	ATIONS	
8.0	CONSI	JLTANTS QUALIFICATIONS	13
9 N	RFFFR	FNCFS	14

FIGURES

FIGURE 1 Site Location and MECP Water Well Records

FIGURE 2 Surficial Geology Map

FIGURE 3 Borehole and Monitoring Well Locations

Figure 4A Geological Cross Section (A-A')

Figure 4B Geological Cross Section (B-B')

APPENDICES:

Appendix A Borehole Logs

Appendix B MECP Water Wells Records

Appendix C Hydraulic Conductivity Analysis

Appendix D Groundwater Quality Certificate of Analysis

Appendix E Conceptual Development Plan

1.0 INTRODUCTION

DS Consultants Limited (DS) was retained by Rangeview Landowners Group Inc. to complete a preliminary hydrogeological investigation of the proposed development on Rangeview Road and the surrounding area in Mississauga, Ontario (Site). The site is located nearby about 3.5 kilometers east of Port Credit. The site is currently occupied by commercial and industrial buildings. Based on the conceptual plan, the site will be developed with low to mid-rise residential and commercial buildings with 1 to 3 levels of underground parking/basement. Also, it is DS's understanding that the installation of local site servicing will be part of the overall development.

The report includes an overview of the existing geological and hydrogeological conditions at the Site and the surrounding area and provides an assessment of the hydrogeological constraints and impacts of the proposed development on the local groundwater. The preliminary hydrogeological investigation is based on boreholes and monitoring wells drilled and installed by DS on the Site concurrently with the geotechnical investigations.

1.1 Purpose

The purpose of this investigation was to review and determine the need for dewatering, estimate dewatering rates, assess groundwater quality, and determine the need for a Permit to Take Water (PTTW) or an Environmental Activity Sector Registry (EASR) from the Ministry of Environment and Climate Change (MECP) in addition to requirements to obtain discharge permits from the Region of the Peel Region/the City of Mississauga. Potential impacts related to construction dewatering and associated monitoring/mitigation measures were also to be investigated.

1.2 Scope of Work

The scope of work for this investigation included:

- (i) Site visits;
- (ii) Collecting and interpreting available reports and data including the MECP Water Well Records (WWR), geotechnical, hydrogeological and environmental studies completed at the site and in the site's vicinity;
- (iii) In-situ hydraulic conductivity testing of newly installed monitoring wells;
- (iv) Assessing groundwater quantity and quality to evaluate discharge options;
- (v) Assessing potential impacts due to dewatering activities; and,
- (vi) Data analyses and report preparation.

2.0 FIELD INVESTIGATION

- In total, 22 boreholes were drilled across the site by DS Consultants Ltd. (DS) as part of the preliminary hydrogeological investigation concurrently with the geotechnical investigation in August 2022. All boreholes were advanced to depths ranging from 2.5 to 8.2 meters below the ground surface (mbgs).
- A total of nine (9) drilled boreholes were converted into monitoring wells and screened in overburden and shale bedrock at depths ranging from 3.0 to 8.2 mbgs. All monitoring wells were developed before any use to allow for groundwater level monitoring, hydraulic conductivity testing, and to assess groundwater quality.
- A total of nine (9) single well response tests (SWRTs) were completed into wells by performing a rising head test to estimate hydraulic conductivity values of formations/soils at the Site.
- Two unfiltered groundwater samples were collected and analyzed for the parameters listed under the Region of Peel and City of Mississauga Sewer Use By-law to assess groundwater quality before any discharge to the City's sewers system.

3.0 PHYSICAL SETTING

Available topographic maps and environmental, geotechnical, and hydrogeological reports were used to develop an understanding of the physical setting of the study area. The borehole logs from all investigations at the Site, as well as the Ministry of the Environment, Conservation and Parks Water Wells Records (MECP WWRs), were used to interpret the geological and hydrogeological conditions at the Site.

3.1 Physiography and Drainage

The general topography at the study area and the Site has a gentle slope south towards Lake Ontario, with elevations decreasing from 85 m to 77 m. Drainage at the site is follow the local topography controlled by artificial channels and underground utilities such as sewers. The nearest surface water body Lake Ontario is located at the southern boundary of the Site.

3.2 Geology

The following presents a brief description of regional and Site geological and hydrogeological conditions based on the review of available information and site-specific investigations.

3.2.1 Quaternary Geology

The study area (500 m radius) lies within the Iroquois Plain physiographic region of southern Ontario and is characterized by the Bevelled Till Plains physiographic landform. The surficial geology in the study area is

dominated by clayey to silt textured till (Halton till) and fined-textured glaciolacustrine deposits of silt, clay and minor sand and gravel. The surficial geology map is shown in **Figure 2.**

3.2.2 Bedrock Geology

Available published mapping shows that bedrock in the area is predominantly shales and limestones of the Georgian Bay Formation (MNDM Map 2544 Bedrock Geology of Ontario). Based on the review of local boreholes and well record information, the depth to bedrock in the study area is estimated to be at an elevation of 70 to 80 masl.

3.2.3 Site Geology/Subsurface Soils

Subsurface soils/Site geology on the site was interpreted from the existing boreholes/monitoring wells (BHs/MWs) drilled by DS. The locations of the BHs/MWs are shown in **Figure 3** and detailed subsurface conditions are presented on the borehole Logs in **Appendix A**. The subsurface conditions in the boreholes are summarized in the following paragraphs.

Fill Materials:

Fill material was found in all boreholes extending to depths ranging from 0.8 to 2.5 m below the ground surface. The fill material was heterogeneous and consisted of sandy silt and clayey silt to silty clay, with inclusions of topsoil/organics in varying proportions and trace limestone & shale fragments.

Clayey Silt to Silty Clay Till/ Clayey Silt to Silty Clay:

Below the fill materials, silty clay to clay silt till and interbedded clayey silt to silty clay deposits were encountered in all boreholes at varying depths and extended to the depth of 2.2-8.2 mbgs.

Shale Bedrock:

Weathered shale/Shale bedrock belonging to Georgian Bay Formation was found at approximate depths varying from 2.2 to 6.1 m below the existing surface.

3.3 Hydrogeology

The hydrogeology at the Site was evaluated using the on-Site monitoring wells installed by DS as part of geotechnical, environmental, and hydrogeological investigations, local domestic wells, and existing hydrogeological reports for the area.

3.3.1 Hydrostratigraphy

The review of sub-surface soils indicates that there are three (3) major hydrostratigraphic units in the vicinity of the site: Glacial Till (Halton till), glaciolacustrine deposits and Shale bedrock of Georgian Bay Formation. These three (3) units are further described below.

- Glacial till is clayey to silty, textured till and known to be interbedded with minor sand deposits.
 This unit is considered as low permeable or an aguitard.
- The shale bedrock of the Georgian Bay Formation is not considered to be an aquifer and has limited groundwater movement. The upper weathered/fractured shale can have some local groundwater movement.

3.3.2 Local Groundwater Use

As part of the hydrogeological study, DS completed a search of the Ministry of the Environment, Conservation and Parks (MECP) Water Wells Records (WWRs) database. Based on the MECP water wells records search, there are 244 water wells registered within 500 meters of the Site (**Appendix B**). One (1) water well is noted as a water supply for industrial use. All other well records as registered as test hole, monitoring well, not in use, dewatering well or unknown. **Figure 1** shows the MECP water well location plan.

3.3.3 Groundwater Conditions

DS measured the groundwater level in all wells on September 15, 2022. Groundwater levels in overburden monitoring wells were found between 1.57 mbgs and 1.64 mbgs and in bedrock well at 2.29 mbgs. A summary of the measured groundwater levels in all monitoring wells is provided in **Table 3-1.**

Well ID	Ground Elevation (masl)	Well Depth (mbgs)	Screened Interval (mbgs)	Screened Formation	Depth to Water (mbgs)	Groundwater Elevation (masl)
BH 22-3	81.80	3.1	1.5-3.1	Silty Clay to Clayey Silt till	Dry	-
BH 22-6	83.00	3.0	1.5-3.0	Silty Clay to Clayey Silt till	1.63	81.4
BH 22-9	85.80	6.0	3.0-6.0	Shale	2.29	83.5
BH 22-12	81.60	7.7	4.7-7.7	Silty Clay to Clayey Silt till	Dry	-
BH 22-13	85.40	3.7	2.5-3.7	Clay silty to Sandy Silt/Silty	1.57	83.8
BH 22-14	83.90	6.1	3.1-6.1	Silty Clay to Clayey Silt till	Dry	-
BH 22-17	85.50	3.0	1.5-3.0	Silty Clay to Clayey Silt till	1.64	83.9
BH 22-22	84.30	6.1	3.1-6.1	Silty Clay to Clayey Silt till	Dry	-

Table 3-1: Groundwater Levels in Monitoring Wells

3.3.4 Hydraulic Conductivity

A single well response test (SWRT) was completed at three monitoring wells with sufficient water to estimate hydraulic conductivity (k) for the representative geological units in which the wells are completed. The reported hydraulic conductivity values (k) for overburden range between 5.3 X 10^{-6} and 1.1×10^{-7} m/s and weathered shale/ shale bedrock is 2.5×10^{-6} m/s. The test results are summarised in Table 3-2 and the hydraulic testing analysis is provided in **Appendix C.**

Table 3-2: Hydraulic Conductivity (k) Test Results

Well ID	Screen Interval	Screened Formation	K- Value(m/s)
BH 22-6	1.5-3.0	Silty Clay to Clayey Silt till	5.3 × 10 ⁻⁹
BH 22-9	9.2-12.2	Shale	2.5 × 10 ⁻⁶
BH 22-13	9.2-12.2	Clay silty to Sandy Silt/Silty Sand(Till)	1.1 × 10 ⁻⁷

3.3.5 Groundwater Quality

One unfiltered groundwater sample was collected from monitoring well BH 22-9 on September 22, 2022, and from monitoring well BH 22-14 between April 17 and May 3, 2023. The groundwater samples were analyzed and compared against the parameters listed in the Region of Peel Wastewater Bylaw (53-2010) and the City of Mississauga Storm Sewer Use Bylaw.

Groundwater quality analysis indicates that TSS, various total metals and cis- 1,2-Dichloroethene exceeded the sanitary or storm criteria under the Region of Peel's Wastewater Bylaw (53-2010) and the City's Sewer Use Bylaw. The selected certificates of analysis are provided in **Appendix D**.

Table 3-4: Parameters in Groundwater Exceeding the Sewer Use By-law

Parameter Exceeded	Unit	Peel Sanitary Sewer Use Criteria	Mississauga Storm Sewer Use Criteria	BH/MW 22-9 Concentration	BH/MW 22-14 Concentration
Total Suspended Solids	mg/L	350	15	9560	42
Aluminum	mg/L	50	1	63.5	0.1
Arsenic	mg/L	1	0.02	0.038	<0.01
Chromium	mg/L	5	0.08	0.117	<0.01
Copper	mg/L	3	0.04	0.129	<0.01
Manganese	mg/L	5	2	5.44	0.018
Nickel	mg/L	3	0.08	0.135	<0.005
Phosphorus	mg/L	10	0.4	3.76	<0.05
Zinc	mg/L	3	0.2	0.37	<0.005
cis-1,2-Dichloroethene	mg/L	4	-	0.0115	-

Note: **Bold** – Exceeded Peel Storm Sewer Use, * Exceeded Mississauga Storm Sewer Use, <u>Underline-</u> Exceeded Peel Sanitary Sewer Use

4.0 CONSTRUCTION DEWATERING

DS understands that the proposed development concept (Appendix E) will have up to three (3) levels of underground parking (P3). It is estimated that a conventional pile/lag shoring system will be used up to weathered shale bedrock and the excavation within the shale bedrock will be open cut (unsealed) for the proposed underground construction. Based on the k-values of soils or rock for the site and

surrounding areas, the dewatering flow rates within the assumed excavation area are expected to be low to medium. However, flow rates can be affected by any recharge from near Lake Ontario. Also, a secondary permeability of bedrock can contribute higher flow rate. It is DS's understanding that a parcel/block-wise detailed hydrogeological investigation will be carried out as per the actual design to estimate dewatering requirements.

4.1 Short-term Dewatering Requirements- Buildings

No detailed design drawings were available at the time of drafting this report. Following parameters are assumed for the preliminary dewatering assessment for the proposed buildings.

- a. Underground Structure: One (1) Three (3) Levels
- b. Assumed Established Ground Elevation: 83.5 masl
- c. Assumed Lowest Finished Floor Level (P1-P3): 3-9 m below the established grade
- d. Considered Deepest Excavation (including foundation): 5-11 m below the established grade
- e. Considered Average Groundwater Elevation: 82 masl
- f. Considered Geomean K- value: 5 x 10⁻⁷ m/s

The estimated dewatering volumes(Q) using steady-state equations are presented in **Table 4.1**.

$$Q = (pi * K (H^2 - h^2)) / ln (R/r_e)$$

Where,

- K Hydraulic conductivity
- H Distance from static water level to the bottom of an aquifer
- h Depth of water in the well while pumping
- r_e equivalent radius [m] = $((a*b)/\pi)^{0.5}$ where a and b are excavation dimensions
- R Radius of the cone of depression = r_e + 3000 * (H h) * $K^{0.5}$

Table: 4-1 Estimation of Flow Rate (Short-term Discharge)

Parcel	Area m²	Under- ground level No.	H (m)	Flow Rate(Q) without a Safety factor L/day	Flow Rate with a Safety factor x 1.5 L/day	Stormwater (10 mm/24 hrs.) L/day	Total Flow Rate L/day
Parcel 1	5,200	3	9.5	30,000	45,000	52,000	97,000
Parcel 2	7,700	2	6.5	23,000	34,500	77,000	111,500
Parcel 3	3,800	3	9.5	27,000	40,500	38,000	78,500
Parcel 4	3,800	3	9.5	27,000	40,500	38,000	78,500
Parcel 5	4,700	3	9.5	29,000	43,500	47,000	90,500
Parcel 6	5,400	3	9.5	31,000	46,500	54,000	100,500

Parcel	Area m²	Under- ground level No.	H (m)	Flow Rate(Q) without a Safety factor L/day	Flow Rate with a Safety factor x 1.5 L/day	Stormwater (10 mm/24 hrs.) L/day	Total Flow Rate L/day
Parcel 7	9,300	2	6.5	25,000	37,500	93,000	130,500
Parcels 8-9	9,200	2	6.5	25,000	37,500	92,000	129,500
Parcel 10	5,900	3	9.5	32,000	48,000	59,000	107,000
Parcel 11	8,300	2	6.5	24,000	36,000	83,000	119,000
Parcel 12	8,600	2	6.5	25,000	37,500	86,000	123,500
Parcel 13	2,000	-	-	-	-	-	-
Parcel 14	4,000	1	3.5	9,000	13,500	40,000	53,500
Parcel 15	3,800	3	9.5	27,000	40,500	38,000	78,500
Parcels 16-17	8,200	2	6.5	24,000	36,000	82,000	118,000
Parcel 18	1,800	-	-	-	-	-	-
Parcel 19	3,600	3	9.5	26,000	39,000	36,000	75,000
Parcels 20-21	5,800	2	6.5	21,000	31,500	58,000	89,500
Parcel 22	5,700	2	6.5	20,000	30,000	57,000	87,000
Parcel 23	10,000	1	3.5	13,000	19,500	100,000	119,500
Parcel 24	12,900	2	6.5	30,000	45,000	129,000	174,000
Parcel 25	7,400	3	9.5	35,000	52,500	74,000	126,500
Parcels 26-27	8,300	2	6.5	24,000	36,000	83,000	119,000
Parcels 27-28	4,600	2	6.5	19,000	28,500	46,000	74,500
Parcels 29-30	3,700	3	9.5	27,000	40,500	37,000	77,500
Parcel 31	6,000	2	6.5	21,000	31,500	60,000	91,500
Parcel 32	3,300	1	3.5	8,000	12,000	33,000	45,000
Parcel 33	3,400	3	9.5	26,000	39,000	34,000	73,000

The estimated dewatering rate(short-term) for a parcel range between 8,000 L/day and 35,000 L/day without a safety factor and 12,000 L/day and 52,500 L/day with a safety factor of x1.5. Additional water that may be needed to be removed because of precipitation events (assuming 10 mm/24 hours) would be between 33,000 and 129,000 L/day. The dewatering volume for the section can be changed depending on the existing grade, hydraulic conductivity of soils or rock and the actual groundwater level encountered during the excavation of a parcel.

4.2 Short-term Dewatering Requirements- Public ROW (Site Servicing)

No design drawings were available at the time of drafting this report. For the dewatering purpose, a theoretical 30 m long and 2 m wide and 5-6 m deep open cut trench was considered at any given time during the installation of underground utilities such as water main, storm and sanitary sewer and utility access holes as part of the Public ROW. Based on the existing ground levels at the site, the assumed

bottom of underground utilities is about 5-6 mbgs. The groundwater level for the site is between 1.57 and 2.29 mbgs. The requirements of dewatering for the sections will depend on the existing grade and the actual groundwater level encountered during the excavation of sections. The estimated dewatering volume for the assumed trench/section is as below.

 $Q = (pi * K (H^2 - h^2)) / ln (R/r_e) = 6,000 L/day without a safety factor$

Where,

K – Hydraulic conductivity= 2.5 x 10⁻⁶ m/s (highest k-value)

H – Distance from static water level to the bottom of an aquifer= 4.5

h – Depth of water in the well while pumping-0.0

 r_e – equivalent radius [m] = $((a*b)/\pi)^{0.5}$ where a and b are excavation dimensions=

R – Radius of the cone of depression = r_e + 3000 * (H – h) * $K^{0.5}$

The estimated dewatering rate(short-term) during the installation of underground utilities for the assumed trench (30 m x 2 m) is 14,000 L/day without a safety factor and 21,000 L/day with a safety factor of x1.5. The additional flow rate that may be needed to be removed because of precipitation events (assuming 10 mm/24 hours) would be 1,000 L/day. The dewatering volume for a parcel can be changed depending on the existing grade and the actual groundwater level encountered during the excavation of a parcel.

4.3 Long-term Dewatering Requirements- Buildings

Following the construction of the underground structure, long-term groundwater flow to the underfloor drainage system for the building will be a function of the upward flux and drainage along the foundation wall. The estimated long-term drainage flow rate for a parcel with P1-P3 levels using a steady-state flow equation is summarised in **Table 4-2**.

Table 4-2: Estimation of Flow Rate (Long-term Discharge)

Parcel	Area m²	Under- ground level- No.	H (m)	Flow Rate without a Safety Factor L/day	Flow Rate with a Safety factor x 1.5 L/day
Parcel 1	5,200	3	7.5	23,000	34,500
Parcel 2	7,700	2	4.5	16,000	24,000
Parcel 3	3,800	3	7.5	20,000	30,000
Parcel 4	3,800	3	7.5	20,000	30,000
Parcel 5	4,700	3	7.5	22,000	33,000
Parcel 6	5,400	3	7.5	23,000	34,500
Parcel 7	9,300	2	4.5	17,000	25,500
Parcel 8-9	9,200	2	4.5	17,000	25,500

Parcel	Area m²	Under- ground level- No.	H (m)	Flow Rate without a Safety Factor L/day	Flow Rate with a Safety factor x 1.5 L/day
Parcel 10	5,900	3	7.5	24,000	36,000
Parcel 11	8,300	2	4.5	16,000	24,000
Parcel 12	8,600	2	4.5	16,000	24,000
Parcel 13	2,000	-	-	-	-
Parcel 14	4,000	1	1.5	4,000	6,000
Parcel 15	3,800	3	7.5	20,000	30,000
Parcels 16-17	8,200	2	4.5	16,000	24,000
Parcel 18	1,800	-	-	-	-
Parcel 19	3,600	3	7.5	20,000	30,000
Parcels 20-21	5,800	2	4.5	14,000	21,000
Parcel 22	5,700	2	4.5	14,000	21,000
Parcel 23	10,000	1	1.5	6,000	9,000
Parcel 24	12,900	2	4.5	20,000	30,000
Parcel 25	7,400	3	7.5	27,000	40,500
Parcels 26-27	8,300	2	4.5	16,000	24,000
Parcels 27-28	4,600	2	4.5	12,000	18,000
Parcels 29-30	3,700	3	7.5	20,000	30,000
Parcel 31	6,000	2	4.5	14,000	21,000
Parcel 32	3,300	1	1.5	3,000	4,500
Parcel 33	3,400	3	7.5	19,000	28,500

The estimated long-term discharge for a parcel range between 3,000 L/day and 27,000 L/day without a safety factor and 4,500 L/day and 40,500 L/day with a safety factor of x1.5. The dewatering volume for a parcel can be changed depending on the existing grade, sub-drainage depth, hydraulic conductivity of soils or rock and the actual groundwater level encountered during the excavation of a parcel.

4.4 Water-taking Permit Requirements

In the absence of drawings/site plans and construction sequences, DS anticipates that the construction of the proposed construction will be phased. Therefore, permit requirements can be determined once the final design, revised dewatering rates, and construction sequences are available. Below are the regulatory dewatering permit requirements concerning daily discharge volume.

- An EASR or a PTTW is not required for water taking less than 50,000 L/day.
- An Environmental Activity Sector Registration (EASR) is required to be submitted to the Ministry of the Environment, Conservation and Parks (MECP) if the taking of groundwater and

stormwater for a temporary construction project is between 50,000 L/day and 400,000 L/ day. The EASR application is an online registry and should be submitted to the MECP before any construction dewatering.

A PTTW is required to be submitted to the MECP if the taking of groundwater and stormwater
for a temporary construction project is more than 400,000 L/ day. The PTTW application is also
an online registry and should be submitted to the MECP 90 days from the start of construction
dewatering. Dewatering of up to 400,000 L/day is acceptable under an EASR registry.

5.0 POTENTIAL IMPACTS

The following are the predicted potential impacts because of construction dewatering:

5.1 Current PTTW Search

The MECP PTTW Open Data Catalogue was searched within a 1 km radius of the Site. The search indicated that there is one active PTTW within 1 km of the Site. The PTTW details are summarised below. The groundwater interferences from surrounding pumping activities are possible to occur depending on the radius of influence.

Permit Number	Permit Holder Name	Purpose	Specific Purpose	Max Litres per Day	Source Type	Distance (KM)
2216-	The Regional	Dewatering	Construction	2590000	Ground	0.40
BPJSE5	Municipality of Peel	Construction			Water	

5.2 Source Protection Area

The site is located within the Credit Valley Source Protection Area (SPA). The Credit Valley Source Protection Plan contains policies aimed at protecting drinking water sources by reducing or eliminating significant threats to the source of municipal drinking water. The study area is serviced by municipal water. Therefore, no impacts are anticipated on the drinking water supply within the zone of influence.

5.3 Surface Water

Lake Ontario is not within the zone of influence during construction dewatering. Therefore, surface water impacts due to the short-term dewatering are not expected.

5.4 Local Groundwater Use

The area is fully serviced by a municipal water supply. It is not expected to have any use of groundwater as a source of drinking water within a radius of 500 meters and therefore, there will be no short-term or long-term predicted impacts on private water wells occurring from the proposed dewatering activities.

5.5 Point of Discharge and Groundwater Quality

Groundwater quality analysis indicates that TSS, various total metals and cis- 1,2-Dichloroethene exceeded the sanitary or storm criteria under the Region of Peel's Wastewater Bylaw (53-2010) and the City's Sewer Use Bylaw. Therefore, groundwater at the Site is not suitable for discharge to the Region's or the City's sewer system without treatment. Treatment options include but are not limited to the settlement of suspended solids and filtration to remove fines and associated metals. Discharge permits and agreements are required from the Region of the Peel/City of Mississauga to discharge groundwater into the sewer system.

6.0 MONITORING AND MITIGATION

Based on the finding of hydrogeological assessment and associated potential impacts due to development, the following monitoring and mitigation program is provided:

- Baseline groundwater quality has been assessed and established before construction. However, groundwater quality can change based on several factors (land-use change, spills, etc.) and should be monitored during construction dewatering and after construction to ensure that water quality meets the guideline or regulations associated with any permits from the MECP and the City of Mississauga.
- if a groundwater dewatering system is set up at the Site, daily and weekly monitoring should be implemented to assess the groundwater conditions such as water levels, measurement of discharge flow, discharge water quality and any adverse impacts because of dewatering.
- Following the completion of construction activities, all dewatering wells, well points, eductors and monitoring wells installed at various stages of this project must be decommissioned. The installation and eventual decommissioning of the wells and the dewatering system must be conducted by a licenced water well contractor in accordance with Regulation 903 of the Ontario Water Resources Act.

7.0 LIMITATIONS

This report was prepared for the sole use of the addressee to provide an assessment of the hydrogeological conditions on the property. The information presented in this report is based on information collected during the completion of the hydrogeological investigation by DS Consultants Ltd. DS Consultants Ltd. was required to use and rely upon various information sources produced by other parties. The information provided in this report reflects DS's judgment considering the information available at the time of report preparation. This report may not be relied upon by any other person or entity without the written authorization of DS Consultants Ltd. The scope of services performed in the execution of this investigation may not be appropriate to satisfy the needs of other users, and any use or reuse of this document or findings, conclusions, and recommendations represented herein, is at the

sole risk of said users. The conclusions drawn from the Hydrogeological report were based on information at selected observation and sampling locations. Different conditions between and beyond these locations may become apparent during future investigations or on-Site work, which could not be detected or anticipated at the time of this investigation. DS Consultants Ltd. cannot be held responsible for hydrogeological conditions at the Site that was not apparent from the available information.

Should you have any questions regarding these findings, please contact the undersigned.

DS Consultants Ltd.

P.A-Palel

Prepared By:

Reviewed By:

Pradeep Patel, M.Sc. P.Geo.

Hydrogeologist

Martin Gedeon, M.Sc., P.Geo. Senior Hydrogeologist

Marti Ceden

8.0 CONSULTANTS QUALIFICATIONS

Martin Gedeon, M.Sc., P.Geo. is a Professional Geoscientist (P.Geo.) with over 26 years of experience as an environmental/hydrogeological consultant in the areas of groundwater and soil monitoring, environmental site assessments, environmental due diligence, and remediation. Martin has significant experience in physical and contaminant hydrogeology across Canada and overseas and has provided hydrogeological/environmental technical support on various projects. Martin has prepared hundreds of hydrogeological reports in support of permit applications for a private sector development application, municipal dewatering operations and provincial infrastructure projects across the province.

Pradeep Patel, M.Sc., P.Geo. is a hydrogeologist at DS Consultants Ltd. and has more than 9 years of experience working in the environmental industry. He participates in numerous Hydrogeological and Geotechnical investigation projects. His experience includes the preparation of construction dewatering activities and hydrogeological investigations in support of Environmental Activity and Sector Registry (EASR) and Permit to Take Water (PTTW) applications.

9.0 REFERENCES

Appendix F-Hydrogeology Final Report- Lake Ontario Integrated Shoreline Strategy Background Review and Data Gap Analysis by Credit Valley Conservation, September 12, 2011

Chapman, L.J., and D.F. Putnam; The Physiography of Southern Ontario, Third Edition, Ontario Geological Survey Special Volume 2; 1984, & 2007.

Freeze, R.A., and J.A. Cherry. "Groundwater". Prentice-Hall, Inc. Englewood Cliffs, NJ. 1979.

http://www.ebr.gov.on.ca/

Ontario Regulation 153/04 made under the Environmental Protection Act, July 1, 2011.

Ontario Regulation 245/11- Environmental Activity and Sector Registry.

Powers, J. Patrick, P.E. (1992); Construction Dewatering: New Methods and Applications - Second Edition, New York: John Wiley & Sons.

Pat M. Cashman and Martin Preene; Groundwater Lowering in Construction- Second Edition, CRC Press.

The Region of Peel Wastewater Bylaw (53-2010).

500m Buffer

Registered Water Well (MECP WWR)

DS CONSULTANTS LTD.

6221 Highway 7, UNIT 16 Vaughan, Ontario L4H 0K8 Telephone: (905) 264-9393 www.dsconsultants.ca

Client:

RANGEVIEW LANDOWNERS GROUP INC.

Project:	HYDROGEOLOGICAL INVESTIGATION
	Rangeview Estate Precinct Development, City of Mississauga, ON

Title: SITE LOCATION AND MECP WELL RECORDS

Size: 8.5 x 11	Approved By:	P.P	Drawn By:	S.Y	Date:	October 2022
Rev:	Scale:	As Shown	Project No.:	22-200-100	Figure No.:	1
0	Image/Map Source	: Rina Satellite Image			•	

Appendix A: Borehole Logs

CLIENT: Landowners Group Inc.

PROJECT LOCATION: Rangeview Estates Precinct Area, Mississauga, ON

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 22-200-100

BIT LOCATION.	See Drawing 1 N 4825344.	11 = 6	160/	10.35				Date:	Aug-	19-202	2					El	NCL N	O.: 2			
	SOIL PROFILE	. 14 L (т —	SAMPL	.ES	<u> </u>		DYNA RESIS	MIC CC	ONE PE E PLOT	NETRA	ATION		D. 107	_ NAT	URAL			-	REM	ARKS
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O U	20 4 AR STI	0 6 RENG	0 8 TH (kF +	Pa) FIELD V	ANE vitv	W _P		TENT W	LIQUID LIMIT W _L ————————————————————————————————————	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AI GRAII DISTRI	ND N SIZ
82.6 8 2 . 9 ASPHA I	.T: 150mm	STI	N	₹	ž	8 O	III.			0 6			00	1	0 2	20	30			GR SA	SI
	AR BASE: sand and	. O	1	SS	13			- - - - -						(0						
0.8 Some cl gravel, b FILL: sil	nd, trace brick pieces, ay, trace organics, trace rown, moist, compact ty clay, trace sand, trace t, trace gravel, brown,	/ ×	2	SS	8	_	82	-								0					
moist, s	iff to very stiff		3	SS	17		81	- - - - -							q		 	-		4 7	62
80.3 2.3 SILTY C	LAY: trace sand, trace reyish brown, moist, hard		4	SS	50/ 75mm	- -)	80	-							0						
79.5	BEDROCK: grey,				50/			- - - -													
3 3 Weather		_	5	SS	100mr	-		-													

CLIENT: Landowners Group Inc.

PROJECT LOCATION: Rangeview Estates Precinct Area, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 22-200-100

Date: Aug-19-2022 ENCL NO.: 3

SH LO	CATION: See Drawing 1 N 4825294.5 SOIL PROFILE	00 L (т —	SAMPL	ES.			DYNA	MIC CC	NE PE	NETR/	ATION								
	SUIL PRUFILE	Ι.		PAIVIPL	.ES	띮		RESIS	STANCE	PLOT	\geq	_	00	PLASTI LIMIT	C NATI	URAL	LIQUID LIMIT	z	NATURAL UNIT WT (kN/m³)	REMARKS AND
m)		STRATA PLOT			NS/	GROUND WATER CONDITIONS	×			0 6 RENG			00	W _P		TENT W	W _L	POCKET PEN. (Cu) (kPa)	,r UNI	GRAIN SIZ
PTH	DESCRIPTION	TAF	ЖЖ		BLOWS 0.3 m	D E	ATIC	0 0	NCONF	INED	+	FIELD V. & Sensiti	ANE vity	 				(C)	TURA (KN	DISTRIBUT (%)
7		TRA	NUMBER	TYPE	Į.	SROU	ELEVATION			RIAXIAL 0 6	- ×	LAB V	AŃE 00		TER CC		T (%) 30	_	₹	GR SA SI
81.7 8 0 . 9	ASPHALT: 130mm	0)			=	00		-	<u> </u>			1			<u> </u>		1			GR SA SI
0.1	GRANULAR BASE: sand and	. o	1	SS	8			Ē						0						
31.1	gravel, 460mm	.0.	ł					-												
8:8	FILL: sand and gravel, trace silt, _trace clay, trace asphalt pieces,	\boxtimes]	81	-												
8.0	grey, moist, loose	\times	}					-												
	FILL: silty clay, some organics, trace gravel, grey, moist, firm to	\bowtie	2	SS	7			-								0				
	hard	\otimes	_					-												
80.0		\boxtimes			50/	1	80													
1.7	SILTY CLAY: trace sand, trace gravel, occasional cobble, brown,		3	SS	100mn	•		-							0					
	moist, hard		\vdash			1		Ē												
			 					-												
			4	SS	50/ 100mn			-							٥					
			_		10011111	Ï	79	-												
			1					-												
78.5	SHALE BEDROCK: grey,	<u> </u>			50/	1		-												
78.1	weathered		5	SS	100mn	h		-												
3.6	END OF BOREHOLE:																			
	Notes: 1) Borehole dry upon completion.																			
	, , , , , ,																			
		1		i .	1	ı	1		1	1		1	1	ı		1	Ú.			ı

CLIENT: Landowners Group Inc.

PROJECT LOCATION: Rangeview Estates Precinct Area, Mississauga, ON

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm

REF. NO.: 22-200-100

	SOIL PROFILE		s	SAMPL	.ES			DYNA	AMIC CO	ONE PEI E PLOT	NETR/	NOITA			AIA-	LIDAI				DEMA	י סויכ
(m) ELEV PEPTH 81.8	DESCRIPTION	STRATA PLOT	NUMBER	ТҮРЕ	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE	20 4 AR STI INCONF QUICK T	10 60 RENG) 8 TH (kf + . ×	Pa) FIELD V & Sensit LAB V	OO /ANE tivity /ANE OO	W _P	TER CO	TENT W O ONTEN	LIQUID LIMIT W _L ——I IT (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	REMA AN GRAIN DISTRIE (%	ND N SIZI BUTIC 6)
	ASPHALT: 100mm			'	-			<u> </u>												OIT OA	
81.3	GRANULAR BASE: sand and gravel, 450mm FILL: silty clay, trace to some		1	SS	7			- - - -							C						
	organics, trace concrete pieces, trace gravel, trace asphalt, grey, moist, firm to stiff		2	SS	5		81 : :									0					
			3	SS	11		80	-								•		-			
	SILTY CLAY TILL: some sand, trace gravel, occasional cobble, brown, moist, hard	***	4	SS	57		79	- - - -						1	•					8 18	48
78.7 3.1	SHALE BEDROCK: grey, weathered	X X	5	SS	50/ 130mn		:	- - - -													
	Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water Level Readings: Date: Water Level(mbgl): Aug 25, 2022 dry																				

CLIENT: Landowners Group Inc.

PROJECT LOCATION: Rangeview Estates Precinct Area, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 22-200-100

Date: Jul-15-2022 ENCL NO.: 5

	SOIL PROFILE	_	١	AMPL	ES .	<u>~</u>		RESI	STANCI	ONE PE E PLOT	\geq			PLASTI	NAT	URAL	LIQUID		₹	RE	MAF	
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE.	AR ST NCONF UICK T	RENG INED RIAXIA	TH (k + L ×	Pa) FIELD \ & Sensi LAB V	'ANE	W _P ⊢— WA1	CON Y ER CO	ITENT W O ONTEN	LIMIT W _L IT (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)		(%)	SIZE JTIO
82.3	ASPHALT: 180mm	Ś	z	Ĺ	F	0 0	Ш	-	20 4	10 6	50 8	80 1	100	1	0 2	20	30			GR S	A S	31
8 <u>9</u> :9 0.2 81.5	GRANULAR BASE/SUB BASE: sand and gravel, 460mm, crusher run limestone (160mm)	. O	1	SS	4		82	- - - -						0				-				
0.8	SILTY CLAY: trace sand, trace gravel, brown, moist, very stiff to hard		2	SS	17		81	- - - - - -							0			-		2	3 6	i2
			3	SS	30			- - - - - -							0							
80.0				00	50/		80	<u> </u>	-						0			-				
79.9 2.4 78.9	SILTY CLAY TILL: sandy, trace gravel, brown, moist, hard SHALE BEDROCK: Georgian Bay Formation, grey, weathered TCR=75%, SCR=14%, RQD=0		4 R1	SS RC	50/ 25mm 50/ 75mm		79	- - - - - - - - -							0							
3.4	TCR=96%, SCR=98%, RQD=28% Hard layer=18%, Maximum hard layer thickness=50mm		R2	RC			78	- - - - - - -										-				
77.4 4.9	TCR=93%, SCR=90%, RQD=63%							- - - - - -														
	Hard layer=5%, Maximum hard layer thickness=25mm		R3	RC			77	-														
75.9 6.4	TCR=100%, SCR=98%, RQD=70%						76	- - - -										_				
	Hard layer=9%, Maximum hard layer thickness=25mm		R4	RC				- - - - -														
74.5							75	- - - -														
7.8	END OF BOREHOLE:																					
74.5																						

Geotechnical & Environmental & Materials & Hydrogeology

PROJECT: Geotechnical Investigation

CLIENT: Landowners Group Inc.
PROJECT LOCATION: Rangeview Estates Precinct Area, Mississauga, ON

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 22-200-100

DATU	IM: Geodetic			,		3 , -		Date:	Aug-	19-202	2					EN	NCL N	0.: 6		
BHLC	OCATION: See Drawing 1 N 4825333.22	2 E 6	1624	14.07																
	SOIL PROFILE		S	SAMPL	.ES	_		DYNA RESIS	MIC CO STANCE	NE PE	NETRA	ATION		PLASTI	_ NAT	URAL STURE	LIQUID		WT	REMARKS
(m) ELEV DEPTH 81.7	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O UI	AR STI NCONF UICK T	RENG FINED RIAXIAI	TH (kF + - ×	Pa) FIELD V & Sensiti	ANE	LIMIT W _P ⊢ WA	CON V TER CO	ITENT W O ONTEN	LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT M (kN/m³)	AND GRAIN SIZE DISTRIBUTION (%) GR SA SI CL
88:0 - 81.2 - 0.5	GRANULAR BASE: sand and gravel, 400mm FILL: silty clay, trace asphalt	. Ø	1	SS	4			- - - -							0					
	pieces, sandy, trace concrete pieces, greyish brown, moist, firm to	\bowtie					81	_										$\left\{ \right.$		
80.3	very stiff	\bigotimes	2	SS	18			- - - -							0					
1.4	FILL: sand and gravel, cobbles and boulders, grey, moist, very dense	\bigotimes	3	SS	50/ -75mm		80	- - -							0					Auger grinding
79.4	SILTY CLAY TILL: trace sand,		4	SS	50/			- - - -							•					14 9 57 20
- - - - 3 78.6	some gravel, greyish brown, moist, hard				-25mm		79	-										_		
78 %	SHALE BEDROCK: grey	r:x:	5	SS	50/			-												
3.2	weathered END OF BOREHOLE: Notes: 1) Borehole dry at bottom upon completion.				50mm															

GRAPH + 3, × 3: Numbers refer to Sensitivity

O ^{8=3%} Strain at Failure

DS SOIL LOG-2021-FINAL 22-200-100 GEO COPY.GPJ DS.GDT 22-9-12

CLIENT: Landowners Group Inc.

PROJECT LOCATION: Rangeview Estates Precinct Area, Mississauga, ON

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 22-200-100

	SOIL PROFILE		s	SAMPL	ES.			DYNA	MIC CC	NE PEI	NETRA	TION				un.				DEMARKS
Т		Τ.				띮		l					00	PLAST LIMIT	IC MOIS	URAL	LIQUID LIMIT	zi	T WT	REMARKS AND
m) _EV :PTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE/	AR STI NCONF UICK T	RENG1	H (kF + . ×	Pa) FIELD V & Sensit LAB V	/ANE	W _P ⊢ WA	TER CO		W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GRAIN SIZ DISTRIBUTIO (%)
33.0 32:8	ASPHALT: 200mm	0)			=		ш	<u> </u>	<u> </u>				1				†			GR SA SI
0.2	GRANULAR BASE: sand and gravel, 380mm	Ö	1	SS	8			-								0				
0.6 32.2 0.8	FILL: silty clay, trace sand, trace—gravel, some organics, brown, moist, stiff						82	- - -												
	SILTY CLAY TILL: some sand, trace gravel, brown, moist, stiff to hard		2	SS	11		W. L. Aug 2	 81.8 m	 1 2						0					
	trace shale fragments below 1.5m		3	SS	50			- - -							0					
30.7							81	-												
2.3	SHALE BEDROCK: grey, weathered		4	SS	50/ 50mm			-												
79.9							80	-												
3.1	END OF BOREHOLE: Notes:																			
	1) 50mm dia. monitoring well installed upon completion. 2) Water Level Readings:																			
	Date: Water Level(mbgl): Aug 25, 2022 1.15																			
		1	1		I	i	ı	i	1	1			1	1	1	1	1	i .	I	

CLIENT: Landowners Group Inc.

PROJECT LOCATION: Rangeview Estates Precinct Area, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 22-200-100

Date: Aug-19-2022 ENCL NO.: 8

	SOIL PROFILE		s	AMPL	ES	~		DYNA RESIS	MIC CC TANCE	NE PE PLOT	NETRA	ATION		PI ASTI	C NAT	URAL	HUIID			REMARKS
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O U	R STINCONF	0 6	0 8 ΓΗ (kF + - ×	0 10 Pa) FIELD V & Sensitiv LAB V	ANE vity ANE O0	W _P ⊢ WA	TER CO		LIQUID LIMIT W _L ——I T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZE DISTRIBUTIO (%) GR SA SI (
80.0 0.1 81.6 0.4	ASPHALT: 130mm GRANULAR BASE: sand and gravel, 400mm FILL: silty clay, trace to some	ο · · · · · · · · · · · · · · · · · · ·		SS	7			-								0				
0.1	organics, trace concrete pieces, trace metal piece, cobbles, trace sand, grey, moist, firm to stiff		2	SS	8	-	81	- - -						0						Auger grind
80.5			_	33	0											0				@1.5m
1.5	SILT CLAY TILL: some sand, some gravel, greyish brown, moist, hard		3	SS	73		80	- - - -							0		-1			19 17 43
79.2			4	SS	43			- - - -							О					
2.8	SHALE BEDROCK: grey, weathered						79	-										-		
78.8 3.2	END OF BOREHOLE: Notes:		5	SS	50/ 30mm	4												t		
	Borehole is dry at bottom upon completion after drilling.																			

nical Investigation DRILLING DATA
s Group Inc. Method: Solid Stem Auger

CLIENT: Landowners Group Inc.
PROJECT LOCATION: Rangeview Estates Precinct Area, Mississauga, ON

Diameter: 150mm REF. NO.: 22-200-100

DATUM: Geodetic Date: Jul-15-2022

ENCL NO.: 9

	IM: Geodetic DCATION: See Drawing 1 N 4825535.3	87 F 6	31627	70 56				Date:	Jul-1	5-2022						EI	NCL N	J.: 9		
JI I LC	SOIL PROFILE	<i>)</i>		SAMPL	.ES			DYNA RESIS	MIC CC	NE PE E PLOT	NETR/	ATION		<u> </u>	- NATI	JRAL			L	REMARKS
(m)		1				ATER S		ı		0 6			00			TENT	LIQUID LIMIT	PEN.	M LINI	AND
LEV PTH	DESCRIPTION	'A PLO	띪		BLOWS 0.3 m	NO W	NOIT		AR STI	RENG	ΓΗ (kF +	Pa) FIELD V & Sensiti	ANE	W _P —		w >	W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GRAIN SIZ
83.8		STRATA PLOT	NUMBER	TYPE	<u>a</u>	GROUND WATER CONDITIONS	ELEVATION	● Q	UICK T	RIAXIAI 0 6	- ×	LAB V	ANE 00		TER CC 0 2		IT (%) 30	8	NAT	(%) GR SA SI
8 9. Ø 0.1	ASPHALT: 130mm GRANULAR BASE: sand and	. i.	1	SS	12			-												
83.3 0.5	gravel, 330mm FILL: silty clay, trace organics,	ø		33	12			- - -												
83.0	trace gravel, brown, moist, stiff CLAYEY SILT TILL/SHALE						83	- 												no recover
	COMPLEX: trace sand, trace gravel, brown to grey, moist, stiff to hard		2	SS	14			- - - -							0					
			3	SS	53	=	82	- - - -							0			-		
81.5						-		-												
2.3 81.2	SHALE BEDROCK: weathered, grey	467.	4	SS	50/ 150mn	1		Ē												
2.6	END OF BOREHOLE: Notes:																			
	Borehole is dry at bottom upon completion after drilling.																			

CLIENT: Landowners Group Inc.

PROJECT LOCATION: Rangeview Estates Precinct Area, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 22-200-100

Date: Aug-23-2022 ENCL NO.: 10

	SOIL PROFILE		S	AMPL	ES.	یی			RESI	STANCE	ONE PEN E PLOT	NE IRA	ATION		PLASTI	C NATI	URAL	LIQUID		WT	REMARKS
n)		TO:			SI	¥	ပ္ခ	7	\vdash		0 60			00	LIMIT W _P	CON	ITENT W	LIMIT W _L	PEN.	UNIT (°r	AND GRAIN SIZ
EV PTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER	ONDITION	ELEVATION	0 U	NCONF UICK T	RENGT INED RIAXIAL IO 60	+ ×	FIÉLD V & Sensiti LAB V		WA ⁻	TER CO	O		POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	DISTRIBUTI (%)
35.8 3 9.0 0.2	ASPHALT: 150mm GRANUAR BASE: sand and	ö · ·	1	SS	8				-												GR SA SI
0.5	gravel, 330mm FILL: silty clay, trace to some organics, trace gravel, grey, moist,	X						85													
1.0	stiff SILTY CLAY TILL: trace to some sand, trace gravel, brown, moist,	XX 191	2	SS	18			00	'- - -								0				
	very stiff to hard		3	SS	50/				-							0					
					130mr	<u>1</u>			83.9 n 5, 202												
	trace shale fragments@2.3m		4	SS	50/ (30mr	∱ ∷			- - -							0					
32.8 3 2.0	_SHALE BEDROCK: weathered,		5	SS	50/			83	 - -										-		
3.3 3.3	TCR=100%, SCR=1%, RQD=0% / Hard layer=0%, Maximum hard /		R1	RC	1 <u>30mr</u>	1			- - -												
	layer thickness=0mm / TCR=100%, SCR=86%, RQD=56% Hard layer=25%, Maximum hard layer thickness=100mm		R2	RC				82	-												
									- - -												
31.0 4.8	TCR=96%, SCR=86%, RQD=72% Hard layer=20%, Maximum hard							81	- - -												
	layer thickness=100mm		R3	RC					- - - -												
79.8								80													
6.0	END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion.																				
	2) Water Level Readings: Date: Water Level(mbgl): Aug 25, 2022 1.83																				
	3																				

CLIENT: Landowners Group Inc.

PROJECT LOCATION: Rangeview Estates Precinct Area, Mississauga, ON

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 22-200-100

$BH \sqcup \cap$	CATION: See Drawing 1 N 4825567.5	и г е	31620	24 00						19-202								O.: 1′		
טוונט	SOIL PROFILE	- 	т —	SAMPL	.ES	l		DYNA RESIS	MIC CC	NE PE E PLOT	NETRA	TION			_ NATI	JRAI			_	REMARKS
(m)		гот			NS m	WATER	Z		20 4	0 6 RENG) 81	0 1	00	PLASTI LIMIT W _P		TURE TENT	LIQUID LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZ
EPTH 83.9	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	0 U ● Q	NCONF		+ ¦	FIÉLD V & Sensiti LAB V	ANE ivity ANE 00		TER CO		T (%)	POCK (Cu)	NATUR⁄ (KN	DISTRIBUTI (%) GR SA SI
83.9	ASPHALT: 100mm GRANULAR BASE: sand and gravel, 480mm	ο. 		SS	8			- - -							0					GIC SA SI
0.6	FILL: silty clay, trace organics, trace gravel, trace sand, grey,	0.						-												
1.0	moist, stiff to very stiff SILTY CLAY TILL: sandy, trace gravel, grey, moist, very stiff to hard		2	SS	18		83	- - -							0					
			3	SS	40		82	- - - -							0					
2.2	CLAYEY SILT TILL/SHALE COMPLEX: trace sand, trace gravel, trace cobbles, grey, moist,		4	SS	50/ 75mm			- - - - -						0						Water at 2
80.8	hard						81	- - -										-		
3.2	SHALE REDROCK: grey, weathered		5	SS	50/ 50mm	 		-						0						
	END OF BOREHOLE: Notes: 1) Borehole wet at the bottom upon completion adter drilling.																			
													1							

CLIENT: Landowners Group Inc.

PROJECT LOCATION: Rangeview Estates Precinct Area, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 22-200-100

Date: Aug-23-2022 ENCL NO.: 12

	SOIL PROFILE		S	AMPL	.ES	œ		RESIS	STANCE	NE PE PLOT	NETRA	ATION		PLASTI	C NAT	URAL	LIQUID	,	¥	REM	MARKS
(m) ELEV EPTH 83.1	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O U	AR STI NCONF UICK T	INED	TH (kF + - ×	L———Pa) FIELD V & Sensit LAB V	ANE inity		TER CO	w O ONTEN	LIQUID LIMIT W _L ——I IT (%)	POCKET PEN. (Cu) (kPa)	^z	A GRAI DISTRI (¹ GR SA	(%)
0.0 82.9	TOPSOIL: 250mm	7/1/					83														
0.3	FILL: silty clay, trace organics, trace tospoil, trace rootlets, trace sand, brown, moist, firm to stiff		1	SS	9			-						ć	0						
			2	SS	7		82	-							0						
1.5	SILTY CLAY TILL: sandy, trace gravel, occasional cobble, brown, moist, very stiff to hard	****	3	SS	50/ 75mm			-							o						
							81											┨			
	grey below 2.3m		4	SS	30			-						·	•						
			_				80	_													
			5	SS	22			-							0						
							79	-													
			6	SS	17		78	-							0						
77.0								- - - - - - -													
76.9	SHALE BEDROCK: grey,	1:05.	7	SS	50/		77											-	Ш		
6.2	weathered END OF BOREHOLE: Notes: 1) Borehole is wet at bottom upon completion after drilling.				<u>\$5mm</u>																

CLIENT: Landowners Group Inc.

PROJECT LOCATION: Rangeview Estates Precinct Area, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 22-200-100

Date: Aug-22-2022 ENCL NO.: 13

DESCRIPTION PHALT: 130mm ANULAR BASE: sand and vel, 400mm L: sand mixed with black anics, some silt, trace gravel, e asphalt, black, moist, compact-L: silty clay, some organics, e sand, trace gravel, grey, st, firm TY CLAY TILL: some sand to dy, trace gravel, brown, moist, d	\$	1 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	SS SS SS	SMOTH IN. 10 5 6	GROUND WATER CONDITIONS	818 EFEVATION	SHE A C U	NCONF UICK TI	RENGT	H (kPa + & S × LA	100) ELD VANE Sensitivity B VANE 100	W _P ⊢ WA	TER CC	w O ONTEN	LIQUID LIMIT Wt. T (%)	POCKET PEN. (Cu) (KPa)	NATURAL UNIT WT (KN/m³)	AND GRAIN SI DISTRIBUT (%) GR SA SI
ANULAR BASE: sand and vel, 400mm L: sand mixed with black anics, some silt, trace gravel, e asphalt, black, moist, compact L: silty clay, some organics, e sand, trace gravel, grey, st, firm TY CLAY TILL: some sand to dy, trace gravel, brown, moist, d		2	ss ss	5		81 80	- - - - - - - - - - - - - - - - - - -							0				
L: sand mixed with black anics, some silt, trace gravel, e asphalt, black, moist, compact L: silty clay, some organics, e sand, trace gravel, grey, st, firm TY CLAY TILL: some sand to dy, trace gravel, brown, moist, d	***************************************	3	SS	6		80	- - - - - - - - - - - - - - - - - - -						0	0		-		
L: silty clay, some organics, e sand, trace gravel, grey, st, firm TY CLAY TILL: some sand to dy, trace gravel, brown, moist, d	***************************************	3	SS	6			- - - - - - -						٥	0		_		
dy, trace gravel, brown, moist, d	***************************************	4	SS				- - - - - - -							0		_		
dy, trace gravel, brown, moist, d				43		79	- - - - - - -					_						
dy, trace gravel, brown, moist, d				43		79	- - - -											
y below 3.1m		5	SS				г											
				42		78	- - - - - - - -					C						
		6	ss	35			- - - - -					0						
		7	SS	47		77	, - - -									-		
						. 76	} - - - -											
		, , ,	99	30			- - - -											
			33	39		75	- - - -											
							-											
		9	SS	45		74	- - - -						Φ					
O OF BOREHOLE: es: iOmm dia. monitoring well alled upon completion. Vater Level Readings:																		
e: Water Level(mbgl): 25, 2022 dry																		
	es: Dmm dia. monitoring well alled upon completion. /ater Level Readings: : Water Level(mbgl):	es: Dmm dia. monitoring well alled upon completion. /ater Level Readings: b: Water Level(mbgl):	O OF BOREHOLE: es: Omm dia. monitoring well alled upon completion. /ater Level Readings: es: Water Level(mbgl):	9 SS OF BOREHOLE: es: Omm dia. monitoring well alled upon completion. /ater Level Readings: es: Water Level(mbgl):	9 SS 45 OF BOREHOLE: es: Omm dia. monitoring well alled upon completion. /ater Level Readings: e: Water Level(mbgl): 25, 2022 dry	9 SS 45 OF BOREHOLE: es: Omm dia. monitoring well alled upon completion. /ater Level Readings: e: Water Level(mbgl): 25, 2022 dry	7 SS 47 8 SS 39 75 8 SS 39 75 OF BOREHOLE: as: Dmm dia. monitoring well alled upon completion. /ater Level Readings: as: Water Level(mbgl): 25, 2022 dry	8 SS 39 75 74 9 SS 45 74 9 SS 45 OF BOREHOLE: es: Omm dia. monitoring well alled upon completion. /ater Level Readings: e: Water Level(mbgl): 25, 2022 dry	7 SS 47 76 8 SS 39 75 9 SS 45 70 70 70 70 70 70 70 70 70 7	7 SS 47 8 SS 39 75 8 SS 39 75 OF BOREHOLE: as: Domm dia. monitoring well alled upon completion. /ater Level Readings: a: Water Level(mbgl): 25, 2022 dry	7 SS 47 8 SS 39 75 8 SS 39 76 9 SS 45 OF BOREHOLE: ss: Domm dia. monitoring well alled upon completion. /ater Level Readings: s: Water Level(mbgl): 25, 2022 dry	7 SS 47 8 SS 39 75 8 SS 45 POF BOREHOLE: Es: Drimm dia. monitoring well alled upon completion. /ater Level (Readings: 25, 2022 dry)	7 SS 47 8 SS 39 75 8 SS 39 75 76 77 8 9 SS 45 77 78 78 78 78 79 70 70 70 70 70 70 70 70 70	7 SS 47 8 SS 39 75 76 77 8 SS 45 77 78 78 78 79 79 79 70 70 70 70 70 70 70	7 SS 47 8 SS 39 75 8 SS 39 75 76 9 SS 45 OF BOREHOLE: ss: Domm dia. monitoring well alled upon completion. /ater Level Readings: s: Water Level (mbgl): 25, 2022 dry	7 SS 47 8 SS 39 75 76 8 SS 39 75 74 9 SS 45 OF BOREHOLE: 38: Dmm dia. monitoring well alled upon completion. Valer Level (mbgl): 25, 2022 dry	7 SS 47 8 SS 39 75 76 77 78 79 9 SS 45 74 9 SS 45 0 0 0 0 0 0 0 0 0 0 0 0 0	9 SS 45 OOF BOREHOLE: SS: Domm dia. monitoring well alled upon completion. /ater Level (mbgl): 25, 2022 dry Oo Note that the state of the state o

CLIENT: Landowners Group Inc.

PROJECT LOCATION: Rangeview Estates Precinct Area, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 22-200-100

Date: Jul-19-2022 ENCL NO.: 14

	SOIL PROFILE		S	SAMPL	ES			DYNA RESIS	MIC CC STANCE	NE PE PLOT	NETRA	NOITA		DI ACT		URAL	1.10: :::		F	REMARKS
(m)		Ę]∦ ″		ı		0 6			00	PLASTI LIMIT	CON	TENT	LIQUID LIMIT	a) EN	N L	AND
ELEV EPTH	DESCRIPTION	STRATA PLOT	BER		BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	O UI	NCONF		+	FIELD V. & Sensiti	ANE vity	W _P	ER CO	N >	W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GRAIN SIZE DISTRIBUTIO (%)
85.4		STR/	NUMBER	TYPE	ż	GRO	ELE			RIAXIAL 0 6			ANE 00				30			GR SA SI
3 9 : 9	ASPHALT: 180mm GRANULAR BASE/SUB BASE:	Ġ.						-												
	sand and gravel, 380mm, crusher run limestone (200mm)	0	1	SS	23		85	-							0					
0.8	FILL: silty clay, some organics, some sand, trace gravel, grey, moist, stiff to very stiff		2	SS	10		84	- - - - -								•				
			3	SS	22		W. L. Aug 2	- 83.8 m 5, 2022 -	 1 2 							0				
83.1		\bigotimes						-												
2.3	SILTY CLAY TILL: some sand, some gravel, brown, moist, hard		4	SS	50		83	-							H		1	-		13 18 47
	trace shale fragments below 3.0m		5	SS	75		82	-								5		_		
81.7 3.7	END OF BOREHOLE:						:	-												
	1) Augar refusal @3.7m on possible boulder or bedrock. 2) 50mm dia. monitoring well installed upon completion. 3) Water Level Readings: Date: Water Level(mbgl): Aug 25, 2022 1.57																			

REF. NO.: 22-200-100

ENCL NO.: 15

PROJECT: Geotechnical Investigation

DRILLING DATA

CLIENT: Landowners Group Inc.

Method: Solid Stem Auger

PROJECT LOCATION: Rangeview Estates Precinct Area, Mississauga, ON Diameter: 150mm

DATUM: Geodetic Date: Aug-23-2022

	SOIL PROFILE		s	AMPL	ES_			DYNA RESIS	MIC CO STANCE	NE PE	NETR/	ATION		DI ACTI	nAT	URAL	רוטוויס		۲	REMARI
(m)		Ĕ				GROUND WATER CONDITIONS		,	20 4	0 6	0 8	10 1	00	PLASTI LIMIT	MOIS CON	TURE ITENT	LIQUID LIMIT	PEN.	NATURAL UNIT WT (kN/m³)	AND
LEV	DE00D:==:0:	STRATA PLOT	[_		BLOWS 0.3 m	W C	N O	SHEA	AR STI	RENG	TH (kF	ра)	1	W _P	•	w 0	W _L	POCKET PE (Cu) (kPa)	N/m³)	GRAIN S DISTRIBU
EPTH	DESCRIPTION	4TA	NUMBER	111	BLO 0.3	ĮŅ,	ELEVATION	0 U	NCONF	INED	+	FIELD V & Sensit	ANE ivity	١٨/ ٨-	TER CO		IT (0/.)	90 00	ATUR.	(%)
00.0		TR/	Ν	TYPE	þ	SRO NO NO	::E	l • a	UICK I	RIAXIA 0 6	LX	LAB V	ANE 00				11 (%) 30		Ž	
83.9 8 9 . 0	ASPHALT: 150mm	0)			=		ш	 	Ĭ	Ĭ	Ĭ	<u> </u>	 	 	Ť	<u> </u>		\vdash		GR SA SI
0.2 83.5	GRANULAR BASE: sand and	. O	1	SS	13			Ŀ						0						
0.4	gravel, 430mm	XX	'	33	13			ŀ						ľ		•				
	FILL: silty clay, some organics, trace gravel, trace sand, trace	\otimes	\vdash					F												
	asphalt, grey, moist, firm to very stiff	\bowtie	\vdash				83	E												
		\bowtie	2	SS	4		00	<u>'</u> E								0				
		\bowtie	-	33	4			Ł								"				
		\bowtie						ŀ												
		\otimes						E												
			3	SS	26		82	E								0				
81.8		\otimes					02	-						,	•					
2.1	SILTY CLAY TILL: sandy, trace							E												
	gravel, occasional cobble, brown, moist, very stiff to hard							-												
	-		4	SS	42		}	Ŀ						c				1		
			$oxed{oxed}$			<u> </u> : :	81]		
							: '	ļ.										1		
							:	<u> </u>												
			5	SS	66		1	-						C						
			L]	-												
			1				80	<u> </u>						ļ						
	grey below 3.9m	187						ļ.												
]	ļ.												
			1					-												
							:	F												
		181	6	SS	46		79	Ē						-				-		
			1				:	F												
						:目:	:	F												
			1				.	F												
							:	E												
							78	[┨		
			\vdash			∤ :∃:	:	Ŀ												
			7	SS	46		1	Ŀ												
				55				ţ.						۱				1		
			\vdash					-												
							77	-										1		
		191						F												
								F										1		
			Н					F												
				00	20		70	E												
<u></u>		16	8	SS	36		76	E												
75.7 8.2	END OF BOREHOLE:	T'X	\vdash					 						 				\vdash		
75.7 8.2	Notes:																			
	50mm dia. monitoring well installed upon completion.																			
	2) Water Level Readings:																	1		
	Date: Water level(mbgl):																	1		
	Aug 25, 2022 dry																			
		1	1		l	1	1	1			1	1		1				l	I	

CLIENT: Landowners Group Inc.

PROJECT LOCATION: Rangeview Estates Precinct Area, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 22-200-100

Date: Jul-15-2022 ENCL NO.: 16

	BH LOCATION: See Drawing 1	N 4825574.05 E 616521.61
--	----------------------------	--------------------------

	SOIL PROFILE		S	AMPL	ES.	œ		RESIS	STANCE	NE PE E PLOT	NETR/	ATION		PLASTI LIMIT	C NAT	URAL	LIQUID LIMIT	١.	₩	REMARKS
(m) ELEV DEPTH 83.3	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE/	AR STI NCONF UICK T	RENG RENG INED RIAXIAI	TH (kl	Pa) FIELD \ & Sensi LAB \	/ANE tivity /ANE	W _P ⊢ WA	TER CO	w O ONTEN	W _L	POCKET PEN. (Cu) (kPa)	-	AND GRAIN SIZE DISTRIBUTIO (%) GR SA SI
0.0 83.0 0.3	GRANULAR FILL: sand and gravel, 280mm FILL: sand & gravel, trace brick	ο 	1	SS	21		83	-												
82.5	pieces, grey, moist, compact							-												
0.8	FILL: silty clay, trace to some organics, grey, moist, firm		2	SS	5		82	- - - - -									0			
81.8 1.5	SILTY CLAY: trace sand, trace gravel, brown, moist, stiff	XXXXX	3	SS	11			- - - - - -							0					
81.0 2.3	SILTY CLAY TILL: sandy, trace						81											-		
3	gravel, occasional cobble, brown, moist, hard		4	SS	44			- - - -						0						
_								-												
		****	5	SS	86		80	- - - -						0						
4							79	-												
<u>.</u>		****	6	SS	47			-						0						
							78	-										_		
<u>6</u>								-												
	grey below 6.1m		7	SS	50		77	-						0				_		
7								- - - -												
							76	<u> </u>										1		
§ 75.1			8	SS	46			- - - - -						0						
75.1 8.2	END OF BOREHOLE: Notes: 1) Borehole is wet at bottom upon completion after drilling.																			

CLIENT: Landowners Group Inc.

PROJECT LOCATION: Rangeview Estates Precinct Area, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 22-200-100

Date: Jul-18-2022 ENCL NO.: 17

H LO	CATION: See Drawing 1 N 4825766.	27 E 6				_			MIC CC	NE PE	NFTR/	MOITA									
$\overline{}$	SOIL PROFILE	L	5	SAMPL	ES	HR.		RESIS	STANCE	PLOT	\geq		00	PLASTI LIMIT	C NATI	URAL TURE TENT	LIQUID LIMIT	Z.	TW TI		MARKS AND
m) _EV PTH	DESCRIPTION	STRATA PLOT	NUMBER	ш	BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O U	AR STI	RENG	ΓΗ (kF +	I ——— PIELD V & Sensiti	ANE vity	W _P ⊢ W A ¹		v >	W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	DISTE	AIN SIZ RIBUTI (%)
34.6	AODUALT, 450	STR	N	TYPE	ż	GRC	ELE			0 6			00 				30		_	GR S	A SI
0.2 4.2	ASPHALT: 150mm GRANULAR BASE: sand and gravel, 250mm	6.0	1	SS	9			-								0					
0.4	FILL: silty clay, some organics, some sand, trace gravel, grey, moist, stiff						84	-													
33.4			2	SS	11			-							c						
1.2	CLAYEY SILT TO SILT: trace sand, brown, moist, stiff to hard						83	-													
			3	SS	30			- - -							∘⊩	-				0 7	76
2.3	CLAYEY SILT:, trace sand, trace							- - -													
	gravel, brown, moist, hard		4	SS	77		82	- - -								0					
31.5	SHALE BEDROCK: grev			SS	50/			_													
3.2	weathered /			22	30mg																
	END OF BOREHOLE: Notes:																				
	Borehole is dry at bottom upon completion after drilling.																				
																		1			
		1	I	l	I	I	I	I	1			I	1	I	1	l	1	1	1		

PROJECT LOCATION: Rangeview Estates Precinct Area, Mississauga, ON

DATUM: Geodetic

CLIENT: Landowners Group Inc.

Diameter: 150mm Date: Jul-18-2022

DRILLING DATA Method: Solid Stem Auger

REF. NO.: 22-200-100

ENCL NO.: 18

	CATION: See Drawing 1 N 4825882.2 SOIL PROFILE	(SAMPL	EG		\top	\neg	DYŅA	MIC CC	NE PE PLOT	NETR/	ATION		l				Π		
\neg	SOIL PROFILE	1	·	MIVIPL	LO	GROUND WATER									PLASTI LIMIT	C NAT	URAL TURE	LIQUID LIMIT	, ,	NATURAL UNIT WT (kN/m³)	REMARKS AND
1)		TO_			S) _	NATI	<u> </u>	<u> </u>			0 6			00	W _P	CON	TENT	LIMI I W _L	POCKET PEN. (Cu) (kPa)	.UNIT	GRAIN SIZ
EV PTH	DESCRIPTION	STRATA PLOT	띪		BLOWS 0.3 m		NOTE VALUE]		IR STI	RENGT	IH (kF +	Pa) FIELD V & Sensiti	ANE	—		—	<u></u>	OCKE (no	URAL (KN/	DISTRIBUTI
"]		₽.	NUMBER	TYPE		200					RIAXIAL	. ×	LAB V	ANE	WA	ER CO	ONTEN	IT (%)	<u> </u>	¥	(%)
5.5		S	ž		ż	9 5	i i	_	2	0 4	0 6	8 0	0 1	00	1	0 2	20	30			GR SA SI
9.9 0.2	ASPHALT: 150mm GRANULAR BASE/SUB BASE:	ė .						ŀ	-												
	sand and gravel, 380mm, crusher	. O	. 1	SS	12			٥٠	-						٥						
	run limestone (300mm)	· ø·	<u> </u>					85	-												
4.7 0.8	FILL: clayey silt, trace organics,	 	1					ŀ	-												
	grey, moist, firm to very stiff	\bowtie	2	SS	7			ļ	-												
		\bowtie	1	00	'			-	-												
		\mathbb{X}						84											-		
3.8	SILTY CLAY TILL: some sand,	\bigvee					W	1 8 I	- 33.8 m												
1.7	trace to some gravel, trace shale		3	SS	29		Aug	g 25	, 2022	2						· '	•				
	fragements, brown, moist, very stiff to hard		 					ŀ	-												
	to riaid		⊣					-	-												
			4	SS	54			83								c		4	1		10 10 56
		191	1					ŀ	-									-			
2.4	augar refusal at 3.1m on possible		\top					ŀ	-												
3.1	boulder or bedrock END OF BOREHOLE:																				
	Notes:																				
	50mm dia. monitoring well installed upon completion.																				
	2) Water Level Readings:																				
	Date: Water Level(mbgl):																				
	Aug 25, 2022 1.64																				
								-							1						
			1		1	l									l				1	1	

PROJECT: Geotechnical Investigation DRILLING DATA

CLIENT: Landowners Group Inc.

Method: Solid Stem Auger

PROJECT LOCATION: Rangeview Estates Precinct Area, Mississauga, ON Diameter: 150mm REF. NO.: 22-200-100

DATUM: Geodetic Date: Jul-18-2022 ENCL NO.: 19

	SOIL PROFILE		s	AMPL	.ES			DYNA RESIS	MIC CC STANCE	NE PEI	NETRA	ATION		DI ACTI	_ NATI	URAL	HOLIE		F	REMARKS
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O U	20 4 AR STI NCONF UICK TI	0 60 RENGT INED RIAXIAL	Ο 8 ΓΗ (kF + . ×	Pa) FIELD V. & Sensiti	ANE		TER CC			POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZ DISTRIBUTIO (%)
84.3	ACDUALT: 120mm	S	ž		ż	5 5	ū	2	20 4	0 60	8 (0 1	00	1	0 2	20 ;	30	<u> </u>		GR SA SI
0.1 83.8	GRANULAR BASE: sand and gravel, 380mm	0.0	1	SS	16		84									0				
0.5	FILL: silty clay, some organics, trace asphalt, grey, moist, firm to very stiff					_		-												
32.8			2	SS	6		83									0				
1.5	CLAYEY SILT TO SILT: trace sand, trace gravel, brown to grey, moist, very stiff to hard	X	3	SS	15	-		- - - - -							o					
							82													
			4	SS	31	-		- - - -								a	ı			
			5	SS	29		81	- - - -								0		-		
			\vdash					-												
79.9			6	SS	50/	-	80	-												
4.4	END OF BOREHOLE: Notes: 1) No recovery@4.3m, augar refusal on possible boulder or bedrock at 4.4m. 2) Borehole was wet at botttom upon completion of drilling.				<u>₹5mm</u>															

CLIENT: Landowners Group Inc.

PROJECT LOCATION: Rangeview Estates Precinct Area, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 22-200-100

Date: Aug-23-2022 ENCL NO.: 20

	SOIL PROFILE		s	AMPL	ES.			DYNA RESIS	MIC CO STANCE	NE PE PLOT	NETRA	NOITA		DI AOTI	_ NAT	URAL	LIQUID		_⊢	REMAI	RKS
(m) ELEV EPTH 83.6	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O U • Q	AR STINCONF	RENG INED RIAXIA	0 8 TH (kF + L ×	Pa) FIELD V & Sensit LAB V	'ANE		TER CO	URAL LIQUI STURE LIMI ITENT W _L O 1 ONTENT (%) 20 30		POCKET PEN. (Cu) (kPa)	Z	ANI GRAIN DISTRIBI (%)	D SIZ UTI(
8 9 . 9 0.2 83.3	ASPHALT: 150mm GRANULAR BASE: sand and gravel, 230mm	io	1	ss	23			- - -						٥							
0.4 82.8	FILL: clayey silt, sandy, trace gravel, greyish brown, moist, very stiff	\bigotimes				_	83	-							0						
0.8	SILTY CLAY TILL: sandy, trace gravel, occasional cobble, brown, moist, hard		2	SS	31									c							
			3	SS	50/ 100mn	- m -	82	-						0							
	grey below 2.3m		4	SS	56	-	81	- - - - -						0							
						-		- - - - -													
			5	SS	42		80	-						0							
								- - - -													
			6	SS	34		79	- - - - -						c							
						-	78	-													
								-													
			7	SS	41	-	77	-						,	•						
								- - - -													
75.4 8.2			8	SS	45		76	- - - - -						c							
8.2	END OF BOREHOLE: Notes: 1) Borehole is wet at the bottom upon completion after drilling.																				

DRILLING DATA PROJECT: Geotechnical Investigation

Method: Solid Stem Auger CLIENT: Landowners Group Inc.

DATU	DESCRIPTION A																			
BH LC	OCATION: See Drawing 1 N 4825869.0	8 E 6	1654	13.51																
(m)	SOIL PROFILE	ЭТ	S	SAMPL		ATER S		l				_	00	Lv	CON	TENT	LIMIT	PEN.	JNIT WT	REMARK AND GRAIN SIZ
ELEV DEPTH 83.7	DESCRIPTION	STRATA PLO	NUMBER	YPE		GROUND W CONDITION	ELEVATION	O UI ● Q	NCONF	INED RIAXIAL	+ . ×	FIELD V. & Sensiti LAB V.	ANE	⊢ WA1	ER CC	OMTEN	——і IT (%)	POCKET (Cu) (kP	NATURAL ((KN/m)	DISTRIBUT (%) GR SA SI
8 9.9 0.1	gravel, 130mm FILL: silty clay, trace sand, trace organics, greyish brown, moist, stiff	\bigotimes		SS	14			- - - -						0	0					
82.7 1.0	SILTY CLAY TILL: sandy, trace gravel, occasional cobble, brown,		2	SS	19	_	83	- - - -							0					
	moist, very stiff to hard		3	SS)	82	- - - - -							0			-		
81.4 81.2 81.2 2.5			4	SS				- - - -												
	Notes: 1) Borehole is dry at bottom upon																			

CLIENT: Landowners Group Inc.

PROJECT LOCATION: Rangeview Estates Precinct Area, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 22-200-100

Date: Jul-19-2022 ENCL NO.: 22

	SOIL PROFILE	SAM			ES.			DYNAMIC CONE PENETRATION RESISTANCE PLOT						PLASTIC NATURAL MOISTURE LIMIT CONTENT			LIOUID		<u>_</u>	RE	MAR	≀KS
(m) LEV PTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O UI	20 4 AR STI NCONF UICK TI	0 6 RENG	0 8 TH (kF + - ×	Pa) FIELD V & Sensiti	OO ANE ivity ANE OO	w _P ⊢ WA1	TER CC	N DNTEN	LIQUID LIMIT W _L ——I IT (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GR DIST	AND AIN S RIBU (%)) SIZE JTIC
83.4 8 9 . 2	ASPHALT: 150mm				-			-												OIV C	,, 0	-
0.2 82.9	GRANULAR BASE: sand and gravel, 380mm	0.0	1	SS	13		83							٥								
0.5 82.4	FILL: sand, some asphalt pieces, trace gravel, dark brown, moist, loose to compact							- - -														
1.0	SILTY CLAY: trace sand, brown, moist, stiff to very stiff		2	SS	8		82	-							(•						
			3	SS	20			- - - -							ŀe		4			0	4 6	8
							81	-														
			4	SS	25			- - - -							0							
3.1	CLAYEY SILT TILL/SHALE		H					-														
	COMPLEX: trace sand, trace gravel, grey, moist, hard		5	SS	69		80								0							
								- - -														
78.9 78: 7	SHALE BEDROCK: grey,						79															
4.7	end of Borehole:		6	SS	50/ 50mm	 																-
	Notes: 1) Borehole is dry at bottom upon completion after drilling.																					
					1	l	I	l		1			1	l			1	I	l			

CLIENT: Landowners Group Inc.

PROJECT LOCATION: Rangeview Estates Precinct Area, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 22-200-100

Date: Aug-22-2022 ENCL NO.: 23

	SOIL PROFILE		SAMPLES					DYNAMIC CONE PENETRATION RESISTANCE PLOT							_ NAT	URAI	LIQUID LIMIT W _L ————————————————————————————————————		 -	REMAR	Rκ
, ,]		T				GROUND WATER CONDITIONS		ı		0 6			00	PLASTI LIMIT	C NAT	TURE	LIQUID LIMIT	E	NATURAL UNIT WT (kN/m³)	ANE	
(m)		STRATA PLOT			NS L	WA	z							W _P		N	\mathbf{W}_{L}	(kPa)	N E	GRAIN	
LEV PTH	DESCRIPTION	Ι¥	NUMBER		BLOWS 0.3 m	모일	ELEVATION	0 0	AR STI	INED	+ +	FIELD V	ANE	-		·		ŠŚ	图图	DISTRIBU	
		₹	MBI	TYPE		8 8	<u>></u>	• Q	UICK TI	RIAXIAL	. ×	LAB V	ANE	WA	TER CO	ONTEN	NT (%)	<u> </u>	¥	(%))
83.1		STI	\exists	Ξ	ž	GR GR	E			0 6			00	1	0 2	20	30			GR SA	SI
89.0	_ASPHALT: 130mm						83														
0.1	GRANULAR BASE: sand and	هٔ ر	1	SS	4			Ŀ								0					
82.6	gravel, 430mm	.0] '	33	4			-								•					
0.5	FILL: silty clay, trace to some	XX	1					F													
	organics, some sand, trace	\times	11					ļ.													
	concrete piece, grey, moist, firm to	\times	1					-													
	stiff	\otimes	2	SS	10		82	F										-			
04 7		\times	1					Ė													
81.7 1.4	SILTY CLAY TILL: some sand to	XX	\vdash					-													
'	sandy, trace gravel, occasional		\Box					F													
	cobble, brown, moist, very stiff to		3	SS	40			ļ.							•						
	hard	Jac's		55	.0			Ŀ						l '							
			$\vdash \vdash$				81	-					1					1			
								ļ.													
	grey below 2.3m		 					ţ.													
		G/G	4	SS	41			F						c							
		11	1					ļ.													
			$\vdash\vdash$			f. [:]		Ė													
			\vdash			1:11:1	80	<u> </u>					1	-	-			1			
		191	1					ļ.													
			5	SS	32	r:H:		ţ						'	þ						
			1					⊦													
		[1\$/				1:日日		ļ.													
								ţ													
			1				79											-			
		11	1			l:日::		Ė													
			1					Ŀ													
			\vdash			(:目:)		F													
			1			[:日]		ļ.													
		1/1/	6	SS	28			Ŀ							0						
			1				78											-			
			\Box			1:日:1		Ė													
		(XX	1					Ŀ													
		134	1					-													
			1					Ė													
		12	1					Ŀ													
			\vdash			.⊹⊟∴	77	<u> </u>				-	+	-		-		1			
			1					ļ.											l		
		181	7	SS	40			<u> </u>							0				l		
								F											l		
			一					-													
		The state of	1					ļ.													
							76	l					1					1			
			1					F													
		1/1	1					ļ.													
	silt seams @7.6m		\vdash					ŀ													
	5.1. 56am5 @1.6m	JAY	1 .					F													
			8	SS	48			ļ.							0						
74.9							75											L			
8.2	END OF BOREHOLE:																				
	Notes: 1) 50mm dia. monitoring well																				
	installed upon completion.																		l		
	Water Level Readings:																				
	Date: Water Level(mbgl): Aug 25, 2022 dry																				
	Aug 20, 2022 ury																				
														1				1	l		
- 1		1			1	i		i	1			1	1		1	1	1	1			

TOWNSHIP C	E	N	DATE CNTR	CASING	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
MISSISSAUGA CITY	616386	4825953	2016/08 3349	2					7271484	
MISSISSAUGA CITY	616374	4825987	2016/08 3349	2					7271485	
			,							BRWN FILL 0005 BRWN SAND CLAY
MISSISSAUGA CITY	616075	4825265	2016/09 7472	2			МО	0005 10		0010 BRWN SAND 0015
			/				-			BRWN SILT CLAY HARD 0008 GREY
										SILT CLAY HARD 0014 GREY SHLE
MISSISSAUGA CITY	616484	4826097	2016/08 7075	2			МО	0010 10	7275019	HARD 0020
	010101	1020077	2010/00/07	_			110	001010	,2,001)	BRWN CLAY GRNT DRY 0005 GREY
MISSISSAUGA CITY	616679	4825174	2016/08 7215	2	10		TH	00065	7275985	SHLE 0011
MISSISSAUGA CITY	616005		2016/08 7215		10		1111	00000	7276128	
MISSISSAUGA CITY	616013		2016/07 7215						7276346	
MISSISSAUGA CITY	616150		2014/05 6946						7276346	
MISSISSAUGA CITY	616895		2016/12 7464						7282270	
MISSISSAUGA CITY	616344		2016/08 3349	2					7271481	
MISSISSAUGA CITT	010344	4023733	2010/00 3347							FILL 0007 CLAY SILT 0018 SHLE
MISSISSAUGA CITY	616688	1025222	2016/11 7215	2			TH	00205		WTHD 0025
MISSISSAUGA CITT	010088	4023233	2010/11 /213				1111	00203		FILL 0005 CLAY SILT TILL 0018 SHLE
MISSISSAUGA CITY	616729	4025175	2016/11 7215	2			TH	0005 15		WTHD 0020
MISSISSAUGA CITY MISSISSAUGA CITY	616095		2017/02 7472				1111	0005 15	7283249	
MISSISSAUGA CITY MISSISSAUGA CITY	616110		2017/02 7472						7283249	
MISSISSAUGA CITY MISSISSAUGA CITY			,						7283250	
	616096		2017/02 7472 2017/02 7472						7283251	
MISSISSAUGA CITY	616079			2			MO	0012.10		
MISSISSAUGA CITY	616969	4826077	2016/06 6032	2			МО	0012 10	7281568	
MICCICCALICA CITIV	(1(005	4025264	2016/02/7260	۱ ,			MO	0010 5	7262064	BRWN FILL 0010 GREY DNSE HARD
MISSISSAUGA CITY	616095		2016/03 7360	2			MO	00105	7262964	
MISSISSAUGA CITY	616043		2014/10 7241	2			MT	0007 5	7231445	
MISSISSAUGA CITY	616854		2015/06 6032						7248109	
MISSISSAUGA CITY	616858	4826255	2015/01 7215						7250123	
										BRWN SAND SHLE FILL 0002 GREY
MISSISSAUGA CITY	616310		2015/12 7403		UT 0025		МО	0020 10		SHLE ROCK 0030
MISSISSAUGA CITY	616400	4825966	2016/08 3349	2					7271483	
										BRWN FILL 0010 GREY DNSE HARD
MISSISSAUGA CITY	616128		2015/03 7360	2			МО	00105	7262963	
MISSISSAUGA CITY	616352	4825944	2016/08 3349	2					7271482	
										BRWN FILL 0015 GREY DNSE HARD
MISSISSAUGA CITY			2015/03 7360		UT 0005		MO	0015 5	7262965	
MISSISSAUGA CITY	616810		2015/12 7215						7269513	
MISSISSAUGA CITY	616614		2014/12 7215						7269751	
MISSISSAUGA CITY	616908		2015/09 7215						7270640	
MISSISSAUGA CITY	616575		2016/06 7215						7271382	
MISSISSAUGA CITY	616361		2016/07 3349	2					7271480	
MISSISSAUGA CITY	616620	4826201	2017/03 7148						7285134	
MISSISSAUGA CITY	616878		2015/03 6607						7262617	
MISSISSAUGA CITY	616791	4826454	2018/01 7610						7304028	

Location: Nambulett Moda, it								
MISSISSAUGA CITY	616096	4825256 2017/08 7241	2		OΤ	0010 10	7296594	
MISSISSAUGA CITY	616085	4825262 2017/08 7241	2)T	0010 10	7296595	
MISSISSAUGA CITY	616050	4825251 2017/08 7241	2)T	0010 10	7296596	
MISSISSAUGA CITY	616098	4825201 2017/08 7241	2)T	0010 10	7296597	
MISSISSAUGA CITY	616071	4825254 2017/08 7241	2		OT .	001010	7296598	
MISSISSAUGA CITY	616092	4825211 2017/08 7241	2		OT .	0010 10	7296599	
MISSISSAUGA CITY	616406	4825983 2018/01 7610			<i>J</i> 1	001010	7304027	
MISSISSAUGA CITI	010400	4623963 2016/01 /010		+			7304027	BLCK LOAM 0002 GREY FILL DRY
MICCICCALICA CITY	(1(2(2	4025702 2010 /05 7205	1.70	,	40	0015 10	7210604	
MISSISSAUGA CITY	616263	4825782 2018/05 7295	1.79		MO	0015 10	/319604	0005 LMSN DRY 0025
MICCICC ALICA CITTA	64.6000	4025006 2040 /05 5205	4.70		10	004540	5 24060 5	BLCK LOAM 0002 GREY FILL DRY
MISSISSAUGA CITY	616283	4825806 2018/05 7295	1.79		MO	0015 10	7319605	0005 ROCK LMSN 0025
								BLCK LOAM 0002 GREY FILL DRY
MISSISSAUGA CITY	616249	4825816 2018/05 7295	1.79]	MO	0015 10	7319606	0005 ROCK LMSN DRY 0025
								BRWN GRVL FILL SOFT 0005 BRWN
MISSISSAUGA CITY	616874	4825727 2018/07 7472	2		OM	0040 10		TILL CLAY 0050
MISSISSAUGA CITY	616954	4826071 2018/01 7383	2		ГН МО	0015 10	7321525	SILT SAND 0025
MISSISSAUGA CITY	616080	4825260 2017/08 7241	2		TC	0010 10	7296600	
MISSISSAUGA CITY	616430	4825571 2017/01 7383	2		ГН МО	0010 10	7289359	SILT TILL 0020
								BRWN SILT SAND 0007 GREY SHLE
MISSISSAUGA CITY	616234	4825811 2014/06 7241	2		TM	0008 10	7224387	0018
MISSISSAUGA CITY	616243	4825668 2017/03 7148					7285135	
								SAND GRVL 0005 CLAY SLTY 0010
MISSISSAUGA CITY	616052	4825284 2017/04 7383	2	-	ГН	00125	7288973	SHLE 0017
- Hobbiddie die die i	010002	1020201 2017/017000				0012 0	, 200, 70	SAND GRVL 0005 CLAY SLTY 0010
MISSISSAUGA CITY	616045	4825275 2017/04 7383	2		ГН	0012 5	7288974	SHLE 0017
Mississifican di i	010013	1023273 2017/017303				0012 3	7200371	SAND GRVL 0005 CLAY SLTY 0010
MISSISSAUGA CITY	616063	4825257 2017/04 7383	2	,	ГН	00125	7200075	SHLE 0017
MISSISSAUGA CITY	616312	4825168 2017/05 6875			MO	0012 3	7289050	
MISSISSAUGA CITY	617102	4825952 2016/10 7383	2		ио ГН МО	0017 10	7289351	
MISSISSAUGA CITY	616021	4825281 2017/08 7241	2		OT THE NAME OF THE	0010 10	7296593	CH III III II AAAA
MISSISSAUGA CITY	616465	4825587 2017/01 7383	2		ГН МО	0010 10		SILT TILL 0020
MISSISSAUGA CITY	616620	4826202 2017/03 7148					7285133	
MISSISSAUGA CITY	616495	4825525 2017/02 7383	2		ГН	0035 10		SILT CLAY TILL 0045
MISSISSAUGA CITY	616465	4825587 2017/02 7383	2		ГН	0037 10		SILT CLAY TILL 0047
MISSISSAUGA CITY	616430	4825571 2017/02 7383	2		ГН	0027 10		SILT CLAY TILL 0037
MISSISSAUGA CITY	616060	4825265 2017/02 7383	2		ГН	0009 5	7289377	
MISSISSAUGA CITY	616059	4825249 2017/02 7383	2		ГН	00125	7289378	
MISSISSAUGA CITY	616076	4825257 2017/02 7383	2		ГН	0012 5	7289379	
MISSISSAUGA CITY	616068	4825267 2017/02 7383	2	- I	ГН	00125	7289380	
MISSISSAUGA CITY	617022	4826023 2016/10 7383	2	ľ	ГН МО	0013 10	7289352	
								BRWN SAND GRVL 0001 BRWN SILT
								SAND CLAY 0009 GREY SHLE LMSN
MISSISSAUGA CITY	616566	4825902 2008/01 6607	1.25		MO		7129134	FCRD 0025
	1_000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	=:==	i i				BRWN CLAY 0008 GREY CLAY 0016
MISSISSAUGA CITY	616598	4825808 2008/11 7215		,	ГН	0013 10	7117929	GREY CLAY WBRG 0023
	010370	1020000 2000/11 /210				0010 10	/11/020	GILLI GUITI W DIGG GOLD

Location. Nangview Noac		l	1				l	1		BRWN CLAY TILL 0008 RED SHLE
MISSISSAUGA CITY	616424	4825628	2009/04 7241	1.25			МО		7122835	WTHD 0014
	010121	1020020	2005/017212	1.20			110		, 122000	GREY CLAY SAND GRVL 0013 GREY
MISSISSAUGA CITY	616454	4825092	2009/04 1663	2	UT	//4/1:0	МО	0013 5	7124885	CLAY SAND SILT 0018
	010101	1020072	2007/01/2000		0.1	// 1/ 1.0	110	00100	, 12 1000	GREY CLAY SILT 0002 GREY SILT
										CLAY DNSE 0006 BRWN SILT SHLE
										0012 GREY SHLE DRY 0025 GREY
MISSISSAUGA CITY	615952	4825850	2014/07 6902	2	ОТ			0017 10	7226441	SHLE DRY 0028
- International Control of the Contr	013732	1023030	2011/07 0702		01			0017 10	7220111	GREY CLAY SAND STNS 0027 GREY
										CLAY STNS SILT 0071 GREY CSND
MISSISSAUGA CITY	616453	4825087	2009/04 1663	6.11	IIТ	13/20/100/1:0	I_{TH}	0071 4 007	7124887	GRVL 0078
- Industrial I	010133	1023007	2007/01/1005	0.11	0.1	13/20/100/1.0	111	00711007	7 12 1007	GREY CMTD 0001 BRWN FILL 0002
MISSISSAUGA CITY	616553	4825957	2008/11 7147	1.97			NU		7116626	BRWN TILL 0010 BRWN SHLE
Middled Heart Gill	010333	1023737	2000/11/11/	1.77			110		7110020	BRWN SAND GRVL FILL 0002 BRWN
										SILT CLAY SAND 0009 GREY SILT
										CLAY SAND 0013 GREY SHLE LMSN
MISSISSAUGA CITY	616456	4825744	2008/02 6607	1 25	FR 0028		МО		7129215	FCRD 0030
MISSISSMOUN GITT	010430	1023711	2000/02 0007	1.23	110020		1410		/12/213	I CRD 0030
										BRWN LOAM LOOS 0000 BRWN SAND
										CLAY SLTY 0004 BRWN CLAY TILL
MISSISSAUGA CITY	615910	4825206	2009/07 7247	2			МО	0007 10	7130477	SLTY 0010 GREY SHLE DNSE 0017
MISSISSAUGA CITT	013710	4023200	2007/07 7247				MO	0007 10	/1304//	GREY CLAY 0033 BRWN SAND 0038
MISSISSAUGA CITY	616446	4825064	2009/09 3413	Ω	FR 0072		DE	0079 5	7133730	GREY CLAY 0072 GRVL CGVL 0084
MISSISSAUGA CITT	010440	4023004	2007/07 3413	0	TIC 0072		DE	00773	/13323/	GREY CLAY 0033 BRWN SAND 0036
MISSISSAUGA CITY	616459	4825090	2009/09 3413	ρ	FR 0072		DE	0090 5 008	7133240	GREY CLAY 0072 GRVL CGVL 0095
MISSISSMOUN GITT	010437	4023070	2007/07 3413	0	110072		DL	00703000	7133240	GREY TILL 0012 GREY SHLE ROCK
MISSISSAUGA CITY	616567	4826183	2009/11 6809				МТ		7140767	
MISSISSAUGA CITY	616453		2010/02 6875	5.9			TH	00717	7143015	
MISSISSMOUN GITT	010433	4023007	2010/02 00/3	5.7			111	00717	7143013	GREY CLAY GRVL SAND 0018 GREY
										SAND CLAY 0023 GREY CLAY SAND
										GRVL 0027 GREY CLAY SILT STNS
										0068 GREY CSND GRVL 0074 GREY
MISSISSAUGA CITY	616445	4825082	2009/04 1663	2		//10/1:0	NU	0064 10	7124886	CLAY 0074
MISSISSMOUN GITT	010443	1023002	2007/04 1003			//10/1.0	110	000+10	7124000	BRWN SAND 0001 BRWN SILT GRVL
										CLAY 0005 GREY SILT GRVL CLAY
MISSISSAUGA CITY	616240	4825427	2007/12 7241	1.22			МО		7104551	0007 GREY SHLE ROCK 0025
MISSISSAUGA CITT	010240	4023427	2007/12 7241	1.22			MO		7104331	BRWN GRVL DNSE 0001 BRWN CLAY
										HARD 0004 GREY CLAY DNSE 0010
MISSISSAUGA CITY	616451	1025022	2007/07 7230	2			NU	00083	7050157	GREY SHLE HARD 0011
MISSISSAUGA CI I I	010451	4023032	400//0/ /430				140	00003	/03013/	BRWN SAND GRVL 0003 BRWN SILT
										SAND CLAY 0005 GREY SILT CLAY
MISSISSAUGA CITY	616084	1025105	2007/09 7238	2	c			0015 10	7051002	0008 GREY SHLE 0026
MISSISSAUGA CI I I	010004	4043403	400//07/430		8			0013 10	/ 031703	BRWN SAND GRVL BRWN SILT GREY
MISSISSAUGA CITY	616760	4826156	2007/11 6032	1.97			NU	0004 10	7054194	
MISSISSAUGA CITY	616760		2007/11 6032	1.7/			NU	000410	7054194	
MISSISSAUGA CITI	010/00	4020137	2007/11 0032				NU		7034193	

Location: Kangview Road	,	1				1			•	
MICCICCALICA CITY	(1((0)	4025040	2005 /01 6607	_				001415		BRWN SAND GRVL 0002 BRWN SILT
MISSISSAUGA CITY	616681		2005/01 6607		25			0014 15		SNDY CLAY 0029
MISSISSAUGA CITY	616398	4825453	2006/05 7215	2				0005 5	4910190	
L CARROLL AND A CAMPA	64.6400	4005006	2226 122 6222	400405				00446	4040054	BRWN SAND GRVL CLAY 0004 GREY
MISSISSAUGA CITY	616488	4825826	2006/09 6032	4.32 1.97			NU	00146		SHLE LMSN 0020
										BRWN FILL DRY LOOS 0005 GREY
										SHLE DRY 0018 GREY SHLE WBRG
MISSISSAUGA CITY	616567	4825933	2008/11 7215				TH	0005 15	7116784	
										GREY SILT GRVL TILL 0007 GREY
MISSISSAUGA CITY	616301	4825668	2007/12 7241	1.25			MO		7104552	SHLE ROCK 0025
										BRWN SAND SILT WBRG 0002 GREY
MISSISSAUGA CITY	616540	4825835	2008/07 7215				TH	00105	7116783	SILT CLAY ROCK 0015
										BRWN GRVL SAND 0002 GREY SILT
										CLAY TILL 0008 GREY SHLE ROCK
MISSISSAUGA CITY	616127	4825385	2007/12 7241	1.25	5		MO		7104550	
										BRWN GRVL SAND FILL 0001 GREY
										SILT SAND GRVL 0007 GREY SHLE
MISSISSAUGA CITY	616376	4825744	2007/12 7241	9.99		///:	MO		7104446	ROCK 0020
			,							
										BRWN SAND GRVL LOOS 0005 BRWN
										SILT GRVL DNSE 0013 RED SILT
										GRVL DNSE 0018 BRWN SILT GRVL
										HARD 0020 GREY CLAY SILT DNSE
MISSISSAUGA CITY	616422	4825398	2008/08 6607	2	FR 0013 F	R 0023	МО			0025 GREY SHLE LMSN LYRD 0027
										BRWN SILT STNS FILL 0007 GREY
MISSISSAUGA CITY	616584	4825812	2008/07 6607	2.31	FR 0013		ОТ		7112538	SHLE 0010 GREY LMSN 0022
THIS SISTER OF THE STATE OF THE	010001	1020012	2000/07 0007	2.01	1110010		01		7112000	BRWN SAND SOFT 0005 GREY SILT
										SHLE SOFT 0008 BLUE SHLE HARD
MISSISSAUGA CITY	616706	4825925	2008/10 7241	1.59	,		MT	0008 10	7114795	
Mississifican di i	010700	1023723	2000/10 /211	1.57			1411	000010	7111773	0010
										BRWN LOAM 0001 BRWN SILT CLAY
MISSISSAUGA CITY	616481	4925991	2008/10 7241	1.17	,		мо		7114.946	GRVL 0009 GREY SHLE ROCK 0019
MISSISSAUGA CITY	616845		2008/05 7241	2.06			MT	0004 10		GREY TILL GRVL DNSE 0014
MISSISSAUGA CITT	010043	4020223	2000/03 /241	2.00	'		IVI I	000410	7110103	BRWN LOAM SAND LOOS 0002 BRWN
										SILT SAND HARD 0010 GREY SHLE
MICCICCALICA CITY	(1(144	4024072	2012 /00 7241	2.04			MT	0000 5		WTHD 0013
MISSISSAUGA CITY	616144	4824973	2012/09 7241	2.04	<u> </u>		IMI I	0008 5		
										BRWN FILL GRVL SOFT 0005 BRWN
NUCCIO ALICA CITTI	(4 (())	4007000	2044 /4 2 5222	_				000010		TILL CLAY HARD 0010 GREY SHLE
MISSISSAUGA CITY	616622	4826203	2011/10 7238	2			ТН	0020 10	7170553	CLAY HARD 0030
			0044445=555	_						BRWN FILL GRVL HARD 0010 GREY
MISSISSAUGA CITY	616622	4826203	2011/10 7238	2			TH	0045 10	7170554	SHLE CLAY HARD 0071
										BRWN FILL GRVL HARD 0005 BRWN
										TILL CLAY HARD 0015 GREY SHLE
MISSISSAUGA CITY	616796	4826451	2011/09 7238	2			TH	0044 10	7170555	HARD 0070

Location: Nangview Road	1	1	I	1	1	1	ı	TANTIM HADD OOOA DDIANI CAND CDIN
								WHIT HARD 0001 BRWN SAND GRVL
					l		_,,	LOOS 0003 GREY SILT FSND SOFT
MISSISSAUGA CITY	616037	4825516	2011/11 7241	2.04	MT	0003 9	7173314	0010 BRWN SHLE SLTY 0118
								BLCK SOFT 0000 BRWN SAND SILT
								LOOS 0010 BRWN SILT SHLE HARD
MISSISSAUGA CITY	616030	4825504	2011/11 7241	2.04	MT	0003 9	7173315	
								BLCK SOFT 0000 BLUE SILT SAND
								SOFT 0010 BRWN SILT SHLE HARD
MISSISSAUGA CITY	616049	4825488	2011/11 7241	2.04	MT	00073	7173316	
								BRWN FILL 0004 BRWN CLAY SLTY
MISSISSAUGA CITY	616774	4826287	2011/04 7215	2	TH	00067	7166952	0009 GREY CLAY SILT SHLE 0013
								BRWN LOAM LOOS 0002 BRWN SILT
								SAND HARD 0010 GREY SHLE WTHD
MISSISSAUGA CITY	616079	4824881	2012/09 7241	2.04	MT	00085	7189879	
								BRWN FILL 0007 GREY SHLE WBRG
MISSISSAUGA CITY	615833	4825103	2011/05 7215	2	TH	00165	7164321	0016
								BRWN LOAM LOOS DRY 0002 BRWN
								SILT SAND GRVL 0006 BRWN SAND
MISSISSAUGA CITY	616147		2012/09 7241	2.04	MT	0007 5		0010 WHIT SHLE WTHD 0012
MISSISSAUGA CITY	616774	4826402	2012/08 7215	2	TH	00125	7191830	BRWN SAND SILT CLAY 0012
								BLCK STNS HARD 0001 BRWN SILT
								CLAY HARD 0009 GREY SHLE CLAY
MISSISSAUGA CITY	616041		2012/09 6032	2	MO	0025 10		HARD 0025
MISSISSAUGA CITY	616139		2013/05 6946				7203011	
MISSISSAUGA CITY	616145	4825621	2013/07 6946				7212112	
								BRWN SILT SAND 0007 GREY SHLE
MISSISSAUGA CITY	616247	4825828	2014/06 7241	2	MT	0008 10	7224380	
								BRWN SILT SAND 0007 GREY SHLE
MISSISSAUGA CITY	616234		2014/06 7241	2	MT	0008 10	7224382	0018
MISSISSAUGA CITY	616385	4825958	2012/07 7230				7189019	
								BRWN CLAY TILL 0010 GREY SHLE
MISSISSAUGA CITY	616371		2011/04 7238	1	MO	0040 10	7162446	ROCK 0050
MISSISSAUGA CITY	617167	4825940	2018/09 7230				7320262	
								BRWN SAND SILT SHLE 0020 BRWN
MISSISSAUGA CITY	616339	4825812	2010/11 6032	1.97	MO	0010 10	7155337	SAND SILT SHLE 0020
								GREY SILT CLAY DRY 0007 BRWN
								TILL SILT 0026 BRWN SHLE WTHD
MISSISSAUGA CITY	616386	4825605	2010/11 7241	0.79	MT		7155811	0072
MISSISSAUGA CITY	616446	4825064	2010/11 6875		DE		7158865	
MISSISSAUGA CITY	616459	4825090	2010/11 6875		DE		7158866	
MISSISSAUGA CITY	615895		2011/01 7241	2			7159340	
MISSISSAUGA CITY	616754	4826114	2010/12 6032		MO		7160223	GREY SAND SILT TILL 0020
								BRWN SAND GRVL FILL 0001 BRWN
								CLAY SILT DNSE 0005 GREY SHLE
MISSISSAUGA CITY	616502	4825811	2010/08 6607	2.00 2.00	MO		7152202	LMSN LYRD 0020

Location: Rangview Road	a, iviississauga					1		•	•	_
										BRWN CLAY SILT STNS 0015 GREY
MISSISSAUGA CITY	616440	4825397	2011/04 7238	1			MO	0040 10	7162447	CLAY SILT STNS 0050
										BRWN CLAY TILL 0010 GREY SHLE
MISSISSAUGA CITY	616420	4825455	2011/04 7238	1			MO	0040 10	7162448	ROCK 0050
										BRWN CLAY TILL 0010 GREY SHLE
MISSISSAUGA CITY	616247	4825646	2011/04 7238	1			MO	0040 10	7162449	ROCK 0050
										BLUE FILL SAND LOOS 0003 GREY
MISSISSAUGA CITY	616419	4825592	2011/05 7241	1.75			MT	0005 5	7164236	SHLE TILL DNSE 0010
										BRWN SAND LOOS 0003 GREY SHLE
MISSISSAUGA CITY	616419	4825592	2011/05 7241	1.75			MT	00046	7164237	TILL DNSE 0010
										BRWN SAND LOOS 0003 GREY SHLE
MISSISSAUGA CITY	616419	4825592	2011/05 7241	1.75			MT	0004 5	7164238	TILL DNSE 0009
										BRWN SAND FILL LOOS 0003 GREY
MISSISSAUGA CITY	616419	4825592	2011/05 7241	1.75			MT	0004 5	7164239	SHLE TILL DNSE 0009
										BRWN SAND FILL LOOS 0003 GREY
MISSISSAUGA CITY	616419	4825592	2011/05 7241	1.75			MO	0004 5	7164240	SHLE TILL DNSE 0008
MISSISSAUGA CITY	615884	4825203	2011/01 7241	2			MT		7159341	
MISSISSAUGA CITY	616723	4825529	2020/03 7472						7364753	
MISSISSAUGA CITY	617114	4825985	2020/09 6875		8	3			7369235	
MISSISSAUGA CITY	616768	4825346	2020/03 7472						7364704	
MISSISSAUGA CITY	616795	4825327	2020/03 7472						7364705	
MISSISSAUGA CITY	616687	4825478	2020/03 7472						7364706	
MISSISSAUGA CITY	616630	4825420	2020/02 7472						7364707	
MISSISSAUGA CITY	616561		2020/02 7472						7364708	
MISSISSAUGA CITY	616864		2020/02 7472						7364750	
MISSISSAUGA CITY	616679		2020/03 7472						7364702	
MISSISSAUGA CITY	616715		2020/03 7472						7364752	
MISSISSAUGA CITY	616717		2020/02 7472						7364701	
MISSISSAUGA CITY	616933		2020/03 7472						7364754	
MISSISSAUGA CITY	616822		2020/02 7472						7364755	
MISSISSAUGA CITY	616988		2020/03 7472						7364756	
MISSISSAUGA CITY	616869		2020/03 7472						7364759	
MISSISSAUGA CITY	616987		2020/03 7472						7364760	
			1 1/11							
										TILL CLAY GRVL 0020 GRVL BLDR
MISSISSAUGA CITY	617111	4825915	6875	5		///:	DE	0030 20	7354999	WBRG 0025 GRVL SAND WBRG 0050
MISSISSAUGA CITY	616813		2020/03 7472			1777			7364751	
THE SECTION OF THE	010010	1020120	2020/00 / 1/2						7001701	TILL CLAY SAND 0010 GRVL BLDR
										0024 TILL GRVL SAND 0040 SAND
MISSISSAUGA CITY	617142	4825920	6875	2		///:	DE	0045 5	7355003	
MISSISSAUGA CITY	616011		2018/11 7215			,,,,	55	00100	7325276	
MISSISSAUGA CITY	616791		2020/02 7238	2	UT 0003	///:	МО	0020 10		FILL 0005 SHLE ROCK 0030
MISSISSAUGA CITY	616725		2020/02 7238		01 0000	///·	1/10	002010	7364703	
MISSISSAUGA CITY	616701		2020/10 7644						7373748	
MISSISSAUGA CITY	616569		2020/03 7464		 				7373740	
MISSISSAUGA CITY	617090		2020/06 7215						7362232	

Location: Rangview Road	u, iviississauga	ı		1				г	I
									BRWN SAND SILT LOOS 0009 GREY
									CLAY TILL PCKD 0013 GREY SHLE
MISSISSAUGA CITY	616376	4826453	2020/05 7472	2	///:	MO	0016 10	7363884	WTHD 0018 GREY SHLE 0026
									BRWN FILL LOOS 0005 GREY SILT
									PCKD 0010 GREY TILL SILT PCKD
MISSISSAUGA CITY	616371	4826451	2020/05 7472	2	///:	MO	0005 10	7363885	
									BRWN FILL LOOS 0005 BRWN SAND
									SILT LOOS 0015 BRWN SAND PCKD
MISSISSAUGA CITY	616599	4826239	2020/05 7472	2	///:	МО	0008 10	7363886	
									BLCK LOOS 0002 BRWN SAND SILT
MICCICCALICA CUTIV	(4(222	4006400	2020 (05 5452			140	001110	5 0.60000	LOOS 0010 GREY CLAY SILT PCKD
MISSISSAUGA CITY	616338		2020/05 7472	2	///:	MO	0011 10		0015 GREY SHLE 0021
MISSISSAUGA CITY	615975		2020/04 7472					7364032	
MISSISSAUGA CITY	616668		2020/02 7472					7364700	
MISSISSAUGA CITY	617162		2020/03 7472					7364761	
MISSISSAUGA CITY	616596		2021/03 1663					7388901	
MISSISSAUGA CITY MISSISSAUGA CITY	616665		2021/03 1663					7388904	
	616663		2020/12 7644					7378968	
MISSISSAUGA CITY	616890		2020/10 7644 2020/10 7644					7373749	
MISSISSAUGA CITY	616929							7373750	
MISSISSAUGA CITY	616783	4826337	2020/10 7644					7373751	BRWN LOAM SAND SOFT 0001 BRWN
									SAND SILT DNSE 0005 GREY SILT
									CLAY HARD 0009 GREY SHLE SHLE
MISSISSAUGA CITY	616122	4025121	2020/12 6607	2 UT 0012	. ///:	мо	0020 5		LYRD 0025
MISSISSAUGA CITT	010122	4023131	2020/12 0007	2 01 0012	. ///:	MO	00203	7370404	BRWN LOAM SAND SOFT 0001 BRWN
									SAND SILT DNSE 0005 GREY SILT
									CLAY HARD 0009 GREY SHLE SHLE
MISSISSAUGA CITY	616122	4825107	2020/12 6607	2 UT 0012	: ///:	мо	0015 10		LYRD 0025
MISSISSITUATI CITT	010122	1023107	2020/12 0007	2 01 0012	, ///.	IVIO	001310	7370407	BRWN LOAM SAND SOFT 0001 BRWN
									SAND SILT DNSE 0005 GREY SILT
									CLAY HARD 0008 GREY SILT SHLE
MISSISSAUGA CITY	616121	4825108	2020/12 6607	2 UT 0012	: ///:	мо	0009 4		DNSE 0013
I-Historia di Cara di T	010121	1020100	2020/12 0007	2 01 0012	. ,,,,	110	00031	7070171	BRWN LOAM SAND SOFT 0001 BRWN
									SAND SILT DNSE 0005 GREY SILT
									CLAY HARD 0009 GREY SHLE SHLE
MISSISSAUGA CITY	616107	4825121	2020/12 6607	2 UT 0012	///:	МО	0025 10		LYRD 0035
MISSISSAUGA CITY	616732		2020/12 7644		777	111	33232	7378967	
			1 1, 1						TILL BLDR 0038 GRVL SAND
MISSISSAUGA CITY	617131	4825897	6875	5	///:	DE	0033 22	7355020	WBRG 0053
MISSISSAUGA CITY	616967		2020/12 7644		,,,			7378969	
MISSISSAUGA CITY	616854		2021/03 7644					7385466	
									BRWN LOAM SAND SOFT 0001 BRWN
									SAND SILT DNSE 0005 GREY SILT
MISSISSAUGA CITY	616108	4825119	2020/12 6607	2 UT 0012	///:	МО	0004 4	7376482	CLAY HARD 0008
MISSISSAUGA CITY	616575	4826051	2017/11 7383	2		MT	00205	7327960	TILL ROCK 0025

Location. Name view Noat	a, iviississauga									
MISSISSAUGA CITY	616570	4825514	2017/11 7383	2			MT	0047 3	7327961	TILL ROCK 0050
MISSISSAUGA CITY	616830	4825320	2018/08 7644	2			MT	0020 10	7327962	SILT CLAY 0030
MISSISSAUGA CITY	617053	4825715	2018/08 7644	2			TH MO	0020 10	7332457	SILT CLAY 0030 LMSN
MISSISSAUGA CITY	616691		2018/07 7644	2			TH MO	0025 10	1	SILT CLAY 0035 LMSN
MISSISSAUGA CITY	616636		2019/07 7644	2		///:	MT	0010 10		GREY CLAY SLTY 0020
MISSISSAUGA CITY	616678		2019/07 7644		UT 0024	///:	MT	0015 10		GREY CLAY SLTY 0020
THE STATE OF THE S	010070	1020001	2015/07 7011		01 0021	///:	1-11	001010	7812878	GREET GERTT GEETT GGEG
MISSISSAUGA CITY	616055	4825500	2019/10 7147	1.97		///:	МО	0005 5	7346767	BRWN SAND SILT 0010 BRWN SHLE
MISSISSAUGA CITY	616868		2017/11 7383	2		///-	MT	0018 10		TILL ROCK 0028
MISSISSAUGA CITY	616942		2019/08 7644	2		///:	MT	0015 10		TILL CLAY 0025
	010712	1020707	2019/00 / 011			1111.	1.11	001310	7312170	BRWN FILL 0010 BRWN TILL SNDY
MISSISSAUGA CITY	617090	4825899	2019/08 7644	2		///:	МО	0027 10	7342479	0025 GREY SILT SNDY 0037
MISSISSAUGA CITY	616784		2020/02 7238	2	UT 0005	///:	MO	0030 10		FILL 0007 SHLE ROCK 0040
- Industrial Control C	010701	1023107	2020/02 7230		01 0005	///:	1.10	0030 10	7555717	GREY TILL CLAY GRVL 0017 BRWN
										SAND WBRG 0033 GREY GRVL STNS
MISSISSAUGA CITY	617091	4826115	6875	5		///:	DE MO	0025 20	7345293	WBRG 0045
MISSISSMOUN CITT	01/0/1	4020113	0073			///·	DL MO	0023 20	7343273	WDRG 0043
										TILL CLAY GRVL 0008 GRVL 0015
										GRVL CLAY SAND 0032 GRVL SAND
MISSISSAUGA CITY	617113	4825913	6875	5		///:	DE	0035 20	7254000	WBRG 0050 SAND WBRG 0055
MISSISSAUGA CITT	01/113	4023913	0073	3		///:	DE	0033 20	7334990	BRWN SAND SILT 0010 BRWN SHLE
MISSISSAUGA CITY	616042	1025512	2019/10 7147	1.97		///:	МО	0003 10	7346766	
MISSISSAUGA CITY	616968		2017/11 7383	2		///·	MT	0003 10		TILL ROCK 0014
MISSISSAUGA CITY	616821		2017/11 7363	2			MT	0004 10	7327951	TILL ROCK 0014
MISSISSAUGA CITY	616916		2018/10 7644	2			MT	0003 10	7327951	
MISSISSAUGA CITY	616730		2017/11 7683	2			MT	001010		TILL ROCK 0028
MISSISSAUGA CITT	010730	4023333	2017/11 7003				IVI I	001810	7327933	BRWN SAND SILT 0010 BRWN SHLE
MISSISSAUGA CITY	616036	1025510	2019/10 7147	1.97		///:	МО	0003 10	7346765	
MISSISSAUGA CITY	617018		2019/11 7644	2		///:	MT	0010 2		SILT 0012
MISSISSAUGA CITY	617018		2019/11 7644	2		///:	MT	0010 2		SILT 0012 SILT 0013
				2			MT			SILT 0013
MISSISSAUGA CITY	617050	4825828	2019/11 7644			///:	IVI I	00085	7353423	BRWN SAND SILT 0010 BRWN SHLE
MICCICCALICA CITY	(1(020	4025507	2010/10 7147	1.07		111	MO	0002.10	7246760	
MISSISSAUGA CITY	616029		2019/10 7147	1.97		///:	MO	0003 10	7346768	
MISSISSAUGA CITY	617056	4825799	2019/11 7644	2		///:	MT	00105	/353425	SILT 0015
MIGGIGGANICA CIENT	64.6022	4006044	2010/00 5644	2		.,,		000040	7040400	BRWN FILL 0010 BRWN TILL SNDY
MISSISSAUGA CITY	616922		2019/08 7644	2		///:	MO	0030 10		0025 GREY SILT SNDY 0040
MISSISSAUGA CITY	617115		2019/11 7644	2		///:	MT	0010 10		SILT SAND WBRG 0020
MISSISSAUGA CITY	617169		2019/11 7644	2		///:	MT	0010 28		SILT CLAY SAND 0038
MISSISSAUGA CITY	617054		2019/11 7644	2		///:	MT	0010 2		SILT 0012
MISSISSAUGA CITY	617072		2019/11 7644	2		///:	MT	0000 13		SILT 0013
MISSISSAUGA CITY	616976		2019/11 7644	2		///:	MT	0010 11		SILT CLAY 0021
MISSISSAUGA CITY	617041	4825687	2019/11 7644	2		///:	MT	00105	7353432	
										TILL CLAY GRVL 0025 SLTY 0035
										GRVL SAND WBRG 0040 SAND GRVL
MISSISSAUGA CITY	617128	4825899	6875	5		///:	DE	0030 20	7354991	WBRG 0050

Location. Nangview Road	I	I	1	<u> </u>	1	<u> </u>	1	I	THE CLAY CDVI 0020 CDVI
									TILL CLAY GRVL 0020 GRVL
MAGGICG ANG A GIEST	(4.54.05	4005004	6075	_	.,,	D.E.	000000	5054000	WBRG 0030 SAND GRVL WBRG 0046
MISSISSAUGA CITY	617125	4825901	6875	5	///:	DE	0030 20	7354992	GRVL WBRG 0050 TILL CLAY SAND 0018 GRVL CLAY
									SAND 0030 SAND 0035 GRVL
	44=400			_					SAND 0043 SAND GRVL 0050
MISSISSAUGA CITY	617123	4825902	6875	5	///:	DE	0035 20	7354993	GRVL 0055
LANGUAGO ANAGA GAMAN	(4.74.04	4005004		_	.,,		000000	5054004	TILL CLAY GRVL 0035 GRVL WBRG
MISSISSAUGA CITY	617121	4825904	6875	5	///:	DE	0030 20	7354994	0042 SAND GRVL WBRG 0050
NAME OF THE PARTY	64.5400	4005006		_			000000	5054005	TILL CLAY SAND 0035 GRVL WBRG
MISSISSAUGA CITY	617199	4825906	6875	5	///:	DE	0030 20	7354995	0042 SAND GRVL WBRG 0050
									THE COVECTAV ARROS COVED DE DO
									TILL GRVL CLAY 0008 GRVL BLDR
MICCICCALICA CITY	(17117	4025000	(075	_	111	DE	0022.20	7254006	0015 SAND GRVL WBRG 0033 GRVL
MISSISSAUGA CITY	617117	4825909	6875	5	///:	DE	0033 20	7354996	SAND WBRG 0042 SAND WBRG 0053
									TILL CLAY GRVL 0008 GRVL BLDR
									0015 GRVL SAND CLAY 0030 GRVL
MICCICCALICA CITY	(17115	4025011	(075	_	111	DE	0025 20	7254007	
MISSISSAUGA CITY	617115	4825911	6875	5	///:	DE	0035 20		SAND WBRG 0050 SAND WBRG 0055
MISSISSAUGA CITY	617111		2019/11 7644	2	///:	MT	0010 11		SILT CLAY SAND 0021
MISSISSAUGA CITY	616401	4825654	2019/11 7641	2	///:	ТН МО	0005 10	7350164	
NATIONAL CARRY	645044	4005000	2040/44 5244		,,,	1 A TT	000040	7240000	BRWN CLAY SILT 0009 GREY SHLE
MISSISSAUGA CITY	615911	4825222	2019/11 7241	2	///:	МТ	0008 10	7348080	0015 GREY SHLE 0018
MICCICCALICA CITY	(15000	4005047	2012/11/72/1	2	111	M	0012.10	7240001	BRWN CLAY SILT 0009 GREY SHLE
MISSISSAUGA CITY	615898		2012/11 7241	2	///:	МТ	0012 10		0020 GREY SHLE 0022
MISSISSAUGA CITY	616654		2019/06 7644					7349530	
MISSISSAUGA CITY	616854		2018/06 7644	2	111	MT	0010.2	7349531	SILT 0012
MISSISSAUGA CITY	616993	4825786	7644 2019/11 7644	2	///:	MT MT	0010 2		
MISSISSAUGA CITY	616434		· · · · · · · · · · · · · · · · · · ·	1.87	///:		0005 5		CLAY TILL 0008 ROCK 0015
MISSISSAUGA CITY	617111	4825829	2019/11 7644	1.87	///:	MO	00105	/353420	SILT CLAY SAND 0015 BRWN FILL SAND GRVL 0001 GREY
									TILL SILT HARD 0010 GREY SHLE
MICCICCALICA CITY	(1/245	4025472	2010/11 7644	2 117 0010	111.	МТ	0005 10	7250165	
MISSISSAUGA CITY	616245	4825472	2019/11 7644	2 UT 0010	///:	МТ	0005 10	/350105	HARD 0015 BRWN LOAM SOFT 0000 GREY SILT
									TILL HARD 0010 GREY SHLE HARD
MICCICCALICA CITY	(1(202	4025422	2010/11 7644	2 UT 0010	111.	МТ	0005 10	7350166	
MISSISSAUGA CITY	616282	4825423	2019/11 7644	2 01 0010	///:	IMI I	0005 10	/350100	BLCK HARD 0000 GREY TILL
MISSISSAUGA CITY	616398	4025576	2019/11 7644	2 117 0010	111.	МТ	0005 10	7250170	SHLE HARD 0015
MISSISSAUGA CITT	010396	4023370	2019/11 /044	2 UT 0010	///:	IVI I	0005 10	/330100	BLCK HARD 0000 GREY TILL
MISSISSAUGA CITY	616376	1025676	2019/11 7644	2 UT 0010	///:	МТ	0005 10	7250160	SHLE HARD 0015
MISSISSAUGA CITT	010370	4023070	2019/11 /044	2 01 0010	///:	IVI I	0003 10	7330109	BLCK HARD 0000 GREY TILL
MISSISSAUGA CITY	616067	4025421	2019/11 7644	2 UT 0010	111.	МТ	0005 10	7250170	HARD 0015
WISSISSAUGA CITI	01000/	4043431	4017/11 / 044	2 01 0010	///:	Ivi I	0003 10	/3301/0	BRWN FILL GRVL SAND 0005 GREY
MISSISSAUGA CITY	616411	1025622	2019/11 7644	2 UT 0010	///:	МТ	0005 10	7250167	TILL SHLE HARD 0015
MISSISSAUGA CITY	616454		2019/11 7644	2 01 0010	///:	MT	0005 10		CLAY TILL 0020
MISSISSAUGA CITY				_					
MI199199AUGA CI I X	617104	4825565	2019/11 7644	2	///:	MT	00105	/33341/	SILT 0015

MISSISSAUGA CITY	616911	4825805	2019/11 7644	2		///:	MT	00103	7353416	SILT 0013
										BRWN SAND GRVL 0005 GREY SHLE
MISSISSAUGA CITY (PO	616376	4825397	2007/08 6607	1.99		///:	MO		7050861	SOFT 0010 GREY SHLE 0020
										BRWN LOAM 0001 BRWN CLAY 0006
MISSISSAUGA CITY DS S 03	616508	4825833	2002/02 7147					00015	4908971	GREY SHLE ROCK 0006
										BRWN LOAM 0001 BRWN CLAY 0006
MISSISSAUGA CITY DS S 03	616522	4825880	2002/02 7147					00015	4908970	GREY SHLE ROCK 0006
										BRWN LOAM 0001 BRWN CLAY 0008
MISSISSAUGA CITY DS S 03	616482	4825852	2002/02 7147					0003 5	4908972	GREY SHLE ROCK 0008
										BRWN LOAM 0001 BRWN CLAY 0006
MISSISSAUGA CITY DS S 03	616446	4825874	2002/02 7147					00015	4908969	GREY SHLE ROCK 0006
										BRWN CLAY MSND 0020 BLUE CLAY
										GRVL 0062 BLUE CLAY 0070 MSND
MISSISSAUGA CITY DS S 03 008	616490	4825589	1967/04 3512	8	FR 0070	30/35/135/:	IN	0072 10	4902286	GRVL 0082
										RED FILL SAND SOFT 0003 BRWN
										SILT CLAY DNSE 0017 BRWN SILT
TORONTO CITY	616386	4825426	2007/08 7241	1.5				00109	7049725	CLAY 0019

Appendix C: Hydraulic Conductivity Analysis

Slug Test Analysis Report Project: Hydrogeology Investigation Number: 22-200-100 Client: Rangeview Estates Location: Mississauga, ON Slug Test: MW/BH 22-6 Test Conducted by: AQ Analysis Performed by: PP Hyorslev Analysis Date: 10/18/2022

Aquifer Thickness: 1.31 m

Calculation using Hvorslev Observation Well Hydraulic Conductivity

	•	•
MW/BH 22-6	5.28 × 10 ⁻⁹	
	[m/s]	
Observation Well	Hydraulic Conductivity	

Slug Test Analysis Report

Project: Hydrogeology Investigation

Number: 22-200-100

Client: Rangeview Estates

Location: Mississauga, ONSlug Test: MW/BH 22-9Test Well: MW/BH 22-9Test Conducted by:Test Date: 10/18/2022

Analysis Performed by: PP Hvorslev Analysis Date: 10/18/2022

Aquifer Thickness: 3.11 m

Calculation	ueina	Hyoreley
Calculation	usina	nvoisiev

Observation Well	Hydraulic Conductivity	
	[m/s]	
MW/BH 22-9	2.52 × 10 ⁻⁶	

Slug Test Analysis Report

Project: Hydrogeology Investigation

Number: 22-200-100

Client: Rangeview Estates

Location: Mississauga, ONSlug Test: MW/BH 22-13Test Well: MW/BH 22-13Test Conducted by: PPTest Date: 10/18/2022Analysis Performed by: PPHvorslevAnalysis Date: 10/18/2022

Aquifer Thickness: 2.21 m

Calculation using Hvorslev

Observation Well	Hydraulic Conductivity	
	[m/s]	
MW/BH 22-13	1.11 × 10 ⁻⁷	

Appendix D: Groundwater Quality Certificate of Analysis

CA14622-SEP22 R1

22-200-100, 974 Lakeshore Rd E, Mississauga

Prepared for

DS Consultants

First Page

CLIENT DETAILS	S	LABORATORY DETAI	ILS
Client	DS Consultants	Project Specialist	Maarit Wolfe, Hon.B.Sc
		Laboratory	SGS Canada Inc.
Address	6221 Highway 7 Unit 6	Address	185 Concession St., Lakefield ON, K0L 2H0
	Vaughan, Ontario		
	L4H 0K8. Canada		
Contact	Abdul Qadir	Telephone	705-652-2000
Telephone	204-951-8164	Facsimile	705-652-6365
Facsimile	905-264-2685	Email	Maarit.Wolfe@sgs.com
Email	abdul.qadir@dsconsultants.ca; don.hsu@dsconsultants.ca	SGS Reference	CA14622-SEP22
Project	22-200-100, 974 Lakeshore Rd E, Mississauga	Received	09/23/2022
Order Number		Approved	10/05/2022
Samples	Ground Water (2)	Report Number	CA14622-SEP22 R1
		Date Reported	10/05/2022

COMMENTS

RL - SGS Reporting Limit

Temperature of Sample upon Receipt: 8 degrees C

Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: 033384

Metals limits raised 10x due to sample matrix

SIGNATORIES

Maarit Wolfe, Hon.B.Sc Luvoye

1 / 22

t 705-652-2000 f 705-652-6365

www.sgs.com

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-7
Exceedance Summary	8
QC Summary	9-19
Legend	20
Annexes	21-22

Client: DS Consultants

Project: 22-200-100, 974 Lakeshore Rd E, Mississauga

Project Manager: Abdul Qadir
Samplers: Abdul Qadir

			0	Nissah a -	0	0
MATRIX: WATER			•	Number	8	9
			Samp	ole Name	BH22-9	BH22-9
			Sama	ole Matrix	Ground Water	03-Oct-22 Ground Water
= SANSEW / WATER / Mississauga Sewer Use ByLaw	v - Storm Sewer - BL_0046_	_2022	-	ne matrix	22/09/2022	03/10/2022
Deservator	Units	DI DI		ihie nare		
Parameter	Units	RL	L1		Result	Result
General Chemistry						
Biochemical Oxygen Demand (BOD5)	mg/L	2	15		< 4↑	
Total Suspended Solids	mg/L	2	15		9560	
Total Kjeldahl Nitrogen	as N mg/L	0.5			< 0.5	
letals and Inorganics						
Total Chlorine	mg/L	0.02	1		< 0.02	
Fluoride	mg/L	0.06			0.18	
Cyanide (total)	mg/L	0.01	0.02		< 0.01	
Sulphate	mg/L	2			98	
Aluminum (0.2μm)	mg/L	0.001			0.211	
Aluminum (total)	mg/L	0.01	1		63.5	
Antimony (total)	mg/L	0.009			< 0.009	
Arsenic (total)	mg/L	0.002	0.02		0.038	
Cadmium (total)	mg/L	0.00003	0.008		0.00012	
Chromium (total)	mg/L	0.0008	0.08		0.117	
Copper (total)	mg/L	0.002	0.04		0.129	
Cobalt (total)		0.00004			0.0661	
Lead (total)	mg/L	0.0009	0.12		0.0362	
Manganese (total)	mg/L	0.0001	2		5.44	
Molybdenum (total)	mg/L	0.0004	-		0.0033	
Nickel (total)	mg/L	0.0004	0.08		0.135	
Phosphorus (total)	mg/L	0.03	0.4		3.76	

Nonylphenol diethoxylate

Oil & Grease (total)

Nonylphenol monoethoxylate

Oil & Grease (animal/vegetable)

Oil & Grease (mineral/synthetic)

mg/L

mg/L

mg/L

mg/L

mg/L

0.01

0.01

2

4

4

FINAL REPORT

Client: DS Consultants

Project: 22-200-100, 974 Lakeshore Rd E, Mississauga

Project Manager: Abdul Qadir
Samplers: Abdul Qadir

Sample Number 8 9 MATRIX: WATER Sample Name BH22-9 BH22-9 03-Oct-22 Sample Matrix Ground Water **Ground Water** L1 = SANSEW / WATER / - - Mississauga Sewer Use ByLaw - Storm Sewer - BL 0046 2022 Sample Date 22/09/2022 03/10/2022 Parameter Units RL L1 Result Result Metals and Inorganics (continued) Selenium (total) 0.0004 0.02 0.0006 mg/L Silver (total) mg/L 0.0005 0.12 < 0.0005 Tin (total) mg/L 0.0006 0.0016 Titanium (total) 0.0005 0.190 mg/L 0.37 Zinc (total) mg/L 0.02 0.2 Microbiology E. Coli cfu/100mL 0 0 200 Nonylphenol and Ethoxylates Nonylphenol mg/L 0.001 < 0.001 Nonylphenol Ethoxylates mg/L 0.01 < 0.01

< 0.01

< 0.01

< 2

< 4

< 4

CA14622-SEP22 R1

Client: DS Consultants

Project: 22-200-100, 974 Lakeshore Rd E, Mississauga

Project Manager: Abdul Qadir

Samplers: Abdul Qadir

MATRIX: WATER			Sample	Number	8	9
			Sampl	le Name	BH22-9	BH22-9
						03-Oct-22
L1 = SANSEW / WATER / Mississauga Sewer Use ByLaw - S	Storm Sewer - BL_0046_	2022	-	e Matrix	Ground Water	Ground Water
			Samı	ple Date	22/09/2022	03/10/2022
Parameter	Units	RL	L1		Result	Result
Other (ORP)						
рН	No unit	0.05	9		7.13	
Chromium VI	mg/L	0.0002	0.04		< 0.0002	
Mercury (total)	mg/L	0.00001	0.0004		0.00001	
PAHs			1			
Benzo(b+j)fluoranthene	mg/L	0.0001			< 0.0001	
	mg/L	0.0001			~ 0.0001	
PCBs			I			
Polychlorinated Biphenyls (PCBs) - Total	μg/L	0.04	0.4		< 0.04	
Phenois						
4AAP-Phenolics	mg/L	0.002	0.008		< 0.002	
SVOCs			1			
di-n-Butyl Phthalate	mg/L	0.002			< 0.002	
Bis(2-ethylhexyl)phthalate	mg/L	0.002			< 0.002	
PAHs (Total)	mg/L		0.002		< 0.001	
Perylene	mg/L	0.0005			< 0.0005	-

Client: DS Consultants

Project: 22-200-100, 974 Lakeshore Rd E, Mississauga

Project Manager: Abdul Qadir

Samplers: Abdul Qadir

MATRIX: WATER			Sample Number	. 8	9
			Sample Name	BH22-9	BH22-9
					03-Oct-22
L1 = SANSEW / WATER / Mississauga Sewer Use ByLaw -	Storm Sewer - BL_0046_2	2022	Sample Matrix	Ground Water	Ground Water
			Sample Date	22/09/2022	03/10/2022
Parameter	Units	RL	L1	Result	Result
SVOCs - PAHs				_	
7Hdibenzo(c,g)carbazole	mg/L	0.0001		< 0.0001	
Anthracene	mg/L	0.0001		< 0.0001	
Benzo(a)anthracene	mg/L	0.0001		< 0.0001	
Benzo(a)pyrene	mg/L	0.0001		< 0.0001	
Benzo(e)pyrene	mg/L	0.0001		< 0.0001	
Benzo(ghi)perylene	mg/L	0.0002		< 0.0002	
Benzo(k)fluoranthene	mg/L	0.0001		< 0.0001	
Chrysene	mg/L	0.0001		< 0.0001	
Dibenzo(a,h)anthracene	mg/L	0.0001		< 0.0001	
Dibenzo(a,i)pyrene	mg/L	0.0001		< 0.0001	
Dibenzo(a,j)acridine	mg/L	0.0001		< 0.0001	
Fluoranthene	mg/L	0.0001		< 0.0001	
Indeno(1,2,3-cd)pyrene	mg/L	0.0002		< 0.0002	
Phenanthrene	mg/L	0.0001		< 0.0001	
Pyrene	mg/L	0.0001		< 0.0001	

Client: DS Consultants

Project: 22-200-100, 974 Lakeshore Rd E, Mississauga

Project Manager: Abdul Qadir

Samplers: Abdul Qadir

EXCEEDANCE SUMMARY

SANSEW / WATER
/ - - Mississauga
Sewer Use ByLaw Storm Sewer -

BL_0046_2022

Parameter Method Units Result L1

BH22-9

Total Suspended Solids	SM 2540D	mg/L	9560	15
Aluminum	SM 3030/EPA 200.8	mg/L	63.5	1
Arsenic	SM 3030/EPA 200.8	mg/L	0.038	0.02
Chromium	SM 3030/EPA 200.8	mg/L	0.117	0.08
Copper	SM 3030/EPA 200.8	mg/L	0.129	0.04
Manganese	SM 3030/EPA 200.8	mg/L	5.44	2
Nickel	SM 3030/EPA 200.8	mg/L	0.135	0.08
Phosphorus	SM 3030/EPA 200.8	mg/L	3.76	0.4
Zinc	SM 3030/EPA 200.8	mg/L	0.37	0.2

20221005 8 / 22

QC SUMMARY

Anions by discrete analyzer

Method: US EPA 375.4 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	CS/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike		Recovery Limits (%)	Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Sulphate	DIO5058-SEP22	mg/L	2	<2	9	20	111	80	120	91	75	125

Biochemical Oxygen Demand

Method: SM 5210 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		ī.
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Biochemical Oxygen Demand (BOD5)	BOD0050-SEP22	mg/L	2	< 2	15	30	102	70	130	82	70	130

Chlorine

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-008

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		М	Matrix Spike / Ref.	
	Reference			Blank	RPD	AC (%)	Spike Recovery (%)	Recovery Limits (%)		Spike Recovery	Recover	-
								Low	High	(%)	Low	High
Total Chlorine	EWL0494-SEP22	mg/L	0.02	< 0.02	ND	20	99	90	110	NA		

20221005

QC SUMMARY

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	latrix Spike / Ref	
	Reference	Reference	Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recove	ry Limits 6)	
					RFD	(%)	Recovery (%)	Low	High	(%)	Low	High
Cyanide (total)	SKA0220-SEP22	mg/L	0.01	<0.01	ND	10	95	90	110	NV	75	125

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Ref	i.
	Reference			Blank	RPD AC (%)	Spike		ry Limits %)	Spike Recovery	Recove	ry Limits %)	
						Recovery (%)	Low	High	(%)	Low	High	
Fluoride	EWL0495-SEP22	mg/L	0.06	<0.06	5	10	100	90	110	110	75	125

Hexavalent Chromium by SFA

Method: EPA218.6/EPA3060A | Internal ref.: ME-CA-[ENV]SKA-LAK-AN-012

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		М	latrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chromium VI	SKA0234-SEP22	mg/L	0.0002	<0.0002	ND	20	100	80	120	92	75	125

20221005

QC SUMMARY

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	atrix Spike / Re	f.
	Reference		Blank	RPD	AC (00)	Spike		ry Limits %)	Spike Recovery		ry Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury (total)	EHG0052-SEP22	mg/L	0.00001	< 0.00001	11	20	118	80	120	102	70	130

20221005 11 / 22

QC SUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ery Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0238-SEP22	mg/L	0.0005	<0.00005	ND	20	103	90	110	71	70	130
Aluminum (total)	EMS0238-SEP22	mg/L	0.01	<0.001	2	20	93	90	110	89	70	130
Arsenic (total)	EMS0238-SEP22	mg/L	0.002	<0.0002	6	20	106	90	110	103	70	130
Cadmium (total)	EMS0238-SEP22	mg/L	0.00003	<0.000003	20	20	103	90	110	91	70	130
Cobalt (total)	EMS0238-SEP22	mg/L	0.00004	<0.000004	7	20	104	90	110	102	70	130
Chromium (total)	EMS0238-SEP22	mg/L	0.0008	<0.00008	11	20	100	90	110	109	70	130
Copper (total)	EMS0238-SEP22	mg/L	0.002	<0.0002	14	20	100	90	110	91	70	130
Manganese (total)	EMS0238-SEP22	mg/L	0.0001	<0.00001	2	20	107	90	110	97	70	130
Molybdenum (total)	EMS0238-SEP22	mg/L	0.0004	<0.00004	7	20	94	90	110	100	70	130
Nickel (total)	EMS0238-SEP22	mg/L	0.001	<0.0001	0	20	100	90	110	92	70	130
Lead (total)	EMS0238-SEP22	mg/L	0.0009	<0.00001	14	20	94	90	110	89	70	130
Phosphorus (total)	EMS0238-SEP22	mg/L	0.03	<0.003	9	20	96	90	110	NV	70	130
Antimony (total)	EMS0238-SEP22	mg/L	0.009	<0.0009	ND	20	95	90	110	101	70	130
Selenium (total)	EMS0238-SEP22	mg/L	0.0004	<0.00004	7	20	101	90	110	95	70	130
Tin (total)	EMS0238-SEP22	mg/L	0.0006	<0.00006	ND	20	97	90	110	NV	70	130
Titanium (total)	EMS0238-SEP22	mg/L	0.0005	<0.00005	2	20	97	90	110	NV	70	130
Zinc (total)	EMS0238-SEP22	mg/L	0.02	<0.002	4	20	103	90	110	80	70	130
Aluminum (0.2µm)	EMS0242-SEP22	mg/L	0.001	<0.001	2	20	101	90	110	75	70	130

20221005

QC SUMMARY

Microbiology

Method: SM 9222D | Internal ref.: ME-CA-[ENV]MIC-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	-	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
E. Coli	BAC9013-OCT22	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							

Nonylphenol and Ethoxylates

Method: ASTM D7065-06 | Internal ref.: ME-CA-IENVIGC-LAK-AN-015

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recover	-	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Nonylphenol diethoxylate	GCM0393-SEP22	mg/L	0.01	<0.01			88	55	120			
Nonylphenol Ethoxylates	GCM0393-SEP22	mg/L	0.01	< 0.01								
Nonylphenol monoethoxylate	GCM0393-SEP22	mg/L	0.01	<0.01			90	55	120			
Nonylphenol	GCM0393-SEP22	mg/L	0.001	<0.001			91	55	120			

20221005

QC SUMMARY

Oil & Grease

Method: MOE E3401 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	•
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (total)	GCM0482-SEP22	mg/L	2	<2	NSS	20	105	75	125			

Oil & Grease-AV/MS

Method: MOE E3401/SM 5520F | Internal ref.: ME-CA-IENVIGC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ory Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (animal/vegetable)	GCM0482-SEP22	mg/L	4	< 4	NSS	20	NA	70	130			
Oil & Grease (mineral/synthetic)	GCM0482-SEP22	mg/L	4	< 4	NSS	20	NA	70	130			

pН

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		N	latrix Spike / Ref	•
	Reference	Reference		Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	•
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0496-SEP22	No unit	0.05	NA	1		100			NA		

20221005 14 / 22

QC SUMMARY

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference		Blank RPD AC (%)			Spike		ery Limits %)	Spike Recovery	Recover	-	
						(%)	Recovery (%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0228-SEP22	mg/L	0.002	<0.002	ND	10	105	80	120	102	75	125

Polychlorinated Biphenyls

Method: MOE E3400/EPA 8082A | Internal ref.: ME-CA-[ENVIGC-LAK-AN-001

Parameter	QC batch	Units	RL Method	Duj	plicate	LC	S/Spike Blank		M	latrix Spike / Re	f.	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Polychlorinated Biphenyls (PCBs) -	GCM0452-SEP22	ug/L	0.04	< 0.04	NSS	30	100	60	140	NSS	60	140
Total												

20221005 15 / 22

QC SUMMARY

Semi-Volatile Organics

Method: EPA 3510C/8270D | Internal ref.: ME-CA-IENVIGC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recovery Limits (%)		Spike Recovery	Recovery Limits	
						(70)	(%)	Low	High	(%)	Low	High
7Hdibenzo(c,g)carbazole	GCM0499-SEP22	mg/L	0.0001	< 0.0001	NSS	30	93	50	140	NSS	50	140
Anthracene	GCM0499-SEP22	mg/L	0.0001	< 0.0001	NSS	30	104	50	140	NSS	50	140
Benzo(a)anthracene	GCM0499-SEP22	mg/L	0.0001	< 0.0001	NSS	30	100	50	140	NSS	50	140
Benzo(a)pyrene	GCM0499-SEP22	mg/L	0.0001	< 0.0001	NSS	30	103	50	140	NSS	50	140
Benzo(b+j)fluoranthene	GCM0499-SEP22	mg/L	0.0001	< 0.0001	NSS	30	99	50	140	NSS	50	140
Benzo(e)pyrene	GCM0499-SEP22	mg/L	0.0001	< 0.0001	NSS	30	98	50	140	NSS	50	140
Benzo(ghi)perylene	GCM0499-SEP22	mg/L	0.0002	< 0.0002	NSS	30	99	50	140	NSS	50	140
Benzo(k)fluoranthene	GCM0499-SEP22	mg/L	0.0001	< 0.0001	NSS	30	102	50	140	NSS	50	140
Bis(2-ethylhexyl)phthalate	GCM0499-SEP22	mg/L	0.002	< 0.002	NSS	30	137	50	140	NSS	50	140
Chrysene	GCM0499-SEP22	mg/L	0.0001	< 0.0001	NSS	30	105	50	140	NSS	50	140
di-n-Butyl Phthalate	GCM0499-SEP22	mg/L	0.002	< 0.002	NSS	30	132	50	140	NSS	50	140
Dibenzo(a,h)anthracene	GCM0499-SEP22	mg/L	0.0001	< 0.0001	NSS	30	104	50	140	NSS	50	140
Dibenzo(a,i)pyrene	GCM0499-SEP22	mg/L	0.0001	< 0.0001	NSS	30	75	50	140	NSS	50	140
Dibenzo(a,j)acridine	GCM0499-SEP22	mg/L	0.0001	< 0.0001	NSS	30	88	50	140	NSS	50	140
Fluoranthene	GCM0499-SEP22	mg/L	0.0001	< 0.0001	NSS	30	109	50	140	NSS	50	140
Indeno(1,2,3-cd)pyrene	GCM0499-SEP22	mg/L	0.0002	< 0.0002	NSS	30	109	50	140	NSS	50	140
Perylene	GCM0499-SEP22	mg/L	0.0005	< 0.0005	NSS	30	101	50	140	NSS	50	140
Phenanthrene	GCM0499-SEP22	mg/L	0.0001	< 0.0001	NSS	30	106	50	140	NSS	50	140
Pyrene	GCM0499-SEP22	mg/L	0.0001	< 0.0001	NSS	30	101	50	140	NSS	50	140

20221005 16 / 22

QC SUMMARY

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duj	plicate	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC (%)	Spike Recovery (%)	Recovery Limits (%)		Spike Recovery	Recovery Limits	
								Low	High	(%)	Low	High
Total Suspended Solids	EWL0493-SEP22	mg/L	2	< 2	0	10	101	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	olicate	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen	SKA0230-SEP22	as N mg/L	0.5	<0.5	1	10	103	90	110	108	75	125

20221005 17 / 22

QC SUMMARY

Volatile Organics

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	O'line		Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC (%)	Spike Recovery (%)	Recovery Limits (%)		Spike Recovery	Recovery Limits	
								Low	High	(%)	Low	High
1,1,1,2-Tetrachloroethane	GCM0420-SEP22	mg/L	0.0005	<0.0005	ND	30	95	60	130	99	50	140
1,1,2,2-Tetrachloroethane	GCM0420-SEP22	mg/L	0.0005	<0.0005	ND	30	95	60	130	97	50	140
1,2-Dichlorobenzene	GCM0420-SEP22	mg/L	0.0005	<0.0005	ND	30	96	60	130	99	50	140
1,4-Dichlorobenzene	GCM0420-SEP22	mg/L	0.0005	<0.0005	ND	30	97	60	130	97	50	140
Benzene	GCM0420-SEP22	mg/L	0.0005	<0.0005	ND	30	95	60	130	99	50	140
Chloroform	GCM0420-SEP22	mg/L	0.0005	<0.0005	ND	30	94	60	130	98	50	140
cis-1,2-Dichloroethene	GCM0420-SEP22	mg/L	0.0005	<0.0005	ND	30	96	60	130	101	50	140
Ethylbenzene	GCM0420-SEP22	mg/L	0.0005	<0.0005	ND	30	97	60	130	101	50	140
m-p-xylene	GCM0420-SEP22	mg/L	0.0005	<0.0005	ND	30	96	60	130	99	50	140
Methyl ethyl ketone	GCM0420-SEP22	mg/L	0.02	<0.02	ND	30	91	50	140	98	50	140
Methylene Chloride	GCM0420-SEP22	mg/L	0.0005	<0.0005	ND	30	96	60	130	99	50	140
o-xylene	GCM0420-SEP22	mg/L	0.0005	<0.0005	ND	30	99	60	130	103	50	140
Styrene	GCM0420-SEP22	mg/L	0.0005	<0.0005	ND	30	97	60	130	100	50	140
Tetrachloroethylene	GCM0420-SEP22	mg/L	0.0005	<0.0005	ND	30	98	60	130	101	50	140
(perchloroethylene)												
Toluene	GCM0420-SEP22	mg/L	0.0005	<0.0005	ND	30	97	60	130	99	50	140
trans-1,3-Dichloropropene	GCM0420-SEP22	mg/L	0.0005	<0.0005	ND	30	99	60	130	103	50	140
Trichloroethylene	GCM0420-SEP22	mg/L	0.0005	<0.0005	ND	30	97	60	130	98	50	140

20221005 18 / 22

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20221005

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

20221005 20 / 22

No: 033384

Request for Laboratory Services and CHAIN OF CUSTODY

Cooling Agent Please: "Set Cooling Agent Please: "A Seg Cooling Agent Please: "A Se	Pink Copy - Client Yellow & White Copy - SGS
Teilof Filtered (Y/N) Wetals & Inorganics Metals	Instructions And Coding Signature: (X) Date: 09 123 122 (mm/dd/yy) Prink Copy - Client Signature: (X) Date: 09 123 122 (mm/dd/yy) Prink Copy - Client Signature: (X) Prink Copy - Client S
Tield Filtered (Y/N) Metals & Inorganics ICP Metals only sp. As. Bas Be, B.Cd. Metals only sp. As. Bas Be, B.Cd	Date: 09 /2
Metals & Inorganics Metals & Inorganics Metals & Inorganics Metals & Inorganics ICP Metals only sp.Ax.Ba.Ba.Ba.B.Cd. ICP Metals only sp.Ax.Ba.Ba.B.Cd. ICP Metals only sp.Ax.Ba.Ba.Ba.B.Cd. ICP Metals only sp.Ax.Ba.Ba.Ba.Ba.B.Cd. ICP Metals only sp.Ax.Ba.	
	20
Sewer By-La Tion Municipality: A MaTi TLES MATI T	Signature: Signature:
Received By (signature) Custody Seal Pre Custody Seal Intel INVOICE INFORM Equilations: 347/558 (3 Day min TAT) 30	61S
	ictions
Received By: Received Date: Received Time: Company: Received Time: Company: REPORT INFORMATION Contact: Cont	Observations/Comments/Special Instructions Sampled By (NAME): Apply Retinquished by (NAME):

No: 029536 Page 1 of 1

Request for Laboratory Services and CHAIN OF CUSTODY
Industries & Environment - Lakefield: 185 Concession St., Lakefield, ON KOL 240 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/lenvironment

- London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361

Laboratory Information Section - Lab use only

Second Company Seco	Received Time: [[] : \(\mathcal{L} \) (hr : min)		Custody Seal Intact:	וווממו. ובפ		7	100 Contract of the Contract o	are ober	l'emperature oponi receipt (o) - + , -	1	I	+ + + +	,			LAD LINIO #.		LAB LIMS #:
Company Activities	REPORT INFORMATION	4	IVOICE INFO	RMATION														
Contract	3	(same as R	Report Information	tion)		Quotation	:#							P.O.#:	Section and the section and th			
CALCACA N (Each of the control of	in Charlin	-	cermi			Project #:	R	2-4	00	0)-	1			Site Loca	::	ylak	csha	eRd E.Missisan
Compared to the control of the con	1 my 7, Unit	Contact:		>							TUT.	NAROU	ND TIME	TAT) REQU	RED			
10 10 10 10 10 10 10 10	16, Samplon, ON	Address:				X	Regular TA	T (5-7day	(s)					TAT's are quo Samples rece	ted in busines ved after 6pn	s days (excluror or on weeker	de statutor nds: TAT b	y holidays & weekends). egins next business day
Cold of the productions Standard Control of the production Standard Control of	-196-408:a	ī	1			RUSH TA	T (Addition	al Charg	es May A	hpply):]1 Day	2 Day	□ 3 Days	4 Days			
Cores defined Cores define	dul. gadir Ddscorsnitant	-none:				Specify D	Olato:	1000	ASIBILI		*NOTE	DRINKI	IG (POTAB	E) WATER S	AMPLES FOF	HUMAN COI	NSUMPTIC	ON MUST BE SUBMITTE
Okego dollar Same By Law:	Email: V . ca	Email:				openiy D	Calc.						A	TH SGS DRII	KING WATE	CHAIN OF	CUSTODY	
Solution Content Regulations: Solution By-Law: Solution Content Regulations: Solution Content Regulations: Solution Content Regulations: Solution Content Regulations: Content Regulat	REGL	ULATIONS								ANA	LYSIS	REC	UESTI	O:				
September Significance Part Part	153/04	Other Regula	tions:		r By-Law:	-		SV				VOC	Pest	Other	please specify)	SPLI	TCLP	
PERINTENSION SERVICE SERVICE	Res/Park S Ind/Com Agri/Other	Reg 347/55 PWQO CCME	8 (3 Day min TA		Sanitary Storm cipality:			10-	· ·	П :					_/~	Specifi		
The Condition (RSS) Ves No Sample Sampl	Appx	MISA	Reportable *Sec	S S S	1	cs	IV1O, et	'g'agirei	1	DIDO IM					م) دم			
POTE TIME POTE TIME SAMPLED SAMPLED SOLUTION SOLUTI	RECORD OF SITE CONDITION (RSC)		NO			jueß	ete i (ylno l	λΖ,V,U,I					other		72	oi jez papu		COMMENTS:
Bell liebucières Paritie Carton Sample Dottle Bath Company Sample Dottle Bath Company Sample Dottle Bath Company Sample Dottle Bath Company Sample Bat						i Inorg	uS sla	11,8A,96,1V1,			λ	,			الاداء الدداء	racteri: Exter		
2020 Am 1 GM M 2020 Am 1 GM M	SAMPLE IDENTIFICATION	SAMPLED		# OF BOTTLES		Metals 8	Full Metals plus	om,dh,bu,ou,hu			F1-F4 on				Sewer Use	Water Cha		
Pollul Coult Signature: Amildoly)	BH22-9	03/001/	Am	4	22	ح				1310 8 W					7			CA14622
Pollul Cool. Many Many Many Signature: Many Many Many Many Signature: Many Many Many Many Many Many Many Many	2	2022					- 3											Po lead
Pocal Instructions Pocal I	8																	
	4																	
Pecial Instructions	5						Acres 1											
Productions	9				1													
Pecial Instructions	7																j (1	
Pecial Instructions	- ∞						7											
Policy Columnic Signature: Signature	6		1															
Pecial Instructions	10					3.												
Pocket Instructions	11																i Ai	
Pocial instructions Policy Cools Signature: (Manyddyly) Signature: (Manyddyly)	12																	
About Cook Signature: (A mindd/yy)	Observations/Comments/Special Instructions	,										-						
Standardies Standardies	Abdul a	ス		Signature:	Ø,							Date:		3		m/dd/yy)		Pink Copy - Client
	Relinquished by (NAME): Shell (Lag	4	37	Signature:	d	1	Baget I'					Date:	10	12 17	٤	(vv/pp/m		Yellow & White Copy - SGS

CA14622-SEP22 R1

22-200-100, 974 Lakeshore Rd E, Mississauga

Prepared for

DS Consultants

First Page

CLIENT DETAILS	S	LABORATORY DETAI	LS
Client	DS Consultants	Project Specialist	Maarit Wolfe, Hon.B.Sc
		Laboratory	SGS Canada Inc.
Address	6221 Highway 7 Unit 6	Address	185 Concession St., Lakefield ON, K0L 2H0
	Vaughan, Ontario		
	L4H 0K8. Canada		
Contact	Abdul Qadir	Telephone	705-652-2000
Telephone	204-951-8164	Facsimile	705-652-6365
Facsimile	905-264-2685	Email	Maarit.Wolfe@sgs.com
Email	abdul.qadir@dsconsultants.ca; don.hsu@dsconsultants.ca	SGS Reference	CA14622-SEP22
Project	22-200-100, 974 Lakeshore Rd E, Mississauga	Received	09/23/2022
Order Number		Approved	10/05/2022
Samples	Ground Water (2)	Report Number	CA14622-SEP22 R1
		Date Reported	10/05/2022

COMMENTS

RL - SGS Reporting Limit

Temperature of Sample upon Receipt: 8 degrees C

Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: 033384

Metals limits raised 10x due to sample matrix

SIGNATORIES

Maarit Wolfe, Hon.B.Sc Luvoye

t 705-652-2000 f 705-652-6365

www.sgs.com

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-7
Exceedance Summary	8
QC Summary	9-19
Legend	20
Annexes	21-22

Client: DS Consultants

Project: 22-200-100, 974 Lakeshore Rd E, Mississauga

			,	Panania Number	0	0
MATRIX: WATER				Sample Number	8	9
				Sample Name	BH22-9	BH22-9
				Sample Matrix	Ground Water	03-Oct-22 Ground Water
.1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer				Sample Matrix Sample Date	22/09/2022	03/10/2022
.2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Dis			1.4			
Parameter	Units	RL	L1	L2	Result	Result
General Chemistry			I			
Biochemical Oxygen Demand (BOD5)	mg/L	2	300	15	< 4↑	
Total Suspended Solids	mg/L	2	350	15	9560	
Total Kjeldahl Nitrogen	as N mg/L	0.5	100	1	< 0.5	
Metals and Inorganics				1		
Total Chlorine	mg/L	0.02			< 0.02	
Fluoride	mg/L	0.06	10		0.18	
Cyanide (total)	mg/L	0.01	2	0.02	< 0.01	
Sulphate	mg/L	2	1500		98	
Aluminum (0.2µm)	mg/L	0.001			0.211	
Aluminum (total)	mg/L	0.01	50		63.5	
Antimony (total)	mg/L	0.009	5		< 0.009	
Arsenic (total)	mg/L	0.002	1	0.02	0.038	
Cadmium (total)	mg/L	0.00003	0.7	0.008	0.00012	
Chromium (total)	mg/L	0.0008	5	0.08	0.117	
Copper (total)	mg/L	0.002	3	0.05	0.129	
Cobalt (total)	mg/L	0.00004	5		0.0661	
Lead (total)	mg/L	0.0009	3	0.12	0.0362	
Manganese (total)	mg/L	0.0001	5	0.05	5.44	
Molybdenum (total)	mg/L	0.0004	5		0.0033	
Nickel (total)	mg/L	0.001	3	0.08	0.135	
Phosphorus (total)	mg/L	0.03	10	0.4	3.76	
						_

Client: DS Consultants

Project: 22-200-100, 974 Lakeshore Rd E, Mississauga

		\$	Sample Number	8	9
			Sample Name	BH22-9	BH22-9
					03-Oct-22
charge - BL_53_2010			•		Ground Water
arge - BL_53_2010			Sample Date	22/09/2022	03/10/2022
Units	RL	L1	L2	Result	Result
mg/L	0.0004	1	0.02	0.0006	
mg/L	0.0005	5	0.12	< 0.0005	
mg/L	0.0006	5		0.0016	
	0 0005	5		0 190	
			0.04		
IIIg/L	0.02	3	0.04	0.57	
cfu/100mL	0		200		0
mg/L	0.001	0.02		< 0.001	
mg/L	0.01	0.2		< 0.01	
ma/L	0.01			< 0.01	
9/L	0.01			- 0.01	
mg/L	2			< 2	
mg/L	4	150		< 4	
mg/L	4	15		< 4	
	mg/L mg/L cfu/100mL mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg	mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.01 mg/L 0.01 mg/L 0.01 mg/L 0.01 mg/L 0.01 mg/L 0.01	charge - BL_53_2010 Montes RL L1	Sample Matrix Sample Date	Sample Name BH22-9

Client: DS Consultants

Project: 22-200-100, 974 Lakeshore Rd E, Mississauga

MATRIX: WATER			;	Sample Number	8	9
				Sample Name	BH22-9	BH22-9
						03-Oct-22
L1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Disc	charge - BL_53_2010			Sample Matrix	Ground Water	Ground Water
L2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Discharge	arge - BL_53_2010			Sample Date	22/09/2022	03/10/2022
Parameter	Units	RL	L1	L2	Result	Result
Other (ORP)						
рН	No unit	0.05	10	9	7.13	
Chromium VI	mg/L	0.0002			< 0.0002	
Mercury (total)	mg/L	0.00001	0.01	0.0004	0.00001	
PAHs						
Benzo(b+j)fluoranthene	mg/L	0.0001			< 0.0001	
PCBs						
Polychlorinated Biphenyls (PCBs) - Total	μg/L	0.04	1	0.4	< 0.04	
Phenols						
4AAP-Phenolics	mg/L	0.002	1	0.008	< 0.002	
SVOCs						
di-n-Butyl Phthalate	mg/L	0.002	0.08	0.015	< 0.002	
Bis(2-ethylhexyl)phthalate	mg/L	0.002	0.012	0.0088	< 0.002	
PAHs (Total)	mg/L				< 0.001	
Perylene	mg/L	0.0005			< 0.0005	

Client: DS Consultants

Project: 22-200-100, 974 Lakeshore Rd E, Mississauga

Project Manager: Abdul Qadir

Samplers: Abdul Qadir

MATRIX: WATER				Sample Number	8	9
				Sample Name	BH22-9	BH22-9
						03-Oct-22
.1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer Discha	arge - BL_53_2010			Sample Matrix	Ground Water	Ground Water
.2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Discharg	ge - BL_53_2010			Sample Date	22/09/2022	03/10/2022
Parameter	Units	RL	L1	L2	Result	Result
SVOCs - PAHs						
7Hdibenzo(c,g)carbazole	mg/L	0.0001			< 0.0001	
Anthracene	mg/L	0.0001			< 0.0001	
Benzo(a)anthracene	mg/L	0.0001			< 0.0001	
Benzo(a)pyrene	mg/L	0.0001			< 0.0001	
Benzo(e)pyrene	mg/L	0.0001			< 0.0001	
Benzo(ghi)perylene	mg/L	0.0002			< 0.0002	
Benzo(k)fluoranthene	mg/L	0.0001			< 0.0001	
Chrysene	mg/L	0.0001			< 0.0001	
Dibenzo(a,h)anthracene	mg/L	0.0001			< 0.0001	
Dibenzo(a,i)pyrene	mg/L	0.0001			< 0.0001	
Dibenzo(a,j)acridine	mg/L	0.0001			< 0.0001	
Fluoranthene	mg/L	0.0001			< 0.0001	
Indeno(1,2,3-cd)pyrene	mg/L	0.0002			< 0.0002	
Phenanthrene	mg/L	0.0001			< 0.0001	
Pyrene	mg/L	0.0001			< 0.0001	

Client: DS Consultants

Project: 22-200-100, 974 Lakeshore Rd E, Mississauga

MATRIX: WATER .1 = SANSEW / WATER / Peel Table 1 - Sanitary Sewer I	Discharge - RI 53 2010			sample Number Sample Name	8	9
·	Discharge - BI 53 2010				BH22-9	BH22-9
·	Discharge - BL 53 2010			Janiple Name	טו ובב-פ	03-Oct-22
·				Sample Matrix	Ground Water	Ground Water
2 = SANSEW / WATER / Peel Table 2 - Storm Sewer Dis	-			Sample Date	22/09/2022	03/10/2022
Parameter	Units	RL	L1	L2	Result	Result
/OCs						
Chloroform	mg/L	0.0005	0.04	0.002	< 0.0005	
1,2-Dichlorobenzene	mg/L	0.0005	0.05	0.0056	< 0.0005	
1,4-Dichlorobenzene	mg/L	0.0005	0.08	0.0068	< 0.0005	
cis-1,2-Dichloroethene	mg/L	0.0005	4	0.0056	0.0115	
trans-1,3-Dichloropropene	mg/L	0.0005	0.14	0.0056	< 0.0005	
Methylene Chloride	mg/L	0.0005	2	0.0052	< 0.0005	
1,1,2,2-Tetrachloroethane	mg/L	0.0005	1.4	0.017	< 0.0005	
1,1,1,2-Tetrachloroethane	mg/L	0.0005			< 0.0005	
Methyl ethyl ketone	mg/L	0.02	8		< 0.02	
Styrene	mg/L	0.0005	0.2		< 0.0005	
Tetrachloroethylene (perchloroethylene)	mg/L	0.0005	1	0.0044	< 0.0005	
Trichloroethylene	mg/L	0.0005	0.4	0.008	0.0029	
/OCs - BTEX						
Benzene	mg/L	0.0005	0.01	0.002	< 0.0005	
Ethylbenzene	mg/L	0.0005	0.16	0.002	< 0.0005	
Toluene	mg/L	0.0005	0.27	0.002	< 0.0005	
Xylene (total)	mg/L	0.0005	1.4	0.0044	< 0.0005	
m-p-xylene	mg/L	0.0005			< 0.0005	
o-xylene	mg/L	0.0005			< 0.0005	

EXCEEDANCE SUMMARY

				SANSEW / WATER	SANSEW / WATER
				/ Peel Table 1 -	/ Peel Table 2 -
				Sanitary Sewer	Storm Sewer
				Discharge -	Discharge -
				BL_53_2010	BL_53_2010
Parameter	Method	Units	Result	L1	L2

BH22-9

cis-1,2-Dichloroethene	EPA 5030B/8260C	mg/L	0.0115		0.0056
Total Suspended Solids	SM 2540D	mg/L	9560	350	15
Aluminum	SM 3030/EPA 200.8	mg/L	63.5	50	
Arsenic	SM 3030/EPA 200.8	mg/L	0.038		0.02
Chromium	SM 3030/EPA 200.8	mg/L	0.117		0.08
Copper	SM 3030/EPA 200.8	mg/L	0.129		0.05
Manganese	SM 3030/EPA 200.8	mg/L	5.44	5	0.05
Nickel	SM 3030/EPA 200.8	mg/L	0.135		0.08
Phosphorus	SM 3030/EPA 200.8	mg/L	3.76		0.4
Zinc	SM 3030/EPA 200.8	mg/L	0.37		0.04

20221005 8 / 22

QC SUMMARY

Anions by discrete analyzer

Method: US EPA 375.4 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Sulphate	DIO5058-SEP22	mg/L	2	<2	9	20	111	80	120	91	75	125

Biochemical Oxygen Demand

Method: SM 5210 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		м	atrix Spike / Re	ı.
	Reference			Blank	RPD	AC	Spike Recovery (%)		ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Biochemical Oxygen Demand (BOD5)	BOD0050-SEP22	mg/L	2	< 2	15	30	102	70	130	82	70	130

Chlorine

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-008

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank		Spike		ery Limits %)	Spike Recovery	Recover	ry Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Chlorine	EWL0494-SEP22	mg/L	0.02	< 0.02	ND	20	99	90	110	NA		

20221005

QC SUMMARY

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	(%) Re	Spike		ry Limits %)	Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Cyanide (total)	SKA0220-SEP22	mg/L	0.01	<0.01	ND	10	95	90	110	NV	75	125

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Dup	plicate	LC	S/Spike Blank		м	atrix Spike / Ref	ī.
	Reference			Blank	RPD	AC	(%) Recovery		ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0495-SEP22	mg/L	0.06	<0.06	5	10	100	90	110	110	75	125

Hexavalent Chromium by SFA

Method: EPA218.6/EPA3060A | Internal ref.: ME-CA-[ENV]SKA-LAK-AN-012

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	RPD AC (%)	Spike		ery Limits %)	Spike Recovery	Recover	ry Limits %)
				(%)	(%)	Recovery (%)	Low	High	(%)	Low	High	
Chromium VI	SKA0234-SEP22	mg/L	0.0002	<0.0002	ND	20	100	80	120	92	75	125

20221005

QC SUMMARY

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	latrix Spike / Ref	ī.
	Reference		Blank	RPD	AC (%)	Spike	Recove	ry Limits %)	Spike Recovery	Recove	ry Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury (total)	EHG0052-SEP22	mg/L	0.00001	< 0.00001	11	20	118	80	120	102	70	130

20221005 11 / 22

QC SUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LCS	S/Spike Blank		Ма	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits 6)	Spike Recovery		ery Limits %)
						(76)	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0238-SEP22	mg/L	0.0005	<0.00005	ND	20	103	90	110	71	70	130
Aluminum (total)	EMS0238-SEP22	mg/L	0.01	<0.001	2	20	93	90	110	89	70	130
Arsenic (total)	EMS0238-SEP22	mg/L	0.002	<0.0002	6	20	106	90	110	103	70	130
Cadmium (total)	EMS0238-SEP22	mg/L	0.00003	<0.000003	20	20	103	90	110	91	70	130
Cobalt (total)	EMS0238-SEP22	mg/L	0.00004	<0.000004	7	20	104	90	110	102	70	130
Chromium (total)	EMS0238-SEP22	mg/L	0.0008	<0.00008	11	20	100	90	110	109	70	130
Copper (total)	EMS0238-SEP22	mg/L	0.002	<0.0002	14	20	100	90	110	91	70	130
Manganese (total)	EMS0238-SEP22	mg/L	0.0001	<0.00001	2	20	107	90	110	97	70	130
Molybdenum (total)	EMS0238-SEP22	mg/L	0.0004	<0.00004	7	20	94	90	110	100	70	130
Nickel (total)	EMS0238-SEP22	mg/L	0.001	<0.0001	0	20	100	90	110	92	70	130
Lead (total)	EMS0238-SEP22	mg/L	0.0009	<0.00001	14	20	94	90	110	89	70	130
Phosphorus (total)	EMS0238-SEP22	mg/L	0.03	<0.003	9	20	96	90	110	NV	70	130
Antimony (total)	EMS0238-SEP22	mg/L	0.009	<0.0009	ND	20	95	90	110	101	70	130
Selenium (total)	EMS0238-SEP22	mg/L	0.0004	<0.00004	7	20	101	90	110	95	70	130
Tin (total)	EMS0238-SEP22	mg/L	0.0006	<0.00006	ND	20	97	90	110	NV	70	130
Titanium (total)	EMS0238-SEP22	mg/L	0.0005	<0.00005	2	20	97	90	110	NV	70	130
Zinc (total)	EMS0238-SEP22	mg/L	0.02	<0.002	4	20	103	90	110	80	70	130
Aluminum (0.2µm)	EMS0242-SEP22	mg/L	0.001	<0.001	2	20	101	90	110	75	70	130

20221005

QC SUMMARY

Microbiology

Method: SM 9222D | Internal ref.: ME-CA-[ENV]MIC-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ory Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
E. Coli	BAC9013-OCT22	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							

Nonylphenol and Ethoxylates

Method: ASTM D7065-06 | Internal ref.: ME-CA-IENVIGC-LAK-AN-015

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ма	atrix Spike / Re	f.)
	Reference			Blank		Spike	Recover	=	Spike Recovery		ery Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Nonylphenol diethoxylate	GCM0393-SEP22	mg/L	0.01	<0.01			88	55	120			
Nonylphenol Ethoxylates	GCM0393-SEP22	mg/L	0.01	< 0.01								
Nonylphenol monoethoxylate	GCM0393-SEP22	mg/L	0.01	<0.01			90	55	120			
Nonylphenol	GCM0393-SEP22	mg/L	0.001	<0.001			91	55	120			

20221005 13 / 22

QC SUMMARY

Oil & Grease

Method: MOE E3401 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	atrix Spike / Ref	
	Reference	Reference Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	•		
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (total)	GCM0482-SEP22	mg/L	2	<2	NSS	20	105	75	125			

Oil & Grease-AV/MS

Method: MOE E3401/SM 5520F | Internal ref.: ME-CA-IENVIGC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ory Limits %)
					(%)	Recovery (%)	Low	High	(%)	Low	High	
Oil & Grease (animal/vegetable)	GCM0482-SEP22	mg/L	4	< 4	NSS	20	NA	70	130			
Oil & Grease (mineral/synthetic)	GCM0482-SEP22	mg/L	4	< 4	NSS	20	NA	70	130			

pН

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Ref	
	Reference			Blank	RPD	AC (%)	Spike	Recove	ry Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0496-SEP22	No unit	0.05	NA	1		100			NA		

20221005 14 / 22

QC SUMMARY

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD AC (%)	Spike		ery Limits %)	Spike Recovery	Recover	-	
						(%)	Recovery (%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0228-SEP22	mg/L	0.002	<0.002	ND	10	105	80	120	102	75	125

Polychlorinated Biphenyls

Method: MOE E3400/EPA 8082A | Internal ref.: ME-CA-[ENVIGC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	Matrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Polychlorinated Biphenyls (PCBs) -	GCM0452-SEP22	ug/L	0.04	< 0.04	NSS	30	100	60	140	NSS	60	140
Total												

20221005 15 / 22

QC SUMMARY

Semi-Volatile Organics

Method: EPA 3510C/8270D | Internal ref.: ME-CA-IENVIGC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ма	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover	•	Spike Recovery		ory Limits %)
						(7.5)	(%)	Low	High	(%)	Low	High
7Hdibenzo(c,g)carbazole	GCM0499-SEP22	mg/L	0.0001	< 0.0001	NSS	30	93	50	140	NSS	50	140
Anthracene	GCM0499-SEP22	mg/L	0.0001	< 0.0001	NSS	30	104	50	140	NSS	50	140
Benzo(a)anthracene	GCM0499-SEP22	mg/L	0.0001	< 0.0001	NSS	30	100	50	140	NSS	50	140
Benzo(a)pyrene	GCM0499-SEP22	mg/L	0.0001	< 0.0001	NSS	30	103	50	140	NSS	50	140
Benzo(b+j)fluoranthene	GCM0499-SEP22	mg/L	0.0001	< 0.0001	NSS	30	99	50	140	NSS	50	140
Benzo(e)pyrene	GCM0499-SEP22	mg/L	0.0001	< 0.0001	NSS	30	98	50	140	NSS	50	140
Benzo(ghi)perylene	GCM0499-SEP22	mg/L	0.0002	< 0.0002	NSS	30	99	50	140	NSS	50	140
Benzo(k)fluoranthene	GCM0499-SEP22	mg/L	0.0001	< 0.0001	NSS	30	102	50	140	NSS	50	140
Bis(2-ethylhexyl)phthalate	GCM0499-SEP22	mg/L	0.002	< 0.002	NSS	30	137	50	140	NSS	50	140
Chrysene	GCM0499-SEP22	mg/L	0.0001	< 0.0001	NSS	30	105	50	140	NSS	50	140
di-n-Butyl Phthalate	GCM0499-SEP22	mg/L	0.002	< 0.002	NSS	30	132	50	140	NSS	50	140
Dibenzo(a,h)anthracene	GCM0499-SEP22	mg/L	0.0001	< 0.0001	NSS	30	104	50	140	NSS	50	140
Dibenzo(a,i)pyrene	GCM0499-SEP22	mg/L	0.0001	< 0.0001	NSS	30	75	50	140	NSS	50	140
Dibenzo(a,j)acridine	GCM0499-SEP22	mg/L	0.0001	< 0.0001	NSS	30	88	50	140	NSS	50	140
Fluoranthene	GCM0499-SEP22	mg/L	0.0001	< 0.0001	NSS	30	109	50	140	NSS	50	140
Indeno(1,2,3-cd)pyrene	GCM0499-SEP22	mg/L	0.0002	< 0.0002	NSS	30	109	50	140	NSS	50	140
Perylene	GCM0499-SEP22	mg/L	0.0005	< 0.0005	NSS	30	101	50	140	NSS	50	140
Phenanthrene	GCM0499-SEP22	mg/L	0.0001	< 0.0001	NSS	30	106	50	140	NSS	50	140
Pyrene	GCM0499-SEP22	mg/L	0.0001	< 0.0001	NSS	30	101	50	140	NSS	50	140

20221005 16 / 22

QC SUMMARY

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		М	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recovery Limits	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Suspended Solids	EWL0493-SEP22	mg/L	2	< 2	0	10	101	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	Matrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen	SKA0230-SEP22	as N mg/L	0.5	<0.5	1	10	103	90	110	108	75	125

20221005 17 / 22

QC SUMMARY

Volatile Organics

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ery Limits %)
						(70)	(%)	Low	High	(%)	Low	High
1,1,1,2-Tetrachloroethane	GCM0420-SEP22	mg/L	0.0005	<0.0005	ND	30	95	60	130	99	50	140
1,1,2,2-Tetrachloroethane	GCM0420-SEP22	mg/L	0.0005	<0.0005	ND	30	95	60	130	97	50	140
1,2-Dichlorobenzene	GCM0420-SEP22	mg/L	0.0005	<0.0005	ND	30	96	60	130	99	50	140
1,4-Dichlorobenzene	GCM0420-SEP22	mg/L	0.0005	<0.0005	ND	30	97	60	130	97	50	140
Benzene	GCM0420-SEP22	mg/L	0.0005	<0.0005	ND	30	95	60	130	99	50	140
Chloroform	GCM0420-SEP22	mg/L	0.0005	<0.0005	ND	30	94	60	130	98	50	140
cis-1,2-Dichloroethene	GCM0420-SEP22	mg/L	0.0005	<0.0005	ND	30	96	60	130	101	50	140
Ethylbenzene	GCM0420-SEP22	mg/L	0.0005	<0.0005	ND	30	97	60	130	101	50	140
m-p-xylene	GCM0420-SEP22	mg/L	0.0005	<0.0005	ND	30	96	60	130	99	50	140
Methyl ethyl ketone	GCM0420-SEP22	mg/L	0.02	<0.02	ND	30	91	50	140	98	50	140
Methylene Chloride	GCM0420-SEP22	mg/L	0.0005	<0.0005	ND	30	96	60	130	99	50	140
o-xylene	GCM0420-SEP22	mg/L	0.0005	<0.0005	ND	30	99	60	130	103	50	140
Styrene	GCM0420-SEP22	mg/L	0.0005	<0.0005	ND	30	97	60	130	100	50	140
Tetrachloroethylene	GCM0420-SEP22	mg/L	0.0005	<0.0005	ND	30	98	60	130	101	50	140
(perchloroethylene)												
Toluene	GCM0420-SEP22	mg/L	0.0005	<0.0005	ND	30	97	60	130	99	50	140
trans-1,3-Dichloropropene	GCM0420-SEP22	mg/L	0.0005	<0.0005	ND	30	99	60	130	103	50	140
Trichloroethylene	GCM0420-SEP22	mg/L	0.0005	<0.0005	ND	30	97	60	130	98	50	140

20221005 18 / 22

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20221005

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

20221005 20 / 22

Request for Laboratory Services and CHAIN OF CUSTODY ndustries & Environment - Lakefield: 185 Concession St., Lakefield, ON K0L 2H0 Phone: 705-652-2000 Fax: 705-652-5365 Web: www.sgs.com/environment - London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361 Laboratory Information Section - Lab use only Received By: Received By (signature): Received Date: Custody Seal Present: Yes No No F Custody Seal Intact: REPORT INFORMATION INVOICE INFORMATION (same as Report Information) Quotation #: Project #: TAT's are quoted in business days (exclude statutory holidays & weekends). Regular TAT (5-7days) Samples received after 6pm or on weekends: TAT begins next business day RUSH TAT (Additional Charges May Apply): 1 Day 2 Days 3 Days 4 Days PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION *NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED Specify Due Date: WITH SGS DRINKING WATER CHAIN OF CUSTODY REGULATIONS **ANALYSIS REQUESTED** M & I SVOC PCB PHC VOC Pest SPLP TCLP O.Reg 153/04 O.Reg 406/19 Other (please specify) Other Regulations: Sewer By-Law: Res/Park Soil Texture: Table 1 Reg 347/558 (3 Day min TAT) Sanitary Table 2 Ind/Com Coarse PWQO MMER tests tests Agri/Other Medium/Fine Other: Table 3 CCME Aroclor Table ☐Metals ☐M&I ODWS Not Reportable 'See note VISS/SSCM Soil Volume <350m3 >350m3 Metals & Inorganics inclorvi, cn. Hg pH.(B(HWS), EC, SAR (Cl. Na-water) COMMENTS: □voc Qvoc Field Filtered (Y/N) Full Metals Suite RECORD OF SITE CONDITION (RSC) YES NO ICP Metals only Q 1,4-**□**РСВ BTEX Total PAHs only OCP F1-F4 only Pesticides DATE TIME # OF + MATRIX DABN SAMPLE IDENTIFICATION SVOCs all ind PAHs, VOCs all incl BTEX DABN SAMPLED SAMPLED BOTTLES PCBs BTEX ☐ Ignit. 20 Nanfilteres aw PM 8

Observations/Comments/Special Instructions

12

Sampled By (NAME): Date: Date:

Note: Submission of samples to SGS is acknowledgement that you have been provided direction on sample collection of samples to SGS is considered authorization for completion of work. Signatures may appear on this form or be retained the contract, or in an alternative format (e.g. shipping documents). (3) Results may be sent by email to an unlimited number of addresses for no additional cost. Fax is available upon request. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/items_and_conditions.htm. (Printed copies are available upon request.) Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Request for Laboratory Services and CHAIN OF CUSTODY

Industries & Environment - Lakefield: 185 Concession St., Lakefield, ON K0L 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment - London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361

Acrele Boxant		3 Sec.	/ h	orator	y Infor	matic	n Sec	ction	- Lab	use	only					,				
Received By: 1010 Signit	(nx)	Received By (sig	, , ,		A A	Coolin	na Aaen	t Proce	ant: V	. [A	No. I	\neg	Type:	10	o pa	15				
Received Time: 11 : 30 (hr : min)	уу)	Custody Seal Int	esent: Yes No			Tempe	erature	Upon f	Receipt	(°C)	9	9	o o		V	1_0		ABLIMS	"CA-	14622-SEP22
REPORT INFORMATION	in in	VOICE INFORM	MATION		4.7.4						•									90
Company: DS Consultants	(same as R	enort Informatio	n)	Ouo	tation #						00303240	1481153-12	7910 04000			P.O. #:		AMERICAN.		
Contact: Add (1). 1.	Company: A				ect #:		22	-2	00	_	10	2					974	1/41	1.	neted G. Mississ
Address: 6221 Itms 7.1/nit	Company: A	COM	0	i Toje	oct ir.						١٥	T	URNA	ROU	ND TIME (T	AT) REQUIRED	17-	cal	ccsna	nercol Cylicissas
16 2/201	Address:			HE GLEAN	c Re	eaular	TAT (5	5-7day	/s)						T	AT's are quoted in				ry holidays & weekends).
Phone: 204-051-8164	Address				H TAT					Ann	l.A.			D				on wee	kends: TAT	begins next business day
Fax:	Phone:															3 Days 4				
Address: 6221 Itmy 7, Vnit 16, Vanglan, ON Phone: 204-951-8164 Fax: abdul. 9 adir Rassan Itani Email:	5			-		118												UMAN C	ONSUMPT	ON MUST BE SUBMITTED
Email: · ca	Email:			Spec	ify Due	Date.			and the season						WIT	H SGS DRINKING				
REG	T		4000	Single				1			-		T	District Control	UESTE					
O.Reg 153/04 O.Reg 406/19	Other Regula		Sewer By-Law:	-	M	& I		SV	ОС	PCB	PI	HC	V	OC	Pest	Other (please	specify)	SP	LP TCLF	
Table 1 Res/Park Soil Texture:		8 (3 Day min TAT) MMER	Sanitary Storm			1												Spe	cify Specify	
Table 3 Agri/Other Medium/Fine	ССМЕ	Other:	Municipality:				, jo	- 15									3		sts tests	
Appx	MISA		Peel Region	1	-soil)	\[\frac{1}{2}\]	a,Be,B			Arock							235	?	200	
Soil Volume	ODWS Not	Reportable *See n	ote Missiscisson	492	ics C,SAR	Hg, C	,As,Ba			1						= :-	7,35		letals M&I	COMMENTO
RECORD OF SITE CONDITION (RSC)	YES	NO		¥ [gan vs).E	ii only	only Sb,As, Se,Ag,TI,U,V,Zn								y othe		-3 to	papua		COMMENTS:
) pe	Metals & Inorganics inclovi, CN, BpH, (B(HWS), EC, SAR-s (Cl, Na-water)	S S	onl Se,Ag,		CPs	Total	EX				specif		Use: Yee Ye G: Mississo Characterizatio	EXB D	oxane	
CAMPLE IDENTIFICATION	DATE	TIME	# OF	Filtered	∞ Hd BH (tals Is B(H	tals Mo,Ni.	nly	ABNs,	_	B	nly		only	le or		Mis.			
SAMPLE IDENTIFICATION	SAMPLED	SAMPLED BO	OTTLES MATRIX	II.	als // CN, water	Me tals plu	ICP Metals Cr,Co,Cu,Pb,Mo,Ni,Se	PAHs only	SVOCs all incl PAHs, ABNs, CPs	S	F1-F4 + BTEX	F1-F4 only no BTEX	VOCs all incl BTEX	Xor	Pesticides Organochlorine o		pkg:		EMERGE 1274	
		Crest lin		Field	Met Cl, Na	E me	G 0.0.	AH	Sincl F	PCBs	1-F	7-F	0 Incl	BTEX	est		Sewer Specify pk	enera	☐ Ignit.	
1 BH22-9	03/00+1	Am	1 am	N		<u> </u>	_ 0		0) a	ш.		L c	- e	ш	<u>u</u> 0		8 % >			(DIU ())
2	03/oct/ 2022			1.,												 	9	+	100	CA14622 Append
3				+										-				_		Append
4				_	<u> </u>			437.04										+		
5				+	<u> </u>	3									473		\vdash	+		
6							0		- 207											
7																		+		
8				+		7											\vdash	+		
9				+													++	+		
10																		+		
11				+						_								+		
12				a 0		-		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										+		
Observations/Comments/Special Instructions	L				L								L							
04 100	1-						Ų.													
Sampled By (NAME):		Sig	nature:				37							Date:		13/22	(mm/	dd/yy)		Pink Copy - Client
Revision #: 1.6 Note: Submission of samples to SGS	is acknowledgement th	1	nature:	ollection	handline	and trans	enodelic	of so-	nloc (O	Cub'-	sion of	corre!	o to CC	Date:	10 10	3122	(mm/	dd/yy)		Yellow & White Copy - SGS
Revision #: 1.6 Note: Submission of samples to SGS	is acknowledgement th	at you have been pro	vided direction on sample (onection/	nanuling a	and trans	portation	oi sam	ipies. (2	Simons	sion of	sample	15 to 5G	o is con	sidered authori	zation for completion o	work. Sig	natures m	ay appear on	trils form or be retained on file in

Your Project #: 22-200-100

Site Location: RANGEVIEW RD, MISSISSAUGA

Your C.O.C. #: 930059-01-01

Attention: PRADEEP PATEL

DS Consultants Limited 6221 Highway 7, Unit 16 Vaughan, ON CANADA L4H 0K8

Report Date: 2023/05/01

Report #: R7610413 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3A6391 Received: 2023/04/17, 13:05

Sample Matrix: Water # Samples Received: 1

# Samples Received. 1		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
ABN Compounds in Water by GC/MS	1	2023/04/20	2023/04/21	CAM SOP-00301	EPA 8270 m
Biochemical Oxygen Demand (BOD)	1	2023/04/21	2023/04/26	CAM SOP-00427	SM 23 5210B m
Carbonaceous BOD	1	2023/04/19	2023/04/24	CAM SOP-00427	SM 23 5210B m
Total Cyanide	1	2023/04/20	2023/04/20	CAM SOP-00457	OMOE E3015 5 m
Fluoride	1	2023/04/20	2023/04/20	CAM SOP-00449	SM 23 4500-F C m
Mercury in Water by CVAA	1	2023/04/20	2023/04/20	CAM SOP-00453	EPA 7470A m
Total Metals Analysis by Axial ICP	1	2023/04/20	2023/04/25	CAM SOP-00408	EPA 6010D m
E.coli, (CFU/100mL)	1	N/A	2023/04/19	CAM SOP-00552	MECP E3371
Total Nonylphenol in Liquids by HPLC	1	2023/04/21	2023/04/22	CAM SOP-00313	In-house Method
Nonylphenol Ethoxylates in Liquids: HPLC	1	2023/04/21	2023/04/22	CAM SOP-00313	Bureau Veritas
Animal and Vegetable Oil and Grease	1	N/A	2023/04/24	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2023/04/24	2023/04/24	CAM SOP-00326	EPA1664B m,SM5520B m
Polychlorinated Biphenyl in Water	1	2023/04/20	2023/04/21	CAM SOP-00309	EPA 8082A m
рН	1	2023/04/20	2023/04/20	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2023/04/21	CAM SOP-00444	OMOE E3179 m
Sulphate by Automated Turbidimetry	1	N/A	2023/04/21	CAM SOP-00464	SM 23 4500-SO42- E m
Total Kjeldahl Nitrogen in Water	1	2023/04/20	2023/04/21	CAM SOP-00938	OMOE E3516 m
Total PAHs: Barrie/Mississauga Sewer Use (1)	1	N/A	2023/04/24	CAM SOP - 00301	
Mineral/Synthetic O & G (TPH Heavy Oil) (2)	1	2023/04/24	2023/04/24	CAM SOP-00326	EPA1664B m,SM5520F m
Total Suspended Solids	1	2023/04/20	2023/04/20	CAM SOP-00428	SM 23 2540D m
Volatile Organic Compounds in Water	1	N/A	2023/04/21	CAM SOP-00228	EPA 8260D

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Your Project #: 22-200-100

Site Location: RANGEVIEW RD, MISSISSAUGA

Your C.O.C. #: 930059-01-01

Attention: PRADEEP PATEL

DS Consultants Limited 6221 Highway 7, Unit 16 Vaughan, ON CANADA L4H 0K8

Report Date: 2023/05/01

Report #: R7610413 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3A6391

Received: 2023/04/17, 13:05

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Total PAHs include only those PAHs specified in the sewer use by-by-law.
- (2) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Encryption Key

01 May 2023 18:02:12

Please direct all questions regarding this Certificate of Analysis to: Ashton Gibson, Project Manager Email: Ashton.Gibson@bureauveritas.com Phone# (905)817-5765

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

DS Consultants Limited Client Project #: 22-200-100

Site Location: RANGEVIEW RD, MISSISSAUGA

Sampler Initials: HS

MISSISSAUGA STORM SEWER BYLAW (46-2022)

Bureau Verit	as ID			VOI141			
Sampling Da	te			2023/04/17			
COC Numbe	r			930059-01-01			
		UNITS	Criteria	BH22-14	RDL	QC Batch	
Inorganics							
Total BOD		mg/L	15	<2	2	8620686	
Calculated Parameters							
Total PAHs		ug/L	2	<3.4 (1)	3.4	8616586	
No Fill	No Exceedance	e					
Grey	Exceeds 1 crite	eria poli	cy/level				
Black Exceeds both criteria/levels							
RDL = Report	table Detection L	imit					
QC Batch = C	Quality Control Ba	atch					
Criteria: City	of Mississauga S	torm Se	wer Use	By-Law 0046-20	22		

(1) RDL exceeds criteria

DS Consultants Limited Client Project #: 22-200-100

Site Location: RANGEVIEW RD, MISSISSAUGA

Sampler Initials: HS

PEEL SANITARY & STORM SEWER (53-2010)

Bureau Veritas ID				VOI141			VOI141		
Sampling Date				2023/04/17			2023/04/17		
COC Number				930059-01-01			930059-01-01		
	UNITS	Criteria	Criteria-2	BH22-14	RDL	QC Batch	BH22-14 Lab-Dup	RDL	QC Batch
Calculated Parameters									
Total Animal/Vegetable Oil and Grease	mg/L	-	150	1.9	0.50	8611791			
Inorganics							-		
Total Carbonaceous BOD	mg/L	-	300	<2	2	8615705	<2	2	8615705
Fluoride (F-)	mg/L	-	10	0.22	0.10	8618800			
Total Kjeldahl Nitrogen (TKN)	mg/L	-	100	0.30	0.10	8618510			
рН	рН	6:9	5.5:10.0	7.28		8618816			
Phenols-4AAP	mg/L	0.008	1	<0.0010	0.0010	8621267			
Total Suspended Solids	mg/L	15	350	42	10	8616229			
Dissolved Sulphate (SO4)	mg/L	-	1500	300	1.0	8618856			
Total Cyanide (CN)	mg/L	0.02	2	<0.0050	0.0050	8619331	<0.0050	0.0050	8619331
Petroleum Hydrocarbons									
Total Oil & Grease	mg/L	-	-	1.9	0.50	8624415			
Total Oil & Grease Mineral/Synthetic	mg/L	-	15	<0.50	0.50	8624419			
Miscellaneous Parameters		•							
Nonylphenol Ethoxylate (Total)	mg/L	-	0.2	<0.025	0.025	8622178	<0.025	0.025	8622178
Nonylphenol (Total)	mg/L	-	0.02	<0.001	0.001	8621974			
Metals		•							
Total Aluminum (Al)	mg/L	1.0	50	0.1	0.1	8618519	0.1	0.1	8618519
Total Antimony (Sb)	mg/L	-	5	<0.02	0.02	8618519	<0.02	0.02	8618519
Total Arsenic (As)	mg/L	0.02	1	<0.01	0.01	8618519	<0.01	0.01	8618519
Total Cadmium (Cd)	mg/L	0.008	0.7	<0.002	0.002	8618519	<0.002	0.002	8618519
Total Chromium (Cr)	mg/L	0.08	5	<0.01	0.01	8618519	<0.01	0.01	8618519
Total Cobalt (Co)	mg/L	-	5	<0.002	0.002	8618519	<0.002	0.002	8618519
Total Copper (Cu)	mg/L	0.04	3	<0.01	0.01	8618519	<0.01	0.01	8618519
Total Lead (Pb)	mg/L	0.12	3	<0.01	0.01	8618519	<0.01	0.01	8618519
Total Manganese (Mn)	mg/L	2.0	5	0.018	0.001	8618519	0.017	0.001	8618519
Mercury (Hg)	mg/L	0.0004	0.01	<0.00010	0.00010	8618388			
Total Molybdenum (Mo)	mg/L	-	5	0.019	0.005	8618519	0.014	0.005	8618519

No Fill
Grey
Black

No Exceedance

Exceeds 1 criteria policy/level Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: City of Mississauga Storm Sewer Use By-Law 0046-2022

Criteria-2: The Regional Municipality of Peel Sanitary Sewer Discharge.

By-Law Number 53-2010.

Report Date: 2023/05/01

DS Consultants Limited Client Project #: 22-200-100

Site Location: RANGEVIEW RD, MISSISSAUGA

Sampler Initials: HS

PEEL SANITARY & STORM SEWER (53-2010)

Bureau Veritas ID				VOI141			VOI141		
Sampling Date				2023/04/17			2023/04/17		
COC Number				930059-01-01			930059-01-01		
	UNITS	Criteria	Criteria-2	BH22-14	RDL	QC Batch	BH22-14 Lab-Dup	RDL	QC Batch
Total Nickel (Ni)	mg/L	0.08	3	<0.005	0.005	8618519	<0.005	0.005	8618519
Total Phosphorus (P)	mg/L	0.4	10	<0.05	0.05	8618519	<0.05	0.05	8618519
Total Selenium (Se)	mg/L	0.02	1	<0.02	0.02	8618519	<0.02	0.02	8618519
Total Silver (Ag)	mg/L	0.12	5	<0.01	0.01	8618519	<0.01	0.01	8618519
Total Tin (Sn)	mg/L	-	5	<0.02	0.02	8618519	<0.02	0.02	8618519
Total Titanium (Ti)	mg/L	-	5	<0.005	0.005	8618519	<0.005	0.005	8618519
Total Zinc (Zn)	mg/L	0.2	3	<0.005	0.005	8618519	<0.005	0.005	8618519
Semivolatile Organics		•							
Bis(2-ethylhexyl)phthalate	ug/L	-	12	<8.0	8.0	8619798			
Di-N-butyl phthalate	ug/L	-	80	<8.0	8.0	8619798			
Volatile Organics		•							
Benzene	ug/L	2	10	<0.40	0.40	8618617			
Chloroform	ug/L	-	40	<0.40	0.40	8618617			
1,2-Dichlorobenzene	ug/L	5.6	50	<0.80	0.80	8618617			
1,4-Dichlorobenzene	ug/L	6.8	80	<0.80	0.80	8618617			
cis-1,2-Dichloroethylene	ug/L	-	4000	<1.0	1.0	8618617			
trans-1,3-Dichloropropene	ug/L	-	140	<0.80	0.80	8618617			
Ethylbenzene	ug/L	2	160	<0.40	0.40	8618617			
Methylene Chloride(Dichloromethane)	ug/L	5.2	2000	<4.0	4.0	8618617			
Methyl Ethyl Ketone (2-Butanone)	ug/L	-	8000	<20	20	8618617			
Styrene	ug/L	-	200	<0.80	0.80	8618617			
1,1,2,2-Tetrachloroethane	ug/L	17	1400	<0.80	0.80	8618617			
Tetrachloroethylene	ug/L	4.4	1000	<0.40	0.40	8618617			
Toluene	ug/L	2	270	<0.40	0.40	8618617			
Trichloroethylene	ug/L	7.6	400	<0.40	0.40	8618617			
p+m-Xylene	ug/L	-	-	<0.40	0.40	8618617			
o-Xylene	ug/L	-	-	<0.40	0.40	8618617			
Total Xylenes	ug/L	4.4	1400	<0.40	0.40	8618617			

No Fill Grey

Black

No Exceedance

Exceeds 1 criteria policy/level Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: City of Mississauga Storm Sewer Use By-Law 0046-2022

Criteria-2: The Regional Municipality of Peel Sanitary Sewer Discharge.

By-Law Number 53-2010.

Report Date: 2023/05/01

DS Consultants Limited Client Project #: 22-200-100

Site Location: RANGEVIEW RD, MISSISSAUGA

Sampler Initials: HS

PEEL SANITARY & STORM SEWER (53-2010)

Bureau Veritas ID				VOI141			VOI141		
Sampling Date				2023/04/17			2023/04/17		
COC Number				930059-01-01			930059-01-01		
	UNITS	Criteria	Criteria-2	BH22-14	RDL	QC Batch	BH22-14 Lab-Dup	RDL	QC Batch
PCBs									
Total PCB	ug/L	0.4	1	<0.05	0.05	8618461			
Microbiological	=	-				-			
Escherichia coli	CFU/100mL	200	-	0	N/A	8616957			
Surrogate Recovery (%)	•								
2,4,6-Tribromophenol	%	-	-	48		8619798			
2-Fluorobiphenyl	%	-	-	77		8619798			
2-Fluorophenol	%	-	-	28		8619798			
D14-Terphenyl	%	-	-	98		8619798			
D5-Nitrobenzene	%	-	-	87		8619798			
D5-Phenol	%	-	-	24		8619798			
Decachlorobiphenyl	%	-	-	94		8618461			
4-Bromofluorobenzene	%	-	-	99		8618617			
D4-1,2-Dichloroethane	%	-	-	115		8618617			
D8-Toluene	%	-	-	88		8618617			

No Fill Grey

Black

No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: City of Mississauga Storm Sewer Use By-Law 0046-2022

Criteria-2: The Regional Municipality of Peel Sanitary Sewer Discharge.

By-Law Number 53-2010.

N/A = Not Applicable

DS Consultants Limited Client Project #: 22-200-100

Site Location: RANGEVIEW RD, MISSISSAUGA

Sampler Initials: HS

TEST SUMMARY

Bureau Veritas ID: VOI141 Sample ID: BH22-14 Collected: 2023/04/17 Shipped:

Sample ID: BH22-14 Matrix: Water

Received: 2023/04/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
ABN Compounds in Water by GC/MS	GC/MS	8619798	2023/04/20	2023/04/21	Kathy Horvat
Biochemical Oxygen Demand (BOD)	DO	8620686	2023/04/21	2023/04/26	Gurjot Kaur
Carbonaceous BOD	DO	8615705	2023/04/19	2023/04/24	Gurjot Kaur
Total Cyanide	SKAL/CN	8619331	2023/04/20	2023/04/20	Chloe Pollock
Fluoride	ISE	8618800	2023/04/20	2023/04/20	Kien Tran
Mercury in Water by CVAA	CV/AA	8618388	2023/04/20	2023/04/20	Gagandeep Rai
Total Metals Analysis by Axial ICP	ICPX	8618519	2023/04/20	2023/04/25	Medhat Nasr
E.coli, (CFU/100mL)	PL	8616957	N/A	2023/04/19	Sonja Elavinamannil
Total Nonylphenol in Liquids by HPLC	LC/FLU	8621974	2023/04/21	2023/04/22	Furneesh Kumar
Nonylphenol Ethoxylates in Liquids: HPLC	LC/FLU	8622178	2023/04/21	2023/04/22	Furneesh Kumar
Animal and Vegetable Oil and Grease	BAL	8611791	N/A	2023/04/24	Automated Statchk
Total Oil and Grease	BAL	8624415	2023/04/24	2023/04/24	Navneet Singh
Polychlorinated Biphenyl in Water	GC/ECD	8618461	2023/04/20	2023/04/21	Svitlana Shaula
рН	AT	8618816	2023/04/20	2023/04/20	Kien Tran
Phenols (4AAP)	TECH/PHEN	8621267	N/A	2023/04/21	Mandeep Kaur
Sulphate by Automated Turbidimetry	KONE	8618856	N/A	2023/04/21	Yogesh Patel
Total Kjeldahl Nitrogen in Water	SKAL	8618510	2023/04/20	2023/04/21	Jency Sara Johnson
Total PAHs: Barrie/Mississauga Sewer Use	CALC	8616586	N/A	2023/04/24	Automated Statchk
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	8624419	2023/04/24	2023/04/24	Navneet Singh
Total Suspended Solids	BAL	8616229	2023/04/20	2023/04/20	Shaneil Hall
Volatile Organic Compounds in Water	GC/MS	8618617	N/A	2023/04/21	Hai Son Tran

Bureau Veritas ID: VOI141 Dup

Sample ID: BH22-14

. Matrix: Water **Collected:** 2023/04/17

Shipped:

Received: 2023/04/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonaceous BOD	DO	8615705	2023/04/19	2023/04/24	Gurjot Kaur
Total Cyanide	SKAL/CN	8619331	2023/04/20	2023/04/20	Chloe Pollock
Total Metals Analysis by Axial ICP	ICPX	8618519	2023/04/20	2023/04/25	Medhat Nasr
Nonylphenol Ethoxylates in Liquids: HPLC	LC/FLU	8622178	2023/04/21	2023/04/22	Furneesh Kumar

DS Consultants Limited Client Project #: 22-200-100

Site Location: RANGEVIEW RD, MISSISSAUGA

Sampler Initials: HS

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 2.0°C

Sample VOI141 [BH22-14]: ABN Analysis: Due to the sample matrix, a smaller amount was used for analysis. Detection limits were adjusted accordingly.

Sample VOI141 [BH22-14]: VOC Analysis: Due to sample matrix, sample required dilution. Detection limits were adjusted accordingly.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

DS Consultants Limited Client Project #: 22-200-100 Site Location: RANGEVIEW RD, MISSISSAUGA Sampler Initials: HS

			Matrix Spike	Spike	SPIKED	SPIKED BLANK	Method Blank	3lank	RPD	٥	QC Standard	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery QC Limits	QC Limits
8618461	Decachlorobiphenyl	2023/04/21	101	60 - 130	96	60 - 130	6	%				
8618617	4-Bromofluorobenzene	2023/04/21	103	70 - 130	102	70 - 130	102	%				
8618617	D4-1,2-Dichloroethane	2023/04/21	105	70 - 130	101	70 - 130	110	%				
8618617	D8-Toluene	2023/04/21	103	70 - 130	106	70 - 130	89	%				
8619798	2,4,6-Tribromophenol	2023/04/21	87	10 - 130	93	10 - 130	62	%				
8619798	2-Fluorobiphenyl	2023/04/21	51	30 - 130	64	30 - 130	77	%				
8619798	2-Fluorophenol	2023/04/21	26	10 - 130	48	10 - 130	40	%				
8619798	D14-Terphenyl	2023/04/21	93	30 - 130	99	30 - 130	96	%				
8619798	D5-Nitrobenzene	2023/04/21	55	30 - 130	87	30 - 130	87	%				
8619798	D5-Phenol	2023/04/21	18	10 - 130	31	10 - 130	28	%				
8615705	Total Carbonaceous BOD	2023/04/24					<2	mg/L	NC	30	91	85 - 115
8616229	Total Suspended Solids	2023/04/20					<10	mg/L	4.8	20	96	85 - 115
8618388	Mercury (Hg)	2023/04/20	102	75 - 125	103	80 - 120	<0.00010	mg/L	NC	20		
8618461	Total PCB	2023/04/21	96	60 - 130	80	60 - 130	<0.05	ng/L	NC	40		
8618510	Total Kjeldahl Nitrogen (TKN)	2023/04/21	82	80 - 120	100	80 - 120	<0.10	mg/L	NC (1)	20	118	80 - 120
8618519	Total Aluminum (AI)	2023/04/25	127 (2)	80 - 120	94	80 - 120	<0.1	mg/L	10	20		
8618519	Total Antimony (Sb)	2023/04/25	107	80 - 120	103	80 - 120	<0.02	mg/L	NC	20		
8618519	Total Arsenic (As)	2023/04/25	109	80 - 120	103	80 - 120	<0.01	mg/L	NC	20		
8618519	Total Cadmium (Cd)	2023/04/25	106	80 - 120	103	80 - 120	<0.002	mg/L	NC	20		
8618519	Total Chromium (Cr)	2023/04/25	107	80 - 120	101	80 - 120	<0.01	mg/L	NC	20		
8618519	Total Cobalt (Co)	2023/04/25	96	80 - 120	100	80 - 120	<0.002	mg/L	NC	20		
8618519	Total Copper (Cu)	2023/04/25	99	80 - 120	101	80 - 120	<0.01	mg/L	NC	20		
8618519	Total Lead (Pb)	2023/04/25	95	80 - 120	100	80 - 120	<0.01	mg/L	NC	20		
8618519	Total Manganese (Mn)	2023/04/25	97	80 - 120	100	80 - 120	<0.001	mg/L	3.9	20		
8618519	Total Molybdenum (Mo)	2023/04/25	103	80 - 120	104	80 - 120	<0.005	mg/L	NC	20		
8618519	Total Nickel (Ni)	2023/04/25	98	80 - 120	103	80 - 120	<0.005	mg/L	NC	20		
8618519	Total Phosphorus (P)	2023/04/25	104	80 - 120	99	80 - 120	<0.05	mg/L	NC	20		
8618519	Total Selenium (Se)	2023/04/25	107	80 - 120	105	80 - 120	<0.02	mg/L	NC	20		
8618519	Total Silver (Ag)	2023/04/25	98	80 - 120	98	80 - 120	<0.01	mg/L	NC	20		
8618519	Total Tin (Sn)	2023/04/25	99	80 - 120	103	80 - 120	<0.02	mg/L	NC	20		
8618519	Total Titanium (Ti)	2023/04/25	102	80 - 120	101	80 - 120	<0.005	mg/L	NC	20		

Page 9 of 13

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT(CONT'D)

DS Consultants Limited Client Project #: 22-200-100

Site Location: RANGEVIEW RD, MISSISSAUGA Sampler Initials: HS

			Matrix Spike	Spike	SPIKED BLANK	BLANK	Method Blank	Slank	RPD		QC Standard	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery QC Limits	QC Limits
8618519	Total Zinc (Zn)	2023/04/25	66	80 - 120	101	80 - 120	<0.005	mg/L	NC	20		
8618617	1,1,2,2-Tetrachloroethane	2023/04/21	101	70 - 130	6	70 - 130	<0.40	7/8n	NC	30		
8618617	1,2-Dichlorobenzene	2023/04/21	56	70 - 130	92	70 - 130	<0.40	7/8n	NC	30		
8618617	1,4-Dichlorobenzene	2023/04/21	110	70 - 130	113	70 - 130	<0.40	∏/gn	NC	30		
8618617	Benzene	2023/04/21	91	70 - 130	68	70 - 130	<0.20	7/8n	NC	30		
8618617	Chloroform	2023/04/21	86	70 - 130	92	70 - 130	<0.20	7/8n	NC	30		
8618617	cis-1,2-Dichloroethylene	2023/04/21	NC	70 - 130	66	70 - 130	<0.50	7/8n	4.5	30		
8618617	Ethylbenzene	2023/04/21	82	70 - 130	87	70 - 130	<0.20	7/8n	NC	30		
8618617	Methyl Ethyl Ketone (2-Butanone)	2023/04/21	104	60 - 140	97	60 - 140	<10	ng/L	NC	30		
8618617	Methylene Chloride(Dichloromethane)	2023/04/21	86	70 - 130	94	70 - 130	<2.0	√gn	NC	30		
8618617	o-Xylene	2023/04/21	98	70 - 130	94	70 - 130	<0.20	7/8n	NC	30		
8618617	p+m-Xylene	2023/04/21	73	70 - 130	75	70 - 130	<0.20	ng/L	NC	30		
8618617	Styrene	2023/04/21	81	70 - 130	85	70 - 130	<0.40	ng/L	NC	30		
8618617	Tetrachloroethylene	2023/04/21	06	70 - 130	90	70 - 130	<0.20	ng/L	NC	30		
8618617	Toluene	2023/04/21	94	70 - 130	92	70 - 130	<0.20	ng/L	NC	30		
8618617	Total Xylenes	2023/04/21					<0.20	ng/L	NC	30		
8618617	trans-1,3-Dichloropropene	2023/04/21	113	70 - 130	101	70 - 130	<0.40	ng/L	NC	30		
8618617	Trichloroethylene	2023/04/21	101	70 - 130	100	70 - 130	<0.20	ng/L	NC	30		
8618800	Fluoride (F-)	2023/04/20	94	80 - 120	98	80 - 120	<0.10	mg/L	NC	20		
8618816	рН	2023/04/20			102	98 - 103			0.71	N/A		
8618856	Dissolved Sulphate (SO4)	2023/04/21	NC	75 - 125	97	80 - 120	<1.0	mg/L	3.6	20		
8619331	Total Cyanide (CN)	2023/04/20	103	80 - 120	103	80 - 120	<0.0050	mg/L	NC	20		
8619798	Bis(2-ethylhexyl)phthalate	2023/04/21	66	30 - 130	102	30 - 130	<2.0	ng/L	NC	40		
8619798	Di-N-butyl phthalate	2023/04/21	92	30 - 130	95	30 - 130	<2.0	ng/L	NC	40		
8620686	Total BOD	2023/04/26					<2	mg/L	NC	30	92	80 - 120
8621267	Phenols-4AAP	2023/04/21	106	80 - 120	100	80 - 120	<0.0010	mg/L	18	20		
8621974	Nonylphenol (Total)	2023/04/22	107	50 - 130	107	50 - 130	<0.001	mg/L	NC	40		
8622178	Nonylphenol Ethoxylate (Total)	2023/04/22	101	50 - 130	66	50 - 130	<0.025	mg/L	NC	40		
8624415	Total Oil & Grease	2023/04/24			66	85 - 115	<0.50	mg/L	0.25	25		

QUALITY ASSURANCE REPORT(CONT'D)

Client Project #: 22-200-100 DS Consultants Limited

RANGEVIEW RD, MISSISSAUGA Site Location:

Sampler Initials: HS

			Matrix Spik	Spike	SPIKED BLANK	BLANK	Method Blank	3lank	RPD	6	QC Standarc	ndard
QC Batch	QC Batch Parameter	Date	% Recovery	QC Limits	6 Recovery QC Limits % Recovery QC Limits	QC Limits	Value	UNITS	UNITS Value (%) QC Limits Recovery QC Limits	QC Limits	% Recovery	QC Limits
8624419	8624419 Total Oil & Grease Mineral/Synthetic	2023/04/24			96	85 - 115	<0.50	1/8w	0	25		
- - : : 0												

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Due to a high concentration of NOx, the sample required dilution. The detection limit was adjusted accordingly.

(2) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

DS Consultants Limited Client Project #: 22-200-100

Site Location: RANGEVIEW RD, MISSISSAUGA

Sampler Initials: HS

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

ancelle
Anastassia Hamanov, Scientific Specialist
Eve Profile R CHEMIST
Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist
N

Sonja Elavinamannil, Master of Biochemistry, Team Lead

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

DS Consultants Limited Client Project #: 22-200-100

Site Location: RANGEVIEW RD, MISSISSAUGA

Sampler Initials: HS

Exceedance Summary Table – Mississauga Storm Sewer Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
BH22-14	VOI141-06	Total Suspended Solids	15	42	10	mg/L

Detection Limit Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
BH22-14	VOI141-03	Total PAHs	2	<3.4	3.4	ug/L

The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to applicable regulatory guidelines.

Exceedance Summary Table – Peel Region Sanitary 2010

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
No Exceedances						
The exceedance summary table	is for information purp	oses only and should not be co	onsidered a comprehe	ensive listing or	statement of c	onformance to

The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to applicable regulatory guidelines.

Your P.O. #: 22-200-100

Site Location: RANGEVIEW RD, MISSISSAUGA

Your C.O.C. #: 930893-01-01

Attention: PRADEEP PATEL

DS Consultants Limited 6221 Highway 7, Unit 16 Vaughan, ON CANADA L4H 0K8

Report Date: 2023/05/10

Report #: R7623181 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3C5477
Received: 2023/05/03, 16:42

Sample Matrix: Ground Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Total Chlorine	1	2023/05/04	2023/05/04	CAM SOP 00425	SM 23 4500-CL G m
Chromium (VI) in Water	1	N/A	2023/05/08	CAM SOP-00436	EPA 7199 m
PAH Compounds in Water by GC/MS (SIM)	1	2023/05/09	2023/05/09	CAM SOP-00318	EPA 8270E
Total PAHs: Barrie/Mississauga Sewer Use (1)	1	N/A	2023/05/10	CAM SOP - 00301	

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

 $Reference\ Method\ suffix\ "m"\ indicates\ test\ methods\ incorporate\ validated\ modifications\ from\ specific\ reference\ methods\ to\ improve\ performance.$

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Total PAHs include only those PAHs specified in the sewer use by-by-law.

Your P.O. #: 22-200-100

Site Location: RANGEVIEW RD, MISSISSAUGA

Your C.O.C. #: 930893-01-01

Attention: PRADEEP PATEL

DS Consultants Limited 6221 Highway 7, Unit 16 Vaughan, ON CANADA L4H 0K8

Report Date: 2023/05/10

Report #: R7623181 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3C5477 Received: 2023/05/03, 16:42

Encryption Key

Bureau Veritas

10 May 2023 15:30:38

Please direct all questions regarding this Certificate of Analysis to:

Ashton Gibson, Project Manager

Email: Ashton.Gibson@bureauveritas.com

Phone# (905)817-5765

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Site Location: RANGEVIEW RD, MISSISSAUGA

Your P.O. #: 22-200-100 Sampler Initials: HS

RESULTS OF ANALYSES OF GROUND WATER

Bureau Veritas ID		VSF740		
Sampling Date		2023/05/03		
COC Number		930893-01-01		
	UNITS	BH 22-14	RDL	QC Batch
Inorganics				
Inorganics Total Chlorine	mg/L	<0.1	0.1	8646949
		<0.1	0.1	8646949

Site Location: RANGEVIEW RD, MISSISSAUGA

Your P.O. #: 22-200-100 Sampler Initials: HS

ELEMENTS BY ATOMIC SPECTROSCOPY (GROUND WATER)

Bureau Veritas ID		VSF740		
Sampling Date		2023/05/03		
COC Number		930893-01-01		
	UNITS	BH 22-14	RDL	QC Batch
Metals				
Chromium (VI)	ug/L	<0.50	0.50	8648136
RDL = Reportable Detection L	imit			
QC Batch = Quality Control Ba	atch			

Site Location: RANGEVIEW RD, MISSISSAUGA

Your P.O. #: 22-200-100 Sampler Initials: HS

SEMI-VOLATILE ORGANICS BY GC-MS (GROUND WATER)

Bureau Veritas ID		VSF740		
Sampling Date		2023/05/03		
COC Number		930893-01-01		
	UNITS	BH 22-14	RDL	QC Batch
Calculated Parameters				
Total PAHs	ug/L	<0.20	0.20	8645642
Polyaromatic Hydrocarbons	;	-	-	
Biphenyl	ug/L	<0.050	0.050	8653288
Acenaphthene	ug/L	<0.050	0.050	8653288
Acenaphthylene	ug/L	<0.050	0.050	8653288
Anthracene	ug/L	<0.050	0.050	8653288
Benzo(a) anthracene	ug/L	<0.050	0.050	8653288
Benzo(a)pyrene	ug/L	<0.0090	0.0090	8653288
Benzo(b/j)fluoranthene	ug/L	<0.050	0.050	8653288
Benzo(g,h,i)perylene	ug/L	<0.050	0.050	8653288
Benzo(k)fluoranthene	ug/L	<0.050	0.050	8653288
Chrysene	ug/L	<0.050	0.050	8653288
Dibenzo(a,h)anthracene	ug/L	<0.050	0.050	8653288
Fluoranthene	ug/L	<0.050	0.050	8653288
Fluorene	ug/L	<0.050	0.050	8653288
Indeno(1,2,3-cd)pyrene	ug/L	<0.050	0.050	8653288
1-Methylnaphthalene	ug/L	<0.050	0.050	8653288
2-Methylnaphthalene	ug/L	<0.050	0.050	8653288
Naphthalene	ug/L	<0.050	0.050	8653288
Phenanthrene	ug/L	<0.030	0.030	8653288
Pyrene	ug/L	<0.050	0.050	8653288
Surrogate Recovery (%)				
D10-Anthracene	%	114		8653288
D14-Terphenyl (FS)	%	106		8653288
D8-Acenaphthylene	%	100		8653288
RDL = Reportable Detection	Limit			
QC Batch = Quality Control E	Batch			

Report Date: 2023/05/10

DS Consultants Limited

Site Location: RANGEVIEW RD, MISSISSAUGA

Your P.O. #: 22-200-100 Sampler Initials: HS

TEST SUMMARY

Bureau Veritas ID: VSF740

Collected: 2023/05/03 Shipped:

Sample ID: BH 22-14

Matrix: Ground Water

Received: 2023/05/03

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Total Chlorine	SPEC	8646949	2023/05/04	2023/05/04	Leily Karimi
Chromium (VI) in Water	IC	8648136	N/A	2023/05/08	Theodora Luck
PAH Compounds in Water by GC/MS (SIM)	GC/MS	8653288	2023/05/09	2023/05/09	Jonghan Yoon
Total PAHs: Barrie/Mississauga Sewer Use	CALC	8645642	N/A	2023/05/10	Automated Statchk

Site Location: RANGEVIEW RD, MISSISSAUGA

Your P.O. #: 22-200-100 Sampler Initials: HS

GENERAL COMMENTS

Each te	emperature is the	average of up to	three cooler temperatures taken at receipt
	Package 1	4.3°C	
Result	s relate only to the	e items tested.	

QUALITY ASSURANCE REPORT

DS Consultants Limited

Site Location: RANGEVIEW RD, MISSISSAUGA Your P.O. #: 22-200-100 Sampler Initials: HS

			Matrix Spike	Spike	SPIKED BLANK	BLANK	Method Blank	lank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8653288	D10-Anthracene	2023/05/09	104	50 - 130	101	50 - 130	113	%		
8653288	D14-Terphenyl (FS)	2023/05/09	102	50 - 130	104	50 - 130	105	%		
8653288	D8-Acenaphthylene	2023/05/09	86	50 - 130	100	50 - 130	100	%		
8646949	Total Chlorine	2023/05/04	70 (1)	85 - 115	66	85 - 115	<0.1	mg/L	NC	25
8648136	Chromium (VI)	2023/05/08	101	80 - 120	101	80 - 120	<0.50	1/8n	NC	20
8653288	1-Methylnaphthalene	2023/05/09	81	50 - 130	79	50 - 130	<0.050	1/Bn	NC	30
8653288	2-Methylnaphthalene	2023/05/09	72	50 - 130	70	50 - 130	<0.050	1/8n	NC	30
8653288	Acenaphthene	2023/05/09	102	50 - 130	66	50 - 130	<0.050	1/8n	NC	30
8653288	Acenaphthylene	2023/05/09	100	50 - 130	98	50 - 130	<0.050	1/8n	NC	30
8653288	Anthracene	2023/05/09	106	50 - 130	102	50 - 130	<0.050	1/8n	NC	30
8653288	Benzo(a)anthracene	2023/05/09	106	50 - 130	103	50 - 130	<0.050	1/8n	NC	30
8653288	Benzo(a)pyrene	2023/05/09	109	50 - 130	106	50 - 130	<0.0090	ng/L	NC	30
8653288	Benzo(b/j)fluoranthene	2023/05/09	115	50 - 130	115	50 - 130	<0.050	1/8n	NC	30
8653288	Benzo(g,h,i)perylene	2023/05/09	129	50 - 130	126	50 - 130	<0.050	1/8n	NC	30
8653288	Benzo(k)fluoranthene	2023/05/09	123	50 - 130	115	50 - 130	<0.050	1/8n	NC	30
8653288	Biphenyl	2023/05/09	75	50 - 130	72	50 - 130	<0.050	1/8n		
8653288	Chrysene	2023/05/09	111	50 - 130	110	50 - 130	<0.050	1/8n	NC	30
8653288	Dibenzo(a,h)anthracene	2023/05/09	111	50 - 130	100	50 - 130	<0.050	1/8n	NC	30
8653288	Fluoranthene	2023/05/09	121	50 - 130	119	50 - 130	<0.050	ng/L	NC	30
8653288	Fluorene	2023/05/09	103	50 - 130	100	50 - 130	<0.050	ng/L	NC	30
8653288	Indeno(1,2,3-cd)pyrene	2023/05/09	120	50 - 130	117	50 - 130	<0.050	ng/L	NC	30
8653288	Naphthalene	2023/05/09	87	50 - 130	85	50 - 130	<0.050	ng/L	NC	30
8653288	Phenanthrene	2023/05/09	106	50 - 130	105	50 - 130	<0.030	1/8n	NC	30

QUALITY ASSURANCE REPORT(CONT'D)

DS Consultants Limited

Site Location: RANGEVIEW RD, MISSISSAUGA

Your P.O. #: 22-200-100

Sampler Initials: HS

QC Limits 30

			Matrix Spike	Spike	SPIKED BLANK	BLANK	Method Blank	lank	R
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)
8653288	Pyrene	2023/05/09	116	50 - 130	115	50 - 130	<0.050	ng/L	NC

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

Site Location: RANGEVIEW RD, MISSISSAUGA

Your P.O. #: 22-200-100 Sampler Initials: HS

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Cuistin	Carrière	
Cristina Carrie	re, Senior Scientific Specialist	

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Site Location: RANGEVIEW RD, MISSISSAUGA

Your P.O. #: 22-200-100 Sampler Initials: HS

Exceedance Summary Table – Mississauga Storm Sewer Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
No Exceedances						
The exceedance summary table	is for information purp	oses only and should not be consid	ered a comprehe	ensive listing or	statement of co	onformance to
applicable regulatory guidelines.	•					

Rangeview Development Master Plan

RANGEVIEW ESTATES

Ownership Map

- Dorsay (Lakeshore) Inc. Dorsay (Lakefront Promenade) Dorsay (Rangeview) Inc.
- Elgroup Holdings Inc. Elias Bros. Construction Limited
- Rangeview 1035 Holding Inc. Rangeview 1045 Holding Inc. 1207238 Ontario Limited Inc.
- 2120412 Ontario Inc.
- Whiterock 880 Rangeview Inc.
- 447111 Ontario Limited
- 1127792 Ontario Limited
- ILSCO of Canada Limited
- Kotyck Investments Ltd.

Rangeview Estates Precinct Area (Gross Area = ~25.67 ha)

X Non-Participating Landowners

– Existing Parcel Lines

REPORT ON

Preliminary Geotechnical Investigation
Proposed Residential & Commercial Development
800 Hydro Road
Mississauga, Ontario

PREPARED FOR:

Lakeview Community Partners Limited

PREPARED BY:

DS Consultants Ltd.

Project No: 18-519-10 R2 **Date:** June 9, 2020

DS CONSULTANTS LTD.

6221 Highway 7, Unit 16 Vaughan, Ontario, L4H 0K8 Telephone: (905) 264-9393 www.dsconsultants.ca

Table of Contents

1.	INTRODUCTION	
2.	FIELD WORK & LAB TESTING	2
3.	SITE AND SUBSURFACE CONDITIONS	3
	3.1 Soil Conditions in Area 'A'	
	3.2 Soil Conditions in Area 'B'	
	3.4 Shale Bedrock (Georgian Bay Formation)	
	3.5 Groundwater Conditions	
4.	FOUNDATIONS	11
	4.1 Proposed Buildings in Area 'A'	12
	4.2 Proposed Buildings in Area 'B'	
	4.3 Proposed Buildings in Area 'C'	
_	FROST PROTECTION	
5.		
6.	FLOOR SLAB AND PERMANENT DRAINAGE	
7.	ELEVATOR AND SUMP PITS	
8.	EARTH, ROCK AND WATER PRESSURES	16
9.	EXCAVATIONS AND GROUNDWATER CONTROL	17
10.	EARTHQUAKE CONSIDERATIONS	18
11.	ROADS	18
	11.1 Pavement Thickness	18
	11.2 Stripping, Sub-excavation and Grading	
	11.3 Construction	
	-	
	UNDERGROUND UTILITIES	
13.	GENERAL COMMENTS AND LIMITATIONS OF REPORT	21
DRA	AWINGS	
Bor	REHOLE LOCATION PLAN 1	1A
	TES ON SAMPLE DESCRIPTION	1B
		-46 - 53
	,	7-57
		3-59)-62
DNA	MINAGE AND DACKTEE RECONSISTENDATIONS	, 02

APPENDIX A: PHOTOGRAPHS OF ROCK CORES

GENERAL COMMENTS ON SHALE BEDROCK IN GREATER TORONTO AREA

APPENDIX B: LOGS AND LOCATION PLAN OF EXP BOREHOLES

APPENDIX C: GEOPHYSICAL SURVEY REPORT BY GEOPHYSICS GPR INTERNATIONAL INC.

1. INTRODUCTION

DS Consultants Ltd. (DS) was retained by the ARGO Development Corporation on behalf of Lakeview Community Partners Limited to carry out preliminary geotechnical and hydrogeological investigations for the proposed Lakeview Village on the lands of the former Lakeview Power Generation Station located at 800 Hydro Road in Mississauga, Ontario.

It is understood that the proposed 71.6-hectare Lakeview Village will include 5,000 to 7,000 new homes in a variety of housing options, including townhouses, mid-rise and high-rise buildings. There will be more than 600,000 square feet of employment and institutional use and another 200,000 square feet of cultural space. Lakeview Village will include a Serson Square, a year-round central gathering space with retail offices and homes that can be used as an arts and cultural hub.

The proposed high-rise structures will entail up to 3-levels of basement. The finished basement floor elevations are not available to us at the time of writing this report.

exp Services Inc (exp.) conducted a preliminary geotechnical investigation at the subject site in December 2017 and drilled nine (9) boreholes as a part of their field work. The logs and location plan of exp. boreholes (BH1 to BH9) are attached in **Appendix B** of this report.

The purpose of this geotechnical investigation was to determine the subsurface conditions at the borehole locations and make preliminary engineering recommendations for the following:

- 1. Foundations
- 2. Floor slabs and permanent drainage
- 3. Earth pressures
- Excavations and backfill
- 5. Earthquake considerations
- 6. Pavements
- 7. Underground utilities

This report deals with geotechnical issues only. Preliminary hydrogeological findings by DS will be presented in a separate report. Environmental testing was not part of our scope of work.

This report is provided on the basis of the assumption that the design will be in accordance with the applicable codes and standards. If there are any changes in the design features relevant to the geotechnical analyses, or if any questions arise concerning the geotechnical aspects of the codes and standards, this office should be contacted to review the design. It may then be necessary to carry out additional borings and reporting before the recommendations of this office can be relied upon.

The site investigation and recommendations follow generally accepted practice for geotechnical consultants in Ontario, Canada. The format and contents are guided by client specific needs and economics and conform to generalized standards for services. Laboratory testing for most part follows ASTM or CSA Standards or modifications of these standards that have become standard practice.

The foundation recommendations made in this report are based on the subsoil conditions found during the field investigation. The comments made in this report on potential construction problems and possible construction options intended only for guidance of the designer.

This report has been prepared for Lakeview Community Partners Limited and its architects and designers. Third party use of this report without DS Consultants Ltd. consent is prohibited.

2. FIELD WORK & LAB TESTING

Forty-five (45) boreholes (BH18-1 to BH18-49, except BH18-22 to BH18-24 and BH18-26, see Drawing 1 and 1A for location plan) were drilled at the site to depths varying from 1.7 m to 48.3m below the existing grade.

Four boreholes (BH18-22 to BH18-24 and BH18-26) were not be drilled due to the on-going construction work related to removal of buried concrete slabs associated with the former powerhouse.

Boreholes were drilled with solid stem and hollow stem continuous flight auger equipment by a drilling sub-contractor under the direction and supervision of DS Consultants Ltd personnel. Mud rotary was used in the drilling of some deep boreholes. Samples were retrieved at regular intervals with a 50 mm O.D. split-barrel sampler driven with a hammer weighing 624 N and dropping 760 mm in accordance with the Standard Penetration Test (SPT) method. The samples were logged in the field and returned to the DS Consultants Ltd laboratory for detailed examination by the project engineer and for laboratory testing.

Shale bedrock was cored at five (5) borehole locations (BH18-19, BH18-29, BH18-32, BH18-37 and BH18-45), with HQ double tube wireline equipment providing 63.5mm diameter rock core samples. The coring was carried out under the full-time supervision of a representative from DS who identified and described the rock samples, noting and recording the percentages of total and solid rock core recovery, RQD values, fracture index and the percentage and thicknesses of hard layers.

As well as visual examination in the laboratory, majority of the soil samples were tested for moisture contents. Selected fourteen (14) soil samples were subjected to grain size analyses and gradation curves are presented on Drawings 58 & 59. Atterberg's Limits tests were conducted on selected five (5) soil samples and results are presented on the respective borehole logs.

Water level observations were made during drilling and in the open boreholes at the completion of the drilling operations. Monitoring wells were installed in overburden and bedrock at seven (7) borehole locations for the longer-term groundwater level monitoring.

Methane gas measurements were taken in boreholes during drilling and upon completion of drilling, using a portable multi-gas detector RKI Eagle 2 instrument.

The ground surface elevations at the borehole locations was undertaken by DS personnel, using the differential GPS unit, leased from Sokkia Inc.

Geophysical survey was carried out at the subject site by the sub-contractor, Geophysics GPR International Inc. and their report is attached in **Appendix C** of this report.

3. SITE AND SUBSURFACE CONDITIONS

The subject site is located at 800 Hydro Road in Mississauga, approximately three kilometers east of Port Credit, on Mississauga's waterfront. The subject property primarily consists of former OPG Lakeview Coal plant that was decommissioned between 2006 & 2008 and the City own lands that is currently being used as playing fields and parking lot. The topography of the site has gentle slope towards south towards Lake Ontario, with elevations decreasing from 84m to 77m. At the time of our field work, the existing concrete slabs associated with the former OPG powerhouse were being removed by the contractor.

The borehole location plan is shown on Drawings 1 and 1A. Notes on samples description are provided on Drawing 1B. The subsurface conditions in the boreholes are presented in the individual borehole log on Drawings 2 to 46. Generalized sub-surface profiles are provided on Drawing 47 to 57.

Based on the borehole information, there is a significant variation in the bedrock depths at site along the north-south and east-west directions. There is a bedrock valley within the site, with the bedrock surface depths varying from 1.5m to at or below 48.3m. To delineate the bedrock valley and for the ease of describing the geotechnical conditions, the site is sub-divided into three areas (Area A, Area B & Area C, see Drawing 1 for areas & respective borehole locations). The subsurface conditions in the boreholes, area wise, are summarized in the following paragraphs.

3.1 Soil Conditions in Area 'A'

Seventeen boreholes (BH18-14, BH18-19, BH18-21, BH18-25, BH27 to BH18-38 and BH18-49) were drilled within Area 'A'. All boreholes were drilled to shale bedrock.

Topsoil, Pavement Structure & Fill Materials: A surficial topsoil layer, ranging in thickness from 125 to 350mm, was encountered at BH18-21, BH18-33 to BH18-38 & BH18-49. Two boreholes (BH18-28 & BH18-30) drilled on the paved areas encountered 70mm of asphalt at the surface, overlying granular base/subbase. Fill materials were found in all boreholes, extending to depths varying from 0.8 to 4.2m below the existing grade. Fill material was heterogeneous and consisted of sand & gravel, crusher run limestone, silty sand, sandy silt and clayey silt to silty clay, with inclusions of organics/topsoil, wood,

concrete, asphalt and shale fragments. The SPT 'N' values recorded in fill materials ranged from 5 to over 50 blows per 300mm of spoon penetration, indicating loose to very dense state of relative density.

<u>Clayey Silt to Silty Clay Till:</u> Below the fill materials, clayey silt to silty clay till deposits were encountered in BH18-14, BH18-19, BH18-29, and BH18-34 to BH18-38 (except BH18-35), overlying shale bedrock or silty clay. Clayey silt till was present in a stiff to hard consistency, with measured SPT 'N' values ranging from 8 to over 50 blows per 300mm of spoon penetration. Occasional cobble/boulders and sand seams were encountered within this deposit.

Grain size analysis of one soil sample (BH18-33/SS3) was conducted. The results are shown on Drawing 59, with the following fractions:

Clay: 29% Silt: 46% Sand: 23% Gravel: 2%

Atterberg limits testing of one soil sample (BH18-33/SS3) was conducted. The results are shown on the borehole log and are summarized as follows:

Liquid limit (W_L): 34% Plastic limit (W_P): 21% Plasticity index (PI): 13

<u>Silty Clay:</u> A silty clay deposit was encountered in BH18-25, BH18-27, BH18-30 and BH18-36, below the fill material, or cohesionless soils or clayey silt till, and overlying shale bedrock. Silty clay was present in a firm to hard, generally hard consistency, with measured SPT 'N' values ranging from 6 to more than 50 blows for 300 mm penetration.

Grain size analysis of one soil sample (BH18-36/SS4) was conducted. The results are shown on Drawing 59 with the following fractions:

Clay: 32% Silt: 57% Sand: 11%

Atterberg limits testing of same soil sample (BH18-36/SS7) was conducted. The results are shown on the borehole log and are summarized as follows:

Liquid limit (W_L): 37% Plastic limit (W_P): 23% Plasticity index (PI): 14

<u>Cohesionless Soils (Sand & Gravel, Sand)</u>: Cohesionless soils consisting of sand and gravel and sand were encountered in boreholes BH18-25, to BH18-28, BH18-32 below the fill material. These

cohesionless soils were water bearing and present in a very loose to very dense state, as indicated by the measured SPT 'N' values of nil to over 50 blows per 300mm of spoon penetration.

<u>Sandy Silt Till</u>: A sandy silt till deposit was encountered in BH18-49 below the fill material, extending to a depth of 4.5m, overlying shale bedrock. Sandy silt till was present in a compact to dense state, as indicated by the measured SPT 'N' values of 29 to 31 blows per 300mm of spoon penetration. Occasional cobble/boulders and sand seams were encountered within this deposit.

Shale Bedrock:

In Area 'A', shale bedrock of Georgian Bay Formation was found at all borehole locations, at depths ranging from 1.5 to 6.3m below the existing grade, corresponding to elevations ranging from 71.2 to 80.1m. The approximate depth and elevation of the shale bedrock surface at the borehole locations are listed on Table 3.1 below.

Table 3.1: Approximate Depth and Elevation of Shale Bedrock Surface in Area 'A'

Borehole	Depth of Shale	Approximate Elevation	Notes
No.	Bedrock Surface below	of Shale Bedrock	
	Existing Ground (m)	Surface (m)	
BH18-14	2.3	78.1	Augered
BH18-19	4.5	76.2	CORED
BH18-21	1.5	78.2	Augered
BH18-25	4.2	73.3	Augered
BH18-27 (30a)	3.8	73.5	Augered
BH18-28	3.3	79.5	Auger refusal
BH18-29A	6.3	71.2	cored
BH18-30	1.5	75.7	Augered
BH18-31	3.8	73.5	Augered
BH18-32	4.3	72.9	CORED
BH18-33	3.8	75.7	Augered
BH18-34	3.1	77.0	Augered
BH18-35	4.2	73.7	Augered
BH18-36	4.6	75.7	Augered
BH18-37	3.1	78.2	CORED
BH18-38	4.6	75.7	Augered
BH18-49	4.5	76.3	Augered
ВН3*	3.2	74.1	CORED
BH5*	3.5	76.8	Augered
BH6*	1.3	75.8	Augered
ВН9*	4.4	74.6	CORED

^{*}exp. boreholes

Detailed description of shale bedrock is provided in Section 3.4.

3.2 Soil Conditions in Area 'B'

Twenty-two (22) boreholes (BH18-1 to BH18-13, BH18-15 to BH18-18, BH18-20, BH18-39, BH18-40, BH18-46 & BH18-48) were drilled within Area 'B', to depths ranging from 11.1 to 48.3m.

Topsoil, Pavement Structure & Fill Materials: A surficial topsoil layer, ranging in thickness from 100 to 350mm, was encountered at BH18-1, BH18-3 to BH18-6, BH18-10 to BH18-12, BH18-16, BH18-39, BH18-40 and BH18-48). Three boreholes (BH18-2, BH18-17 and BH18-20) drilled on the paved areas encountered 70 to 100mm of asphalt at the surface, overlying granular base/subbase. Fill materials were found in all boreholes, extending to depths varying from 0.8 to 3.1m below the existing grade. Fill material was heterogeneous and consisted of clayey silt, silty clay, silty sand, sandy silt, silt and sand and gravel, with inclusions of organics/topsoil in varying proportions and trace asphalt & shale fragments. The SPT 'N' values recorded in fill materials ranged from 4 to 50 blows per 300mm of spoon penetration, indicating loose to very dense state of relative density.

<u>Clayey Silt to Silty Clay Till:</u> Clayey silt to silty clay till deposits of varying thicknesses were encountered in boreholes at varying depths. Clayey silt to silty clay till was present in a stiff to hard consistency, with measured SPT 'N' values ranging from 14 to over 50 blows per 300mm of spoon penetration. Occasional cobble/boulders and sand seams were encountered within this deposit.

Grain size analysis of four soil samples from clayey silt to silty clay till (BH18-1/SS5, BH18-2/SS6, BH18-7/SS12 & BH18-15/SS3) were conducted. The results are shown on Drawings 58 & 59, with the following fractions:

Clay: 16 to 37% Silt: 33 to 48% Sand: 15 to 49% Gravel: 1 to 9%

Atterberg limits testing of two soil samples (BH18-2/SS6 & BH18-3/SS15) were conducted. The results are shown on the borehole logs and are summarized as follows:

Liquid limit (W_L): 19 to 20% Plastic limit (W_P): 11 to 12%

Plasticity index (PI): 8

<u>Clayey Silt to Silty Clay:</u> Clayey silt to silty clay deposit of varying thicknesses were encountered in boreholes at varying depths of the boreholes. Clayey silt o silty clay was present in a firm to hard, generally in very stiff consistency, with measured SPT 'N' values ranging from 6 to more than 50 blows for 300 mm penetration.

Grain size analysis of one soil sample (BH18-6/SS12) was conducted. The results are shown on Drawings 58 with the following fractions:

Clay: 68% Silt: 26% Sand: 6%

Atterberg limits testing of same soil sample (BH18-6/SS12) was conducted. The results are shown on the borehole log and are summarized as follows:

Liquid limit (W_L): 48% Plastic limit (W_P): 23% Plasticity index (PI): 25

<u>Sandy Silt to Silty Sand Till:</u> Sandy silt to silty sand till deposits of varying thicknesses were encountered in boreholes at varying depths. Sandy silt to silty sand till was generally water bearing and present in a very dense state, with measured SPT 'N' values of over 50 blows per 300mm of spoon penetration. Occasional to frequent cobble/boulders should be expected within this deposit.

<u>Cohesionless Soils (Sand & Gravel, Sand, Silty Sand, Sandy Silt, Silt)</u>: Cohesionless soils consisting of sand & gravel, sand, silty sand, sandy silt, silt were encountered in majority of boreholes, embedded within the glacial till, at varying depths. These cohesionless soils were water bearing and present in a compact to very dense state, as indicated by the measured SPT 'N' values of 22 to over 50 blows per 300mm of spoon penetration.

Grain size analyses of seven (7) soil sample (BH18-2/SS3, BH18-3/SS10, BH18-8/SS7, BH18-8/SS8, BH18-8/SS12, BH18-9/SS5 and BH18-40/SS7) were conducted. The results are shown on Drawings 58 and 59, with the following fractions: 2

Clay: 2 to 10% Silt: 3 to 62% Sand: 23 to 95% Gravel: up to 4%

Shale Bedrock:

In Area 'B', shale bedrock Georgian Bay Formation was found at five (5) borehole locations (BH18-6, BH18-9, BH18-15, BH18-18 & BH18-20), at depths ranging from 9.1 to 48.1 below the existing grade, corresponding to elevations ranging from 34.7 to 71.3m. There is a bedrock valley in this area which was further confirmed by the geophysics testing. The approximate depth and elevation of the shale bedrock surface at the borehole locations are listed on Table 3.2 below.

Borehole Depth of Shale Bedrock Notes Approximate No. **Surface below Existing Elevation of Shale** Ground (m) **Bedrock Surface (m)** BH18-6 48.1 34.7 Augered BH18-7 >30.7 Not encountered at 30.7m BH18-9 15.2 65.0 Augered BH18-15 9.1 71.3 Augered BH18-18 13.7 67.4 Augered BH18-20 10.7 69.6 Augered **BH2*** 12.0 68.3 **Augered**

Table 3.2: Approximate Depth and Elevation of Shale Bedrock Surface in Area 'B'

Detailed description of shale bedrock is provided in Section 3.4.

3.3 Soil Conditions in Area 'C'

Six boreholes (BH18-41 to BH18-45 and BH18-47) were drilled within Area 'C'. All boreholes were drilled to shale bedrock.

<u>Topsoil & Fill Materials</u>: A surficial topsoil layer, ranging in thickness from 150 to 400mm, was encountered at borehole locations. Fill materials were found in all boreholes, extending to depths varying from 0.8 to 3.4m below the existing grade. Fill material was heterogeneous and consisted of clayey silt, silty clay, sandy silt, and sand & gravel with trace inclusions of organics/topsoil, brick, concrete, asphalt and shale fragments. The SPT 'N' values recorded in fill materials ranged from 4 to 17 blows per 300mm of spoon penetration, indicating loose to compact/firm to stiff state of compactness.

<u>Clayey Silt to Silty Clay Till:</u> Below the fill materials or silt/sandy silt, clayey silt to silty clay till deposits were encountered in boreholes, overlying shale bedrock or silt/sandy silt. Clayey silt till was present in a stiff to hard consistency, with measured SPT 'N' values ranging from 13 to over 50 blows per 300mm of spoon penetration.

<u>Cohesionless Soils (Silt, Sandy Silt to Silty Sand)</u>: Cohesionless soils consisting of silt and sandy silt to silty sand were encountered in all boreholes, except in BH18-43 and BH18-44 below the fill material or clayey silt till. These cohesionless soils were generally water bearing and present in a very loose to dense state, as indicated by the measured SPT 'N' values of 5 to 32 blows per 300mm of spoon penetration.

<u>Shale Bedrock:</u> In Area 'C', shale bedrock of Georgian Bay Formation was found at all borehole locations, at depths ranging from 3.1 to 7.6m below the existing grade, corresponding to elevations ranging from 75.7 to 80.4m. The approximate depth and elevation of the shale bedrock surface at the borehole locations are listed on Table 3.3 below.

^{*}exp. boreholes

Borehole No.	Depth of Shale Bedrock Surface below Existing Ground (m)	Approximate Elevation of Shale Bedrock Surface (m)	Notes
BH18-41	7.6	75.7	Augered
BH18-42	6.1	79.6	Augered
BH18-43	3.1	80.4	Augered
BH18-44	3.8	80.1	Augered
BH18-45	3.8	79.2	CORED
BH18-47	6.1	76.3	Augered
BH7*	3.6	79.8	CORED

Table 3.3: Approximate Depth and Elevation of Shale Bedrock Surface in Area 'C'

Detailed description of shale bedrock is provided in Section 3.4.

3.4 Shale Bedrock (Georgian Bay Formation)

Shale bedrock belonging to Georgian Bay Formation was encountered at this site. Because of the method of drilling and sampling, the surface elevations of the bedrock can be different than indicated on the borehole logs (Drawings 2 to 46). Commonly the till overlying the shale contains slabs of limestone which would give a false indication of the bedrock level. Similarly, the depth of weathering cannot be determined accurately due to the presence of limestone layers.

Shale bedrock was cored at five (5) borehole locations (BH18-19, BH18-29, BH18-32, BH18-37 and BH18-45) to confirm the depth and quality of bedrock.

Photographs of the bedrock cores are also presented in **Appendix A** of the report. The descriptive terms used on the record of rock cores and throughout this report are explained on the "Explanation of Terms Used in the Bedrock Core Log" sheet in Appendix A. **Appendix A** also presents more details and general comments about the shale bedrock in Toronto area.

Total Core Recovery (TCR):

The total core recovery indicates the total length of rock core recovered, expressed as a percentage of the actual length of the core run. The total core recovery for the cored runs ranged from 67 to 100%. Generally, less core recovery was experienced only near the surface of the rock, where the formation is highly to moderately weathered and was almost full as depth increased.

Solid Core Recovery (SCR):

The solid core recovery is the total length of solid, full diameter rock core that was recovered, expressed as a percentage of the length of the core run. Solid core recovery ranged from 28 to 98%, and also

^{*}exp. boreholes

appears to generally improve with depth. The SCR index was generally influenced by the orientations of the fractures. SCR was low when fractures oblique to the borehole axis were intercepted.

Rock Quality Designation (RQD):

The rock quality designation index is obtained by measuring the total length of recovered rock core pieces which are longer than 100mm and expressing their sum total length as a percentage of the length of the core run. RQD is a function of the frequency of joints, bedding plane partings and fractures in the rock cores. While the use of double tube core barrels provided reasonably good protection of the core during drilling and core retrieval, the fissile nature of the shale greatly influences the RQD values of the rock cores. Consequently, it is believed that the RQD values recorded underestimate the rock quality classification of the laminated fissile shale. On the basis of the recorded RQD values which range from nil to 97%, the rock quality is estimated to be "very poor" to "excellent", and the average value of more than 50% suggests a rock of generally "fair" quality.

Hard Layers:

Based on the visual examination of the rock cores, an attempt was made to identify and record the thickness and percentages of the relatively harder siltstone and limestone layers. The percentage of the "hard layers" per core run ranges between nil and 32%. The thickness of these layers varied but was generally varied from 50 to 380mm, but thicker layers have been observed to be as much as 750 to 900 mm at other sites. The layers are actually lenses and they can vary significantly in thickness over short distance. Encountering such thick layers should be anticipated. It is also common to encounter closely spaced groupings of thin strong limestone/siltstone layers which individually may only be 25 to 50mm thick but collectively can be 1m in thickness.

Fracture Index:

When logging the rock cores, the fracture Index (i.e. the number of fractures for each 0.3m length of core) was also recorded. The recorded values range between nil and greater than 25. Occasional fragmented and broken zones were encountered within the solid core. Bedrock was fragmented up to a depth of about 4.9m m in BH18-37, as indicated by nil solid core recovery in this zone. It was observed that the planes of weaknesses along which the cores tended to break, included planes of fissility and bedding, the contact surfaces between shale and siltstone or limestone bands and some oblique and subvertical joints.

Weathering:

In general, moderately weathered zone in the bedrock was limited to about 1.5 m from the bedrock surface. Below this, the degree of weathering ranged from slightly weathered to fresh. The siltstone and limestone layers were generally fresh with only slight surficial weathering on joint surfaces in the zone close to bedrock surface.

Methane Gas:

Methane gas under pressure was encountered in BH18-13 below a depth of about 11m, which is possibly just above the bedrock surface. The borehole was terminated at this depth and properly sealed. Although, during the rock coring there were no physical indications of the presence of gas in the coreholes, the Georgian Bay Formation is known to contain pockets of combustible gas. Therefore, appropriate care and monitoring are essential in all confined excavation work, particularly caissons and tunnels.

3.5 Groundwater Conditions

During drilling, short-term (un-stabilized) groundwater levels were found at depths ranging from 1.5 to 18.3m below the existing grade. Long-term (stabilized) groundwater levels in the monitoring wells were found at depths ranging from 2.0 to 8.0m below the existing grade, corresponding to Elevations of 74.9 to 80.2m. The results of the water level readings taken on Sept. 26, 2018 in the monitoring wells are summarized on Table 3.5.

Borehole **Surface** Date of **Water Level Water Level Notes Observation** Elevation (m) Depth (mbgs) Elev. (m) 81.6 Sept. 26, 2018 Screened in overburden BH18-8 2.8 78.8 BH18-12 83.2 Sept. 26, 2018 8.0 75.2 Screened in overburden BH18-16 82.9 Sept. 26, 2018 2.7 80.2 Screened in overburden BH18-19 80.7 Sept. 26, 2018 4.7 76.0 Screened in bedrock Screened in bedrock BH18-29A* 77.5 Sept. 26, 2018 (Well not accessible) BH18-32 77.2 Sept. 26, 2018 2.3 74.9 Screened in bedrock BH18-37 81.3 2.0 79.3 Screened in bedrock Sept. 26, 2018

Table 3.5: Groundwater Levels Observed in DS Monitoring Wells

It should be noted that the groundwater levels can vary and are subject to seasonal fluctuations in response to major weather events.

4. FOUNDATIONS

It is understood that the 71.6-hectare Lakeview Village will include 5,000 to 7,000 new homes in a variety of housing options, including townhouses, mid-rise and high-rise buildings. The proposed structures will entail up to 3-levels of basement. The finished basement floor elevations are not available to us at the time of writing this report. It is assumed that P1, P2 and P3 basement levels will approximately be at 3m, 6m and 9m depths respectively below the existing grade. Footings will be 1m to 2m below the lowest basement slab.

Based on the encountered bedrock depths, the subject site is sub-divided into three areas (Area A, Area B and Area C), as summarized in Sections 3.1 to 3.3. The foundation recommendations for these three areas are provided below:

4.1 Proposed Buildings in Area 'A'

Boreholes drilled within Area 'A' (BH18-14, BH18-19, BH18-21, BH18-25, BH27 to BH18-38 and BH18-49) reported shale bedrock at depths ranging from 1.5 to 6.3m below the existing grade, corresponding to elevations ranging from 71.2 to 80.1m. Due to the shallow bedrock depths, this area is considered more suitable for high-rise development with one or more basement levels.

Depending upon the finished lowest basement floor elevation, the proposed buildings can be supported by conventional spread and strip footings / mat foundations or short drilled piers founded on shale bedrock, at minimum 0.3 m below the shale bedrock surface, for a bearing pressure values of 2.5 MPa at the Serviceability Limit States (SLS), and for a factored geotechnical resistance of 3.75 MPa at the Ultimate Limit States (ULS).

The footings/piers founded on sound shale, at minimum 1.5 m below the shale surface can be designed for a bearing pressure of 5.0 MPa at SLS, and a factored geotechnical resistance of 7.5 MPa at ULS.

The depths and elevations of shale bedrock at the borehole locations in Area 'A' are provided in Table 3.1 of this report.

4.2 Proposed Buildings in Area 'B'

Twenty-two (22) boreholes (BH18-1 to BH18-13, BH18-15 to BH18-18, BH18-20, BH18-39, BH18-40, BH18-46 & BH18-48) were drilled within Area 'B', to depths ranging from 11.1 to 48.3m.

There is a bedrock valley within Area 'B', with bedrock depths ranging from 9.1 to 48.1m below the existing grade, corresponding to elevations ranging from 34.7 to 71.3m. Therefore, this area is more suitable for low-rise to mid-rise development to be supported by shallow foundations (footings/raft) founded on undisturbed native soil.

Depending upon the location of the building and number of basement levels, it may be possible to support the proposed development in this area on footings or deep foundations such as caissons founded on bedrock.

Additional boreholes will be required to further delineate and confirm the bedrock depths if foundations are to be supported on bedrock.

Footings and/or raft founded on undisturbed native soils can be designed for a bearing capacity values of 300 to 500 kPa at SLS (serviceability limit states) and for a factored geotechnical resistance of 450 to

750 kPa at ULS (ultimate limit states). The bearing values and the corresponding founding elevations at the borehole locations are summarized on Table 4.2.

Table 4.2: Bearing Values and Founding Levels of Spread Footings

Table 4.2: Bearing Values and Founding Levels of Spread Footings								
BH No.	Material	Bearing Capacity at SLS (kPa)	Factored Geotechnical Resistance at ULS (kPa)	Minimum Depth below Existing Ground (m)	Founding Level At or Below Elevation (m)	Notes/WL Elevation (m)		
BH18-1	Silty clay Till/ Sandy Silt Till	500	750	3.4	79.4	during drilling WL at 76.7m		
BH18-2	Clayey Silt Till	500	750	2.6	81.2			
BH18-3	Clayey Silt Till/ sandy silt to silty sand	500	750	1.0	80.4	during drilling WL at 76.8m		
BH18-4	Sandy silt to silty sand	400	600	2.1	79.0	during drilling WL at 75.1m		
BH18-5	Clayey Silt Till	500	750	2.6	81.4			
BH18-6	Clayey Silt Till	500	750	1.8	81.0			
BH18-7	Clayey Silt Till	500	750	1.5	80.6			
BH18-8	Clayey Silt/sandy silt	400	600	1.1	80.5	WL at 78.8m on Sept. 26/18		
BH18-9	Clavov Silt/sandy silt	300	450	2.3	77.9	during drilling WL at		
рп10-9	Clayey Silt/sandy silt	500	750	6.1	74.1	77.1m		
BH18-10	Clayey Silt Till/clayey silt/sandy silt till	500	750	1.8	80.5	during drilling WL at 76.5m		
BH18-11	Clayey Silt Till	500	750	3.4	81.7			
D1110-11	Silty Clay	300	450	13.0	72.1			
BH18-12	Clayey Silt Till	500	750	3.0	80.2	WL at 75.2m		
D1110 12	Clayey Silt	300	450	8.0	75.2	on Sept. 26/18		
BH18-13	Clayey Silt Till/Clayey Silt/Sandy silt to silty sand till	300 500	450 750	1.8 4.6	78.4 75.6	during drilling WL at 75.6m; methane gas encountered at 11m		
BH18-15	Silt/silty sand/silty clay	500	750	3.1	77.3			
BH18-16	Clayey silt till	500	750	2.6	80.3	WL at 80.2m on Sept. 26/18		
BH18-17	Clayey Silt Till/Clayey Silt	500	750	1.8	78.5			
BH18-18	Clayey silt till Silty clay/silt	300	450	2.1	79.0			
BH18-20	Clayey silt till/silty clay/silt to clayey silt	500	750	1.0	79.3	during drilling WL at 77.2m		
BH18-39	Sandy silt till/silty clay till	500	750	3.4	78.4			
BH18-40	Sandy Silt to silty sand/silty clay till	500	750	2.5	79.3	during drilling WL at 79.5m		
BH18-46	Silty clay till	500	750	1.1	80.3			

BH18-48	Clayey silt till/sandy silt till	500	750	1.8	79.3	during drilling WL at 78.0m
---------	----------------------------------	-----	-----	-----	------	--------------------------------

4.3 Proposed Buildings in Area 'C'

Boreholes drilled in Area 'C' (BH18-41 to BH18-45 and BH18-47) reported shale bedrock depths ranging from 3.1 to 7.6m below the existing grade, corresponding to elevations ranging from 75.7 to 80.4m. Due to the shallow bedrock depths, this area is also suitable for high-rise development with one or more basement levels.

Depending upon the finished lowest basement floor elevation, the proposed buildings can be supported by conventional spread and strip footings / mat foundations or short drilled piers founded on shale bedrock, at minimum 0.3 m below the shale bedrock surface, for a bearing pressure values of 2.5 MPa at the Serviceability Limit States (SLS), and for a factored geotechnical resistance of 3.75 MPa at the Ultimate Limit States (ULS).

The footings/piers founded on sound shale, at minimum 1.5 m below the shale surface can be designed for a bearing pressure of 5.0 MPa at SLS, and a factored geotechnical resistance of 7.5 MPa at ULS.

The depths and elevations of shale bedrock at the borehole locations are provided in Table 3.3 of this report.

Footings and/or raft founded on undisturbed native soils can be designed for a bearing capacity values of 300 to 500 kPa at SLS (serviceability limit states) and for a factored geotechnical resistance of 450 to 750 kPa at ULS (ultimate limit states). The bearing values and the corresponding founding elevations at the borehole locations are summarized on Table 4.3.

Table 4.3: Bearing Values and Founding Levels of Spread Footings

BH No.	Material	Bearing Capacit y at SLS (kPa)	Factored Geotechnical Resistance at ULS (kPa)	Minimum Depth below Existing Ground (m)	Founding Level At or Below Elevation (m)	Notes/WL Elevation (m)
BH18-41	Silty clay Till/ silt	500	750	2.6	80.7	during drilling WL at 78.7m
BH18-42	Clayey Silt Till	500	750	4.6	81.1	
BH18-43	Clayey Silt Till	500	750	1.1	82.4	
BH18-44	Clayey Silt Till	300	450	1.5	82.4	
BH18-45	Silty Clay Till	400	600	2.6	80.7	
BH18-47	Clayey Silt Till / Silt/sandy silt to silty sand	300	450	1.0	81.4	during drilling WL at 77.8m

4.4 Other Comments on Foundations

Foundations designed to the specified bearing capacity at the serviceability limit states (SLS) are expected to settle less than 25 mm total and 19 mm differential.

Where it is necessary to place footings at different levels in soil, the upper footing must be founded below an imaginary 10 horizontal to 7 vertical line drawn up from the base of the lower footing. Where it is necessary to place footings at different levels on bedrock, the upper footing must be founded below an imaginary 1 horizontal to 1 vertical line (1H:1V in bedrock) drawn up from the base of the lower footing. The lower footing must be installed first to help minimize the risk of undermining the upper footing.

All foundation bases must be inspected by this office prior to pouring concrete.

The shale bedrock weathers rapidly between wetting and drying cycles. In view of this, it is suggested that a lean concrete mat slab be placed immediately after the excavation is complete to keep the shale intact, unless the footings are cast immediately after excavating.

The inspected and approved footing base should be covered with 50 mm thick mud slab immediately in order to avoid disturbance of the founding soil due to construction activity and weathering /drying.

It should be noted that the recommended bearing capacities have been calculated by DS Consultants Limited from the borehole information for the preliminary design stage only. Additional boreholes may be required when the final building plans are available. The investigation and comments are necessarily on-going as new information of the underground conditions becomes available. For example, more specific information is available with respect to conditions between boreholes when foundation construction is underway. The interpretation between boreholes and the recommendations of this report must therefore be checked through field inspections provided by DS Consultants Limited to validate the information for use during the construction stage.

5. FROST PROTECTION

All foundations exposed to seasonal freezing conditions must have at least 1.2m of soil cover for frost protection.

There is no official rule governing the required founding depth for footings below unheated basement floors. Certainly, it will not be greater than the 1.2 m required in Southern Ontario for exterior footings. Un-monitored experience indicates that a shallower depth ranging from 0.82 to 0.9 m for interior column footings and 0.4 m for wall footings has been successful where 2 or more basement levels apply. The 0.82 m depth is believed to be close to the minimum structural requirement for interior column footings. Adjacent to air shafts and entrance and exit doors, a footing depth of 1.2 m below floor level is required or, alternatively, insulation protection must be provided.

It is also emphasized that underfloor drainage and/or an adequate free draining gravel base is required to minimize the risk of floor dampness. Floor dampness could lead to temporary icing and the risk of accidents.

6. FLOOR SLAB AND PERMANENT DRAINAGE

The floor slab can be supported on grade provided all existing fill material and disturbed soils are removed and the base thoroughly proof rolled. The fill required to raise the grade can consist of inorganic soil, placed in shallow lifts and compacted to 98 percent of Standard Proctor Maximum Dry Density (SPMDD). A moisture barrier consisting of at least 200 mm of 19 mm clear crushed stone should be installed under the floor slab.

In the area where shale bedrock is encountered at floor slab level, the floor slab can be cast as slab-on-grade, provided a 200 mm layer of clear crushed stone (19 mm maximum size) is placed between the underside of the floor slab and the exposed bedrock surface.

A perimeter and underfloor drainage system will be required for buildings with basements. Typical drainage and backfill recommendations are illustrated on Drawings 60 to 62 for the open cut and shored excavation system.

7. ELEVATOR AND SUMP PITS

If elevator/sump pits are to be installed in cohesionless soils (sandy silt, sand, silt) below the water table, drainage systems at the base level of the pits are not recommended, due to the concern of loss of fines. In this case, the pits can be designed as water-tight structures, and water pressure on the pit walls and the pit base slab should be considered.

8. EARTH, ROCK AND WATER PRESSURES

The design of basement walls can incorporate the conventional design in the overburden using the earth pressure coefficient $K_1=0.40$. In the rock, the earth pressure coefficient K can be reduced to $K_2=0.20$.

The lateral earth/rock pressure acting at any depth on basement walls can be calculated as follows:

In soil: $p = K_1 (\gamma_1 h_1 + q) + p_w$

In rock: $p = K_2 (\gamma_1 H_1 + q + \gamma_2 h_2) + p_w$

where p = lateral earth and water pressure in kPa acting at depth h_1 or h_2

 K_1 , K_2 = earth pressure coefficients, K_1 =0.40 for overburden soil; K_2 =0.20 for rock

 γ_1 = unit weight of overburden soil, assuming 20.5 kN/m³ above the water table and 11 kN/m³ below the water table

 γ_2 = unit weight of rock below water, assuming 15 kN/m³

h₁ = Depth in overburden soil, below ground surface

H₁ = thickness of soil above rock

h₂ = Depth in rock, below rock surface

q = value of surcharge in kPa

 p_w = hydrostatic water pressure

When the foundation wall is poured against the caisson wall, the foundation wall as well as the caisson wall should be designed for hydrostatic pressure, even though a drainage board is provided between the basement wall and the caisson wall.

9. EXCAVATIONS AND GROUNDWATER CONTROL

Excavations can be carried out with heavy hydraulic backhoe. Long-term (stabilized) groundwater levels in the monitoring wells were found at depths ranging from 2.0 to 8.0m below the existing grade, corresponding to Elevations of 74.9 to 80.2m. Positive dewatering will be required prior to any excavation in water bearing cohesionless soils below the groundwater table, otherwise it will result in an unstable base and flowing sides. A contractor specializing in dewatering should be retained to design the dewatering systems for excavations below the groundwater table.

Further comments on groundwater control during construction and permanent drainage are provided in our preliminary hydrogeology report.

It should be noted that the glacial till soils may contain boulders. Large obstructions in the fill material are anticipated. Provisions must be made in the excavation contract for the removal of boulders in the till and large obstructions in the fill material.

Excavation of the shale can be carried out using heaviest available single tooth ripper equipment. The limestone beds are present and may overly the shale bedrock surface at some locations. It may be necessary at some locations to utilize jackhammer type equipment to "open" the limestone layers for the ripper.

All excavations must be carried out in accordance with the most recent Occupational Health and Safety Act (OHSA). In accordance with OHSA, the fill material can be classified as Type 3 soil above the groundwater table. The very stiff to hard clayey soils can be classified as Type 2 Soil above the groundwater table and as Type 3 below the groundwater table. The cohesionless soils of sand and silty sand can be classified as Type 3 Soil above the groundwater table and Type 4 soil below the groundwater table.

The native soils free from topsoil and organics can be used as general construction backfill, provided its moisture content is within 2 percent of the optimum moisture content. Loose lifts of soil, which are to be compacted, should not exceed 200 mm. Depending on the time of construction and weather, some excavated material may be too wet to compact and will require aeration prior to its use.

Imported granular fill, which can be compacted with hand held equipment, should be used in confined areas. The excavated soils are not considered to be free draining. Where free draining backfill is required, imported granular fill such as OPSS Granular B should be used.

It should be noted that the excavated soils are subject to moisture content increase during wet weather which would make these materials too wet for adequate compaction. Stockpiles should be compacted at the surface or be covered with tarpaulins to minimize moisture uptake.

10. EARTHQUAKE CONSIDERATIONS

Based on the existing borehole information and according to Table 4.1.8.4.A of OBC 2012, the subject site for the proposed development can be classified as "Class C" for seismic site response.

In Area 'A' and Area 'B', for the proposed buildings with one or more levels of basement, founded on sound shale bedrock, it may be possible to classify the site as "Class B" for seismic site response. This should be further confirmed during the detail design stage.

11. ROADS

The proposed development will be serviced by a network of roads.

11.1 Pavement Thickness

The investigation has shown that the predominant subgrade soil, after stripping the topsoil and any other organic and otherwise unsuitable subsoil, will generally consist of clayey silt till, clayey silt, clayey silt till shale complex and shale bedrock.

Based on the above and assuming that traffic usage will be residential/commercial for local and collector road, the following minimum pavement thicknesses are recommended for roads to be constructed within the development.

Collector Road

40 mm HL3 Asphaltic Concrete 85 mm HL8 Asphaltic Concrete 200 mm Granular 'A' 325 mm Granular 'B'

Local/Minor Local Road

40 mm HL3 Asphaltic Concrete 85 mm HL8 Asphaltic Concrete 200 mm Granular 'A' 175 mm Granular 'B'

These values may need to be adjusted according to the City of Mississauga Standards. The site subgrade and weather conditions (i.e. if wet) at the time of construction may necessitate the placement of thicker granular sub-base layer in order to facilitate the construction. Furthermore, heavy construction equipment may have to be kept off the newly constructed roads before the placement of asphalt and/or immediately thereafter, to avoid damaging the weak subgrade by heavy truck traffic.

11.2 Stripping, Sub-excavation and Grading

The site should be stripped of all topsoil and any organic, weathered or otherwise unsuitable soils to the full depth of the roads, both in cut and fill areas. Following stripping, the site should be graded to the subgrade level and approved. The subgrade should then be proof-rolled, in the presence of the Geotechnical Engineer, by at least several passes of a heavy compactor having a rated capacity of at least 8 tonnes. Any soft spots thus exposed should be removed and replaced by select fill material, similar to the existing subgrade soil and approved by the Geotechnical Engineer. The subgrade should then be re-compacted from the surface to at least 98% of its Standard Proctor Maximum Dry Density (SPMDD). The final subgrade should be cambered or otherwise shaped properly to facilitate rapid drainage and to prevent the formation of local depressions in which water could accumulate.

Owing to the clayey (i.e. impervious) nature of some subsoils at the site, proper cambering and allowing the water to escape towards the sides (where it can be removed by means of subdrains) is considered to be beneficial for this project. Otherwise, any water collected in the granular sub-base materials could be trapped thus causing problems due to softened subgrade, differential frost heave, etc. For the same reason damaging the subgrade during and after placement of the granular materials by heavy construction traffic should be avoided. If the moisture content of the local material cannot be maintained at ±2% of the optimum moisture content, imported granular material may need to be used.

Any fill required for re-grading the site or backfill should be select, clean material, free of topsoil, organic or other foreign and unsuitable matter. The fill should be placed in thin layers and compacted to at least 95% of its SPMDD. The degree of compaction should be increased to 98% within the top 1.0 m of the subgrade, or as per City Standards. The compaction of the new fill should be checked by frequent field density tests.

11.3 Construction

Once the subgrade has been inspected and approved, the granular base and sub-base course materials should be placed in layers not exceeding 200 mm (uncompacted thickness) and should be compacted to at least 100% of their respective SPMDD. The grading of the material should conform to current OPS Specifications.

The placing, spreading and rolling of the asphalt should be in accordance with OPS Specifications or, as required by the local authorities.

Frequent field density tests should be carried out on both the asphalt and granular base and sub-base materials to ensure that the required degree of compaction is achieved.

11.4 Drainage

The City of Mississauga may require the installation of full-length subdrains on all roads. The subdrains should be properly filtered to prevent the loss of (and clogging by) soil fines.

All paved surfaces should be sloped to provide satisfactory drainage towards catch-basins. As discussed in Section 11.2, by means of good planning any water trapped in the granular sub-base materials should be drained rapidly towards subdrains or other interceptors.

12. UNDERGROUND UTILITIES

It is understood that underground services (watermains, storm and sanitary sewer) will be installed at the site to service the proposed development. Based on the preliminary servicing plans prepared by Urbantech, invert levels of the proposed utilities will be about 2 to 6m below the existing grade, with sanitary sewer at the deepest point at about 6m below the existing grade.

Trenches will be dug through fill materials followed by native soils of cohesive and cohesionless nature. Long-term (stabilized) groundwater levels in the monitoring wells were found at depths ranging from 2.0 to 8.0m below the existing grade, corresponding to Elevations of 74.9 to 80.2m. Positive dewatering will be required prior to any excavation in water bearing cohesionless soils below the groundwater table, otherwise it will result in an unstable base and flowing sides. Water table must be lowered to at least 1m below the lowest excavation level.

Detailed comments on excavation and groundwater control are provided in Section 9.

The undisturbed native soils encountered in the boreholes will provide adequate support for the service pipes and allow the use of Class B type bedding. The recommended minimum thickness of granular bedding below the invert of the pipes is 150 mm. The thickness of the bedding may, however, have to be increased depending on the pipe diameter or in accordance with local standards or if wet or weak

subgrade conditions are encountered, especially when the soil at the trench base level consists of wet, dilatant silt.

The bedding material should conform to City of Mississauga bedding stone gradation requirements. Where the bedding falls below the anticipated water table, the bedding stone must be surrounded with a geotextile filter cloth.

For deep trenches, i.e. more than 2.0 m below the shale surface, a minimum 50 mm thick polystyrene etc. layer will be required at both sides of the pipe to avoid rock squeezing. The polystyrene layer should extend vertically to at least 0.3 m above the pipe. The rock trench should be wide enough so that at each side, the horizontal distance between the pipe side and the cut rock surface is at least 0.3 m.

The select inorganic fill materials or native soils free from topsoil / organics can be used as general construction backfill, provided their moisture contents at the time of construction are within 2% of their optimum moisture content.

In any case the degree of compaction of the trench backfill should be at least 95% of the material's Standard Proctor Maximum Dry Density (SPMDD). This value should be increased to at least 98% within 2 m of the road surface. The granular pavement sub-base and base materials should be compacted to at least 100% of their respective SPMDD.

13. GENERAL COMMENTS AND LIMITATIONS OF REPORT

This geotechnical report is preliminary, prepared based on the conceptual design plans. Additional boreholes will be required, once the detailed development plans are available to confirm the findings and recommendations provided in this report.

This report is intended solely for the client named. The material in it reflects our best judgment in light of the information available to DS Consultants Ltd at the time of preparation. Unless otherwise agreed in writing by DS Consultants Ltd, it shall not be used to express or imply warranty as to the fitness of the property for a particular purpose. No portion of this report may be used as a separate entity, it is written to be read in its entirety.

The conclusions and recommendations given in this report are based on information determined at the borehole locations. The information contained herein in no way reflects on the environment aspects of the project, unless otherwise stated. Subsurface and groundwater conditions between and beyond the boreholes may differ from those encountered at the borehole locations, and conditions may become apparent during construction, which could not be detected or anticipated at the time of the site investigation. The benchmark and elevations used in this report are primarily to establish relative elevation differences between the borehole locations and should not be used for other purposes, such as grading, excavating, planning, development, etc.

DS Consultants Ltd should be retained for a general review of the final design and specifications to verify that this report has been properly interpreted and implemented. If not accorded the privilege of making this review, DS Consultants Ltd will assume no responsibility for interpretation of the recommendations in the report.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. DS Consultants Ltd accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

We accept no responsibility for any decisions made or actions taken as a result of this report unless we are specifically advised of and participate in such action, in which case our responsibility will be as agreed to at that time.

We trust that the information contained in this report is satisfactory. Should you have any questions, please do not hesitate to contact this office.

PROFESSIONAL THE REP. DS CONSULTANTS LTD 700141185

Fanyu Zhu, Ph.D., P.Eng.

DS Consultants Ltd. June 9, 2020

PROFESSIONAL A

F. ZHU

Borehole Area 'A' Bedrock depth 1.5 to 4.6m Area 'B' Bedrock depth 9.1 to 48.1m Area 'C' Bedrock depth 3.1 to 76m

Client:

Vaughan, Ontario, L4H 0K8 Telephone: (905) 264-9393 www.dsconsultants.ca

LAKEVIEW COMMUNITY PARTNERS LIMITED

ВО	REHOLE L	OCATION F	PLAN	
Approved By:	N.W	Drawn By:	S.Y	Date: October 2018
Scale:	As Shown	Project No.:	18-519-10	Figure No.: 1

Legend

Approx_Site_bnd

Monitoring Well (2018) Borehole (2018)

DS CONSULTANTS LTD.

6221 Highway 7, UNIT 16 Vaughan, Ontario L4H 0K8 Telephone: (905) 264-9393 www.dsconsultants.ca

Title:

Client: ARGO DEVELOPMENT CORPORATION Project: PROPOSED GEOTECHNICAL INVESTIGATION - PHASE 1 AREA Lakeview Development, 800 Hydro Road, Toronto, ON

BOREHOLE LOCATION PLAN

'						
Size:	Approved By:	N.W	Drawn By:	S.Y	Date: Ju	ine 2020
Rev.	Scale:	As Shown	Project No.:	18-519-10	Drawing No.: 1/	4
0	Image/Map Source:	CAD Drawing				

Project No.: 18-519-10

Drawing 1B: Notes On Sample Descriptions

1. All sample descriptions included in this report generally follow the Unified Soil Classification. Laboratory grain size analyses provided by DSCL also follow the same system. Different classification systems may be used by others, such as the system by the International Society for Soil Mechanics and Foundation Engineering (ISSMFE). Please note that, with the exception of those samples where a grain size analysis and/or Atterberg Limits testing have been made, all samples are classified visually. Visual classification is not sufficiently accurate to provide exact grain sizing or precise differentiation between size classification systems.

ISSMFE SOIL CLASSIFICATION SILT SAND GRAVE COBBLES BOULDERS MEDIUM FINE COARSE COARSE MEDIUM MEDIUM 0.002 0.006 0.02 0.06 0.6 2.0 6.0 200

EQUIVALENT GRAIN DIAMETER IN MILLIMETRES

CLAY (PLASTIC) TO	FINE	MEDIUM	CRS.	FINE	COARSE
SILT (NONPLASTIC)		SAND		GF	RAVEL

UNIFIED SOIL CLASSIFICATION

- 2. Fill: Where fill is designated on the borehole log it is defined as indicated by the sample recovered during the boring process. The reader is cautioned that fills are heterogeneous in nature and variable in density or degree of compaction. The borehole description may therefore not be applicable as a general description of site fill materials. All fills should be expected to contain obstruction such as wood, large concrete pieces or subsurface basements, floors, tanks, etc., none of these may have been encountered in the boreholes. Since boreholes cannot accurately define the contents of the fill, test pits are recommended to provide supplementary information. Despite the use of test pits, the heterogeneous nature of fill will leave some ambiguity as to the exact composition of the fill. Most fills contain pockets, seams, or layers of organically contaminated soil. This organic material can result in the generation of methane gas and/or significant ongoing and future settlements. Fill at this site may have been monitored for the presence of methane gas and, if so, the results are given on the borehole logs. The monitoring process does not indicate the volume of gas that can be potentially generated nor does it pinpoint the source of the gas. These readings are to advise of the presence of gas only, and a detailed study is recommended for sites where any explosive gas/methane is detected. Some fill material may be contaminated by toxic/hazardous waste that renders it unacceptable for deposition in any but designated land fill sites; unless specifically stated the fill on this site has not been tested for contaminants that may be considered toxic or hazardous. This testing and a potential hazard study can be undertaken if requested. In most residential/commercial areas undergoing reconstruction, buried oil tanks are common and are generally not detected in a conventional preliminary geotechnical site investigation.
- 3. Till: The term till on the borehole logs indicates that the material originates from a geological process associated with glaciation. Because of this geological process the till must be considered heterogeneous in composition and as such may contain pockets and/or seams of material such as sand, gravel, silt or clay. Till often contains cobbles (60 to 200 mm) or boulders (over 200 mm). Contractors may therefore encounter cobbles and boulders during excavation, even if they are not indicated by the borings. It should be appreciated that normal sampling equipment cannot differentiate the size or type of any obstruction. Because of the horizontal and vertical variability of till, the sample description may be applicable to a very limited zone; caution is therefore essential when dealing with sensitive excavations or dewatering programs in till materials.

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200 mm REF. NO.: 18-519-10

Date: Jul-18-2018 ENCL NO.: 2

BOREHOLE LOCATION: See Drawing 1

	SOIL PROFILE	_	٥	AMPL	.ES	<u>~</u>		RES	STANC	E PLOT	IETRATIO	_	PLAS1	TIC NAT MOIS CON	URAL	LIQUID LIMIT	١.	₩	METHANE
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	3ER		BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	0	AR ST	FINED	TH (kPa) + FIE + & S	LD VANE ensitivity	W _P		w •	W _L	POCKET PEN. (Cu) (kPa)	TURAL UNIT	AND GRAIN SIZE DISTRIBUTIO (%)
82.8		STR	NUMBER	TYPE	ż	GROI	ELEV	•		RIAXIAL 40 6	X LA	B VANE 100		ATER CO		1 (%) 30		≥	GR SA SI
0.0	TOPSOIL:350mm	<u>111/</u>	-		-		╁	-	+				+		1	1			011 071 01
82.4		1/ 7/	1	SS	14			F						0					
0.4	FILL: clayey silt, some organics, trace gravel, grey, moist, stiff	\boxtimes						E											
	trace graver, grey, moist, still	\otimes					82	<u>.</u>											
ı		\bowtie					02	1											
		\bigotimes	2	SS	8			ŀ							0				
		\bowtie						Ē											
		\otimes						ŀ											
.		\otimes	3	SS	10		81	-						-					
		\bowtie	_					-											
80.5 2.3	FILL: sandy silt, some organics,	\bigotimes	-					Ė											
2.0	grey, moist, loose	\bowtie	4	SS	8			[0					
		\otimes	Ċ				80	, <u> </u>											
79.7								ŀ											
3.1	SILTY CLAY TILL: some sand, trace gravel, brown, moist, very stiff	197						E											
	trace graver, brown, moist, very still		5	SS	17			-					C	>			225		1 15 47
			_					ŀ											
.			l				79	'F											
			1					Ē											
								-											
78.2	CANDY OU T TILL	144						ŀ											
4.6	SANDY SILT TILL: trace to some clay, trace gravel, grey, moist, very			00			78	3 -							0				
.	dense		6	SS	50			[
						-		Ŀ											
								Ė											
							77	,Е											
76.7							''	ŀ											
6.1	SAND: trace silt, brown, wet,	1141				⊻	W. L.	L 76.7	m										
	dense		7	SS	45		during	drilli C	ng 					0					
								Ē											
							76	i											
_								ŀ											
								Ė											
75.2																			
7.6	SAND AND GRAVEL: trace silt, brown, wet, very dense	0					75	; <u> </u>											
<u> </u>	, , ,	0	8	SS	50			ŀ							0				
		0.	\vdash			-		E											
		0						-											
		ō						ŧ											
		0					74	-									1		
² 73.7 9.1	SILTY SAND TILL: some gravel to	101	\vdash					E											
	gravelly, occassional	Ιφί. Ι	9	SS	78			F											
	cobble/boulders, trace clay, grey, moist to wet, very dense		ا ا	55	'0			ŀ							Ĭ				
	, ,		\vdash				73	Ł											
,	Continued Next Page	[i¦i						<u> </u>											

NOTES

+ 3 , imes 3 : Numbers refer to Sensitivity

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200 mm REF. NO.: 18-519-10

Date: Jul-18-2018 ENCL NO.: 2

	SOIL PROFILE			AMPL	ES	~		RESIS	MIC CO STANCE	PLOT		1014		PI ASTI	NATI	JRAL	LIQUID		⊢	METHAN
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE O U	AR STI	0 6 RENG INED RIAXIAL 0 6	TH (kF + ×	Pa) FIELD VA & Sensiti LAB VA	ANE vity NE		TER CC	N D NTEN	LIQUID LIMIT W _L (%)	POCKET PEN. (Cu) (kPa)	_	AND GRAIN SI DISTRIBUT (%) GR SA SI
	SILTY SAND TILL: some gravel to gravelly, occassional cobble/boulders, trace clay, grey, moist to wet, very dense(Continued)							- - - - -												<u> </u>
			10	SS	50		72	-								o				
							71	- - - - - -												
70.0	wet below 12.2 m END OF BOREHOLE	1-	11	SS	76		70	- - - - -								0				
	Notes: 1) Water level at 6.1 mbgl during drilling																			

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200 mm REF. NO.: 18-519-10

Date: Jul-19-2018 ENCL NO.: 3

BOREHOLE LOCATION: See Drawing 1

	SOIL PROFILE		S	AMPL	ES	<u>~</u>		RESIS	MIC CO STANCE	PLOT	NE IRA	ION		PLASTI LIMIT	C NATI	JRAL	LIQUID		WT	METHANE
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE.	AR STI NCONF UICK TE	INED	TH (ki	& Sensit	ANE ivity ANE	W _P ⊢ WA	TER CO	N DNTEN	LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZ DISTRIBUTIO (%) GR SA SI
8 9.0 0.1 83.4	ASPHALT: 100 mm SAND AND GARVEL: 250 mm	0	1	AS				- - -							0					
0.4 83.0 0.8	FILL: silty sand, trace gravel, grey, wet CLAYEY SILT TILL: some sand,						83													
!	trace gravel, brown, moist, very stiff		2	SS	22			-							0					
1.5	SILTY SAND: trace clay, brown, wet, dense		3	SS	40		82	-							•					0 72 22
81.5 2.3	CLAYEY SILT TILL: sandy, trace gravel, occasional cobble/boulder, grey, moist, very stiff to hard		4	SS	46		81	-						0				225		
3			5	SS	40			- - -						0				225		
<u>1</u>							80													
								-												
<u>i</u>			6	SS	28		79	-						(—	1		225		1 49 33
							78	-												
1			7	SS	41			- - - -						0				225		
7							77	-												
			8	SS	70		76	-										225		
3			0		10			-										223		
2							75													
			9	SS	44			_ wet _ - - -	spoon						>			225		July 19, 20
						1	74	-												July 20, 20

 $\frac{\text{GROUNDWATER ELEVATIONS}}{\text{Measurement}} \stackrel{\text{1st}}{\underbrace{\hspace{1em}}} \stackrel{\text{2nd}}{\underbrace{\hspace{1em}}} \stackrel{\text{3rd}}{\underbrace{\hspace{1em}}} \stackrel{\text{4th}}{\underbrace{\hspace{1em}}}$

GRAPH NOTES + 3 , imes 3 : Numbers refer to Sensitivity

 \bigcirc $^{\mbox{\bf 8}=3\%}$ Strain at Failure

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200 mm REF. NO.: 18-519-10

Date: Jul-19-2018 ENCL NO.: 3

	SOIL PROFILE		S	AMPL	ES	e E		RESI	AMIC CO STANCE	PLOT		·		PLASTI	IC NAT MOIS CON	URAL	LIQUID LIMIT		ΤW	METHAN
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE O L	AR ST INCONF QUICK T	RENC INED RIAXIA	STH (kl	FIELD V & Sensit LAB V	/ANE	W _P WA	TER CO	w O ONTEN	W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (KN/m³)	AND GRAIN SIZ DISTRIBUT (%) GR SA SI
	CLAYEY SILT TILL: sandy, trace gravel, occasional cobble/boulder, grey, moist, very stiff to hard(Continued)																			
L			10	SS	21		73	-							0			225		
2							72	-												
			11	SS	40		71	- - - - -							0					
70.1																				
13.7	CLAYEY SILT: trace sand, grey, moist, very stiff		12	SS	21		70	-							o			225		
1							69	-												
			13	ss	19		68									•		225		
								-												
1			14	SS	18		67	-							0			225		
							66	-												
	stiff at 18.3 m		15	SS	19		65	-								o		225		
!								-												
]	64	-												

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200 mm REF. NO.: 18-519-10

	UM: Geodetic							Date:	Jul-19	9-2018	3					ΕN	NCL N	O.: 3			
BOR	EHOLE LOCATION: See Drawing 1 SOIL PROFILE			SAMPL	EC			DYNA	MIC CO	NE PEN PLOT	NETRA	TION		1							
(m) ELEV DEPTH	DECORPORA	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 6	GROUND WATER CONDITIONS	ELEVATION	2 SHEA O UN • QU	0 4 AR STI NCONF JICK TE	0 6 RENG INED RIAXIAL	TH (kF + . ×	Pa) FIELD V & Sensit	/ANE tivity ANE	W _P ⊢ WA	TER CO	w O ONTEN	LIQUID LIMIT W _L ——I T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	METHA ANI GRAIN DISTRIBI (%)	O SIZE UTION)
63.4	CLAYEY SILT: trace sand, grey, moist, very stiff(Continued)		16	SS	18			-								0		225			
20.4	END OF BOREHOLE Notes: 1) Borehole dry upon completion																				

DS SOIL LOG 18-519-10 800 HYDRO ROAD.GPJ DS.GDT 18-10-12

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 18-519-10

Date: Jun-25-2018 ENCL NO.: 4

	SOIL PROFILE		s	AMPL	ES.	<u>_</u>		RESI	AMIC CO STANCE	NE PEN PLOT		JN	PIΔS	TIC - NAT	URAL	LIQUID		₽	METHANE
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE	AR ST INCONF QUICK T	INED RIAXIAL	ΓΗ (kPa + & × L	A) ELD VANE Sensitivity AB VANE	W _P	ATER C	W O ONTEN	LIMIT W T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT M (kN/m³)	AND GRAIN SIZ DISTRIBUTIO (%)
81.4 0.0	TOPSOIL: 350mm	<u>21 14</u>	ž		ž	ַ ט <u>ַ</u>	=	┼	20	10 6	08 0	100		10	20 ;	30			GR SA SI
81.0		1/2 3/2	1	SS	13		8.	1						С	,				
0.4	POSSIBLE FILL: clayey silt, brown, moist, stiff							-											
0.8	CLAYEY SILT:some sand, occassional sand seams, brown, moist, very stiff to hard		2	SS	22										•		>225	i	
79.7 1.7	CLAYEY SILT TILL : some sand,		3	SS	33		80	-						C	,		>225		
	trace gravel, occassional sand seams, brown, moist, very stiff																		
			4	SS	24		79	-					(0			-		
78.3								F											
3.1	SANDY SILT TO SILTY SAND trace clay, trace gravel, brown, moist to wet , very dense		5	SS	50/ 100mn	1	78	- - - -						0					
								-											
	grey, wet below 4.6 m				50/	Ā	77 W. L.	† 76.8 i	n								-		
			6	SS	100mn	n	durin	g drillir - - - -	ng					•					
							76	6 - -											
			7	SS	80		7!	5						0					
								- - -											
73.8							74	1									-		
7.6	SILTY SAND TO SAND: trace clay, grey, wet, dense		8	SS	46			- - - -						o					
							7:	3									-		
73.8 7.6 72.3 9.1	CILTY CAND TILL.							-											
9.1	SILTY SAND TILL: trace to some clay, trace gravel, occasional cobble/boulder, grey, wet, very		9	SS	50/ 150mn		72	2							>				

GRAPH NOTES

+ 3 , imes 3 : Numbers refer to Sensitivity

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 18-519-10

Date: Jun-25-2018 ENCL NO.: 4

BOREHOLE LOCATION: See Drawing 1

	SOIL PROFILE		S	AMPL	ES	<u>د</u>		RES	ISTAN	CE F	PLOT	NETRA	HON.		PLAS1	TIC NAT MOIS CON	URAL	LIQUID LIMIT	١.	₩	MET	HANE
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	ο ι	20 EAR S JNCO QUICK 20	NFIN	ENG IED AXIAL	TH (kl	Pa) FIELD & Sen	VANE VANE VANE	W _P	TER CO	w o ONTEN	W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)		%)
70.7	SILTY SAND TILL: trace to some clay, trace gravel, occasional cobble/boulder, grey, wet, very dense(Continued)	8	Z	<u> </u>	-	00	л 71		20	40			50	100			20	30			GR SA	SI
10.7	SAND: trace silt, grey, wet, dense to very dense		10	SS	42			-								0					0 95	5 (5
							70	- - - - -											-			
- - - -			11	SS	64		69									•			-			
13							68	-											-			
13.7	SANDY SILT TO SILTY SAND: trace to some clay, some gravel, grey, wet, very dense		12	SS	80			-								•						
-							67	-														
- - - - -			13	SS ,	50/ I50mn		66									0			-			
							65	-											-			
<u>i7</u>			14	SS	50/ 75mm		64									o			=			
63.1 18.3	CLAYEY SILT TILL: sandy, trace				50/		63	-											-			
	gravel, occasssional cobble/boulders, grey, moist, hard		15	SS ,	150mn			-								\$						
- - -							62	-														

 $\frac{\text{GROUNDWATER ELEVATIONS}}{\text{Measurement}} \stackrel{\text{1st}}{\underbrace{\hspace{1em}}} \stackrel{\text{2nd}}{\underbrace{\hspace{1em}}} \stackrel{\text{3rd}}{\underbrace{\hspace{1em}}} \stackrel{\text{4th}}{\underbrace{\hspace{1em}}}$

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 18-519-10

1	JM: Geodetic							Date:	Jun-2	5-201	8					ΕN	NCL N	O.: 4			
BORE	EHOLE LOCATION: See Drawing 1		١.	A N A D I	F0	ı		DYNA	MIC CO	NE PEN	NETRA	TION		1				1 1			
	SOIL PROFILE	Т	5	AMPL	.ES	e E				NE PEN PLOT				PLAST	IC NATI MOIS CON	URAL	LIQUID LIMIT	zi.	TW.	METH AN	
(m)		5			وا د	WATI	z	2	1	1		1	00	W _P	CON	TENT W	WL	ET PEI (KPa)	LUNIT	GRAIN	SIZE
ELEV DEPTH	DESCRIPTION	TA P	Ä		BLOWS 0.3 m	ONI	\TIO	SHEA O UN • QU	NCONF	RENG INED	1H (KI +	Pa) FIELD V & Sensi	/ANE	-		o—		POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	DISTRIE	
		STRATA PLOT	NUMBER	TYPE	ž	GROUND WATER CONDITIONS	ELEVATION	• Ql	JICK TF 0 4	RIAXIAL 0 6	. × 60 8	LAB V. 30 1	ANE 00		TER CO		T (%) 30	ш.	¥	GR SA	
61.2	<u> </u>	19.	16	SS	92	00	ш	-									†	>225		GR SA	SI CL
20.2	END OF BOREHOLE	T NI'L																			
	Notes: 1) Water level at 4.6 mbgl during drilling																				
	drilling																				

DS SOIL LOG 18-519-10 800 HYDRO ROAD.GPJ DS.GDT 18-10-12

ENCL NO.: 5

LOG OF BOREHOLE BH18-04

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 18-519-10

Date: Jun-22-2018

	SOIL PROFILE	1	S	AMPL	ES	<u>بر</u>		RESI	AMIC CO STANCI	PLOT	INE I KA	-		PLASTI I IMIT	C NAT	URAL	LIQUID		ΤM	METHANE
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE	AR ST INCONI QUICK T	RENG FINED RIAXIAI	TH (k + L ×	Pa) FIELD VA & Sensitiv LAB VA	ANE vity NE	W _P WA	TER CO	ONTEN	LIMIT W _L 	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZ DISTRIBUTI (%) GR SA SI
8 0.0	TOPSOIL: 150mm	11/2					81											Ħ		
80.3	FILL: silty sand and gravel, brown, moist, compact	\bigotimes	1	SS	10									(
0.8	FILL: silt to clayey silt, trace organics, trace gravel, grey, moist, compact		2	SS	12		80									0		-		
79.3 1.8	CLAYEY SILT TILL: sandy, trace gravel, trace cobble, brown, moist,		3	SS	14		70	- - - -								0				
78.8	very stiff						79													
2.3	SANDY SILT TO SILTY SAND: trace clay, trace to some gravel, brown, moist to wet, very dense to compact		4	SS	29			- - - -							0					
-			5	SS	50/ 150mn	n	78	- - - -						0				-		
							77	-												
					50/															
5			6	SS	50/ 50mm		76	- - - -						0				-		
<u>6</u>						Δ	W. L.	- - - - - -												
	grey and wet below 6.1 m		7	SS	25		during								0					
-							74											-		
73.5 7.6	SILTY SAND TILL: trace clay, some gravel, occassional cobble/boulders, grey, wet, very dense		8	SS	78		73	-							0					
73.5 7.6								- - -												
9			9	SS	64		72	-							0			-		
								-												

GROUNDWATER ELEVATIONS

NOTES

+ 3 , imes 3 : Numbers refer to Sensitivity

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 18-519-10

Date: Jun-22-2018 ENCL NO.: 5

BOREHOLE LOCATION: See Drawing 1

	SOIL PROFILE		SAMPL	.ES	œ		RESI	AMIC CO STANCE	E PLOT		·		PLAST	IC NAT	URAL	LIQUID LIMIT	١.	ΜT	MET	HANE
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE O L	AR ST INCONF QUICK T	RENG INED RIAXIAI	STH (kl	Pa) FIELD & Sens LAB \	VANE itivity /ANE 100	W _P ⊢ WA	TER CO	w o ONTEN	W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AI GRAII DISTRI (°	BUTIC %)
-	SILTY SAND TILL: trace clay, some gravel, occassional cobble/boulders, grey, wet, very dense(Continued)	161 111 111 111 111 111				71														
11		10 10 11 11 10	ss t	namme ounce	er d	70	-													
<u>2</u>		101 101 101 111 111 111 111 111 111 111				69	-													
- - -		11 10 10 10 10 11	SS	50/ 125mn	1									0						
67.4	SAND: trace silt, grey, wet, very	101 111 121 161				68	-													
13.7	dense	12	SS	62		67	-							0						
<u>5</u>						66											-			
-	interbed of silt at 15.5 m	13	SS	53											0					
-						65														
62.9		14	SS	80		64	-							0			-			
62.9	CILTY OLAY TILL					63	-										-			
18.2	SILTY CLAY TILL: some sand, trace gravel, grey, moist, hard	15	SS	56			-							C			>225			
-						62	-													
±0	Continued Next Page																			

GROUNDWATER ELEVATIONS

Measurement

Telephone

Measurement

Measurement

NOTES

+ ³, × ³: Numbers refer to Sensitivity

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 18-519-10

PODE	M: Geodetic							Date:	Jun-2	22-201	0					E۱	NCL N	O.: 5		
BURE	HOLE LOCATION: See Drawing 1 SOIL PROFILE		S	SAMPL	.ES			DYNA RESIS	MIC CC	NE PEI	NETRA	TION			NATI	IDAI				METHANE
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	ТҮРЕ	l" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O U • Q	20 4 AR ST NCONF UICK TI	RENG RINED RIAXIAL	50 8 5TH (kl	Pa) FIELD V & Sensii	ANE tivity		TER CC	DNTEN:		POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZ DISTRIBUTI
	SILTY CLAY TILL: some sand, trace gravel, grey, moist,	191	≝ 16	SS	<u>‡</u> 42	5 8	ਰ 61	- 2	20 4	10 6	80 8	30 1	00	1	0 2	20 (30	>225		GR SA SI
60.7 20.4	trace gravel, grey, moist, hard(Continued) END OF BOREHOLE Notes: 1) Water level at 6.0 mbgl during drilling																			

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150 mm REF. NO.: 18-519-10

Date: Jul-26-2018 ENCL NO.: 6

BOREHOLE LOCATION: See Drawing 1

	SOIL PROFILE	\perp	S	AMPL	ES	<u>~</u>		RESI	STANC	ONE P E PLO	EINE I	KAI	ION		PLAST	IC NAT MOIS CON	TURAL	LIQUID LIMIT	1.	TW		THANE
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	l" <u>BLOWS</u> 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE	JNCON	TREN IFINED TRIAXI	AL	+ 8 × L	a) TELD V Sensi		W _P WA	TER C	w O ONTEN	w _∟ 	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GRA DISTR	(%)
84.0			ž	۲	ž	<u>0</u> 0	□		20	40	60	80) 1	00	1	10	20	30			GR SA	A SI
8 9.9 0.1	FILL: clayey silt, trace rootlet, trace organic, brown, moist, stiff to hard		1	SS	22			-							0							
1			2	SS	11		83										0		-			
2			3	SS	50		82	-								0						
2.3	CLAYEY SILT TILL: some sand, trace gravel, occassional cobble/boulder, brown to grey, moist, hard		4	SS	45			-							0	ı						
			5	SS	69		81	-							0				-			
1							80	-											-			
5	grey below 4.9 m		6	SS	93		79	-							0							
								-														
			7	ss	58		78	-							c	>						
<u>7</u>							77	-														
<u>3</u>			8	SS	60		76								C	,			-			
Z							7															
			9	SS	39		75	-							0							
.			-					- - -														

 GRAPH NOTES +

+ 3 , \times 3 : Numbers refer to Sensitivity

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150 mm REF. NO.: 18-519-10

Date: Jul-26-2018 ENCL NO.: 6

	SOIL PROFILE		S	AMPL	ES	<u></u>		RESI	AMIC CC STANCE	PLOT		·		PLASTI	C NAT	URAL	LIQUID		Υ	METHANE
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	111	BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE O L	AR ST	RENG INED	TH (kf	Pa) FIELD V & Sensit	OO I ANE ivity	PLASTI LIMIT W _P		TURE ITENT W O	LIMIT W _L	POCKET PEN. (Cu) (kPa)	۱۳۸۲ مرلتا (kN/m³)	AND GRAIN SIZI DISTRIBUTIO (%)
		STR/	NOM	TYPE	ļ.	GRO	ELE		QUICK TI 20 4				ANE 00				30		Ž	GR SA SI
	CLAYEY SILT TILL: some sand, trace gravel, occassional cobble/boulder, brown to grey, moist, hard(Continued)							-												
			10	SS	51		73	-						•						
							72													
71.8	SILTY CLAY: trace sand, grey, moist, hard to very stiff		11	SS	32			-							0					
							71	-												
			12	SS	19		70	-												
					19		70	-												
68.8							69													
15.2	CLAYEY SILT: trace sand, grey, moist, very stiff		13	SS	21										0					
!							68	-												
					40		67	-								0				
			14	SS	19			-												
65.7 18.3 64.5 19.5							66	-												
18.3	SILT: trace clay, trace sand, grey, wet, compact		15	SS	26		_	-							0					
64.5	CANDY OUT TO OUT TY CAND						65	-												
19.5	SANDY SILT TO SILTY SAND TILL: interbed of wet sand, grey, wet, very dense							Ė												

NOTES

+ 3 , imes 3 : Numbers refer to Sensitivity

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150 mm REF. NO.: 18-519-10

DATUM: Geo								Date:	Jul-26	6-2018	3				ΕN	ICL N	O.: 6		
BOREHOLE	LOCATION: See Drawing 1 SOIL PROFILE		5	SAMPL	.ES			DYNAI RESIS	MIC CO TANCE	NE PEN PLOT	NETRAT	TION		NIA T	IDAI				METHANI
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	2 SHEA O UI • QI	0 4	0 6 RENG INED RIAXIAL	TH (kF	Pa) FIELD V & Sensit	OO ANE ivity ANE OO	TER CO		LIQUID LIMIT W _L ————————————————————————————————————	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZ DISTRIBUTI (%) GR SA SI
			16	SS	66			-						0					
Note 1)V	OF BOREHOLE SISTEM STATEMENT OF THE STAT		16	SS	66														

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 18-519-10

Date: Jun-18-2018 ENCL NO.: 7

BOREHOLE LOCATION: See Drawing 1

					1 122	l	l			NETRA	_		PLASTI	C	THE	LIQUID	1	≽	METHANE
DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE.	AR ST NCONF UICK T	RENG INED RIAXIAL	TH (kf + - ×	Pa) FIELD V & Sensit LAB V	'ANE tivity ANE	W _P WA	TER CO	NTEN.	LIMIT W _L T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZE DISTRIBUTIO (%) GR SA SI
							-												
FILL: sand and gravel, brown, moist, compact	\bigotimes	1	SS	13			- - -							0					
FILL: silty clay, trace gravel, brown, moist, compact		2	SS	13		82	-							0					
CLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard		3	SS	28		81	-							•			->225		
							-												
		4	SS	44		80							(>225		
arev helow 3.1 m							-												
gicy bolow 0.1111		5	SS	34			- - -						0				>225		
						79	-												
		6	SS	40		78	-						0				>225		
						77	-												
							ŀ												
		7	SS	51			-							0					
						76	-												
		8	SS	54		75	-							0			>225		
					•		- - - -												
						74 	- - - -												
		9	SS	54			Ė							0			>225		
	TOPSOIL: 230 mm FILL: sand and gravel, brown, moist, compact FILL: silty clay, trace gravel, brown, moist, compact CLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist,	TOPSOIL: 230 mm FILL: sand and gravel, brown, moist, compact FILL: silty clay, trace gravel, brown, moist, compact CLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard	FILL: sand and gravel, brown, moist, compact FILL: silty clay, trace gravel, brown, moist, compact CLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard 3 GRAVE SILT TILL: some sand to sandy trace gravel, brown, moist, hard 6 7 8 8 8	FILL: sand and gravel, brown, moist, compact FILL: silty clay, trace gravel, brown, moist, compact CLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard CLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard 5 SS 6 SS 7 SS 8 SS	FILL: sand and gravel, brown, moist, compact FILL: silty clay, trace gravel, brown, moist, compact CLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard CLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravely gravel	FILL: sand and gravel, brown, moist, compact FILL: silty clay, trace gravel, brown, moist, compact CLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard CLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard 5 SS 44 grey below 3.1 m 5 SS 13 CLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard 7 SS 51 8 SS 54	TOPSOIL: 230 mm FILL: sand and gravel, brown, moist, compact FILL: silty clay, trace gravel, brown, moist, compact CLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard 3 SS 28 81 GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard 5 SS 34 79 6 SS 40 77 7 SS 51 76 8 SS 54	FILL: sand and gravel, brown, moist, compact FILL: silty clay, trace gravel, brown, moist, compact CLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravely s	TOPSOIL: 230 mm	### TOPSOIL: 230 mm FILL: sand and gravel, brown, moist, compact 1	### TOPSOIL: 230 mm FILL: sand and gravel, brown, moist, compact 1	FILL: sand and gravel, brown, moist, compact FILL: silty clay, trace gravel, brown, moist, compact CLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard GLAYEY SILT TILL: some sand to sandy trace gravely	FILL: sand and gravel, brown, moist, compact FILL: sliy clay, trace gravel, brown, moist, compact CLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard 3	DESCRIPTION	DESCRIPTION Market Market	TOPSOIL: 230 mm FILL: selfy clay, trace gravel, brown, moist, compact 2 SS 13 FILL: selfy clay, trace gravel, brown, moist, compact 3 SS 28 81 GLAYEY SILT TILL: seome sand to sandy trace gravel, brown, moist, hard 4 SS 44 80 grey below 3.1 m 5 SS 34 70 70 77 77 77 77 88 87 78 78	DESCRIPTION	TOPSOIL: 230 mm FILL: sainty clay, trace gravel, brown, moist, compact 2 SS 13 FILL: silty clay, trace gravel, brown, moist, hard 2 SS 13 82 CLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard 6 SS 40 78 7 SS 51 7 SS 51	TOPSOIL: 230 mm 5 2

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 18-519-10

Date: Jun-18-2018 ENCL NO.: 7

	SOIL PROFILE	_	S	AMPL	ES	er.		RESI	AMIC CO STANCE	E PLOT	NETRA	HON .		PLASTI LIMIT	IC NAT	URAL	LIQUID		WT	METHANE
(m) ELEV DEPTH	DESCRIPTION		NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE O L	AR ST INCONF QUICK T	RENG INED RIAXIAI	TH (ki	FIELD V & Sensit LAB V	/ANE tivity	W _P ⊢ WA	TER CO	w o ONTEN	LIMIT w _L T (%) 30	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m^3)	AND GRAIN SIZ DISTRIBUTIO (%) GR SA SI
	CLAYEY SILT TILL: some sand to sandy trace gravel, brown, moist, hard(Continued)							- - - -												
1			10	SS	54		72	-							0			>225		
2							71	-												
<u>3</u>			11	SS	64		70	-							0			>225		
69.1 13.7	SILTY CLAY: trace sand,							- - - -												
13.7	occasional sand seams, grey, moist, very stiff		12	SS	16		69	- - - -								-	48	125		0 6 26
<u>i</u>							68	-												
			13	SS	26		67	-							o			200		
								-												
16.8	CLAYEY SILT TO SILT: some clay, trace sand, grey, moist, compact		14	SS	23		66	-								0		200		
<u>8</u>							65	-												
			15	SS	26		64	-									0	>225		
66.0 16.8 2								- - - -												
							63	-												

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 18-519-10

Date: Jun-18-2018 ENCL NO.: 7

BOREHOLE LOCATION: See Drawing 1

	SOIL PROFILE	1	\vdash	AMPL	_0	e:					IETRATIO	_		PLASTI LIMIT	C NATI	URAL	LIQUID		Μ	METHANE
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE O U	AR ST INCONF OUICK TO	INED	ΓΗ (kPa + & × L	A) ELD VAI Sensitivi AB VAI	NE ty NE	W _P ⊢ WA	TER CO	TENT W O ONTENT	LIQUID LIMIT W _L T (%)	POCKET PEN (Cu) (kPa)	NATURAL UNIT (kN/m³)	AND GRAIN SIZE DISTRIBUTIO (%) GR SA SI
	CLAYEY SILT TO SILT : some clay, trace sand, grey, moist, compact(Continued)		16	SS	23		62	-									0	200		GIT OA GI
1			17	SS	28		61	-								o		200		
59.9							60	-												
22.9	SILT:some clay, grey, very moist to wet, dense		18	SS	32			-								o				
50.4							59	-												
58.4 24.4	SAND: trace silt, some gravel to gravelly, grey, wet, very dense		19	SS	81		58	-								0				
<u> </u>							57	-												
			20	SS	87			-							0					
55.4	SANDY SILT TO SILTY						56	-												
54.8	SAND:trace clay, grey, wet, very dense SILTY CLAY:trace sand, trace		21	SS	58		55	-							0					
	gravel, grey, moist, hard						54	-												
55.4 27.4 54.8 28.0			22	SS	81			-								0		>225		
52 8							53					+								

Measurement

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 18-519-10

Date: Jun-18-2018 ENCL NO.: 7

BOREHOLE LOCATION: See Drawing 1

	SOIL PROFILE		S	AMPL	ES	<u>ر</u>		RESI	AMIC CO STANCE	E PLOT		ION		PLAST	IC NAT	URAL	LIQUID		M	METHANE
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE O L	AR ST INCONF QUICK T	RENC INED RIAXIA	STH (k + L ×	& Sens	VANE		TER C	w o ONTEN	W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZ DISTRIBUTIO (%) GR SA SI
30.0	SILT: some clay, trace sand, grey, wet, dense		Z	-	-	00	Ш	-	20 .	+0		30	100	<u>'</u>	2	20	30			GR SA SI
54.0			23	SS	45		52	-							0					
31.0	SAND:trace silt, grey, wet, dense																			
50.0							51	-												
32.0	SAND AND GRAVEL:trace silt, occassional cobble/boulders, grey, wet, very dense	0	24	ss	80			- - -							Φ					
		0					50	-												
		0						- - - -												
		.0	25	SS	87		49	-						•						
		0						- - -												
1		0					48	-												
		0	26	SS ,	50/ 125mm)) 								0						
<u> </u>		0.0.0.0					47													
:		0.	27	SS	76		46	-							0					
		0																		
3		0	000		50/		45	- - - -												
		0.0	28	SS ,	150mm	,	44	-						C						
		0						- - - -												
Z		0	29	SS	80		43	-			-									

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 18-519-10

Date: Jun-18-2018 ENCL NO.: 7

BOREHOLE LOCATION: See Drawing 1

DESCRIPTION	PLOT			1	Ш	ı							I	MORS	ILIKE	LIQUID	1		****
	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE O U	AR ST NCONF UICK T	RENG INED RIAXIAL	TH (kl + - ×	FIELD V & Sensit LAB V	ANE ivity	W _P ⊢ WA	TER CC	w O ONTEN	LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZ DISTRIBUTIO (%) GR SA SI
SAND AND GRAVEL:trace silt, occassional cobble/boulders, grey, wet, very dense(Continued)	0.0						-												CIV CIV CI
	0		SS	50/		72	-												
	.0			100mm	1	41	-										_		
	0						-												
	0	31	SS ,	50/ 125mm	1	40	-							0					
	0.0					39	-												
	0.	32	SS ,	50/			-							0					
	0			TOOMIN	1	38	-												
	0					07	-												
	0	33	SS ,	50/ 100mm	1	37	-							0					
	. <i>0</i> .					36	-										_		
	0	34	SS	100/ 75mm			-												
SHALE: Georgian Bay Formation,	0	35	SS	100/		35	-							0					
weathered, grey END OF BOREHOLE: Notes: 1) Water level at 16.8m during drilling.				(50mm)															
	SHALE: Georgian Bay Formation, weathered, grey END	SHALE: Georgian Bay Formation, weathered, grey END OF BOREHOLE: Notes: 1) Water level at 16.8m during drilling.	SHALE: Georgian Bay Formation, reathered, grey END OF BOREHOLE: Notes: 1) Water level at 16.8m during drilling.	SHALE: Georgian Bay Formation, Seathered, grey END OF BOREHOLE: Notes: 1) Water level at 16.8m during drilling.	30 SS 50/100mm 31 SS 50/125mm 32 SS 50/100mm 33 SS 50/100mm 34 SS 100/175mm 34 SS 100/175mm 35 SHALE: Georgian Bay Formation, readment of grey 500mm 500mm	30 SS 150/100mm 31 SS 25mm 32 SS 100mm 33 SS 100mm 34 SS 1000mm 35 SHALE: Georgian Bay Formation, 36 SHALE: Georgian Bay Formation, 37 SHALE: Georgian Bay Formation, 38 SS 1000 39 SS 1000 30 SS 150/100mm 30 SS 150/100mm 31 SS 150/100mm 32 SS 150/100mm 33 SS 150/100mm 34 SS 1000 35 SS 1000 36 SS 1000 36 SS 1000 37 SS 1000 38 SS 1000 39 SS 1000 30 SS 150/100mm 30 SS 150/100mm 31 SS 150/100mm 32 SS 150/100mm 33 SS 150/100mm 34 SS 1000 35 SS 1000 36 SS 1000 36 SS 1000 37 SS 1000 38 SS 1000 39 SS 1000 30 SS 150/100mm 30 SS 150/100mm 30 SS 150/100mm 31 SS 150/100mm 32 SS 150/100mm 33 SS 150/100mm 34 SS 1000 35 SS 1000 36 SS 150/100mm 36 SS 150/100mm 37 SS 150/100mm 38 SS 150/100mm 39 SS 150/100mm 30 SS 150/100mm 30 SS 150/100mm 30 SS 150/100mm 30 SS 150/100mm 31 SS 150/100mm 32 SS 150/100mm 33 SS 150/100mm 34 SS 100/100mm 35 SS 150/100mm 36 SS 150/100mm 37 SS 150/100mm 38 SS 150/100mm 39 SS 150/100mm 30 SS 1	30 SS 50/ 00mm 41 31 SS 50/ 00mm 32 SS 50/ 00mm 33 SS 50/ 00mm 34 SS 50/ 00mm 35 SHALE: Georgian Bay Formation, reathered, grey SHALE: Georgian Bay Formation, reathered, grey SHALE: Notes: 1) Water level at 16.8m during drilling.	30 SS 50/ 100mm 41 41 41 41 41 41 41 41 41 41 41 41 41	30 SS 100mm 41 31 SS 25mm 32 SS 100mm 33 SS 100mm 34 SS 100mm 35 SHALE: Georgian Bay Formation, Sathered, grey END OF BOREHOLE: Notes: N	30 SS 100mm 41 31 SS 25mm 32 SS 50/ 33 SS 100mm 38 34 SS 1000mm 36 37 38 38 38 39 30 30 30 30 30 30 30 30 30	30 SS 150/ 40 39 31 SS 25mm 39 30 32 SS 150/ 30mm 38 38 30 32 SS 150/ 375mm 38 38 38 39 30 30 SS 150/ 375mm 38 38 30 30 SS 150/ 375mm 38 38 38 38 38 38 38 38 38 38 38 38 38	30 SS 150/100mm 41 41 33 SS 150/100mm 38 38 38 38 38 38 38 38 38 38 38 38 38	30 SS 150/ 40 41 41 33 SS 25/ 50/ 32 SS 150/ 36 33 SS 100/ 75mm 35 SHALE: Georgian Bay Formation, excitation of year specific process of the second street o	30 SS 50/ 00mm 31 SS 50/ 25mm 32 SS 50/ 00mm 33 SS 50/ 00mm 34 SS 1007 75mm 35 SHALE: Georgian Bay Formation, residenced, grey SHO OF FOREHOLE: Notes: 1) Water level at 16.8m during drilling.	30 SS 50/ 00mm 31 SS 50/ 25mm 32 SS 50/ 00mm 33 SS 50/ 00mm 34 SS 100/ 25mm 38 SS 100/	30 SS 500 40 31 SS 500 30 39 32 SS 500 37 33 SS 500 37 33 SS 500 37 34 SS 1000 00 36 35 MALE: Georgian Bay Formation.	30 SS 50/ 00mm 41 31 SS 50/ 25mm 40 32 SS 50/ 00mm 38 33 SS 50/ 00mm 37 33 SS 50/ 775mm 36 34 SS 100/ 775mm 36 36 SS 100/ 775mm 36 37 SS 100/ 775mm 36 38 SS 100/ 775mm 36 39 SS 100/ 775mm 36 30 SS 50/ 00mm 37 31 SS 50/ 00mm 37 32 SS 100/ 00mm 37 33 SS 100/ 00mm 37 34 SS 100/ 00mm 36 35 SS 100/ 00mm 36 36 SS 100/ 00mm 36 37 SS 100/ 00mm 37 38 SS 100/ 00mm 37 39 SS 100/ 00mm 37 30 SS 1	31 SS 150/ 40 31 SS 150/ 32 SS 100mm 38 39 30 30 30 30 30 30 30 30 30 30 30 30 30	30 SS 150/ 31 SS 25mm 40 32 SS 150/ 32 SS 150/ 33 SS 150/ 33 SS 100/mn 38 38 38 38 38 38 38 38 38 3

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 18-519-10

Date: Jun-20-2018 ENCL NO.: 8

BOREHOLE LOCATION: See	Drawing 1
-------------------------------	-----------

	SOIL PROFILE		S	AMPL	ES	<u>ر</u>		RESI	STANCE	PLOT	ETRATION	_	PLAST	IC NAT	URAL	LIQUID		₹	METHANE
(m)		7			(0)	GROUND WATER CONDITIONS			20 4	10 60	80	100			NTENT W	LIQUID LIMIT W _L	POCKET PEN. (Cu) (kPa)	IN (AND GRAIN SIZE
LEV	DESCRIPTION	l g	~		3 m	N N N	NO.				H (kPa)	DVANE	W _P ⊢		-O	w _L	는 문화	KNY KN	DISTRIBUTION
EPTH	DESCRIPTION	STRATA PLOT	NUMBER	ш	BLOWS 0.3 m	N T	ELEVATION		INCONF		+ % Se	LD VANE ensitivity	WA	TER C	ONTEN	T (%)	δÖ	MATU)	(%)
02.4		STR,	ΣĮ	TYPE	þ	3RC 30N	ji			RIAXIAL 10 60		B VANE 100				30		z	GR SA SI
0.0	GRANULAR BASE: 300mm	XX	+		-	00	82		Ť			1				1			GIV SA SI
81.8	Grand Bride.	\times] [۸.			02	-											
0.3	FILL: sand, some gravel, grey,	X	1 1	AS				-											
	moist, compact							ļ.											
		\times	1—					-											
81.0								-											
1.1	CLAYEY SILT TILL: sandy, trace	181	2	SS	16		81		+				-				1		
	gravel, occasional cobble/boulder,		Ш					-											
	brown to grey, moist, very stiff to hard		\vdash			ł		-											
	nard	181	1 .	00				F											
			3	SS	33			-						0			>225		
		191	1				80												
			Щ					ļ.											
			1					ļ.											
			4	SS	79			-						0			>225		
								Ł											
		19.1						-											
	grey below 3.1 m		1			1	79	-											
			5	SS	59			-									>225		
			1					Ė											
			\vdash			l		-											
		189	1					Ŀ											
			1				78										1		
			1					F											
			1					F											
			\vdash			1		-											
		1	6	SS	58			ļ.									>225		
			1				77												
		isti	╁			ł	''	ŀ											
			1					-											
			1					-											
			1					F											
			1					Ļ											
		191	1			i	76										1		
			7	SS	51			-									>225		
			1 '	00	"			Ŀ											
			\vdash			ł		-											
			1					F											
			1				75		-										
			1					ļ											
74.5								ļ.											
74.5 7.6 73.0 9.1	SANDY SILT TILL:some clay,	-111	\vdash			Δ	W. L.	L 74.5 r	l n										
]	some gravel, occasional cobble/boulder, grey, very moist to		8	SS	87		during							0					
	cobble/boulder, grey, very moist to wet, very dense	-		33	07		7.	Ŀ						Ľ					
	, vory donot		Н			1	74	F											
								F											
								Ė.											
								ţ											
70.0								Ł											
73.0 9.1	SILT: trace sand, grey, moist to	1191	\vdash			1	73	-				-	-						
9.1	very moist, compact			0.5				F											
	· · · · · · · · · · · · · · · · · · ·		9	SS	29			F						0					
- 1						1		t						1			Ιl		
		1111	-																

Continued Next Page GROUNDWATER ELEVATIONS

GRAPH NOTES + 3 , imes 3 : Numbers refer to Sensitivity

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 18-519-10

Date: Jun-20-2018 ENCL NO.: 8

	SOIL PROFILE		S	AMPL	.ES	ا پر		RESI	AMIC CO STANCE	PLOT		-		PLAST	IC NAT	URAL	LIQUID		¥	METHANE
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE O L	AR ST INCONF QUICK T	RENG INED RIAXIAL	TH (k + - ×	Pa) FIELD V & Sensii LAB V	ANE	W _P ⊢ WA	TER CO	w o ONTEN	W _L T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT V (kN/m³)	
74.4	SILT: trace sand, grey, moist to very moist, compact(Continued)	S	Z	-	-	90	— 72	_	20	10 6	60 8	80 1	00		10 2	20 ;	30			GR SA SI
71.4	SANDY SILT TO SILTY SAND: trace gravel, grey, wet, very dense		10	SS	77		71	- - - - - - -							0					
² 70.0 12.1	SILTY CLAY TILL: sandy, trace gravel, occasional cobble/boulder,						70	- - - - - - -												
3	grey, moist, hard		11	SS	59			- - - - -							0			>225		
							69	- - - -												
			12	SS	59		68	- - - - -							0			>225		2 27 48
66.9							67	- - - - -												
15.2	SANDY SILT TO SILTY SAND:trace clay, grey, wet, very dense		13	SS	79			- - - - -							0					
3							66	-												
65.3	CLAYEY SILT TILL: some sand to sandy, trace gravel, occasional cobble/boulder, grey, moist, hard		14	SS	72		65	-							0			>225		
<u>1</u>							64	-												
			15	SS	40			- - - - -							0			>225		
65.3 16.8 7 62.3 19.8							63	-												
62.3 19.8								Ē												

Continued Next Page **GROUNDWATER ELEVATIONS**

NOTES

+ 3 , imes 3 : Numbers refer to Sensitivity

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 18-519-10

Date: Jun-20-2018 ENCL NO.: 8

BOREHOLE LOCATION: See Drawing 1

	SOIL PROFILE	+	JAIVI	PLES	H H			AMIC CO STANCE					PLASTI	C NATI MOIS CON	URAL TURE	LIQUID LIMIT	z	ΓWΤ	METHANE AND
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER TYPE	"N" BLOWS	GROUND WATER CONDITIONS	ELEVATION	SHE O L	AR STI	INED	TH (kl	30 100 Pa) FIELD VAI & Sensitivi LAB VAI 30 100	NE ty NE	W _P WA	TER CC	w DNTEN	W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GRAIN SIZ DISTRIBUTIO (%) GR SA SI
			6 S			62	-								0		200		GR SA SI
							-												
<u>.</u>					_	61	-												
2			7 S	34											c		175		
						60	-												
3							-												
			8 S	56		59	-							(>225		
<u>.</u>						58	-												
			0 0	50			-												
<u>i</u>			9 S	52		57									0		>225		
							-												
<u>i</u>			20 SS	5 57		56	-							0			>225		
					_		-												
						55	-												
			21 S	50/ 25mm	1		-								0		>225		
1						54	-												
53.1 29.0							-												
29.0	SANDY SILT TILL: trace to some clay, trace gravel, occasional cobble/boulder, grey, wet, very					53	-												
	dense																		

 $\frac{\text{GROUNDWATER ELEVATIONS}}{\text{Measurement}} \stackrel{\text{1st}}{\underbrace{\hspace{1em}}} \stackrel{\text{2nd}}{\underbrace{\hspace{1em}}} \stackrel{\text{3rd}}{\underbrace{\hspace{1em}}} \stackrel{\text{4th}}{\underbrace{\hspace{1em}}}$

GRAPH NOTES $+3, \times 3$: Numbers refer to Sensitivity

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 18-519-10

	JM: Geodetic							Date:	Jun-2	0-201	8					ΕN	NCL N	O.: 8			
BORE	EHOLE LOCATION: See Drawing 1							DYNA	MIC CO	NE PEN	JETRA	TION									
	SOIL PROFILE		S	AMPL	.ES	£.		RESIS	MIC CO TANCE	PLOT	\geq	-		PLASTI LIMIT	IC NATI	URAL	LIQUID		WT	METHA	
(m)		10.			ωI _	GROUND WATER CONDITIONS	7		1			1	00	LIMIT W _P	CON	TENT	LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	ANE GRAIN :	
ELEV DEPTH	DESCRIPTION	STRATA PLOT	监		BLOWS 0.3 m	V O F	ELEVATION	SHEA	AR STI NCONF JICK TE	RENG INED	TH (kf +	Pa) FIELD V	ANE	-		0	—	Cu) (F	URAL (kN/r	DISTRIBU	JTION
DEFIII		-RAT	NUMBER	TYPE		ROUI	EVA.	• QI	JICK TE	RIAXIAL	×	LAB V	ANE		TER CC			<u> </u>	NAT	(%)	
	CANDY OUT THE LANGE AS A SECOND		ž		ż	<u>p</u> 2		2	0 4	0 6	0 8	1	00	1	0 2	20 3	30			GR SA	SI CL
-	SANDY SILT TILL: trace to some clay, trace gravel, occasional cobble/boulder, grey, wet, very						52														
-	cobble/boulder, grey, wet, very dense(Continued)																				
51.4			22	SS	50/ (00mi)										0						
30.7	END OF BOREHOLE Notes:				001111)																
	 Water level at 7.6m during drilling. 																				
	arilling.																				

DS SOIL LOG 18-519-10 800 HYDRO ROAD.GPJ DS.GDT 18-10-12

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 18-519-10

Date: Jun-28-2018 ENCL NO.: 9

BOREHOLE LOCATION: See Drawing 1

	SOIL PROFILE		S	AMPL	ES.	<u>د</u>		RE	SIST	ANCE	NE PE PLOT		-		PLAS ⁻	TIC NA	TURAL ISTURE NTENT	LIQUID		¥	METHANE
(m) ELEV DEPTH 81.6	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	0	UN	R STI CONF	RENG INED RIAXIAI	. ×	(Pa) FIELD & Sen: LAB	VANE sitivity VANE 100	W _P		w -0	LIQUID LIMIT W _L NT (%) 30	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZE DISTRIBUTIO (%) GR SA SI
0.0	FILL: sand and gravel, brown, wet, compact		1	SS	17			31							0						
0.8	CLAYEY SILT: trace sand, brown to grey, moist, very stiff to hard		2	SS	16			-								0					
<u>2</u>			3	SS	20		8	30									o		_		
<u>3</u>	grey below 2.3 m		4	SS	28	<u>∑</u>	W. L	79 78.8 26, 2	3 m								0				
			5	SS	32			/8 -									o				
4								-													
76.7 5 4.9	SAND & SILT: trace to some clay, grey, wet, compact to dense		6	SS	24		7	7-									0				
<u>6</u>								'6 tonite	•										_		
			7	SS	46		7	/5 - -									Φ		_		0 43 47
74.0							7	- - - - - - - - - - - - - - - - - - -													
74.0 7.6 8 8 9.1	SANDY SILT: trace clay, grey, wet, very dense		8	SS	66											C					0 31 62
⁹ 72.5							7	/3 													
9.1	CLAYEY SILT TILL: some sand to sandy, trace gravel, occasional cobble/boulder, grey, moist, hard		9	SS	71			- - 								0					

GROUNDWATER ELEVATIONS

NOTES

+ 3 , imes 3 : Numbers refer to Sensitivity

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 18-519-10

Date: Jun-28-2018 ENCL NO.: 9

BORE	M: Geodetic HOLE LOCATION: See Drawing 1							Date: Jun	-20-201							NCL N	O 3		
DOILL	SOIL PROFILE		S	SAMPL	ES			DYNAMIC C RESISTANC	ONE PEI	NETRA	TION			NAT	LIRAI				METHANE
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	туре	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	20 SHEAR S O UNCON QUICK	40 6	0 8 TH (kF + . ×	0 10 22)	NE ity NE	W _P	TER CO	TENT W O ONTEN	LIQUID LIMIT W _L T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZ DISTRIBUTIO (%) GR SA SI
-	CLAYEY SILT TILL: some sand to sandy, trace gravel, occasional cobble/boulder, grey, moist, hard(Continued)	9	_	'	-			-											GIT GA GI
70.9 10.7	SILT TO CLAYEY SILT: trace sand, grey, moist to very moist, dense		10	SS	34		71	-							c		175		
2							70										-		
69.4 12.2	SILTY SAND TILL: trace clay, some gravel, grey, wet, very dense		11	SS	50/ 150mn		Filter	-					0						
68.1								- - - - - -											
13.5	SAND: trace silt, trace gravel, grey, wet, very dense		12	SS	74		68 Slotte	d Pipe						0					8 88 (
							67	-											
66.4 15.2	SANDY SILT TO SILTY SAND: trace clay, grey, wet, very dense		· [- - - - -											
<u>6</u>			13	SS	82		66	-						•					
							65	- - - -									-		
⁷ 64.5 17.1	SILTY CLAY: trace sand, grey, moist, hard		14	SS	71		-Bento	i L nite					(Þ					
							64	-											
			15	SS	50		63	-					•				->225		
9							62	- - - -											
		Ti/S	1				02	I T									l		

 $\begin{array}{c|c} \underline{\mathsf{GROUNDWATER}\;\mathsf{ELEVATIONS}} \\ \mathsf{Measurement} & \overset{\mathsf{1st}}{\underbrace{\hspace{0.1cm}}} & \overset{\mathsf{2nd}}{\underbrace{\hspace{0.1cm}}} & \overset{\mathsf{3rd}}{\underbrace{\hspace{0.1cm}}} & \overset{\mathsf{4th}}{\underbrace{\hspace{0.1cm}}} \\ \end{array}$

 $\frac{\text{GRAPH}}{\text{NOTES}} \quad +^{\,3}, \times^{\,3} \colon \stackrel{\text{Numbers refer}}{\text{to Sensitivity}}$

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 18-519-10

	JM: Geodetic							Date:	Jun-2	8-201	3					ΕN	NCL N	O.: 9			
BOR	EHOLE LOCATION: See Drawing 1		_		<u></u>	ı .		DYNA	VIC CO	NE PEN	IETRA	TION									
	SOIL PROFILE	<u> </u>	8	AMPL	ES	e H				NE PEN PLOT				PLAST LIMIT	IC NAT	URAL STURE	LIQUID LIMIT	-	- WT	METHA ANI	
(m)		LO T			SI E	WAT	z		0 4	1 1		1	00	W _P	CON	TENT W	W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GRAIN	SIZE
ELEV DEPTH	DESCRIPTION	TAP	3ER		BLOWS 0.3 m	OND	АТІО	O UN	NCONF	RENG INED RIAXIAL	+	FIELD V & Sensit	ANE ivity	 	TED 04	0		POCK (Cu)	TURA (kN	DISTRIBI	
		STRATA PLOT	NUMBER	TYPE	ż	GROUND WATER CONDITIONS	ELEVATION	● Ql	JICK TF 0 4	RIAXIAL 0 6	× 0 8	LAB V	ANE 00		TER CO		1 (%) 30		2	GR SA	
61.2	SILTY CLAY: trace sand, grey, moist, hard(Continued)		16	SS	35			-								0		>225			
20.4		P P																			
	Notes: 1) Water level at 4.9 mbgl during																				
	drilling 2) Water level in the monitoring well																				
	2) Water level in the monitoring well recorded at 2.8m on Sept. 26, 2018.																				
:																					

DS SOIL LOG 18-519-10 800 HYDRO ROAD.GPJ DS.GDT 18-10-12

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 18-519-10

Date: Jul-04-2018 ENCL NO.: 19

BOREHOLE LOCATION: See Drawing 1

									NE PEI E PLOT	<			PLAST	IC MOIS	TUDE	LIQUID		≳ I	METHANE
DESCRIPTION	TA PLOT	BER		BLOWS 0.3 m	UND WATE	ATION	SHE O U	AR ST	RENG	TH (k +	Pa) FIELD	VANE	W _P ⊢		w 0	LIQUID LIMIT W _L	POCKET PEN. (Cu) (kPa)	(KN/m³)	AND GRAIN SIZE DISTRIBUTION (%)
	STR/	NOM	TYPE	į.	GRO	ELEV				- ×	LAB \	/ANE				30	2		GR SA SI (
FILL: sandy silt, trace gravel, grey, moist		1	AS		-		-						0						-
FILL: silty clay, trace organics, grey, moist, loose		2	SS	4	-	79	- - - -						0						
CLAYEY SILT: trace sand, grey, moist, firm to very stiff		3	SS	6		70	-								0				
		4	SS	20	-	70	- - - - -								Φ		>225		
SANDY SILT: trace to some clay, grey, wet, compact		5	SS	22	. <u>V</u>	W. L. during	[77.1 n drillin [- -	 n g						0					4 33 53
						76	-												
		6	SS	30	-	75	-							0					
							- - - - -												
CLAYEY SILT TILL: sandy, trace gravel, grey, moist, hard		7	SS	75	-	74	- - - - -							0			>225		
						73	- - - - -												
SILT TO SANDY SILT: trace clay, grey, wet, very dense		8	SS	81		72	- - - -							0					
							- - - -												
		9	SS ,	50/ 125mn	- - -	71	-							0					
	FILL: sandy silt, trace gravel, grey, moist FILL: silty clay, trace organics, grey, moist, loose CLAYEY SILT: trace sand, grey, moist, firm to very stiff SANDY SILT: trace to some clay, grey, wet, compact CLAYEY SILT TILL: sandy, trace gravel, grey, moist, hard	FILL: sandy silt, trace gravel, grey, moist FILL: silty clay, trace organics, grey, moist, loose CLAYEY SILT: trace sand, grey, moist, firm to very stiff SANDY SILT: trace to some clay, grey, wet, compact CLAYEY SILT TILL: sandy, trace gravel, grey, moist, hard	FILL: sandy silt, trace gravel, grey, moist FILL: silty clay, trace organics, grey, moist, loose 2 CLAYEY SILT: trace sand, grey, moist, firm to very stiff 3 SANDY SILT: trace to some clay, grey, wet, compact 5 CLAYEY SILT TILL: sandy, trace gravel, grey, moist, hard 7 SILT TO SANDY SILT: trace clay, grey, wet, very dense 8	FILL: sandy silt, trace gravel, grey, moist FILL: silty clay, trace organics, grey, moist, loose CLAYEY SILT: trace sand, grey, moist, firm to very stiff 3 SS SANDY SILT: trace to some clay, grey, wet, compact CLAYEY SILT TILL: sandy, trace gravel, grey, moist, hard 7 SS SILT TO SANDY SILT: trace clay, grey, wet, very dense 8 SS	FILL: sandy silt, trace gravel, grey, moist 1 AS FILL: silty clay, trace organics, grey, moist, loose 2 SS 4 CLAYEY SILT: trace sand, grey, moist, firm to very stiff 3 SS 6 4 SS 20 SANDY SILT: trace to some clay, grey, wet, compact 5 SS 22 CLAYEY SILT TILL: sandy, trace gravel, grey, moist, hard 7 SS 75 SILT TO SANDY SILT: trace clay, grey, wet, very dense	FILL: sandy silt, trace gravel, grey, moist FILL: silty clay, trace organics, grey, moist, loose 2 SS 4 CLAYEY SILT: trace sand, grey, moist, firm to very stiff 3 SS 6 4 SS 20 SANDY SILT: trace to some clay, grey, wet, compact 6 SS 30 CLAYEY SILT TILL: sandy, trace gravel, grey, moist, hard 7 SS 75 SILT TO SANDY SILT: trace clay, grey, wet, very dense	FILL: sandy silt, trace gravel, grey, moist 1 AS FILL: silty clay, trace organics, grey, moist, loose 2 SS 4 FILL: silty clay, trace sand, grey, moist, firm to very stiff 3 SS 6 FARMANDY SILT: trace to some clay, grey, wet, compact 5 SS 22 SANDY SILT: trace to some clay, grey, wet, compact 6 SS 30 CLAYEY SILT TILL: sandy, trace gravel, grey, moist, hard 7 SS 75 SILT TO SANDY SILT: trace clay, grey, wet, very dense 8 SS 81 72	FILL: sandy silt, trace gravel, grey, moist 1 AS	FILL: sandy silt, trace gravel, grey, moist FILL: silty clay, trace organics, grey, moist, loose 2 SS 4 FILL: silty clay, trace sand, grey, moist, loose 2 SS 4 FILL: silty clay, trace sand, grey, moist, loose 2 SS 4 FILL: silty clay, trace sand, grey, moist, loose 2 SS 4 FILL: silty clay, trace sand, grey, moist, loose 2 SS 4 FILL: silty clay, trace sand, grey, moist, loose 2 SS 4 FILL: silty clay, trace sand, grey, moist, loose 3 SS 6 FILL: silty clay, trace sand, grey, moist, firm to very stiff 3 SS 6 FILL: silty clay, trace sand, grey, moist, firm to very stiff 4 SS 20 W.L. 77.1 m during drilling 76 FILL: sandy SILT: trace to some clay, grey, moist, hard 7 SS 75 FILL: sandy silt, trace clay, grey, moist, hard 8 SS 81 FILL: sandy silt, trace clay, grey, wet, very dense	FILL: sandy silt, trace gravel, grey, moist FILL: silty clay, trace organics, grey, moist, loose 2 SS 4 CLAYEY SILT: trace sand, grey, moist, firm to very stiff 3 SS 6 SANDY SILT: trace to some clay, grey, wet, compact 5 SS 22 CLAYEY SILT TILL: sandy, trace gravel, grey, moist, hard 7 SS 75 SILT TO SANDY SILT: trace clay, grey, wet, very dense 8 SS 81	FILL: sandy silt, trace gravel, grey, moist 1	FILL: sandy silt, trace gravel, grey, moist 1 AS 1 AS 80 FILL: silty clay, trace organics, grey, moist, loose 2 SS 4 79 CLAYEY SILT: trace sand, grey, moist, firm to very stiff 3 SS 6 78 4 SS 20 SANDY SILT: trace to some clay, grey, wel, compact 5 SS 22 CLAYEY SILT TILL: sandy, trace gravel, grey, moist, hard 7 SS 75 SILT TO SANDY SILT: trace clay, grey, wel, very dense 8 SS 81 72 73 SILT TO SANDY SILT: trace clay, grey, wel, very dense	FILL: sandy slit, trace gravel, grey, moist slit use gravel, grey, moist, loose 2 SS 4 CLAYEY SILT: trace sand, grey, moist, firm to very stiff 3 SS 6 A SS 20 SANDY SILT: trace to some clay, grey, wet, compact 6 SS 30 CLAYEY SILT TILL: sandy, trace gravel, grey, moist, hard 7 SS 75 SILT TO SANDY SILT: trace clay, grey, wet, very dense 8 SS 81	FILL: sandy slit, trace gravel, grey, moist trace organics, grey, moist, loose 2 SS 4 FILL: slity clay, trace organics, grey, moist, loose 2 SS 4 A SS 20 SANDY SILT: trace to some clay, grey, wet, compact 5 SS 22 W. L. 77.1 m during drilling 7 SS 75 CLAYEY SILT TILL: sandy, trace gravel, grey, moist, hard 7 SS 75 SILT TO SANDY SILT: trace clay, grey, wet, very dense 8 SS 81	FILL: sandy slit, trace gravel, grey, moist 1 AS 1 AS 1 AS 1 AS 80 0 O FILL: slity clay, trace organics, grey, moist, loose 2 SS 4 79 CLAYEY SILT: trace sand, grey, moist, firm to very sliff 3 SS 6 78 78 78 78 78 78 78 78 78 7	FILL: sirty clay, trace gravel, grey, moist, losse 2 SS 4 FILL: sirty clay, trace organics, grey, moist, losse 2 SS 4 CLAYEY SILT: trace sand, grey, moist, film to very stiff 3 SS 6 4 SS 20 A SS 20 B SANDY SILT: trace to some clay, grey, wet, compact 6 SS 30 CLAYEY SILT TILL: sandy, trace gravel, grey, moist, hard 7 SS 75 SILT TO SANDY SILT: trace clay, grey, wet, very dense 8 SS 81 72 73 SILT TO SANDY SILT: trace clay, grey, wet, very dense	FILL: sandy silt, trace gravel, grey, moist 1	FILL: sandy slit, trace gravel, grey, moist 1	FILL: silty clay, trace organics, grey, moist, firm to very stiff 3 SS 6 SANDY SILT: trace sand, grey, moist, firm to some clay, grey, wet, compact 6 SS 30 CLAYEY SILT TILL: sandy, trace organics, grey, moist, firm to very stiff 7 SS 75 SILT TO SANDY SILT: trace clay, grey, moist, hand 8 SS 81 7 SS 75 SILT TO SANDY SILT: trace clay, grey, wet, very dense 8 SS 81

 GRAPH NOTES $+3, \times 3$: Numbers refer to Sensitivity

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 18-519-10

Date: Jul-04-2018 ENCL NO.: 19

	SOIL PROFILE		S	AMPL	.ES	<u>د</u>		DYN/ RESI	AMIC CC STANCE	NE PEI PLOT	NETRA	TION		PLASTI LIMIT	C NAT	URAL	LIQUID		TW	METHAN
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE O U	AR ST JNCONF QUICK TI	RENG INED RIAXIAL	TH (kf + . ×	Pa) FIELD V/ & Sensiti LAB V/	ANE vity ANE	W _P ⊢ WA	TER CO	w o ONTEN	LIQUID LIMIT W _L T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZ DISTRIBUTI (%) GR SA SI
69.5	SILT TO SANDY SILT: trace clay, grey, wet, very dense(Continued)						70	-												
10.7	SILTY CLAY: trace sand, trace gravel, grey, moist, hard		10	SS	32		69	-								0		>225	ō	
<u>2</u>			11	SS	53		68	-								0		>225		
66.5	CII Tatana da cama alau dana						67	-										-		
13.7	SILT: trace to some clay, trace sand, grey, wet, dense		12	SS	34		66	- - - - - -								0		-		
65.0 64.9 15.3	SHALE: Georgian Bay Formation, weathered, grey		13,	SS	50/ \00mg		65	-							0					
10.0	END OF BOREHOLE Notes: 1) Water level at 3.1 mbgl during drilling.				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,															

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150 mm REF. NO.: 18-519-10

Date: Jul-25-2018 ENCL NO.: 11

BOREHOLE LOCATION: See Drawing 1

- 1	SOIL PROFILE	1		AMPL	ES	e.		RESI	STANCE	NE PEN PLOT		IION		PLAST	IC NAT	URAL	LIQUID LIMIT		₩	METHANE
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE O L	AR ST INCONF UICK T	INED RIAXIAL	TH (kF + . ×	I Pa) FIELD V & Sensii LAB V	ANE	W _P	TER C	w O ONTEN	LIMIT W _L T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT (kN/m³)	AND GRAIN SIZE DISTRIBUTIO (%)
82.3 0.0	TOPSOIL: 300 mm	S S	N	Т	Ş	# 8			20 4	10 6	0 8	0 1	00	<u> </u>	10 :	20	30			GR SA SI
82.0 0.3	FILL: silty clay, trace topsoil, trace gravel, brown, wet, stiff		1	SS	14		82	-						+ •						
81.5 0.8	CLAYEY SILT TILL: sandy, trace gravel, brown, moist, very stiff to hard		2	SS	19		81	- - - - - -							0			200		
2			3	SS	50			- - - - -						C	>			>225		
			4	SS	45		80	- - - - - -						c	,			>225		
3			5	SS	30		79	- - - - - -							0			>225		
!							78	- - - - - -												
77.7 4.6	CLAYEY SILT: trace sand, grey, moist, very stiff		6	SS	20			-								0		225		
³ 76.2						⊻	77 W. L. during													
6.1	SILT: trace clay, trace to some sand, grey, wet, compact		7	SS	23		76	[9							0				
74.7							75	- - - - - -												
74.7 7.6	SANDY SILT TILL: some clay, frequent seams of wet sand, trace gravel, occassional cobbe/boulders, grey, moist, very dense	0	8	SS	54			- - - - -							0					
9		0					74	-												
-		0	9	SS	73		73	-							0			_		

 GRAPH NOTES + 3 , imes 3 : Numbers refer to Sensitivity

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150 mm REF. NO.: 18-519-10

Date: Jul-25-2018 ENCL NO.: 11

BOREHOLE LOCATION: See Drawing 1

Т	SOIL PROFILE		<u>-</u> ۲	AMPL	EO	K.		RESI	AMIC CC STANCE	PLOT			PLASTI LIMIT	C NAT	URAL	LIQUID LIMIT	<u>.</u>	W	METHANE
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE O L	AR ST INCONF QUICK T	RENG INED	TH (kl + . ×	1	W _P ⊢ WA	TER CO	NTEN.	W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZE DISTRIBUTIO (%) GR SA SI
-	SANDY SILT TILL: some clay, frequent seams of wet sand, trace gravel, occassional cobbe/boulders, grey, moist, very dense(Continued)	0					72	-											
1		0	10	SS	50		71	-					0						
² 70.1 12.2	SILTY CLAY: trace sand, grey,						70												
. 3	moist, very stiff		11	SS	27		70												
-							69	-									-		
<u>4</u>			12	SS	28		68	-											
5							67												
<u>6</u>			13	SS	30														
							66												
-			14	SS	24		65	-											
64.0	SAND AND GRAVEL: trace silt, grey, saturated, very dense						64	- - - - - -									-		
9	2 %	0.0	. 15	SS ——	76		63	-									-		
. 62.3		0	16	SS	50/		33	- - - - -											

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150 mm REF. NO.: 18-519-10

Date: Jul-25-2018 ENCL NO.: 11

	SOIL PROFILE		S	AMPL	.ES			RESIS	STANCE	NE PEI PLOT	NETRA	TION		DI ASTI	_ NATI	JRAL	HOHID		F	MET	HANE
(m)						ATER			20 4	ın e	50 8	80 1	00	PLASTI LIMIT	MOIS CON	TURE TENT	LIQUID LIMIT	POCKET PEN. (Cu) (kPa)	» LINI	A GRAI	ND
ELEV	DESCRIPTION	\ PLC	<u>س</u>		OWS 3 m	D W.	NO NO	SHE	AR ST	RENG	TH (k	Pa)	ANF	W _P		v >	W _L	SKET (F)	RAL (KN/m)	DISTR	
DEPTH	DESCRIPTION	₹ATA	MBE	卢	0.	NDO TIGN	EVAT	0 U	NCONF UICK TI	INED RIAXIAI	+ - ×	& Sensiti	vity	WAT	TER CC	NTEN	Γ(%)	δÖ	NATU.)	(%)
		STF	N			8 8	ä					30 1		1	0 2	0 3	30			GR SA	SI
20.0	END OF BOREHOLE				1,50mn	1															
DEPTH	END OF BOREHOLE Notes: 1) Water level at 5.8 mbgl during drilling	STRATA PLOT	NUMBER	TYPE	Nu. BEOWN	GR	ELEVATION	U Q	AR ST NCONFI UICK TI 20 4	NIANIAL	- ^	LAD VA	4IVE	WAT	ER CC	NTEN	` '	ng)	NATURAL UNIT WT (KNUM*)		%)

GRAPH NOTES

+ 3 , imes 3 : Numbers refer to Sensitivity

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200 mm REF. NO.: 18-519-10

Date: Jul-20-2018 ENCL NO.: 12

BOREHOLE LOCATION: See Drawing 1

	SOIL PROFILE	\perp	SA	AMPL	ES	<u>~</u>		RESI	STANC	ONE PE E PLOT	INE I KA	TION -	_	PLAST	IC NAT MOIS CON	URAL	LIQUID LIMIT		TW	METH	ANE
(m) ELEV DEPTH 85.1	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE	AR STUNCON	ΓRENC FINED FRIAXIA	STH (k + L ×	Pa) FIELD & Ser LAB	100 VANE esitivity VANE 100	W _P ⊢ WA	TER CO	w o ONTEN	W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AN GRAIN DISTRIE (%	N SIZE BUTIO 6)
84:9	TOPSOIL: 250 mm	71 14					85														
0.2	FILL: clayey silt, mixed with topsoil, trace gravel, grey, moist, compact		1	SS	18										0						
0.8	FILL:silty clay, trace to some organics, trace gravel, grey, moist, loose to compact		2	ss	20		84	-								0					
2			3	SS	9		02	- - - -								0					
-			4	SS	7		83	-								0					
³ 82.0		\bigotimes						-													
3.1	CLAYEY SILT TILL: sandy, trace gravel, greyish brown, moist, very stiff to hard		5	SS	22		82	-							0			>225			
4							81	-										-			
<u>5</u>			6	SS	58		80	-						0				>225			
-							00	- - - -													
<u>6</u>			7	SS	34		79	-							()		>225			
							78	-													
8			8	SS	35			-							0			>225			
.							77	- - - -													
9				-	05		76	-													
			9	SS	39			-							7						

 GRAPH NOTES

+ 3 , imes 3 : Numbers refer to Sensitivity

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200 mm REF. NO.: 18-519-10

Date: Jul-20-2018 ENCL NO.: 12

	SOIL PROFILE	_	S	AMPL	ES	<u>~</u>		RESIS	MIC CC STANCE	PLOT		IION		PLASTI LIMIT	C NAT	URAL	LIQUID LIMIT		TW	METHA	
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	ТҮРЕ	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE O U	AR ST INCONF UICK TI	RENG INED RIAXIAI	STH (kl	FIELD \ & Sensi LAB V	/ANE	W _P ⊢ WA	TER CO	w DMTEN	W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	ANE GRAIN S DISTRIBU (%)	SIZ UTI()
	CLAYEY SILT TILL: sandy, trace gravel, greyish brown, moist, very stiff to hard(Continued)						75														
1	wet sand seams below 10.7 m		10	SS	50		74	- we	spoon						0						
2							73	-													
			11	SS	41		10	-						0				>225			
3							72	-													
71.4	SILT CLAY: trace sand/silt seams, grey, moist, stiff to very stiff		12	SS	14		71	-								•		125			
5																					
			13	SS	21		70								C			150			
							69	-													
<u>.</u>			14	SS	19		68	-							€			150			
Z 33.								-													
			15	SS	23		67	-								•		175			
9							66	-													
								-													

NOTES

+ 3 , imes 3 : Numbers refer to Sensitivity

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200 mm REF. NO.: 18-519-10

(m) ELEV DEPTH DESCRIPTION LO A B B B B B B B B B B B B B B B B B B			2	D.: 12	CL NO	ΕN						0-2018	Jul-2	Date:								JM: Geodetic	l
(m) DESCRIPTION DESCRIPTIO		$\overline{}$								ION	NETRA	NE PEI	MIC CC	DYNA	1	ı	F0	A 1 4 D I	_				BORE
SHEAR STRENGTH (KPa)	IETHANE AND	М	TWT	ż	LIQUID	RAL URE	NATU MOIST	PLASTIC						l		H	.ES	AMPL	٥		:	SOIL PROFILE	
SILT CLAY: trace sand/silt seams, grey, moist, stiff to very stiff(Continued) 20.4 END OF BOREHOLE Notes:	RAIN SIZE	GF	, L UNI	ET PE (kPa)		ENT	CONT	W _P				1			z	WAT	SIE			LOT			
SILT CLAY: trace sand/silt seams, grey, moist, stiff to very stiff(Continued) 20.4 END OF BOREHOLE Notes:	TRIBUTION (%)	DIS	(KN	POCK (Cu)	(0/)		C	10/07	ANE vity	FIELD V. & Sensiti	+	INED	NCONF	0 UI	ATIC	OND	BLOV 0.3 r		BER	TA F	N	DESCRIPTION	DEPTH
SILT CLAY: trace sand/silt seams, grey, moist, stiff to very stiff(Continued) 20.4 END OF BOREHOLE Notes:	SA SI CL								ANE DO	LAB VA 0 10	. × 0 8	RIAXIAL 0 6	JICK TI 0 4	• Q	ELE\	GRO	ž	TYPE	NOM	STR/			
20.4 END OF BOREHOLE Notes:				150										-	65		_		16	rr	/silt seams,	SILT CLAY: trace sand/si grey, moist, stiff to very	- 64.7
Notes:																				ии		END OF BOREHOLE	
																					ompletion	Notes:	
																					•		
		1	,																				
			, J																				
		1	,																				
			, J																				
			, J																				
		匚																					

DS SOIL LOG 18-519-10 800 HYDRO ROAD.GPJ DS.GDT 18-10-12

GRAPH NOTES

+ 3 , \times 3 : Numbers refer to Sensitivity

O ^{8=3%} Strain at Failure

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150 mm REF. NO.: 18-519-10

Date: Jul-24-2018 ENCL NO.: 13

BOREHOLE LOCATION: See Drawing 1

-	SOIL PROFILE	\square	S	AMPL	ES	œ		RESI	STANC	ONE PE E PLOT		-	-	PLASTI LIMIT	C NAT	URAL	LIQUID LIMIT		₩		THANE
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	Ä	BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE	AR ST	RENC	STH (k	FIEL & Se	100 D VANE nsitivity	W _P		w 0	W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GRA DISTR	AND IN SIZE IBUTIC (%)
83.2			Š	TYPE	Ž.	8 8	ä					80	100	1	0 2	20	30			GR SA	A SI
8 9.0	TOPSOIL: 150 mm FILL: silty clay, mixed with topsoil/organics, trace gravel, brown to grey, moist, loose to compact		1	SS	23		83	- - - - -							0			-			
1			2	SS	28		82	- - - - -						0				-			
2			3	SS	6		0.4	- - - -								0					
80.5	CLAYEY SILT TILL: sandy, trace gravel, occassional cobble/boulders,		4	SS	7		81	-							0						
	brown, moist, very stiff to hard		5	SS	24		80	-							0			>225			
4							79	- - - - -										-			
<u>5</u>			6	SS	50		78	- - - - -						0				>225			
6							70	- - - - - -													
			7	SS	56		77 -Bento	L - nite L						0				>225			
7							76	- - - - -										-			
8			8	SS	60	abla	W. L. Sep 26	[- - 75.2 r 5, 201	n 8					0				>225			
2 74.1 9.1								- - - -													
9.1	CLAYEY SILT: trace seams/partings of silt, grey, moist, very stiff		9	SS	23		74	-							0						

 $\frac{\text{GROUNDWATER ELEVATIONS}}{\text{Measurement}} \stackrel{\text{1st}}{\underbrace{\hspace{1em}}} \stackrel{\text{2nd}}{\underbrace{\hspace{1em}}} \stackrel{\text{3rd}}{\underbrace{\hspace{1em}}} \stackrel{\text{4th}}{\underbrace{\hspace{1em}}}$

NOTES

 $+3, \times 3$: Numbers refer to Sensitivity

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150 mm REF. NO.: 18-519-10

Date: Jul-24-2018 ENCL NO.: 13

	SOIL PROFILE		S	AMPL	ES.	<u>_</u> _		DYN/ RESI	AMIC CC STANCE	NE PEI PLOT	NETRA	TION		PLASTI	IC NATI	URAL	LIQUID		₽	METHAI	
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE	AR ST INCONF QUICK T	RENG INED RIAXIAL	TH (kl + - ×	Pa) FIELD V. & Sensit LAB V/	ANE ivity ANE	W _P WA	TER CC	O O NTEN	LIQUID LIMIT W _L T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (KN/m³)	AND GRAIN S DISTRIBU (%) GR SA S	SIZ
	CLAYEY SILT: trace seams/partings of silt, grey, moist, very stiff(Continued)						73	-										-			
L			10	SS	26	-	72	- - - - - -							c						
71.0	SILT: trace to some clay, trace					-	71	-													
12.2	sand, grey, very moist to wet, compact to dense		11	SS	18	-		-							•	Φ		175			
							70 Filter	F										-			
			12	SS	30		69 Slotte	ŀ	e							o					
68.0 15.2	CLAYEY SILT TO SILTY CLAY	224					68	-										-			
10.2	:trace sand, grey, moist, very stiff to hard		13	SS	21	-		-								0		>225	i		
							67	-													
			14	SS	42		66 -Bento	Ė								0		>225	5		
64.9							65	-										-			
18.3	SILT TO CLAYEY SILT: some clay, grey, moist, compact to dense		15	SS	29			-								•					
							64														

 GRAPH NOTES

+ 3 , imes 3 : Numbers refer to Sensitivity

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150 mm REF. NO.: 18-519-10

Date: Jul-24-2018 ENCL NO.: 13

DEPTH DESCRIPTION		JM: Geodetic							Date:	Jul-2	4-2018	3					E۱	ICL N	O.: 1	3	
(m) ELEV DEPTH DESCRIPTION SILT TO CLAYEY SILT: some clay, grey, moist, compact to dense(Continued) SILT TO CLAYEY SILT: some clay, grey, moist, compact to dense(Continued) SOME SILT TO CLAYEY SILT: some clay, grey, moist, compact to dense (Continued) SILT TO CLAYEY SILT: some clay, grey, moist, compact to dense (Continued) SILT TO CLAYEY SILT: some clay, grey, moist, compact to dense (Continued) SILT TO CLAYEY SILT: some clay, grey, moist, compact to dense (Continued) SILT TO CLAYEY SILT: some clay, grey, moist, compact to dense (Continued) SILT TO CLAYEY SILT: some clay, grey, moist, compact to dense (Continued) SILT TO CLAYEY SILT: some clay, grey, moist, compact to dense (Continued) SILT TO CLAYEY SILT: some clay, grey, moist, compact to dense (Continued) SILT TO CLAYEY SILT: some clay, grey, moist, compact to dense (Continued) SILT TO CLAYEY SILT: some clay, grey, moist, compact to dense (Continued) SILT TO CLAYEY SILT: some clay, grey, moist, compact to dense (Continued) SILT TO CLAYEY SILT: some clay, grey, moist, compact to dense (Continued) SILT TO CLAYEY SILT: some clay, grey, moist, compact to dense (Continued) SILT TO CLAYEY SILT: some clay, grey, moist, compact to dense (Continued) SILT TO CLAYEY SILT: some clay, grey, moist, compact to dense (SILT) SILT TO CLAYEY SILT: some clay, grey, moist, compact to dense (SILT) SILT TO CLAYEY SILT: some clay, grey, moist, compact to dense (SILT) SILT TO CLAYEY SILT: some clay, grey, moist, compact to dense (SILT) SILT TO CLAYEY SILT: some clay, grey, moist, compact to dense (SILT) SILT TO CLAYEY SILT: some clay, grey, moist, compact to dense (SILT) SILT TO CLAYEY SILT: some clay, grey, moist, compact to dense (SILT) SILT TO CLAYEY SILT: some clay, grey, moist, compact to dense (SILT) SILT TO CLAYEY SILT: some clay, grey, moist, compact to dense (SILT) SILT TO CLAYEY SILT: some clay, grey, moist, compact to dense (SILT) SILT TO CLAYEY SILT: some clay, grey, moist, compact to dense (SILT) SILT TO CLAYEY	BORE								DYNAN	AIC CO	NE PEN	JETRA	TION		1						
ELEV DEPTH DESCRIPTION DESCRI	<u> </u>	SOIL PROFILE		S	SAMPL	ES	Ľ.		RESIS	TANCE	PLOT	\geq			PLASTI	C NATI	URAL	LIQUID		™	
SILT TO CLAYEY SILT: some clay, grey, moist, compact to dense(Continued) 16 SS 34 63 63 63 63 63 63 63	(m)		6			ωl	/ATE	-			1		1	00	LIMIT	CON	TENT		T PEN	UNIT	
SILT TO CLAYEY SILT: some clay, grey, moist, compact to dense(Continued) 16 SS 34 63 63 63 63 63 63 63	ELEV	DESCRIPTION	A PL	E.		.3 m	2 F	TION	SHEA	R STI	RENG	TH (kl	Pa) FIELD V	'ANE	i				SCKE SCKE	(KN/n	DISTRIBUTION
SILT TO CLAYEY SILT: some clay, grey, moist, compact to dense(Continued) 20.4 END OF BOREHOLE: Notes: 1) 50 mm dia monitoring well installed upon completion. 2) Water level in monitoring well at	DEPIR		RAT	IMBE	PE		SOUN	EVA				. ×	& Sensit LAB V	ivity ANE	WA	TER CC	NTEN	Γ(%)	<u>a</u> .	NA T	(%)
clay, grey, moist, compact to dense(Continued) 20.4 END OF BOREHOLE: Notes: 1) 50 mm dia monitoring well installed upon completion. 2) Water level in moniotring well at			S				<u> </u>	E	2	0 4	0 6	0 8	30 1	00	1	0 2		30			GR SA SI CL
20.4 END OF BOREHOLE: Notes: 1) 50 mm dia monitoring well installed upon completion. 2) Water level in moniotring well at	-	clay, grey, moist, compact to		16	SS	34		63									0		ŀ		
Notes: 1) 50 mm dia monitoring well installed upon completion. 2) Water level in moniotring well at			Ш																		
installed upon completion. 2) Water level in moniotring well at	20.4	Notes:																			
2) Water fevel in monoticing well at 8m on Sopt. 28, 2018.		50 mm dia monitoring well installed upon completion																			
em on Sept. 40, 2018.		2) Water level in monitoring well at																			
		8m on Sept. 26, 2018.																			
	<u> </u>																				
	<u> </u>																				

DS SOIL LOG 18-519-10 800 HYDRO ROAD.GPJ DS.GDT 18-10-12

GRAPH NOTES

+ 3 , imes 3 : Numbers refer to Sensitivity

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 18-519-10

Date: Jul-16-2018 ENCL NO.: 14

	SOIL PROFILE		·	SAMPL		e:				NE PEN PLOT				PLASTI LIMIT	C NAT	URAL	LIQUID LIMIT	_	M	METHANE
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE O U	AR ST INCONF UICK T	RIAXIAL	TH (kf + ×	FIÉLD VA & Sensitiv LAB VA	NE ity NE	W _P ⊢ WA	TER CO	w O ONTEN	W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZE DISTRIBUTIO (%)
80.2 0.0	FILL: sand & gravel, trace silt, grey, moist	0		ÁS	£	00	80		20 4	10 6	U 8	30 10	0	1	0 2	20 ;	30			GR SA SI
79.4	Ell I silb slav traca graval grav	0.0						-												
0.8	FILL: silty clay, trace gravel, grey, moist, stiff		2	SS	8		79	-								Φ				
78.7 1.5	CLAYEY SILT TILL: sandy, trace gravel, brown, moist, very stiff		3	SS	21		78	-							,	•				
77.9	CLAYEY SILT TO SILT: trace sand, grey, moist, very stiff		4	SS	18		70	-							1	•		200		
			5	SS	17		77	-							0			200		
- 75.6 4.6	SANDY SILT TO SILTY SAND					. <u>V</u>	76 W. L.	- - 75.6 n	n											
<u>5</u>	TILL: trace clay, trace gravel, grey, wet, very dense	φ	6	SS	64		during 75	drillin [-	g						o					
6.1	CLAYEY SILT TILL :sandy, frequent sand seams, trace gravel, grey, moist, hard		7	SS	38		74	-							0			>225		
70.0							73	-												
72.6 7.6	SANDY SILT: trace to some clay, brownish grey, wet, dense		8	SS	49	-	72	-							0					
⁹ 71.1								- - - -												
9.1	SILTY CLAY:frequent seams of silt, grey, moist, hard		9	SS	37		71	-							c	>		>225		

GROUNDWATER ELEVATIONS

GRAPH NOTES + 3 , imes 3 : Numbers refer to Sensitivity

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 18-519-10

	M: Geodetic							Date: Ju	1-10-201	O					Er	ICL N	J.: 12	+	
BORE	HOLE LOCATION: See Drawing 1 SOIL PROFILE	- 1	S	AMPL	.ES			DYNAMIC RESISTAN	CONE PE	NETRA	TION								
1	00.2.1.10.1.22		Ĭ			띮		20			- 80 100) F	PLASTI LIMIT	C NATU MOIS CON	URAL TURE	LIQUID LIMIT	z.	T WT	METHANE AND
(m) ELEV	DESCRIPTION	A PLOT	e:		BLOWS 0.3 m	ID WAT	NOI	SHEAR OUNCE	- 1	1	1 1	ĭ I	W _P		N D	W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GRAIN SIZ
EPTH		STRATA PLOT	NUMBER	TYPE	"N" 0	GROUND WATER CONDITIONS	ELEVATION	• QUICI	TRIAXIA 40	L X	& Sensitivi LAB VAN 80 100	NE O		TER CC		Γ (%) 30	PC ()	NATI	(%) GR SA SI
	SILTY CLAY:frequent seams of silt, grey, moist, hard(Continued)						70	-											
69.5 10.7	SILT TO CLAYEY SILT: seams of		40		70/			- - -											
69.1	sand, trace gravel, grey, moist, very dense	Щ	10	SS	279mn			-					0						
11.1	END OF BOREHOLE: Notes:																		
	Borehole terminated due to eruption of gas with mud and water from hole. Water level at 4.6 mbgl during drilling																		
						l	1												

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200 mm REF. NO.: 18-519-10

Date: Jul-11-2018 ENCL NO.: 15

	SOIL PROFILE		s	AMPL	ES	<u>د</u>		DYNA RESIS	MIC CC STANCE	NE PEN PLOT	IETRAT	TION		PLASTI	C NATU MOIS CON	JRAL	LIQUID LIMIT		WT	METHAN
(m) ELEV DEPTH 80.4	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE.	AR ST NCONF UICK TI	INED	TH (kF + ×	FIELD VA & Sensiti	ANE vity NE	W _P WA	TER CC	N DNTEN	W _L	POCKET PEN. (Cu) (kPa)	-	AND GRAIN SIZ DISTRIBUT (%) GR SA SI
79.6	FILL: sand and gravel, trace rootlets, grey, moist		1	AS		_	80	-						0						
78.9	FILL: silty clay, trace gravel, pieces of wood, grey, moist, loose		2	SS	8		79	- - - -							0					
1.5	CLAYEY SILT TILL: sandy, trace gravel, brown, moist, very stiff		3	SS	29			-							0			>225		
78.1 2.3	SHALE : Georgian Bay Formation, weathered, grey		4	SS	50/ 50 mm		78	- - - -						0						
77.2	END OF BOREHOLE:		5	SS	50/			-						0						
	Notes: 1) Borehole dry and open upon completion.				\mm_j															

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200 mm REF. NO.: 18-519-10

Date: .lul-11-2018 ENCL NO : 16

	M: Geodetic							Date	Jul-1	1-2018	3					El	NCL N	O.: 10	6		
BORE	HOLE LOCATION: See Drawing 1 SOIL PROFILE		T .	SAMPL	EC	1		DYN/	MIC CO	NE PEI	NETR/	ATION									
	SOIL PROFILE	1		AIVIPL	_E3	£							100	PLAST	TIC NAT MOIS CON	URAL	LIQUID LIMIT	z	T W T		HANE ND
(m) ELEV		STRATA PLOT			S E	GROUND WATER CONDITIONS	Z		AR ST		iTH (k	 (Pa)		W _P		W	WL	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (KN/m³)	GRAIN	N SIZE
DEPTH	DESCRIPTION	ATA F	NUMBER	,,,	BLOWS 0.3 m	UND	ELEVATION	οι	NCONF	INED	+	FIELD & Sens	VANE	١٨/ ۵	TER C		T (%)	POC.)	ATUR/ (ki		BUTION %)
80.4		STR	N	TYPE	ž	GRC	ELE		UICK T			LAB \	100	1			30		z	GR SA	SI CL
- 0.0	FILL: sand and gravel, trace rootlets, grey, moist	\boxtimes																			
-	rootiets, grey, moist	\otimes	1	AS			80							О							
-		\otimes	}—			1		Ė													
79.6	FILL: clayey silt, trace organics, grey, moist, compact	\bigotimes	1			1		-													
-	grey, moist, compact	\bowtie	2	ss	18			-							0						
78.9		\bowtie	_			1	79														
- 1.5	CLAYEY SILT TILL: sandy, trace	M	1			1		-													
-	gravel, grey, moist, stiff		3	SS	9			E							0	,		125		9 33	42 16
_2			_			1		ŀ													
78.1	SILT: trace to some clay, trace	1111	1			1	78														
-	sand, brown, moist, compact		4	SS	22			-							(5		>225			
[[
³ 77.3 - 3.1	SILTY SAND: some gravel, brown,		-			-		-													
	moist, very dense	揾	5	SS	50/ 100		77							c	,						
-					mm			-													
76.6 - 3.8	SILTY CLAY: trace sand, grey,					}		-													
-	moist, hard to very stiff		6	SS	33			-								0		>225			
[1_				76														
-			}_			1		Ė													
-			7	SS	21			-								0		>225			
			1					Ė													
			1				75														
-			1					-													
-			1					-													
⁶ 74.3	SILT TO CLAYEY SILT: trace	KK	1—			1		Ė													
-	sand, grey, moist, compact to very dense		8	SS	22		74									0		>225			
,	dense							-													
-10-1								-													
2 2 2 1								Ė													
S.E.							73														
2 - 						1		-													
<u> </u>			9	SS	50/ 50			[0							
λ S F					mm			ŀ													
X-							72														
2- 8-							-	Ė													
8 -								-													
21-01-81 19-1-10 800 HYDRO ROAD-1-10 19-10	SHALE: Georgian Bay Formation,	Ш	10	SS	50/	-		Ė													
≃ <u> 71.1</u> ໘ 9.3	weathered, grey	F	10	33	50	\vdash		\vdash	\vdash					\vdash							
	END OF BOREHOLE Notes:				\ <u>mm</u>	[
XX	 Borehole dry and open upon completion. 																				
		_	-			-			1			1	-1		1	1	1		_		

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200 mm REF. NO.: 18-519-10

Date: Jul-23-2018 ENCL NO.: 17

	SOIL PROFILE		s	AMPL	ES	· ~	1	RES	AMIC CO STANCE	INE PEI	NE IRA	IION		PLASTI	IC NAT	URAL	LIQUID		Υ	METHAN
(m)		占				GROUND WATER CONDITIONS			20 4	40 6	8 08	30 10	00	PLASTI LIMIT	CON	TENT	LIMIT	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SI
ELEV	DECODIDATION	STRATA PLOT	_		BLOWS 0.3 m	N NO	ELEVATION	SHE	AR ST	RENG	TH (kf	Pa)		W _P		w 0	W _L	SKET (KF	SAL L kN/m	DISTRIBUT
EPTH	DESCRIPTION	\TA	NUMBER		BLC 0.3	I S E	AT (JNCONF			Pa) FIELD VA & Sensitiv		١٨/٨٠	TER CO	NITENI	T (0/.)	POC (Ci	ATUF.	(%)
		TR/	N	TYPE	Z	0 N O	<u> </u>	•	QUICK T			LAB VA 30 10		1			30		2	00 04 0
82.9	TOPSOIL: 100 mm	71 1/2	_		-	0 0	ш	1	<u>-</u> ,	1				 		ĺ	+		\vdash	GR SA SI
8 2.9 0.1	FILL: clayey silt, mixed with topsoil,		1.					F												
	brown, moist, compact	\bowtie	1	SS	19			Ė												
		\bowtie						ļ.												
		\bowtie						ļ.												
		\bowtie					82	-												
		$\langle \rangle \rangle$	2	SS	10			ŀ												
		\bowtie	1				-Bento	Γ nite												
		\bowtie					Donic	F												
		\bowtie						ŀ												
		\bowtie	3	SS	15		81	<u> </u>												
		\bigotimes						ŀ												
80.6			Ш					ŀ												
2.3	CLAYEY SILT TILL: sandy, trace gravel, brown, moist, very stiff to							ŀ												
	gravel, brown, moist, very stiff to hard		4	SS	21	∇		E										>225		
						Ť	. W. L.													
		βÜ	П			134	Sep 2	ь, 20° Г	18 											
	frequent wet sand seams					1:目:	:	F						1						
79.4		 	5	SS	28		:[Ė												
3.5	SAND: trace silt, brown, wet,	14.4		_		:	:1	ļ.												
	compact		H			1 目]	<u> </u>												
							Slotte	a Pip L	е					1				1		
							:[E												
							.]	F												
78.3								F												
4.6	CLAYEY SILT TILL: sandy, trace	191	П				1	ļ.												
	gravel, grey, moist, hard	ИK	6	SS	30		78	<u> </u>						<u> </u>						
					-0		'	ŀ												
			\vdash			1		ţ.												
								ŀ												
		\$						Ŀ												
		1414						F												
		HH					77	F												
		WY	П			1		F												
		ИK	7	SS	36			Ė										>225		
		[18]						ļ.												
			\vdash			1		ţ												
							76	<u> </u>	+											
								ŀ												
								Ŀ												
75.3								ŀ												
7.6	SANDY SILT TILL: some clay,							F												
	trace gravel, sand seams, grey, very moist to wet, dense		8	SS	38		75	<u> </u>	+					\vdash						
	, 40	; .						F												
		$\left[\left[\left[\right] \right] \right]$				1		F												
								F												
		†						ţ												
							74	<u> </u>												
73.8							'4	 												
75.3 7.6 73.8 9.1	CLAYEY SILT TILL: sandy, trace	M						F						1						
	gravel, grey, moist, very stiff to hard	1111	9	SS	30			F										>225		
								ļ.												
			H			1		ţ												
		ri ()	1			I	73	I	_	1	-	1		1	-	-	+	4		

Continued Next Page GROUNDWATER ELEVATIONS

GRAPH NOTES + 3 , imes 3 : Numbers refer to Sensitivity

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200 mm REF. NO.: 18-519-10

Date: Jul-23-2018 ENCL NO.: 17

-	SOIL PROFILE		SAMPL	ES	ec.		RESIS	MIC CC STANCE	PLOT	×LIKA	ION		PLASTI LIMIT	C NATI	URAL	LIQUID LIMIT		WT	METHAN
(m) ELEV DEPTH		SIRAIA PLOI	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE.	AR ST NCONF UICK TI	LENG RENG INED RIAXIAL	TH (kf + - ×	FIELD V & Sensit LAB V	ANE	W _P — WA⁻	TER CO	DNTEN:	W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZ DISTRIBUT (%) GR SA SI
	CLAYEY SILT TILL: sandy, trace gravel, grey, moist, very stiff to hard(Continued)						-												
-		10	SS	33		72	-												
70.7 12.2	CLAVEY SILT: trace and					71	- - - - - -										-		
12.2	CLAYEY SILT: trace sand, occassional seams of silt, grey, moist, very stiff to hard	11	ss	21		70	-										>225		
							- - - - -												
		12	SS	29		69	-												
i						68	-										:		
		13	SS	30		67	-												
							-												
1	frequent seams of silt below 16.8 m	14	SS	28		66	-												
						65	- - - - -												
		15	SS	24		64	-												
						04	-												
		-				63	ŀ												

NOTES

+ 3 , imes 3 : Numbers refer to Sensitivity

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200 mm REF. NO.: 18-519-10

Date: Jul-23-2018 ENCL NO.: 17

DATUM: Geodetic							Date:	Jul-2	3-2018	3				ΕN	ICL N	D.: 17	7	
BOREHOLE LOCATION: S		s	AMPL	FS			DYNA	MIC CO TANCE	NE PEN	NETRA	TION							
(m) ELEV DESCRI	NOITA STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O UI	0 4 AR STI NCONF JICK TE	0 6 RENG INED RIAXIAL	0 8	0 10 Pa) FIELD V. & Sensiti LAB V.		TER CC	w DNTEN	LIQUID LIMIT W _L (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	METHAN AND GRAIN SIZ DISTRIBUTI (%) GR SA SI
		16	SS	25			-											<u> </u>
END OF BOREHO Notes: 1) Monitoring well beside BH18-16. 2) Water level in that 2.7m on Sept. 2	vas installed																	

GRAPH NOTES

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150 mm REF. NO.: 18-519-10

Date: Jul-16-2018 ENCL NO.: 18

	SOIL PROFILE		`	AMPL	.53			RESI	AMIC CO STANCE	PLOT	<u></u>			ם גפדי	NAT	URAL	HOUR		_	METHA	ANE
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	ТУРЕ	BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE O L		10 6 RENG	50 8 TH (kl	B0 1 Pa) FIELD V & Sensit	ANE	PLASTI LIMIT W _P L		TURE TENT O	LIQUID LIMIT W _L ————————————————————————————————————	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (KN/m³)	ANI GRAIN DISTRIBI (%)	D SIZ UTIO
80.3	_ASPHALT: 100 mm	STE	N	Ĕ	ż	8.00 8.00						30 1		1	0 2	20 3	30			GR SA	SI
8 0.0 8θ:δ	GRANULAR BASE: 250 mm	6	1	AS			80								•						
79.5	FILL: sandy silt, trace topsoil/organics, greyish brown, moist					_		- - -													
0.8	FILL: silty clay, trace organics, trace gravel, grey, moist, loose		2	SS	7		79	-								0					
78.8 1.5	CLAYEY SILT TILL: sandy, trace gravel, brown, moist, very stiff to hard		3	SS	18			- - - - -								o					
			4	SS	50/ 25mm	<u> </u>	78	- - - -								0		>225			
			5	SS ,	82/ 280mr	- m	77	-							0						
<u>!</u>							76	-													
į			6	SS	26	-		- - - - -						0							
² 74.2							75	- - - - - -													
6.1	CLAYEY SILT: sandy, grey, moist, hard		7	SS	34	-	74	-							C	,					
							73	-													
2 71.2 9.1			8	SS	36	-	70	- - - -							0			>225			
2 74 0							72	-													
9.1	SILT: some clay, trace sand, grey, moist to wet, compact		9	SS	26	-	71	-						0							

GROUNDWATER ELEVATIONS

GRAPH NOTES + ³, × ³: Numbers refer to Sensitivity

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150 mm REF. NO.: 18-519-10

Date: Jul-16-2018 ENCL NO.: 18

BOREHOLE LOCATION: See Drawing 1

	SOIL PROFILE		S	AMPL	ES	œ		RESI	STAN	CE PL	OT	IETRA	TION		PLAST	IC NAT	URAL	LIQUID LIMIT		ΤW	MET	THANE
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	οι	AR S JNCON QUICK 20	NFINE	ED	TH (kl + ×	Pa) FIELD & Sens LAB	VANE sitivity /ANE 100	W _P WA	TER C	w o ONTEN	W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GRA DISTR	AND IIN SIZI RIBUTIO (%)
	SILT: some clay, trace sand, grey, moist to wet, compact(Continued)						70	-														
11			10	SS	27		69	- - - - -								0						
68.1	SILTY CLAY & SILT: interbedded,						68	- - - - - -														
. <u>3</u>	trace sand, grey, moist, hard		11	SS	37			- - - - -							0							
-			12	SS	45		67	- - - -														
-			12	აა 	-+ 0		66	-											-			
65.1	SILT TO SANDY SILT: trace clay, grey, wet, very dense		13	SS	53		65	-											-			
6							64	-											-			
63.5 16.8	SILTY CLAY:trace sand, grey, moist, hard		14	SS	73		63	- - - - -								(>		-			
63.5 16.8 16.8 62.0 18.3 19.5	SILT:trace to some clay, grey, wet, very dense		15	SS ,	70/ 280mn		62	-									φ					
60.8					Joinil		61	-														
19.5	CLAYEY SILT TILL:sandy, trace gravel, grey,moist, hard							- - -														

GROUNDWATER ELEVATIONS

NOTES

+ 3 , imes 3 : Numbers refer to Sensitivity

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150 mm REF. NO.: 18-519-10

BOREHOLE LOCATION. See Drawing 1 SOIL PROFILE DESCRIPTION SEE DESCRIPTI		JM: Geodetic							Date:	Jul-16	6-2018	3					ΕN	NCL N	O.: 18	3		
(m) ELEV DESCRIPTION CLAYEY SILT TILL:sandy, trace gravel, grey,moist, hard(Continued) Total Part of the state of th	BORE			_			ı	ı	DYNA	VIC CO	NE PEN	NETRA	TION		i							
ELEV DEPTH DESCRIPTION DESCRI	\vdash	SOIL PROFILE	1	8	AMPL	.ES	H								PLAST	IC NATI	URAL TURE	LIQUID	zi.	TWT		
CLAYEY SILT TILL:sandy, trace gravel, grey,moist, hard(Continued) END OF BOREHOLE Notes: 1) Water level at 9.1m during			LOT			SI E	WAT	z	2 SHE A	D STI	1	1		1	W _P	CON	TENT W		ET PEI (kPa)	L UNI]	GRAIN	SIZE
CLAYEY SILT TILL:sandy, trace gravel, grey,moist, hard(Continued) END OF BOREHOLE Notes: 1) Water level at 9.1m during	ELEV DEPTH	DESCRIPTION	TAP	JER.		3LOV 0.3 r	OND	ATIO	O UN	NCONF	INED	+	FIELD V & Sensit	'ANE ivity	 		0		POCK (Cu)	TURA (kN		
CLAYEY SILT TILL:sandy, trace gravel, grey,moist, hard(Continued) END OF BOREHOLE Notes: 1) Water level at 9.1m during			STRA	N N	TYPE	ż	GROI	ELEV	• Ql	JICK TF 0 4	RIAXIAL 0 6	. × 0 8	LAB V/ 30 1	ANE 00						2		
20.4 END OF BOREHOLE Notes: 1) Water level at 9.1m during	-	CLAYEY SILT TILL:sandy, trace gravel, grey,moist, hard(Continued)		16	22	50/			-						_						0.1. 0.1.	<u> </u>
1) Water level at 9.1m during	20.4	END OF BOREHOLE						60														
		1) Water level at 9.1m during drilling.																				
																L						

DS SOIL LOG 18-519-10 800 HYDRO ROAD.GPJ DS.GDT 18-10-12

DS CONSULTANTS LTD. **LOG OF BOREHOLE BH18-18** 1 OF 2 Geotechnical ♦ Environmental ♦ Materials ♦ Hydrogeology PROJECT: Preliminary Geotechnical Investigation- Proposed Development **DRILLING DATA** CLIENT: Lakeview Community Partners Ltd. Method: Hollow Stem Auger PROJECT LOCATION: 800 Hydro Road, Mississauga, ON Diameter: 200 mm REF. NO.: 18-519-10 DATUM: Geodetic Date: Jul-11-2018 ENCL NO.: 19 BOREHOLE LOCATION: See Drawing 1 DYNAMIC CONE PENETRATION RESISTANCE PLOT SAMPLES SOIL PROFILE PLASTIC NATURAL MOISTURE CONTENT METHANE GROUND WATER CONDITIONS LIQUID AND LIMIT 40 60 100 NATURAL UNIT (m) STRATA PLOT GRAIN SIZE BLOWS 0.3 m SHEAR STRENGTH (kPa)

O UNCONFINED + FIELD VANE

QUICK TRIAXIAL X LAB VANE ELEV DEPTH DISTRIBUTION **DESCRIPTION** (%) WATER CONTENT (%) 60 80 10 20 GR SA SI CL 81.1 FILL: sand and gravel, moist 0.0 81 AS 80.3 FILL:clayey silt, trace to some 0.8 organics, greyish brown, moist, loose 2 SS 9 80 CLAYEY SILT TILL: sandy, trace 125 3 SS 11 gravel, grey, moist, stiff to hard 79 0 SS 29 -22 78 5 >22 SS 33 0

77

76

75**L** W. L. 75.0 m

during drilling

73

 ∇

75.0
6.1 SILT: trace to some clay, grey, wet, compact

SAND AND GRAVEL: some silt, grey, wet, very dense

Continued Next Page

GROUNDWATER ELEVATIONS

Measurement $\sqrt[1st]{2}$ $\sqrt[2nd]{4}$ $\sqrt[3rd]{4}$

18-519-10 800 HYDRO ROAD.GPJ DS.GDT 18-10-12

SOIL LOG

SILTY CLAY:seams of silt, trace sand, grey, moist, very stiff

6 SS 15

SS | 19

8 SS 25

9 SS

86

GRAPH NOTES + 3 , \times 3 : Numbers refer to Sensitivity

O $^{8=3\%}$ Strain at Failure

175

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200 mm REF. NO.: 18-519-10

Date: Jul-11-2018 ENCL NO.: 19

	HOLE LOCATION: See Drawing 1 SOIL PROFILE		S	SAMPL	ES			DYNA RESIS	MIC CO STANCE	NE PEN PLOT	NETRAT	TION			_ NATI	JRAL			L I	METHANI
(m) ELEV DEPTH	DESCRIPTION	A PLOT	æ		BLOWS 0.3 m	GROUND WATER CONDITIONS	NOIL	SHE		0 6 RENG	0 8 TH (kF	30 10		PLASTI LIMIT W _P	C NATI MOIS CON	TURE TENT V	LIQUID LIMIT W _L ————————————————————————————————————	OCKET PEN. Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZ DISTRIBUTI
ЕРІН		STRATA PLOT	NUMBER	TYPE	N" 0	GROUN	ELEVATION	• G	UICK TE		. ×	& Sensiti LAB VA 30 10	NE		TER CC		T (%) 30	P. P.		(%) GR SA SI
70.4	SAND AND GRAVEL: some silt, grey, wet, very dense(Continued)	0					71	- - - -												
70.4	SILT: trace to some clay, trace sand, grey, wet, very dense		10	SS	76		70	- - - - -							0					
							69	-												
12.2	SILTY CLAY: trace sand, grey, moist, hard		11	SS	51		69	-								0		>225		
							68	-												
67.4 13.7 67.1	SHALE: Georgian Bay Formation, weathered, grey		12	SS	50/ 50			- - -							0					
	Notes: 1) Water level at 6.1m during drilling.																			

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200 mm REF. NO.: 18-519-10

Date: Jul-11-2018 ENCL NO.: 20

	SOIL PROFILE		S	AMPL	ES.	<u>~</u>			RESI:	AMIC CO STANCI	ONE PEI E PLOT	NE IRA	ATION		PLAST	IC NAT	URAL	LIQUID		ΤV	METHAN
(m)		=				GROUND WATER	ا ر			20	40 6	80	80 1	100		IC NAT MOIS CON		LIQUID LIMIT W _L T (%)	PEN.	JNIT (AND GRAIN SIZ
ELEV	DESCRIPTION	STRATA PLOT	or l		BLOWS 0.3 m	× 2		2			RENG	TH (k	Pa)	/ANE	W _P ⊢		w o	W _L	E KE	RAL L	DISTRIBUT
EPTH	DESCRIPTION	ATA	NUMBER	ш	0.0			4		INCON	FINED RIAXIAL	+	FIELD \ & Sensi	tivity	WA	TER CO	ONTEN	T (%)	δ _Ö	DTA)	(%)
80.7		STR	Ŋ	TYPE	ż	GRC	3 🗓							IOO				30		–	GR SA SI
0.0	FILL: sand and gravel, grey, moist	X							F	1					1						
		\mathbb{X}	1	AS					-						0						
		\times							ŀ												
79.9								80											l		
0.8	FILL: silty clay, trace organics,								-												
	trace gravel, greyish brown, moist, firm	\otimes	2	SS	8				ŀ							0					
		\otimes	1						-												
		\otimes							ŀ												
79.0 1.7	CLAYEY SILT TILL: sandy, trace	124		-00	10			79	_	+					-		0		105		
1.7	gravel, brown, moist, stiff to hard		3	SS	10				F										125		
									E												
		Hit	\vdash						ŀ	1											
			4	SS	26				ŀ							0			>225		
		14		00	20			78	<u> </u>	+-	1				1	1			1]	
		HK							ţ	1											
		rkl							ţ												
			5	SS	32				ļ.							0			>225		
			ľ		"-				ŀ												
			\vdash					77	<u> </u>	1					1				1		
		HH	1				-Ве	nto	nite I	1											
		[H].							ļ.	1											
76.2									F	1											
76.5	GEORGIAN BAY FORMATION:		6	SS	50/	∇		76	E												
4.6	shale interbedded with limestone/siltstone layers, grey		1	RC	1 <u>00m</u> r		W.		76.0 r												
75 5	Total Core Recovery = 83%						Se	μZC	5, 201 [
75.5 5.2	Solid Core Recovery = 29% NRQD = 17%	ı							<u> </u>												
	Hard Layer (Limestone/Siltstone)= /	' =							<u> </u>	1											
	Maximum Thickness of Hard Layer							75	<u> </u>	1					-						
	=\50mm		2	RC					 	1											
	Solid Core Recovery = 23%		 	1.0					ŀ	1											
	RQD = 18% Hard Layer (Limestone/Siltstone)=								F	1											
	less than 10%								E	1											
74.0 6.7	_ Maximum Thickness of Hard Layer							74	<u> </u>	+	1				1				1		
0.7	Total Core Recovery = 100% Solid Core Recovery = 28%								ŀ												
	Solid Core Recovery = 28% RQD = 19%								Ŀ												
	Hard Layer (Limestone/Siltstone)=		٠	DC.					ļ.												
	less than 10% Maximum Thickness of Hard Layer		3	RC					ļ												
	= 50mm							73	<u> </u>	+			1		1				1		
							+Fill	ter I	Pack												
72.5 8.2	Total Core Recovery = 100%	=				日			ļ.												
	Solid Core Recovery = 28%								F												
0.2	RQD = 28%					ľΒ		70	F												
0.2	Hard Laver (Limestone/Siltstone)-		1					72	E												
	Hard Layer (Limestone/Siltstone)= 32%		1			ı. H	1		ı	1	1	İ			1	1	1	1	ı	i l	
0.2	Hard Layer (Limestone/Siltstone)= 32% Maximum Thickness of Hard Layer		4	RC		ŀН			Ė												
	Hard Layer (Limestone/Siltstone)= 32%		4	RC					- - -												
	Hard Layer (Limestone/Siltstone)= 32% Maximum Thickness of Hard Layer		4	RC																	
	Hard Layer (Limestone/Siltstone)= 32% Maximum Thickness of Hard Layer		4	RC			-Slo	otte	t - - d Pipe	e											

 $\frac{\text{GROUNDWATER ELEVATIONS}}{\text{Measurement}} \stackrel{\text{1st}}{\underbrace{\hspace{1em}}} \stackrel{\text{2nd}}{\underbrace{\hspace{1em}}} \stackrel{\text{3rd}}{\underbrace{\hspace{1em}}} \stackrel{\text{4th}}{\underbrace{\hspace{1em}}}$

GRAPH NOTES + ³, × ³: Numbers refer to Sensitivity

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200 mm REF. NO.: 18-519-10

	HOLE LOCATION: See Drawing 1 SOIL PROFILE		S	AMPL	ES			DYNA RESIS	MIC CO TANCE	NE PEN PLOT	NETRA	TION		DI ACT	_ NATI	JRAL	1101		F	METHA	ANE
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O UI	AR STI NCONFI	0 6	0 8 TH (kF + . ×	30 1	ANE vity ANE		CON' V TER CC		LIQUID LIMIT W _L T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	ANE GRAIN : DISTRIBU (%)) Size Utic
69.5	Total Core Recovery = 100% Solid Core Recovery = 40% RQD = 30% Hard Layer (Limestone/Siltstone)= 15% Maximum Thickness of Hard Layer = 125mm(Continued)		5	RC			70														
11.2	END OF BOREHOLE: Notes: 1) Monitoring well was installed in the borehole upon completion. 2) Water level in the monitoring well at 4.7m on Sept. 26, 2018.																				

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200 mm REF. NO.: 18-519-10

Date: Jun-26-2018 ENCL NO.: 21

	SOIL PROFILE		H	SAMPL	.ES	e:			AMIC CO STANC					PLASTI LIMIT	C NATI	URAL	LIQUID		.WT	METHANE AND
(m) ELEV DEPTH 80.3	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE	AR ST JNCON QUICK T	RENG FINED RIAXIA	STH (k + L ×	FIÉLD V. & Sensiti LAB VA	ANE ivity	W _P ⊢ WA⁻	TER CO	w O ONTEN	LIMIT w _L T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GRAIN SIZ DISTRIBUTIO (%) GR SA SI
8 9.2 79.9 0.4	GRANULAR BASE: 300mm FILL: clayey silt, some sand, trace gravel, greyish brown, moist	\bigotimes	1	AS			80	-						•	-					
79.5 0.8	CLAYEY SILT TILL: sandy, trace gravel, grey, moist, hard		2	SS	33		79	-						(>					
2			3	SS	45			-						(>					
			4	SS	83		78	-						0				>225		
3.1 76.9 3.4	SAND: trace silt, grey, wet, compact SILTY CLAY: trace sand, grey, moist, very stiff		5	SS	28	-	77	-							c	,				
<u>1</u>	moist, very still					-	76	-												
75.7 4.6	SILT TO CLAYEY SILT:trace sand, occassional wet sand seams, grey, moist, hard		6	SS	52	-		- - - -							0			>225		Wet Spoor
							75	-												
74.2 6.1	SILT:trace to some clay, some sand, grey, wet, dense to very dense		7	ss	57	-	74	- - - - -							0					
:						_	73	-												
1			8	ss	48	-		-							0					
2.2 71.2 9.1							72	-												
71.2 9.1	SILT TO CLAYEY SILT:trace sand, grey, moist to very moist, hard		9	SS	39	-	71	-								0		>225		

GROUNDWATER ELEVATIONS

NOTES

+ 3 , imes 3 : Numbers refer to Sensitivity

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200 mm REF. NO.: 18-519-10

BOREHOLE LOCATION: See Drawing 1 SOIL PROFILE SAMPLES WE SOIL PROFILE SAMPLES SAMPLES DYNAMIC CONE PENETRATION RESISTANCE PLOT PLASTIC MATURAL LIQUID LIMIT CONTENT LIMIT CONTENT LIMIT CONTENT LIMIT CONTENT CONTENT OF THE CON		ECT LOCATION: 800 Hydro Road, Mis: M: Geodetic	sissa	uga,	ON						00 mm 86-201							=F. NC			-10	
SOIL PROFILE SAMPLES								Date.	Juli-2	.0-201	O					EI	NCL IN	0 2				
SILT TO CLAYEY SILT:trace sand, grey, moist to very moist, hard(Continued) 10 SS 50/ 10.9 10				s	SAMPL	.ES			DYNAI	MIC CO	NE PEN	NETRA	TION			b14	LIDA'			Ī	N 4F	TUANE
SILT TO CLAYEY SILT:trace sand, grey, moist to very moist, hard(Continued) 69.6	ELEV		STRATA PLOT			'N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	2 SHEA O UI • QI	0 4 AR STI NCONF JICK TE	0 6 RENG INED RIAXIAL	TH (ki	Pa) FIELD V & Sensit	ANE ivity ANE	W _P WA	CON \ TER CC			POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GRA DISTE	AND AIN SIZE RIBUTIOI (%)
- 69:4 SHALE: Georgian Bay Formation, 10 SS 50/ - 0 0 10.9 END OF BOREHOLE Notes: 1) Water level at 3.1m during	- 69.6	SILT TO CLAYEY SILT:trace sand, grey, moist to very moist, hard(Continued)				-	0		-												GIV 3	K 31 C
10.9 END OF BOREHOLE Notes: 1) Water level at 3.1m during	69:4	SHALE: Georgian Bay Formation,	Ë	10	SS				-							0						
		end of Borehole Notes: 1) Water level at 3.1m during		10	SS											0						

DS SOIL LOG 18-519-10 800 HYDRO ROAD.GPJ DS.GDT 18-10-12

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200 mm REF. NO.: 18-519-10

Date: Jun-26-2018 ENCL NO.: 22

	IM: Geodetic EHOLE LOCATION: See Drawing 1							Duto	. ouii z	26-201	•						ICL N	J Z.	_	
	SOIL PROFILE		S	AMPL	ES.	<u>~</u>		DYNA RESIS	MIC CO STANCE	NE PEN PLOT	NETRAT	TION		PLASTI	C NATI MOIS CON	URAL	LIQUID LIMIT		WT	METHANE
(m) ELEV DEPTH 79.7	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE O U	AR STI NCONF UICK TE	1	TH (kF + ×	Pa) FIELD V/ & Sensiti LAB V/	ANE vity ANE	W _P ⊢ WA	TER CC	w DNTEN	W _L	POCKET PEN. (Cu) (kPa)	-	AND GRAIN SIZ DISTRIBUTI (%) GR SA SI
0.0 79.4	TOPSOIL: 350mm	131/2						-												
0.3 79.0	FILL: silty clay mixed with topsoil, trace gravel, brown, moist, loose		1	SS	8	-	79	-							0					
0.7	FILL: sand and gravel mixed with weathered shale, brown, moist, compact		2	SS	23		79	-							0					
78.2 1.5	SHALE: Georgian Bay Formation, weathered, grey		3	SS	50/ 100mn	<u>-</u> M	78	-												
77.3				SS				-												
2.4	END OF BOREHOLE Notes: 1) Borehole dry and open upon completion.		4		AOOmg	_														

 $\frac{\text{GRAPH}}{\text{NOTES}}$ + 3 ,

+ 3 , \times 3 : Numbers refer to Sensitivity

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200 mm REF. NO.: 18-519-10

Date: Jul-10-2018 ENCL NO.: 23

	HOLE LOCATION: See Drawing 1 SOIL PROFILE		S	SAMPL	.ES			DYNAI RESIS	MIC CC TANCE	NE PEI	NETRA	TION			- NATI	JRAL			L	METHANE
(m) ELEV DEPTH 77.5	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O UI	LAR ST NCONF JICK TI	LENG RENG INED RIAXIAL	TH (ki + . ×	Pa) FIELD V. & Sensiti LAB VA	ANE vity ANE		TER CC	w DNTEN	LIQUID LIMIT W _L T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZI DISTRIBUTIO (%) GR SA SI
0.0	FILL: sand and gravel, cobbles		1	AS			77	-						0						
76.7	FILL: 19mm crusher run limestone, grey, wet, loose to compact		2	SS	6	Ţ	W. L. I during	drilling [- -	 						0					Wet spoon
2			3	SS	10	-	76	- - - - -								0				
75.2	SAND AND GRAVEL: trace silt, grey, wet, very dense		4	SS	50/ 100mn	- - -	75	- - - - -							0			-		
3		0	5	SS	50/ 100mn	m	74	- - - -							c					
73.7 3.8 73.3 73.3 73.1	SILTY CLAY: trace to some sand, grey, moist, hard SHALE: Georgian Bay Formation, weathered, grey	**************************************	6	SS	39	-		- - - - -							0					
4.4	END OF BOREHOLE: Notes: 1) Water level at 0.8m during drilling.																			

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200 mm REF. NO.: 18-519-10

Date: Jul-10-2018 ENCL NO.: 27

	SOIL PROFILE		S	AMPL	ES	~		DYN/ RESI	AMIC CC STANCE	NE PEN PLOT	NETRAT	TION		PI ASTI	C NATI	URAL	רוטווט		Τ	METHANE
(m) ELEV EPTH 77.3	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE	20 4 AR ST INCONF QUICK TI	10 6 RENG INED	0 8 TH (kF + . ×	Pa) FIELD VA	ANE vity NE		TER CC		LIQUID LIMIT W _L ——I T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZ DISTRIBUTI (%) GR SA SI
0.0	FILL: sand and gravel, grey, moist, loose		1	AS			77	-						-0						
			2	SS	7	-	76	-							0					
75.8 1.5	FILL: silty sand, trace gravel, brown, moist, compact		3	SS	11			- - - - -						0						
75.0	SAND: trace silt, brown, wet, very loose	X X	4	SS	WH	Ā	W. L. I during	† 75.0 r drillir [- -	n ng						(•		-		
74.2 3.1	SILTY CLAY: trace sand, grey, moist, firm		5	ss	6	-	74	- - - - -								0		-		
73.5 7 3 :§	SHALE: Georgian Bay Formation, weathered, grey END OF BOREHOLE:		6	SS	50/			-						,						
	Note: 1) Water level at 2.3 m during drilling																			

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200 mm REF. NO.: 18-519-10

Date: Jun-26-2018 ENCL NO.: 25

BORE	EHOLE LOCATION: See Drawing 1									:6-2018								0.: 2		
	SOIL PROFILE		S	SAMPL	.ES	· ~		DYNA RESIS	MIC CO TANCE	NE PEN PLOT	IETRAT	ΓΙΟΝ		PLASTI	IC NATI	URAL	LIQUID		ΛT	METHANE
(m) ELEV DEPTH 82.8	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O UI	0 4 AR STI NCONF JICK TF 0 4		TH (kF + ×	Pa) FIELD VA & Sensitiv LAB VA	NE rity NE	W _P ⊢ WA	TER CC	w O ONTEN	LIQUID LIMIT W _L ——I T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZ DISTRIBUT (%) GR SA SI
8 2 .0	ASPHALTIC CONCRETE: 70mm GRANULAR BASE: 600mm		1	AS				- - - -						0						
0.7	FILL: clayey silt mixed with sand and gravel, brown, moist, very stiff to firm		2	ss	17	-	82	-							0			-		
	grey and wet below 1.5 m		3	SS	15	Ţ	W. L. 8 during								0			-		
	fragments of Concrete		4	SS	6		80	-							0					
79.7 7 9 :5	SAND AND GRAVEL: cobbles,	×	5	SS	57			- - -							0					
3.3	END OF BOREHOLE Notes: 1) Auger refusal at 3.3m on possible shale bedrock.																			

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger/Rock Coring

Diameter: 200 mm REF. NO.: 18-519-10

ENCL NO.: 24

Date: Jul-09-2018

	SOIL PROFILE		S	AMPL	ES.	<u>ر</u>		RESI	STANCE	NE PEN E PLOT		ION		PLAST	IC NAT	URAL	LIQUID		TW	METHANE
(m) ELEV DEPTH 77.5	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE O L	AR ST INCONF QUICK T	RENG FINED RIAXIAL 40 6	TH (kP +	a) TELD V Sensiti AB V	ANE ivity ANE	W _P WA	TER CO	ITENT W O ONTEN	LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZ DISTRIBUTIO (%) GR SA SI
0.0	FILL: sand and gravel, brown, moist		1	AS			77	-						0						
76.8 0.7	FILL: clayey silt, some sand and gravel, greyish brown, moist, compact		2	SS	17										o					
76.0 1.5	CLAYEY SILT TILL: sandy, trace gravel, greyish brown to grey, moist, stiff to very stiff		3	SS	12		76	-							0					
	grey below 2.3 m		4	SS	8		75	-							0			-		
			5	SS	8		74	-							0			-		
<u>.</u>			6	AS			72	-							0					
<u> </u>			7	SS	21		73 Bento	nite						0						
<u>ì</u>							72	-										-		July 09, 20
71.2 76:3 6.5	GEORGIAN BAY FORMATION: - shale interbedded with - imestone/siltstone layers, grey /		8	SS	69		71	-						()			-		July 10, 20
60.5	SHALE BEDROCK: Total Core Recovery = 96% Solid Core Recovery = 70% RQD = 37% Hard Layer (Limestone/Siltstone)= 27% Maximum Thickness of Hard Layer = 270mm		RUN 1	RC			70	-										_		
69.5 8.0 9.5	SHALE BEDROCK: Total Core Recovery = 100% Solid Core Recovery = 77% RQD = 77% Hard Layer (Limestone/Siltstone)= 27% Maximum Thickness of Hard Layer = 230mm		RUN 2	RC			69	-										-		
68. <u>0</u> 9.5							68													

GROUNDWATER ELEVATIONS GRAPH NOTES

+ ³, × ³: Numbers refer to Sensitivity

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DRILLING DATA

Method: Hollow Stem Auger/Rock Coring

Diameter: 200 mm REF. NO.: 18-519-10

	M: Geodetic							Date:	Jul-09	9-2018						ΕN	NCL N	D.: 24	4		
BORE	HOLE LOCATION: See Drawing 1		_				1	DYNAI	VIC CO	NE PEN	JETRA1	TION		1							
	SOIL PROFILE			AMPL	.ES	e E				NE PEN PLOT				PLAST	IC NATU	JRAL TURE	LIQUID	<u>.</u>	WT	METHA AND	
(m)		5			SI E	WATE	z		0 4	0 6 RENG		0 10	00	LIMIT	CON.	TENT V	LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (KN/m³)	GRAIN S	SIZE
ELEV DEPTH	DESCRIPTION	STRATA PLOT	3ER		BLOWS 0.3 m	ON OFFIC	ELEVATION	0 UI	NCONF	INED	+	FIELD VA & Sensiti	ANE vity	 		· · · · · · · · · · · · · · · · · · ·	——I	POCK (Cu)	TURA (kN	DISTRIBU (%)	
		STR	NUMBER	TYPE	ż	GROUND WATER CONDITIONS	ELEV			RIAXIAL 0 6	×	LAB VA 0 10	NE		TER CC		1 (%) 30		≥	GR SA S	
-	SHALE BEDROCK: Total Core Recovery = 100% Solid Core Recovery = 93% RQD = 93% Hard Layer (Limestone/Siltstone)= less than 10%		RUN 3	RC			Filter	- - - - Pack_ -													-
66.6 11 10.9	- Maximum Thickness of Hard Layer / 50mm(Continued) SHALE BEDROCK: Total Core Recovery = 100% Solid Core Recovery = 98% RQD = 98% Hard Layer (Limestone/Siltstone)= less than 10% Maximum Thickness of Hard Layer		RUN 4	RC			66	-													
65.2 12.3	= 100mm SHALE BEDROCK: Total Core Recovery = 100% Solid Core Recovery = 97% RQD = 97% Hard Layer (Limestone/Siltstone)= less than 10% Maximum Thickness of Hard Layer = 100mm		RUN 5	RC			Slotte 65														
63.6								-													
13.9	END OF BOREHOLE Notes: 1) Monitoring well was installed in the borehole upon completion. 2) Monitoring well was not accessible on Sept. 26, 2018. Area is covered with a stock-pile.																				

DS SOIL LOG 18-519-10 800 HYDRO ROAD.GPJ DS.GDT 18-10-12

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200 mm REF. NO.: 18-519-10

Date: Jun-26-2018 ENCL NO.: 26

	IM: Geodetic							Date:	Jun-2	26-201	8					ΕN	NCL N	0.: 20	ô	
BORE	EHOLE LOCATION: See Drawing 1 SOIL PROFILE		S	AMPL	FS			DYNA	MIC CC	NE PEI	NETRA	TION								
(m)	COIL I NOI ILL	TO.		7 (17)		VATER	_	:	20 4	10 6	30 8	30 1	00	PLASTI LIMIT W _P	C NAT MOIS CON	URAL STURE ITENT W	LIQUID LIMIT W _L	T PEN. <pa)< td=""><td>.UNIT WT</td><td>METHANE AND GRAIN SIZI</td></pa)<>	.UNIT WT	METHANE AND GRAIN SIZI
ELEV EPTH 77.2	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE.	AR ST NCONF UICK TI	RENG INED RIAXIAL IO 6	iTH (kl + - × 50 8	Pa) FIELD V & Sensit LAB V 10	'ANE tivity ANE 00	WA	TER CO	O ONTEN		POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	DISTRIBUTI (%) GR SA SI
7 8:0 76.8 0.4	ASPHALTIC CONCRETE: 70mm GRANULAR BASE: 300mm SILTY CLAY: trace sand, shale			AS			77	-												
	fragments, grey, moist, hard		2	SS	21			-						0						
75.7 75:5	SHALE: Georgian Bay Formation,		3	SS	50/		76	-							0					
1.7	END OF BOREHOLE Notes: 1) Borehole dry and open upon				75mn															
	completion.																			

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200 mm REF. NO.: 18-519-10

Date: Jul-17-2018 ENCL NO.: 28

	SOIL PROFILE		s	AMPL	ES	<u>ر</u>		DYNA RESIS	MIC CO TANCE	NE PEN PLOT	IETRAT	TON	P	PLASTIC	NATU	JRAL	LIQUID		ΛΤ	METHANE
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE/	AR ST NCONF UICK TI	0 6 RENG INED RIAXIAL 0 6	TH (kF + ×	Pa) FIELD VAN Sensitivity LAB VAN 0 100	E / E	W _P	NATU MOIS CON' V 	v DOMTEN	LIQUID LIMIT W _L (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZ DISTRIBUTI (%) GR SA SI
	FILL: silty sand and gravel, grey, moist	Š Š	1	AS	-		77	-						0						GR SA SI
76.5	FILL: silty clay, trace gravel, trace organics, grey, moist to wet, stiff to firm		2	SS	15		76	- - - - - -							0					
2			3	SS	7			- - - -						¢)					
3			4	SS	5	፟ ፯	W. L. I during	[75.0 m drillino [- -	 						0					
73.5			5	SS	5		74	- - - - - -							0					
3.8	SHALE: Georgian Bay Formation, weathered, grey		6	SS ,	50/ 125mn			-							0					
	Notes: 1) Water level at 2.3 m during drilling																			

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger/Rock Coring

Diameter: 200 mm REF. NO.: 18-519-10

Date: Jul-06-2018 ENCL NO.: 29

	SOIL PROFILE		S	AMPL	ES.	ec.			RESIS	STANC	ONE PEN E PLOT		ION		PLAST	IC NAT	URAL	LIQUID		WT	METHANE
(m) ELEV DEPTH 77.2	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER	CONDITIONS	ELEVATION	SHE O U	AR ST INCONI UICK T	FINED RIAXIAL	ΓΗ (kP + [× Ι	a) FIELD ' & Sens LAB V	VANE itivity /ANE	W _P WA	TER C	NTENT W O	LIMIT w _L → 1 T (%) 30	POCKET PEN. (Cu) (kPa)	NATURAL UNIT (kN/m³)	AND GRAIN SIZE DISTRIBUTIO (%) GR SA SI
76.4	FILL: sand and gravel, brown		1	AS				77	-						0						
75.7	FILL: 19mm crusher run limestone, brick/concrete fragments, grey, wet, compact		2	SS	22			76	-						0				-		
1.5	FILL:sandy silt mixed with gravel, trace clay, grey, wet, very dense	X	3	AS	50/ 25mm				-							o	,				
74.9	SAND AND GRAVEL: grey, wet, very loose		4	SS	2	abla			74.9 n 5, 201 [0			-		
		0	5	SS	2		-F	74 Bento	L L nite												July 06, 201
72.9	cobbles below 4 m	0 .0.	6	SS	50/ 50mm			73	-							0					
4.3 5 72.2	GEORGIAN BAY FORMATION: shale interbedded with limestone/siltstone layers, grey Total Core Recovery = 67% Solid Core Recovery = 33%		RUN 1	RC					-												July 09, 20 ⁻
5.0	RQD = 33% Hard Layer (Limestone/Siltstone)=15% Maximum Thickness of Hard Layer = 140mm Total Core Recovery = 100% Solid Core Recovery = 84% RQD = 73% Hard Layer (Limestone/Siltstone)= 15%		RUN 2	RC				72 71	-												
6.4 6.4 8.0 69.2 8.0	Maximum Thickness of Hard Layer / 140mm Total Core Recovery = 100% Solid Core Recovery = 94% RQD = 94% Hard Layer (Limestone/Siltstone)= less than 10% Maximum Thickness of Hard Layer = 50mm		RUN 3	RC			(*) 	70 Filter l	- - - - - - - - - - - - - - - - - - -												
8.0	Total Core Recovery = 100% Solid Core Recovery = 93% RQD = 93% Hard Layer (Limestone/Siltstone)= less than 10% Maximum Thickness of Hard Layer = 50mm		RUN 4	RC				69	-												
67.8 9.4							-s	68 Slotte	d Pipe	e											

GROUNDWATER ELEVATIONS GRAPH NOTES + ³, × ³: Numbers refer to Sensitivity

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger/Rock Coring

Diameter: 200 mm REF. NO.: 18-519-10

Date: Jul-06-2018 ENCL NO.: 29

	M: Geodetic HOLE LOCATION: See Drawing 1							D (110)		6-2018							NCL N	· · · ·	•	
DOINE	SOIL PROFILE		s	AMPL	.ES			DYNA RESIS	MIC CO	NE PEI	NETRA	TION		DI ACTI	_ NATI	URAL	רוטווי		۲	METHANI
(m)		15				GROUND WATER CONDITIONS		2	20 4	0 6	0 8	30 1	1	LIIVIII	CON	NATURAL LIQUID CONTENT LIMIT		POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND
ELEV	DESCRIPTION	A PLO	er.		BLOWS 0.3 m	W OI	NO NO	SHE	AR ST	RENG	TH (kl	Pa)	ANE	W _P		w >	W _L) (왕 (독	JRAL ((kN/m	GRAIN SIZ
DEPTH	DEGORII HOR	STRATA PLOT	NUMBER	TYPE		NOON	ELEVATION	• Q	UICK TE	INED RIAXIAL	. ×	Pa) FIELD VANE & Sensitivity LAB VANE		WATER CONTENT (%			Γ(%)	98	NATU	(%)
	T-t-1 O D 4000/	S		Т	ż	<u> </u>	ᆸ	2	20 4	0 6	3 0	30 1	00	1	0 2	0 3	30			GR SA SI
	Total Core Recovery = 100% Solid Core Recovery = 93%		RUN 5	RC			67	_	-											
	RQD = 93% Hard Layer (Limestone/Siltstone)=							[
	15%							L												
66.3	Maximum Thickness of Hard Layer = 100mm(Continued)					<u>∷∃:</u>														
10.9	END OF BOREHOLE: Notes:																			
	Monitoring well was installed in																			
	the borehole upon completion. 2) Water level in the monitoring well																			
	2) Water level in the monitoring well at 2.3m on Sept. 26, 2018.																			
- 1														l						
- 1														l						
- 1														l						
		1				1	l	1										1	ıl	

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 18-519-10

Date: Jul-04-2018 ENCL NO.: 30

SOIL PROFILE		s	SAMPL	ES.	<u>بر</u>			MIC CC STANCE					PLASTI LIMIT	C NAT	URAL STURF	LIQUID		WT		THANE
(m) LEV EPTH DESCRIPTION 79.5	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE.	AR ST NCONF UICK TI	LENG RENG INED RIAXIAL	TH (kF + . ×	Pa) FIELD VA & Sensiti LAB VA	ANE vity ANE	W _P ⊢ WA	TER CO	w O ONTEN	LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GRA DISTR	(%)
0.0 TOPSOIL: 300mm 79.2 0.3 FILL: silty clay, trace sand, grey,	<u> </u>	1	SS	52			-							0						
moist, compact					-	79	-													
78.4 1.1 SILTY CLAY TILL: sandy, trace gravel, occasional cobble/boulder, bravel, occasional cobble/boulder,	X	2	SS	14			-								0		125			
brown, moist, stiff to hard		3	SS	33		78	- - - -							0	 		>225		2 23	3 46
			00			77	-										. 005			
		4	SS	55			-							0			>225			
		5	SS	62		76	- - -							0			-			
75.7 3.8 SHALE: Georgian Bay Formation,		6	SS	50/																
Borehole dry and open upon completion.																				

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 18-519-10

Date: Jul-04-2018 ENCL NO.: 31

	SOIL PROFILE		s	AMPL	ES	_		DYNA RESIS	MIC CO STANCE	NE PEN PLOT	NETRAT	FION		PI ASTI	NATI	JRAL	LIQUID		ΤV	METHA	
(m) ELEV EPTH 80.1	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" <u>BLOWS</u> 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE O U	AR STI NCONF UICK TE	INED	TH (kF + ×	FIELD V/ & Sensiti	ANE vity ANE		MOIS CONT	v DMTEN	LIQUID LIMIT W _L T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN S DISTRIBU (%)	SIZI JTIC
79:9	TOPSOIL: 200mm	711/					80														_
79.3	FILL: silty clay, trace gravel, dark grey, moist, loose		1	SS	8			- - - -							0						
0.8	CLAYEY SILT TILL: trace gravel, brown, moist, very stiff to hard		2	SS	27		79	-							0			>225			
			3	SS	31			-							0			>225			
						1	78	_													
			4	SS	72			- - - - -							0						
77.0							77														
78:8 3.3	SHALE: Georgian Bay Formation, weathered, grey		5	SS	50/ (00mr		└	-													_
3.3	weathered, grey END OF BOREHOLE Notes:																				
	completion.																				

GRAPH NOTES

+ 3 , imes 3 : Numbers refer to Sensitivity

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 18-519-10

Date: Jun-27-2018 ENCL NO.: 32

BOREHOLE LOCATION: See Drawing 1

	SOIL PROFILE		S	AMPL	ES	<u>~</u>		RESI	AMIC CC STANCE	PLOT	NETRA	IION		PLASTI LIMIT	C NATI	URAL	LIQUID LIMIT	١.		METI	HANE
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE O L	AR ST INCONF QUICK T	RENG INED RIAXIAL	TH (kF + . ×	FIELD V & Sensit LAB V	/ANE tivity ANE	W _P — WA⁻	TER CO	w DNTEN	w _L T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)		BUTIC %)
77.9 7 0 .8	TOPSOIL :125 mm	11/2	z	F	-	00	Ш		20 4	10 6	8 0	0 1	00	1	0 2	20 :	30			GR SA	SI
7 9.8 0.1	FILL: clayey silt, trace gravel, trace cobbles, brown to grey, moist, loose to compact	$\overset{\otimes}{\otimes}$	1	SS	11			- - - - -							0						
			2	SS	20		77	- - - -							0			-			
<u>.</u>		$\overset{\otimes}{\otimes}$	3	SS	13		76								0			-			
		\bigotimes	4	SS	10			- - - - -							0						
1			5	SS	5		75	- - - - -								9					
4 73.7 73.0	SHALE: Georgian Bay Formation,	$\overset{\otimes}{\otimes}$					74	- - - - -										-		Wet sn	
4.3	Weathered, grey END OF BOREHOLE: Notes: 1) Water level at 4.1 m upon completion of borehole.																				

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 18-519-10

Date: Jun-27-2018 ENCL NO.: 33

	SOIL PROFILE		s	AMPL	ES	۳ ـ		DYNA RESI	AMIC CC STANCE	NE PE PLOT	NETRA	TION		PLASTI LIMIT	C NATI	URAL	LIQUID		TW		THAI	
(m) ELEV DEPTH 80.3	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE O L	AR ST INCONF QUICK T	RENG INED RIAXIAI	TH (ki + - ×	& Sensit	ANE	W _P ⊢ WA	TER CO	w O ONTEN	LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)		(%)	TIC
80.2	TOPSOIL :150 mm	717						-														
0.2	FILL: clayey silt, trace asphalt/concrete fragments, trace organics, grey to dark grey, moist, compact		1	SS	18	-	80	-						0								
			2	SS	12		79	-							C	>						
78.8 1.5	CLAYEY SILT TILL: sandy, trace gravel, brown, moist, very stiff		3	SS	25			-							C	>						
78.0							70	ŀ														
2.3	SILTY CLAY:some sand, brown, moist, hard	****	4	SS	44		78	-							0	<u> </u>				0 1	1 57	7
			5	SS	50/ 100mn		77	- - -							0							
					10011111	"																
75.7							76	-														
7 5 :9	SHALE: Georgian Bay Formation, weathered, grey		6	SS	50/ 75mm									0								
4.8	END OF BOREHOLE: Notes: 1) Borehole dry and open upon completion.																					

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger/Rock Coring

Diameter: 150mm REF. NO.: 18-519-10

Date: Jun-27-2018 ENCL NO.: 34

	SOIL PROFILE		S	AMPL	ES	R.			DYNAI RESIS	TANCE	PLOT	NE IRA	- IION		PLAST	IC NAT	URAL	LIQUID		WT	METHANE
(m) ELEV DEPTH 81.3	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER		ELEVATION	SHEA O UI	L AR ST NCONF JICK TI	L RENG INED RIAXIAI	TH (k + - ×	Pa) FIELD & Sen	VANE sitivity VANE	W _P WA	TER C	ITENT W O ONTEN	LIMIT W _L ——	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZE DISTRIBUTIO (%) GR SA SI (
89:9	TOPSOIL: 230mm	7/1/							-												
80.6	FILL: clayey silt, trace gravel, trace organics, brown, very moist, compact		1	SS	15			81	- - -												
0.7	FILL: sandy gravel/cobbles, grey, moist, compact		2	SS	19			80	-						0						
79.8	CLAYEY SILT: trace sand, trace gravel, brown, moist, hard		3	SS	44	∑	W.	L. 7	79.3 m							0					
			4	SS	50/ 125mm		Se	p 26	5, 2018 - - - -	3						0					June 27, 20
² 78.2 3.1	GEORGIAN BAY FORMATION:	1188	5	SS	50/				-												
	shale interbedded with limestone/siltstone layers, grey Bedrock coring started at 3.8 m)		₹ <u>5mm</u>		-Ве	78 entor	nite										-		July 30, 201
77.5 3.8	Total Core Recovery = 62%																				
4 3.6	Solid Core Recovery = 0% RQD = 0% Hard Layer (Limestone/Siltstone)=		RUN					77	-												
	less than 5% Maximum Thickness of Hard Layer = 50mm		1	RC				11	-												
76.4 2 4.9	Total Core Recovery = 90% Solid Core Recovery = 68% RQD = 68% Hard Layer (Limestone/Siltstone)= less than 10% Maximum Thickness of Hard Layer = 50mm		RUN 2	RC				76	-										-		
<u>6</u>								75	-												
74.9 6.4	Total Core Recovery = 100% Solid Core Recovery = 61% RQD = 56%							75	-												
7	Hard Layer (Limestone/Siltstone)= less than 10% Maximum Thickness of Hard Layer = 50mm		RUN 3	RC				74													
. 73 3							Fil	ter F	Pack												
73.3 8.0 - 71.7 9.6	Total Core Recovery = 100% Solid Core Recovery = 94% RQD = 94% Hard Layer (Limestone/Siltstone)= less than 10% Maximum Thickness of Hard Layer		RUN	D2				73	-										_		
9	= 100mm		4	RC			-Sle	otte	l Pipe												
71.7 9.6																					

GROUNDWATER ELEVATIONS GRAPH NOTES

+ ³, × ³: Numbers refer to Sensitivity

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DRILLING DATA

Method: Hollow Stem Auger/Rock Coring

Diameter: 150mm REF. NO.: 18-519-10

	SOIL PROFILE		s	SAMPL	ES			DYNA RESIS	MIC CO	NE PEI	NETRA	TION		DI ACT	NATI	URAL	1101		Т	MET	HANE
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE/	AR STINCONF	RENG INED RIAXIAL	TH (ki	Pa) FIELD V & Sensit	1	W _P	TER CO	TENT W O ONTEN	LIQUID LIMIT W _L ——I T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	A GRAI DISTRI (' GR SA	ND N SIZ BUTI(%)
70.4	Total Core Recovery = 100% Solid Core Recovery = 88% RQD = 88% Hard Layer (Limestone/Siltstone)= less than 10% Maximum Thickness of Hard Layer = 100mm(Continued)		RUN 5	RC			71	-										-			
10.9	END OF BOREHOLE Notes: 1) Monitoring well was installed in the borehole upon completion. 2) Water level in the monitoring well at 2.0m on Sept. 26, 2018.																				

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 18-519-10

Date: Jun-27-2018 ENCL NO.: 35

	SOIL PROFILE		S	AMPL	ES.	<u>~</u>		RESIS	MIC CC STANCE	NE PEI E PLOT	NETRA	TION		PLASTI LIMIT	C NAT	URAL	LIQUID	١.	TW	METH	
(m) ELEV DEPTH 80.3	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE O U	AR ST INCONF UICK T	RENG INED RIAXIAL	TH (kf + - ×	FIELD V & Sensit LAB V	ANE ivity	W _P ⊢ WA	TER CO	w o ONTEN	LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	ANI GRAIN DISTRIBI (%)	SIZI UTIO
89:9	TOPSOIL: 230mm	1 1/2.						-													
0.2	FILL: clayey silt, trace gravel, trace cobbles, asphalt fragments, dark brown to dark grey, very moist, compact		1	SS	11		80	-							•			-			
<u>l</u>			2	SS	16		79	-							0			_			
78.5 1.8	CLAYEY SILT TILL: sandy, trace gravel, occasional cobble/boulder, brown, moist, stiff to hard		3	SS	14			- - - -								0					
	brown, moist, stiff to hard						78														
3			4	SS	58			- - - -							0						
			5	SS	50/ 100mn	- M	77	-						0				-			
.								-													
75.7							76	-										-			
7 \$:§	SHALE: Georgian Bay Formation,	Lian.	6	SS	50/ 50mm			- -													
4.8	END OF BOREHOLE Notes: 1) Borehole dry and open upon completion.																				

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 18-519-10

Date: Jun-21-2018 ENCL NO.: 36

BOREHOLE LOCATION: See Drawing 1

	SOIL PROFILE		S	AMPL	ES	<u>س</u>		RESIS	TANCE	NE PEN PLOT	\geq	-		PLASTI LIMIT	C NATI	URAL	LIQUID	١.	ΤW	METHANE
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA	AR STI NCONF JICK TE	RENG INED RIAXIAL	TH (k + . ×	Pa) FIELD V & Sensit LAB V	OO L ANE ivity ANE OO	W _P ⊢ WA	TER CO	TENT W D D D N O O O O O O O O O O O O	LIQUID LIMIT W _L ——• F (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT ((kN/m³)	AND GRAIN SIZE DISTRIBUTION (%) GR SA SI C
81.8 0.0 81.6	TOPSOIL: 250mm	<u>7/ /^/</u>	Z		-	0 0	Ш	-	.5 4					<u> </u>	<u> </u>	.5				IGK SA SI C
81.6 0.3 81.0	FILL: sandy silt mixed with topsoil, brown, moist, compact		1	SS	14									0						
0.8	FILL: silt to clayey silt, trace gravel, trace topsoil/organics, grey, moist, compact		2	SS	12		81	-							0			-		
<u> </u>			3	SS	19		80	-							0					
			4	SS	13											0				
78.7							79	-										-		
3.1	SANDY SILT TILL : trace to some clay, trace gravel, grey, moist, very dense	0	5	SS ,	50/ 125mm	ו		-						o						
<u>!</u>		0					78	-												
77.2 4.6	SILTY CLAY TILL: sandy, trace gravel, grey, moist, hard		6	SS	65		77							0				>225		Mud Rotary Drilling

<u>3</u>							76	-										-		
			7	SS	64			-							0			>225		
<u>z</u>							75	-												
3			8	SS	38		74									0		>225		
							73	-												
9.1	SILT: some clay, trace gravel, grey, wet, dense		9	SS	36			- - - -								0				
)							72	-												

Continued Next Page

GRAPH NOTES + 3 , imes 3 : Numbers refer to Sensitivity

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 18-519-10

Date: Jun-21-2018 ENCL NO.: 36

BOREHOLE LOCATION: See Drawing 1

	SOIL PROFILE		S	AMPL	ES	<u>د</u>		RESIS	STANCE	NE PEN PLOT	\geq			PLAST	C NAT	URAL	LIQUID LIMIT		₹	METHANE
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE.	AR ST NCONF UICK T	L RENG INED RIAXIAL	TH (kl + . ×	Pa) FIELD \ & Sensi LAB V	ANE	W _P ⊢ WA	TER CO	w o ONTEN	LIMIT w _L T (%)	POCKET PEN. (Cu) (kPa)		AND GRAIN SIZI DISTRIBUTIO (%)
	SILT : some clay, trace gravel, grey, wet, dense(Continued)	, s	Z	<u> </u>	-	00	Ш	- - -	20 4	10 6	3 0	30 1	00		0 2	20 ;	30			GR SA SI
71.1	SILTY SAND TILL: trace clay, trace gravel, grey, wet, very dense		10	SS	75		71	-						0						
69.6							70	-												
12.2	SILTY CLAY TILL: sandy, trace gravel, grey, moist, hard		11	SS	40		69	-								0		>225		
3								- - - - -												
<u>!</u>	seams of sand at 13.7 m		12	SS	50/ 150mn	1	68	-								o		>225		
66.6							67	-												
15.2	SILT:trace clay, trace sand, grey, wet, dense	1212	13	SS	44		66	-							0					
<u> </u>								-												
65.0 16.8	SILTY CLAY TILL: sandy, seams of sand, trace gravel, grey, moist, hard		14	SS	84		65	-							0			>225		
3							64													
63.5 18.3	SILTY CLAY:trace sand, grey, moist, hard		15	SS	64		63	-								0		>225		
65.0 16.8 7 63.5 18.3								-												
,			\vdash				62	-												

 GRAPH NOTES + 3 , imes 3 : Numbers refer to Sensitivity

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 18-519-10

	JM: Geodetic							Date:	Jun-2	21-201	8					ΕN	NCL N	D.: 36	6		
BORE	EHOLE LOCATION: See Drawing 1		_	AMDI	<u> </u>	l		DYNAI	VIC CO	NE PEN	NETRA	TION		1							
	SOIL PROFILE	T	٥	AMPL	E5	띪		l		NE PEN PLOT				PLAST	IC NATI MOIS CON	URAL TURE	LIQUID LIMIT	ż	T W T	METHA ANI	
(m)		LOT			SIE	WAT	z			1	1	1	00	W _P	CON	TENT W	W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GRAIN	SIZE
ELEV DEPTH	DESCRIPTION	TA F	BER		BLOWS 0.3 m	UND	ELEVATION	SHEA O UN • QU	CONF	INED	+	FIELD V & Sensit	ANE tivity	10/0	TED 00	O	T (0/)	POCK (Cu)	ATURA (KN	DISTRIBI	
		STRATA PLOT	NUMBER	TYPE	þ	GROUND WATER CONDITIONS	ELE\	● QI	JICK TF 0 4	RIAXIAL 0 6	. × 0 8	LAB V/ 30 1	ANE 00		TER CO		30		≥	GR SA	
61.4	SILTY CLAY:trace sand, grey, moist, hard(Continued)		16	SS	52			:								0		>225			
20.4	END OF BOREHOLE:																				
20.4	Notes: 1) Water level at 9 mbgl during drilling																				
Ш																					

DS SOIL LOG 18-519-10 800 HYDRO ROAD.GPJ DS.GDT 18-10-12

REF. NO.: 18-519-10

ENCL NO.: 37

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm

Date: Jun-25-2018

BOREHOLE LOCATION: See Drawing 1

SOIL PROFILE		8	AMPL	ES	œ		RESIS	STANCE	PLOT	\geq	_		PLAST	IC NAT	URAL	LIQUID	١. ا	WT	METHANE
	PLOT			SMS m) WATE	NO NO		1	1 1	ΓΗ (kP:	a)		LIMIT W _P			LIMIT W _L	KET PEN. J) (kPa)	:AL UNIT	AND GRAIN SIZE DISTRIBUTIO
DESCRIPTION	TRATA	IUMBEF	YPE	PLO 0.3	ROUNE	LEVATI	• C	UICK T	RIAXIAL	× L	.AB VA	NE				Γ(%)	POC 20	NATUF ()	(%)
TOPSOIL: 200mm	7/1/			-	0 0	-	-	-			10								GR SA SI
FILL:clayey silt, trace topsoil/organics, shale fragments, dark brown, moist, compact		1	SS	16		81	-							0					
		2	SS	12			-								c	,			
CLAYEY SILT TILL: sandy, trace gravel, brown, moist, stiff		3	SS	10		80									0		125		
SANDY SII T TO SII TY SAND	-44	1			⊻	.	- 70 5 n												
trace clay, brown, wet, very dense		4	SS	50/ 100mn) n	during	drillin							0					
SAND AND GRAVEL: trace silt					-		-												Wet Spoon
grey, wet, very dense	0	5	SS	52			-							0					wet Spoon
	0					78	-												
CILTY CLAY TILL conductroes	0	\perp					-												
gravel, grey, moist, hard		6	SS	34		77	-							0					
						76													
SANDY SILT : trace clay groy	44	<u> </u>			-		-												
wet, very dense		7	SS	58										0					0 23 70
						75	-												
		-					ľ												
SILTY CLAY TILL : sandy, trace gravel, grey, moist, hard		8	SS	44		74	-							0			>225		
							- - - -												
						73	<u>-</u>												
interbed of sand at 9.1 m		9	SS	66			<u> </u>							0			>225		
								1											
	FILL: clayey silt, trace topsoil/organics, shale fragments, dark brown, moist, compact CLAYEY SILT TILL: sandy, trace gravel, brown, moist, stiff SANDY SILT TO SILTY SAND: trace clay, brown, wet, very dense SAND AND GRAVEL: trace silt, grey, wet, very dense SILTY CLAY TILL: sandy, trace gravel, grey, moist, hard SANDY SILT: trace clay, grey, wet, very dense	TOPSOIL: 200mm FILL: clayey silt, trace topsoil/organics, shale fragments, dark brown, moist, compact CLAYEY SILT TILL: sandy, trace gravel, brown, moist, stiff SANDY SILT TO SILTY SAND: trace clay, brown, wet, very dense SAND AND GRAVEL: trace silt, grey, wet, very dense SILTY CLAY TILL: sandy, trace gravel, grey, moist, hard SILTY CLAY TILL: sandy, trace gravel, grey, moist, hard	TOPSOIL: 200mm FILL:clayey silt, trace topsoil/organics, shale fragments, dark brown, moist, compact CLAYEY SILT TILL: sandy, trace gravel, brown, moist, stiff 3 SANDY SILT TO SILTY SAND: trace clay, brown, wet, very dense SAND AND GRAVEL: trace silt, grey, wet, very dense SILTY CLAY TILL: sandy, trace gravel, grey, moist, hard 6 SANDY SILT: trace clay, grey, wet, very dense 7 SILTY CLAY TILL: sandy, trace gravel, grey, moist, hard 8 SILTY CLAY TILL: sandy, trace gravel, grey, moist, hard 8	DESCRIPTION Substitute Page Pa	DESCRIPTION Description D	TOPSOIL: 200mm FILL:clayey slit, trace topsoil/organics, shale fragments, dark brown, moist, compact CLAYEY SILT TILL: sandy, trace gravel, brown, moist, stiff 3 SS 10 SANDY SILT TO SILTY SAND: trace clay, brown, wet, very dense SILTY CLAY TILL: sandy, trace gravel, grey, moist, hard SANDY SILT: trace clay, grey, wet, very dense FILL: sandy, trace gravel, brown, moist, stiff 3 SS 10 SILTY CLAY TILL: sandy, trace gravel, grey, moist, hard SILTY CLAY TILL: sandy, trace gravel, grey, moist, hard SILTY CLAY TILL: sandy, trace gravel, grey, moist, hard SILTY CLAY TILL: sandy, trace gravel, grey, moist, hard SILTY CLAY TILL: sandy, trace gravel, grey, moist, hard SILTY CLAY TILL: sandy, trace gravel, grey, moist, hard	DESCRIPTION TOPSOIL: 200mm Topsoil:	DESCRIPTION TOPSOIL: 200mm Topsoil Tops	DESCRIPTION Solition Solitio	DESCRIPTION TOPSOIL: 200mm FILL: clayey silt, trace paravel, brown, moist, compact 1 SS 16 CLAYEY SILT TILL: sandy, trace gravel, brown, wet, very dense SANDY SILT TO SILTY SAND: trace clay, brown, wet, very dense SANDY SILT TO SILTY SAND: frace gravel, grey, moist, hard SILTY CLAY TILL: sandy, trace gravel, grey, moist, hard 8 SS 44 SILTY CLAY TILL: sandy, trace gravel, grey, moist, hard 8 SS 44 SILTY CLAY TILL: sandy, trace gravel, grey, moist, hard 8 SS 44 SILTY CLAY TILL: sandy, trace gravel, grey, moist, hard 8 SS 44	DESCRIPTION	DESCRIPTION	DESCRIPTION Variable Variabl	DESCRIPTION 1	DESCRIPTION A	DESCRIPTION A	DESCRIPTION Second Second	DESCRIPTION	DESCRIPTION

Continued Next Page

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 18-519-10

Date: Jun-25-2018 ENCL NO.: 37

	SOIL PROFILE		S	AMPL	ES	~		RESI	AMIC CO STANCE	PLOT		TION		PLASTIC	NATU	URAL	LIQUID		₽	METHANE
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE O L	AR ST INCONF QUICK T	RENG INED RIAXIAL	TH (kl	FIELD V & Sensit LAB V	/ANE	PLASTIC LIMIT W _P WATE	 R CC	w O ONTEN	LIQUID LIMIT W _L T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT V (KN/m³)	AND GRAIN SIZI DISTRIBUTIO (%) GR SA SI
	SILTY CLAY TILL : sandy, trace gravel, grey, moist, hard(Continued)						74	-												
1			10	SS	90		71	-						0				>225		
2							70	-												
3			11	SS	73		69	-						φ				>225		
<u>4</u>			12	SS	23		68	- - - - - -									0	175		
							67	-												
			13	SS	31		66	-								0		>225		
<u>a</u>								-												
<u>z</u>			14	SS	30		65	-								0		175		
8							64	- - - - - -												
2 8 8 8 9 62.0 0 19.8			15	SS	30		63	-							0			>225		
62.0							62	-												

NOTES

+ 3 , imes 3 : Numbers refer to Sensitivity

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 18-519-10

	M: Geodetic							Date.	Jul 1-2	25-201	0				ΕN	NCL N	O.: 37	7	
BORE	HOLE LOCATION: See Drawing 1 SOIL PROFILE		S	SAMPL	.ES			DYNA	MIC CC	NE PEI	NETRA	TION							METHANI
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	ТҮРЕ	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O U • Q	AR ST NCONF	RENG RINED RIAXIAL	50 8 5TH (kl + - ×	Pa) FIELD V & Sensit		TER CO	NTEN.	LIQUID LIMIT W _L T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	
04.4	SILTY CLAY: trace sand, grey, moist, very stiff(Continued)	* * * * * * * * * * * * * * * * * * *	16	SS	26	00	Ш	-	20 2	10 6		50 1	<u>'</u>	0 2	.0 .	-	200		GR SA SI
61.4 20.4	END OF BOREHOLE Notes: 1) Water level at 2.3 mbgl during drilling																		

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150 mm REF. NO.: 18-519-10

Date: Jul-26-2018 ENCL NO.: 38

	SOIL PROFILE		S	AMPL	ES	_		DYNA RESIS	MIC CC STANCE	NE PE PLOT	NETRA	TION		PLASTI	C NAT	URAL	LIQUID		۸T	METHAN
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE O U	AR ST INCONF UICK T	RENG INED RIAXIAI	TH (kl + - ×	& Sensit	ANE ivity		TER CO	w DNTEN	LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZ DISTRIBUTI (%) GR SA SI
83.3 89:9	TOPSOIL: 152mm	1 1/2	H		-	-	-		+											011 071 01
0.2	FILL: clayey silt, trace rootlet, trace asphalt, brown, moist, stiff		1	SS	12		83	-							0					
1			2	SS	12		82								0					
1.5	SILT : some sand, trace clay, brown, wet, loose		3	ss	5											0				
81.0 2.3	CLAYEY SILT TILL: some sand, trace gravel, trace cobble, brown to grey, moist, very stiff to hard		4	SS	18		81	-							0					
3			5	SS	50/ 127mn	1	80	-							0					
78.7							79	- - - - - - - -												
4.6	SILT: some sand, trace clay, grey, very moist to wet, dense		6	SS	32			-							0					
§ 77.2							78	-												
6.1	CLAYEY SILT TILL: some sand, trace gravel, trace cobble, grey, moist, hard		7	SS	50/ 127mn))	77	-						0						
							76	-												
75.7 75:8	SHALE: Georgian Bay Formation,	14	8	SS	50/			-												
7.8	END OF BOREHOLE Notes: 1) Borehole open and dry upon completion				(00mr)															

ENCL NO.: 39

LOG OF BOREHOLE BH18-42

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 18-519-10

Date: Jun-29-2018

	SOIL PROFILE		S	AMPL	ES	_ س		DYN/ RESI	AMIC CC STANCE	NE PEI PLOT	NETRA	TION	_	PLASTI	C NATI	URAL	LIQUID		ΛΤ	METHA	
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE	AR ST INCONF QUICK TI	RENG INED RIAXIAL	TH (kl + - ×	& Sensit	ANE ivity	W _P ⊢ WA	TER CC		LIQUID LIMIT W _L T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (KN/m³)	ANE GRAIN : DISTRIBU (%)	SIZ UTI:)
85.7 0.0	TOPSOIL: 350 mm	71 14	_		-		 "	-	Ť											GIV OA V	<u> </u>
0.3	FILL: silty sand, trace topsoil/rootlets, some gravel, brown, moist, compact		1	SS	10	-	0.5	-								o					
0.8	FILL:sandy silt, trace clay, brown, wet, loose		2	SS	4		85	-							0						
84.2 1.5	FILL: clayey silt, trace organics, grey, moist, stiff		3	SS	9	-	84	- - - -							0			-			
								-													
			4	SS	11		83								0						
82.3 3.4	SANDY SILT: trace clay, brown,		5	SS	10	_		- - -							0						
	moist, compact						82	-										-			
81.1 4.6	CLAYEY SILT TILL: trace gravel, brown, moist, hard		6	SS	50/ 150mn	m	81	-								•		>225			
79.6]				80	- - - - - -										-			
7 <u>9</u> :4	SHALE: Georgian Bay Formation, weathered, grey		7	SS	50/ (00m)			-						0							
6.3	END OF BOREHOLE Notes: 1) Borehole dry and open upon completion.				(COIIII)																

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 18-519-10

BOREH								Date	: Jun-	29-201	8					Εľ	NCL N	O.: 40	J	
	OLE LOCATION: See Drawing 1 SOIL PROFILE			SAMPL	FS			DYN	AMIC CO STANCE	ONE PEI	NETRA	TION								
(m)	00.2.1.0.1.2	T_				TER.			20 4	40 6	0 8	30 10	00	PLASTI LIMIT	C NATI MOIS CON	URAL TURE TENT	LIQUID LIMIT	Ë.	IIT WT	METHANE AND
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	ř	BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE	AR ST INCONF QUICK T	RENG	TH (kl	Pa) FIELD VA & Sensitiv	ANE	W _P ⊢	TER CC	w >	w _∟ ——•	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GRAIN SIZ DISTRIBUTI (%)
83.5 0.0 83.2	TOPSOIL: 350mm	77.74 ST ST		TYPE	į	AP OO	33					30 10		1		20 3	30			GR SA SI
0.3	FILL: clayey silt, brown, moist, stiff		1	SS	10	-	83	- - -							0					
0.8	CLAYEY SILT TILL: sandy, trace gravel, brown, moist, very stiff to hard		2	SS	24	-		-							0					
			3	SS	28		82	-							0			>225		
	grey below 2.3 m		4	SS	33	-	81	-						(•			-		
3.1 80.1	SHALE: Georgian Bay Formation, weathered, grey		5	SS	50/ 125mn			- - -												
	END OF BOREHOLE Notes: 1) Borehole open and dry upon completion																			

GRAPH NOTES

+ 3 , imes 3 : Numbers refer to Sensitivity

O ^{8=3%} Strain at Failure

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 18-519-10

Date: Jun-29-2018 ENCL NO.: 41

	SOIL PROFILE		S	AMPL	.ES	<u></u>		DYNA RESI	MIC CO STANCE	NE PEN PLOT	NETRAT	TION		PLASTI	C NATI	URAL	LIQUID		ΛΤ	METHA	
(m) ELEV DEPTH 83.9	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE O L	AR STI	L RENG INED	TH (kF + ×	& Sensiti	ANE vity ANE		TER CC	w DNTEN	LIQUID LIMIT W _L ————————————————————————————————————	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN S DISTRIBU (%) GR SA S	SIZI
0.0 83.6 0.3	TOPSOIL: 350mm FILL: clayey silt, trace organics, brown, moist, firm	<u>11/2</u>	1	SS	7			-							o						
0.8	CLAYEY SILT TILL: sandy, trace gravel, brown, moist, stiff to hard		2	SS	14		83	-							0			-			
			3	SS	23		82	- - - - -							0			-			
	trace shale fragments below 2.6 m		4	SS	35	-		- - - -							0						
	trace share fragments below 2.0 m					- - -	81											-			
80.1 7 9 :9	SHALE: Georgian Bay Formation, weathered, grey		5	SS	43	-	80	- - - -						0							
	END OF BOREHOLE Notes: 1) Borehole open and dry upon completion																				

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 18-519-10

Date: Jun-29-2018 ENCL NO.: 42

	SOIL PROFILE		S	AMPL	ES.	 		DYN/ RESI	AMIC CC STANCE	NE PEN PLOT	NETRAT	TION		PLASTI	C NATI	JRAL	LIQUID		ΤV	METHANE
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS	GROUND WATER CONDITIONS	ELEVATION	SHE O L	AR ST INCONF QUICK TI	INED	TH (kF + ×	FIELD V. & Sensit	ANE ivity ANE	W _P	CON' V TER CC	TENT v D ONTENT	LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZI DISTRIBUTIO (%) GR SA SI
0.0 82.6 0.4	TOPSOIL: 400mm FILL: sand and gravel, trace	7 7	1	SS	14			-							0					
. 0.4	concrete/ brick pieces, brown, moist, compact		2	SS	17		82	-									0			
81.5 1.5	SILT TO CLAYEY SILT: brown,	\bigotimes	_					- - -												
1.0	moist, stiff		3	SS	13		81								0			>225		
2.3	SILTY CLAY TILL: trace gravel, grey, moist, very stiff to hard		4	SS	25			- - - -							0					
70.0			5	SS	50/ 100mn		80	-						()					June 29, 2
79.2 3.8 78.7	GEORGIAN BAY FORMATION: shale interbedded with limestone/siltstone layers, grey Bedrock Coring started at 4.3 m	X [®] X	6	SS	50/ 50mm		79	-						0						July 27, 20
4.3 78.1	SHALE BEDROCK: Total Core Recovery = 83% Solid Core Recovery = 75% ROD = 50%		RUN 1	RC				-												
76.6	Hard Layer (Limestone/Siltstone) = / less than 10% // Maximum Thickness of Hard Layer/=,50mm // Total Core Recovery = 100% Solid Core Recovery = 93% RQD = 65% Hard Layer (Limestone/Siltstone) = less than 10% Maximum Thickness of Hard Layer = 75mm		RUN 2	RC			78 77	-												
6.4	SHALE BEDROCK: Total Core Recovery = 100% Solid Core Recovery = 57% RQD = 72% Hard Layer (Limestone/Siltstone)= less than 10% Maximum Thickness of Hard Layer = 75mm		RUN 3	RC			76	-												
75.1	END OF BOREHOLE							-												

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 18-519-10

Date: Jul-17-2018 ENCL NO.: 43

BOREHOLE LOCATION: See Drawing 1

				AMPL		œ		RES	ISTAN	CE PI	LOT	IETRA		PLAST	IC NAT MOIS CON	URAL	LIQUID LIMIT		WT		HANE
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	3ER		BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	0	JNCO	NFINE	ΞD	TH (kl	 VANE	W _P		w o	W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GRAI DISTR	ND N SIZE IBUTIO %)
81.4		STR	NUMBER	TYPE	ż	GROI	ELEV	•	QUICK 20	TRIA 40	XIAL 6		'ANE 100		TER CO		30		2	GR SA	
0.0	FILI: sand and gravel, grey, moist		1	AS			81	-							0						
80.6 0.8	SILTY CLAY TILL : sandy, trace gravel, brown, moist, hard to very stiff	X	2	SS	16			- - - - -							>						
<u>2</u>			3	ss	48		80	-							Φ			>225			
	grey below 2.3 m		4	SS	33		79	-						0				>225			
<u>3</u> -			5	SS	36		78	-							•			->225			
4							77	-													
- <u>5</u>			6	SS	24									0				200			
-							76	-										-			
-			7	SS	22		75	-								0		200			
7							74	-													
73.8 7.6	SANDY SILT: trace to some clay, grey, wet, compact to very dense		8	SS	24	Ā	W. L. during	[73.8 drilli [-	m ng							0					
- 73.8 7.6 8							73	-										-			
			9	SS	94		72	-							•						

GROUNDWATER ELEVATIONS

Measurement

| State | Continued Next | Continued

GRAPH NOTES + 3 , imes 3 : Numbers refer to Sensitivity

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 18-519-10

Date: Jul-17-2018 ENCL NO.: 43

	SOIL PROFILE		S	AMPL	ES	œ		RESI	AMIC CC STANCE	PLOT	NE IKA	IION		PLASTI LIMIT	IC NAT	URAL	LIQUID		TW	METHAN
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	Й	BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE	20 4 AR ST INCONF	RENG INED	TH (kl	& Sensit	'ANE	W _P ⊢	CON TER CO	w 0	LIQUID LIMIT W _L ————————————————————————————————————	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SI DISTRIBUT (%)
	SANDY SILT: trace to some clay, grey wet compact to very	STR STR	NON	TYPE	Ż	GRC	33						00	1			30		_	GR SA SI
70.7	grey, wet, compact to very dense(Continued)						71	-												
10.7	SILT TO SANDY SILT: trace to some clay, grey, moist to very moist, very dense		10	SS	50										0					
<u> </u>							70	-												
			11	SS ,	50/ 127mm	1	69	-							0					
1							68	-												
13.7	CLAYEY SILT: trace sand, grey, moist, hard		12	ss	77			-							0			>225		
<u>i</u>							67	-												
			13	SS	36		66	-								•				
							65	-												
			14	SS	31			-								0		>225		
61.6							64	-												
			15	SS	51		63	-								0				
2							62	-												
61.6 19.8								-												

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 18-519-10

	SOIL PROFILE		8	SAMPL	.ES			RESIS	MIC CC TANCE	NE PEN PLOT	NETRA	TION		n	NATI	URAI			_	METHA	٩NF
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O UI	20 4 AR ST NCONF UICK TI		TH (ki	0 1	ANE ivity ANE		TER CC		LIQUID LIMIT W _L T (%)	POCKET PEN. (Cu) (kPa)		ANI GRAIN DISTRIBI (%)	O SIZ UTI(
04.0	SILT : some clay, grey, wet, very dense(Continued)	ĬĬ	16	SS	62			-								0				GIV OA	<u> </u>
61.0 20.4	END OF BOREHOLE: Notes: 1) Water level at 7.6 mbgl during drilling						61														

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 18-519-10

Date: Jun-28-2018 ENCL NO.: 44

	SOIL PROFILE		S	AMPL	ES	~		DYN. RES	AMIC CO STANCE	NE PEI E PLOT	NETRA	TION		PLASTI	C NAT	URAL	LIQUID		Ţ.	MET	HANE
(m) ELEV DEPTH 82.4	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	0 1	AR ST UNCONF QUICK T	RENG INED RIAXIAL	TH (kl + - ×	Pa) FIELD V & Sensit LAB V	'ANE ivity ANE		TER CO	w O ONTEN	LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	A GRAI DISTRI (' GR SA	IBUTI %)
89:9	TOPSOIL: 200mm	<u>11/</u>						E													
0.2 81.6	FILL: silty clay, trace gravel, brown, moist, loose	$\stackrel{\times}{\times}$	1	SS	5	-	82									0		-			
0.8	CLAYEY SILT TILL: sandy, trace gravel, brown, moist, very stiff to stiff		2	SS	18		81								0						
			3	SS	22	-		-							0						
	grey below 2.3 m		4	SS	13		80	-							0			-			
79.3								-													
3.1	SILT: some clay, trace sand, grey, moist, compact		5	SS	21		79	-							-						
77.8							78	-										-			
4.6	SILTY SAND TO SANDY SILT: trace clay, trace gravel, grey, wet, dense		6	SS	32	Ţ	W. L. during	L 77.8 drillii [-	m ng						0						
² 76.3							77	-													
78:1	SHALE: Georgian Bay Formation		7	SS	50/ (00m)			-													
6.3	END OF BOREHOLE Notes: 1) Water level at 4.6 mbgl during drilling																				

GRAPH NOTES + 3 , imes 3 : Numbers refer to Sensitivity

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 18-519-10

Date: Jul-05-2018 ENCL NO.: 45

	SOIL PROFILE		5	AMPL	.ES	~		RESIS	STANCE	NE PEN PLOT		ION		PLASTI	CNAT	URAL	LIQUID		⊢	METHANE
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE	AR ST INCONF OUICK T	RENGTINED RIAXIAL	ΓΗ (kP: +	a) TELD V Sensiti	OO L ANE ivity ANE	W _P WA	TER CO	ITENT W O ONTEN	LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (KN/m³)	AND GRAIN SIZ DISTRIBUTIO (%) GR SA SI
81.1 89:9	TOPSOIL: 200mm	31 1/2	_		-		81	-										\vdash		GIV SA SI
0.2	FILL: clayey silt mixed with asphalt, trace organics, some sand, dark grey, moist, compact		1	SS	17			- - - -							•					
			2	SS	11		80	- - - - -								0				
79.6 1.5	CLAYEY SILT TILL: sandy, trace	X						-												
1.5	gravel, greyish brown, moist, very stiff		3	SS	17		79	-							0					
78.8	CANDY OU T TILL a trace to come	44	1			-	'`	1												
2.3	SANDY SILT TILL: trace to some clay, trace gravel, brown, moist, dense		4	SS	34			- - - -							0					
78.0	SILTY SAND : trace clay, brown,					⊻	W. L.	70.0 n										-		
3.1	wet, very dense		5	SS	50/ 150mn	n	during	drillin	g					0						
							77	- - - - -										-		
76.5	0.4MD / 311 /							E												
4.6	SAND: trace silt, trace gravel, grey, wet, very dense		6	SS	66		76	- - - 							0			_		
75.0								-												
75.0 6.1	SILTY SAND: trace clay, grey, wet,	111				-	75	; <u> </u>										1		
	very dense		7	SS	87			- - - -							0					
							74	-												
								- - -												
			8	SS	50/ 50mm		73	-							0					
72.0 9.1								`- - -												
72.0	CAND AND CRAVEL						72	 - 												
9.1	SAND AND GRAVEL: trace silt, grey, wet, very dense	0	9	SS	50/ 150mn			-						0						

Continued Next Page

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 18-519-10

Date: Jul-05-2018 ENCL NO.: 45

BOREHOLE LOCATION: See Drawing 1

	SOIL PROFILE	_		AMPL	ES	œ		RES	STANC	E PLOT	NETRA	-		PLAST	IC NAT MOIS CON	URAL	LIQUID LIMIT	١.	₩	MET	HANE
(m) ELEV DEPTH		STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	• (AR ST UNCON QUICK T	TRENC FINED TRIAXIA	GTH (k + L ×	Pa) FIELD & Sen LAB	VANE sitivity VANE 100	W _P ⊢ WA	TER CO	w o ONTEN	W _L	POCKET PEN. (Cu) (KPa)	NATURAL UNIT WT (kN/m³)	A GRA DISTR (GR SA	(%)
- - - - -	grey, wet, very dense(Continued)	0.0					71	- - - - - -													
<u>!1</u>		0	10	SS ,	50/ 100mn	1	70	- - - - - -						C	>						
68.9		.o .0 .0					69	-													
12.2	very dense		11	SS	57			- - - - -							C						
67.4							68	-													
13.7	SILT: trace clay, grey, wet, very dense	-	12	SS ,	50/ 150mn	1	67	- - - - - - -								0		-			
65.8 15.3	SILTY CLAY TILL : some sand to	707					66	- - - - - -													
- 13.3 	sandy, trace gravel, grey, moist hard		13	SS	79		GE	- - - -							0			>225	5		
64.3							65	-													
64.3	SILTY CLAY: trace sand, grey, moist, hard		14	SS	47		64	-								C		>225	5		
62.8							63	- - - -													
18.3	SILT TO CLAYEY SILT: trace sand, grey, very moist, very dense		15	SS	50		25	- - - -							0			>225	j j		
							62	-													

 GRAPH NOTES + 3 , imes 3 : Numbers refer to Sensitivity

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 18-519-10

	JM: Geodetic							Date:	Jul-0	5-2018						ΕN	NCL N	O.: 45	5		
BORE	EHOLE LOCATION: See Drawing 1		_					DYNAI	AIC CO	NE PEN	JETRA	TION									
	SOIL PROFILE		- 8	AMPL	ES	K.				NE PEN PLOT				PLASTI LIMIT	C NATU	JRAL TURE	LIQUID		TW.	METHA	
(m)		6			ی ا	VATE	7			0 6		30 1	1	W _P	CON	TENT V	LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	ANI GRAIN	
ELEV DEPTH	DESCRIPTION	ΡF	띪		BLOWS 0.3 m	ND V	ΛΤΙΟΙ	O UN	NR STI NCONF	RENG INED RIAXIAL	1H (kl +	ع) FIELD V	ANE					OCKE (Cu) (URAL (KN/	DISTRIBU	JTION
		STRATA PLOT	NUMBER	TYPE	<u></u>	GROUND WATER CONDITIONS	ELEVATION	• QI	JICK TF 0 4	RIAXIAL 0 6	. X	LAB V	ANE 00		TER CC		T (%) 30	<u> </u>		(%)	
_	SILT TO CLAYEY SILT: trace	IIII	16	⊢ SS	64	0 0	 61		0 4	0 0	0 0	1		<u>'</u>	0 2	.0	50	>225	_	GR SA	SI CL
60.7	sand, grey, very moist, very dense(Continued)			00			01	-													
20.4	END OF BOREHOLE:																				
	Notes: 1) Water level at 3.1 mbgl during																				
	drilling																				
<u>.</u>																					
<u>:</u>																					
:																					
\Box	1													<u> </u>							

DS SOIL LOG 18-519-10 800 HYDRO ROAD.GPJ DS.GDT 18-10-12

GRAPH NOTES

+ 3 , \times 3 : Numbers refer to Sensitivity

O ^{8=3%} Strain at Failure

PROJECT: Preliminary Geotechnical Investigation- Proposed Development

CLIENT: Lakeview Community Partners Ltd.

PROJECT LOCATION: 800 Hydro Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 150mm REF. NO.: 18-519-10

Date: Jul-04-2018 ENCL NO.: 46

	SOIL PROFILE		S	AMPL	ES.	<u>د</u>		DYN/ RESI	AMIC CO STANCE	NE PE E PLOT	NETRA	TION		PLASTI LIMIT	C NATI	URAL	LIQUID	١.	ΤM	METHAN
(m) ELEV DEPTH 80.8	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE	AR ST INCONF QUICK T	RENG INED RIAXIAI	TH (ki + - ×	FIELD V & Sensit LAB V	ANE	W _P ⊢ WA	TER CO	NTEN.	LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SI DISTRIBUT (%) GR SA SI
89:8	TOPSOIL: 200 mm	711/						-												
0.2	FILL: silty clay, trace asphalt, some gravel, dark grey, moist, firm		1	SS	5			- - - -								0				
0.8	FILL : sandy silt, dark grey, moist, very dense		2	SS	50/ 50mm		80	-							0			-		
2		$\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}$	3	SS	50/ 75mm		79	-						•				-		
78.5		\times						-												
2.3	SANDY SILT TILL: some clay, trace gravel, grey, moist, compact to dense		4	SS	29		78	-								•				
3			5	SS	31			- - - -								o				
4							77	-										-		
76.3	01141 5 0	Ш			F0/			ŀ												
7 8 :5 4.7	SHALE: Georgian Bay Formation, weathered, grey		6	SS	50/ (25mi)			_	+	-				0			-			
	END OF BOREHOLE: Notes: 1) Borehole dry and open upon completion.																			

CLIENT: Rangeview Estate Precinct Development

PROJECT LOCATION: 855 Rangeview Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 22-200-100

Date: Jul-19-2022 ENCL NO.:

BH LOCATION: See Drawing 1 SOIL PROFILE		-	AMPL	EC	г	\neg		DYNA	MIC CC	NE PEN E PLOT	NETRA	ATION								
SUIL PRUFILE			AIVIPL	.23	띪					-				PLASTI LIMIT	C NAT	URAL STURE	LIQUID LIMIT	j	TWT	REMARKS AND
(m) ELEV EPTH DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER	SONDITIONS	ELEVATION	SHE/	AR STI NCONF UICK T	O 60 RENGT INED RIAXIAL	H (kF + ×	FIELD VA & Sensitiv	ANE vity ANE	W _P ⊢ WA	CON Y TER CO	TENT W O ONTEN	W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GRAIN SIZ DISTRIBUTI (%)
0.0 ASPHALT: 180mm 0.2 GRANULAR BASE: sand and		1	SS	23											0					GR SA SI
gravel, 380mm 0.6 FILL: crusher run limestone,																				
0.8 FILL: silty clay, some organic some sand, trace gravel, grey moist, stiff to very stiff		2	SS	10											,	•				
		3	SS	22												0				
2.3 SILTY CLAY TILL: some same some gravel, brown, moist, ha		4	SS	50											F	•	 			13 18 47
trace shale fragments below 3	0m //	5	SS	75							7	Ś				Φ				
1) Augar refusal @3.7m due to possible shale bedrock. 2) 50mm dia. monitoring well installed upon completion. 3) Water Level Readings: Date: Water Level(mbgl):																				

CLIENT: Rangeview Estate Precinct Development

PROJECT LOCATION: 855 Rangeview Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 22-200-100

Date: Jul-15-2022 ENCL NO.:

	SOIL PROFILE		s	SAMPL	.ES]		DYNA RESIS	MIC CC STANCE	PLOT	NETR/	ATION		DI ACTI	_ NAT	URAL	HOHID		Ц	REMA	۱R۴
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	ТҮРЕ	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O UI	AR STI NCONF	0 6	0 8 TH (kF + - ×	Pa) FIELD V	ANE vity ANE		TER C	w OMTEN	LIQUID LIMIT W _L ——I T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT M (kN/m³)	AN GRAIN DISTRIB (%	ID I SI BUT 6)
0.0	GRANULAR FILL: sand and gravel, 280mm FILL: sand & gravel, trace brick		1	ss	21									0							
0.0	pieces, grey, moist, compact	\bigotimes																			
0.8	FILL: silty clay, trace organics, grey, moist, firm		2	SS	5	_											٥				
1.5	CLAYEY SILT: trace sand, trace gravel, brown, moist, stiff		3	SS	11										٥						
2.3	CLAYEY SILT TILL: sandy, trace gravel, occasional cobble, brown, moist, hard		4	SS	44	-								0							
			5	SS	86					_	2	×		0							
<u> </u>						_			•	O'											
<u>5</u>			6	SS	47	-								0							
<u>ā</u>	grey below 6.1m																				
,			7	SS	50	-								0							
						_															
1			8	SS	46									0							
8.2	END OF BOREHOLE:	1 1 1 1																			

CLIENT: Rangeview Estate Precinct Development

PROJECT LOCATION: 855 Rangeview Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 22-200-100

Date: Jul-18-2022 ENCL NO.:

DH LC	OCATION: See Drawing 1 SOIL PROFILE		5	SAMPL	FS			DYNA	MIC CC	NE PEI	NETR/	TION						1			
	55.2torice	Τ.	\vdash			GROUND WATER CONDITIONS						0 10	20	PLASTI LIMIT	C NATU	TURE	LIQUID LIMIT) Z	NATURAL UNIT WT (kN/m³)	RI	EMARK AND
(m)		STRATA PLOT			SIL	WAT	z		1				1	W _P		TENT W	W_{L}	POCKET PEN. (Cu) (kPa)	NS (F	GF	RAIN SI
LEV PTH	DESCRIPTION	I₹	ER.		BLOWS 0.3 m	ON E	ELEVATION	0 U	AR STI	INED	+ +	ra) FIELD VA & Sensitiv	ANE			—		(CC)	F S	DIS	TRIBUT (%)
		₹.	NUMBER	TYPE	<u> </u>	NS C	Ę (• Q	UICK TI	RIAXIAL	. ×	LAB V	ANE		ER CC			"	₹		
0.0	ASPHALT: 150mm	Ś	z	Ĺ	F	0 0	Ш	-	20 4	0 60	8 (0 10	0	1	0 2	20	30	-		GR :	SA SI
0.2	GRANULAR BASE: sand and	. O	1	SS	9																
0.4	gravel, 250mm FILL: silty clay, some organics,	XX	1 '	33	9																
	some sand, trace gravel, grey,	\otimes	\vdash																		
	moist, stiff	\otimes				1															
		\times	2	SS	11											,					
1.2	SILT TO CLAYEY SILT: trace	1																			
	sand, brown, moist, stiff to hard		=			1															
			1	00	20																7 70
			3	SS	30										∘⊩					١	7 76
			\vdash			1															
2.3	CLAYEY SILT:, trace sand, trace	##	1			1															
	gravel, brown, moist, hard		4	SS	77											0					
			1																		
]															
3.1	SHALE BEDROCK: grey, weathered /	/	5	SS	50/ \30mn		\vdash	\vdash					_	\vdash				+	\vdash	\vdash	
0.2	END OF BOREHOLE:					Ï					7	ン									
											レ										
									 •		•										
																			1		
							l														

GRAPH NOTES $+3, \times 3$: Numbers refer to Sensitivity

O ^{8=3%} Strain at Failure

CLIENT: Rangeview Estate Precinct Development

PROJECT LOCATION: 855 Rangeview Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 22-200-100

Date: Jul-18-2022 ENCL NO.:

	SOIL PROFILE		s	AMPL	ES.			RESI	AMIC CO STANCE	NE PE PLOT	NETR/	A I ION		PLASTI LIMIT	C NATI	URAL	LIQUID		ΤV	REMARKS
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE.	AR STI	INED	ΓΗ (kl + . ×	Pa) FIELD V. & Sensitr LAB V.	ANE vity ANE 00	w _P ⊢ WA	TER CO	TENT W DOMTEN	LIQUID LIMIT W _L ——I IT (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZI DISTRIBUTIO (%) GR SA SI
0.0	ASPHALT: 150mm GRANULAR BASE: sand and gravel, 380mm	. O	1	SS	12									0						
0.5	FILL: crusher run limestone																			
0.8	FILL: clayey silt, trace organics, grey, moist, firm to very stiff		2	SS	7											0				
1.7	SILTY CLAY TILL: some sand, trace to some gravel, trace shale fragements, brown, moist, very stiff	***	3	SS	29										•	>				
	to hard		4	SS	54										c	•	+1			10 10 56
3.1	shale bedrock END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water Level Readings: Date: Water Level(mbgl):									No.	25									

CLIENT: Rangeview Estate Precinct Development

PROJECT LOCATION: 855 Rangeview Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 22-200-100

Date: Jul-18-2022 ENCL NO.:

	SOIL PROFILE		S	SAMPL	ES	~		RESIS	MIC CO TANCE	NE PE PLOT	NETRA	ATION		PLASTI LIMIT	C NAT	URAL	LIQUID LIMIT		¥		IARK
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O UN	0 4 R STF NCONF JICK TF 0 4	RENG INED RIAXIAL	ΓΗ (kF + - ×	FIELD VA & Sensitiv	ANE vity ANE	W _P ⊢ WA	TER CO	w DNTEN	W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GRA DISTR	(%)
0.1	ASPHALT: 130mm GRANULAR BASE: sand and gravel, 380mm	. O	1	SS	16											0					
0.5	FILL: silty clay, some organics, trace asphalt, grey, moist, firm to very stiff	× 2.	2	ss	6	-										0					
1.5	SILT TO CLAYEY SILT: trace					-															
:	sand, trace gravel, brown to grey, moist, very stiff to hard		3	SS	15	-									c						
			4	SS	31	-										c					
			5	ss	29						. 5	Ś				0					
				SS	50/	-			•	Q	Y										
	no recovery@4.3m augar refusal on possible shale bedrock END OF BOREHOLE:				<u>⊉5mr</u> g																

CLIENT: Rangeview Estate Precinct Development

PROJECT LOCATION: 855 Rangeview Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 22-200-100

Date: Jul-19-2022 ENCL NO.:

	SOIL PROFILE		S	SAMPL	ES	<u>~</u>		DYN/ RESI	AMIC CO STANC	ONE PE E PLOT	NETR.	ATION -		PLASTI	NAT	URAL	LIQUID		ΤV	RE	MAF	
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" <u>BLOWS</u> 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE O U	AR ST JNCONI	RENG FINED RIAXIA	TH (kl + L ×	Pa) FIELD V & Sensiti LAB V	ANE vity ANE 00	1	ER CO	w O ONTEN	LIQUIC LIMIT W _L VT (%) 30	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GR DIST	AND AIN S RIBU (%)	SIZE
0.0	ASPHALT: 150mm GRANULAR BASE: sand and	ن ن																				
0.2	gravel, 380mm	0	1	SS	13									0								
0.5	FILL: sand, some asphalt pieces, trace gravel, dark brown, moist, loose to compact																					
1.0	SILTY CLAY: trace sand, trace gravel, brown, moist, stiff to very stiff		2	SS	8										,							
			3	SS	20										ŀ		4			0	4 6	8
			4	SS	25										0							
3.1	CLAYEY SILT TILL/SHALE	1/1				-																
5.1	COMPLEX: trace sand, trace gravel, grey, moist, hard		5	SS	69						76	X	Y		0							
										X												
									1	V	•											
4.5	SHALE BEDROCK: grey,	1///	6	SS	50/																	
4.7	END OF BOREHOLE:				50mm																	_

CLIENT: Rangeview Estate Precinct Development

PROJECT LOCATION: 855 Rangeview Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 22-200-100

Date: Jul-15-2022 ENCL NO.:

	BH LOCATION: See	Drawing 1
--	------------------	-----------

SOIL PROFILE		S	SAMPL	ES.	œ		DYNA RESIS	MIC CO STANCE	NE PE PLOT	NETR/	ATION		PLASTI	NAT	URAL	LIQUID	,	ΤW	RE		
DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATE CONDITIONS	ELEVATION	SHE/	AR STI NCONF UICK T	LENG RENG INED RIAXIAI	TH (kf + - ×	Pa) FIELD V & Sensiti LAB V	ANE vity ANE	w _P ⊢— WAT	ER CO	TENT W DOMTEN	w _L ☐ (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT \ (kN/m³)	l	RIBU (%)	SIZE JTIC
ASPHALT: 180mm GRANULAR BASE: sand and gravel, 460mm		1	SS	4									0								
FILL: crusher run limestone SILT TO CLAYEY SILT: trace sand, trace gravel, brown, moist, very stiff to hard		2	SS	17										0					2 8	3 6	32
		3	SS	30										0							
CLAYEY SILT TILL: sandy, trace gravel, brown, moist, hard SHALE BEDROCK: Georgian Bay Formation, grey, weathered TCR=75%, SCR=14%, RQD=0		4 R1	SS	50/										0							
TCR=96%, SCR=98%, RQD=28% Hard layer=18%, Maximum hard layer thickness=50mm		R2	RC					•	Q	28	>										
TCR=93%, SCR=90%, RQD=63% Hard layer=1%, Maximum hard layer thickness=25mm		R3	RC																		
TCR=100%, SCR=98%, RQD=70% Hard layer=9%, Maximum hard layer thickness=25mm		R4	RC																		
END OF BOREHOLE:																					
	ASPHALT: 180mm GRANULAR BASE: sand and gravel, 460mm FILL: crusher run limestone SILT TO CLAYEY SILT: trace sand, trace gravel, brown, moist, very stiff to hard CLAYEY SILT TILL: sandy, trace gravel, brown, moist, hard SHALE BEDROCK: Georgian Bay Formation, grey, weathered TCR=75%, SCR=14%, RQD=0 TCR=96%, SCR=98%, RQD=28% Hard layer=18%, Maximum hard layer thickness=50mm TCR=93%, SCR=90%, RQD=63% Hard layer=1%, Maximum hard layer thickness=25mm	ASPHALT: 180mm GRANULAR BASE: sand and gravel, 460mm FILL: crusher run limestone SILT TO CLAYEY SILT: trace sand, trace gravel, brown, moist, very stiff to hard CLAYEY SILT TILL: sandy, trace gravel, brown, moist, hard SHALE BEDROCK: Georgian Bay Formation, grey, weathered TCR=75%, SCR=14%, RQD=0 TCR=96%, SCR=98%, RQD=28% Hard layer=18%, Maximum hard layer thickness=50mm TCR=93%, SCR=90%, RQD=63% Hard layer=1%, Maximum hard layer thickness=25mm	ASPHALT: 180mm GRANULAR BASE: sand and gravel, 460mm FILL: crusher run limestone SILT TO CLAYEY SILT: trace sand, trace gravel, brown, moist, very stiff to hard CLAYEY SILT TILL: sandy, trace gravel, brown, moist, hard SHALE BEDROCK: Georgian Bay Formation, grey, weathered TCR=75%, SCR=14%, RQD=0 TCR=96%, SCR=98%, RQD=28% Hard layer=18%, Maximum hard layer thickness=50mm R2 TCR=93%, SCR=90%, RQD=63% Hard layer=1%, Maximum hard layer thickness=25mm R3 TCR=100%, SCR=98%, RQD=70% Hard layer=9%, Maximum hard layer thickness=25mm	ASPHALT: 180mm GRANULAR BASE: sand and gravel, 460mm FILL: crusher run limestone SILT TO CLAYEY SILT: trace sand, trace gravel, brown, moist, very stiff to hard CLAYEY SILT TILL: sandy, trace gravel, brown, moist, hard SHALE BEDROCK: Georgian Bay Formation, grey, weathered TCR=75%, SCR=14%, RQD=0 TCR=96%, SCR=98%, RQD=28% Hard layer=18%, Maximum hard layer thickness=50mm R2 RC TCR=93%, SCR=90%, RQD=63% Hard layer=19%, Maximum hard layer thickness=25mm R3 RC	DESCRIPTION ASPHALT: 180mm GRANULAR BASE: sand and gravel, 460mm FILL: crusher run limestone SILT TO CLAYEY SILT: trace sand, trace gravel, brown, moist, very stiff to hard CLAYEY SILT TILL: sandy, trace gravel, brown, moist, hard SHALE BEDROCK: Georgian Bay Formation, grey, weathered TCR=75%, SCR=14%, RQD=0 TCR=96%, SCR=98%, RQD=28% Hard layer=18%, Maximum hard layer thickness=50mm R1 RC TCR=93%, SCR=90%, RQD=63% Hard layer=19%, Maximum hard layer thickness=25mm R3 RC TCR=100%, SCR=98%, RQD=70% Hard layer=9%, Maximum hard layer thickness=25mm R4 RC	DESCRIPTION ASPHALT: 180mm GRANULAR BASE: sand and gravel, 460mm FILL: crusher run limestone SiLT TO CLAYEY SILT: trace sand, trace gravel, brown, moist, very stiff to hard CLAYEY SILT TILL: sandy, trace gravel, brown, moist, hard SHALE BEDROCK: Georgian Bay Formation, grey, weathered TCR=75%, SCR=14%, RQD=0 TCR=96%, SCR=98%, RQD=28% Hard layer=18%, Maximum hard layer thickness=25mm R3 RC R4 RC	DESCRIPTION ASPHALT: 180mm GRANULAR BASE: sand and gravel, 460mm FILL: crusher run limestone SiLT TO CLAYEY SILT: trace sand, trace gravel, brown, moist, very stiff to hard CLAYEY SILT TILL: sandy, trace gravel, brown, moist, hard TCR=75%, SCR=14%, RQD=0 TCR=96%, SCR=98%, RQD=28% Hard layer=18%, Maximum hard layer thickness=25mm R4 RC R4 RC	DESCRIPTION ASPHALT: 180mm GRANULAR BASE: sand and gravel, 460mm FILL: crusher run limestone SILT TO CLAYEY SILT: trace sand, trace gravel, brown, moist, very stiff to hard CLAYEY SILT TILL: sandy, trace gravel, brown, moist, hard SHALE BEDROCK: Georgian Bay Formation, grey, weathered TCR=75%, SCR=14%, RQD=0 TCR=96%, SCR=98%, RQD=28% Hard layer=18%, Maximum hard layer thickness=50mm R2 RC TCR=93%, SCR=90%, RQD=63% Hard layer=18%, Maximum hard layer thickness=25mm R3 RC R4 RC	DESCRIPTION To a	DESCRIPTION Langle Langle	DESCRIPTION	DESCRIPTION Comparison Com	DESCRIPTION Comparison Co	DESCRIPTION Description D	DESCRIPTION Description	DESCRIPTION Description	DESCRIPTION A	DESCRIPTION Comparison	DESCRIPTION Company C	DESCRIPTION Comparison Com	DESCRIPTION Comparison Com

CLIENT: Rangeview Estate Precinct Development

PROJECT LOCATION: 855 Rangeview Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 22-200-100

Date: Jul-15-2022 ENCL NO.:

	SOIL PROFILE		S	AMPL	ES			DYN/ RESI	AMIC CC STANCE	NE PEN PLOT	VETR/	ATION		PLASTI	C NAT	URAL TURE	LIQUIE		5	REMARKS
(m)		ОТ			(O)	ATEF S	_		20 4	0 60	3 (30 10	0	LIMIT	CON	TURE TENT V	LIMIT	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZ
LEV	DESCRIPTION	A PL	ä		BLOWS 0.3 m	NOT NOT	NOF		AR STI		- 1	FIÉLD VA	ANE	W _P ⊢		·	W _L	OCKET Cu) (K	JRAL I	DISTRIBUTI
		STRATA PLOT	NUMBER	TYPE	<u> </u>	GROUND WATER CONDITIONS	ELEVATION	• (QUICK TI		. ×		ΑŃΕ		TER CO		T (%) 30	8	NA⊤	(%) GR SA SI
0.0	ASPHALT: 200mm																			CIT CIT CI
0.2	GRANULAR BASE: sand and gravel, 380mm	0.0	1	SS	8											0				
0.6	FILL: silty clay, some organics, brown, moist, stiff																			
0.0	CLAYEY SILT TILL: some sand, trace gravel, brown, moist, stiff to hard		2	SS	11										0					
	trace shale fragments below 1.5m		3	SS	50										0					
2.3	SHALE BEDROCK: grey, weathered		4	SS	50/ 50mm															
													•							
3.1	END OF BOREHOLE:											/	-					\vdash		
	Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water Level Readings:										2	X								
	Date: Water Level(mbgl):								(S										
	, ζ,									V										
						1								1						

CLIENT: Rangeview Estate Precinct Development

PROJECT LOCATION: 855 Rangeview Road, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 22-200-100

Date: Jul-15-2022 ENCL NO.:

	OCATION: See Drawing 1 SOIL PROFILE		SAMPLES					DYNAMIC CONE PENETRATION RESISTANCE PLOT						S	_ NATI	NATURAL			L	REMARKS
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE	20 4 EAR STI UNCONF QUICK T	0 60 RENGT) 8 ΓΗ (kF + . ×	Pa) FIELD V. & Sensiti	ANE	PLASTIC MOISTURE LIQUID LIMIT CONTENT WP W WL WATER CONTENT (%) 10 20 30			POCKET PEN. (Cu) (kPa)		AND GRAIN SIZI DISTRIBUTIO (%) GR SA SI	
0.0	ASPHALT: 130mm GRANULAR FILL: sand and gravel, 330mm	ο · · · · · · · · · · · · · · · · · · ·		SS	12															
0.5	FILL: clayey silt, trace organics, trace gravel, brown, moist, stiff																			
8.0	CLAYEY SILT TILL/SHALE COMPLEX: trace sand, trace gravel, brown to grey, moist, stiff to hard		2	SS	14										o					no recover
			3	SS	53	-									0					
2.3	SHALE BEDROCK: weathered,		4	SS	50/															
2.6	grey END OF BOREHOLE:		4	33	150mn	n I														
										S	25	X								

Appendix B-1

Lakeview Community – Water Modelling Methodology and Analysis (TMIG, 2021)

8800 Dufferin Street, Suite 200 Vaughan, Ontario L4K 0C5 T 905.738.5700 F 905.738.0065 www.tmig.ca

MEMORANDUM

DATE	May 6, 2021
ТО	Jeff Ormonde (Urbantech)
CC	
SUBJECT	Lakeview Community Water Modelling Methodology and Analysis – 8050 Units
FROM	Cassandra Leal, P.Eng
PROJECT NUMBER	17201

1 Introduction

The Municipal Infrastructure Group Ltd. (TMIG) has been retained to conduct an analysis to review the water servicing capacity of the proposed watermain network (Urbantech, January 2020) relative to the contemplated development densities.

This memorandum will outline the modelling methodology adopted for the Lakeview Community. The water model was used to confirm that the proposed pipe network can supply the design water demands at appropriate pressures expected under various scenarios.

This memorandum has been updated with the updated population, provided from Urbantech May 2021. The watermain network is assumed to be unchanged.

2 Design Criteria

The Region of Peel produced the Inspiration Lakeview Water and Wastewater Servicing Analysis (May 2018). Within this document, the Region outlined the design criteria that apply to the proposed development:

- 265 Lpcd for average day water consumption
- A maximum day peaking factor of 1.8 for residential and 1.4 for employment growth
- A peak hour factor of 3.0

Also, there are limits to the velocity and pressures:

- Under Maximum Day demand, pipe velocity should remain below 1.5 m/s
- Under Maximum Day demand, pressure in the system should not drop below 280 kPa (40 psi)
- Pressure in the system should not drop below 140 kPa (20 psi) under a maximum day plus fire condition

Standards outlined in the Region's <u>Inspiration Lakeview Water and Wastewater Servicing Analysis (May 2018)</u> report and Inspiration Lakeview Conceptual Municipal Servicing Strategy (TMIG, July 2014) were used in substitution.

3 Population Breakdown

Using the information provided by Urbantech (May 2021), the populations in the water model were modified to match the populations used in the sanitary sewer design sheet and drainage map (dated August 2020). The information provided by Urbantech does not include the External Lands between the subject lands and Lakeshore Road. The sanitary drainage map used to obtain the population is found in **Appendix A**.

Detailed population and demand calculations can be found in **Appendix B**. The future demands for the external lands between Lakeshore Road and the Lakeview Community Lands (called "External") were calculated using the population

breakdown from the Inspiration Lakeview Village Masterplan Concept. This information is also included in **Appendix B** and is unchanged from previous submissions.

A summary of the water demands is provided in **Table 1**:

TABLE 1 WATER DEMANDS – SUMMARY

	Lakeview Community	External
Total Residential Population	22,042	10,048
Residential Avg Day Demand	67.6 L/s	30.8 L/s
Employment Avg Day Demand	24.7 L/s	0 L/s
Residential Max Day Demand	121.7 L/s	55.47 L/s
Employment Max Day Demand	34.5 L/s	0 L/s
Residential Peak Hour Demand	202.8 L/s	92.46 L/s
Employment Peak Hour Demand	74.0 L/s	0 L/s

4 Water Model Development

InfoWater has been selected for modelling the water distribution system for the study area. The key input factors for the model are described below:

4.1 Pipe Network

The preliminary watermain layout was provided by Urbantech and is included in Appendix C.

4.2 Water Demands

The average daily demands were calculated for each development block (internal), as shown in **Appendix B**. These demands were assigned to nodes adjacent to the respective parcels. The average day demand set is populated with the residential demands assigned to Demand 1 and employment demands assigned to Demand 2.

Based on the standards outlined in Inspiration Lakeview Water and Wastewater Servicing Analysis (May 2018) the peaking factor for the Maximum day is 1.8 for residential and 1.4 for employment. The peaking factor for Peak hour is 3 for both residential and employment.

The average day demand set was multiplied with the respective peaking factors to create separate maximum day and Peak hour demand sets.

Design fire demands have been proposed to be minimum of 300 L/s. This is common for commercial properties, and high-rise residential development.

Using the Inspiration Lakeview Master Plan population breakdown, the external lands were included in the model. For simplicity, the external demands were added as two demands in the model, an east and a west demand (Junction J-34 and J-198, respectively). The population breakdown included residential and employment. For this review, the appropriate rates and factors were used.

A table listing the nodes at which the development blocks were allocated is provided in **Appendix B**.

4.3 Boundary Conditions

The proposed development is located within Peel Region pressure zone PZ1. Since we are modelling a local area from within a larger distribution network, suitable boundary conditions were established at the study area limits (where the proposed internal network will connect to existing sub-transmission mains). The proposed connection locations are:

- To the 600 mm watermain along Lakeshore Road East, at Lakefront Promenade;
- To the 600 mm watermain along Lakeshore Road East, at Hydro Road;

Fixed head reservoirs were established at these two locations. The HGL elevations at these reservoirs were established through pressure logging data provided by Region of Peel. The details of the boundary conditions are in **Table 2**.

TABLE 2 HGL ELEVATIONS AT BOUNDARY CONDITIONS

Boundary Location	HGL Elevation	Source
Lakeshore Road East, at Lakefront Promenade	142 m	Region of Peel email dated September 11 th
Lakeshore Road East, at Hydro Road	142 m	Region of Peel email dated September 11 th

5 Modelling Results

The proposed watermain network and demands were simulated to determine the resulting pressures under various demand conditions. We also considered a condition where the Lakeshore Road watermain is unavailable and the lands area serviced only through the feed from the plant.

Pressure maps indicating modelled pressure at every node for the Scenarios are provided in Figure 1 through Figure 4. The InfoWater Junction output for all scenarios and Pipe output for Maximum day scenario is provided in **Appendix D**.

5.1 Normal Conditions Scenarios

Average day demand, maximum day demand, maximum day demand plus fire flow and peak hour demand scenarios were run with the two proposed connections to the existing 600mm Lakeshore Road watermain, at Lakefront Promenade and Hydro Road. These scenarios did not consider a feed from the west at Lakefront Promenade and Rangeview Road.

The summary of modelling results is provided in Table 3.

TABLE 3 MODELLING RESULTS SUMMARY

Water Demand Modeling Scenario	Minimum Water System Requirements	Modeling Results
Average Day Demand	Recommended Normal Pressures within System 275 kPa to 690 kPa (40 psi to 100 psi)	System Pressure = 510 kPa to 647 kPa (74 psi to 93 psi)
Maximum Day Demand	Recommended Normal Pressures within System 275 kPa to 690 kPa (40 psi to 100 psi) Flow velocity remains below 1.5 m/s	System Pressure = 507 kPa to 643 kPa (74 psi to 93 psi) Flow velocity within the distribution network is
	within the distribution network	between 0.01 m/s to 0.89 m/s.
Peak Hour Demand	Recommended Normal Pressures within System 275 kPa to 690 kPa (40 psi to 100 psi)	System Pressure = 498 kPa to 637 kPa (72 psi to 92 psi)
Maximum Day	Required Fire Flow to be provided at a	a residual pressure of no less than 140 kPa
Maximum Day Demand plus Fire Flow	Fire flow requirements for the proposed development $Q_f > 300 \text{ L/s}$	Available Fire Flow = 532 L/s to 2,710 L/s

5.2 Emergency Conditions Scenario

To simulate an emergency or maintenance condition where one or both water supply points to Lakeshore Road are not available, the two boundary conditions and watermain along Lakeshore Road East were turned off and the boundary condition to the west (supply from Lakefront Promenade and south of Rangeview Road) was turned on.

The HGL at this boundary condition was established through pressure logging data provided by the Region of Peel. The details of the boundary condition are in **Table 4**.

TABLE 4 HGL ELEVATION AT WEST BOUNDARY CONDITION

HGL Elevation	Source
148 m	Region of Peel email dated September 11 th

Under this condition, the pressures were between 488 – 643 kPa (71 to 93 psi). This is still within the acceptable pressure range. Figure 5 is the pressure map for this scenario. This scenario illustrates that the watermain network and sizing is acceptable for the population and demands for Lakeview Community. Under normal conditions, all three of these supply points would be available.

6 Conclusions and Recommendations

The modelled results all lie within acceptable range, but the pressures could exceed 600 kPa (90 psi) along Street A. The available fire flows at the nodes within the Study Area will be between 532 L/s and 2,710 L/s. The actual block-by-block fire flow requirements should be verified relative to these values.

The watermain network and sizing appears to be adequate for the population and demands used in this model.

FIGURE 1 AVERAGE DAY DEMAND SCENARIO PRESSURE

FIGURE 2 MAXIMUM DAY DEMAND SCENARIO PRESSURE

FIGURE 3 PEAK HOUR DEMAND SCENARIO PRESSURE

FIGURE 4 MAXIMUM DAY PLUS FIRE FLOW SCENARIO AVAILABLE FIREFLOW

FIGURE 5 PEAK HOUR DEMAND UNDER EMERGENCY CONDITIONS

APPENDIX A

APPENDIX B

	Œ																															
	H							0.99				0.68		0.80		1.44		0.80	0.42		2.00	0.54	27.42	1.97	29.42	5.42	2.10	73.99	73.99			73.99
DMD 2	MDD							0.46				0.32		0.37		0.67		0.37	0.20		0.93	0.25	12.80	0.92	13.73	2.53	0.98	34.53	34.53			34.53
	ADD							0.33				0.23		0.27		0.48		0.27	0.14		0.67	0.18	9.14	99.0	9.81	1.81	0.70	24.66	24.66	00.0	0.00	24.66
<u></u>																												8041				
SCALE TO 7995	MODIFIED	0	0	0	0	0	0	108	0	0	0	74	0	87	0	157	0	87	46	0	217	29	2980	214	3197	289	229					
38	pau																								-			7531				
	Combined	0	0	0	0	0	0	101	0	0	0	69	0	81		147		81	46		203	22	2790	200	2993	551	214					
	tion	0	0	0	0	0	0	101	0	0	0	69	0	81	81	99	45	36	46	152	51	22	2,790	200	2,993	551	214	7531				
	Employment Population																															
	Employm																															
		144	144	158	130	J54	162	J62	J64	174	1104	1126	1100	100	192	192	188	188	1196	184	184	08r	124)40	120	1128	1134					
X S	Ŀ		300			300							300 r			300												7800.00				
MENT 265 1.4 3 astewater.			9.20	9.68	7.69	3.53		39.47	24.95	20.43	10.69	12.58		27.04		22.22	0.00	8.80	6.54							0.00	0.00	202.82 78	12.82	8.77	43.69	295.27
EMPLOYMENT 265 1.4 3 3ter and Wastew	H																															
pcd CALC - WZ	MDD		5.52	5.81	4.62	2.12		23.68	14.97	12.26	6.41	7.55		16.22		13.33	00'0	5.28	3.93							00'0	0.00	121.69	121.6	29.2	26.21	177.16
1 ADD ADD MOD Factor PHD Factor PHD Factor Mississauga\Design\SAN WATER\2021 05 06 - 17201 - CALC - Water and Wastewater xixx DMD 1	ADD		3.07	3.23	2.56	1.18	0.00	13.16	8.32	6.81	3.56	4.19		9.01		7.41	00'0	2.93	2.18							0.00	0.00	67.61	67.61	16.26	14.56	98.42
\2021 05 C	pined		1000	52	836	34		68	12	2220	61	1367		2939		2415		926	711							0		22042				
AN WATER	Combined		10	10	83	38		42	2712	22	11	13		53		24		36	7.1									220				
TIAL <u>ctor</u> iVDesign\S	pulation						~			_				_	_													2				
1 RESIDENTIAI ADD MDD Factor PHD Factor Mississauga\DG	Residential Population	380	620	1,052	836	384	2,128	2,161	2,712	2,220	1,161	1,367	1,745	1,194	1,359	1,056	926	0	711	0	0	0	0	0	0	0		22042				
	Res																															
ceview Con	-																															
17201 - โล	Junction in Model	144	144	158	130	154	J62	J62	J64	174	1104	1126	1100	1100	192	192	188	188	1196	184	184	180	124	140	120	1128	1134					
Criteria ects\2017∖	Junctio																															
17201 6-May-21 CBL Design Criteria Populations from this file: G:\Projects\Z017\17201 - Lakeview Community																																
01 L Dom this file	ımber																										ırk)		ew	- West	- East	11
17201 6-May-21 CBL ulations from t	Block Number	1	2	3	4	5	9	7	∞	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	39	31 (park)		Lakeview	Externals - West	Externals - East	TOTAL
Pop	Ì	Ì																														

PN Date By

17201	2020 09 08	CL
	Date	

JUNCTION	West	West	West	West	East	West	West	West	West	West	East	West	West	West	East	East	East
EMPLOYMENT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RESIDENTIAL	593	492	366	468	858	346	200	297	297	534	641	649	303	347	809	1,493	1,254
	Pvt 01	Pvt 02	Pvt 03	Pvt 04	Pvt 05	Pvt 06	Pvt 07	Pvt 08	Pvt 09	Pvt 10	Pvt 11	Pvt 12	Pvt 13	Pvt 14	Pvt 15	Pvt 16	Pvt 17

	2 MP	0.00
	DMD 2 PHD EMP 0.00 0.00	
	DMD 1 PHD RES 48.77 43.69	92.46
	DMD 2 MDD EMP 0.00	0.00
	DMD 1 MDD RES 29.26 26.21	55.47
	DMD 2 ADD EMP 0.00 0.00	0.00
	DMD 1 ADD RES 16.26 14.56	30.82
		0
pod	FMP 0	
265 Lpcd 1.8 1.4 3	POPULATION RES EI 5,300 4,748	10,048
ADD MDD Factor - Res MDD Factor - Empl PHD	1198 334	
, u	JUNCTION West J	

APPENDIX C

2021 05 06- 17201 - Memo - Water Model Methodology.docx

APPENDIX D

17201 - Inspiration Lakeview Water Modelling - May 2021 InfoWater Output - Avg Day Demand Run ID Demand (L/s) Elevation (m) Head (m) Pressure (psi) J10 85 141.99 81.02 J100 9.31 80.1 141.7 87.57 J104 3.57 79.92 141.7 87.82 J110 0 79.47 141.72 88.49 J112 0 81.34 141.71 85.83 J114 0 81.23 141.72 85.99 J116 0 79.95 141.7 87.78 J118 0 79.36 141.7 88.63 J120 0 78.33 141.7 90.09 79.33 J122 0 141.7 88.66 J124 0 79.44 141.7 88.5 J126 4.44 80.21 141.69 87.41 J128 1.81 85.79 81.35 141.7 J130 0 82.01 141.7 84.86 J132 0 82.11 141.71 84.72 J134 0.7 81.8 141.73 85.19 0 141.72 J136 79.85 87.96 J138 0 82.78 141.7 83.76 J14 0 81.75 141.81 85.37 J142 0 80.35 141.77 87.31 J144 83.41 0 83.05 141.73 J146 0 85.97 81.26 141.73 J150 0 141.74 78.92 89.3 J152 0 75.92 141.74 93.56 J154 0 82.07 141.73 84.82 J156 0 81.32 141.72 85.85 J158 0 81.44 141.72 85.69 J160 85.04 141.99 80.96 0 J170 85.04 80.96 0 141.99 J18 0 85.04 141.99 80.96 J190 141.95 0 82.36 84.72 J192 0 81.89 141.91 85.32 J194 81.79 141.88 85.41 0 J196 2.33 141.94 82.04 84.23 J198 16.26 81.77 141.84 85.41 J20 9.81 82.84 141.72 83.7 J200 0 81.35 141.7 85.79 J202 0 81.35 141.7 85.79 J24 9.14 82.29 141.7 84.46 J30 2.57 83.73 141.86 82.64 J34 14.56 83.36 141.82 83.11 J38 0 82.86 141.76 83.74 J40 0.66 83.61 141.74 82.65 J42 0 82.93 141.77 83.64 J44 3.08 81.47 141.73 85.67 J46 0 82.71 141.73 83.9 0 J48 89.79 141.7 73.79 J50 0 80.75 141.7 86.64 J54 1.18 82.17 84.66 141.73 82.05 84.84 J58 3.24 141.73 J62 13.2 79.65 141.72 88.24 8.68 86.17 J64 81.1 141.72 J70 81.15 141.72 86.1 0 J74 6.83 81.63 141.71 85.4 J80 0.18 81.7 141.71 85.3 82.46 J84 0.67 141.7 84.21 J88 141.7 3.21 82 84.87 J92 7.91 81.61 141.7 85.42 J96 0 80.91 141.7 86.42

1720	1 - Inspiration L InfoWater Ou	akeview Water ıtput - Max Day		
ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (psi)
J10	0	85	141.98	81
J100	16.64	80.1	141.19	86.84
J104	6.43	79.92	141.18	87.09
J110	0	79.47	141.25	87.82
J112	0	81.34	141.23	85.14
J114	0	81.23	141.24	85.31
J116	0	79.95	141.19	87.05
J118	0	79.36	141.19	87.9
J120	0	78.33	141.19	89.37
J122	0	79.33	141.19	87.93
J124	0	79.44	141.18	87.77
J126	7.9	80.21	141.17	86.67
J128	2.53	81.35	141.19	85.08
J130	0	82.01	141.2	84.14
J132	0	82.11	141.21	84.02
J134	0.98	81.8	141.26	84.53
J136	0	79.85	141.24	87.28
J138	0	82.78	141.2	83.04
J14	0	81.75	141.48	84.9
J142	0	80.35	141.36	86.74
J144	0	83.05	141.26	82.75
J146	0	81.26	141.27	85.31
J150	0	78.92	141.3	88.68
J152	0	75.92	141.3	92.94
J154	0	82.07	141.28	84.17
J156	0	81.32	141.24	85.17
J158	0	81.44	141.24	85.01
J160	0	85.04	141.98	80.94
J170	0	85.04	141.98	80.94
J18	0	85.04	141.98	80.95
J190	0	82.36	141.87	84.6
J192	0	81.89	141.76	85.1
J194	0	81.79	141.66	85.11
J196	4.14	84.23	141.83	81.89
J198	29.27	81.77	141.57	85.02
J20	13.73	82.84	141.26	83.04
J200	0	81.35	141.2	85.08
J202	0	81.35	141.2	85.08
J24	12.8	82.29	141.2	83.75
J30	4.63	83.73	141.62	82.31
J34	26.21	83.36	141.51	82.67
J38	0	82.86	141.36	83.17
J40	0.92	83.61	141.31	82.04
J42	0	82.93	141.38	83.08
J44	5.54	81.47	141.27	85.01
J46	0	82.71	141.27	83.24
J48	0	89.79	141.2	73.07
J50	0	80.75	141.19	85.92
J54	2.12	82.17	141.27	84.01
J58	5.83	82.05	141.27	84.18
J62	23.76	79.65	141.24	87.56
J64	15.49	81.1	141.24	85.49
J70 J74	0 12.29	81.15	141.24 141.21	85.42 84.7
	0.25	81.63	141.21	
J80	•	81.7		84.6 83.5
J84	0.93 5.66	82.46 82	141.2 141.2	83.5 84.15
J88 J92	14.04	81.61	141.2	84.15
J96	0	80.91	141.19	85.7
130	U	00.31	141.2	05.7

					on Lakeview Wate ut - Max Day Dema				
ID	From Node	To Node	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)	Headloss (m)	HL/1000 (m/k-m)
24	J44	J146	37.79	300	120	-5.54	0.08	0	0.04
25	J112	J114	11.08	300	120	-27.51	0.39	0.01	0.68
26	J110	J116	162.84	300	120	19.26	0.27	0.06	0.35
27	J116	J118	103.23	200	120	0.87	0.03	0	0.01
28	J120	J118	17.79	200	120	1.66	0.05	0	0.03
29	J118	J122	14.95	200	120	2.54	0.08	0	0.06
30 31	J122 J126	J124 J124	88.59 144.09	200 200	120 120	2.54 -2.54	0.08	0.01 0.01	0.06 0.06
32	J120	J50	146.51	200	120	-1.66	0.05	0.01	0.03
33	J128	J130	112.4	200	120	-1.83	0.06	0	0.03
34	J130	J112	156.59	300	120	-13.93	0.2	0.03	0.19
35	J112	J74	79.98	300	120	13.58	0.19	0.01	0.18
36	J14	J198	97.33	400	120	-71.06	0.57	0.09	0.97
37	J136	J134	166.63	300	120	-11.63	0.16	0.02	0.14
38	J138	J24	110.22	300	120	-4.22	0.06	0	0.02
40	J142	J146	135.17	300	120	27.84	0.39	0.09	0.7
41	J134	J144	154.56	300	120	0	0	0	0
42	J126	J104	40.45	200	120	-5.36	0.17	0.01	0.24
6	J40	138	120.78	300	120	-20.41	0.29	0.05	0.39
8	J48	J50	91.46	200	120	1.12	0.04	0	0.01
P101	RES9002	J18	64.43	600	120	114.25	0.4	0.02	0.33
P105	J18	J170	263.81	600	120	13.92	0.05	0	0.01
P107	J160	J10	17.35	600	120	13.92	0.05	0	0.01
P121	J170	J160	222.37	600	120	13.92	0.05	0	0.01
P13	J146	J134	109.84	300	120	7.32	0.1	0.01	0.06
P143	J190	J18	61.03	400	120	-100.33	0.8	0.11	1.85
P145	J192	J190	58.87	400	120	-100.33	0.8	0.11	1.85
P147	J194	J192	53.81	400	120	-100.33	0.8	0.1	1.85
P15	J146	J62	118.8	300	120	14.99	0.21	0.03	0.22
P155 P157	J196	J30	100.45	400	120	107.63	0.86	0.21	2.1
P157	J198 J128	J194 J200	45.99 133.31	400 200	120 120	-100.33 -1.24	0.8	0.08	1.85 0.02
P163	J202	J138	119.12	200	120	-1.24	0.04	0	0.02
P165	J136	J96	166.15	300	120	16.72	0.24	0.05	0.02
P167	J200	J202	11.25	200	120	-1.24	0.04	0.03	0.02
P17	J62	J110	47.94	300	120	-8.77	0.12	0	0.08
P19	J20	J54	117.59	300	120	-10.23	0.14	0.01	0.11
P21	J14	J142	116.76	400	120	71.06	0.57	0.11	0.97
P25	J150	J152	12.66	400	120	43.22	0.34	0	0.39
P27	J152	J110	132.14	400	120	43.22	0.34	0.05	0.39
P29	J110	J136	128.24	400	120	15.18	0.12	0.01	0.06
P31	J136	J64	180.81	400	120	10.09	0.08	0	0.03
P33	J64	J70	14.43	400	120	-5.4	0.04	0	0.01
P35	J70	J156	34.75	400	120	-5.4	0.04	0	0.01
P37	J156	J114	6.2	400	120	-5.4	0.04	0	0.01
P39	J114	J158	17.17	400	120	-32.91	0.26	0	0.23
P41	J158	J154	153.05	400	120	-32.91	0.26	0.04	0.23
P43	J154	J42	156.43	400	120	-56.39	0.45	0.1	0.64
P45	J42	J34	120.68	400	120	-76.79	0.61	0.14	1.13
P47	J34	J30	57.66	400	120	-103	0.82	0.11	1.94
P51 P53	J134 J58	J58 J154	228.31 39.98	300 300	120 120	-5.3 -11.13	0.07 0.16	0.01 0.01	0.03 0.13
P53	J58 J104	J154 J116	39.98 41.94	300	120	-11.13	0.16	0.01	0.13
P55	J104 J116	J116 J100	77.25	300	120	-11.79	0.17	0.01	0.14
P57	J116 J100	J96	84.08	300	120	-10.04	0.14	0.01	0.05
P61	J96	J48	6.45	300	120	6.68	0.09	0.01	0.05
P63	J48	J92	120.82	300	120	5.56	0.08	0	0.04
P65	J92	J130	97.59	300	120	-8.48	0.12	0.01	0.08
P69	J88	J84	69.9	300	120	-2.05	0.03	0	0.01
P71	J84	J138	53.85	300	120	-2.98	0.04	0	0.01
P73	J24	J132	44.79	300	120	-17.02	0.24	0.01	0.28
P75	J132	J20	172.6	300	120	-15.98	0.23	0.04	0.25
P77	J20	J40	159.11	300	120	-19.49	0.28	0.06	0.36
P79	J50	J128	234.05	200	120	-0.54	0.02	0	0
P81	J38	J42	35.3	300	120	-20.41	0.29	0.01	0.39
P83	J54	J154	41.53	300	120	-12.35	0.17	0.01	0.15
P85	J74	J80	13.52	300	120	1.29	0.02	0	0
P87	J80	J132	74.26	300	120	1.04	0.01	0	0
P89	J10	J196	62.59	400	120	111.77	0.89	0.14	2.26
P93	J88	J130	30.88	300	120	-3.61	0.05	0	0.02
P95	J142	J150	156.08	400	120	43.22	0.34	0.06	0.39
P97 P99	J46 RES9006	J44	100.05	300	120	0	0	0	0
		J10	99.44	600	120	97.85	0.35	0.02	0.24

172	17201 - Inspiration Lakeview Water Modelling - May 2021 InfoWater Output - Peak Hour Demand Run											
ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (psi)								
J10	0	85	141.93	80.93								
J100	27.93	80.1	139.69	84.72								
J104	10.71	79.92	139.69	84.96								
J110	0	79.47	139.87	85.86								
J112	0	81.34	139.81	83.12								
J114	0	81.23	139.83	83.31								
J116	0	79.95	139.71	84.94								
J118	0	79.36	139.7	85.78								
J120	0	78.33	139.7	87.25								
J122	0	79.33	139.7	85.82								
J124	0	79.44	139.69	85.64								
J126	13.32	80.21	139.66	84.52								
J128	5.43	81.35	139.71	82.96								
J130	0	82.01	139.72	82.03								
J132	0	82.11	139.76	81.94								
J134	2.1	81.8	139.91	82.61								
J136	0	79.85	139.85	85.29								
J138	0	82.78	139.71	80.93								
J14	0	81.75	140.53	83.56								
J142	0	80.35	140.21	85.1								
J144	0	83.05	139.91	80.83								
J146	0	81.26	139.93	83.41								
J150	0	78.92	140.03	86.87								
J152	0	75.92	140.02	91.11								
J154	0	82.07	139.94	82.27								
J156	0	81.32	139.83	83.17								
J158	0	81.44	139.84	83.02								
J160	0	85.04	141.93	80.88								
J170	0	85.04	141.94	80.89								
J18	0	85.04	141.94	80.89								
J190	0	82.36	141.63	84.25								
J192	0	81.89	141.32	84.48								
J194	0	81.79	141.05	84.23								
J196	6.99	84.23	141.53	81.46								
J198	48.78	81.77	140.81	83.93								
J20	29.43	82.84	139.87	81.06								
J200	0	81.35	139.71	82.96								
J202	0	81.35	139.71	82.96								
J24	27.42	82.29	139.72	81.63								
J30	7.71	83.73	140.94	81.33								
J34	43.68	83.36	140.62	81.4								
J38	0	82.86	140.18	81.5								
J40	1.98	83.61	140.04	80.22								
J42	0	82.93	140.23	81.45								
J44	9.24	81.47	139.93	83.11								
J46	0	82.71	139.93	81.34								
J48	0	89.79	139.71	70.97								
J50	0	80.75	139.71	83.81								
J54	3.54	82.17	139.92	82.09								
J58	9.72	82.05	139.93	82.28								
J62	39.6	79.65	139.86	85.59								
J64	26.04	81.1	139.83	83.49								
J70	0	81.15	139.83	83.42								
J74	20.49	81.63	139.76	82.63								
J80	0.54	81.7	139.76	82.53								
J84	2.01	82.46	139.71	81.39								
J88	9.63	82	139.71	82.04								
J92	23.73	81.61	139.7	82.58								
J96	0	80.91	139.72	83.59								

17201 - Inspiration Lakeview Water Modelling - May 2021 - Max Daily Demand with Fireflow Simulation Run Note:- At any given node the Available Flow (at 140 RPa/20 psi) must be greater than Total demand.	Available Flow Pressure (psi)	20.31	20.3	20.3	20.3	20.31	20.31	20.31	20.31	20.31	20.31	20.31	20.31	20.31	20.31	20.31	20.31	20.31	20.31	20.31	20.31	20.31	20.31
	Available Flow at Hydrant (L/s)	958.97	815.54	532.60	556.76	1,142.28	1,888.24	2,710.09	1,090.90	965.73	1,867.18	1,701.62	935.17	912.19	1,145.08	1,137.01	1,172.44	1,291.49	1,028.76	1,008.51	26.006	69.62	939.27
	Residual Pressure (psi)	76.51	74.22	61.36	62.77	77.15	81.65	80.03	75.15	74.12	78.81	78.50	72.78	74.83	76.67	76.73	79.80	78.83	75.8	75.63	73.13	74.60	74.44
	Fire-Flow Demand (L/s)	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300
01 - Inspiration L a Note:- At any g	Static Head (m)	141.19	141.18	141.17	141.19	141.26	141.66	141.83	141.26	141.2	141.62	141.51	141.31	141.27	141.27	141.27	141.24	141.24	141.21	141.21	141.2	141.2	141.19
172	Static Pressure (psi)	86.84	87.09	86.67	85.08	84.53	85.11	81.89	83.04	83.75	82.31	82.67	82.04	85.01	84.01	84.18	87.56	85.49	84.7	84.6	83.5	84.15	84.7
	Static Demand (L/s)	16.64	6.43	7.9	2.53	0.98	0	4.14	13.73	12.8	4.63	26.21	0.92	5.54	2.12	5.83	23.76	15.49	12.29	0.25	0.93	99.5	14.04
	Q	1100	1104	1126	1128	1134	1194	1196	120	124	130	134	140	144	154	158	162	164	174	180	184	188	192

17201 - Inspiration Lakeview Water Modelling - May 2021 InfoWater Output - Peak Hour Demand Run Emergency Conditions

		Emergency Cond		- ()
ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (psi)
J10	0	85	139.08	76.88
J100	27.93	80.1	139.54	84.5
J104	10.71	79.92	139.6	84.84
J110	0	79.47	140.17	86.29
J112	0	81.34	139.3	82.4
J114	0	81.23	139.32	82.58
J116	0	79.95	139.62	84.82
J118	0	79.36	139.57	85.6
J120	0	78.33	139.56	87.05
J122	0	79.33	139.57	85.63
J124	0	79.44	139.57	85.47
J126	13.32	80.21	139.56	84.38
J128	5.43	81.35	139.29	82.37
J130	0	82.01	139.29	81.43
J132	0	82.11	139.19	81.13
J134	2.1	81.8	139.86	82.54
J136	0	79.85	139.79	85.21
J138	0	82.78	139.23	80.25
J14	0	81.75	143.87	88.3
J142	0	80.35	142	87.65
J144	0	83.05	139.86	80.75
J146	0	81.26	140.36	84.03
J150	0	78.92	141.05	88.32
J152	0	75.92	140.98	92.48
J154	0	82.07	139.26	81.31
J156	0	81.32	139.33	82.46
J158	0	81.44	139.31	82.27
J16	0	80.46	146.05	93.24
J160	0	85.04	139.08	76.82
J18	0	85.04	143.82	83.56
J190	0	82.36	143.82	87.37
J190	0	81.89	143.82	88.03
J194 J196	0 6.99	81.79 84.23	143.82 139.08	88.18 77.97
J198	48.78	81.77	143.82	88.21
	29.43		139.17	
J20 J200		82.84	139.17	80.07 82.33
	0	81.35		
J202 J24	0 27.42	81.35	139.26 139.19	82.32 80.88
		82.29		
J30	7.71	83.73	139.08	78.69
J34	43.68	83.36	139.08	79.22
J38	0	82.86	139.17	80.05
J40	1.98	83.61	139.17	78.98
J42	0 24	82.93	139.16	79.94
J44	9.24	81.47	140.36	83.72
J46	0	82.71	140.36	81.95
J48	0	89.79	139.53	70.7
J50	0	80.75	139.51	83.53
J54	3.54	82.17	139.23	81.12
J58	9.72	82.05	139.33	81.42
J62	39.6	79.65	140.17	86.04
J64	26.04	81.1	139.39	82.87
J70	0	81.15	139.37	82.77
J74	20.49	81.63	139.21	81.85
J80	0.54	81.7	139.21	81.75
J84	2.01	82.46	139.25	80.72
J88	9.63	82	139.27	81.41
J92	23.73	81.61	139.33	82.05

Appendix B-2

E-mail Correspondence with the Region of Peel: Equivalent Population Values

Jonathan Nishio

From: Janaani Pathmanapan
Sent: October 3, 2022 10:17 AM

To: Jonathan Nishio

Subject: FW: Request for some information - San Trunk under Lakeshore Road East draining to Beechwood

SPS

Hi Jonathan,

We received a response back for the townhouse densities – 3.5ppu

From: Motamedi, Kolsoom <kolsoom.motamedi@peelregion.ca>

Sent: October 3, 2022 10:03 AM

To: Koryun Shahbikian <kshahbikian@schaeffers.com>; Polga, Miriam <miriam.polga@peelregion.ca>; Borowiec, Laura

<laura.borowiec@peelregion.ca>; Lee, Justin <Justin.Lee@peelregion.ca>; Leyburne, Troy

<troy.leyburne@peelregion.ca>

Cc: Michael May <mikem@deltaurban.com>; Andrew Lam <andrewl@deltaurban.com>; Myron Pestaluky

<myronp@deltaurban.com>; Hovig Tozcu <hhtozcu@schaeffers.com>; Janaani Pathmanapan

<jpathmanapan@schaeffers.com>; Heather Milukow <hmilukow@schaeffers.com>; LeDrew, Lyle

<lyle.ledrew@peelregion.ca>

Subject: RE: Request for some information - San Trunk under Lakeshore Road East draining to Beechwood SPS

Hi Koryun,

For your information, The plan is that all flow from the Beach Street Sewage Pumping Station drainage areas will be conveyed by gravity to the Beechwood SPS, through the proposed Aviation Trunk and Lakeshore Road East trunk. My understanding is that the entire flow from the Rangeview development is planned to be conveyed to the future Lakeshore Road gravity sewer.

For the townhouse please use 3.5 people per unit.

Thanks and Regards,

Kolsoom Motamedi, P.Eng., PMP

Project Manager
Infrastructure Planning - Growth
Public Works, Region of Peel
10 Peel Centre Drive, Suite A, 4th Floor
Brampton, ON L6T 4B9
Tel. (905) 791-7800, ext. 4196
Kolsoom.Motamedi@peelregion.ca

From: Koryun Shahbikian <kshahbikian@schaeffers.com>

Sent: Monday, October 3, 2022 9:46 AM

To: Motamedi, Kolsoom <<u>kolsoom.motamedi@peelregion.ca</u>>; Polga, Miriam <<u>miriam.polga@peelregion.ca</u>>; Borowiec, Laura <<u>laura.borowiec@peelregion.ca</u>>; Lee, Justin <<u>Justin.Lee@peelregion.ca</u>>; Leyburne, Troy <<u>troy.leyburne@peelregion.ca</u>>

Cc: Michael May < mikem@deltaurban.com >; Andrew Lam < andrewl@deltaurban.com >; Myron Pestaluky

<myronp@deltaurban.com>; Hovig Tozcu <hhtozcu@schaeffers.com>; Janaani Pathmanapan

<jpathmanapan@schaeffers.com>; Heather Milukow <<u>hmilukow@schaeffers.com</u>>; LeDrew, Lyle

<lyle.ledrew@peelregion.ca>

Subject: RE: Request for some information - San Trunk under Lakeshore Road East draining to Beechwood SPS

CAUTION: EXTERNAL MAIL. DO NOT CLICK ON LINKS OR OPEN ATTACHMENTS YOU DO NOT TRUST.

Hi Kolsoom,

Thanks for your prompt reply.

I will try to provide some clarifications but we will try to provide answers to all your four items through a separate email later.

Concerning item 4, we estimated the population based on units but we used the ppu that we got from the region for another project. The ppu was slightly less than what you have mentioned so we are going to revise our population based on 2.7 ppu per apartment unit. Please also let us know what ppu we should consider for townhouses.

Concerning trunk sewer, in our previous meetings with the region, we were told that all flows from range view should be drained to Beechwood SPS. If you recall, we originally had a plan to split the flow and use the lakeshore trunk as well as Beach Street SPS.

I will talk to LOG for phasing questions and we will provide information.

Thanks,

Koryun Shahbikian, LLB, LLM, M.Eng., P.Eng. Partner

6 Ronrose Drive, Concord, Ontario, L4K4R3 (905) 738-6100 – Ext. 203 Cell: (647) 212-0404

www.schaeffers.com

This email, including any attachment(s), may contain information which is privileged, confidential, proprietary or otherwise subject to restricted disclosure under applicable law, and it is intended solely for the attention and information of the named recipient(s). If you are not the intended recipient, or have received it in error, please notify Schaeffer & Associates Ltd. by replying to this email and permanently delete the original and any copies of transmissions including any attachments from your email system(s) and device(s), and destroy any printed or digital copies. Any unauthorized distribution, disclosure or copying of this message and attachment(s) by anyone other than the recipient is strictly prohibited.

<u>Please note that for security reason, Schaeffer & Associates Ltd. is blocking all emails containing attachments with a .zip extension. When sending a .ZIP file please rename the extension to .ZZZ or use an FTP or other file transfer sites</u>

From: Motamedi, Kolsoom <kolsoom.motamedi@peelregion.ca>

Sent: October 3, 2022 9:00 AM

To: Koryun Shahbikian kshahbikian@schaeffers.com; Polga, Miriam miriam.polga@peelregion.ca; Borowiec, Laura kshahbikian@schaeffers.com; Polga, Miriam miriam.polga@peelregion.ca; Borowiec, Laura kshahbikian@schaeffers.com; Lee, Justin Justin.Lee@peelregion.ca; Leyburne, Troy

<troy.leyburne@peelregion.ca>

Cc: Michael May <mikem@deltaurban.com>; Andrew Lam <andrewl@deltaurban.com>; Myron Pestaluky

<<u>myronp@deltaurban.com</u>>; Hovig Tozcu <<u>hhtozcu@schaeffers.com</u>>; Janaani Pathmanapan

<jpathmanapan@schaeffers.com>; Heather Milukow <hmilukow@schaeffers.com>; LeDrew, Lyle

<lyle.ledrew@peelregion.ca>

Subject: RE: Request for some information - San Trunk under Lakeshore Road East draining to Beechwood SPS

Hi Koryun,

Thank you for updating us about Rangview development. Troy Leyburne is the project manager for this project, so I have copied him and also Lyle LeDrew, Manager of wastewater Engineering Service.

The detailed drawings are not ready yet. I had a meeting with Engineering Service and the following information should be clarified.

- 1- Rangeview project phasing, when service be required
- 2- Coordination with regards to the connection point location
- 3- What is your plan for conveying sanitary flows to the future trunk on Lakeshore Road East
- 4- The final proposed population, at this stage people per unit, be considered (2.7 ppu for apartment buildings and 4.2 for single detached)

Please do not hesitate to contact me if you have any questions.

Thanks and Regards,

Kolsoom Motamedi, P.Eng., PMP

Project Manager
Infrastructure Planning - Growth
Public Works, Region of Peel
10 Peel Centre Drive, Suite A, 4th Floor
Brampton, ON L6T 4B9
Tel. (905) 791-7800, ext. 4196
Kolsoom.Motamedi@peelregion.ca

From: Koryun Shahbikian <kshahbikian@schaeffers.com>

Sent: Saturday, October 1, 2022 9:21 AM

To: Motamedi, Kolsoom <kolsoom.motamedi@peelregion.ca>; Polga, Miriam <miriam.polga@peelregion.ca>;

Borowiec, Laura laura.borowiec@peelregion.ca; Lee, Justin < Justin.Lee@peelregion.ca

Cc: Michael May < mikem@deltaurban.com >; Andrew Lam < andrewl@deltaurban.com >; Myron Pestaluky

<myronp@deltaurban.com>; Hovig Tozcu <hhtozcu@schaeffers.com>; Janaani Pathmanapan

<jpathmanapan@schaeffers.com>; Heather Milukow <hmilukow@schaeffers.com>

Subject: RE: Request for some information - San Trunk under Lakeshore Road East draining to Beechwood SPS

CAUTION: EXTERNAL MAIL. DO NOT CLICK ON LINKS OR OPEN ATTACHMENTS YOU DO NOT TRUST.

Appendix B-3

Water Demand Calculations

Equivalent Population Calculations

Project Title: 4938 - Rangeview Last Edited: 2024-04-26 Region of Peel Municipality

50

Project: 4938 Rangeview Mississauga 2024-04-26

Design Criteria

Commercial

Unit Type Population Density Rowhouses/Other Multiples 3.5 ppu Per correspondence with Region of Peel (Oct 3, 2022) 2.7 ppu Per correspondence with Region of Peel (Oct 3, 2022) Apartment

Population Density Land Use Single Family (>10m frontage) ppha Per Region of Peel Sanitary Sewer Design Criteria (July 2009) Single Family (<10m frontage) ppha Per Region of Peel Sanitary Sewer Design Criteria (July 2009) ppha Per Region of Peel Sanitary Sewer Design Criteria (July 2009) Semi-detached 70 ppha Per Region of Peel Sanitary Sewer Design Criteria (July 2009) Row dwellings 175 ppha Per Region of Peel Sanitary Sewer Design Criteria (July 2009) 475 **Apartments**

ppha Per Region of Peel Sanitary Sewer Design Criteria (July 2009)

Commercial	ppila Pel Region di Peel Santary Sewer Design Criteria (July 2005)						Γ			Low-rise Unit			Mid-rise Units	Tall Building Units	Commercial					Equivalen	t Population			
								Townhouses	Back-to-Back Townhouses	k Stacked s Townhouses	Stacked Back to-Back Townhouses	- Apartments	Mid-rise Buildings	Tall Buildings			U	nit Type Metl	hod			La	and Use Method	
Parcel	Landowners	Parcel Area (0	Gross)	Net Deve	elopable		Parcel Area) (Apartments)			(Up to 4-Store	ys)		(5- to 8-Storeys)	(9- to 15-Storeys)	Floor Area	Townhouses	Apartments	Commercia	l Institutional	Total	Townhouses A	partments	Commercial Institut	ional Total
		sq.m.	ha	sq.m.	ha	ha	ha	units	units	units	units	units	units	units	sq. m.	persons	persons	persons	persons	persons	persons	persons	persons perso	ns persons
1	ELGROUP HOLDINGS INC./ELIAS BROS. CONSTRUCTION LIMITED (Elias Brothers Construction)	6,198.99	0.62	5,211.39	0.52		0.52	0	0	0	0	0	98	160	363.67		697	2		699		248	2	250
2	DORSAY (LAKESHORE) INC./DORSAY (LAKEFRONT PROMENADE) INC./DORSAY (RANGEVIEW) INC.	8,451.90	0.85	7,632.77	0.76	0.38	0.38	0	0	0	52	0	162	0	594.63	182	438	3		623	67	182	3	252
3	1127792 ONTARIO LIMITED (Dino Collini)	4,339.04	0.43	3,868.37	0.39		0.39	0	0	0	0	0	148	0	550.55		400	3		403		184	3	187
4	896 Lakeshore Road East	4,338.68	0.43	3,868.33	0.39		0.39	0	0	0	0	0	151	0	562.90		408	3		411		184	3	187
5	910 - 920 Lakeshore Road East	8,686.81	0.87	4,755.51	0.48		0.48	0	0	0	0	0	0	204	1,731.60		551	9		560		226	9	235
6	946 Lakeshore Road East	7,040.36	0.70	5,723.87	0.57		0.57	0	0	0	0	0	83	144	1,207.11		613	7		620		272	7	279
7	DORSAY (LAKESHORE) INC./DORSAY (LAKEFRONT PROMENADE) INC./DORSAY (RANGEVIEW) INC.	10,735.57	1.07	9,334.79	0.93	0.65	0.28	0	0	0	80	0	162	0	578.31	280	438	3		721	115	134	3	252
8	447111 ONTARIO LIMITED (Norstar)	7,833.20	0.78	7,133.15	0.71	0.21	0.50	0	0	0	36	0	136	0	487.48	126	368	3		497	38	238	3	279
9	RANGEVIEW 1035 HOLDING INC./RANGEVIEW 1045 HOLDING INC./1207238 ONTARIO INC. (Oasis Banquet Hall)	8,590.92	0.86	2,089.15	0.21		0.21	0	0	0	0	0	0	172	443.49		465	3		468		100	3	103
10	ILSCO OF CANADA LIMITED (Thomas Quinn)	6,980.11	0.70	5,820.65	0.58		0.58	0	0	0	0	0	85	170	750.14		689	4		693		277	4	281
11	1076 Lakeshore Road East	13,573.97	1.36	8,378.98	0.84	0.34	0.50	9	0	0	0	0	0	230	2,277.43	32	621	12		665	59	239	12	310
12	ELGROUP HOLDINGS INC./ELIAS BROS. CONSTRUCTION LIMITED (Elias Brothers Construction)	15,357.62	1.54	8,586.32	0.86	0.43	0.43	0	0	40	0	0	199	0	0.00	140	538			678	76	204	1	280
13	DORSAY (LAKESHORE) INC./DORSAY (LAKEFRONT PROMENADE) INC./DORSAY (RANGEVIEW) INC.	4,189.30	0.42	2,036.86	0.20	0.20		0	22	0	0	0	0	0	0.00	77				77	36		1	36
14	895 Rangeview Road	4,465.52	0.45	3,975.17	0.40	0.40		0	0	0	48	0	0	0	0.00	168				168	70		1	70
15	DORSAY (LAKESHORE) INC./DORSAY (LAKEFRONT PROMENADE) INC./DORSAY (RANGEVIEW) INC.	5,653.29	0.57	3,747.11	0.37		0.37	0	0	0	0	0	0	199	0.00		538			538		178	1	178
16	DORSAY (LAKESHORE) INC./DORSAY (LAKEFRONT PROMENADE) INC./DORSAY (RANGEVIEW) INC.	7,259.45	0.73	7,109.98	0.71	0.28	0.43	0	0	0	56	0	0	253	0.00	196	684			880	50	203	1	253
17	DORSAY (LAKESHORE) INC./DORSAY (LAKEFRONT PROMENADE) INC./DORSAY (RANGEVIEW) INC.	3,627.10	0.36	775.00	0.08	0.08		0	0	0	0	0	0	0	0.00								1	
18	2547046 ONTARIO INC./2545488 ONTARIO INC. (Vittorio Torchia)	3,627.76	0.36	1,856.79	0.19	0.19		0	18	0	0	0	0	0	0.00	63				63	33		1	33
19	DORSAY (LAKESHORE) INC./DORSAY (LAKEFRONT PROMENADE) INC./DORSAY (RANGEVIEW) INC.	5,075.55	0.51	3,554.25	0.36		0.36	0	0	0	0	0	0	190	0.00		513			513		169	1	169
20	RANGEVIEW 1035 HOLDING INC./RANGEVIEW 1045 HOLDING INC./1207238 ONTARIO INC. (Oasis Banquet Hall)	4,587.89	0.46	1,612.07	0.16		0.16	0	0	0	0	0	0	182	0.00		492			492		77	1	77
21	RANGEVIEW 1035 HOLDING INC./RANGEVIEW 1045 HOLDING INC./1207238 ONTARIO INC. (Oasis Banquet Hall)	4,829.66	0.48	4,205.37	0.42		0.42	0	0	0	0	54	0	0	0.00		146			146		200	1	200
22	2547046 ONTARIO INC./2545488 ONTARIO INC. (Vittorio Torchia)	6,054.50	0.61	5,655.26	0.57	0.28	0.28	0	0	20	0	0	0	177	0.00	70	478			548	50	135	1	185
23	850 Rangeview Road	10,354.01	1.04	9,964.00	1.00	1.00		24	0	28	0	0	0	0	0.00	182				182	175		1	175
24	WHITEROCK 880 RANGEVIEW INC. (Dream)	13,146.95	1.31	12,996.05	1.30	0.71	0.58	9	0	36	0	0	240	0	0.00	158	648			806	126	278	1	404
25	890 Rangeview Road (Canada Post)	8,627.44	0.86	7,383.00	0.74		0.15	0	0	0	0	47	0	168	0.00		581		450	1031		71	450	521
26	ELGROUP HOLDINGS INC./ELIAS BROS. CONSTRUCTION LIMITED (Elias Brothers Construction)	7,258.96	0.73	7,128.44	0.71	0.14	0.57	0	20	0	0	0	83	186	0.00	70	727			797	25	271	1	296
27	ELGROUP HOLDINGS INC./ELIAS BROS. CONSTRUCTION LIMITED (Elias Brothers Construction)	3,621.46	0.36	2,087.67	0.21	0.06	0.15	0	0	0	0	0	0	0	0.00								1	
28	ELGROUP HOLDINGS INC./ELIAS BROS. CONSTRUCTION LIMITED (Elias Brothers Construction)	3,625.21	0.36	3,573.99	0.36	0.11	0.25	0	16	0	0	0	86	0	0.00	56	233			289	19	119	1	138
29	1008 Rangeview Road	3,621.63	0.36	3,569.56	0.36		0.36	0	0	0	0	0	0	177	0.00		478			478		170		170
30	1024 Rangeview Road	3,623.21	0.36	276.43	0.03			0	0	0	0	0	0	0	0.00									
31	2120412 ONTARIO INC. (Xtreme Tire)	7,248.77	0.72	6,069.04	0.61		0.61	0	0	0	0	58	0	180	0.00		643			643		289		289
32	1062 Rangeview Road	3,273.04	0.33	3,232.41	0.32	0.32		4	0	12	0	0	0	0	0.00	56				56	57			57
33	KOTYCK INVESTMENTS LTD. (Laurie McPherson)	3,491.56	0.35	3,437.21	0.34		0.34	0	0	0	0	0	0	186	0.00		503			503		164	<u> </u>	164
	TOTALS	219,389.43	21.94	166,648.93	16.66	5.79	10.25	46	76	136	272	159	1,633	2,978	9,547	1,856	12,890	52		15,248	996	4,812	52 450	6,310

LEGEND

Non-participating Landowners

Notes:

Parcel area for breakdown between townhouses and apartments was based on spatial estimates Parcel 25 was assumed to include a senior public school with 900 students (minimum per Region's standards)

Water Supply Calculations

Project Title: 4938 - Rangeview
Last Edited: 2024-04-26

Water Supply Parameters

Residential Parameters

Municipality

Water Demand 280 L/cap./d
Max Day Factor 2.0
Peak Hour Factor 3.0

Region of Peel

ICI Parameters

Water Demand 300 L/cap./d

Max Day Factor1.4Peak Hour Factor3.0

Water Demand

Residential 280 L/cap./d Per Region of Peel Watermain Design Criteria (June 2010)

ICI 300 L/emp./d Per Region of Peel Watermain Design Criteria (June 2010)

Peaking Factors

Residential Max Day Factor 2.00 Per Region of Peel Watermain Design Criteria (June 2010)
Residential Peak Hour Factor 3.00 Per Region of Peel Watermain Design Criteria (June 2010)
ICI Max Day Factor 1.40 Per Region of Peel Watermain Design Criteria (June 2010)
ICI Peak Hour Factor 3.00 Per Region of Peel Watermain Design Criteria (June 2010)

<u> Demands - Rangeview</u>

Non-participating Landowners

*Population data per Rangeview Statistics from Bousefields (July 17, 2023)

	Residential			Flow (L/s)			
Parcel	Population	Average Day Demand	Max Day Demand	Peak Hour Demand	Fire Flow	MDD + Fire Flow	
	699	2.27	4.53	6.80	317	321.53	
	623	2.02	4.04	6.06	317	321.04	
	403	1.31	2.61	3.92	317	319.61	
	411	1.33	2.66	4.00	317	319.66	
	560	1.81	3.63	5.44	317	320.63	
	620	2.01	4.02	6.03	317	321.02	
	721	2.34	4.67	7.01	317	321.67	
	497	1.61	3.22	4.83	317	320.22	
	468	1.52	3.03	4.55	317	320.03	
0	693	2.25	4.49	6.74	317	321.49	
1	665	2.16	4.31	6.47	317	321.31	
2	678	2.20	4.39	6.59	317	321.39	
3	77	0.25	0.50	0.75	317	317.50	
4	168	0.54	1.09	1.63	317	318.09	
5	538	1.74	3.49	5.23	317	320.49	
6	880	2.85	5.70	8.56	317	322.70	
7		0.00	0.00	0.00	317	317.00	
8	63	0.20	0.41	0.61	317	317.41	
9	513	1.66	3.33	4.99	317	320.33	
0	492	1.59	3.19	4.78	317	320.19	
1	146	0.47	0.95	1.42	317	317.95	
2	548	1.78	3.55	5.33	317	320.55	
3	182	0.59	1.18	1.77	317	318.18	
4	806	2.61	5.22	7.84	317	322.22	
5	1031	3.34	6.68	10.02	317	323.68	
6	797	2.58	5.17	7.75	317	322.17	
7		0.00	0.00	0.00	317	317.00	
8	289	0.94	1.87	2.81	317	318.87	
9	478	1.55	3.10	4.65	317	320.10	
0		0.00	0.00	0.00	317	317.00	
1	643	2.08	4.17	6.25	317	321.17	
2	56	0.18	0.36	0.54	317	317.36	
3	503	1.63	3.26	4.89	317	320.26	
<u>Tot</u>	al 15248	49.41	98.83	148.24			

Residential Demands - Lakeview

*Population data per TMIG Lakeview Community Water Modelling Methodology and Analysis Memo (May 6, 2021)

	Residential		F	low (L/s)			
Block Number		Average Day	Max Day	Peak	Sina Flann	MDD + Fire Flow	
	Population	Demand	Demand	Hour	Fire Flow		
1	380	1.23	2.46	3.69	300	302.46	
2	620	2.01	4.02	6.03	300	304.02	
3	1052	3.41	6.82	10.23	300	306.82	
4	836	2.71	5.42	8.13	300	305.42	
5	384	1.24	2.49	3.73	300	302.49	
6	2128	6.90	13.79	20.69	300	313.79	
7	2161	7.00	14.01	21.01	300	314.01	
8	2712	8.79	17.58	26.37	300	317.58	
9	2220	7.19	14.39	21.58	300	314.39	
10	1161	3.76	7.53	11.29	300	307.53	
11	1367	4.43	8.86	13.29	300	308.86	
12	1745	5.66	11.31	16.97	300	311.31	
13	1194	3.87	7.74	11.61	300	307.74	
14	1359	4.40	8.81	13.21	300	308.81	
15	1056	3.42	6.84	10.27	300	306.84	
16	956	3.10	6.20	9.29	300	306.20	
17	0	0.00	0.00	0.00	300	300.00	
18	711	2.30	4.61	6.91	300	304.61	
19	0	0.00	0.00	0.00	300	300.00	
20	0	0.00	0.00	0.00	300	300.00	
21	0	0.00	0.00	0.00	300	300.00	
22	0	0.00	0.00	0.00	300	300.00	
23	0	0.00	0.00	0.00	300	300.00	
24	0	0.00	0.00	0.00	300	300.00	
39	0	0.00	0.00	0.00	300	300.00	
31 (park)	0	0.00	0.00	0.00	300	300.00	
Total	22042	71.43	142.86	214.30			

Employment Demands - Lakeview

*Population data per TMIG Lakeview Community Water Modelling Methodology and Analysis Memo. (May 6, 2021)

	Francis and	Flow (L/s)									
Block Number	Employment	Average Day	Max Day	Peak Hour							
	Population	Demand	Demand	Demand							
1	0	0.00	0.00	0.0							
2	0	0.00	0.00	0.0							
3	0	0.00	0.00	0.0							
4	0	0.00	0.00	0.0							
5	0	0.00	0.00	0.0							
6	0	0.00	0.00	0.0							
7	108	0.35	0.49	1.0							
8	0	0.00	0.00	0.0							
9	0	0.00	0.00	0.0							
10	0	0.00	0.00	0.0							
11	74	0.24	0.34	0.7							
12	0	0.00	0.00	0.0							
13	87	0.28	0.39	0.8							
14	0	0.00	0.00	0.0							
15	157	0.51	0.71	1.5							
16	0	0.00	0.00	0.0							
17	87	0.28	0.39	0.8							
18	46	0.15	0.21	0.4							
19	0	0.00	0.00	0.0							
20	217	0.70	0.98	2.1							
21	59	0.19	0.27	0.5							
22	2980	9.66	13.52	28.9							
23	214	0.69	0.97	2.0							
24	3197	10.36	14.50	31.0							
39	589	1.91	2.67	5.7							
31 (park)	229	0.74	1.04	2.2							
Total	8044	26.07	36.50	78.2							

Demands - External Lands per Lakeview Report, PVT 16/17

*Population data per TMIG Lakeview Community Water Modelling Methodology and Analysis Memo (May

6, 2021)

	Residential		Flow (L/s)										
ID	Population	Average Day	Max Day	Peak Hour	Fire Flow	MDD + Fire							
	-	Demand	Demand	Demand		Flow							
Pvt 16	1493	4.84	9.68	14.52	300	309.68							
Pvt 17	1254	4.06	8.13	12.19	300	308.13							
<u>Total</u>	2747	8.90	17.80	26.71									

Appendix B-4

Hydrant Test Results

Rangeview Mississauga

Project No. 4938

Date of Test: 04/23/2021

Test Location: Residual: 1000 Lakeshore Road East, Mississauga

Flow: 1000 Lakeshore Road East, Mississauga

Test Results

	Flo	ow	Residual	Pressure
	US. GPM	L/s	psi	kPa
	0	0	82	565
Measured Data	674	43	81	558
	1538	97	80	552
	4047	255	70	483
	5614	354	60	414
Extrapolated	6874	434	50	345
Data	7961	502	40	276
	8934	564	30	207
	9824	620	20	138

Appendix B-5 InfoWater

Model Outputs - Option 1

		Demand	Elevation	Head	Pressure
II)	(L/s)	(m)	(m)	(psi)
1 J1	0	0.00	84.86	144.07	84.17
2 J10	-	9.81	80.10	143.93	90.74
3 J10		3.76	79.92	143.93	91.00
4 J1	-	0.00	79.47	143.96	91.68
5 J1	-	0.00	81.34	143.95	89.00
6 J1	-	0.00	81.23	143.95	89.16
7 J1	-	0.00	79.95	143.93	90.96
8 J1	-	0.00	79.36	143.93	91.80
9 J1:	-	0.00	78.33	143.93	93.26
10 J1:	-	0.00	79.33	143.93	91.84
11 J1:	-	0.00	79.44	143.93	91.68
12 J1:	-	4.67	80.21	143.93	90.58
13 J1:	-	1.91	81.35	143.93	88.97
14 J1:	-	0.00	82.01	143.93	88.03
15 J1:	-	0.00	82.11	143.94	87.89
16 J1:		0.74	81.80	143.97	88.39
17 J1:		0.00	79.85	143.95	91.13
18 J1:	-	0.00	82.78	143.93	86.93
19 J1	-	0.00	81.75	144.03	88.53
20 J14	-	0.00	80.35	144.00	90.48
21 J1	-	0.00	83.05	144.00	86.64
22 J14	-	0.00	81.26	143.98	89.16
23 J1	-	0.00	78.92	143.98	92.48
24 J1	-	0.00	75.92	143.98	96.75
25 J1	-	0.00	82.07	143.96	87.98
26 J1	-	0.00	81.32	143.95	89.03
27 J1	-	0.00	81.44	143.95	88.86
28 J10	-	0.00	85.03	144.07	83.92
29 J10	-	0.00	83.72	144.06	85.78
30 J10	64	0.00	81.79	144.06	88.52
31 J10	66	0.00	80.85	144.05	89.85
32 J1	70	0.00	86.05	144.07	82.49
33 J1	72	4.28	84.43	144.06	84.77
34 J1	74	1.31	85.14	144.06	83.77
35 J1	76	3.15	85.60	144.06	83.11
36 J1	78	5.63	82.30	144.05	87.78
37 🔲 J1		0.00	86.12	144.07	82.37
38 🗍 J18	80	2.86	81.86	144.05	88.41
39 🔲 J18		2.79	81.31	144.05	89.19
40 🔲 J1	90	0.00	85.04	144.06	83.90
41 J1	92	0.00	84.17	144.06	85.13
42 J1	94	0.00	83.38	144.05	86.25
43 J1	96	0.00	84.10	144.05	85.22
44 🔲 J1	98	0.00	82.80	144.05	87.07
45 J2	20	10.36	82.84	143.95	86.87
46 J20	00	0.00	81.35	143.93	88.97
47 J20	02	0.00	81.35	143.93	88.97
48 J20	04	2.01	86.27	144.07	82.17
49 J20	06	2.34	86.44	144.09	81.95
50 J20	80	1.61	86.29	144.08	82.15

Date: Monday, April 29, 2024, Time: 11:34:50, Page 1

			Demand	Elevation	Head	Pressure
1		ID	(L/s)	(m)	(m)	(psi)
51		J210	1.52	85.54	144.04	83.16
52	H	J212	2.25	85.69	144.07	82.99
53	H	J214	2.16	85.28	144.07	83.57
54	H	J218	0.20	83.53	144.01	85.98
55	H	J220	4.15	83.90	144.01	85.45
56	H	J222	0.00	83.80	144.01	85.59
57	H	J224	4.15	83.31	144.01	86.29
58	Ħ	J226	3.59	82.95	144.01	86.80
59	Ħ	J230	0.00	82.77	144.06	87.13
60	Ħ	J232	0.00	84.93	144.05	84.04
61	Ħ	J234	5.43	83.18	144.03	86.50
62	ň	J24	9.66	82.29	143.93	87.63
63	ň	J240	0.00	84.37	144.03	84.81
64	ŏ	J246	0.00	79.85	144.06	91.29
65	ă	J248	0.00	82.80	144.05	87.07
66	Ŏ	J250	0.00	80.85	144.05	89.85
67	Ŏ	J252	0.00	83.72	144.05	85.77
68	Ŏ	J258	0.00	79.85	144.05	91.27
69	Ō	J30	0.00	83.41	144.03	86.17
70	$\bar{\Box}$	J34	0.00	83.24	144.01	86.39
71	$\bar{\Box}$	J38	0.00	82.86	143.98	86.88
72		J40	0.69	83.61	143.96	85.80
73		J42	0.00	82.93	143.98	86.79
74		J44	3.24	81.47	143.98	88.87
75		J46	0.00	82.71	144.00	87.13
76		J48	0.00	80.79	143.93	89.76
77		J50	0.00	80.75	143.93	89.82
78		J54	1.24	82.17	143.96	87.84
79		J58	3.41	82.05	143.96	88.01
80		J62	14.25	79.65	143.96	91.42
81		J64	8.79	81.10	143.95	89.35
82		J70	0.00	81.15	143.95	89.28
83		J74	7.19	81.63	143.94	88.58
84		J80	0.19	81.70	143.94	88.48
85		J84	0.70	82.46	143.93	87.39
86		J88	3.38	82.00	143.93	88.04
87		J92	8.34	81.61	143.93	88.60
88		J96	0.00	80.91	143.93	89.59

ADD - PIPE

	ID	From Node	To Node	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)	Headloss	HL/1000 (m/k-m)	Status
	0.4	J44	J146	37.79	300.00	120.00	8.67	0.12	(m) 0.00	0.08	Open
1 0	24	J44 J112	J146 J114	11.08	300.00	120.00 120.00	-18.66	0.12	0.00	0.08	
3	25 26	J112 J110	J114 J116	162.84	300.00	120.00	12.36	0.26	0.00	0.33	Open Open
=	27	J116	J118	102.84	200.00	120.00	0.92	0.17	0.00	0.10	Open
4	-	J120	J118	17.79	200.00	120.00	0.52	0.03	0.00	0.01	Open
5	28	J118	J122	14.95	200.00	120.00	1.43	0.02	0.00	0.00	Open
7	29 30	J122	J124	88.59	200.00	120.00	1.43	0.05	0.00	0.02	Open
8	31	J124	J124	144.09	200.00	120.00	1.43	0.05	0.00	0.02	Open
9	32	J50	J120	146.51	200.00	120.00	0.51	0.02	0.00	0.02	Open
10	33	J130	J128	112.40	200.00	120.00	0.95	0.02	0.00	0.00	Open
11	34	J130	J112	156.59	300.00	120.00	-8.83	0.12	0.01	0.08	Open
12	35	J74	J112	79.98	300.00	120.00	-9.84	0.14	0.01	0.10	Open
13	36	J248	J14	98.08	400.00	120.00	35.18	0.28	0.03	0.27	Open
14	37	J134	J136	166.63	300.00	120.00	10.70	0.15	0.02	0.12	Open
15	38	J138	J24	110.22	300.00	120.00	-0.45	0.01	0.00	0.00	Open
16	40	J142	J146	135.17	300.00	120.00	11.28	0.16	0.02	0.13	Open
17	41	J144	J134	154.56	300.00	120.00	11.92	0.17	0.02	0.15	Open
18	42	J126	J104	40.45	200.00	120.00	-3.24	0.10	0.00	0.09	Open
19	6	J40	J38	120.78	300.00	120.00	-10.22	0.14	0.01	0.11	Open
20	8	J48	J50	91.46	200.00	120.00	1.11	0.04	0.00	0.01	Open
21	P101	J176	J174	94.00	600.00	120.00	12.69	0.04	0.00	0.01	Open
22	P103	J230	J192	198.76	250.00	110.00	1.00	0.02	0.00	0.00	Open
23	P105	J18	J204	50.72	600.00	120.00	-80.51	0.28	0.01	0.17	Open
24	P107	J160	J10	17.35	600.00	120.00	33.35	0.12	0.00	0.03	Open
25	P109	J164	J230	173.09	250.00	110.00	1.00	0.02	0.00	0.00	Open
26	P111	J162	J164	99.75	300.00	120.00	7.10	0.10	0.01	0.06	Open
27	P113	J164	J166	86.36	300.00	120.00	6.10	0.09	0.00	0.04	Open
28	P115	J166	J182	102.73	300.00	120.00	6.10	0.09	0.00	0.04	Open
29	P117	J182	J180	97.29	300.00	120.00	3.31	0.05	0.00	0.01	Open
30	P119	J180	J178	85.87	300.00	120.00	0.45	0.01	0.00	0.00	Open
31	P121	J170	J212	75.22	600.00	120.00	37.76	0.13	0.00	0.04	Open
32	P129	J218	J220	71.02	300.00	120.00	2.97	0.04	0.00	0.01	Open
33	P13	J146	J134	109.84	300.00	120.00	6.56	0.09	0.01	0.05	Open
34	P131	J220	J222	64.95	300.00	120.00	-1.18	0.02	0.00	0.00	Open
35	P133	J222	J224	89.72	300.00	120.00	4.22	0.06	0.00	0.02	Open
36	P135	J224	J226	83.02	300.00	120.00	0.07	0.00	0.00	0.00	Open
37	P143	J18	J190	61.03	400.00	120.00	17.89	0.14	0.00	0.08	Open
38	P145	J190	J192	58.87	400.00	120.00	17.89	0.14	0.00	0.08	Open
39	P147	J192	J194	53.65	400.00	120.00	14.08	0.11	0.00	0.05	Open
40	P15	J146	J62	118.80	300.00	120.00	13.39	0.19	0.02	0.18	Open
41	P151	J214	J212	69.37	600.00	120.00	-35.51	0.13	0.00	0.04	Open
42	P153	J210	J240	125.40	250.00	110.00	3.48	0.07	0.01	0.04	Open
43	P155	J196	J30	100.45	400.00	120.00	33.35	0.27	0.02	0.24	Open
44	P157	J194	J198	49.89	400.00	120.00	14.08	0.11	0.00	0.05	Open
45	P159	J128	J200	133.31	200.00	120.00	-0.37	0.01	0.00	0.00	Open
46	P161	J208	J170	63.93	600.00	120.00	55.29	0.20	0.01	0.08	Open
47	P163	J202	J138	119.12	200.00	120.00	-0.37	0.01	0.00	0.00	Open
48	P165	J136	J96	166.15	300.00	120.00	10.93	0.15	0.02	0.12	Open
49	P167	J200	J202	11.25	200.00 600.00	120.00	-0.37	0.01	0.00	0.00	Open
50	P169	J206 J62	J208 J110	82.80 47.94	300.00	120.00 120.00	56.90 -0.86	0.20 0.01	0.01	0.09	Open
51	P17	J206	J204	69.37	600.00	120.00	82.52	0.01	0.00	0.00	Open Open
52 53	P171 P175	J206 J210	J204 J222	86.86	300.00	120.00	17.33	0.29	0.01	0.18	Open
54	P175	J172	J174	85.77	600.00	120.00	-11.38	0.23	0.00	0.29	Open
55	P177	J162	J172	81.18	600.00	120.00	-7.10	0.04	0.00	0.00	Open
	1 179	0 102	0112	01.10	500.00	120.00	7.10	0.00	0.00	0.00	_ Open

Date: Monday, April 29, 2024, Time: 11:35:11, Page 1

ADD - PIPE

ADD		_										
		ID	From Node	To Node	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)	Headloss (m)	HL/1000 (m/k-m)	Status
56		P183	J232	J210	120.26	250.00	110.00	4.81	0.10	0.01	0.08	Open
57	Ŏ	P185	RES9002	J206	48.21	600.00	120.00	141.76	0.50	0.02	0.49	Open
58	Ō	P187	J214	J160	62.93	600.00	120.00	33.35	0.12	0.00	0.03	Open
59	Ō	P189	J226	J34	51.07	300.00	120.00	-3.52	0.05	0.00	0.02	Open
60		P19	J20	J54	117.59	300.00	120.00	-8.49	0.12	0.01	0.08	Open
61		P191	J192	J232	147.89	250.00	110.00	4.81	0.10	0.01	0.08	Open
62		P193	J218	J234	71.16	300.00	120.00	-15.08	0.21	0.02	0.22	Open
63		P195	J178	J198	86.78	300.00	120.00	-5.18	0.07	0.00	0.03	Open
64		P197	J176	J18	110.72	600.00	120.00	-15.84	0.06	0.00	0.01	Open
65		P199	J170	J210	128.03	300.00	120.00	17.52	0.25	0.04	0.30	Open
66		P201	J234	J198	61.08	300.00	120.00	-20.51	0.29	0.02	0.40	Open
67		P21	J14	J142	106.09	400.00	120.00	35.18	0.28	0.03	0.27	Open
68		P215	J240	J30	102.65	250.00	110.00	3.48	0.07	0.00	0.04	Open
69		P217	J222	J144	93.00	300.00	120.00	11.92	0.17	0.01	0.15	Open
70	빞	P219	J218	J46	95.10	300.00	120.00	11.91	0.17	0.01	0.14	Open
71	빞	P225	J246	J172	356.21	900.00	130.00	0.00	0.00	0.00	0.00	Open
72	닏	P229	J250	J248	375.46	600.00	120.00	0.00	0.00	0.00	0.00	Open
73	片	P231	J248	J18	220.67	600.00	120.00	-46.78	0.17	0.01	0.06	Open
74	분	P235	J252	J250	182.26 89.25	900.00	130.00	0.00	0.00	0.00	0.00	Open
75	片	P237	J250	J258	10.64	900.00	130.00 120.00	0.00	0.00	0.00	0.00	Open
76	片	P239	J248	J198		400.00 400.00		11.60	0.09	0.00	0.03	Open
77	片	P25 P27	J150 J152	J152 J110	12.66 132.14	400.00	120.00 120.00	23.91	0.19 0.19	0.00	0.13 0.13	Open
78	H	P27	J110	J136	128.24	400.00	120.00	10.68	0.19	0.02	0.13	Open Open
79 80	H	P31	J136	J64	180.81	400.00	120.00	10.45	0.09	0.00	0.03	Open
81	H	P31	J64	J70	14.43	400.00	120.00	1.66	0.00	0.01	0.03	Open
82	H	P35	J70	J156	34.75	400.00	120.00	1.66	0.01	0.00	0.00	Open
83	H	P37	J156	J114	6.20	400.00	120.00	1.66	0.01	0.00	0.00	Open
84	片	P39	J114	J158	17.17	400.00	120.00	-17.00	0.14	0.00	0.07	Open
85	H	P41	J154	J158	153.05	400.00	120.00	17.00	0.14	0.01	0.07	Open
86	H	P43	J42	J154	156.43	400.00	120.00	23.10	0.18	0.02	0.12	Open
87	H	P45	J34	J42	120.68	400.00	120.00	33.31	0.27	0.03	0.24	Open
88	ň	P47	J30	J34	57.66	400.00	120.00	36.83	0.29	0.02	0.29	Open
89	ň	P51	J58	J134	228.31	300.00	120.00	-7.05	0.10	0.01	0.05	Open
90	ň	P53	J154	J58	39.98	300.00	120.00	-3.64	0.05	0.00	0.02	Open
91	ŏ	P55	J104	J116	41.94	300.00	120.00	-7.00	0.10	0.00	0.05	Open
92	Ŏ	P57	J116	J100	77.25	300.00	120.00	4.44	0.06	0.00	0.02	Open
93	ā	P59	J100	J96	84.08	300.00	120.00	-5.37	0.08	0.00	0.03	Open
94	Ó	P61	J96	J48	6.45	300.00	120.00	5.57	0.08	0.00	0.03	Open
95	Ō	P63	J48	J92	120.82	300.00	120.00	4.46	0.06	0.00	0.02	Open
96		P65	J92	J130	97.59	300.00	120.00	-3.88	0.05	0.00	0.02	Open
97		P69	J84	J88	69.90	300.00	120.00	-0.62	0.01	0.00	0.00	Open
98		P71	J138	J84	53.85	300.00	120.00	0.08	0.00	0.00	0.00	Open
99		P73	J132	J24	44.79	300.00	120.00	10.11	0.14	0.00	0.11	Open
100		P75	J20	J132	172.60	300.00	120.00	7.66	0.11	0.01	0.06	Open
101		P77	J40	J20	159.11	300.00	120.00	9.53	0.13	0.02	0.10	Open
102		P79	J50	J128	234.05	200.00	120.00	0.60	0.02	0.00	0.00	Open
103		P81	J38	J42	35.30	300.00	120.00	-10.22	0.14	0.00	0.11	Open
104		P83	J54	J154	41.53	300.00	120.00	-9.73	0.14	0.00	0.10	Open
105		P85	J80	J74	13.52	300.00	120.00	-2.65	0.04	0.00	0.01	Open
106		P87	J132	J80	74.26	300.00	120.00	-2.46	0.03	0.00	0.01	Open
107	닏	P89	J10	J196	62.59	400.00	120.00	33.35	0.27	0.02	0.24	Open
108	닏	P93	J88	J130	30.88	300.00	120.00	-4.00	0.06	0.00	0.02	Open
109	닏	P95	J142	J150	156.08	400.00	120.00	23.91	0.19	0.02	0.13	Open
110		P97	J46	J44	100.05	300.00	120.00	11.91	0.17	0.01	0.14	Open

Date: Monday, April 29, 2024, Time: 11:35:11, Page 2

		Damand	Flavetics	Haad	Duanassuna
	ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (psi)
1	J10	0.00	84.86	143.97	84.02
2	J100	19.44	80.10	143.54	90.19
3	J104	7.53	79.92	143.54	90.44
4	J110	0.00	79.47	143.63	91.21
5	J112	0.00	81.34	143.60	88.50
6	J114	0.00	81.23	143.61	88.67
7	J116	0.00	79.95	143.55	90.41
8	J118	0.00	79.36	143.55	91.25
9	J120	0.00	78.33	143.55	92.71
10	J122	0.00	79.33	143.55	91.29
11	J124	0.00	79.44	143.54	91.12
12	J126	9.20	80.21	143.53	90.01
13	J128	2.67	81.35	143.55	88.43
14	J130	0.00	82.01	143.56	87.50
15	J132	0.00	82.11	143.57	87.38
16	J134	1.04	81.80	143.68	87.97
17	J136	0.00	79.85	143.62	90.65
18	J138	0.00	82.78	143.56	86.40
19	J14	0.00	81.75	143.84	88.27
20	J142	0.00	80.35	143.75	90.13
21	J144	0.00	83.05	143.75	86.29
22	J146	0.00	81.26	143.70	88.76
23	J150	0.00	78.92	143.69	92.07
24	J152	0.00	75.92	143.68	96.33
25	J154	0.00	82.07	143.64	87.53
26	J156	0.00	81.32	143.61	88.55
27	J158	0.00	81.44	143.61	88.38
28	J160	0.00	85.03	143.97	83.79
29	J162	0.00	83.72	143.96	85.63
30	J164	0.00	81.79	143.94	88.35
31	J166	0.00	80.85	143.93	89.67
32	J170	0.00	86.05	143.99	82.37
33	J172	8.57	84.43	143.96	84.63
34	J174	2.61	85.14	143.96	83.62
35	J176	6.29	85.60	143.96	82.97
36	J178	11.26	82.30	143.91	87.58
37	J18	0.00	86.12	143.97	82.23
38	J180	5.72	81.86	143.91	88.21
39	J182	5.57	81.31	143.91	89.00
40	J190	0.00	85.04	143.95	83.75
41 🔲	J192	0.00	84.17	143.94	84.96
42	J194	0.00	83.38	143.93	86.07
43	J196	0.00	84.10	143.92	85.04
44 🔲	J198	0.00	82.80	143.92	86.89
45	J20	14.50	82.84	143.61	86.40
46	J200	0.00	81.35	143.56	88.43
47	J202	0.00	81.35	143.56	88.43
48	J204	4.02	86.27	143.99	82.06
49	J206	4.67	86.44	144.03	81.87
50	J208	3.22	86.29	144.01	82.05

Date: Monday, April 29, 2024, Time: 11:36:45, Page 1

			Demand	Elevation	Head	Pressure
		ID	(L/s)	(m)	(m)	(psi)
51	$\overline{}$	J210	3.03	85.54	143.87	82.92
52	\forall	J210	4.49	85.69	143.98	82.87
53	H	J214	4.31	85.28	143.97	83.44
54	=	J214	0.41	83.53	143.79	85.67
55	H	J210	8.30	83.90	143.79	85.14
	\forall	J220	0.00	83.80	143.79	85.28
56	\vdash	J224	8.30	83.31	143.79	85.97
57	\vdash	-	7.18	82.95	143.79	86.48
58	믐	J226				
59	\vdash	J230	0.00	82.77	143.94	86.96
60	\vdash	J232	0.00	84.93	143.90	83.83
61	\vdash	J234	10.87	83.18	143.84	86.24
62	=	J24	13.52	82.29	143.56	87.10
63	\subseteq	J240	0.00	84.37	143.86	84.57
64	\subseteq	J246	0.00	79.85	143.96	91.14
65	\Box	J248	0.00	82.80	143.92	86.89
66		J250	0.00	80.85	143.92	89.66
67		J252	0.00	83.72	143.92	85.58
68		J258	0.00	79.85	143.92	91.08
69		J30	0.00	83.41	143.84	85.91
70		J34	0.00	83.24	143.79	86.08
71		J38	0.00	82.86	143.69	86.48
72		J40	0.97	83.61	143.66	85.36
73		J42	0.00	82.93	143.70	86.40
74		J44	6.48	81.47	143.71	88.47
75		J46	0.00	82.71	143.75	86.77
76		J48	0.00	80.79	143.56	89.23
77		J50	0.00	80.75	143.55	89.28
78		J54	2.49	82.17	143.63	87.38
79		J58	6.82	82.05	143.65	87.56
80		J62	28.29	79.65	143.63	90.95
81		J64	17.58	81.10	143.61	88.86
82		J70	0.00	81.15	143.61	88.79
83	Ō	J74	14.39	81.63	143.57	88.06
84	Ō	J80	0.27	81.70	143.57	87.96
85		J84	0.98	82.46	143.56	86.86
86		J88	6.59	82.00	143.56	87.51
87	Ō	J92	16.37	81.61	143.55	88.05
88	Ō	J96	0.00	80.91	143.56	89.06

MDD - PIPE

	ID	From Node	To Node	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)	Headloss (m)	HL/1000 (m/k-m)	Status
1	24	J44	J146	37.79	300.00	120.00	15.50	0.22	0.01	0.24	Open
2	25	J112	J114	11.08	300.00	120.00	-32.52	0.46	0.01	0.93	Open
3	26	J110	J116	162.84	300.00	120.00	22.91	0.32	0.08	0.49	Open
4	27	J116	J118	103.23	200.00	120.00	1.16	0.04	0.00	0.01	Open
5	28	J120	J118	17.79	200.00	120.00	1.78	0.06	0.00	0.03	Open
6	29	J118	J122	14.95	200.00	120.00	2.94	0.09	0.00	0.08	Open
7	30	J122	J124	88.59	200.00	120.00	2.94	0.09	0.01	0.08	Open
8	31	J124	J126	144.09	200.00	120.00	2.94	0.09	0.01	0.08	Open
9	32	J50	J120	146.51	200.00	120.00	1.78	0.06	0.00	0.03	Open
10	33	J130	J128	112.40	200.00	120.00	1.83	0.06	0.00	0.03	Open
11 🔲	34	J130	J112	156.59	300.00	120.00	-15.74	0.22	0.04	0.24	Open
12	35	J74	J112	79.98	300.00	120.00	-16.78	0.24	0.02	0.27	Open
13	36	J248	J14	98.08	400.00	120.00	65.12	0.52	0.08	0.83	Open
14	37	J134	J136	166.63	300.00	120.00	19.83	0.28	0.06	0.37	Open
15	38	J138	J24	110.22	300.00	120.00	-4.05	0.06	0.00	0.02	Open
16	40	J142	J146	135.17	300.00	120.00	20.84	0.29	0.06	0.41	Open
17	41	J144	J134	154.56	300.00	120.00	21.83	0.31	0.07	0.44	Open
18	42	J126	J104	40.45	200.00	120.00	-6.26	0.20	0.01	0.32	Open
19	6	J40	J38	120.78	300.00	120.00	-17.65	0.25	0.04	0.30	Open
20	8	J48	J50	91.46	200.00	120.00	1.45	0.05	0.00	0.02	Open
21	P101	J176	J174	94.00	600.00	120.00	24.66	0.09	0.00	0.02	Open
22	P103	J230	J192	198.76	250.00	110.00	1.72 -152.47	0.04	0.00	0.01	Open
23	P105	J18 J160	J204 J10	50.72 17.35	600.00	120.00 120.00	61.98	0.54	0.03	0.56 0.11	Open
24	P107	J164	J230	173.09	250.00	120.00	1.72	0.22	0.00	0.11	Open
25	P109	J162	J164	99.75	300.00	120.00	13.48	0.04	0.00	0.01	Open Open
26	P111 P113	J164	J166	86.36	300.00	120.00	11.76	0.19	0.02	0.18	Open
28	P115	J166	J182	102.73	300.00	120.00	11.76	0.17	0.01	0.14	Open
29	P117	J182	J180	97.29	300.00	120.00	6.19	0.09	0.00	0.04	Open
30	P119	J180	J178	85.87	300.00	120.00	0.13	0.03	0.00	0.00	Open
31	P121	J170	J212	75.22	600.00	120.00	70.78	0.25	0.01	0.13	Open
32	P129	J218	J220	71.02	300.00	120.00	5.20	0.07	0.00	0.03	Open
33	P13	J146	J134	109.84	300.00	120.00	11.42	0.16	0.01	0.13	Open
34	P131	J220	J222	64.95	300.00	120.00	-3.10	0.04	0.00	0.01	Open
35	P133	J222	J224	89.72	300.00	120.00	7.37	0.10	0.01	0.06	Open
36	P135	J224	J226	83.02	300.00	120.00	-0.93	0.01	0.00	0.00	Open
37	P143	J18	J190	61.03	400.00	120.00	33.64	0.27	0.01	0.24	Open
38	P145	J190	J192	58.87	400.00	120.00	33.64	0.27	0.01	0.24	Open
39	P147	J192	J194	53.65	400.00	120.00	26.49	0.21	0.01	0.16	Open
40	P15	J146	J62	118.80	300.00	120.00	24.93	0.35	0.07	0.57	Open
41	P151	J214	J212	69.37	600.00	120.00	-66.29	0.23	0.01	0.12	Open
42	P153	J210	J240	125.40	250.00	110.00	6.32	0.13	0.02	0.13	Open
43	P155	J196	J30	100.45	400.00	120.00	61.98	0.49	0.08	0.76	Open
44	P157	J194	J198	49.89	400.00	120.00	26.49	0.21	0.01	0.16	Open
45	P159	J128	J200	133.31	200.00	120.00	-1.18	0.04	0.00	0.01	Open
46	P161	J208	J170	63.93	600.00	120.00	103.57	0.37	0.02	0.27	Open
47	P163	J202	J138	119.12	200.00	120.00	-1.18	0.04	0.00	0.01	Open
48	P165	J136	J96	166.15	300.00	120.00	20.08	0.28	0.06	0.38	Open
49	P167	J200	J202	11.25	200.00	120.00	-1.18	0.04	0.00	0.01	Open
50	P169	J206	J208	82.80	600.00	120.00	106.79	0.38	0.02	0.29	Open
51	P17	J62	J110	47.94	300.00	120.00	-3.36	0.05	0.00	0.01	Open
52	P171	J206	J204	69.37	600.00	120.00	156.49	0.55	0.04	0.58	Open
53	P175	J210	J222	86.86	300.00	120.00	32.30	0.46	0.08	0.92	Open
54	P177	J172	J174	85.77	600.00	120.00	-22.05	0.08	0.00	0.02	Open
55 🔲	P179	J162	J172	81.18	600.00	120.00	-13.48	0.05	0.00	0.01	Open

Date: Monday, April 29, 2024, Time: 11:37:01, Page 1

MDD - PIPE

		ID	From Node	To Node	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)	Headloss (m)	HL/1000 (m/k-m)	Status
56		P183	J232	J210	120.26	250.00	110.00	8.87	0.18	0.03	0.24	Open
57	ă	P185	RES9002	J206	48.21	600.00	120.00	267.95	0.95	0.08	1.58	Open
58	Ō	P187	J214	J160	62.93	600.00	120.00	61.98	0.22	0.01	0.11	Open
59		P189	J226	J34	51.07	300.00	120.00	-8.11	0.11	0.00	0.07	Open
60		P19	J20	J54	117.59	300.00	120.00	-13.26	0.19	0.02	0.18	Open
61		P191	J192	J232	147.89	250.00	110.00	8.87	0.18	0.04	0.24	Open
62		P193	J218	J234	71.16	300.00	120.00	-27.59	0.39	0.05	0.69	Open
63		P195	J178	J198	86.78	300.00	120.00	-10.79	0.15	0.01	0.12	Open
64	$\underline{\mathbb{Q}}$	P197	J176	J18	110.72	600.00	120.00	-30.95	0.11	0.00	0.03	Open
65	$\underline{\square}$	P199	J170	J210	128.03	300.00	120.00	32.79	0.46	0.12	0.95	Open
66	븟	P201	J234	J198	61.08	300.00	120.00	-38.46	0.54	0.08	1.27	Open
67	片	P21	J14	J142	106.09	400.00	120.00	65.12	0.52	0.09	0.83	Open
68	片	P215	J240 J222	J30 J144	102.65 93.00	250.00 300.00	110.00 120.00	6.32 21.83	0.13 0.31	0.01	0.13 0.44	Open Open
69 70	+	P217 P219	J218	J46	95.00	300.00	120.00	21.83	0.31	0.04	0.44	Open
71	품	P219	J246	J172	356.21	900.00	130.00	0.00	0.00	0.00	0.00	Open
72	H	P229	J250	J248	375.46	600.00	120.00	0.00	0.00	0.00	0.00	Open
73	H	P231	J248	J18	220.67	600.00	120.00	-87.88	0.31	0.04	0.20	Open
74	荋	P235	J252	J250	182.26	900.00	130.00	0.00	0.00	0.00	0.00	Open
75	Ħ	P237	J250	J258	89.25	900.00	130.00	0.00	0.00	0.00	0.00	Open
76	ŏ	P239	J248	J198	10.64	400.00	120.00	22.76	0.18	0.00	0.12	Open
77	ŏ	P25	J150	J152	12.66	400.00	120.00	44.27	0.35	0.01	0.41	Open
78	Ō	P27	J152	J110	132.14	400.00	120.00	44.27	0.35	0.05	0.41	Open
79		P29	J110	J136	128.24	400.00	120.00	18.01	0.14	0.01	0.08	Open
80		P31	J136	J64	180.81	400.00	120.00	17.76	0.14	0.01	0.07	Open
81		P33	J64	J70	14.43	400.00	120.00	0.18	0.00	0.00	0.00	Open
82		P35	J70	J156	34.75	400.00	120.00	0.18	0.00	0.00	0.00	Open
83		P37	J156	J114	6.20	400.00	120.00	0.18	0.00	0.00	0.00	Open
84	$\underline{\cup}$	P39	J114	J158	17.17	400.00	120.00	-32.35	0.26	0.00	0.23	Open
85	브	P41	J154	J158	153.05	400.00	120.00	32.35	0.26	0.03	0.23	Open
86	븟	P43	J42	J154	156.43	400.00	120.00	42.54	0.34	0.06	0.38	Open
87	౼	P45	J34 J30	J42 J34	120.68 57.66	400.00 400.00	120.00 120.00	60.19 68.31	0.48 0.54	0.09	0.72 0.91	Open
88	H	P47 P51	J58	J134	228.31	300.00	120.00	-12.38	0.54	0.05	0.91	Open Open
89 90	H	P53	J154	J58	39.98	300.00	120.00	-5.56	0.10	0.00	0.04	Open
91	품	P55	J104	J116	41.94	300.00	120.00	-13.79	0.20	0.01	0.19	Open
92	H	P57	J116	J100	77.25	300.00	120.00	7.96	0.11	0.01	0.07	Open
93	Ħ	P59	J100	J96	84.08	300.00	120.00	-11.48	0.16	0.01	0.14	Open
94	Ħ	P61	J96	J48	6.45	300.00	120.00	8.60	0.12	0.00	0.08	Open
95	Ŏ	P63	J48	J92	120.82	300.00	120.00	7.15	0.10	0.01	0.06	Open
96	$\overline{\Box}$	P65	J92	J130	97.59	300.00	120.00	-9.22	0.13	0.01	0.09	Open
97	Ō	P69	J84	J88	69.90	300.00	120.00	1.90	0.03	0.00	0.00	Open
98		P71	J138	J84	53.85	300.00	120.00	2.88	0.04	0.00	0.01	Open
99		P73	J132	J24	44.79	300.00	120.00	17.57	0.25	0.01	0.30	Open
100		P75	J20	J132	172.60	300.00	120.00	15.45	0.22	0.04	0.23	Open
101		P77	J40	J20	159.11	300.00	120.00	16.68	0.24	0.04	0.27	Open
102		P79	J50	J128	234.05	200.00	120.00	-0.33	0.01	0.00	0.00	Open
103		P81	J38	J42	35.30	300.00	120.00	-17.65	0.25	0.01	0.30	Open
104	\Box	P83	J54	J154	41.53	300.00	120.00	-15.75	0.22	0.01	0.24	Open
105	\exists	P85	J80	J74	13.52	300.00	120.00	-2.39	0.03	0.00	0.01	Open
106	\exists	P87	J132 J10	J80 J196	74.26 62.59	300.00 400.00	120.00 120.00	-2.12 61.98	0.03 0.49	0.00	0.01 0.76	Open
107	\exists	P89	J88	J196 J130	30.88	300.00	120.00	-4.69	0.49	0.05	0.76	Open Open
108 109	\exists	P93 P95	J88 J142	J150	156.08	400.00	120.00	44.27	0.07	0.00	0.03	Open
	\exists	P95 P97	J46	J44	100.05	300.00	120.00	21.98	0.35	0.06	0.41	Open
110	\cup	P9/	340	J44	100.05	300.00	120.00	21.90	0.51	0.05	0.40	Open

Date: Monday, April 29, 2024, Time: 11:37:01, Page 2

			Demand	Elevation	Head	Pressure
		ID	(L/s)	(m)	(m)	(psi)
1	$\overline{}$	J10	0.00	84.86	143.77	83.74
2	Ħ	J100	29.42	80.10	142.75	89.06
3	품	J104	11.29	79.92	142.74	89.31
4	품	J110	0.00	79.47	142.95	90.25
5	품	J112	0.00	81.34	142.86	87.45
6	품	J114	0.00	81.23	142.88	87.65
7	품	J116	0.00	79.95	142.76	89.29
8	품	J118	0.00	79.36	142.75	90.12
9	품	J120	0.00	78.33	142.75	91.58
10	품	J122	0.00	79.33	142.75	90.16
11	품	J124	0.00	79.44	142.74	89.98
12	품	J124	14.01	80.21	142.71	88.85
13	품	J128	5.73	81.35	142.75	87.28
14	음	J130	0.00	82.01	142.76	86.36
15	음	J132	0.00	82.11	142.70	86.26
	믐		2.23	81.80	142.79	87.11
16	జ	J134	0.00	79.85	143.07	
17	片	J136				89.66
18	믕	J138	0.00	82.78	142.75	85.25
19	브	J14	0.00	81.75	143.47	87.73
20	닞	J142	0.00	80.35	143.25	89.42
21	닏	J144	0.00	83.05	143.25	85.57
22	닏	J146	0.00	81.26	143.12	87.93
23	\Box	J150	0.00	78.92	143.10	91.23
24	브	J152	0.00	75.92	143.08	95.48
25	$\underline{\cup}$	J154	0.00	82.07	142.97	86.58
26	\Box	J156	0.00	81.32	142.88	87.52
27		J158	0.00	81.44	142.89	87.36
28	\Box	J160	0.00	85.03	143.77	83.51
29	\Box	J162	0.00	83.72	143.75	85.34
30	\Box	J164	0.00	81.79	143.71	88.03
31	\Box	J166	0.00	80.85	143.68	89.32
32	\Box	J170	0.00	86.05	143.83	82.14
33	닏	J172	12.85	84.43	143.76	84.34
34		J174	3.92	85.14	143.76	83.33
35		J176	9.44	85.60	143.76	82.68
36		J178	16.89	82.30	143.64	87.20
37		J18	0.00	86.12	143.77	81.95
38		J180	8.58	81.86	143.64	87.83
39		J182	8.36	81.31	143.65	88.62
40		J190	0.00	85.04	143.73	83.44
41		J192	0.00	84.17	143.70	84.63
42		J194	0.00	83.38	143.68	85.72
43		J196	0.00	84.10	143.65	84.66
44		J198	0.00	82.80	143.66	86.52
45		J20	31.08	82.84	142.87	85.34
46		J200	0.00	81.35	142.75	87.29
47		J202	0.00	81.35	142.75	87.29
48		J204	6.03	86.27	143.84	81.84
49		J206	7.01	86.44	143.93	81.73
50		J208	4.83	86.29	143.87	81.86

Date: Monday, April 29, 2024, Time: 11:37:43, Page 1

			Demand	Elevation	Head	Pressure
		ID	(L/s)	(m)	(m)	(psi)
51		J210	4.55	85.54	143.54	82.46
52	Ō	J212	6.74	85.69	143.81	82.62
53	$\bar{\Box}$	J214	6.47	85.28	143.79	83.17
54	$\bar{\Box}$	J218	0.61	83.53	143.35	85.05
55		J220	12.44	83.90	143.35	84.51
56		J222	0.00	83.80	143.35	84.66
57		J224	12.45	83.31	143.34	85.33
58		J226	10.76	82.95	143.34	85.84
59		J230	0.00	82.77	143.71	86.63
60		J232	0.00	84.93	143.61	83.42
61		J234	16.30	83.18	143.48	85.72
62		J24	28.97	82.29	142.75	85.95
63		J240	0.00	84.37	143.50	84.06
64		J246	0.00	79.85	143.76	90.85
65		J248	0.00	82.80	143.66	86.52
66		J250	0.00	80.85	143.66	89.30
67		J252	0.00	83.72	143.66	85.22
68		J258	0.00	79.85	143.66	90.72
69		J30	0.00	83.41	143.47	85.38
70		J34	0.00	83.24	143.34	85.44
71		J38	0.00	82.86	143.09	85.62
72		J40	2.08	83.61	142.99	84.41
73		J42	0.00	82.93	143.12	85.56
74		J44	9.72	81.47	143.14	87.67
75		J46	0.00	82.71	143.25	86.06
76		J48	0.00	80.79	142.76	88.10
77		J50	0.00	80.75	142.76	88.15
78		J54	3.73	82.17	142.94	86.39
79		J58	10.23	82.05	142.98	86.62
80		J62	42.75	79.65	142.95	89.99
81		J64	26.37	81.10	142.88	87.83
82		J70	0.00	81.15	142.88	87.76
83		J74	21.58	81.63	142.79	86.95
84		J80	0.57	81.70	142.79	86.85
85		J84	2.11	82.46	142.75	85.71
86		J88	10.14	82.00	142.75	86.36
87		J92	25.01	81.61	142.74	86.91
88		J96	0.00	80.91	142.77	87.93

PHD - PIPE

PHD	- PIP	E										
4		ID	From Node	To Node	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)	Headloss (m)	HL/1000 (m/k-m)	Status
1		24	J44	J146	37.79	300.00	120.00	26.02	0.37	0.02	0.62	Open
2		25	J112	J114	11.08	300.00	120.00	-55.99	0.79	0.03	2.55	Open
3		26	J110	J116	162.84	300.00	120.00	37.08	0.52	0.19	1.19	Open
4		27	J116	J118	103.23	200.00	120.00	2.75	0.09	0.01	0.07	Open
5		28	J120	J118	17.79	200.00	120.00	1.55	0.05	0.00	0.02	Open
6		29	J118	J122	14.95	200.00	120.00	4.30	0.14	0.00	0.16	Open
7		30	J122	J124	88.59	200.00	120.00	4.30	0.14	0.01	0.16	Open
8		31	J124	J126	144.09	200.00	120.00	4.30	0.14	0.02	0.16	Open
9		32	J50	J120	146.51	200.00	120.00	1.55	0.05	0.00	0.02	Open
10		33	J130	J128	112.40	200.00	120.00	2.82	0.09	0.01	0.07	Open
11		34	J130	J112	156.59	300.00	120.00	-26.48	0.37	0.10	0.64	Open
12		35	J74	J112	79.98	300.00	120.00	-29.52	0.42	0.06	0.78	Open
13	Ī	36	J248	J14	98.08	400.00	120.00	105.55	0.84	0.20	2.03	Open
14	Ī	37	J134	J136	166.63	300.00	120.00	32.09	0.45	0.15	0.91	Open
15	Ĭ	38	J138	J24	110.22	300.00	120.00	-1.36	0.02	0.00	0.00	Open
16	Ĭ	40	J142	J146	135.17	300.00	120.00	33.83	0.48	0.14	1.00	Open
17	Ĭ	41	J144	J134	154.56	300.00	120.00	35.77	0.51	0.17	1.11	Open
18	Ħ	42	J126	J104	40.45	200.00	120.00	-9.71	0.31	0.03	0.72	Open
19	Ħ	6	J40	J38	120.78	300.00	120.00	-30.66	0.43	0.10	0.83	Open
20	Ħ	8	J48	J50	91.46	200.00	120.00	3.33	0.11	0.01	0.10	Open
21	Ħ	P101	J176	J174	94.00	600.00	120.00	38.06	0.13	0.00	0.04	Open
22	H	P103	J230	J192	198.76	250.00	110.00	2.99	0.06	0.01	0.03	Open
23	H	P105	J18	J204	50.72	600.00	120.00	-241.54	0.85	0.07	1.30	Open
24	H	P107	J160	J10	17.35	600.00	120.00	100.06	0.35	0.00	0.25	Open
25	H	P109	J164	J230	173.09	250.00	110.00	2.99	0.06	0.01	0.03	Open
26	H	P111	J162	J164	99.75	300.00	120.00	21.29	0.30	0.04	0.42	Open
27	H	P113	J164	J166	86.36	300.00	120.00	18.30	0.26	0.03	0.32	Open
28	H	P115	J166	J182	102.73	300.00	120.00	18.30	0.26	0.03	0.32	Open
29	H	P117	J182	J180	97.29	300.00	120.00	9.94	0.14	0.01	0.10	Open
30	H	P119	J180	J178	85.87	300.00	120.00	1.36	0.02	0.00	0.00	Open
31	H	P121	J170	J212	75.22	600.00	120.00	113.27	0.40	0.02	0.32	Open
32	H	P129	J218	J220	71.02	300.00	120.00	8.88	0.13	0.01	0.08	Open
33	H	P13	J146	J134	109.84	300.00	120.00	19.68	0.28	0.04	0.37	Open
34	H	P131	J220	J222	64.95	300.00	120.00	-3.56	0.05	0.00	0.02	Open
35	片	P133	J222	J224	89.72	300.00	120.00	12.66	0.18	0.01	0.16	Open
36	H	P135	J224	J226	83.02	300.00	120.00	0.21	0.00	0.00	0.00	Open
37	H	P143	J18	J190	61.03	400.00	120.00	53.68	0.43	0.04	0.58	Open
38	H	P145	J190	J192	58.87	400.00	120.00	53.68	0.43	0.03	0.58	Open
39	H	P147	J190	J194	53.65	400.00	120.00	42.25	0.43	0.03	0.37	Open
40	H	P15	J146	J62	118.80	300.00	120.00	40.16	0.57	0.02	1.38	Open
41	금	P151	J214	J212	69.37	600.00	120.00	-106.53	0.38	0.10	0.29	Open
42	H	P153	J210	J240	125.40	250.00	110.00	10.45	0.21	0.02	0.23	Open
42	H	P155	J196	J30	100.45	400.00	120.00	100.06	0.80	0.04	1.84	Open
43	금	P155	J194	J198	49.89	400.00	120.00	42.25	0.34	0.10	0.37	Open
45	H	P157	J128	J200	133.31	200.00	120.00	-1.12	0.04	0.02	0.01	Open
46	H	P161	J208	J170	63.93	600.00	120.00	165.84	0.59	0.00	0.65	Open
46	H	P161	J208 J202	J138	119.12	200.00	120.00	-1.12	0.59	0.04	0.05	Open
47	H	P163	J136	J96	166.15	300.00	120.00	32.80	0.04	0.00	0.01	Open
48	분	P165	J200	J202	11.25	200.00	120.00	-1.12	0.40	0.00	0.93	Open
	분	P167	J206	J202 J208	82.80	600.00	120.00	170.67	0.60	0.06	0.69	Open
50	H	P169 P17	J62	J110	47.94	300.00	120.00	-2.59	0.00	0.00	0.09	Open
			J206	J204	69.37	600.00	120.00	247.57	0.04	0.00	1.37	-
52	분	P171	J206 J210	J204 J222	86.86	300.00	120.00	51.99	0.88	0.09	2.22	Open
53	분	P175										Open
54	분	P177	J172	J174	85.77	600.00	120.00	-34.14	0.12	0.00	0.03	Open
55		P179	J162	J172	81.18	600.00	120.00	-21.29	0.08	0.00	0.01	Open

Date: Monday, April 29, 2024, Time: 11:38:09, Page 1

PHD - PIPE

PHD	- PIP	E										
4		ID	From Node	To Node	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)	Headloss (m)	HL/1000 (m/k-m)	Status
56		P183	J232	J210	120.26	250.00	110.00	14.42	0.29	0.07	0.59	Open
57		P185	RES9002	J206	48.21	600.00	120.00	425.25	1.50	0.18	3.72	Open
58		P187	J214	J160	62.93	600.00	120.00	100.06	0.35	0.02	0.25	Open
59		P189	J226	J34	51.07	300.00	120.00	-10.55	0.15	0.01	0.12	Open
60		P19	J20	J54	117.59	300.00	120.00	-25.47	0.36	0.07	0.59	Open
61		P191	J192	J232	147.89	250.00	110.00	14.42	0.29	0.09	0.59	Open
62		P193	J218	J234	71.16	300.00	120.00	-45.23	0.64	0.12	1.71	Open
63		P195	J178	J198	86.78	300.00	120.00	-15.53	0.22	0.02	0.24	Open
64		P197	J176	J18	110.72	600.00	120.00	-47.50	0.17	0.01	0.06	Open
65		P199	J170	J210	128.03	300.00	120.00	52.57	0.74	0.29	2.27	Open
66		P201	J234	J198	61.08	300.00	120.00	-61.53	0.87	0.19	3.03	Open
67		P21	J14	J142	106.09	400.00	120.00	105.55	0.84	0.22	2.03	Open
68		P215	J240	J30	102.65	250.00	110.00	10.45	0.21	0.03	0.32	Open
69		P217	J222	J144	93.00	300.00	120.00	35.77	0.51	0.10	1.11	Open
70		P219	J218	J46	95.10	300.00	120.00	35.74	0.51	0.11	1.11	Open
71		P225	J246	J172	356.21	900.00	130.00	0.00	0.00	0.00	0.00	Open
72		P229	J250	J248	375.46	600.00	120.00	0.00	0.00	0.00	0.00	Open
73	Ŏ	P231	J248	J18	220.67	600.00	120.00	-140.36	0.50	0.11	0.48	Open
74	Ŏ	P235	J252	J250	182.26	900.00	130.00	0.00	0.00	0.00	0.00	Open
75	Ĭ	P237	J250	J258	89.25	900.00	130.00	0.00	0.00	0.00	0.00	Open
76	Ħ	P239	J248	J198	10.64	400.00	120.00	34.81	0.28	0.00	0.26	Open
77	Ħ	P25	J150	J152	12.66	400.00	120.00	71.72	0.57	0.01	0.99	Open
78	H	P27	J152	J110	132.14	400.00	120.00	71.72	0.57	0.13	0.99	Open
79	H	P29	J110	J136	128.24	400.00	120.00	32.06	0.26	0.03	0.22	Open
80	H	P31	J136	J64	180.81	400.00	120.00	31.35	0.25	0.04	0.21	Open
81	H	P33	J64	J70	14.43	400.00	120.00	4.98	0.04	0.00	0.01	Open
82	H	P35	J70	J156	34.75	400.00	120.00	4.98	0.04	0.00	0.01	Open
83	H	P37	J156	J114	6.20	400.00	120.00	4.98	0.04	0.00	0.01	Open
84	H	P39	J114	J158	17.17	400.00	120.00	-51.01	0.41	0.01	0.53	Open
85	H	P41	J154	J158	153.05	400.00	120.00	51.01	0.41	0.08	0.53	Open
86	H	P43	J42	J154	156.43	400.00	120.00	69.30	0.55	0.15	0.93	Open
87	H	P45	J34	J42	120.68	400.00	120.00	99.96	0.80	0.22	1.83	Open
88	H	P47	J30	J34	57.66	400.00	120.00	110.51	0.88	0.13	2.21	Open
89	품	P51	J58	J134	228.31	300.00	120.00	-21.14	0.30	0.10	0.42	Open
90	품	P53	J154	J58	39.98	300.00	120.00	-10.91	0.15	0.00	0.12	Open
91	품	P55	J104	J116	41.94	300.00	120.00	-21.00	0.30	0.02	0.41	Open
92	품	P57	J116	J100	77.25	300.00	120.00	13.32	0.19	0.01	0.18	Open
93	H	P59	J100	J96	84.08	300.00	120.00	-16.10	0.23	0.02	0.25	Open
94	H	P61	J96	J48	6.45	300.00	120.00	16.70	0.24	0.02	0.27	Open
95	H	P63	J48	J92	120.82	300.00	120.00	13.37	0.19	0.00	0.18	Open
96	8	P65	J92	J130	97.59	300.00	120.00	-11.64	0.19	0.02	0.16	Open
97	7	P69	J84	J88	69.90	300.00	120.00	-1.87	0.03	0.00	0.00	Open
98	H	P71	J138	J84	53.85	300.00	120.00	0.24	0.00	0.00	0.00	Open
99	8	P73	J132	J24	44.79	300.00	120.00	30.33	0.43	0.04	0.82	Open
100	H	P75	J20	J132	172.60	300.00	120.00	22.96	0.43	0.04	0.82	Open
100	H	P77	J40	J20	159.11	300.00	120.00	28.58	0.32	0.08	0.49	Open
101	2	P77	J50	J128	234.05	200.00	120.00	1.78	0.40	0.12	0.73	Open
102	2	P79 P81	J38	J126 J42	35.30	300.00	120.00	-30.66	0.06	0.01	0.03	Open
103	2	P83	J54	J154	41.53	300.00	120.00	-29.20	0.43	0.03	0.83	Open
	H		J80	J74	13.52	300.00	120.00	-29.20 -7.94	0.41	0.03	0.76	
105		P85										Open
106		P87	J132	J80	74.26	300.00	120.00	-7.37	0.10	0.00	0.06	Open
107		P89	J10	J196	62.59	400.00	120.00	100.06	0.80	0.12	1.84	Open
108		P93	J88	J130	30.88	300.00	120.00	-12.01	0.17	0.00	0.15	Open
109	_	P95	J142	J150	156.08	400.00	120.00	71.72	0.57	0.15	0.99	Open
110	\cup	P97	J46	J44	100.05	300.00	120.00	35.74	0.51	0.11	1.11	Open

Date: Monday, April 29, 2024, Time: 11:38:09, Page 2

	ID	Static Demand (L/s)	Static Pressure (psi)	Static Head (m)	Fire-Flow Demand (L/s)	Residual Pressure (psi)	Hydrant Available Flow (L/s)	Hydrant Pressure at Available Flow (psi)	Critical Pipe ID at Available Flow	Critical Pipe Velocity at Available Flow (m/s)	Junctions with Pressure Violation
1	J230	0.00	86.96	143.94	317.00	71.98	485.51	54.43	P109	5.00	0
2	J232	0.00	83.83	143.90	317.00	73.04	472.04	61.70	P183	4.99	0
3	J240	0.00	84.57	143.86	317.00	74.60	464.54	64.97	P215	4.99	0
4	J210	3.03	82.92	143.87	317.00	80.11	936.70	65.77	P199	5.00	0
5	J180	5.72	88.21	143.91	317.00	80.71	595.46	66.09	P119	4.99	0
6	J224	8.30	85.97	143.79	317.00	80.81	655.16	69.04	P133	5.03	0
7	J220	8.30	85.14	143.79	317.00	80.86	659.79	71.08	P131	4.99	0
8	J182	5.57	89.00	143.91	317.00	80.96	691.16	57.75	P115	5.02	0
9	J18	0.00	82.23	143.97	317.00	81.34	1,554.59	72.69	P105	5.04	0
10	J208	3.22	82.05	144.01	317.00	81.35	1,546.75	74.38	P169	5.02	0
11	J204	4.02	82.06	143.99	317.00	81.37	1,471.21	75.33	P171	5.05	0
12	J170	0.00	82.37	143.99	317.00	81.45	1,645.65	71.17	P161	5.02	0
13	J206	4.67	81.87	144.03	317.00	81.52	1,156.83	79.61	P185	5.02	0
14	J212	4.49	82.87	143.98	317.00	81.72	1,636.85	68.52	P121	5.00	0
15	J176	6.29	82.97	143.96	317.00	81.75	1,542.14	68.16	P197	5.03	0
16	J226	7.18	86.48	143.79	317.00	81.92	547.58	75.66	P189	5.03	0
17	J178	11.26	87.58	143.91	317.00	81.95	500.59	75.80	P195	5.04	0
18	J218	0.41	85.67	143.79	317.00	82.07	863.00	66.76	P193	5.00	0
19	J214	4.31	83.44	143.97	317.00	82.13	1,727.08	64.84	P151	5.00	0
20	J174	2.61	83.62	143.96	317.00	82.18	1,596.23	63.58	P101	5.02	0
21	J222	0.00	85.28	143.79	317.00	82.29	1,000.70	66.15	P175	5.01	0
22	J190	0.00	83.75	143.95	317.00	82.32	1,033.29	74.20	P143	5.00	0
23	J160	0.00	83.79	143.97	317.00	82.36	1,810.79	61.04	P187	5.04	0
24	J10	0.00	84.02	143.97	317.00	82.57	1,828.71	60.24	P107	5.05	0
25	J166	0.00	89.67	143.93	317.00	82.72	568.17	70.25	P113	5.05	0
26	J234	10.87	86.24	143.84	317.00	82.72	574.89	77.13	P201	5.00	0
27	J196	0.00	85.04	143.92	317.00	82.99	931.37	73.94	P89	5.02	0
28	J172	8.57	84.63	143.96	317.00	82.99	1,640.92	60.00	P177	5.01	0
29	J34	0.00	86.08	143.79	317.00	83.35	1,120.06	66.29	P47	5.02	0
30	J30	0.00	85.91	143.84	317.00	83.43	1,192.41	65.77	P155	5.01	0
31	J192	0.00	84.96	143.94	317.00	83.47	1,416.33	67.89	P145	5.00	0
32	J164	0.00	88.35	143.94	317.00	83.74	618.88	73.55	P111	5.04	0
33	J162	0.00	85.63	143.96	317.00	83.84	1,675.39	56.43	P179	5.00	0
34	J194	0.00	86.07	143.93	317.00	84.54	1,104.94	74.88	P157	4.97	0
35	J198	0.00	86.89	143.92	317.00	85.57	1,020.53	79.46	P239	5.00	0

Appendix B-6

Water Age Analysis
- Option 1

Water Turnover Calculations

Project Title: 4938 - Rangeview Mississauga

Last Edited: 2024-04-29

Municipality Region of Peel

Average Consumption:0.28L/cap/day(Residential Land Use)0.3L/cap/day(Employment Land Use)

Minimum Consumption: 0.196 L/cap/day¹

	Turnover Rate Calculation												
Service	Length	Diameter	Area	Volume	Average Consumption (100% Population)	Minimum Consumption (70% Population)	Minimum Consumption (20% Population)	Days for Turnover					
	(m)	(mm)	(m ²)	(m ³)	(m³/day)	(m³/day)	(m³/day)	(Day)					
	1257	200	0.03	39.50									
	868	250	0.05	42.61									
Complete System	4642	300	0.07	328.12	13462.68	9423.88	1884.78	0.55					
	1772	400	0.13	222.62									
	1459	600	0.28	412.66									

^{1 -} Minimum consumption calculated using: average day consumption * 0.7

Appendix B-5 InfoWater

Model Outputs - Option 2

			Demand	Elevation	Head	Pressure
		ID	(L/s)	(m)	(m)	(psi)
1	$\overline{}$	J206	2.34	86.44	144.06	81.92
2	Ħ	J262	0.00	86.44	144.09	81.95
3	+	J208	1.61	86.29	144.06	82.13
4	井	J204	2.01	86.27	144.06	82.16
	井	J270	0.00	86.12	144.06	82.37
5	+	J18	0.00	86.12	144.07	82.37
6	H	J170	0.00	86.05	144.07	82.48
7	H	J268	0.00	86.02	144.07	82.51
8	H	J200	2.25	85.69	144.06	82.98
9	H	J176	3.15	85.60	144.06	83.11
10	ዙ	J210	1.52	85.54	144.03	83.15
	H	J210	2.16	85.28	144.06	83.57
12	ዙ	J174	1.31	85.14	144.06	83.76
13	+			85.04	144.06	
14	ዙ	J190	0.00	85.03	144.06	83.90
15	ዙ	J160	0.00		144.06	83.92
16	뷰	J232	0.00	84.93		84.04
17	뷰	J10	0.00	84.86	144.06	84.16
18	뷰	J172	4.28	84.43	144.06	84.77
19	부	J266	0.00	84.43	144.06	84.77
20	부	J240	0.00	84.37	144.03 144.06	84.81
21	Η	J192	0.00	84.17	144.05	85.13
22	부	J196	0.00	84.10		85.22
23	井	J220	4.15	83.90	144.01	85.45
24	屵	J222	0.00	83.80	144.01	85.59
25	屵	J252	0.00	83.72	144.05	85.77
26	ᆜ	J162	0.00	83.72	144.06	85.78
27	ᆜ	J40	0.69	83.61	143.96	85.80
28	屵	J218	0.20	83.53	144.01	85.98
29	ᆜ	J30	0.00	83.41	144.02	86.17
30	屵	J194	0.00	83.38	144.05	86.25
31	ᆜ	J224	4.15	83.31	144.01	86.29
32	屵	J34	0.00	83.24	144.01	86.39
33	부	J234	5.43	83.18	144.03	86.50
34	부	J144	0.00	83.05	144.00	86.64
35	부	J42	0.00	82.93	143.98	86.79
36	부	J226	3.59	82.95	144.01	86.80
37	부	J20	10.36	82.84	143.95	86.87
38	부	J38	0.00	82.86	143.98	86.88
39	닏	J138	0.00	82.78	143.93	86.93
40	닏	J198	0.00	82.80	144.05	87.07
41	닏	J248	0.00	82.80	144.05	87.07
42	닏	J46	0.00	82.71	144.00	87.12
43	부	J230	0.00	82.77	144.06	87.12
44	닏	J84	0.70	82.46	143.93	87.39
45	닏	J24	9.66	82.29	143.93	87.63
46	ᆜ	J178	5.63	82.30	144.05	87.78
47	\sqsubseteq	J54	1.24	82.17	143.96	87.83
48	\sqsubseteq	J132	0.00	82.11	143.94	87.89
49		J154	0.00	82.07	143.96	87.98
50		J58	3.41	82.05	143.96	88.01

Date: Tuesday, July 02, 2024, Time: 13:45:26, Page 1

			Demand	Elevation	Head	Pressure
		ID	(L/s)	(m)	(m)	(psi)
51	\Box	J130	0.00	82.01	143.93	88.03
52	片	J88	3.38	82.00	143.93	88.04
53	븕	J134	0.74	81.80	143.97	88.39
54	ዙ	J180	2.86	81.86	144.05	88.41
55	ዙ	J80	0.19	81.70	143.94	88.48
56	片	J164	0.00	81.79	144.06	88.52
57	片	J14	0.00	81.75	144.03	88.53
58	片	J74	7.19	81.63	143.94	88.57
59	片	J92	8.34	81.61	143.93	88.59
60	ዙ	J158	0.00	81.44	143.95	88.86
61	ዙ	J44	3.24	81.47	143.98	88.87
62	ዙ	J128	1.91	81.35	143.93	88.96
63	ዙ	J200	0.00	81.35	143.93	88.96
64	ዙ	J202	0.00	81.35	143.93	88.96
65	片	J112	0.00	81.34	143.95	89.00
66	片	J156	0.00	81.32	143.95	89.03
67	片	J114	0.00	81.23	143.95	89.16
68	片	J146	0.00	81.26	143.98	89.16
69	片	J182	2.79	81.31	144.05	89.19
70	片	J70	0.00	81.15	143.95	89.27
71	ዙ	J64	8.79	81.10	143.95	89.35
72	片	J96	0.00	80.91	143.93	89.59
73	片	J48	0.00	80.79	143.93	89.76
74	片	J50	0.00	80.75	143.93	89.82
75	ዙ	J250	0.00	80.85	144.05	89.85
76	ዙ	J166	0.00	80.85	144.05	89.85
77	ዙ	J142	0.00	80.35	144.00	90.48
78	ዙ	J126	4.67	80.21	143.93	90.48
79	ዙ	J100	9.81	80.10	143.93	90.74
80	ዙ	J116	0.00	79.95	143.93	90.74
81	片	J104	3.76	79.92	143.93	91.00
82	片	J136	0.00	79.85	143.95	91.13
83	片	J258	0.00	79.85	144.05	91.13
84	片	J246	0.00	79.85	144.06	91.29
85	ዙ	J62	14.25	79.65	143.96	91.42
86	ዙ	J110	0.00	79.47	143.96	91.67
87	ዙ	J124	0.00	79.44	143.93	91.68
88	片	J118	0.00	79.36	143.93	91.79
89	ዙ	J122	0.00	79.33	143.93	91.84
90	ዙ	J150	0.00	78.92	143.98	92.48
91	片	J120	0.00	78.33	143.93	93.26
92	片	J152	0.00	75.92	143.93	96.75
92	Ш	0102	0.00	10.82	140.81	90.73

ADD-PIP	'E											
	ID	From Node	To Node	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)	Headloss (m)	HL/1000 (m/k-m)	Status	Flow Reversal Count
1	24	J44	J146	37.79	300.00	120.00	8.64	0.12	0.00	0.08	Open	0
2	25	J112	J114	11.08	300.00	120.00	-18.66	0.26	0.00	0.33	Open	0
3	26	J110	J116	162.84	300.00	120.00	12.37	0.17	0.03	0.16	Open	0
4	27	J116	J118	103.23	200.00	120.00	0.92	0.03	0.00	0.01	Open	0
5	28	J120	J118	17.79	200.00	120.00	0.51	0.02	0.00	0.00	Open	0
6	29	J118	J122	14.95	200.00	120.00	1.43	0.05	0.00	0.02	Open	0
7	30	J122	J124	88.59	200.00	120.00	1.43	0.05	0.00	0.02	Open	0
8	31	J124	J126	144.09	200.00	120.00	1.43	0.05	0.00	0.02	Open	0
9	32	J50	J120	146.51	200.00	120.00	0.51	0.02	0.00	0.00	Open	0
10	33	J130	J128	112.40	200.00	120.00	0.94	0.03	0.00	0.01	Open	0
11	34	J130	J112	156.59	300.00	120.00	-8.82	0.12	0.01	0.08	Open	0
12	35	J74	J112	79.98	300.00	120.00	-9.84	0.14	0.01	0.10	Open	0
13	36	J248	J14	98.08	400.00	120.00	35.32	0.28	0.03	0.27	Open	0
14	37	J134	J136	166.63	300.00	120.00	10.68	0.15	0.02	0.12	Open	0
15	38	J138	J24	110.22	300.00	120.00	-0.44	0.01	0.00	0.00	Open	0
16	40	J142	J146	135.17	300.00	120.00	11.35	0.16	0.02	0.13	Open	0
17	41	J144	J134	154.56	300.00	120.00	11.88	0.17	0.02	0.14	Open	0
18	42	J126	J104	40.45	200.00	120.00	-3.24	0.10	0.00	0.09	Open	0
19	6	J40	J38	120.78	300.00	120.00	-10.20	0.14	0.01	0.11	Open	0
20	8	J48	J50	91.46	200.00	120.00	1.11	0.04	0.00	0.01	Open	0
21	P101	J176	J174	98.07	300.00	120.00	0.98	0.01	0.00	0.00	Open	0
22	P103	J230	J192	198.76	250.00	110.00	1.05	0.02	0.00	0.00	Open	0
23	P105	J204	J270	51.89	300.00	120.00	-1.38	0.02	0.00	0.00	Open	0
24	P107	J160	J10	21.74	300.00	120.00	-0.46	0.01	0.00	0.00	Open	0
25	P109	J164	J230	173.09	250.00	110.00	1.05	0.02	0.00	0.00	Open	0
26	P111	J162	J164	99.75	300.00	120.00	7.19	0.10	0.01	0.06	Open	0
27	P113	J164	J166	86.36	300.00	120.00	6.14	0.09	0.00	0.04	Open	0
28	P115	J166	J182	102.73	300.00	120.00	6.14	0.09	0.00	0.04	Open	0
29	P117	J182	J180	97.29	300.00	120.00	3.35	0.05	0.00	0.01	Open	0
30	P119	J180	J178	85.87	300.00	120.00	0.49	0.01	0.00	0.00	Open	0
31	P121	J212	J268	72.14	300.00	120.00	-3.95	0.06	0.00	0.02	Open	0
32	P129	J218	J220	71.02	300.00	120.00	3.18	0.05	0.00	0.01	Open	0
33	P13	J146	J134	109.84	300.00	120.00	6.60	0.09	0.01	0.05	Open	0
34	P131	J220	J222	64.95	300.00	120.00	-0.97	0.01	0.00	0.00	Open	0
35	P133	J222	J224	89.72	300.00	120.00	4.17	0.06	0.00	0.02	Open	0
36	P135	J224	J226	83.02	300.00	120.00	0.02	0.00	0.00	0.00	Open	0
37	P143	J18	J270	13.46	400.00	120.00	23.61	0.19	0.00	0.13	Open	0
38	P145	J190	J192	58.87	400.00	120.00	18.11	0.14	0.00	0.08	Open	0
39	P147	J192	J194	53.65	400.00	120.00	14.13	0.11	0.00	0.05	Open	0
40	P15	J146	J62	118.80	300.00	120.00	13.38	0.19	0.02	0.18	Open	0
41	P151	J214	J212	67.91	300.00	120.00	-1.70	0.02	0.00	0.00	Open	0
42	P153	J210	J240	125.40	250.00	110.00	3.31	0.07	0.00	0.04	Open	0
43	P155	J196	J30	100.45	400.00	120.00	33.52	0.27	0.02	0.24	Open	0
44	P157	J194	J198	49.89	400.00	120.00	14.13	0.11	0.00	0.05	Open	0
45	P159	J128	J200	133.31	200.00	120.00	-0.37	0.01	0.00	0.00	Open	0
46	P161	J208	J268	64.21	300.00	120.00	-4.58	0.06	0.00	0.02	Open	0
47	P163	J202	J138	119.12	200.00	120.00	-0.37	0.01	0.00	0.00	Open	0
48	P165	J136	J96	166.15	300.00	120.00	10.94	0.15	0.02	0.12	Open	0
49	P167	J200	J202	11.25	200.00	120.00	-0.37	0.01	0.00	0.00	Open	0
50	P169	J206	J208	82.38	300.00	120.00	-2.97	0.04	0.00	0.01	Open	0
51	P17	J62	J110	47.94	300.00	120.00	-0.87	0.01	0.00	0.00	Open	0
52	P171	J206	J204	69.88	300.00	120.00	0.63	0.01	0.00	0.00	Open	0
53	P175	J210	J222	86.86	300.00	120.00	17.02	0.24	0.02	0.28	Open	0
54	P177	J172	J174	81.01	300.00	120.00	0.33	0.00	0.00	0.00	Open	0
55	P179	J172	J162	87.33	300.00	120.00	-4.61	0.07	0.00	0.03	Open	0
56	P183	J232	J210	120.26	250.00	110.00	5.02	0.10	0.01	0.08	Open	0
57	P185	RES9002	J262	48.40	600.00	120.00	141.76	0.50	0.02	0.49	Open	0
58	P187	J214	J160	63.52	300.00	120.00	-0.46	0.01	0.00	0.00	Open	0
59	P189	J226	J34	51.07	300.00	120.00	-3.57	0.05	0.00	0.02	Open	0
60	P19	J20	J54	117.59	300.00	120.00	-8.49	0.12	0.01	0.08	Open	0
61	P191	J192	J232	147.89	250.00	110.00	5.02	0.10	0.01	0.08	Open	0
62	P193	J218	J234	71.16	300.00	120.00	-15.26	0.22	0.02	0.23	Open	0
63	P195	J178	J198	86.78	300.00	120.00	-5.14	0.07	0.00	0.03	Open	0
64	P197	J176	J270	106.19	300.00	120.00	-4.13	0.06	0.00	0.02	Open	0
<u> </u>			•									

Date: Tuesday, July 02, 2024, Time: 13:46:35, Page 1

		ID	From Node	To Node	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)	Headloss (m)	HL/1000 (m/k-m)	Status	Flow Reversal Count
65		P199	J170	J268	10.33	300.00	120.00	25.35	0.36	0.01	0.59	Open	0
66		P201	J234	J198	61.08	300.00	120.00	-20.69	0.29	0.02	0.40	Open	0
67	П	P21	J14	J142	106.09	400.00	120.00	35.32	0.28	0.03	0.27	Open	0
68	Ħ	P215	J240	J30	102.65	250.00	110.00	3.31	0.07	0.00	0.04	Open	0
69	Ħ	P217	J222	J144	93.00	300.00	120.00	11.88	0.17	0.01	0.14	Open	0
70	Ħ	P219	J218	J46	95.10	300.00	120.00	11.88	0.17	0.01	0.14	Open	0
71	Ħ	P225	J246	J266	355.06	900.00	130.00	0.00	0.00	0.00	0.00	Open	0
72	Ħ	P229	J250	J248	375.46	600.00	120.00	0.00	0.00	0.00	0.00	Open	0
73	Ħ	P231	J248	J18	220.67	600.00	120.00	-47.01	0.17	0.01	0.06	Open	0
74	Ħ	P235	J252	J250	182.26	900.00	130.00	0.00	0.00	0.00	0.00	Open	0
75	Ħ	P237	J250	J258	89.25	900.00	130.00	0.00	0.00	0.00	0.00	Open	0
76	Ħ	P239	J248	J198	10.64	400.00	120.00	11.70	0.09	0.00	0.03	Open	0
77	Ħ	P241	J162	J266	79.26	600.00	120.00	-11.80	0.04	0.00	0.00	Open	0
78	H	P243	J18	J262	118.60	600.00	120.00	-82.43	0.29	0.02	0.18	Open	0
79	H	P245	J170	J10	221.78	600.00	120.00	33.98	0.12	0.01	0.03	Open	0
80	H	P247	J262	J170	148.23	600.00	120.00	59.33	0.12	0.01	0.10	Open	0
81	H	P249	J266	J18	292.37	600.00	120.00	-11.80	0.21	0.00	0.00	Open	0
82	ዙ	P249	J150	J152	12.66	400.00	120.00	23.97	0.04	0.00	0.13	Open	0
-	H		J268	J210	117.75	300.00	120.00	16.82	0.19	0.00	0.13	-	0
83	H	P251 P253	J270	J190	37.69	400.00	120.00	18.11	0.24	0.00	0.27	Open Open	0
	H	_	J152	J110	132.14	400.00	120.00	23.97	0.14	0.00	0.08	Open	0
85	ዙ	P27	J110	J136	128.24	400.00	120.00	10.74	0.19	0.02	0.13		0
86	H	P29				400.00	120.00		0.09		0.03	Open	0
87	H	P31	J136	J64	180.81			10.48		0.01		Open	
88	井	P33	J64	J70	14.43	400.00	120.00 120.00	1.69	0.01	0.00	0.00	Open	0
89	\blacksquare	P35	J70	J156	34.75	400.00		1.69	0.01	0.00	0.00	Open	
90	ዙ	P37	J156	J114	6.20	400.00	120.00	1.69	0.01	0.00	0.00	Open	0
91	Щ	P39	J114	J158	17.17	400.00	120.00	-16.97	0.14	0.00	0.07	Open	0
92	Щ	P41	J154	J158	153.05	400.00	120.00	16.97	0.14	0.01	0.07	Open	0
93	Щ	P43	J42	J154	156.43	400.00	120.00	23.05	0.18	0.02	0.12	Open	0
94	Щ	P45	J34	J42	120.68	400.00	120.00	33.26	0.26	0.03	0.24	Open	0
95	Щ	P47	J30	J34	57.66	400.00	120.00	36.82	0.29	0.02	0.29	Open	0
96	Щ	P51	J58	J134	228.31	300.00	120.00	-7.06	0.10	0.01	0.05	Open	0
97	Щ	P53	J154	J58	39.98	300.00	120.00	-3.65	0.05	0.00	0.02	Open	0
98	Щ	P55	J104	J116	41.94	300.00	120.00	-7.00	0.10	0.00	0.05	Open	0
99	Ш	P57	J116	J100	77.25	300.00	120.00	4.45	0.06	0.00	0.02	Open	0
100	Ш	P59	J100	J96	84.08	300.00	120.00	-5.36	0.08	0.00	0.03	Open	0
101	Ш	P61	J96	J48	6.45	300.00	120.00	5.57	0.08	0.00	0.03	Open	0
102	Ш	P63	J48	J92	120.82	300.00	120.00	4.46	0.06	0.00	0.02	Open	0
103	Ш	P65	J92	J130	97.59	300.00	120.00	-3.88	0.05	0.00	0.02	Open	0
104	Ш	P69	J84	J88	69.90	300.00	120.00	-0.62	0.01	0.00	0.00	Open	0
105		P71	J138	J84	53.85	300.00	120.00	0.08	0.00	0.00	0.00	Open	0
106		P73	J132	J24	44.79	300.00	120.00	10.10	0.14	0.00	0.11	Open	0
107		P75	J20	J132	172.60	300.00	120.00	7.64	0.11	0.01	0.06	Open	0
108		P77	J40	J20	159.11	300.00	120.00	9.51	0.13	0.02	0.10	Open	0
109		P79	J50	J128	234.05	200.00	120.00	0.60	0.02	0.00	0.00	Open	0
110		P81	J38	J42	35.30	300.00	120.00	-10.20	0.14	0.00	0.11	Open	0
111		P83	J54	J154	41.53	300.00	120.00	-9.73	0.14	0.00	0.10	Open	0
112		P85	J80	J74	13.52	300.00	120.00	-2.65	0.04	0.00	0.01	Open	0
113		P87	J132	J80	74.26	300.00	120.00	-2.46	0.03	0.00	0.01	Open	0
114		P89	J10	J196	62.59	400.00	120.00	33.52	0.27	0.02	0.24	Open	0
115		P93	J88	J130	30.88	300.00	120.00	-4.00	0.06	0.00	0.02	Open	0
116		P95	J142	J150	156.08	400.00	120.00	23.97	0.19	0.02	0.13	Open	0
117	f	P97	J46	J44	100.05	300.00	120.00	11.88	0.17	0.01	0.14	Open	0

			Demand	Elevation	Head	Pressure
		ID	(L/s)	(m)	(m)	(psi)
1	П	J206	4.67	86.44	143.96	81.77
2	Ħ	J262	0.00	86.44	144.03	81.87
3	Ħ	J208	3.22	86.29	143.96	81.99
4	H	J204	4.02	86.27	143.96	82.01
5	H	J270	0.00	86.12	143.96	82.22
6	ዙ	J18	0.00	86.12	143.96	82.23
7	H	J170	0.00	86.05	143.99	82.36
8	H	J268	0.00	86.02	143.97	82.37
9	Ħ	J212	4.49	85.69	143.96	82.84
10	Ħ	J210	3.03	85.54	143.86	82.91
11	Ħ	J176	6.29	85.60	143.95	82.95
12	Ħ	J214	4.31	85.28	143.96	83.42
13	H	J174	2.61	85.14	143.95	83.60
14	H	J190	0.00	85.04	143.95	83.74
15	H	J160	0.00	85.03	143.96	83.78
16	片	J232	0.00	84.93	143.90	83.83
17	片	J10	0.00	84.86	143.96	84.02
18	+	J240	0.00	84.37	143.85	84.56
19	+	J172	8.57	84.43	143.05	84.61
20	H	J266	0.00	84.43	143.96	84.63
21	H	J192	0.00	84.17	143.93	84.96
22	H	J196	0.00	84.10	143.91	85.03
23	H	J220	8.30	83.90	143.79	85.13
24	ዙ	J222	0.00	83.80	143.79	85.28
25	H	J40	0.97	83.61	143.65	85.36
26	ዙ	J252	0.00	83.72	143.92	85.58
27	ዙ	J162	0.00	83.72	143.96	85.63
28	H	J218	0.41	83.53	143.79	85.66
29	H	J30	0.00	83.41	143.84	85.90
30	H	J224	8.30	83.31	143.78	85.97
31	Ħ	J34	0.00	83.24	143.79	86.07
32	Ħ	J194	0.00	83.38	143.93	86.07
33	Ħ	J234	10.87	83.18	143.84	86.23
34	H	J144	0.00	83.05	143.75	86.29
35	Ħ	J42	0.00	82.93	143.70	86.39
36	Ħ	J20	14.50	82.84	143.61	86.39
37	Ħ	J138	0.00	82.78	143.55	86.40
38	Ħ	J38	0.00	82.86	143.69	86.47
39	Ħ	J226	7.18	82.95	143.78	86.48
40	Ħ	J46	0.00	82.71	143.75	86.77
41	Ħ	J84	0.98	82.46	143.55	86.85
42	Ħ	J198	0.00	82.80	143.92	86.89
43	Ħ	J248	0.00	82.80	143.92	86.89
44	Ħ	J230	0.00	82.77	143.94	86.95
45	Ħ	J24	13.52	82.29	143.56	87.10
46	Ħ	J132	0.00	82.11	143.57	87.37
47	Ħ	J54	2.49	82.17	143.63	87.37
48	Ħ	J130	0.00	82.01	143.55	87.49
49	Ħ	J88	6.59	82.00	143.55	87.50
50	Ħ	J154	0.00	82.07	143.64	87.53
	ш	0104	3.00	52.01	1 70.04	57.00

Date: Tuesday, July 02, 2024, Time: 13:47:17, Page 1

	ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (psi)
51	J58	6.82	82.05	143.64	87.56
52	J178	11.26	82.30	143.91	87.58
53	J80	0.27	81.70	143.57	87.95
54	J134	1.04	81.80	143.68	87.97
55	J92	16.37	81.61	143.55	88.05
56	J74	14.39	81.63	143.57	88.05
57	J180	5.72	81.86	143.91	88.21
58	J14	0.00	81.75	143.84	88.26
59	J164	0.00	81.79	143.94	88.35
60	J158	0.00	81.44	143.61	88.38
61	J128	2.67	81.35	143.55	88.42
62	J200	0.00	81.35	143.55	88.43
63	J202	0.00	81.35	143.55	88.43
64	J44	6.48	81.47	143.70	88.47
65	J112	0.00	81.34	143.59	88.50
66	J156	0.00	81.32	143.60	88.54
67	J114	0.00	81.23	143.60	88.67
68	J146	0.00	81.26	143.69	88.75
69	J70	0.00	81.15	143.60	88.78
70	J64	17.58	81.10	143.60	88.85
71	J182	5.57	81.31	143.91	88.99
72	J96	0.00	80.91	143.55	89.05
73	J48	0.00	80.79	143.55	89.22
74	J50	0.00	80.75	143.55	89.28
75	J250	0.00	80.85	143.92	89.66
76	J166	0.00	80.85	143.93	89.67
77	J126	9.20	80.21	143.53	90.01
78	J142	0.00	80.35	143.75	90.13
79	J100	19.44	80.10	143.54	90.19
80	J116	0.00	79.95	143.55	90.41
81	J104	7.53	79.92	143.54	90.44
82	J136	0.00	79.85	143.62	90.65
83	J62	28.29	79.65	143.63	90.95
84	J258	0.00	79.85	143.92	91.08
85	J124	0.00	79.44	143.54	91.12
86	J246	0.00	79.85	143.96	91.14
87	J110	0.00	79.47	143.63	91.20
88	J118	0.00	79.36	143.55	91.25
89	J122	0.00	79.33	143.54	91.29
90	J150	0.00	78.92	143.69	92.07
91	J120	0.00	78.33	143.55	92.71
92	J152	0.00	75.92	143.68	96.33

MDD-PIPE

		-	_			D: .					111 (4000		E
		ID	From Node	To Node	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)	Headloss (m)	HL/1000 (m/k-m)	Status	Flow Reversal Count
1	П	24	J44	J146	37.79	300.00	120.00	15.44	0.22	0.01	0.23	Open	0
2	H	25	J112	J114	11.08	300.00	120.00	-32.53	0.46	0.01	0.93	Open	0
3	Ħ	26	J110	J116	162.84	300.00	120.00	22.93	0.32	0.08	0.49	Open	0
4	Ħ	27	J116	J118	103.23	200.00	120.00	1.16	0.04	0.00	0.01	Open	0
5	Ħ	28	J120	J118	17.79	200.00	120.00	1.77	0.06	0.00	0.03	Open	0
6	Ħ	29	J118	J122	14.95	200.00	120.00	2.94	0.09	0.00	0.08	Open	0
7	Ħ	30	J122	J124	88.59	200.00	120.00	2.94	0.09	0.01	0.08	Open	0
8	Ħ	31	J124	J126	144.09	200.00	120.00	2.94	0.09	0.01	0.08	Open	0
9	Ħ	32	J50	J120	146.51	200.00	120.00	1.77	0.06	0.00	0.03	Open	0
10	Ħ	33	J130	J128	112.40	200.00	120.00	1.82	0.06	0.00	0.03	Open	0
11	Ħ	34	J130	J112	156.59	300.00	120.00	-15.73	0.22	0.04	0.24	Open	0
12	Ħ	35	J74	J112	79.98	300.00	120.00	-16.79	0.24	0.02	0.27	Open	0
13	Ħ	36	J248	J14	98.08	400.00	120.00	65.40	0.52	0.08	0.84	Open	0
14	Ħ	37	J134	J136	166.63	300.00	120.00	19.81	0.28	0.06	0.37	Open	0
15	Ħ	38	J138	J24	110.22	300.00	120.00	-4.03	0.06	0.00	0.02	Open	0
16	片	40	J142	J146	135.17	300.00	120.00	20.99	0.30	0.06	0.41	Open	0
17	Ħ	41	J144	J134	154.56	300.00	120.00	21.74	0.31	0.07	0.44	Open	0
18	Ħ	42	J126	J104	40.45	200.00	120.00	-6.26	0.20	0.01	0.32	Open	0
19	H	6	J40	J38	120.78	300.00	120.00	-17.63	0.25	0.04	0.30	Open	0
20	Ħ	8	J48	J50	91.46	200.00	120.00	1.45	0.05	0.00	0.02	Open	0
21	Ħ	P101	J176	J174	98.07	300.00	120.00	2.00	0.03	0.00	0.01	Open	0
22	Ħ	P103	J230	J192	198.76	250.00	110.00	1.84	0.04	0.00	0.01	Open	0
23	片	P105	J204	J270	51.89	300.00	120.00	-2.75	0.04	0.00	0.01	Open	0
24	片	P107	J160	J10	21.74	300.00	120.00	-1.43	0.02	0.00	0.00	Open	0
25	片	P109	J164	J230	173.09	250.00	110.00	1.84	0.04	0.00	0.01	Open	0
26	片	P111	J162	J164	99.75	300.00	120.00	13.69	0.19	0.02	0.19	Open	0
27	ዙ	P113	J164	J166	86.36	300.00	120.00	11.85	0.17	0.01	0.14	Open	0
28	片	P115	J166	J182	102.73	300.00	120.00	11.85	0.17	0.01	0.14	Open	0
29	片	P117	J182	J180	97.29	300.00	120.00	6.28	0.09	0.00	0.04	Open	0
30	H	P119	J180	J178	85.87	300.00	120.00	0.56	0.01	0.00	0.00	Open	0
31	ዙ	P121	J212	J268	72.14	300.00	120.00	-7.37	0.10	0.00	0.06	Open	0
32	ዙ	P129	J218	J220	71.02	300.00	120.00	5.63	0.08	0.00	0.04	Open	0
33	H	P13	J146	J134	109.84	300.00	120.00	11.51	0.16	0.00	0.14	Open	0
34	ዙ	P131	J220	J222	64.95	300.00	120.00	-2.67	0.10	0.00	0.01	Open	0
35	ዙ	P133	J222	J224	89.72	300.00	120.00	7.29	0.10	0.01	0.06	Open	0
36	片	P135	J224	J226	83.02	300.00	120.00	-1.01	0.01	0.00	0.00	Open	0
37	ዙ	P143	J18	J270	13.46	400.00	120.00	45.05	0.36	0.00	0.42	Open	0
38	ዙ	P145	J190	J192	58.87	400.00	120.00	34.01	0.30	0.01	0.42	Open	0
39	井	P147	J192	J194	53.65	400.00	120.00	26.55	0.21	0.01	0.16	Open	0
40	ዙ	P15	J146	J62	118.80	300.00	120.00	24.92	0.21	0.07	0.57	Open	0
41	ዙ	P151	J214	J212	67.91	300.00	120.00	-2.88	0.04	0.00	0.01	Open	0
	ዙ		J210	J240	125.40	250.00	110.00	5.99	0.04	0.00	0.12	Open	0
42	ዙ	P153 P155	J196	J30	100.45	400.00	120.00	62.27	0.12	0.01	0.76	Open	0
43	ዙ	P155	J196	J198	49.89	400.00	120.00	26.55	0.50	0.08	0.76	Open	0
	H		J194 J128	J200	133.31	200.00	120.00	-1.17	0.21	0.00	0.16	Open	0
45	ዙ	P159 P161	J208	J268	64.21	300.00	120.00	-9.16	0.04	0.00	0.01	Open	0
46	ዙ	P163	J208	J208 J138	119.12	200.00	120.00	-1.17	0.13	0.01	0.09	Open	0
48	ዙ	P165	J136	J96	166.15	300.00	120.00	20.09	0.04	0.06	0.01	Open	0
48	H	P165	J200	J202	11.25	200.00	120.00	-1.17	0.28	0.00	0.01	Open	0
50	ዙ	P167	J206	J202 J208	82.38	300.00	120.00	-5.94	0.04	0.00	0.01	Open	0
51	ዙ	P109	J62	J110	47.94	300.00	120.00	-3.37	0.06	0.00	0.04	Open	0
	ዙ		J206	J204	69.88	300.00	120.00	1.27	0.05	0.00	0.01	Open	0
52	ዙ	P171	J206 J210	J204 J222	86.86	300.00	120.00	31.71	0.02	0.00	0.00		0
53	ዙ	P175	J172	J222 J174	81.01	300.00	120.00	0.61	0.45	0.08	0.89	Open Open	0
54	ዙ	P177	J172	J162	87.33	300.00	120.00	-9.18	0.01	0.00	0.00	Open	0
55	屵	P179	J172 J232	J162 J210	120.26	250.00	120.00	9.30	0.13	0.01	0.09	Open	0
56	ዙ	P183	RES9002	J210 J262	48.40	600.00	120.00	267.95	0.19	0.03	1.58	Open	0
57	ዙ	P185	J214	J262 J160	63.52	300.00	120.00		0.95	0.08	0.00		0
58	ዙ	P187	J214 J226	J34		300.00	120.00	-1.43		0.00	0.00	Open	0
59	ዙ	P189	J226 J20		51.07			-8.19	0.12			Open	0
60	ዙ	P19		J54	117.59	300.00	120.00	-13.26	0.19	0.02	0.18	Open	0
61	ዙ	P191	J192	J232	147.89	250.00	110.00	9.30	0.19	0.04		Open	
62	井	P193	J218	J234	71.16	300.00	120.00	-27.96 10.70	0.40	0.05	0.70	Open	0
63	뷰	P195	J178 J176	J198	86.78	300.00	120.00	-10.70	0.15	0.01	0.12	Open	0
64	Ш	P197		J270	106.19 3:47:46, Pag	300.00	120.00	-8.29	0.12	0.01	0.07	Open	U

Date: Tuesday, July 02, 2024, Time: 13:47:46, Page 1

		ID	From Node	To Node	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)	Headloss (m)	HL/1000 (m/k-m)	Status	Flow Reversal Count
65		P199	J170	J268	10.33	300.00	120.00	47.95	0.68	0.02	1.91	Open	0
66		P201	J234	J198	61.08	300.00	120.00	-38.83	0.55	0.08	1.29	Open	0
67	П	P21	J14	J142	106.09	400.00	120.00	65.40	0.52	0.09	0.84	Open	0
68	Ħ	P215	J240	J30	102.65	250.00	110.00	5.99	0.12	0.01	0.12	Open	0
69	Ħ	P217	J222	J144	93.00	300.00	120.00	21.74	0.31	0.04	0.44	Open	0
70	Ħ	P219	J218	J46	95.10	300.00	120.00	21.92	0.31	0.04	0.45	Open	0
71	Ħ	P225	J246	J266	355.06	900.00	130.00	0.00	0.00	0.00	0.00	Open	0
72	Ħ	P229	J250	J248	375.46	600.00	120.00	0.00	0.00	0.00	0.00	Open	0
73	Ħ	P231	J248	J18	220.67	600.00	120.00	-88.38	0.31	0.04	0.20	Open	0
74	Ħ	P235	J252	J250	182.26	900.00	130.00	0.00	0.00	0.00	0.00	Open	0
75	Ħ	P237	J250	J258	89.25	900.00	130.00	0.00	0.00	0.00	0.00	Open	0
76	Ħ	P239	J248	J198	10.64	400.00	120.00	22.98	0.18	0.00	0.12	Open	0
77	Ħ	P241	J162	J266	79.26	600.00	120.00	-22.87	0.08	0.00	0.02	Open	0
78	Ħ	P243	J18	J262	118.60	600.00	120.00	-156.30	0.55	0.07	0.58	Open	0
79	H	P245	J170	J10	221.78	600.00	120.00	63.70	0.23	0.02	0.11	Open	0
80	H	P247	J262	J170	148.23	600.00	120.00	111.65	0.39	0.05	0.31	Open	0
81	ዙ	P247	J266	J18	292.37	600.00	120.00	-22.87	0.08	0.00	0.02	Open	0
82	+	P249	J150	J152	12.66	400.00	120.00	44.41	0.08	0.00	0.02	Open	0
-	井	P251	J268	J210	117.75	300.00	120.00	31.42	0.33	0.01	0.41	Open	0
83 84	ዙ	P251 P253	J268 J270	J190	37.69	400.00	120.00	34.01	0.44	0.10	0.87	Open	0
	ዙ		J152	J110	132.14	400.00	120.00	44.41	0.27	0.01	0.23	Open	0
85	ዙ	P27	J110	J136	128.24	400.00	120.00	18.11	0.33	0.03	0.41		0
86	H	P29				400.00	120.00		-		0.08	Open	0
87	뷰	P31	J136	J64	180.81			17.83	0.14	0.01		Open	
88	뷰	P33	J64	J70	14.43	400.00	120.00 120.00	0.25	0.00	0.00	0.00	Open	0
89	Н	P35	J70	J156	34.75	400.00		0.25	0.00	0.00	0.00	Open	
90	뷰	P37	J156	J114	6.20	400.00	120.00	0.25	0.00	0.00	0.00	Open	0
91	뷰	P39	J114	J158	17.17	400.00	120.00	-32.27	0.26	0.00	0.23	Open	0
92	닏	P41	J154	J158	153.05	400.00	120.00	32.27	0.26	0.03	0.23	Open	0
93	Щ	P43	J42	J154	156.43	400.00	120.00	42.45	0.34	0.06	0.38	Open	0
94	닏	P45	J34	J42	120.68	400.00	120.00	60.07	0.48	0.09	0.71	Open	0
95	Ц	P47	J30	J34	57.66	400.00	120.00	68.26	0.54	0.05	0.91	Open	0
96	Ц	P51	J58	J134	228.31	300.00	120.00	-12.40	0.18	0.04	0.16	Open	0
97	Ц	P53	J154	J58	39.98	300.00	120.00	-5.58	0.08	0.00	0.04	Open	0
98	Ц	P55	J104	J116	41.94	300.00	120.00	-13.79	0.20	0.01	0.19	Open	0
99	Ш	P57	J116	J100	77.25	300.00	120.00	7.97	0.11	0.01	0.07	Open	0
100	Ц	P59	J100	J96	84.08	300.00	120.00	-11.47	0.16	0.01	0.14	Open	0
101	Ц	P61	J96	J48	6.45	300.00	120.00	8.62	0.12	0.00	0.08	Open	0
102	Ш	P63	J48	J92	120.82	300.00	120.00	7.16	0.10	0.01	0.06	Open	0
103	Ш	P65	J92	J130	97.59	300.00	120.00	-9.21	0.13	0.01	0.09	Open	0
104	Ц	P69	J84	J88	69.90	300.00	120.00	1.88	0.03	0.00	0.00	Open	0
105	Ц	P71	J138	J84	53.85	300.00	120.00	2.86	0.04	0.00	0.01	Open	0
106		P73	J132	J24	44.79	300.00	120.00	17.55	0.25	0.01	0.30	Open	0
107		P75	J20	J132	172.60	300.00	120.00	15.42	0.22	0.04	0.23	Open	0
108		P77	J40	J20	159.11	300.00	120.00	16.66	0.24	0.04	0.27	Open	0
109		P79	J50	J128	234.05	200.00	120.00	-0.32	0.01	0.00	0.00	Open	0
110		P81	J38	J42	35.30	300.00	120.00	-17.63	0.25	0.01	0.30	Open	0
111		P83	J54	J154	41.53	300.00	120.00	-15.75	0.22	0.01	0.24	Open	0
112		P85	J80	J74	13.52	300.00	120.00	-2.40	0.03	0.00	0.01	Open	0
113		P87	J132	J80	74.26	300.00	120.00	-2.13	0.03	0.00	0.01	Open	0
114		P89	J10	J196	62.59	400.00	120.00	62.27	0.50	0.05	0.76	Open	0
115		P93	J88	J130	30.88	300.00	120.00	-4.71	0.07	0.00	0.03	Open	0
116	Ō	P95	J142	J150	156.08	400.00	120.00	44.41	0.35	0.06	0.41	Open	0
117		P97	J46	J44	100.05	300.00	120.00	21.92	0.31	0.04	0.45	Open	0

The color of the			ID	Demand	Elevation	Head	Pressure
2			טו	(L/s)	(m)	(m)	(psi)
3 J204 6.03 86.27 143.75 81.72 4 J262 0.00 86.44 143.93 81.73 5 J270 0.00 86.12 143.76 81.93 7 J268 0.00 86.02 143.77 81.95 7 J268 0.00 86.02 143.77 82.10 9 J210 0.00 86.05 143.82 82.13 9 J210 4.55 85.54 143.53 82.43 10 J212 6.74 85.69 143.76 82.56 11 J176 9.44 85.60 143.74 82.65 12 J214 6.47 85.28 143.76 83.44 13 J174 3.92 85.14 143.74 83.30 14 J232 0.00 85.04 143.73 83.44 15 J190 0.00 85.03 143.76 83.73 18 J240 <t< td=""><td>1</td><td></td><td>J206</td><td>7.01</td><td>86.44</td><td>143.75</td><td>81.48</td></t<>	1		J206	7.01	86.44	143.75	81.48
4 □ J262 0.00 86.44 143.93 81.73 5 □ J270 0.00 86.12 143.76 81.93 6 □ J18 0.00 86.02 143.77 81.95 7 □ J268 0.00 86.02 143.77 82.10 8 □ J170 0.00 86.05 143.82 82.13 9 □ J210 4.55 85.54 143.53 82.43 10 □ J212 6.74 85.69 143.74 82.65 11 □ J176 9.44 85.60 143.74 82.65 11 □ J176 9.44 85.60 143.74 82.65 12 □ J214 6.47 85.28 143.76 83.14 13 □ J174 3.92 85.14 143.74 83.30 14 □ J232 0.00 84.93 143.60 83.41 </td <td>2</td> <td></td> <td>J208</td> <td>4.83</td> <td>86.29</td> <td>143.76</td> <td>81.70</td>	2		J208	4.83	86.29	143.76	81.70
5 ☐ J270 0.00 86.12 143.76 81.93 6 ☐ J18 0.00 86.12 143.77 81.95 7 ☐ J268 0.00 86.02 143.77 82.10 8 ☐ J170 0.00 86.05 143.82 82.13 9 ☐ J210 4.55 85.54 143.53 82.43 10 ☐ J212 6.74 85.69 143.76 82.56 11 ☐ J176 9.44 85.60 143.76 83.14 13 ☐ J174 3.92 85.14 143.76 83.41 13 ☐ J174 3.92 85.14 143.76 83.41 15 ☐ J190 0.00 85.04 143.73 83.44 15 ☐ J190 0.00 85.03 143.76 83.49 17 ☐ J10 0.00 84.86 143.76 83.73 18 ☐ J240 0.00 84.83 143.76 84.31 20 ☐ J266 0.00 84.43 143.76 84.34 21 ☐ J40 2.08 83.61 142.98 84	3		J204	6.03	86.27	143.75	81.72
6 ☐ J18 0.00 86.12 143.77 81.95 7 ☐ J268 0.00 86.02 143.77 82.10 8 ☐ J170 0.00 86.05 143.82 82.13 9 ☐ J210 4.55 85.54 143.76 82.56 11 ☐ J176 9.44 85.60 143.74 82.65 12 ☐ J214 6.47 85.28 143.76 83.14 13 ☐ J174 3.92 85.14 143.74 83.30 14 ☐ J232 0.00 84.93 143.60 83.41 15 ☐ J190 0.00 85.04 143.73 83.49 17 ☐ J10 0.00 85.03 143.76 83.73 18 ☐ J240 0.00 84.86 143.76 83.73 18 ☐ J240 0.00 84.37 143.49 84.05 19 ☐ J172 12.85 84.43 143.74 84.31 20 ☐ J266 0.00 84.43 143.76 84.34 21 ☐ J40 2.08 83.61 142.98 84.40 22 ☐ J220 12.44 83.90 143.34 84.62	4		J262	0.00	86.44	143.93	81.73
7 □ J268 0.00 86.02 143.77 82.10 8 □ J170 0.00 86.05 143.82 82.13 9 □ J210 4.55 85.54 143.76 82.56 10 □ J212 6.74 85.69 143.76 82.56 11 □ J176 9.44 85.60 143.74 82.65 12 □ J214 6.47 85.28 143.76 83.14 13 □ J174 3.92 85.14 143.74 83.30 15 □ J190 0.00 84.93 143.60 83.41 15 □ J190 0.00 85.04 143.73 83.44 16 □ J160 0.00 84.86 143.76 83.73 18 □ J240 0.00 84.87 143.49 84.05 19 □ J172 12.85 84.43 143.74 84	5		J270	0.00	86.12	143.76	81.93
8 J170 0.00 86.05 143.82 82.13 9 J210 4.55 85.54 143.53 82.43 10 J212 6.74 85.69 143.76 82.56 11 J176 9.44 85.60 143.74 82.65 12 J214 6.47 85.28 143.76 83.14 13 J174 3.92 85.14 143.74 83.30 14 J232 0.00 84.93 143.60 83.41 15 J190 0.00 85.03 143.76 83.49 17 J10 0.00 85.03 143.76 83.73 18 J240 0.00 84.86 143.76 83.73 18 J240 0.00 84.83 143.49 84.05 19 J172 12.85 84.43 143.74 84.31 20 J266 0.00 84.43 143.76 84.40 21 J220	6		J18	0.00	86.12	143.77	81.95
9 ☐ J210 4.55 85.54 143.53 82.43 10 ☐ J212 6.74 85.69 143.76 82.56 11 ☐ J176 9.44 85.60 143.74 82.65 12 ☐ J214 6.47 85.28 143.76 83.14 13 ☐ J174 3.92 85.14 143.74 83.30 14 ☐ J232 0.00 84.93 143.60 83.41 15 ☐ J190 0.00 85.04 143.73 83.44 16 ☐ J160 0.00 85.03 143.76 83.49 17 ☐ J10 0.00 84.86 143.76 83.73 18 ☐ J240 0.00 84.37 143.49 84.05 19 ☐ J172 12.85 84.43 143.74 84.31 20 ☐ J266 0.00 84.43 143.76 84.34 21 ☐ J40 2.08 83.61 142.98 84.40 22 ☐ J220 12.44 83.90 143.34 84.62 24 ☐ J222 0.00 84.17 143.65	7		J268	0.00	86.02	143.77	82.10
10	8		J170	0.00	86.05	143.82	82.13
11	9		J210	4.55	85.54	143.53	82.43
12	10		J212	6.74	85.69	143.76	82.56
13	11		J176	9.44	85.60	143.74	82.65
14 J232 0.00 84.93 143.60 83.41 15 J190 0.00 85.04 143.73 83.44 16 J160 0.00 85.03 143.76 83.49 17 J10 0.00 84.86 143.76 83.73 18 J240 0.00 84.37 143.49 84.05 19 J172 12.85 84.43 143.74 84.31 20 J266 0.00 84.43 143.76 84.34 21 J40 2.08 83.61 142.98 84.40 22 J220 12.44 83.90 143.34 84.50 23 J192 0.00 84.17 143.70 84.62 24 J222 0.00 83.80 143.34 84.64 25 J196 0.00 84.10 143.65 84.65 26 J218 0.61 83.53 143.35 85.03 27 J252	12		J214	6.47	85.28	143.76	83.14
15	13		J174	3.92	85.14	143.74	83.30
16	14		J232	0.00	84.93	143.60	83.41
17 J10 0.00 84.86 143.76 83.73 18 J240 0.00 84.37 143.49 84.05 19 J172 12.85 84.43 143.74 84.31 20 J266 0.00 84.43 143.76 84.34 21 J40 2.08 83.61 142.98 84.40 22 J220 12.44 83.90 143.34 84.50 23 J192 0.00 84.17 143.70 84.62 24 J222 0.00 83.80 143.34 84.62 24 J222 0.00 84.10 143.65 84.65 26 J218 0.61 83.53 143.35 85.03 27 J252 0.00 83.72 143.66 85.21 28 J138 0.00 82.78 142.74 85.24 29 J224 12.45 83.31 143.33 85.32 30 J30	15		J190	0.00	85.04	143.73	83.44
18 J240 0.00 84.37 143.49 84.05 19 J172 12.85 84.43 143.74 84.31 20 J266 0.00 84.43 143.76 84.34 21 J40 2.08 83.61 142.98 84.40 22 J220 12.44 83.90 143.34 84.50 23 J192 0.00 84.17 143.70 84.62 24 J222 0.00 83.80 143.34 84.62 24 J222 0.00 83.80 143.34 84.62 25 J196 0.00 84.10 143.65 84.65 26 J218 0.61 83.53 143.35 85.03 27 J252 0.00 82.78 142.74 85.24 29 J224 12.45 83.31 143.33 85.32 30 J20 31.08 82.84 142.87 85.33 31 J162	16		J160	0.00	85.03	143.76	83.49
19 ☐ J172 12.85 84.43 143.74 84.31 20 ☐ J266 0.00 84.43 143.76 84.34 21 ☐ J40 2.08 83.61 142.98 84.40 22 ☐ J220 12.44 83.90 143.34 84.50 23 ☐ J192 0.00 84.17 143.70 84.62 24 ☐ J222 0.00 83.80 143.34 84.64 25 ☐ J196 0.00 84.10 143.65 84.65 26 ☐ J218 0.61 83.53 143.35 85.03 27 ☐ J252 0.00 83.72 143.66 85.21 28 ☐ J138 0.00 82.78 142.74 85.24 29 ☐ J224 12.45 83.31 143.33 85.32 30 ☐ J20 31.08 82.84 142.87 85.33 31 ☐ J162 0.00 83.72 143.75 85.34 32 ☐ J30 0.00 83.41 143.46 85.37 33 ☐ J44 0.00 83.24 143	17		J10	0.00	84.86	143.76	83.73
20	18		J240	0.00	84.37	143.49	84.05
21	19		J172	12.85	84.43	143.74	84.31
22 J220 12.44 83.90 143.34 84.50 23 J192 0.00 84.17 143.70 84.62 24 J222 0.00 83.80 143.34 84.64 25 J196 0.00 84.10 143.65 84.65 26 J218 0.61 83.53 143.35 85.03 27 J252 0.00 83.72 143.66 85.21 28 J138 0.00 82.78 142.74 85.24 29 J224 12.45 83.31 143.33 85.32 30 J20 31.08 82.84 142.87 85.33 31 J162 0.00 83.72 143.75 85.34 32 J30 0.00 83.41 143.46 85.37 33 J34 0.00 82.93 143.11 85.55 35 J144 0.00 83.05 143.24 85.56 36 J38	20		J266	0.00	84.43	143.76	84.34
23 ☐ J192 0.00 84.17 143.70 84.62 24 ☐ J222 0.00 83.80 143.34 84.64 25 ☐ J196 0.00 84.10 143.65 84.65 26 ☐ J218 0.61 83.53 143.35 85.03 27 ☐ J252 0.00 83.72 143.66 85.21 28 ☐ J138 0.00 82.78 142.74 85.24 29 ☐ J224 12.45 83.31 143.33 85.32 30 ☐ J20 31.08 82.84 142.87 85.33 31 ☐ J162 0.00 83.72 143.75 85.34 32 ☐ J30 0.00 83.41 143.46 85.37 33 ☐ J34 0.00 83.24 143.33 85.43 34 ☐ J42 0.00 82.93 143.11 85.55 35 ☐ J144 0.00 83.05 143.24 85.56 36 ☐ J38 0.00 82.86 143.08 85.61 37 ☐ J84 2.11 82.46 142.74<	21		J40	2.08	83.61	142.98	84.40
24 J222 0.00 83.80 143.34 84.64 25 J196 0.00 84.10 143.65 84.65 26 J218 0.61 83.53 143.35 85.03 27 J252 0.00 83.72 143.66 85.21 28 J138 0.00 82.78 142.74 85.24 29 J224 12.45 83.31 143.33 85.32 30 J20 31.08 82.84 142.87 85.33 31 J162 0.00 83.72 143.75 85.34 32 J30 0.00 83.41 143.46 85.37 33 J34 0.00 82.93 143.11 85.55 35 J144 0.00 83.05 143.24 85.56 36 J38 0.00 82.86 143.08 85.61 37 J84 2.11 82.46 142.74 85.70 38 J234	22		J220	12.44	83.90	143.34	84.50
25 J196 0.00 84.10 143.65 84.65 26 J218 0.61 83.53 143.35 85.03 27 J252 0.00 83.72 143.66 85.21 28 J138 0.00 82.78 142.74 85.24 29 J224 12.45 83.31 143.33 85.32 30 J20 31.08 82.84 142.87 85.33 31 J162 0.00 83.72 143.75 85.34 32 J30 0.00 83.41 143.46 85.37 33 J34 0.00 82.93 143.11 85.55 35 J144 0.00 83.05 143.24 85.56 36 J38 0.00 82.86 143.08 85.61 37 J84 2.11 82.46 142.74 85.70 38 J234 16.30 83.18 143.47 85.71 39 J194	23	\Box	J192	0.00	84.17	143.70	84.62
26 J218 0.61 83.53 143.35 85.03 27 J252 0.00 83.72 143.66 85.21 28 J138 0.00 82.78 142.74 85.24 29 J224 12.45 83.31 143.33 85.32 30 J20 31.08 82.84 142.87 85.33 31 J162 0.00 83.72 143.75 85.34 32 J30 0.00 83.41 143.46 85.37 33 J34 0.00 82.93 143.11 85.55 35 J144 0.00 83.05 143.24 85.56 36 J38 0.00 82.86 143.08 85.61 37 J84 2.11 82.46 142.74 85.70 38 J234 16.30 83.18 143.47 85.71 39 J194 0.00 83.38 143.68 85.72 40 J226	24	\Box	J222	0.00	83.80	143.34	84.64
27 J252 0.00 83.72 143.66 85.21 28 J138 0.00 82.78 142.74 85.24 29 J224 12.45 83.31 143.33 85.32 30 J20 31.08 82.84 142.87 85.33 31 J162 0.00 83.72 143.75 85.34 32 J30 0.00 83.41 143.46 85.37 33 J34 0.00 83.24 143.33 85.43 34 J42 0.00 82.93 143.11 85.55 35 J144 0.00 83.05 143.24 85.56 36 J38 0.00 82.86 143.08 85.61 37 J84 2.11 82.46 142.74 85.70 38 J234 16.30 83.18 143.47 85.71 39 J194 0.00 83.38 143.68 85.72 40 J226	25		J196	0.00	84.10	143.65	84.65
28 J138 0.00 82.78 142.74 85.24 29 J224 12.45 83.31 143.33 85.32 30 J20 31.08 82.84 142.87 85.33 31 J162 0.00 83.72 143.75 85.34 32 J30 0.00 83.41 143.46 85.37 33 J34 0.00 83.24 143.33 85.43 34 J42 0.00 82.93 143.11 85.55 35 J144 0.00 83.05 143.24 85.56 36 J38 0.00 82.86 143.08 85.61 37 J84 2.11 82.46 142.74 85.70 38 J234 16.30 83.18 143.47 85.71 39 J194 0.00 83.38 143.68 85.72 40 J226 10.76 82.95 143.33 85.83 41 J24	26		J218	0.61	83.53	143.35	85.03
29 J224 12.45 83.31 143.33 85.32 30 J20 31.08 82.84 142.87 85.33 31 J162 0.00 83.72 143.75 85.34 32 J30 0.00 83.41 143.46 85.37 33 J34 0.00 83.24 143.33 85.43 34 J42 0.00 82.93 143.11 85.55 35 J144 0.00 83.05 143.24 85.56 36 J38 0.00 82.86 143.08 85.61 37 J84 2.11 82.46 142.74 85.70 38 J234 16.30 83.18 143.47 85.71 39 J194 0.00 83.38 143.68 85.72 40 J226 10.76 82.95 143.33 85.83 41 J24 28.97 82.29 142.74 86.05 43 J132	27		J252	0.00	83.72	143.66	85.21
30 ☐ J20 31.08 82.84 142.87 85.33 31 ☐ J162 0.00 83.72 143.75 85.34 32 ☐ J30 0.00 83.41 143.46 85.37 33 ☐ J34 0.00 83.24 143.33 85.43 34 ☐ J42 0.00 82.93 143.11 85.55 35 ☐ J144 0.00 83.05 143.24 85.56 36 ☐ J38 0.00 82.86 143.08 85.61 37 ☐ J84 2.11 82.46 142.74 85.70 38 ☐ J234 16.30 83.18 143.47 85.71 39 ☐ J194 0.00 83.38 143.68 85.72 40 ☐ J226 10.76 82.95 143.33 85.83 41 ☐ J24 28.97 82.29 142.74 86.94 42 ☐ J46 0.00 82.71 143.24 86.05 43 ☐ J132 0.00 82.11 142.78 86.25 44 ☐	28		J138	0.00	82.78	142.74	85.24
31 J162 0.00 83.72 143.75 85.34 32 J30 0.00 83.41 143.46 85.37 33 J34 0.00 83.24 143.33 85.43 34 J42 0.00 82.93 143.11 85.55 35 J144 0.00 83.05 143.24 85.56 36 J38 0.00 82.86 143.08 85.61 37 J84 2.11 82.46 142.74 85.70 38 J234 16.30 83.18 143.47 85.71 39 J194 0.00 83.38 143.68 85.72 40 J226 10.76 82.95 143.33 85.83 41 J24 28.97 82.29 142.74 86.94 42 J46 0.00 82.71 143.24 86.05 43 J132 0.00 82.11 142.78 86.25 44 J130	29		J224	12.45	83.31	143.33	85.32
32 ☐ J30 0.00 83.41 143.46 85.37 33 ☐ J34 0.00 83.24 143.33 85.43 34 ☐ J42 0.00 82.93 143.11 85.55 35 ☐ J144 0.00 83.05 143.24 85.56 36 ☐ J38 0.00 82.86 143.08 85.61 37 ☐ J84 2.11 82.46 142.74 85.70 38 ☐ J234 16.30 83.18 143.47 85.71 39 ☐ J194 0.00 83.38 143.68 85.72 40 ☐ J226 10.76 82.95 143.33 85.83 41 ☐ J24 28.97 82.29 142.74 85.94 42 ☐ J46 0.00 82.71 143.24 86.05 43 ☐ J132 0.00 82.11 142.78 86.25 44 ☐ J130 0.00 82.01 142.75 86.35 45 ☐	30		J20	31.08	82.84	142.87	85.33
33 ☐ J34 0.00 83.24 143.33 85.43 34 ☐ J42 0.00 82.93 143.11 85.55 35 ☐ J144 0.00 83.05 143.24 85.56 36 ☐ J38 0.00 82.86 143.08 85.61 37 ☐ J84 2.11 82.46 142.74 85.70 38 ☐ J234 16.30 83.18 143.47 85.71 39 ☐ J194 0.00 83.38 143.68 85.72 40 ☐ J226 10.76 82.95 143.33 85.83 41 ☐ J24 28.97 82.29 142.74 85.94 42 ☐ J46 0.00 82.71 143.24 86.05 43 ☐ J132 0.00 82.11 142.78 86.25 44 ☐ J130 0.00 82.01 142.75 86.35 45 ☐ J88 10.14 82.00 142.74 86.35 46 ☐ J54 3.73 82.17 142.93 86.38 47 ☐	31		J162	0.00	83.72	143.75	85.34
34 J42 0.00 82.93 143.11 85.55 35 J144 0.00 83.05 143.24 85.56 36 J38 0.00 82.86 143.08 85.61 37 J84 2.11 82.46 142.74 85.70 38 J234 16.30 83.18 143.47 85.71 39 J194 0.00 83.38 143.68 85.72 40 J226 10.76 82.95 143.33 85.83 41 J24 28.97 82.29 142.74 85.94 42 J46 0.00 82.71 143.24 86.05 43 J132 0.00 82.11 142.78 86.25 44 J130 0.00 82.01 142.75 86.35 45 J88 10.14 82.00 142.74 86.35 46 J54 3.73 82.17 142.93 86.38 47 J198	32		J30	0.00	83.41	143.46	85.37
35 ☐ J144 0.00 83.05 143.24 85.56 36 ☐ J38 0.00 82.86 143.08 85.61 37 ☐ J84 2.11 82.46 142.74 85.70 38 ☐ J234 16.30 83.18 143.47 85.71 39 ☐ J194 0.00 83.38 143.68 85.72 40 ☐ J226 10.76 82.95 143.33 85.83 41 ☐ J24 28.97 82.29 142.74 85.94 42 ☐ J46 0.00 82.71 143.24 86.05 43 ☐ J132 0.00 82.11 142.78 86.25 44 ☐ J130 0.00 82.01 142.75 86.35 45 ☐ J88 10.14 82.00 142.74 86.35 46 ☐ J54 3.73 82.17 142.93 86.38 47 ☐ J198 0.00 82.80 143.66 86.52 48 ☐	33		J34	0.00	83.24	143.33	85.43
36 J38 0.00 82.86 143.08 85.61 37 J84 2.11 82.46 142.74 85.70 38 J234 16.30 83.18 143.47 85.71 39 J194 0.00 83.38 143.68 85.72 40 J226 10.76 82.95 143.33 85.83 41 J24 28.97 82.29 142.74 85.94 42 J46 0.00 82.71 143.24 86.05 43 J132 0.00 82.11 142.78 86.25 44 J130 0.00 82.01 142.75 86.35 45 J88 10.14 82.00 142.74 86.35 46 J54 3.73 82.17 142.93 86.38 47 J198 0.00 82.80 143.66 86.52 48 J248 0.00 82.80 143.66 86.52 49 J154	34		J42	0.00	82.93	143.11	85.55
37 ☐ J84 2.11 82.46 142.74 85.70 38 ☐ J234 16.30 83.18 143.47 85.71 39 ☐ J194 0.00 83.38 143.68 85.72 40 ☐ J226 10.76 82.95 143.33 85.83 41 ☐ J24 28.97 82.29 142.74 85.94 42 ☐ J46 0.00 82.71 143.24 86.05 43 ☐ J132 0.00 82.11 142.78 86.25 44 ☐ J130 0.00 82.01 142.75 86.35 45 ☐ J88 10.14 82.00 142.74 86.35 46 ☐ J54 3.73 82.17 142.93 86.38 47 ☐ J198 0.00 82.80 143.66 86.52 48 ☐ J248 0.00 82.80 143.66 86.52 49 ☐ J154 0.00 82.07 142.97 86.57	35		J144	0.00	83.05	143.24	85.56
38 J234 16.30 83.18 143.47 85.71 39 J194 0.00 83.38 143.68 85.72 40 J226 10.76 82.95 143.33 85.83 41 J24 28.97 82.29 142.74 85.94 42 J46 0.00 82.71 143.24 86.05 43 J132 0.00 82.11 142.78 86.25 44 J130 0.00 82.01 142.75 86.35 45 J88 10.14 82.00 142.74 86.35 46 J54 3.73 82.17 142.93 86.38 47 J198 0.00 82.80 143.66 86.52 48 J248 0.00 82.80 143.66 86.52 49 J154 0.00 82.07 142.97 86.57	36		J38	0.00	82.86	143.08	85.61
39 ☐ J194 0.00 83.38 143.68 85.72 40 ☐ J226 10.76 82.95 143.33 85.83 41 ☐ J24 28.97 82.29 142.74 85.94 42 ☐ J46 0.00 82.71 143.24 86.05 43 ☐ J132 0.00 82.11 142.78 86.25 44 ☐ J130 0.00 82.01 142.75 86.35 45 ☐ J88 10.14 82.00 142.74 86.35 46 ☐ J54 3.73 82.17 142.93 86.38 47 ☐ J198 0.00 82.80 143.66 86.52 48 ☐ J248 0.00 82.80 143.66 86.52 49 ☐ J154 0.00 82.07 142.97 86.57	37		J84	2.11	82.46	142.74	85.70
40 J226 10.76 82.95 143.33 85.83 41 J24 28.97 82.29 142.74 85.94 42 J46 0.00 82.71 143.24 86.05 43 J132 0.00 82.11 142.78 86.25 44 J130 0.00 82.01 142.75 86.35 45 J88 10.14 82.00 142.74 86.35 46 J54 3.73 82.17 142.93 86.38 47 J198 0.00 82.80 143.66 86.52 48 J248 0.00 82.80 143.66 86.52 49 J154 0.00 82.07 142.97 86.57	38		J234	16.30	83.18	143.47	85.71
41 J24 28.97 82.29 142.74 85.94 42 J46 0.00 82.71 143.24 86.05 43 J132 0.00 82.11 142.78 86.25 44 J130 0.00 82.01 142.75 86.35 45 J88 10.14 82.00 142.74 86.35 46 J54 3.73 82.17 142.93 86.38 47 J198 0.00 82.80 143.66 86.52 48 J248 0.00 82.80 143.66 86.52 49 J154 0.00 82.07 142.97 86.57	39		J194	0.00	83.38	143.68	85.72
42 J46 0.00 82.71 143.24 86.05 43 J132 0.00 82.11 142.78 86.25 44 J130 0.00 82.01 142.75 86.35 45 J88 10.14 82.00 142.74 86.35 46 J54 3.73 82.17 142.93 86.38 47 J198 0.00 82.80 143.66 86.52 48 J248 0.00 82.80 143.66 86.52 49 J154 0.00 82.07 142.97 86.57	40		J226	10.76	82.95	143.33	85.83
43 J132 0.00 82.11 142.78 86.25 44 J130 0.00 82.01 142.75 86.35 45 J88 10.14 82.00 142.74 86.35 46 J54 3.73 82.17 142.93 86.38 47 J198 0.00 82.80 143.66 86.52 48 J248 0.00 82.80 143.66 86.52 49 J154 0.00 82.07 142.97 86.57	41		J24	28.97	82.29	142.74	85.94
44 J130 0.00 82.01 142.75 86.35 45 J88 10.14 82.00 142.74 86.35 46 J54 3.73 82.17 142.93 86.38 47 J198 0.00 82.80 143.66 86.52 48 J248 0.00 82.80 143.66 86.52 49 J154 0.00 82.07 142.97 86.57	42		J46	0.00	82.71	143.24	86.05
45 J88 10.14 82.00 142.74 86.35 46 J54 3.73 82.17 142.93 86.38 47 J198 0.00 82.80 143.66 86.52 48 J248 0.00 82.80 143.66 86.52 49 J154 0.00 82.07 142.97 86.57	43		J132	0.00	82.11	142.78	86.25
46 J54 3.73 82.17 142.93 86.38 47 J198 0.00 82.80 143.66 86.52 48 J248 0.00 82.80 143.66 86.52 49 J154 0.00 82.07 142.97 86.57	44		J130	0.00	82.01	142.75	86.35
47 J198 0.00 82.80 143.66 86.52 48 J248 0.00 82.80 143.66 86.52 49 J154 0.00 82.07 142.97 86.57	45		J88	10.14	82.00	142.74	86.35
48 J248 0.00 82.80 143.66 86.52 49 J154 0.00 82.07 142.97 86.57	46		J54	3.73	82.17	142.93	86.38
49 J154 0.00 82.07 142.97 86.57	47		J198	0.00	82.80	143.66	86.52
	48		J248	0.00	82.80	143.66	86.52
10.00	49		J154	0.00	82.07	142.97	86.57
50 J J58 10.23 82.05 142.97 86.61	50		J58	10.23	82.05	142.97	86.61

Date: Tuesday, July 02, 2024, Time: 13:48:44, Page 1

		ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (psi)
51		J230	0.00	82.77	143.71	86.62
52		J80	0.57	81.70	142.79	86.84
53		J92	25.01	81.61	142.74	86.90
54		J74	21.58	81.63	142.79	86.94
55		J134	2.23	81.80	143.07	87.10
56		J178	16.89	82.30	143.64	87.20
57		J128	5.73	81.35	142.74	87.27
58		J200	0.00	81.35	142.74	87.28
59		J202	0.00	81.35	142.74	87.28
60		J158	0.00	81.44	142.89	87.35
61		J112	0.00	81.34	142.85	87.44
62		J156	0.00	81.32	142.88	87.51
63		J114	0.00	81.23	142.88	87.64
64		J44	9.72	81.47	143.13	87.66
65		J14	0.00	81.75	143.46	87.73
66		J70	0.00	81.15	142.88	87.75
67		J64	26.37	81.10	142.88	87.82
68		J180	8.58	81.86	143.64	87.82
69		J146	0.00	81.26	143.11	87.92
70		J96	0.00	80.91	142.76	87.92
71		J164	0.00	81.79	143.71	88.03
72		J48	0.00	80.79	142.76	88.09
73		J50	0.00	80.75	142.75	88.14
74		J182	8.36	81.31	143.65	88.62
75		J126	14.01	80.21	142.71	88.84
76		J100	29.42	80.10	142.74	89.05
77		J116	0.00	79.95	142.75	89.28
78		J250	0.00	80.85	143.66	89.29
79		J104	11.29	79.92	142.73	89.30
80		J166	0.00	80.85	143.68	89.32
81		J142	0.00	80.35	143.25	89.41
82		J136	0.00	79.85	142.92	89.65
83		J124	0.00	79.44	142.73	89.97
84		J62	42.75	79.65	142.94	89.98
85	Щ	J118	0.00	79.36	142.74	90.11
86	Щ	J122	0.00	79.33	142.74	90.15
87	Щ	J110	0.00	79.47	142.95	90.24
88	ᆜ	J258	0.00	79.85	143.66	90.71
89	ᆜ	J246	0.00	79.85	143.76	90.85
90	Щ	J150	0.00	78.92	143.09	91.22
91	ᆜ	J120	0.00	78.33	142.74	91.57
92	Ш	J152	0.00	75.92	143.08	95.47

PHD-PIPE

	ID	From Node	To Node	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)	Headloss (m)	HL/1000 (m/k-m)	Status	Flow Reversal Count
1	24	J44	J146	37.79	300.00	120.00	25.92	0.37	0.02	0.61	Open	0
2	25	J112	J114	11.08	300.00	120.00	-56.00	0.79	0.03	2.55	Open	0
3	26	J110	J116	162.84	300.00	120.00	37.10	0.52	0.19	1.19	Open	0
4	27	J116	J118	103.23	200.00	120.00	2.76	0.09	0.01	0.07	Open	0
5	28	J120	J118	17.79	200.00	120.00	1.54	0.05	0.00	0.02	Open	0
6	29	J118	J122	14.95	200.00	120.00	4.30	0.14	0.00	0.16	Open	0
7	30	J122	J124	88.59	200.00	120.00	4.30	0.14	0.01	0.16	Open	0
8	31	J124	J126	144.09	200.00	120.00	4.30	0.14	0.02	0.16	Open	0
9	32	J50	J120	146.51	200.00	120.00	1.54	0.05	0.00	0.02	Open	0
10	33	J130	J128	112.40	200.00	120.00	2.82	0.09	0.01	0.07	Open	0
11	34	J130	J112	156.59	300.00	120.00	-26.47	0.37	0.10	0.64	Open	0
12	35	J74	J112	79.98	300.00	120.00	-29.52	0.42	0.06	0.78	Open	0
13	36	J248	J14	98.08	400.00	120.00	105.96	0.84	0.20	2.04	Open	0
14	37	J134	J136	166.63	300.00	120.00	32.05	0.45	0.15	0.91	Open	0
15	38	J138	J24	110.22	300.00	120.00	-1.33	0.02	0.00	0.00	Open	0
16	40	J142	J146	135.17	300.00	120.00	34.05	0.48	0.14	1.01	Open	0
17	41	J144	J134	154.56	300.00	120.00	35.64	0.50	0.17	1.10	Open	0
18	42	J126	J104	40.45	200.00	120.00	-9.71	0.31	0.03	0.72	Open	0
19	6	J40	J38	120.78	300.00	120.00	-30.62	0.43	0.10	0.83	Open	0
20	8	J48	J50	91.46	200.00	120.00	3.33	0.11	0.01	0.10	Open	0
21	P101	J176	J174	98.07	300.00	120.00	2.94	0.04	0.00	0.01	Open	0
22	P103	J230	J192	198.76	250.00	110.00	3.14	0.06	0.01	0.04	Open	0
23	P105	J204	J270	51.89	300.00	120.00	-4.12	0.06	0.00	0.02	Open	0
24	P107	J160	J10	21.74	300.00	120.00	-1.37	0.02	0.00	0.00	Open	0
25	P109	J164	J230	173.09	250.00	110.00	3.14	0.06	0.01	0.04	Open	0
26	P111	J162	J164	99.75	300.00	120.00	21.57	0.31	0.04	0.44	Open	0
27	P113	J164	J166	86.36	300.00	120.00	18.43	0.26	0.03	0.33	Open	0
28	P115	J166	J182	102.73	300.00	120.00	18.43	0.26	0.03	0.33	Open	0
29	P117	J182	J180	97.29	300.00	120.00	10.07	0.14	0.01	0.11	Open	0
30	P119	J180	J178	85.87	300.00	120.00	1.49	0.02	0.00	0.00	Open	0
31	P121	J212	J268	72.14	300.00	120.00	-11.84	0.17	0.01	0.14	Open	0
32	P129	J218	J220	71.02	300.00	120.00	9.54	0.13	0.01	0.10	Open	0
33	P13	J146	J134	109.84	300.00	120.00	19.81	0.28	0.04	0.37	Open	0
34	P131	J220	J222	64.95	300.00	120.00	-2.90	0.04	0.00	0.01	Open	0
35	P133	J222	J224	89.72	300.00	120.00	12.51	0.18	0.01	0.16	Open	0
36	P135	J224	J226	83.02	300.00	120.00	0.06	0.00	0.00	0.00	Open	0
37	P143	J18	J270	13.46	400.00	120.00	70.83	0.56	0.01	0.97	Open	0
38	P145	J190	J192	58.87	400.00	120.00	54.32	0.43	0.03	0.59	Open	0
39	P147	J192	J194	53.65	400.00	120.00	42.39	0.34	0.02	0.37	Open	0
40	P15	J146	J62	118.80	300.00	120.00	40.15	0.57	0.16	1.38	Open	0
41	P151	J214	J212	67.91	300.00	120.00	-5.10	0.07	0.00	0.03	Open	0
42	P153	J210	J240	125.40	250.00	110.00	9.92	0.20	0.04	0.30	Open	0
43	P155	J196	J30	100.45	400.00	120.00	100.56	0.80	0.19	1.85	Open	0
44	P157	J194	J198	49.89	400.00	120.00	42.39	0.34	0.02	0.37	Open	0
45	_	J128	J200	133.31	200.00	120.00	-1.11	0.04	0.00	0.01	Open	0
46	P161	J208	J268	64.21	300.00	120.00	-13.75	0.19	0.01	0.19	Open	0
47	P163	J202	J138	119.12	200.00	120.00	-1.11	0.13	0.00	0.01	Open	0
48	P165	J136	J96	166.15	300.00	120.00	32.80	0.46	0.16	0.95	Open	0
49	P167	J200	J202	11.25	200.00	120.00	-1.11	0.04	0.00	0.01	Open	0
50	P169	J206	J208	82.38	300.00	120.00	-8.92	0.13	0.01	0.08	Open	0
51	P17	J62	J110	47.94	300.00	120.00	-2.60	0.04	0.00	0.01	Open	0
52	P171	J206	J204	69.88	300.00	120.00	1.91	0.03	0.00	0.00	Open	0
53	P175	J210	J222	86.86	300.00	120.00	51.06	0.72	0.19	2.15	Open	0
54	P177	J172	J174	81.01	300.00	120.00	0.98	0.01	0.00	0.00	Open	0
55	P179	J172	J162	87.33	300.00	120.00	-13.83	0.20	0.02	0.19	Open	0
56	P183	J232	J210	120.26	250.00	110.00	15.07	0.20	0.02	0.19	Open	0
57	P185	RES9002	J262	48.40	600.00	120.00	425.25	1.50	0.18	3.72	Open	0
58	P187	J214	J160	63.52	300.00	120.00	-1.37	0.02	0.00	0.00	Open	0
59	P189	J226	J34	51.07	300.00	120.00	-10.70	0.02	0.00	0.00	Open	0
60	P189	J20	J54	117.59	300.00	120.00	-25.46	0.15	0.01	0.12	Open	0
_=		J192	J232	147.89	250.00	110.00	15.07	0.30	0.07	0.64	Open	0
61 📙	P191				300.00							
62	P193	J218	J234	71.16		120.00	-45.78 15.40	0.65	0.12	1.75	Open	0
63	P195	J178	J198	86.78	300.00	120.00	-15.40	0.22	0.02	0.23	Open	0
64	P197	J176	J270	106.19 :49:12, Pag	300.00	120.00	-12.38	0.18	0.02	0.16	Open	0

Date: Tuesday, July 02, 2024, Time: 13:49:12, Page 1

		ID	From Node	To Node	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)	Headloss (m)	HL/1000 (m/k-m)	Status	Flow Reversal Count
65		P199	J170	J268	10.33	300.00	120.00	76.05	1.08	0.05	4.49	Open	0
66		P201	J234	J198	61.08	300.00	120.00	-62.08	0.88	0.19	3.08	Open	0
67		P21	J14	J142	106.09	400.00	120.00	105.96	0.84	0.22	2.04	Open	0
68		P215	J240	J30	102.65	250.00	110.00	9.92	0.20	0.03	0.30	Open	0
69		P217	J222	J144	93.00	300.00	120.00	35.64	0.50	0.10	1.10	Open	0
70	П	P219	J218	J46	95.10	300.00	120.00	35.64	0.50	0.10	1.10	Open	0
71	Ħ	P225	J246	J266	355.06	900.00	130.00	0.00	0.00	0.00	0.00	Open	0
72	Ħ	P229	J250	J248	375.46	600.00	120.00	0.00	0.00	0.00	0.00	Open	0
73	Ħ	P231	J248	J18	220.67	600.00	120.00	-141.05	0.50	0.11	0.48	Open	0
74	Ħ	P235	J252	J250	182.26	900.00	130.00	0.00	0.00	0.00	0.00	Open	0
75	Ħ	P237	J250	J258	89.25	900.00	130.00	0.00	0.00	0.00	0.00	Open	0
76	Ħ	P239	J248	J198	10.64	400.00	120.00	35.09	0.28	0.00	0.26	Open	0
77	Ħ	P241	J162	J266	79.26	600.00	120.00	-35.40	0.13	0.00	0.04	Open	0
78	Ħ	P243	J18	J262	118.60	600.00	120.00	-247.27	0.87	0.16	1.36	Open	0
79	Ħ	P245	J170	J10	221.78	600.00	120.00	101.93	0.36	0.06	0.26	Open	0
80	Ħ	P247	J262	J170	148.23	600.00	120.00	177.97	0.63	0.11	0.74	Open	0
81	Ħ	P249	J266	J18	292.37	600.00	120.00	-35.40	0.13	0.01	0.04	Open	0
82	Ħ	P25	J150	J152	12.66	400.00	120.00	71.91	0.57	0.01	1.00	Open	0
83	Ħ	P251	J268	J210	117.75	300.00	120.00	50.46	0.71	0.25	2.10	Open	0
84	Ħ	P253	J270	J190	37.69	400.00	120.00	54.32	0.43	0.02	0.59	Open	0
85	Ħ	P27	J152	J110	132.14	400.00	120.00	71.91	0.57	0.13	1.00	Open	0
86	Ħ	P29	J110	J136	128.24	400.00	120.00	32.21	0.26	0.03	0.23	Open	0
87	Ħ	P31	J136	J64	180.81	400.00	120.00	31.46	0.25	0.04	0.22	Open	0
88	Ħ	P33	J64	J70	14.43	400.00	120.00	5.09	0.04	0.00	0.01	Open	0
89	H	P35	J70	J156	34.75	400.00	120.00	5.09	0.04	0.00	0.01	Open	0
90	Ħ	P37	J156	J114	6.20	400.00	120.00	5.09	0.04	0.00	0.01	Open	0
91	Ħ	P39	J114	J158	17.17	400.00	120.00	-50.91	0.41	0.01	0.53	Open	0
92	H	P41	J154	J158	153.05	400.00	120.00	50.91	0.41	0.08	0.53	Open	0
93	Ħ	P43	J42	J154	156.43	400.00	120.00	69.16	0.55	0.15	0.93	Open	0
94	Ħ	P45	J34	J42	120.68	400.00	120.00	99.79	0.79	0.22	1.83	Open	0
95	H	P47	J30	J34	57.66	400.00	120.00	110.48	0.88	0.13	2.21	Open	0
96	H	P51	J58	J134	228.31	300.00	120.00	-21.17	0.30	0.10	0.42	Open	0
97	H	P53	J154	J58	39.98	300.00	120.00	-10.94	0.15	0.00	0.12	Open	0
98	H	P55	J104	J116	41.94	300.00	120.00	-21.00	0.30	0.02	0.41	Open	0
99	H	P57	J116	J100	77.25	300.00	120.00	13.34	0.19	0.02	0.18	Open	0
100	H	P59	J100	J96	84.08	300.00	120.00	-16.08	0.19	0.01	0.25	Open	0
101	ዙ	P61	J96	J48	6.45	300.00	120.00	16.72	0.23	0.02	0.27	Open	0
101	H	P63	J48	J92	120.82	300.00	120.00	13.39	0.19	0.00	0.18	Open	0
102	H	P65	J46 J92	J130	97.59	300.00	120.00	-11.62	0.19	0.02	0.16	Open	0
103	ዙ	P69	J84	J88	69.90	300.00	120.00	-1.89	0.10	0.00	0.00	Open	0
104	ዙ	P09	J138	J84	53.85	300.00	120.00	0.22	0.00	0.00	0.00	Open	0
105	ዙ	P71	J132	J24	44.79	300.00	120.00	30.30	0.43	0.00	0.82	Open	0
	H		J20	J132	172.60	300.00	120.00	22.92	0.43	0.04	0.62	Open	0
107	뷰	P75	J40	J20	159.11	300.00	120.00	28.54	0.32	0.08	0.49	Open	0
108	屵	P77	J50	J20 J128	234.05	200.00	120.00	1.80	0.40	0.12	0.73	Open	0
109	ዙ		J38				120.00					- '	0
110	屵	P81		J42	35.30	300.00		-30.62	0.43	0.03	0.83	Open	0
111	屵	P83	J54	J154	41.53	300.00	120.00	-29.19	0.41	0.03	0.76	Open	
112	붜	P85	J80	J74	13.52	300.00	120.00	-7.95	0.11	0.00	0.07	Open	0
113	뷰	P87	J132	J80	74.26	300.00	120.00	-7.38	0.10	0.00	0.06	Open	0
114	屵	P89	J10	J196	62.59	400.00	120.00	100.56	0.80	0.12	1.85	Open	0
115	ዞ	P93	J88	J130	30.88	300.00	120.00	-12.03	0.17	0.00	0.15	Open	0
116	=	P95	J142	J150	156.08	400.00	120.00	71.91	0.57	0.16	1.00	Open	0
117	Ш	P97	J46	J44	100.05	300.00	120.00	35.64	0.50	0.11	1.10	Open	0

	ID	Static Demand (L/s)	Static Pressure (psi)	Static Head (m)	Fire-Flow Demand (L/s)	Residual Pressure (psi)	Hydrant Available Flow (L/s)	Hydrant Pressure at Available Flow (psi)	Critical Pipe ID at Available Flow	Critical Pipe Velocity at Available Flow (m/s)
1	J240	0.00	84.56	143.85	317.00	74.60	464.44	65.00	P215	4.99
2	J160	0.00	83.78	143.96	317.00	81.41	468.85	79.30	P107	5.01
3	J232	0.00	83.83	143.90	317.00	73.04	472.38	61.67	P183	4.99
4	J230	0.00	86.95	143.94	317.00	72.05	485.29	54.58	P109	5.00
5	J178	11.26	87.58	143.91	317.00	81.99	500.96	75.87	P195	5.04
6	J204	4.02	82.01	143.96	317.00	78.82	518.90	74.66	P105	5.02
7	J226	7.18	86.48	143.78	317.00	81.92	547.06	75.70	P189	5.03
8	J172	8.57	84.61	143.95	317.00	79.66	548.21	72.16	P179	5.02
9	J208	3.22	81.99	143.96	317.00	78.42	550.98	72.80	P161	5.02
10	J176	6.29	82.95	143.95	317.00	77.81	564.27	69.19	P197	5.02
11	J166	0.00	89.67	143.93	317.00	82.80	566.98	70.54	P113	5.05
12	J234	10.87	86.23	143.84	317.00	82.73	573.49	77.21	P201	5.01
13	J212	4.49	82.84	143.96	317.00	79.20	592.21	72.32	P121	5.03
14	J180	5.72	88.21	143.91	317.00	80.76	596.13	66.18	P119	4.99
15	J164	0.00	88.35	143.94	317.00	83.85	614.75	74.05	P111	5.05
16	J214	4.31	83.42	143.96	317.00	79.62	626.25	71.27	P187	5.00
17	J224	8.30	85.97	143.78	317.00	80.81	655.47	69.04	P133	5.03
18	J220	8.30	85.13	143.79	317.00	80.86	659.89	71.07	P131	4.99
19	J206	4.67	81.77	143.96	317.00	77.53	670.84	66.18	P171	5.00
20	J174	2.61	83.60	143.95	317.00	77.72	680.47	61.21	P177	5.00
21	J182	5.57	88.99	143.91	317.00	81.03	689.98	58.07	P115	5.02
22	J218	0.41	85.66	143.79	317.00	82.06	860.99	66.85	P193	5.00
23	J196	0.00	85.03	143.91	317.00	83.06	909.29	74.88	P89	5.02
24	J210	3.03	82.91	143.86	317.00	80.12	922.24	66.38	P251	5.00
25	J190	0.00	83.74	143.95	317.00	82.45	974.72	76.01	P253	5.00
26	J222	0.00	85.28	143.79	317.00	82.29	999.89	66.20	P175	5.01
27	J198	0.00	86.89	143.92	317.00	85.61	1,026.92	79.61	P239	5.00
28	J34	0.00	86.07	143.79	317.00	83.36	1,108.87	66.82	P47	5.02
29	J194	0.00	86.07	143.93	317.00	84.59	1,121.57	74.99	P157	4.97
30	J30	0.00	85.90	143.84	317.00	83.46	1,171.94	66.70	P155	5.01
31	J192	0.00	84.96	143.93	317.00	83.54	1,354.50	70.01	P145	5.00
32	J18	0.00	82.23	143.96	317.00	81.40	1,649.23	72.40	P243	5.04
33	J170	0.00	82.36	143.99	317.00	81.50	1,765.73	70.60	P247	5.02
34	J162	0.00	85.63	143.96	317.00	84.08	1,895.26	55.02	P241	5.01
35	J10	0.00	84.02	143.96	317.00	82.71	2,046.77	58.73	P245	5.05

Appendix B-6

Water Age Analysis
- Option 2

Water Turnover Calculations

Project Title: 4938 - Rangeview Mississauga

Last Edited: 2024-07-02

Municipality Region of Peel

Average Consumption: 280 L/cap/day (Residential Land Use) 300 L/cap/day (Employment Land Use)

Minimum Consumption: 196.000 L/cap/day¹

Turnover Rate Calculation											
Service	Length	Diameter	Area Volume		Average Consumption (100% Population)	Minimum Consumption (70% Population)	Minimum Consumption (20% Population)	Days for Turnover			
	(m)	(mm)	(m ²)	(m ³)	(m³/day)	(m³/day)	(m³/day)	(Day)			
	1257	200	0.03	39.50	13462.68	9423.88	1884.78	0.59			
	868	250	0.05	42.61							
Complete System	5508	300	0.07	389.36							
	1762	400	0.13	221.38							
	1505	600	0.28	425.46							

^{1 -} Minimum consumption calculated using: average day consumption * 0.7

Sanitary Flow Calculation

Rangeview Estates Master Functional Servicing Plan (Ulimate

Project No: 4938

Infiltration Rate*: 0.26 L/s/ha

Generation Rate*: Residential 290 L/capita/day

Non-Residential 270 L/capita/day

Estimated Site Discharge

Site Discharge	Population***	Average Demand (L/S)	Harmon's Peaking Factor	Flow (L/s)	Infiltration (L/s)**	Total PeakFlow (L/s)
Townhouse	1856	6.23		17.26		17.26
Apartment	12890	43.27	2.77	119.89	5.70	119.89
Commercial	52	0.16	2.11	0.48	5.70	0.48
Institutional	450	1.41		4.19		4.19
					Total Flow =	147.53

^{*}As per Region of Peel Guidelines

^{**} Infiltration for the total site =21.94 (full Site)

^{***}Refer to Population Statisitics

CITY OF MISSISSAUGA

 Designed By:
 P.W.

 Checked By:
 K.Sh

 Date:
 26-Apr-24

 Project No.:
 4938

Rangeview Road Development Pre-Development Condition

	SEC	CTION			R	ESIDENT	TAL			OTHER														Sewe	er Design		
	From	То	Sect	Apart.	ROW	SF	SF	Semi	Ind.	Comm.	Inst.	Res	Acc Res	Non-Res	Acc	Total	Avg	Peaking	Peak	ACC	Infiltration	TOTAL	Pipe	Grade	Length	Capacity	
STREET	МН	МН	Area			>10m	<10n	n Detac.	(@ 70	(@ 50		Pop	Рор	Pop	Non-Res	Pop	Day	Factor	Day	AREA		Peak	Dia				Remarks
						front.	front	i.	ppha)	ppha)					Рор							Flow	Act.				
			(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)							(L/s)		(L/s)	(ha)	(L/s)	(L/s)	(mm)	(%)	(m)	(L/s)	
Design Criteria																											
Residential																											
Rowhouses / Other Multiples	3.5	persons/	/unit	As per	the Regi	on's Cor	nment																				
Apartments	2.7	persons/	/unit	As per	the Regi	on's Cor	nment																				
SF (> 10m frontage)	50	persons/	/ha																								
SF(< 10m frontage)	70	persons/				1																					
Semi-Detached	70	persons/																									
ROW Dwellings	175	persons/				1																					
Apartments	475	persons/		1		1		+	1	1																	
		1001001101	T	1		1			1																		
ICI	†		1	1		1				1 1				1													
Industrial	70	persons/	/ha	1	1	1	1																				
Commercial	50	persons/		1		1																					
		100.00	1	1		1																					
Infiltration	0.26	L/s/ha	1	1		1				1 1				1													
Residential Generation Rate	290.00	L/c/d		1		1			1																		
Non-Residential Generation Rate	270.00			1		1			1																		
						1																					
Rangeview Rd Downstream System						1																					
Rangeview Rd	40	39	1.49						0.68	0.61		0	0	78	78	78	0.24	4.27	1.04	1.49	0.39	1.43	250	0.28	93.6	31.29	5%
Rangeview Rd	39	38	2.26			1			2.03	1		0	0	142	220	220	0.69	4.13	2.84	3.75	0.97	3.82		0.33	91.1	34.22	11%
Rangeview Rd	38	37	1.79						1.23	0.36		0	0	105	325	325	1.02	4.06	4.13	5.54	1.44	5.57		0.31	91.3	32.95	17%
Rangeview Rd	37	36	0.85						0.72			0	0	51	376	376	1.18	4.03	4.74	6.40	1.66	6.40		0.24	91.9	29.26	22%
Rangeview Rd	36	35	1.63						1.45			0	0	102	478	478	1.49	3.98	5.95	8.03	2.09	8.04		0.37	91.0	36.26	22%
Rangeview Rd	35	34	2.17						1.43			0	0	100	578	578	1.81	3.94	7.12	10.20	2.65	9.77		0.44	90.2	39.41	25%
Rangeview Rd	34	33	1.72			1			1.53			0	0	107	685	685	2.14	3.90	8.35	11.92	3.10	11.45	250	0.59	91.4	45.81	25%
Rangeview Rd	33	32	2.69						2.19			0	0	154	839	839	2.62	3.85	10.09	14.61	3.80	13.89		0.61	92.0	46.54	30%
Rangeview Rd	32	31	1.43						1.04			0	0	73	912	912	2.85	3.83	10.90	16.04	4.17	15.07	250	1.10	82.9	62.45	24%
Rangeview Rd	31	9	0.00	1		1						0	0	0	912	912	2.85	3.83		16.04	4.17	15.07		0.53	11.0	43.20	35%
Subtotal			16.04										0		912	912				16.04							
East Ave	9	10	1.84									0	0	0	912	912	2.85	3.83	10.90	17.87	4.65	15.55	250	0.30	83.5	32.73	48%
East Ave (Treatment Plant Lateral)		10	12.85						12.85			0	0	900	1812	1812	5.66	3.62	20.49	30.73	7.99	28.48					
Easment - West of East Ave	10	11	0.35									0	0	0	1812	1812	5.66	3.62	20.49	31.07	8.08	28.57	300	0.29	90.5	52.04	55%
Easment - West of East Ave	11	12	0.16									0	0	0	1812	1812	5.66	3.62	20.49	31.23	8.12	28.61	300	0.35	39.6	56.89	50%
Easment - West of East Ave	12	13	0.06									0	0	0	1812	1812	5.66	3.62	20.49	31.29	8.14	28.63	300	0.37	66.1	58.71	49%
Subtotal			31.29										0		1812	1812				31.29							
Lateral from Montbeck North		13	1.73			1.73						87	87	0	0	87				1.73							
Montbeck Cres	13	19	0.11			0.11						6	93	0	1812	1905	5.97	3.60	21.52		8.61		375			64.90	46%
Montbeck Cres	19	20	0.62			0.62						31	124	0		1936	6.08	3.60	21.86		8.77				40.54	107.71	28%
Montbeck Cres	20	21	0.58			0.58						29	153	0	1812	1965	6.18	3.59	22.18	34.32	8.92	31.11	375	0.28	91.74	92.43	34%
Subtotal			34.32			1							153		1812	1965				34.32							
						ļ																					
Lateral from North Goodwin & West Montbeck*		21	29.50	0.21	0.38	11.67		0.479	1.32	5.05		1230	1230	0	354	1584				29.50							
						1																					
Goodwin Rd	21	31	0.70			0.70						35	1418	0	2166		11.53			64.52	16.78					118.81	47%
Goodwin Rd	31	32	0.41		1	0.41						21	1439	0	2166	3605	11.60	3.37	39.13	64.93	16.88	56.01	375	0.29	92.35	94.49	59%

SCHAEFFERS
Consulting Engineers
Concord,
Ontario L4K 4R3
Tel: (905) 738-6100
SCHAEFFER & ASSOCIATES LTD Fax: (905) 738-6875

CITY OF MISSISSAUGA

 Designed By:
 P.W.

 Checked By:
 K.Sh

 Date:
 26-Apr-24

 Project No.:
 4938

Rangeview Road Development Pre-Development Condition

	SEC	TION			RE	SIDENT	TAL			OTHER														Sewe	er Design		
	From	То	Sect	Apart.	ROW	SF	SF	Semi	Ind.	Comm.	Inst.	Res	Acc Res	Non-Res	Acc	Total	Avg	Peaking	Peak	ACC	Infiltration	TOTAL	Pipe	Grade	Length	Capacity	
STREET	MH	МН	Area			>10m	<10m	Detac.	(@ 70	(@ 50		Pop	Pop	Pop	Non-Res	Pop	Day	Factor	Day	AREA		Peak	Dia				Remarks
						front.	front.		ppha)	ppha)					Pop							Flow	Act.				
			(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)							(L/s)		(L/s)	(ha)	(L/s)	(L/s)	(mm)	(%)	(m)	(L/s)	
Subtotal			64.93										1439		2166	3605				64.93							
			1		† 											1											
Beach St	32	25	0.44			0.44						23	1462	0	2166	3628	11.68	3.37	39.36	65.38	17.00	56.36	375	0.33	98.00	100.97	56%
Beach St to PS	25	26	0.09						0.091			0	1462	7	2173	3635	11.70	3.37	39.42		17.02	56.45			24.99	40.35	140%
Subtotal			65.47										1462		2173	3635				65.47							· · ·
Lateral from West of PS via Aviation Rd*		26	44.78	0.43	19.12	12.29		1.333		3.53		7609	7609	194	194	7803				44.78							
Subtotal for Rangeview Rd Downstream System			110.25										9071		2367	11438	37.84	2.90	109.62	110.25	28.66	138.28					
,																											
Lakeshore Rd Western Downstream System																											
Lakeshore Rd E	121	111	1.70						0.868	0.434		0	0	83	83	83	0.26	4.26	1.11	1.70	0.44	1.55	250	0.60	66.87	46.06	3%
Lakeshore Rd E	111	110	0.56						0.452			0	0	32	115	115	0.36	4.23	1.52	2.25	0.59	2.10		0.74	73.91	51.16	4%
Lakeshore Rd E	110	109	1.77		1		1			0.921		0	0	47	162	162	0.51	4.18	2.12	4.02	1.05	3.16		0.69	49.68	49.40	6%
Lakeshore Rd E*	109	108	5.12			2.78				0.982		175	175	53	215	390	1.26	4.03	5.07	9.14	2.38	7.45			51.11	36.17	21%
Lakeshore Rd E	108	107	2.43		1	2.15				0.142		108	283	8	223	506	1.65	3.97	6.54	11.56	3.01	9.55	250		50.69	59.17	16%
Lakeshore Rd E	107	106	0.27	1		1				0.144		0	283	8	231	514	1.67	3.97	6.63		3.08	9.71		0.84	47.06	54.50	18%
Lakeshore Rd E	106	105		0.21		1.33				0.111		166	449	0	231	680	2.23	3.90	8.70	14.55	3.78	12.48	250		65.78	51.84	24%
Lakeshore Rd E	105	104	0.28	0.21		1.00				0.106		0	449	6	237	686	2.25	3.90	8.77	14.84	3.86	12.62		0.80	76.38	53.19	24%
Lakeshore Rd E	104	103	8.71		0.22	2.87	 	0.479		1.257		215	664	63	300	964	3.17	3.81	12.06		6.12	18.18	250	0.50	15.85	42.05	43%
Montbeck Cres*	103	102	2.26		0.17	2.07	 	0.473		1.06	+	437	1101	54	354	1455	4.80	3.69	17.71	25.80	6.71	24.42			86.26	40.33	61%
Byngmount Ave	102	101	0.79		0.17	0.79				1.00		40	1141	0	354	1495	4.94	3.68	18.17		6.91	25.08		0.55	57.91	44.10	57%
Byngmount Ave	101	100	0.73		 	0.73						12	1153	0	354	1507	4.98	3.68	18.30		6.97	25.28		0.44	49.07	39.45	64%
Goodwin Ave	100	99	1.42		1	1.01						51	1204	0	354	1558	5.15	3.67	18.88		7.34	26.22			91.44	42.47	62%
Goodwin Ave	99	21	0.75			0.50						26	1230	0	354	1584	5.23	3.66	19.17	28.99	7.54	26.71		0.49	96.32	41.63	64%
Subtotal	99	21	28.99			0.50						20	1230	U	354	1584	5.23	3.00	19.17	28.99	7.54	20.71	230	0.49	90.32	41.03	04 /0
Subtotal			20.99										1230		334	1304				20.99							
Lateral from east of MH21		21	34.32		+	-	 					0	153	0	1812	1965				34.32			-				
Lateral from west of MH 21		21	0.51		 	0.25	<u> </u>					13	166	0	1812	1903				34.83							
Subtotal		21	63.83			0.23						13	1396	0	2166	3562				63.83							
Sublotal			03.03		+	-	 				-		1390		2100	3302				03.03			-				
Goodwin Rd	24	24	0.70		 	0.70	<u> </u>	1				25	1 101	0	2166	2507	11 57	2 27	20.05	64.50	16.70	EE 02	275	0.46	01.44	110.01	47%
	21	32	0.70			0.70						35 21	1431 1452	0			11.64				16.78 16.88					94.49	59%
Goodwin Rd	31	32	_			0.41						21		0			11.04	3.31	39.20		10.00	56.14	3/5	0.29	92.33	94.49	59%
Subtotal			64.93										1452		2166	3618				64.93							
Beach St	32	25	0.44			0.44						23	1475	0	2166	3641	11.72	3.37	30.40	65.38	17.00	56.40	375	0.33	98.00	100.97	56%
Beach St to PS	25	26	0.09			0.44			0.091			0	1475	7			11.74			65.47	17.00				24.99	40.35	140%
Subtotal	20	20	65.47		+	-	 		0.091			U	1475	<i>'</i>		3648	11.74	3.31	39.50	65.47	17.02	30.36	300	0.17	24.99	40.33	140%
Sublotal			03.47		+	-	 	1			-		1475		2173	3040				65.47			-				
Lateral from West of PS via Aviation Rd*		26	44.82	0.42	10.12	12.20		1.333		3.53		7609	7609	194	194	7609				44.82							
		20			19.12	12.29		1.333		3.53		7609		194			27.00	0.00	400.70		00.67	400.40					
Subtotal for Lakeshore Rd Western Downstream System			110.29)									9084		2367	11451	37.89	2.90	109.72	110.29	28.67	138.40					
Lakeahara Dd Fastara Dawnafraan Cratara					 		 									-							 				
Lakeshore Rd Eastern Downstream System	7		1 00	1	 		 	-	0.70					F 2	F0	F0	0.40	4.04	0.07	4.00	0.00	0.05	200	0.05	00.00	F7.40	20/
Lakeshore Rd E	- /	6	1.06	1	1	-	1		0.70			0	0	50	50	50	0.16	4.31	0.67		0.28				86.26		2%
Lakeshore Rd E	6	5	1.29	1	 	<u> </u>	<u> </u>		1.074	0.050		0	0	76	126	126	0.39	4.21	1.66		0.61				91.44	46.71	5%
Lakeshore Rd E	5	4	1.91		-		<u> </u>		0.783	0.858		0	0	98	224	224	0.70	4.13	2.89		1.11				91.44	59.35	7%
Lakeshore Rd E	4	3	0.84	1	 	ļ	<u> </u>		0.70			0	0	49	273	273	0.85	4.10	3.49		1.33				62.48	42.72	11%
Lakeshore Rd E	3	2	0.00	1	1				0.00			0	0	0	273	273	0.85	4.10	3.49		1.33				63.70	63.10	8%
Lakeshore Rd E	2	1	1.57	1	-		ļ	—	1.356			0	0	95	368	368	1.15	4.04	4.64		1.74				65.99	56.15	11%
Lakeshore Rd E	1	001	0.00	1	<u> </u>		<u> </u>					0	0	0	368	368	1.15	4.04	4.64		1.74	6.38	300	1.56	28.50	120.70	5%
			6.68	<u> </u>									0		368	368				6.68							
														<u> </u>													

SCHAEFFERS
Consulting Engineers
Concord,
Ontario L4K 4R3
Tel: (905) 738-6100
SCHAEFFER & ASSOCIATES LTD Fax: (905) 738-6875

CITY OF MISSISSAUGA

Designed By: P.W. Checked By: K.Sh 26-Apr-24

Date: Project No.: 4938

Rangeview Road Development Pre-Development Condition

	SEC	TION			RF	SIDENT	ΔΙ			OTHER														Sew	er Design		
	From	То	Sect	Apart.	ROW	SF	SF	Semi	Ind.	Comm.	Inst.	Res	Acc Res	Non-Res	Acc	Total	Avg	Peaking	Peak	ACC	Infiltration	TOTAL	Pipe			Capacity	
STREET	МН	МН	Area			>10m	<10m	Detac.	(@ 70	(@ 50		Pop	Рор	Pop	Non-Res	Pop	Day	Factor	Day	AREA		Peak	Dia				Remarks
						front.	front.		ppha)	ppha)					Рор							Flow	Act.				
			(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)							(L/s)		(L/s)	(ha)	(L/s)	(L/s)	(mm)	(%)	(m)	(L/s)	
Lakeshore Rd E*	001	002	126.88		2.04	86.34				2.409	1600	5292	5292	1785	2153	7445	24.49	3.08	75.45	133.56	34.72	110.17	600	0.34	119.00	355.99	31%
Lakeshore Rd E	002	003	3.81									0	5292	0	2153	7445	24.49	3.08	75.45	137.37	35.72	111.16	600	0.11	91.00	203.54	55%
Subtotal for Lakeshore Rd Eastern Downstream System			137.37										5292		2153	7445				137.37	_						

^{*} Denotes Development Application included from City

SCHAEFFERS
Consulting Engineers
Concord,
Ontario L4K 4R3
Tel: (905) 738-6100

SCHAEFFER & ASSOCIATES LTD Fax: (905) 738-6875

CITY OF MISSISSAUGA

Rangeview Road Development Ultimate Conditions

		SECTION			RE	ESIDENT	ΓIAL		OTHER															Sewer	Design	
	From	То	Sect	Apart.	ROW	SF	Semi	Ind.	Comm.	Inst.	Res	Acc	Non	Acc	Total	Avg	Peaking	Peak	ACC	Infiltration	TOTAL	Length	Prop.	Proposed	Proposed	Proposed
STREET	МН	МН	Area				Detac.	(@ 70	(@ 50		Pop	Res	Res	Res	Pop	Day	Factor	Day	AREA		Peak		Grade	Pipe Dia	Capacity	Ratio
								ppha)	ppha)			Pop	Pop	Pop							Flow			Act.		1
			(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)							(L/s)		(L/s)	(ha)	(L/s)	(L/s)	(m)	(%)	(mm)	(L/s)	<u></u>
							<u> </u>																			
Design Criteria																										
Residential																										
Rowhouses / Other Multiples	3.5	persons/unit																								<u></u>
Apartments	2.7	persons/unit																								1
SF (> 10m frontage)	50	persons/ha																								
SF(< 10m frontage)	70	persons/ha																								
Semi-Detached	70	persons/ha																								
ICI																										<u> </u>
Industrial	70	persons/ha																								<u></u>
Commercial	50	persons/ha		ļ				1																		
Infiltration	0.26	L/s/ha						+																		
Residential Generation Rate	290.00	L/c/d		1			1																			
Non-Residential Generation Rate	270.00	L/c/d		1																						
Non Nosidential Generation Nate	270.00	<i>L</i> / 6/ G																								
				1																						
Rangeview Rd	40	39	1.36				 				1107	1107	0	0	1107	3.72	3.77	14.01	1.36	0.35	14.37	87.5	1.00	250	59.47	24%
Rangeview Rd	39	38	1.94								1281	2388	0	0	2388	8.02	3.52	28.25	3.30	0.86	29.11	82.0	0.35	300	57.21	51%
Rangeview Rd	38	37	1.42								991	3379	0	0	3379	11.34	3.40	38.54	4.72	1.23	39.77	70.2	0.35	300	57.21	70%
Rangeview Rd	37	36	1.25								352	3731	0	0	3731	12.52	3.36	42.08	5.97	1.55	43.63	68.3	0.35	375	103.73	42%
Rangeview Rd	36	35	1.79								1677	5408	0	0	5408	18.15	3.21	58.33	7.76	2.02	60.34	70.6	0.35	375	103.73	58%
Rangeview Rd	35	34	0.14								0	5408	0	0	5408	18.15	3.21	58.33	7.90	2.05	60.38	74.2	0.35	375	103.73	58%
Rangeview Rd	34	33	4.87								2290	7698	16	16	7714	25.89	3.07	79.37	12.77	3.32	82.69	77.4	0.35	450	168.67	49%
Rangeview Rd	33	32	2.07								1119	8817	450	466	9283	31.05	2.99	92.74	14.84	3.86	96.60	82.0	0.35	450	168.67	57%
Rangeview Rd	32	31	0.83								1051	9868	0	466	10334	34.58	2.94	101.68	15.67	4.07	105.75	95.4	0.35	450	168.67	63%
Rangeview Rd to East Ave	31	9	2.12								860	10728	0	466	11194	37.46	2.91	108.87	17.79	4.63	113.49		0.35	450	168.67	67%
East Ave to Lakeshore Rd E (Proposed Subtrunk Sewer)	9	8	0.18								0	10728	0	466	11194	37.46	2.91	108.87	17.97	4.67	113.54		0.35	450	168.67	67%
East Ave to Lakeshore Rd E (Proposed Subtrunk Sewer)	8	7	0.13								0	10728	0				2.91							450	168.67	67%
East Ave to Lakeshore Rd E (Proposed Subtrunk Sewer)	7	6	0.02								0	10728		466	11194			108.87			113.58		0.35	450	168.67	67%
Lakeshore Rd E (New Trunk Sewer)	6	Further Trunk MH	3.47								2696	13424		466	13890			130.79			136.40		0.35	525	254.43	54%
			04.50								40404			400	40000											
Subtotal for Rangeview Rd Downstream System			21.59								13424			466	13890											

September 21, 2023

Our File: 2020-4938

Rangeview Landowners Group Inc. C/O Delta Urban Inc. 8800 Dufferin Street, Suite 104 Vaughan, ON L4K 0C5

6 Ronrose Drive, Vaughan, Ontario L4K 4R3
Tel: (905) 738-6100 Fax: (905) 738-6875
Tor. Line: (416) 213-5590 E-mail:
general@schaeffers.com

RE: Downstream Sanitary Sewer Analysis
Rangeview Road Proposed Development Lands
City of Mississauga

1. Introduction

Schaeffer and Associates Ltd. (SCE) has been retained to analyze sanitary servicing options for the Rangeview Road proposed development lands (herein referred to as "the site") in the City of Mississauga. The proposed lands are bound by Lakeshore Road East to the north, Hydro Road to the east, Waterfront Trail to the south and East Avenue to the west. Lakefront Promenade runs in the north-south direction in the middle of the proposed lands. The majority of the lands currently consist of employment land uses and are proposed to be developed into mixed-use high-rise buildings.

This memo is written to present the residual capacity of the existing sewers and the population and units that could be developed within the residual capacity during the interim condition.

2. Existing Condition

The existing sewer network is presented in **Figure 1**. There are three existing sanitary systems that could be utilized to service the site listed as follows:

- Sewers routing west on Rangeview Road, south on East Avenue, west on Easement and Montbeck Crescent, south on Goodwin Road and further discharging to Beach Street Pumping Station (SAN-1)
- Sewers routing west on Lakeshore Road East, south on Montbeck Crescent, west on Byngmount Avenue and south connecting the aforementioned sewer on Goodwin Road (SAN-2)
- Sewers routing east on Lakeshore Road East and further connecting to the Lakeview Pumping Station (SAN-3)

It is to be noted that the last sewer on Aviation Road connecting to the Beach Street Pumping Station was identified to be surcharged under pre-development condition in the previous submitted sanitary analysis. This leg is required to be upgraded from 300mm to 450mm in order to utilize the existing sewers connecting to the Beach Street Pumping Station (SAN-1 & SAN-2) as servicing the site during interim condition.

3. Scenarios

As previously discussed, the last sewer is required to be upgraded in order to service the site. The following scenarios consider the upgrade of the last sewer has already been implemented:

Scenario A

Existing sewers are analysed without any upgrade except the last sewer on Aviation Road.

Scenario B

Existing sewers are analysed based on Scenario A but with an additional upgrade on one sewer on East Avenue (83.5m) from 250mm to 300mm diameter. This sewer was identified as the most critical sewer of the existing sanitary system along Rangeview Road and Montbeck Crescent (SAN-1) under Scenario A. As a result, it is proposed to upgrade this sewer to provide more capacity for the existing sewers. However, upgrades on other sanitary systems (SAN-2 & SAN-3) are not suggested since the downstream sewer would need to be upsized as the upstream if the sewer upstream is proposed to be upgraded. It might not be economically reasonable to upgrade few downstream sewers for an interim servicing solution.

The sanitary tributary areas and sanitary sewer network of Scenario A and B are shown in **Figures 2 and 3** respectively.

4. Result

Scenario A

The following table summarises the residual capacity of the most critical sewer in different existing systems and the allowable population and units that could be developed under Scenario A. The allowable population is presented with reaching 80% and 90% of the pipe capacity since the Region may accept 90% utilization of the sewers as an interim solution. It is to be noted that, in the estimation of the equivalent unit, 2.7 persons per unit are assumed as the design criteria of the apartment since the unit breakdown of the site during interim condition has not been decided.

Table 1 - Result of Scenario A

Existing	Residual	80% of Pipe	e Capacity	90% of Pipe	e Capacity
Sanitary System	Capacity (L/s)	Allowable Population	Equivalent Unit	Allowable Population	Equivalent Unit
SAN-1	16.93	790	292	1000	370
SAN-2	14.59	510	188	850	314
SAN-3	37.78	2300	851	2700	1000

Scenario B

The following table summarises the residual capacity of the most critical sewer in different existing systems and the allowable population and units that could be developed under Scenario

B. Similar to Scenario A, the population is presented with reaching 80% and 90% of the pipe capacity and 2.7 persons per unit are assumed in the estimation of the equivalent unit.

Table 2 - Result of Scenario B

Existing	Residual	80% of Pipe	e Capacity	90% of Pipe	e Capacity
Sanitary System	Capacity (L/s)	Allowable Population	Equivalent Unit	Allowable Population	Equivalent Unit
SAN-1	22.84	1000	370	1450	537
SAN-2	14.59	510	188	850	314
SAN-3	37.78	2300	851	2700	1000

The detail of the capacity analysis for Scenario A and B is provided in Attachment A.

5. Flow Monitoring

The above mentioned calculation is based on the theoretical calculation using design guideline. Flow monitoring can be utilized to estimate the actual flow and assess the residual capacity in the system. To conduct flow monitoring, the Region's acceptance and permit is required. Having said that considering the edge of sewers in this neighbourhood and being at the vicinity of Lake Ontario, there might be a chance that monitoring exercise observes higher I/I from groundwater. Thus, the monitoring exercise might weaken our argument with respect to using residual capacity. Should the landowners willing to conduct monitoring, we can approach the Region and start the conversation.

6. Conclusion

This memo has been prepared to present the residual capacity of the existing sewers and the population and units that could be developed within the residual capacity during the interim condition.

Three existing sewer systems were identified that could accommodate the site. It is to be noted that the last sewer on Aviation Road is required to be upgraded in order to utilize the existing sewers connecting to the Beach Street Pumping Station (SAN-2 & SAN-3) as servicing the site during interim condition. Two scenarios with different upgrading options and the residual capacity in different scenarios are presented. Furthermore, allowable population and unit are estimated based on the residual capacity in different scenarios.

We trust that you will find the contents of this memo satisfactory. Should you have any questions or comments, please do not hesitate to contact the undersigned.

Respectfully,

SCHAEFFER & ASSOCIATES LTD.

Paul Wong, E.I.T

Water Resources Analyst

Koryun Shahbikian, M.Eng., P.Eng., PMP

Partner

Summary of Population & Units for Rangeview Development

Scenario A:

				No Surcharg	e Conditions		
Location	Minimum Available Capacity (I/s)	Current populatoin	Population	Equivalent Unit	Equivalent Area (ha)	Total Peak Flow (L/s)	
D/S Rangeview Rd (to Montbeck Cres & Goodwin Rd)*	16.93	912	790	292	1.10	10.29	80%
D/S Lakeshore Rd E (Western System to Montbeck Cres & Goodwin Rd)*	14.59	1513	510	188	0.71	6.54	80%
D/S of Montbeck Cres & Goodwin Rd to Beach St PS							
D/S Lakeshore Rd E (Eastern System to Lakeview PS)**	37.78	273	2300	851	3.19	28.84	80%

Population	Equivalent Unit	
1000	370	90%
850	314	90%
2700	1000	90%

Ex.Flow at critical location	Full pipe Capacity at critical location	
15.8	32.73	
24.86	39.45	
4.94	42.42	

Scenario B:

				No Surcharg	e Conditions		
Location	Minimum Available Capacity (I/s)	Current populatoin	Population	Equivalent Unit	Equivalent Area (ha)	Total Peak Flow (L/s)	
D/S Rangeview Rd (to Montbeck Cres & Goodwin Rd)*	22.84	1812	1000	370	1.39	12.43	80%
D/S Lakeshore Rd E (Western System to Montbeck Cres & Goodwin Rd)**	14.59	1513	510	188	0.71	6.54	80%
D/S of Montbeck Cres & Goodwin Rd to Beach St PS							
D/S Lakeshore Rd E (Eastern System to Lakeview PS)**	37.78	273	2300	851	3.19	28.84	80%

Population	Equivalent Unit	
1450	537	90%
850	314	90%
2700	1000	90%

Ex.Flow at critical location	Full pipe Capacity at critical location	
29.19	52.04	
24.86	39.45	
4.94	42.42	

^{*} last pipe to PS should be upgraded

^{**}Equivalent Area for Lakeshore Eastern System is greater than Proposed Development Area

^{***}The surcharge conditions downstream of Montbeck Cres & Goodwin Rd are due to the contraints from the upstream sewers in the Rangeview and Lakeshore Rd E Western locations. In the event these two systems do not have surcharge conditions, there will be no surcharge conditions downstream of Montbeck Cres & Goodwin Rd

^{*} last pipe to PS as well as 83.5m of 250mm should be upgraded

^{**} last pipe to PS should be upgraded

^{***}Equivalent Area for Lakeshore Eastern System is greater than Proposed Development Area

^{****}The surcharge conditions downstream of Montbeck Cres & Goodwin Rd are due to the contraints from the upstream sewers in the Rangeview and Lakeshore Rd E Western locations. In the event these two systems do not have surcharge conditions, there will be no surcharge conditions downstream of Montbeck Cres & Goodwin Rd

CITY OF MISSISSAUGA RANGEVIEW ESTATES SUBDIVISION

Designed By: Checked By: Date: File No.:

F:\4938\4938

	From	То	Sect	No.	No.	P.P.U.	P.P.U.	Ind.	Comm.	Inst.	Parks/Rec	Pop	Acc	Avg	Peaking	Peak	ACC	Infiltration	TOTAL	Pipe	Grade	Length	F:\4938\4938
	МН	МН	Area	of	of	for	for	(@ 95	(@ 75	(@ 50	(@ 50		Pop	Day	Factor	Day	AREA		Peak	Dia			1
STREET			(ha)	Apt. units	T.H. units	Apt.	T.H.	ppha) (ha)	ppha) (ha)	ppha) (ha)	ppha) (ha)			(L/s)		(L/s)	(ha)	(L/s)	Flow (L/s)	(mm)	(%)	(m)	(L/s)
From Hydro Rd.		2A	0.21														0.21						
From 1072&1076 Rangeview		2A	0.34	162	0	2.7	3.5					438	438	1.88	4.00	7.50	0.34	0.09	7.6				
From 1062 Rangeview		2A	0.32	0	17	2.7	3.5					60	60	0.26	4.00	1.03	0.32	0.08	1.1				
From 1083 Rangeview		2A	0.66	206	16	2.7	3.5					613	613	2.63	3.93	10.31	0.66	0.17	10.5				
RANGEVIEW RD.	2A	3A	0.32	0	0	2.7	3.5					0	1111	4.76	3.77	17.94	1.85	0.48	18.4	250	0.50	87.5	42.05
From 1044 Rangeview+Park		3A	0.61	200	17	2.7	3.5				0.25	600	600	2.57	3.93	10.10	0.86	0.22	10.3				
From 1045 Rangeview+Park		3A	0.67	217	18	2.7	3.5				0.31	649	649	2.78	3.91	10.88	0.98	0.25	11.1				
	3A	4A	0.17	0	0	2.7	3.5					0	2360	10.11	3.53	35.66	3.86	1.00	36.7	300	0.50	81.0	68.38
													2360				3.86						
																		 					igwdown
From 1008 Rangeview		4A	0.39	170	0	2.7	3.5					459	459	1.9656	3.9931	7.85	0.39	0.1014	7.95				
From 1025 Rangeview		4A	0.49	216	0	2.7	3.5					584	584		3.9386	9.85	0.49		9.978				
From 1021 Rangeview		4A	0.21	0	18	2.7	3.5					63	63	0.2698	4	1.08	0.21		1.134				
RANGEVIEW RD.	4A	5A	0.15	0	0	2.7	3.5					0	3403		3.3953	49.48	5.10	1.326	50.81	375	0.50	70.2	123.98
From 1021 Rangeview		5A		0	0	2.7	3.5				0.43	0	63	0.2698	4	1.08	0.43	0.1118	1.191				
From 992&996 Rangeview		5A	0.46	81	16	2.7	3.5					275	275	1.1777	4	4.71	0.46	0.1196	4.83				
	5A	6A	0.14	0	0	2.7	3.5					0	3741	16.02	3.3592	53.82	6.13	1.5938	55.41	375	0.50	68.3	123.98
													3741				6.13						
From 925 Rangeview		6A	0.92	256	60	2.7	3.5					902	902	3.8627	3.8284	14.79	0.92	0.2392	15.03				
From 895 Rangeview		6A	0.82	274	16	2.7	3.5					796	796	3.4088	3.8617	13.16	0.82	0.2132	13.38				
	6A	7A	0.14	0	0	2.7	3.5					0	5439	23.292	3.2109	74.79	8.01	2.0826	76.87	450	0.50	69.8	201.6
	7A	8A	0.16	0	0	2.7	3.5					0	5439	23.292	3.2109	74.79	8.17	2.1242	76.91	450	0.50	75.6	201.6
													5439				8.17						
From 1050 Lakeshore	51A	275	0.63	259	0	2.7	3.5				0.57	700	700	3.00	3.89	11.67	1.20	0.31	12.0	300	2.00	7.3	136.76
	275	339	0.00	0	0	2.7	3.5					0	700	3.00	3.89	11.67	1.20	0.31	12.0	300	0.39	64.8	60.048
From 1076 Lakeshore	50A	339	0.87	278	12	2.7	3.5				0.43	793	793	3.40	3.86	13.12	1.30	0.34	13.5	300	2.00	7.5	136.76
	339	102A	0.00	0	0	2.7	3.5					0	1493	6.39	3.68	23.54	1.30	0.34	23.9	300	0.27	66.0	50.502
	102A	38	0.00	0	0	2.7	3.5		П			0	1493	6.39	3.68	23.54	1.30	0.34	23.9	675	0.35	4.7	497.3
													1493				1.30						
								-	-	l———					-			+					-

6 Ronrose Drive, Concord, Ontario L4K 4R3 Tel: (905) 738-6100 Fax: (905) 738-6875 design@schaeffers.com

SANITARY SEWER DESIGN SHEET

CITY OF MISSISSAUGA RANGEVIEW ESTATES SUBDIVISION

Designed By: Checked By: Date: File No.:

																							F:\4938\4938
	From	То	Sect	No.	No.	P.P.U.	P.P.U.	Ind.	Comm.	Inst.	Parks/Rec	Pop	Acc	Avg	Peaking	Peak	ACC	Infiltration	TOTAL	Pipe	Grade	Length	Capacity
	МН	МН	Area	of	of	for	for	(@ 95	(@ 75	(@ 50	(@ 50		Pop	Day	Factor	Day	AREA		Peak	Dia			
STREET				Apt.	T.H.	A 4																	
				units	units	Apt.	T.H.												Flow				
			(ha)		uiiiis			ppha) (ha)	ppha) (ha)	ppha) (ha)	ppha) (ha)			(L/s)		(L/s)	(ha)	(L/s)	(L/s)	(mm)	(%)	(m)	(L/s)
			(iiu)					(IIa)	(IIa)	(IIa)	(iia)			(2/3)		(2/3)	(IIII)	(2/3)	(2/3)	()	(70)	(,	(2/3)
From 1000-1006 Lakeshore	40A	41A	1.18	296	36	2.7	3.5					926	926	3.97	3.82	15.15	1.18	0.31	15.5	300	2.00	5.7	136.76
	41A	43A		0	0	2.7	3.5					0	926	3.97	3.82	15.15	1.18	0.31	15.5	300	0.50	86.5	68.378
From 974 Lakeshore	42A	43A	1.04	135	66	2.7	3.5					596	596	2.55	3.93	10.04	1.04	0.27	10.3	300	2.00	5.7	136.76
	43A	45A		0	0	2.7	3.5					0	1522	6.52	3.67	23.95	2.22	0.58	24.5	300	0.50	83.5	68.378
From 946 Lakeshore	44A	45A	0.62	241	0	2.7	3.5					651	651	2.79	3.91	10.91	0.62	0.16	11.1	300	2.00	5.7	136.76
	45A	46A	0.00	0	0	2.7	3.5					0	2173	9.31	3.56	33.10	2.84	0.74	33.8	300	0.50	19.7	68.378
	46A	24A	0.00	0	0	2.7	3.5					0	2173	9.31	3.56	33.10	2.84	0.74	33.8	300	0.50	21.5	68.378
	24A	25A	0.37	0	0	2.7	3.5					0	2173	9.31	3.56	33.10	3.21	0.83	33.9	300	0.50	93.7	68.378
	25A	26A	0.26	0	0	2.7	3.5					0	2173	9.31	3.56	33.10	3.47	0.90	34.0	300	0.50	94.7	68.378
	26A	8A	0.00	0	0	2.7	3.5					0	2173	9.31	3.56	33.10	3.47	0.90	34.0	300	0.50	13.7	68.378
													2173				2.84						
From 930 Lakefront+Park		8A	0.42	210	0	2.7	3.5				0.16	567	567	2.4281	3.9455	9.58	0.58	0.1508	9.731				
From 890 Rangeview+Park		8A	0.74	182	14	2.7	3.5				0.15	541	1108	4.7449	3.7708	17.89	0.89	0.2314	18.12				
RANGEVIEW RD.	8A	9A	0.17	0	0	2.7	3.5					0	9287	39.771	2.9865	118.78	12.65	3.289	122.1	525	0.50	76.7	304.1
From 880 Rangeview		9A	1.3	222	48	2.7	3.5					768	768	3.2889	3.871	12.73	1.30	0.338	13.07				
From 895 Rangeview		9A	0.45	0	22	2.7	3.5				0.4	77	77	0.3297	4	1.32	0.85	0.221	1.54				
From 885 Rangeview		9A	0.23	0	10	2.7	3.5				0.2	35	35	0.1499	4	0.60	0.43	0.1118	0.711				
	9A	10A	0.18	0	0	2.7	3.5					0	10167	43.539	2.9475	128.33	15.41	4.0066	132.3	525	0.50	82.0	304.1
From Park Block		10A		0	0	2.7	3.5				0.7	0	0	0	4	0.00	0.70	0.182	0.182				
From 851-865 Rangeview		10A	1.01	159	68	2.7	3.5					668	668	2.8606	3.9062	11.17	1.01	0.2626	11.44				
	10A	11A	0.21	0	0	2.7	3.5					0	10835	46.4	2.92	135.49	17.33	4.5058	140	525	0.50	96.1	304.1
From 850 Rangeview		12A	1.01	54	36	2.7	3.5					272	272	1.1648	4	4.66	1.01	0.2626	4.922				
	11A	12A	0.22	54	36	2.7	3.5				1	272	11379	48.73	2.8987	141.25	19.56	5.0856	146.3	525	0.50	95.5	304.1
													11379				19.56						
RANGEVIEW RD.	12A	14A	0.21	0	0	2.7	3.5					0	11379	48.73	2.8987	141.25	19.77	5.1402	146.4	525	0.50	11.5	304.1
	14A	63A	0.51	0	0	2.7	3.5					0	11379	48.73	2.8987	141.25	20.28	5.2728	146.5	900	0.14	177.9	678.71
									Ш				11379				20.28						
From 910 & 920 Lakeshore + Park	52A	53A	0.55	232	0	2.7	3.5				0.32	627	627	2.6851	3.9216	10.53	0.87	0.2262	10.76	300	2.00	7.3	136.76
	53A	55A		0	0	2.7	3.5					0	627	2.69	3.92	10.53	0.87	0.23	10.8	300	0.50	25.3	68.378

6 Ronrose Drive, Concord, Ontario L4K 4R3 Tel: (905) 738-6100 Fax: (905) 738-6875 design@schaeffers.com

SANITARY SEWER DESIGN SHEET

CITY OF MISSISSAUGA RANGEVIEW ESTATES SUBDIVISION

Designed By: Checked By: Date: File No.:

F:\4938\4938

STREET	From MH	To MH	Sect Area (ha)	No. of Apt. units	No. of T.H. units	P.P.U. for Apt.	P.P.U. for T.H.	(@ 95	Inst. (@ 50 ppha) (ha)	Parks/Rec (@ 50 ppha) (ha)	Pop	Acc Pop	Avg Day (L/s)	Peaking Factor	Peak Day (L/s)	ACC AREA (ha)	Infiltration	TOTAL Peak Flow (L/s)	Pipe Dia (mm)	Grade	Length (m)	Capacity (L/s)
From 896 Lakeshore	54A	55A	0.43	142	0	2.7	3.5				384	384	1.64	4.00	6.58	0.43	0.11	6.7	300	2.00	7.4	136.76
	55A	57A		0	0	2.7	3.5				0	1011	4.33	3.80	16.44	1.30	0.34	16.8	300	0.50	28.8	68.378
From 880 Lakeshore	56A	57A	0.44	145	0	2.7	3.5				392	392	1.68	4.00	6.71	0.44	0.11	6.8	300	2.00	7.4	136.76
	57A	59A		0	0	2.7	3.5				0	1403	6.01	3.70	22.23	1.74	0.45	22.7	300	0.50	89.3	68.378
From 848-872 Lakeshore	58A	59A	0.83	159	48	2.7	3.5				598	598	2.56	3.93	10.07	0.83	0.22	10.3	300	2.00	7.3	136.76
	59A	61A		0	0	2.7	3.5				0	2001	8.57	3.59	30.73	2.57	0.67	31.4	300	0.50	66.9	68.378
From 830-832 Lakeshore	60A	61A	0.59	266	0	2.7	3.5				719	719	3.08	3.89	11.97	0.59	0.15	12.1	300	2.00	7.2	136.76
	61A	62A		0	0	2.7	3.5				0	2720	11.65	3.48	40.51	3.16	0.82	41.3	300	0.50	41.5	68.378
	62A	63A		0	0	2.7	3.5				0	2720	11.65	3.48	40.51	3.16	0.82	41.3	300	1.88	8.9	132.56
	63A	64A	0.00	0	0	2.7	3.5				0	14099	60.38	2.81	169.38	23.44	6.09	175.5	900	0.15	72.4	701.13
												14099				23.44						

Rainfall intensity

Rainfall Intensity-City of Mississauga

taman menery only of medicadaga											
Design Storm Event	Α	В	С	I (mm/hr)							
2-Year	610.0	4.6	0.78	59.9							
5-Year	820.0	4.6	0.78	80.5							
10-Year	1010.0	4.6	0.78	99.2							
25-Year	1160.0	4.6	0.78	113.9							
50-Year	1300.0	4.7	0.78	127.1							
100-Year	1450.0	4.9	0.780	140.7							

15 minutes

I_A ///T . D\AC\

Description	Catchment #	Δroa (ha)	Pre-Development Runoff Coefficent	Post-Development Runoff Coefficent	Allowable Release (10- year flows) Rate (L/s)	Assumed Groundwater Pump Rate Rate (L/s) **	Adjusted Allowable Release Rate from Site Plan(10-year flows - Longterm Ground Water Pumping) (L/s)		
					Α	В	C= A-B		
Pre-Development Area to Lakeshore Road East	Pre Area to Lakeshore Rd East	1.41	0.25	-	97.10	-	-		

Description	Catchment #	Area (ha)	Pre-Development Runoff Coefficent	Post-Development Runoff Coefficent	Allowable Release (10- year flows) Rate (L/s)	Assumed Groundwater Pump Rate Rate (L/s) **	Adjusted Allowable Release Rate from Site Plan(10-year flows - Longterm Ground Water
			Italion Coemicent	Rulloll Coefficent	Α	В	C= A-B
Site Plan	201	0.52	0.25	0.90	7.24	2.00	5.24
Site Plan	202	0.76	0.25	0.90	10.59	2.00	8.59
Site Plan	203	0.39	0.25	0.90	5.43	2.00	3.43
Site Plan	204	0.39	0.25	0.90	5.43	2.00	3.43
Site Plan	205	0.48	0.25	0.90	6.69	2.00	4.69
Site Plan	206	0.54	0.25	0.90	7.52	2.00	5.52
Site Plan	207	0.93	0.25	0.90	11.96	2.00	9.96
Site Plan	208	0.92	0.25	0.90	11.82	2.00	9.82
Site Plan	209	0.58	0.25	0.90	8.08	2.00	6.08
Site Plan	210	0.84	0.25	0.90	11.70	2.00	9.70
Park	300	0.29	0.25	0.30	5.04	2.00	3.04
Park	301	0.33	0.25	0.30	5.60	2.00	3.60
Total		6.97	+		97.10		73.10
Total		0.01			07.10		75.10
-			+				

* Volumetric Requirement =Area x TIMP x 5mm x 10

2023-09-12 StormWater Calculations Summary.xlsx

^{**2}L/s is assumed as the groundwater pumping rate to storm sewers (a higher rate was selected based on feasibility and to be higher than the preliminary hydro-geotechnical investigation) and will be finalized through the SPA process (This discharge was subtracted from the allowable release rates)

Rainfall intensity

Rainfall Intensity-City of Mississauga

Design Storm Event	Α	В	С	I (mm/hr)
2-Year	610.0	4.6	0.78	59.9
5-Year	820.0	4.6	0.78	80.5
10-Year	1010.0	4.6	0.78	99.2
25-Year	1160.0	4.6	0.78	113.9
50-Year	1300.0	4.7	0.78	127.1
100-Year	1450.0	4.9	0.780	140.7

15 minutes

 $I=A/((T+B)^{C})$

Description	Catchment #	Area (ha)	Pre-Development Runoff Coefficent	Post-Development Runoff Coefficent	Allowable Release (10- year flows) Rate (L/s)	Assumed Groundwater Pump Rate Rate (L/s) **	Adjusted Allowable Release Rate from Site Plan(10-year flows - Longterm Ground Water Pumping) (L/s)	Required On-site storage (m3)	Volumetric Requirement (m3)* (5mm)
					Α	В	C= A-B		(•)
Site Plan	201	0.52	0.25	0.90	7.24	2.00	5.24	319.08	26.00
Site Plan	202	0.76	0.25	0.90	10.59	2.00	8.59	458.59	38.00
Site Plan	203	0.39	0.25	0.90	5.43	2.00	3.43	243.51	19.50
Site Plan	204	0.39	0.25	0.90	5.43	2.00	3.43	243.51	19.50
Site Plan	205	0.48	0.25	0.90	6.69	2.00	4.69	295.83	24.00
Site Plan	206	0.54	0.25	0.90	7.52	2.00	5.52	330.71	27.00
Site Plan	207	0.93	0.25	0.90	11.96	2.00	9.96	565.81	46.50
Site Plan	208	0.92	0.25	0.90	11.82	2.00	9.82	560.00	46.00
Site Plan	209	0.58	0.25	0.90	8.08	2.00	6.08	353.96	29.00
Site Plan	210	0.84	0.25	0.90	11.70	2.00	9.70	505.10	42.00
Site Plan	211	0.86	0.50	0.90	118.45	2.00	116.45	199.82	43.00
Site Plan	212	0.20	0.50	0.90	27.55	2.00	25.55	48.18	10.00
Site Plan	213	0.40	0.50	0.90	55.09	2.00	53.09	94.10	20.00
Site Plan	214	0.34	0.50	0.90	46.83	2.00	44.83	80.31	17.00
Site Plan	215	0.82	0.50	0.90	112.94	2.00	110.94	190.63	41.00
Site Plan	216	0.19	0.50	0.90	26.17	2.00	24.17	45.89	9.50
Site Plan	217	0.36	0.50	0.90	49.58	2.00	47.58	84.90	18.00
Site Plan	218	0.58	0.50	0.90	79.88	2.00	77.88	135.47	29.00
Site Plan	219	0.57	0.50	0.90	78.51	2.00	76.51	133.17	28.50
Site Plan	220	1.00	0.50	0.90	137.73	2.00	135.73	232.00	50.00
Site Plan	221	1.30	0.50	0.90	179.05	2.00	177.05	300.95	65.00
Site Plan	222	0.74	0.50	0.90	101.92	2.00	99.92	172.24	37.00
Site Plan	223	0.82	0.50	0.90	112.94	2.00	110.94	190.63	41.00
Site Plan	224	0.46	0.50	0.90	63.36	2.00	61.36	107.89	23.00
Site Plan	225	0.38	0.50	0.90	52.34	2.00	50.34	89.50	19.00
Site Plan	226	0.61	0.50	0.90	84.02	2.00	82.02	142.36	30.50
Site Plan	227	0.32	0.50	0.90	44.07	2.00	42.07	75.72	16.00
Site Plan	228	0.35	0.50	0.90	48.21	2.00	46.21	82.61	17.50

^{*} Volumetric Requirement =Area x TIMP x 5mm x 10

2023-09-12 StormWater Calculations Summary.xlsx

^{**2}L/s is assumed as the groundwater pumping rate to storm sewers (a higher rate was selected based on feasibility and to be higher than the preliminary hydro-geotechnical investigation) and will be finalized through the SPA process (This discharge was subtracted from the allowable release rates)

Release Rates based on pre-development drianage to Lakshore Rd E.

Project: 4938 Catchment 201

Modified Rational Method

Internal Area	Controlled Drainage Area (ha) =	0.520
	5-year C =	0.90
	100-year C =	1.00
	Allocated Release Rate (l/s) =	5.24
	Actual Release Rate (l/s) =	5.24
-		
External Area	Area (ha) =	0.00
External Area	Area (ha) = C =	0.00 0.00
External Area	· ′	
	· ′	

100 Year Storm	
Design Storm =	Mississauga
A =	1450
B =	4.9
C =	0.78

	100 Year					Total	Maximum	Required
Time	Intensity	Total	Groundwater	External	Total	Runoff	Release	Storage
(min)	100 year	Runoff	Flows	Runoff	Runoff	Volume	Volume	Volume
	(mm/hr)	(l/s)	(l/s)	(l/s)	(l/s)	(m ³)	(m ³)	(m ³)
15	140.69	203.38	0.00	0.00	203.38	183.04	4.72	178.32
16	135.41	195.75	0.00	0.00	195.75	187.92	5.03	182.89
17	130.56	188.74	0.00	0.00	188.74	192.52	5.35	187.17
18	126.09	182.28	0.00	0.00	182.28	196.86	5.66	191.20
19	121.96	176.31	0.00	0.00	176.31	200.99	5.98	195.01
20	118.12	170.76	0.00	0.00	170.76	204.91	6.29	198.62
21	114.55	165.59	0.00	0.00	165.59	208.65	6.61	202.04
22	111.21	160.77	0.00	0.00	160.77	212.22	6.92	205.30
23	108.09	156.26	0.00	0.00	156.26	215.64	7.24	208.40
24	105.16	152.03	0.00	0.00	152.03	218.92	7.55	211.36
25	102.41	148.04	0.00	0.00	148.04	222.07	7.87	214.20
26	99.82	144.29	0.00	0.00	144.29	225.10	8.18	216.92
27	97.37	140.75	0.00	0.00	140.75	228.02	8.50	219.53
85	43.39	62.73	0.00	0.00	62.73	319.93	26.75	293.18
90	41.60	60.14	0.00	0.00	60.14	324.74	28.32	296.43
100	38.47	55.62	0.00	0.00	55.62	333.70	31.47	302.24
105	37.10	53.63	0.00	0.00	53.63	337.89	33.04	304.85
110	35.84	51.80	0.00	0.00	51.80	341.91	34.61	307.30
115	34.66	50.11	0.00	0.00	50.11	345.77	36.18	309.58
120	33.58	48.54	0.00	0.00	48.54	349.49	37.76	311.73
125	32.57	47.08	0.00	0.00	47.08	353.07	39.33	313.74
130	31.62	45.71	0.00	0.00	45.71	356.53	40.90	315.63
135	30.73	44.43	0.00	0.00	44.43	359.88	42.48	317.41
140	29.90	43.23	0.00	0.00	43.23	363.13	44.05	319.08

Required Storage (m³):	319.08
Provided Storage (m³):	

Project: 4938 Catchment 202

Modified Rational Method

Internal Area	Controlled Drainage Area (ha) =	0.760		
	5-year C =	0.90		
	100-year C =	1.00		
	Allocated Release Rate (l/s) =	8.59		
	Actual Release Rate (l/s) =	8.59		
External Area	Area (ha) =	0.00		
	C =	0.00		
Groundwater	ndwater Groundwater pumping rate = 0.00 L/s			

100 Year Storm						
Design Storm =	Mississauga					
A =	1450					
B =	4.9					
C =	0.78					

	100 Year					Total	Maximum	Required
Time	Intensity	Total	Groundwater	External	Total	Runoff	Release	Storage
(min)	100 year	Runoff	Flows	Runoff	Runoff	Volume	Volume	Volume
	(mm/hr)	(l/s)	(l/s)	(l/s)	(l/s)	(m ³)	(m ³)	(m ³)
15	140.69	297.25	0.00	0.00	297.25	267.52	7.73	259.80
16	135.41	286.10	0.00	0.00	286.10	274.65	8.24	266.41
17	130.56	275.85	0.00	0.00	275.85	281.37	8.76	272.61
18	126.09	266.41	0.00	0.00	266.41	287.73	9.27	278.45
19	121.96	257.68	0.00	0.00	257.68	293.75	9.79	283.96
20	118.12	249.57	0.00	0.00	249.57	299.48	10.31	289.18
21	114.55	242.02	0.00	0.00	242.02	304.95	10.82	294.13
22	111.21	234.97	0.00	0.00	234.97	310.17	11.34	298.83
23	108.09	228.38	0.00	0.00	228.38	315.16	11.85	303.31
24	105.16	222.19	0.00	0.00	222.19	319.95	12.37	307.59
25	102.41	216.37	0.00	0.00	216.37	324.56	12.88	311.68
26	99.82	210.89	0.00	0.00	210.89	328.99	13.40	315.59
27	97.37	205.72	0.00	0.00	205.72	333.26	13.91	319.35
85	43.39	91.68	0.00	0.00	91.68	467.59	43.80	423.79
90	41.60	87.89	0.00	0.00	87.89	474.63	46.37	428.25
100	38.47	81.29	0.00	0.00	81.29	487.72	51.53	436.20
105	37.10	78.39	0.00	0.00	78.39	493.84	54.10	439.74
110	35.84	75.71	0.00	0.00	75.71	499.71	56.68	443.03
115	34.66	73.24	0.00	0.00	73.24	505.35	59.25	446.10
120	33.58	70.94	0.00	0.00	70.94	510.79	61.83	448.96
125	32.57	68.80	0.00	0.00	68.80	516.03	64.41	451.62
130	31.62	66.81	0.00	0.00	66.81	521.09	66.98	454.11
135	30.73	64.94	0.00	0.00	64.94	525.99	69.56	456.43
140	29.90	63.18	0.00	0.00	63.18	530.73	72.14	458.59

Required Storage (m³):	458.59
Provided Storage (m³):	

Project: 4938 Catchment 203

Modified Rational Method

Internal Area	Controlled Drainage Area (ha) =	0.390		
	5-year C =	0.90		
	100-year C =	1.00		
	Allocated Release Rate (l/s) =	3.43		
	Actual Release Rate (l/s) =	3.43		
External Area	Area (ha) =	0.00		
	C =	0.00		
Groundwater	Indwater Groundwater pumping rate = 0.00 L/s			

_100 Year Storm	
Design Storm =	Mississauga
A =	1450
B =	4.9
C =	0.78

	100 Year					Total	Maximum	Required
Time	Intensity	Total	Groundwater	External	Total	Runoff	Release	Storage
(min)	100 year	Runoff	Flows	Runoff	Runoff	Volume	Volume	Volume
	(mm/hr)	(l/s)	(l/s)	(l/s)	(l/s)	(m ³)	(m ³)	(m ³)
15	140.69	152.54	0.00	0.00	152.54	137.28	3.09	134.19
16	135.41	146.81	0.00	0.00	146.81	140.94	3.30	137.64
17	130.56	141.56	0.00	0.00	141.56	144.39	3.50	140.89
18	126.09	136.71	0.00	0.00	136.71	147.65	3.71	143.94
19	121.96	132.23	0.00	0.00	132.23	150.74	3.91	146.83
20	118.12	128.07	0.00	0.00	128.07	153.68	4.12	149.56
21	114.55	124.19	0.00	0.00	124.19	156.49	4.33	152.16
22	111.21	120.58	0.00	0.00	120.58	159.16	4.53	154.63
23	108.09	117.19	0.00	0.00	117.19	161.73	4.74	156.99
24	105.16	114.02	0.00	0.00	114.02	164.19	4.94	159.24
25	102.41	111.03	0.00	0.00	111.03	166.55	5.15	161.40
26	99.82	108.22	0.00	0.00	108.22	168.82	5.36	163.47
27	97.37	105.57	0.00	0.00	105.57	171.02	5.56	165.45
85	43.39	47.05	0.00	0.00	47.05	239.95	17.51	222.44
90	41.60	45.10	0.00	0.00	45.10	243.56	18.54	225.02
100	38.47	41.71	0.00	0.00	41.71	250.28	20.60	229.68
105	37.10	40.23	0.00	0.00	40.23	253.42	21.63	231.79
110	35.84	38.85	0.00	0.00	38.85	256.43	22.66	233.77
115	34.66	37.58	0.00	0.00	37.58	259.33	23.69	235.64
120	33.58	36.40	0.00	0.00	36.40	262.11	24.72	237.40
125	32.57	35.31	0.00	0.00	35.31	264.80	25.75	239.05
130	31.62	34.28	0.00	0.00	34.28	267.40	26.78	240.62
135	30.73	33.32	0.00	0.00	33.32	269.91	27.81	242.11
140	29.90	32.42	0.00	0.00	32.42	272.35	28.84	243.51

Required Storage (m³):	243.51
Provided Storage (m³):	

Project: 4938 Catchment 204

Modified Rational Method

Internal Area	Controlled Drainage Area (ha) =	0.390
	5-year C =	0.90
	100-year C =	1.00
	Allocated Release Rate (l/s) =	3.43
	Actual Release Rate (l/s) =	3.43
External Area	Area (ha) =	0.00
	C =	0.00
	·	

Groundwater	Groundwater pumping rate =	0.00 L/s

100 Year Storm	
Design Storm =	Mississauga
A =	1450
B =	4.9
C =	0.78

	100 Year					Total	Maximum	Required
Time	Intensity	Total	Groundwater	External	Total	Runoff	Release	Storage
(min)	100 year	Runoff	Flows	Runoff	Runoff	Volume	Volume	Volume
	(mm/hr)	(l/s)	(l/s)	(l/s)	(l/s)	(m ³)	(m ³)	(m ³)
15	140.69	152.54	0.00	0.00	152.54	137.28	3.09	134.19
16	135.41	146.81	0.00	0.00	146.81	140.94	3.30	137.64
17	130.56	141.56	0.00	0.00	141.56	144.39	3.50	140.89
18	126.09	136.71	0.00	0.00	136.71	147.65	3.71	143.94
19	121.96	132.23	0.00	0.00	132.23	150.74	3.91	146.83
20	118.12	128.07	0.00	0.00	128.07	153.68	4.12	149.56
21	114.55	124.19	0.00	0.00	124.19	156.49	4.33	152.16
22	111.21	120.58	0.00	0.00	120.58	159.16	4.53	154.63
23	108.09	117.19	0.00	0.00	117.19	161.73	4.74	156.99
24	105.16	114.02	0.00	0.00	114.02	164.19	4.94	159.24
25	102.41	111.03	0.00	0.00	111.03	166.55	5.15	161.40
26	99.82	108.22	0.00	0.00	108.22	168.82	5.36	163.47
27	97.37	105.57	0.00	0.00	105.57	171.02	5.56	165.45
85	43.39	47.05	0.00	0.00	47.05	239.95	17.51	222.44
90	41.60	45.10	0.00	0.00	45.10	243.56	18.54	225.02
100	38.47	41.71	0.00	0.00	41.71	250.28	20.60	229.68
105	37.10	40.23	0.00	0.00	40.23	253.42	21.63	231.79
110	35.84	38.85	0.00	0.00	38.85	256.43	22.66	233.77
115	34.66	37.58	0.00	0.00	37.58	259.33	23.69	235.64
120	33.58	36.40	0.00	0.00	36.40	262.11	24.72	237.40
125	32.57	35.31	0.00	0.00	35.31	264.80	25.75	239.05
130	31.62	34.28	0.00	0.00	34.28	267.40	26.78	240.62
135	30.73	33.32	0.00	0.00	33.32	269.91	27.81	242.11
140	29.90	32.42	0.00	0.00	32.42	272.35	28.84	243.51

Required Storage (m³):	243.51
Provided Storage (m³):	

Project: 4938 Catchment 205

Modified Rational Method

Internal Area	Controlled Drainage Area (ha) =	0.480
	5-year C =	0.90
	100-year C =	1.00
	Allocated Release Rate (l/s) =	4.69
	Actual Release Rate (l/s) =	4.69
External Area	Area (ha) =	0.00
External Area	Area (ha) = C =	0.00 0.00
External Area	` '	
	` '	

100 Year Storm	
Design Storm =	Mississauga
A =	1450
B =	4.9
C =	0.78

	100 Year					Total	Maximum	Required
Time	Intensity	Total	Groundwater	External	Total	Runoff	Release	Storage
(min)	100 year	Runoff	Flows	Runoff	Runoff	Volume	Volume	Volume
	(mm/hr)	(l/s)	(l/s)	(l/s)	(l/s)	(m ³)	(m ³)	(m ³)
15	140.69	187.74	0.00	0.00	187.74	168.96	4.22	164.74
16	135.41	180.69	0.00	0.00	180.69	173.46	4.50	168.97
17	130.56	174.22	0.00	0.00	174.22	177.71	4.78	172.93
18	126.09	168.26	0.00	0.00	168.26	181.72	5.06	176.66
19	121.96	162.74	0.00	0.00	162.74	185.53	5.34	180.18
20	118.12	157.62	0.00	0.00	157.62	189.15	5.62	183.52
21	114.55	152.86	0.00	0.00	152.86	192.60	5.91	186.69
22	111.21	148.40	0.00	0.00	148.40	195.89	6.19	189.71
23	108.09	144.24	0.00	0.00	144.24	199.05	6.47	192.58
24	105.16	140.33	0.00	0.00	140.33	202.08	6.75	195.33
25	102.41	136.66	0.00	0.00	136.66	204.98	7.03	197.95
26	99.82	133.19	0.00	0.00	133.19	207.78	7.31	200.47
27	97.37	129.93	0.00	0.00	129.93	210.48	7.59	202.89
85	43.39	57.91	0.00	0.00	57.91	295.32	23.90	271.42
90	41.60	55.51	0.00	0.00	55.51	299.76	25.31	274.46
100	38.47	51.34	0.00	0.00	51.34	308.04	28.12	279.91
105	37.10	49.51	0.00	0.00	49.51	311.90	29.53	282.37
110	35.84	47.82	0.00	0.00	47.82	315.61	30.93	284.67
115	34.66	46.26	0.00	0.00	46.26	319.17	32.34	286.83
120	33.58	44.81	0.00	0.00	44.81	322.60	33.75	288.86
125	32.57	43.45	0.00	0.00	43.45	325.91	35.15	290.76
130	31.62	42.19	0.00	0.00	42.19	329.11	36.56	292.55
135	30.73	41.01	0.00	0.00	41.01	332.20	37.96	294.24
140	29.90	39.90	0.00	0.00	39.90	335.20	39.37	295.83

Required Storage (m³):	295.83
Provided Storage (m³):	

Project: 4938 Catchment 206

Modified Rational Method

Internal Area	Controlled Drainage Area (ha) =	0.540
	5-year C =	0.90
	100-year C =	1.00
	Allocated Release Rate (l/s) =	5.52
	Actual Release Rate (l/s) =	5.52
External Area	Area (ha) =	0.00
	C =	0.00
Groundwater	Groundwater pumping rate =	0.00 L/s

100 Year Sto	orm	
	Design Storm =	Mississauga
	A =	1450
	B =	4.9
	C =	0.78

	100 Year					Total	Maximum	Required
Time	Intensity	Total	Groundwater	External	Total	Runoff	Release	Storage
(min)	100 year	Runoff	Flows	Runoff	Runoff	Volume	Volume	Volume
	(mm/hr)	(l/s)	(l/s)	(l/s)	(l/s)	(m ³)	(m ³)	(m ³)
15	140.69	211.20	0.00	0.00	211.20	190.08	4.97	185.11
16	135.41	203.28	0.00	0.00	203.28	195.15	5.30	189.85
17	130.56	196.00	0.00	0.00	196.00	199.92	5.63	194.29
18	126.09	189.29	0.00	0.00	189.29	204.44	5.96	198.47
19	121.96	183.09	0.00	0.00	183.09	208.72	6.30	202.42
20	118.12	177.33	0.00	0.00	177.33	212.79	6.63	206.16
21	114.55	171.96	0.00	0.00	171.96	216.67	6.96	209.71
22	111.21	166.96	0.00	0.00	166.96	220.38	7.29	213.09
23	108.09	162.27	0.00	0.00	162.27	223.93	7.62	216.31
24	105.16	157.87	0.00	0.00	157.87	227.34	7.95	219.38
25	102.41	153.74	0.00	0.00	153.74	230.61	8.28	222.32
26	99.82	149.84	0.00	0.00	149.84	233.76	8.62	225.14
27	97.37	146.17	0.00	0.00	146.17	236.79	8.95	227.84
85	43.39	65.14	0.00	0.00	65.14	332.23	28.17	304.07
90	41.60	62.45	0.00	0.00	62.45	337.24	29.82	307.41
100	38.47	57.76	0.00	0.00	57.76	346.54	33.14	313.40
105	37.10	55.70	0.00	0.00	55.70	350.89	34.79	316.09
110	35.84	53.80	0.00	0.00	53.80	355.06	36.45	318.61
115	34.66	52.04	0.00	0.00	52.04	359.07	38.11	320.96
120	33.58	50.41	0.00	0.00	50.41	362.93	39.76	323.16
125	32.57	48.89	0.00	0.00	48.89	366.65	41.42	325.23
130	31.62	47.47	0.00	0.00	47.47	370.25	43.08	327.17
135	30.73	46.14	0.00	0.00	46.14	373.73	44.73	328.99
140	29.90	44.89	0.00	0.00	44.89	377.10	46.39	330.71

Required Storage (m³):	330.71
Provided Storage (m ³):	

Project: 4938 Catchment 207

Modified Rational Method

Internal Area	Controlled Drainage Area (ha) =	0.930
	5-year C =	0.90
	100-year C =	1.00
	Allocated Release Rate (l/s) =	9.96
	Actual Release Rate (l/s) =	9.96
•		
External Area	Area (ha) =	0.00
	C =	0.00
Groundwater	Groundwater pumping rate =	0.00 L/s

100 Year Storm	
Design Storm =	Mississauga
A =	1450
B =	4.9
C =	0.78

	100 Year					Total	Maximum	Required
Time	Intensity	Total	Groundwater	External	Total	Runoff	Release	Storage
(min)	100 year	Runoff	Flows	Runoff	Runoff	Volume	Volume	Volume
	(mm/hr)	(l/s)	(l/s)	(l/s)	(l/s)	(m ³)	(m ³)	(m ³)
15	140.69	363.74	0.00	0.00	363.74	327.37	8.96	318.41
16	135.41	350.09	0.00	0.00	350.09	336.09	9.56	326.53
17	130.56	337.56	0.00	0.00	337.56	344.31	10.16	334.15
18	126.09	326.00	0.00	0.00	326.00	352.09	10.75	341.33
19	121.96	315.32	0.00	0.00	315.32	359.46	11.35	348.11
20	118.12	305.39	0.00	0.00	305.39	366.47	11.95	354.53
21	114.55	296.16	0.00	0.00	296.16	373.16	12.54	360.61
22	111.21	287.53	0.00	0.00	287.53	379.54	13.14	366.40
23	108.09	279.46	0.00	0.00	279.46	385.66	13.74	371.92
24	105.16	271.89	0.00	0.00	271.89	391.52	14.34	377.19
25	102.41	264.77	0.00	0.00	264.77	397.16	14.93	382.22
26	99.82	258.06	0.00	0.00	258.06	402.58	15.53	387.05
27	97.37	251.73	0.00	0.00	251.73	407.81	16.13	391.68
85	43.39	112.19	0.00	0.00	112.19	572.18	50.78	521.41
90	41.60	107.55	0.00	0.00	107.55	580.79	53.76	527.03
100	38.47	99.47	0.00	0.00	99.47	596.82	59.74	537.08
105	37.10	95.92	0.00	0.00	95.92	604.31	62.72	541.59
110	35.84	92.65	0.00	0.00	92.65	611.49	65.71	545.78
115	34.66	89.62	0.00	0.00	89.62	618.39	68.70	549.70
120	33.58	86.81	0.00	0.00	86.81	625.04	71.68	553.36
125	32.57	84.19	0.00	0.00	84.19	631.45	74.67	556.78
130	31.62	81.75	0.00	0.00	81.75	637.65	77.66	559.99
135	30.73	79.46	0.00	0.00	79.46	643.64	80.64	563.00
140	29.90	77.31	0.00	0.00	77.31	649.44	83.63	565.81

Required Storage (m³):	565.81
Provided Storage (m ³):	

Project: 4938 Catchment 208

Modified Rational Method

Internal Area	Controlled Drainage Area (ha) =	0.920
	5-year C =	0.90
	100-year C =	1.00
	Allocated Release Rate (l/s) =	9.82
	Actual Release Rate (l/s) =	9.82
External Area	Area (ha) =	0.00
	C =	0.00
Groundwater	Groundwater pumping rate =	0.00 L/s

100 Year Storm	
Design Storm =	Mississauga
A =	1450
B =	4.9
C =	0.78

	100 Year					Total	Maximum	Required
Time	Intensity	Total	Groundwater	External	Total	Runoff	Release	Storage
(min)	100 year	Runoff	Flows	Runoff	Runoff	Volume	Volume	Volume
	(mm/hr)	(l/s)	(l/s)	(l/s)	(l/s)	(m ³)	(m ³)	(m ³)
15	140.69	359.83	0.00	0.00	359.83	323.85	8.83	315.01
16	135.41	346.33	0.00	0.00	346.33	332.47	9.42	323.05
17	130.56	333.93	0.00	0.00	333.93	340.61	10.01	330.59
18	126.09	322.50	0.00	0.00	322.50	348.30	10.60	337.70
19	121.96	311.93	0.00	0.00	311.93	355.59	11.19	344.40
20	118.12	302.11	0.00	0.00	302.11	362.53	11.78	350.75
21	114.55	292.97	0.00	0.00	292.97	369.15	12.37	356.78
22	111.21	284.44	0.00	0.00	284.44	375.46	12.96	362.51
23	108.09	276.46	0.00	0.00	276.46	381.51	13.55	367.97
24	105.16	268.97	0.00	0.00	268.97	387.31	14.14	373.18
25	102.41	261.93	0.00	0.00	261.93	392.89	14.72	378.16
26	99.82	255.29	0.00	0.00	255.29	398.25	15.31	382.94
27	97.37	249.03	0.00	0.00	249.03	403.42	15.90	387.52
85	43.39	110.99	0.00	0.00	110.99	566.03	50.06	515.96
90	41.60	106.40	0.00	0.00	106.40	574.55	53.01	521.54
100	38.47	98.40	0.00	0.00	98.40	590.40	58.90	531.50
105	37.10	94.89	0.00	0.00	94.89	597.81	61.84	535.97
110	35.84	91.65	0.00	0.00	91.65	604.92	64.79	540.13
115	34.66	88.66	0.00	0.00	88.66	611.75	67.73	544.01
120	33.58	85.88	0.00	0.00	85.88	618.32	70.68	547.64
125	32.57	83.29	0.00	0.00	83.29	624.66	73.62	551.04
130	31.62	80.87	0.00	0.00	80.87	630.79	76.57	554.22
135	30.73	78.61	0.00	0.00	78.61	636.72	79.51	557.20
140	29.90	76.48	0.00	0.00	76.48	642.46	82.46	560.00

Required Storage (m³):	560.00
Provided Storage (m³):	

Project: 4938 Catchment 209

Modified Rational Method

Internal Area	Controlled Drainage Area (ha) =	0.580
	5-year C =	0.90
	100-year C =	1.00
	Allocated Release Rate (l/s) =	6.08
	Actual Release Rate (l/s) =	6.08
External Area	Area (ha) =	0.00
	C =	0.00
Groundwater	Groundwater pumping rate =	0.00 L/s

100 Year Storm	
Design Storm =	Mississauga
A =	1450
B =	4.9
C =	0.78

	100 Year					Total	Maximum	Required
Time	Intensity	Total	Groundwater	External	Total	Runoff	Release	Storage
(min)	100 year	Runoff	Flows	Runoff	Runoff	Volume	Volume	Volume
	(mm/hr)	(l/s)	(l/s)	(l/s)	(l/s)	(m ³)	(m ³)	(m ³)
15	140.69	226.85	0.00	0.00	226.85	204.16	5.47	198.69
16	135.41	218.34	0.00	0.00	218.34	209.60	5.84	203.77
17	130.56	210.52	0.00	0.00	210.52	214.73	6.20	208.53
18	126.09	203.31	0.00	0.00	203.31	219.58	6.57	213.01
19	121.96	196.65	0.00	0.00	196.65	224.18	6.93	217.25
20	118.12	190.46	0.00	0.00	190.46	228.55	7.30	221.26
21	114.55	184.70	0.00	0.00	184.70	232.72	7.66	225.06
22	111.21	179.32	0.00	0.00	179.32	236.71	8.03	228.68
23	108.09	174.29	0.00	0.00	174.29	240.52	8.39	232.13
24	105.16	169.57	0.00	0.00	169.57	244.18	8.76	235.42
25	102.41	165.13	0.00	0.00	165.13	247.69	9.12	238.57
26	99.82	160.94	0.00	0.00	160.94	251.07	9.48	241.59
27	97.37	156.99	0.00	0.00	156.99	254.33	9.85	244.48
85	43.39	69.97	0.00	0.00	69.97	356.84	31.01	325.84
90	41.60	67.08	0.00	0.00	67.08	362.22	32.83	329.38
100	38.47	62.03	0.00	0.00	62.03	372.21	36.48	335.73
105	37.10	59.82	0.00	0.00	59.82	376.88	38.30	338.58
110	35.84	57.78	0.00	0.00	57.78	381.36	40.13	341.23
115	34.66	55.89	0.00	0.00	55.89	385.67	41.95	343.71
120	33.58	54.14	0.00	0.00	54.14	389.81	43.78	346.04
125	32.57	52.51	0.00	0.00	52.51	393.81	45.60	348.21
130	31.62	50.98	0.00	0.00	50.98	397.67	47.42	350.25
135	30.73	49.56	0.00	0.00	49.56	401.41	49.25	352.16
140	29.90	48.22	0.00	0.00	48.22	405.03	51.07	353.96

Required Storage (m³):	353.96
Provided Storage (m³):	

Project: 4938 Catchment 210

Modified Rational Method

Internal Area	Controlled Drainage Area (ha) =	0.840
	5-year C =	0.90
	100-year C =	1.00
	Allocated Release Rate (I/s) =	9.70
	Actual Release Rate (l/s) =	9.70
External Area	Area (ha) =	0.00
	C =	0.00

Groundwater	Groundwater pumping rate =	0.00 L/s

100 Year Storm	
Design Storm =	Mississauga
A =	1450
B =	4.9
C =	0.78

	100 Year					Total	Maximum	Required
Time	Intensity	Total	Groundwater	External	Total	Runoff	Release	Storage
(min)	100 year	Runoff	Flows	Runoff	Runoff	Volume	Volume	Volume
	(mm/hr)	(l/s)	(l/s)	(l/s)	(l/s)	(m ³)	(m ³)	(m ³)
15	140.69	328.54	0.00	0.00	328.54	295.68	8.73	286.95
16	135.41	316.21	0.00	0.00	316.21	303.56	9.31	294.25
17	130.56	304.89	0.00	0.00	304.89	310.99	9.90	301.09
18	126.09	294.46	0.00	0.00	294.46	318.01	10.48	307.53
19	121.96	284.80	0.00	0.00	284.80	324.67	11.06	313.61
20	118.12	275.84	0.00	0.00	275.84	331.01	11.64	319.36
21	114.55	267.50	0.00	0.00	267.50	337.05	12.22	324.82
22	111.21	259.71	0.00	0.00	259.71	342.81	12.81	330.01
23	108.09	252.42	0.00	0.00	252.42	348.34	13.39	334.95
24	105.16	245.58	0.00	0.00	245.58	353.63	13.97	339.66
25	102.41	239.15	0.00	0.00	239.15	358.72	14.55	344.17
26	99.82	233.09	0.00	0.00	233.09	363.62	15.14	348.49
27	97.37	227.37	0.00	0.00	227.37	368.34	15.72	352.62
85	43.39	101.34	0.00	0.00	101.34	516.81	49.48	467.33
90	41.60	97.15	0.00	0.00	97.15	524.59	52.39	472.20
100	38.47	89.84	0.00	0.00	89.84	539.06	58.21	480.85
105	37.10	86.64	0.00	0.00	86.64	545.83	61.12	484.70
110	35.84	83.68	0.00	0.00	83.68	552.31	64.03	488.28
115	34.66	80.95	0.00	0.00	80.95	558.55	66.94	491.61
120	33.58	78.41	0.00	0.00	78.41	564.55	69.86	494.70
125	32.57	76.05	0.00	0.00	76.05	570.35	72.77	497.58
130	31.62	73.84	0.00	0.00	73.84	575.94	75.68	500.26
135	30.73	71.77	0.00	0.00	71.77	581.35	78.59	502.76
140	29.90	69.83	0.00	0.00	69.83	586.59	81.50	505.10

Required Storage (m³):	505.10
Provided Storage (m ³):	

Project: 4938 Catchment 211

Modified Rational Method

Internal Area	Controlled Drainage Area (ha) =	0.860
	5-year C =	0.90
	100-year C =	1.00
	Allocated Release Rate (I/s) =	116.45
	Actual Release Rate (l/s) =	116.45
External Area	Area (ha) =	0.00
	C =	0.00
-		
Groundwater	Groundwater pumping rate =	0.00 L/s
T T	·	

100 Year Storm	
Design Storm =	Mississauga
A =	1450
B =	4.9
C =	0.78

	100 Year					Total	Maximum	Required
Time	Intensity	Total	Groundwater	External	Total	Runoff	Release	Storage
(min)	100 year	Runoff	Flows	Runoff	Runoff	Volume	Volume	Volume
	(mm/hr)	(l/s)	(l/s)	(l/s)	(l/s)	(m ³)	(m ³)	(m ³)
15	140.69	336.36	0.00	0.00	336.36	302.73	104.80	197.92
16	135.41	323.74	0.00	0.00	323.74	310.79	111.79	199.00
17	130.56	312.15	0.00	0.00	312.15	318.39	118.78	199.62
18	126.09	301.47	0.00	0.00	301.47	325.58	125.76	199.82
19	121.96	291.58	0.00	0.00	291.58	332.40	132.75	199.65
20	118.12	282.41	0.00	0.00	282.41	338.89	139.74	199.15
21	114.55	273.87	0.00	0.00	273.87	345.07	146.72	198.35
22	111.21	265.89	0.00	0.00	265.89	350.98	153.71	197.27
23	108.09	258.43	0.00	0.00	258.43	356.63	160.70	195.93
24	105.16	251.43	0.00	0.00	251.43	362.05	167.69	194.37
25	102.41	244.84	0.00	0.00	244.84	367.26	174.67	192.59
26	99.82	238.64	0.00	0.00	238.64	372.28	181.66	190.62
27	97.37	232.78	0.00	0.00	232.78	377.11	188.65	188.47
85	43.39	103.75	0.00	0.00	103.75	529.11	593.88	0.00
90	41.60	99.46	0.00	0.00	99.46	537.08	628.82	0.00
100	38.47	91.98	0.00	0.00	91.98	551.90	698.69	0.00
105	37.10	88.70	0.00	0.00	88.70	558.82	733.62	0.00
110	35.84	85.68	0.00	0.00	85.68	565.46	768.56	0.00
115	34.66	82.88	0.00	0.00	82.88	571.85	803.49	0.00
120	33.58	80.28	0.00	0.00	80.28	578.00	838.43	0.00
125	32.57	77.86	0.00	0.00	77.86	583.93	873.36	0.00
130	31.62	75.60	0.00	0.00	75.60	589.65	908.29	0.00
135	30.73	73.48	0.00	0.00	73.48	595.19	943.23	0.00
140	29.90	71.50	0.00	0.00	71.50	600.56	978.16	0.00

Required Storage (m ³):	199.82
Provided Storage (m³):	

Project: 4938 Catchment 212

Modified Rational Method

Internal Area	Controlled Drainage Area (ha) =	0.200	
	5-year C =	0.90	
	100-year C =	1.00	
	Allocated Release Rate (I/s) =	25.55	
	Actual Release Rate (l/s) =	25.55	
External Area	Area (ha) =	0.00	
	C =	0.00	

Groundwater	Groundwater pumping rate =	0.00 L/s

100 Year Storm	
Design Storm =	Mississauga
A =	1450
B =	4.9
C =	0.78

	100 Year					Total	Maximum	Required
Time	Intensity	Total	Groundwater	External	Total	Runoff	Release	Storage
(min)	100 year	Runoff	Flows	Runoff	Runoff	Volume	Volume	Volume
	(mm/hr)	(l/s)	(l/s)	(l/s)	(l/s)	(m ³)	(m ³)	(m ³)
15	140.69	78.22	0.00	0.00	78.22	70.40	22.99	47.41
16	135.41	75.29	0.00	0.00	75.29	72.28	24.52	47.75
17	130.56	72.59	0.00	0.00	72.59	74.05	26.06	47.99
18	126.09	70.11	0.00	0.00	70.11	75.72	27.59	48.13
19	121.96	67.81	0.00	0.00	67.81	77.30	29.12	48.18
20	118.12	65.68	0.00	0.00	65.68	78.81	30.66	48.16
21	114.55	63.69	0.00	0.00	63.69	80.25	32.19	48.06
22	111.21	61.84	0.00	0.00	61.84	81.62	33.72	47.90
23	108.09	60.10	0.00	0.00	60.10	82.94	35.25	47.68
24	105.16	58.47	0.00	0.00	58.47	84.20	36.79	47.41
25	102.41	56.94	0.00	0.00	56.94	85.41	38.32	47.09
26	99.82	55.50	0.00	0.00	55.50	86.58	39.85	46.72
27	97.37	54.14	0.00	0.00	54.14	87.70	41.38	46.32
85	43.39	24.13	0.00	0.00	24.13	123.05	130.28	0.00
90	41.60	23.13	0.00	0.00	23.13	124.90	137.95	0.00
100	38.47	21.39	0.00	0.00	21.39	128.35	153.28	0.00
105	37.10	20.63	0.00	0.00	20.63	129.96	160.94	0.00
110	35.84	19.92	0.00	0.00	19.92	131.50	168.60	0.00
115	34.66	19.27	0.00	0.00	19.27	132.99	176.27	0.00
120	33.58	18.67	0.00	0.00	18.67	134.42	183.93	0.00
125	32.57	18.11	0.00	0.00	18.11	135.80	191.60	0.00
130	31.62	17.58	0.00	0.00	17.58	137.13	199.26	0.00
135	30.73	17.09	0.00	0.00	17.09	138.42	206.92	0.00
140	29.90	16.63	0.00	0.00	16.63	139.67	214.59	0.00

Required Storage (m³):	48.18
Provided Storage (m³):	

Project: 4938 Catchment 213

Modified Rational Method

Internal Area	Controlled Drainage Area (ha) =	0.400
	5-year C =	0.90
	100-year C =	1.00
	Allocated Release Rate (l/s) =	53.09
	Actual Release Rate (l/s) =	53.09
External Area	Area (ha) =	0.00
	C =	0.00
Groundwater	Groundwater pumping rate =	0.00 L/s

100 Year Storm	
Design Storm =	Mississauga
A =	1450
B =	4.9
C =	0.78

	100 Year					Total	Maximum	Required
Time	Intensity	Total	Groundwater	External	Total	Runoff	Release	Storage
(min)	100 year	Runoff	Flows	Runoff	Runoff	Volume	Volume	Volume
	(mm/hr)	(l/s)	(l/s)	(l/s)	(l/s)	(m ³)	(m ³)	(m ³)
15	140.69	156.45	0.00	0.00	156.45	140.80	47.78	93.02
16	135.41	150.58	0.00	0.00	150.58	144.55	50.97	93.59
17	130.56	145.19	0.00	0.00	145.19	148.09	54.15	93.94
18	126.09	140.22	0.00	0.00	140.22	151.43	57.34	94.10
19	121.96	135.62	0.00	0.00	135.62	154.61	60.52	94.08
20	118.12	131.35	0.00	0.00	131.35	157.62	63.71	93.91
21	114.55	127.38	0.00	0.00	127.38	160.50	66.90	93.60
22	111.21	123.67	0.00	0.00	123.67	163.25	70.08	93.16
23	108.09	120.20	0.00	0.00	120.20	165.87	73.27	92.61
24	105.16	116.94	0.00	0.00	116.94	168.40	76.45	91.94
25	102.41	113.88	0.00	0.00	113.88	170.82	79.64	91.18
26	99.82	111.00	0.00	0.00	111.00	173.15	82.82	90.33
27	97.37	108.27	0.00	0.00	108.27	175.40	86.01	89.39
85	43.39	48.25	0.00	0.00	48.25	246.10	270.77	0.00
90	41.60	46.26	0.00	0.00	46.26	249.80	286.70	0.00
100	38.47	42.78	0.00	0.00	42.78	256.70	318.55	0.00
105	37.10	41.26	0.00	0.00	41.26	259.92	334.48	0.00
110	35.84	39.85	0.00	0.00	39.85	263.01	350.41	0.00
115	34.66	38.55	0.00	0.00	38.55	265.98	366.34	0.00
120	33.58	37.34	0.00	0.00	37.34	268.84	382.26	0.00
125	32.57	36.21	0.00	0.00	36.21	271.59	398.19	0.00
130	31.62	35.16	0.00	0.00	35.16	274.26	414.12	0.00
135	30.73	34.18	0.00	0.00	34.18	276.83	430.05	0.00
140	29.90	33.25	0.00	0.00	33.25	279.33	445.97	0.00

Required Storage (m³):	94.10
Provided Storage (m³):	

Project: 4938 Catchment 214

Modified Rational Method

Internal Area	Controlled Drainage Area (ha) =	0.340
	5-year C =	0.90
	100-year C =	1.00
	Allocated Release Rate (l/s) =	44.83
	Actual Release Rate (l/s) =	44.83
External Area	Area (ha) =	0.00
	C =	0.00
Groundwater	Groundwater pumping rate =	0.00 L/s

100 Year Storm	
Design Storm =	Mississauga
A =	1450
B =	4.9
C =	0.78

	100 Year					Total	Maximum	Required
Time	Intensity	Total	Groundwater	External	Total	Runoff	Release	Storage
(min)	100 year	Runoff	Flows	Runoff	Runoff	Volume	Volume	Volume
	(mm/hr)	(l/s)	(l/s)	(l/s)	(l/s)	(m ³)	(m ³)	(m ³)
15	140.69	132.98	0.00	0.00	132.98	119.68	40.35	79.34
16	135.41	127.99	0.00	0.00	127.99	122.87	43.04	79.84
17	130.56	123.41	0.00	0.00	123.41	125.88	45.72	80.15
18	126.09	119.18	0.00	0.00	119.18	128.72	48.41	80.30
19	121.96	115.28	0.00	0.00	115.28	131.42	51.10	80.31
20	118.12	111.65	0.00	0.00	111.65	133.98	53.79	80.19
21	114.55	108.27	0.00	0.00	108.27	136.42	56.48	79.94
22	111.21	105.12	0.00	0.00	105.12	138.76	59.17	79.58
23	108.09	102.17	0.00	0.00	102.17	140.99	61.86	79.13
24	105.16	99.40	0.00	0.00	99.40	143.14	64.55	78.58
25	102.41	96.80	0.00	0.00	96.80	145.20	67.24	77.96
26	99.82	94.35	0.00	0.00	94.35	147.18	69.93	77.25
27	97.37	92.03	0.00	0.00	92.03	149.09	72.62	76.47
85	43.39	41.02	0.00	0.00	41.02	209.18	228.62	0.00
90	41.60	39.32	0.00	0.00	39.32	212.33	242.07	0.00
100	38.47	36.37	0.00	0.00	36.37	218.19	268.97	0.00
105	37.10	35.07	0.00	0.00	35.07	220.93	282.42	0.00
110	35.84	33.87	0.00	0.00	33.87	223.56	295.87	0.00
115	34.66	32.77	0.00	0.00	32.77	226.08	309.32	0.00
120	33.58	31.74	0.00	0.00	31.74	228.51	322.76	0.00
125	32.57	30.78	0.00	0.00	30.78	230.85	336.21	0.00
130	31.62	29.89	0.00	0.00	29.89	233.12	349.66	0.00
135	30.73	29.05	0.00	0.00	29.05	235.31	363.11	0.00
140	29.90	28.27	0.00	0.00	28.27	237.43	376.56	0.00

Required Storage (m³):	80.31
Provided Storage (m ³):	

Project: 4938 Catchment 215

Modified Rational Method

Internal Area	Controlled Drainage Area (ha) =	0.820
	5-year C =	0.90
	100-year C =	1.00
	Allocated Release Rate (l/s) =	110.94
	Actual Release Rate (l/s) =	110.94
External Area	Area (ha) =	0.00
External Area	Area (ha) = C =	0.00 0.00
External Area	` ´	
	` ´	

100 Year Storm	
Design Storm =	Mississauga
A =	1450
B =	4.9
C =	0.78

	100 Year					Total	Maximum	Required
Time	Intensity	Total	Groundwater	External	Total	Runoff	Release	Storage
(min)	100 year	Runoff	Flows	Runoff	Runoff	Volume	Volume	Volume
	(mm/hr)	(l/s)	(l/s)	(l/s)	(l/s)	(m ³)	(m ³)	(m ³)
15	140.69	320.72	0.00	0.00	320.72	288.64	99.84	188.80
16	135.41	308.68	0.00	0.00	308.68	296.34	106.50	189.83
17	130.56	297.63	0.00	0.00	297.63	303.59	113.16	190.43
18	126.09	287.45	0.00	0.00	287.45	310.44	119.81	190.63
19	121.96	278.02	0.00	0.00	278.02	316.94	126.47	190.47
20	118.12	269.27	0.00	0.00	269.27	323.13	133.13	190.00
21	114.55	261.13	0.00	0.00	261.13	329.02	139.78	189.24
22	111.21	253.52	0.00	0.00	253.52	334.65	146.44	188.21
23	108.09	246.41	0.00	0.00	246.41	340.04	153.10	186.95
24	105.16	239.73	0.00	0.00	239.73	345.21	159.75	185.46
25	102.41	233.45	0.00	0.00	233.45	350.18	166.41	183.77
26	99.82	227.54	0.00	0.00	227.54	354.96	173.06	181.90
27	97.37	221.96	0.00	0.00	221.96	359.57	179.72	179.85
85	43.39	98.92	0.00	0.00	98.92	504.50	565.79	0.00
90	41.60	94.83	0.00	0.00	94.83	512.10	599.07	0.00
100	38.47	87.70	0.00	0.00	87.70	526.23	665.63	0.00
105	37.10	84.58	0.00	0.00	84.58	532.83	698.91	0.00
110	35.84	81.69	0.00	0.00	81.69	539.16	732.20	0.00
115	34.66	79.02	0.00	0.00	79.02	545.25	765.48	0.00
120	33.58	76.54	0.00	0.00	76.54	551.11	798.76	0.00
125	32.57	74.24	0.00	0.00	74.24	556.77	832.04	0.00
130	31.62	72.08	0.00	0.00	72.08	562.23	865.32	0.00
135	30.73	70.06	0.00	0.00	70.06	567.51	898.60	0.00
140	29.90	68.17	0.00	0.00	68.17	572.63	931.89	0.00

Required Storage (m³):	190.63
Provided Storage (m³):	

Project: 4938 Catchment 216

Modified Rational Method

Internal Area	Controlled Drainage Area (ha) =	0.190
	5-year C =	0.90
	100-year C =	1.00
	Allocated Release Rate (l/s) =	24.17
	Actual Release Rate (l/s) =	24.17
External Area	Area (ha) =	0.00
	C =	0.00
Groundwater	Groundwater pumping rate =	0.00 L/s

100 Year Storm	
Design Storm =	Mississauga
A =	1450
B =	4.9
C =	0.78

	100 Year					Total	Maximum	Required
Time	Intensity	Total	Groundwater	External	Total	Runoff	Release	Storage
(min)	100 year	Runoff	Flows	Runoff	Runoff	Volume	Volume	Volume
	(mm/hr)	(l/s)	(l/s)	(l/s)	(l/s)	(m ³)	(m ³)	(m ³)
15	140.69	74.31	0.00	0.00	74.31	66.88	21.75	45.13
16	135.41	71.52	0.00	0.00	71.52	68.66	23.20	45.46
17	130.56	68.96	0.00	0.00	68.96	70.34	24.65	45.69
18	126.09	66.60	0.00	0.00	66.60	71.93	26.10	45.83
19	121.96	64.42	0.00	0.00	64.42	73.44	27.55	45.89
20	118.12	62.39	0.00	0.00	62.39	74.87	29.00	45.87
21	114.55	60.51	0.00	0.00	60.51	76.24	30.45	45.78
22	111.21	58.74	0.00	0.00	58.74	77.54	31.90	45.64
23	108.09	57.09	0.00	0.00	57.09	78.79	33.35	45.44
24	105.16	55.55	0.00	0.00	55.55	79.99	34.80	45.19
25	102.41	54.09	0.00	0.00	54.09	81.14	36.25	44.89
26	99.82	52.72	0.00	0.00	52.72	82.25	37.70	44.54
27	97.37	51.43	0.00	0.00	51.43	83.32	39.15	44.16
85	43.39	22.92	0.00	0.00	22.92	116.90	123.26	0.00
90	41.60	21.97	0.00	0.00	21.97	118.66	130.51	0.00
100	38.47	20.32	0.00	0.00	20.32	121.93	145.01	0.00
105	37.10	19.60	0.00	0.00	19.60	123.46	152.26	0.00
110	35.84	18.93	0.00	0.00	18.93	124.93	159.51	0.00
115	34.66	18.31	0.00	0.00	18.31	126.34	166.76	0.00
120	33.58	17.74	0.00	0.00	17.74	127.70	174.01	0.00
125	32.57	17.20	0.00	0.00	17.20	129.01	181.27	0.00
130	31.62	16.70	0.00	0.00	16.70	130.27	188.52	0.00
135	30.73	16.23	0.00	0.00	16.23	131.50	195.77	0.00
140	29.90	15.80	0.00	0.00	15.80	132.68	203.02	0.00

Required Storage (m³):	45.89
Provided Storage (m ³):	

Project: 4938 Catchment 217

Modified Rational Method

Internal Area	Controlled Drainage Area (ha) =	0.360
	5-year C =	0.90
	100-year C =	1.00
	Allocated Release Rate (l/s) =	47.58
	Actual Release Rate (l/s) =	47.58
External Area	Area (ha) =	0.00
	C =	0.00
Groundwater	Groundwater pumping rate =	0.00 L/s

100 Year Storm	
Design Storm =	Mississauga
A =	1450
B =	4.9
C =	0.78

	100 Year					Total	Maximum	Required
Time	Intensity	Total	Groundwater	External	Total	Runoff	Release	Storage
(min)	100 year	Runoff	Flows	Runoff	Runoff	Volume	Volume	Volume
	(mm/hr)	(l/s)	(l/s)	(l/s)	(l/s)	(m ³)	(m ³)	(m ³)
15	140.69	140.80	0.00	0.00	140.80	126.72	42.82	83.90
16	135.41	135.52	0.00	0.00	135.52	130.10	45.68	84.42
17	130.56	130.67	0.00	0.00	130.67	133.28	48.53	84.75
18	126.09	126.20	0.00	0.00	126.20	136.29	51.39	84.90
19	121.96	122.06	0.00	0.00	122.06	139.15	54.24	84.90
20	118.12	118.22	0.00	0.00	118.22	141.86	57.10	84.76
21	114.55	114.64	0.00	0.00	114.64	144.45	59.95	84.49
22	111.21	111.30	0.00	0.00	111.30	146.92	62.81	84.11
23	108.09	108.18	0.00	0.00	108.18	149.29	65.66	83.62
24	105.16	105.25	0.00	0.00	105.25	151.56	68.52	83.04
25	102.41	102.49	0.00	0.00	102.49	153.74	71.37	82.36
26	99.82	99.90	0.00	0.00	99.90	155.84	74.23	81.61
27	97.37	97.44	0.00	0.00	97.44	157.86	77.08	80.78
85	43.39	43.43	0.00	0.00	43.43	221.49	242.67	0.00
90	41.60	41.63	0.00	0.00	41.63	224.82	256.95	0.00
100	38.47	38.50	0.00	0.00	38.50	231.03	285.50	0.00
105	37.10	37.13	0.00	0.00	37.13	233.93	299.77	0.00
110	35.84	35.86	0.00	0.00	35.86	236.71	314.05	0.00
115	34.66	34.69	0.00	0.00	34.69	239.38	328.32	0.00
120	33.58	33.60	0.00	0.00	33.60	241.95	342.60	0.00
125	32.57	32.59	0.00	0.00	32.59	244.43	356.87	0.00
130	31.62	31.65	0.00	0.00	31.65	246.83	371.15	0.00
135	30.73	30.76	0.00	0.00	30.76	249.15	385.42	0.00
140	29.90	29.93	0.00	0.00	29.93	251.40	399.70	0.00

Required Storage (m³):	84.90
Provided Storage (m³):	

Project: 4938 Catchment 218

Modified Rational Method

Internal Area	Controlled Drainage Area (ha) =	0.580
	5-year C =	0.90
	100-year C =	1.00
	Allocated Release Rate (l/s) =	77.88
	Actual Release Rate (l/s) =	77.88
External Area	Area (ha) =	0.00
	C =	0.00
•		
Groundwater	Groundwater pumping rate =	0.00 L/s

100 Year Storm	
Design Storm =	Mississauga
A =	1450
B =	4.9
C =	0.78

	100 Year					Total	Maximum	Required
Time	Intensity	Total	Groundwater	External	Total	Runoff	Release	Storage
(min)	100 year	Runoff	Flows	Runoff	Runoff	Volume	Volume	Volume
	(mm/hr)	(l/s)	(l/s)	(l/s)	(l/s)	(m ³)	(m ³)	(m ³)
15	140.69	226.85	0.00	0.00	226.85	204.16	70.10	134.07
16	135.41	218.34	0.00	0.00	218.34	209.60	74.77	134.84
17	130.56	210.52	0.00	0.00	210.52	214.73	79.44	135.29
18	126.09	203.31	0.00	0.00	203.31	219.58	84.11	135.47
19	121.96	196.65	0.00	0.00	196.65	224.18	88.79	135.39
20	118.12	190.46	0.00	0.00	190.46	228.55	93.46	135.09
21	114.55	184.70	0.00	0.00	184.70	232.72	98.13	134.59
22	111.21	179.32	0.00	0.00	179.32	236.71	102.81	133.90
23	108.09	174.29	0.00	0.00	174.29	240.52	107.48	133.04
24	105.16	169.57	0.00	0.00	169.57	244.18	112.15	132.02
25	102.41	165.13	0.00	0.00	165.13	247.69	116.83	130.86
26	99.82	160.94	0.00	0.00	160.94	251.07	121.50	129.57
27	97.37	156.99	0.00	0.00	156.99	254.33	126.17	128.16
85	43.39	69.97	0.00	0.00	69.97	356.84	397.21	0.00
90	41.60	67.08	0.00	0.00	67.08	362.22	420.57	0.00
100	38.47	62.03	0.00	0.00	62.03	372.21	467.30	0.00
105	37.10	59.82	0.00	0.00	59.82	376.88	490.67	0.00
110	35.84	57.78	0.00	0.00	57.78	381.36	514.03	0.00
115	34.66	55.89	0.00	0.00	55.89	385.67	537.40	0.00
120	33.58	54.14	0.00	0.00	54.14	389.81	560.76	0.00
125	32.57	52.51	0.00	0.00	52.51	393.81	584.13	0.00
130	31.62	50.98	0.00	0.00	50.98	397.67	607.49	0.00
135	30.73	49.56	0.00	0.00	49.56	401.41	630.86	0.00
140	29.90	48.22	0.00	0.00	48.22	405.03	654.22	0.00

Required Storage (m³):	135.47
Provided Storage (m³):	

Project: 4938 Catchment 219

Modified Rational Method

Internal Area	Controlled Drainage Area (ha) =	0.570
	5-year C =	0.90
	100-year C =	1.00
	Allocated Release Rate (l/s) =	76.51
	Actual Release Rate (l/s) =	76.51
External Area	Area (ha) =	0.00
	C =	0.00
Groundwater	Groundwater pumping rate =	0.00 L/s

100 Year Storm	
Design Storm =	Mississauga
A =	1450
B =	4.9
C =	0.78

	100 Year					Total	Maximum	Required
Time	Intensity	Total	Groundwater	External	Total	Runoff	Release	Storage
(min)	100 year	Runoff	Flows	Runoff	Runoff	Volume	Volume	Volume
	(mm/hr)	(l/s)	(l/s)	(l/s)	(l/s)	(m ³)	(m ³)	(m ³)
15	140.69	222.94	0.00	0.00	222.94	200.64	68.86	131.79
16	135.41	214.57	0.00	0.00	214.57	205.99	73.45	132.54
17	130.56	206.89	0.00	0.00	206.89	211.03	78.04	132.99
18	126.09	199.81	0.00	0.00	199.81	215.79	82.63	133.17
19	121.96	193.26	0.00	0.00	193.26	220.31	87.22	133.10
20	118.12	187.18	0.00	0.00	187.18	224.61	91.81	132.80
21	114.55	181.52	0.00	0.00	181.52	228.71	96.40	132.31
22	111.21	176.23	0.00	0.00	176.23	232.62	100.99	131.64
23	108.09	171.28	0.00	0.00	171.28	236.37	105.58	130.79
24	105.16	166.64	0.00	0.00	166.64	239.97	110.17	129.80
25	102.41	162.28	0.00	0.00	162.28	243.42	114.76	128.66
26	99.82	158.17	0.00	0.00	158.17	246.74	119.35	127.39
27	97.37	154.29	0.00	0.00	154.29	249.95	123.94	126.01
85	43.39	68.76	0.00	0.00	68.76	350.69	390.18	0.00
90	41.60	65.92	0.00	0.00	65.92	355.97	413.13	0.00
100	38.47	60.97	0.00	0.00	60.97	365.79	459.04	0.00
105	37.10	58.79	0.00	0.00	58.79	370.38	481.99	0.00
110	35.84	56.79	0.00	0.00	56.79	374.78	504.94	0.00
115	34.66	54.93	0.00	0.00	54.93	379.02	527.89	0.00
120	33.58	53.21	0.00	0.00	53.21	383.09	550.84	0.00
125	32.57	51.60	0.00	0.00	51.60	387.02	573.80	0.00
130	31.62	50.10	0.00	0.00	50.10	390.82	596.75	0.00
135	30.73	48.70	0.00	0.00	48.70	394.49	619.70	0.00
140	29.90	47.39	0.00	0.00	47.39	398.05	642.65	0.00

Required Storage (m³):	133.17
Provided Storage (m³):	

Project: 4938 Catchment 220

Modified Rational Method

Internal Area	Controlled Drainage Area (ha) =	1.00
	5-year C =	0.90
	100-year C =	1.00
	Allocated Release Rate (l/s) =	135.73
	Actual Release Rate (l/s) =	135.73
External Area	Area (ha) =	0.00
	C =	0.00
	Croundwater numping rate =	0.00 L/s
Groundwater	Groundwater pumping rate =	0:00 L/s

100 Year Storm	
Design Storm =	Mississauga
A =	1450
B =	4.9
C =	0.78

	100 Year					Total	Maximum	Required
Time	Intensity	Total	Groundwater	External	Total	Runoff	Release	Storage
(min)	100 year	Runoff	Flows	Runoff	Runoff	Volume	Volume	Volume
	(mm/hr)	(l/s)	(l/s)	(l/s)	(l/s)	(m ³)	(m ³)	(m ³)
15	140.69	391.12	0.00	0.00	391.12	352.01	122.16	229.85
16	135.41	376.44	0.00	0.00	376.44	361.38	130.30	231.08
17	130.56	362.97	0.00	0.00	362.97	370.23	138.44	231.78
18	126.09	350.54	0.00	0.00	350.54	378.59	146.59	232.00
19	121.96	339.05	0.00	0.00	339.05	386.52	154.73	231.78
20	118.12	328.38	0.00	0.00	328.38	394.06	162.88	231.18
21	114.55	318.45	0.00	0.00	318.45	401.24	171.02	230.22
22	111.21	309.18	0.00	0.00	309.18	408.11	179.16	228.95
23	108.09	300.50	0.00	0.00	300.50	414.69	187.31	227.38
24	105.16	292.36	0.00	0.00	292.36	420.99	195.45	225.54
25	102.41	284.70	0.00	0.00	284.70	427.05	203.60	223.46
26	99.82	277.49	0.00	0.00	277.49	432.88	211.74	221.14
27	97.37	270.68	0.00	0.00	270.68	438.50	219.88	218.62
85	43.39	120.64	0.00	0.00	120.64	615.25	692.22	0.00
90	41.60	115.65	0.00	0.00	115.65	624.51	732.94	0.00
100	38.47	106.96	0.00	0.00	106.96	641.74	814.38	0.00
105	37.10	103.14	0.00	0.00	103.14	649.79	855.10	0.00
110	35.84	99.62	0.00	0.00	99.62	657.52	895.82	0.00
115	34.66	96.37	0.00	0.00	96.37	664.94	936.54	0.00
120	33.58	93.35	0.00	0.00	93.35	672.09	977.26	0.00
125	32.57	90.53	0.00	0.00	90.53	678.98	1017.98	0.00
130	31.62	87.90	0.00	0.00	87.90	685.64	1058.70	0.00
135	30.73	85.44	0.00	0.00	85.44	692.09	1099.41	0.00
140	29.90	83.13	0.00	0.00	83.13	698.33	1140.13	0.00

Required Storage (m³):	232.00
Provided Storage (m³):	

Project: 4938 Catchment 221

Modified Rational Method

Internal Area	Controlled Drainage Area (ha) =	1.300
	5-year C =	0.90
	100-year C =	1.00
	Allocated Release Rate (l/s) =	177.05
	Actual Release Rate (l/s) =	177.05
External Area	Area (ha) =	0.00
	C =	0.00
Groundwater	Groundwater pumping rate =	0.00 L/s

100 Year Storm	
Design Storm =	Mississauga
A =	1450
B =	4.9
C =	0.78

	100 Year					Total	Maximum	Required
Time	Intensity	Total	Groundwater	External	Total	Runoff	Release	Storage
(min)	100 year	Runoff	Flows	Runoff	Runoff	Volume	Volume	Volume
	(mm/hr)	(l/s)	(l/s)	(l/s)	(l/s)	(m ³)	(m ³)	(m ³)
15	140.69	508.45	0.00	0.00	508.45	457.61	159.34	298.26
16	135.41	489.38	0.00	0.00	489.38	469.80	169.97	299.83
17	130.56	471.86	0.00	0.00	471.86	481.29	180.59	300.70
18	126.09	455.71	0.00	0.00	455.71	492.16	191.21	300.95
19	121.96	440.76	0.00	0.00	440.76	502.47	201.84	300.63
20	118.12	426.89	0.00	0.00	426.89	512.27	212.46	299.81
21	114.55	413.98	0.00	0.00	413.98	521.62	223.08	298.54
22	111.21	401.93	0.00	0.00	401.93	530.55	233.71	296.84
23	108.09	390.65	0.00	0.00	390.65	539.09	244.33	294.77
24	105.16	380.06	0.00	0.00	380.06	547.29	254.95	292.34
25	102.41	370.11	0.00	0.00	370.11	555.17	265.57	289.59
26	99.82	360.74	0.00	0.00	360.74	562.75	276.20	286.55
27	97.37	351.88	0.00	0.00	351.88	570.05	286.82	283.23
85	43.39	156.83	0.00	0.00	156.83	799.82	902.95	0.00
90	41.60	150.34	0.00	0.00	150.34	811.86	956.07	0.00
100	38.47	139.04	0.00	0.00	139.04	834.26	1062.30	0.00
105	37.10	134.08	0.00	0.00	134.08	844.73	1115.41	0.00
110	35.84	129.51	0.00	0.00	129.51	854.77	1168.53	0.00
115	34.66	125.28	0.00	0.00	125.28	864.42	1221.64	0.00
120	33.58	121.35	0.00	0.00	121.35	873.72	1274.75	0.00
125	32.57	117.69	0.00	0.00	117.69	882.68	1327.87	0.00
130	31.62	114.27	0.00	0.00	114.27	891.34	1380.98	0.00
135	30.73	111.08	0.00	0.00	111.08	899.71	1434.10	0.00
140	29.90	108.07	0.00	0.00	108.07	907.82	1487.21	0.00

Required Storage (m³):	300.95
Provided Storage (m³):	

Project: 4938 Catchment 222

Modified Rational Method

Internal Area	Controlled Drainage Area (ha) =	0.740
	5-year C =	0.90
	100-year C =	1.00
	Allocated Release Rate (l/s) =	99.92
	Actual Release Rate (l/s) =	99.92
External Area	Area (ha) =	0.00
	C =	0.00
Groundwater	Groundwater pumping rate =	0.00 L/s

100 Year Storm	
Design Storm =	Mississauga
A =	1450
B =	4.9
C =	0.78

	100 Year					Total	Maximum	Required
Time	Intensity	Total	Groundwater	External	Total	Runoff	Release	Storage
(min)	100 year	Runoff	Flows	Runoff	Runoff	Volume	Volume	Volume
	(mm/hr)	(l/s)	(l/s)	(l/s)	(l/s)	(m ³)	(m ³)	(m ³)
15	140.69	289.43	0.00	0.00	289.43	260.48	89.93	170.56
16	135.41	278.57	0.00	0.00	278.57	267.42	95.92	171.50
17	130.56	268.60	0.00	0.00	268.60	273.97	101.92	172.05
18	126.09	259.40	0.00	0.00	259.40	280.15	107.91	172.24
19	121.96	250.90	0.00	0.00	250.90	286.02	113.91	172.11
20	118.12	243.00	0.00	0.00	243.00	291.60	119.90	171.70
21	114.55	235.65	0.00	0.00	235.65	296.92	125.90	171.02
22	111.21	228.79	0.00	0.00	228.79	302.00	131.89	170.11
23	108.09	222.37	0.00	0.00	222.37	306.87	137.89	168.98
24	105.16	216.34	0.00	0.00	216.34	311.53	143.89	167.65
25	102.41	210.68	0.00	0.00	210.68	316.02	149.88	166.14
26	99.82	205.34	0.00	0.00	205.34	320.33	155.88	164.46
27	97.37	200.30	0.00	0.00	200.30	324.49	161.87	162.62
85	43.39	89.27	0.00	0.00	89.27	455.28	509.59	0.00
90	41.60	85.58	0.00	0.00	85.58	462.14	539.57	0.00
100	38.47	79.15	0.00	0.00	79.15	474.89	599.52	0.00
105	37.10	76.32	0.00	0.00	76.32	480.85	629.50	0.00
110	35.84	73.72	0.00	0.00	73.72	486.56	659.47	0.00
115	34.66	71.31	0.00	0.00	71.31	492.06	689.45	0.00
120	33.58	69.08	0.00	0.00	69.08	497.35	719.43	0.00
125	32.57	66.99	0.00	0.00	66.99	502.45	749.40	0.00
130	31.62	65.05	0.00	0.00	65.05	507.38	779.38	0.00
135	30.73	63.23	0.00	0.00	63.23	512.14	809.35	0.00
140	29.90	61.52	0.00	0.00	61.52	516.76	839.33	0.00

Required Storage (m³):	172.24
Provided Storage (m³):	

Project: 4938 Catchment 223

Modified Rational Method

Internal Area	Controlled Drainage Area (ha) =	0.820
	5-year C =	0.90
	100-year C =	1.00
	Allocated Release Rate (l/s) =	110.94
	Actual Release Rate (l/s) =	110.94
External Area	Area (ha) =	0.00
External Area	Area (ha) = C =	0.00 0.00
External Area	` '	
	` '	

100 Year Storm	
Design Storm =	Mississauga
A =	1450
B =	4.9
C =	0.78

	100 Year					Total	Maximum	Required
Time	Intensity	Total	Groundwater	External	Total	Runoff	Release	Storage
(min)	100 year	Runoff	Flows	Runoff	Runoff	Volume	Volume	Volume
	(mm/hr)	(l/s)	(l/s)	(l/s)	(l/s)	(m ³)	(m ³)	(m ³)
15	140.69	320.72	0.00	0.00	320.72	288.64	99.84	188.80
16	135.41	308.68	0.00	0.00	308.68	296.34	106.50	189.83
17	130.56	297.63	0.00	0.00	297.63	303.59	113.16	190.43
18	126.09	287.45	0.00	0.00	287.45	310.44	119.81	190.63
19	121.96	278.02	0.00	0.00	278.02	316.94	126.47	190.47
20	118.12	269.27	0.00	0.00	269.27	323.13	133.13	190.00
21	114.55	261.13	0.00	0.00	261.13	329.02	139.78	189.24
22	111.21	253.52	0.00	0.00	253.52	334.65	146.44	188.21
23	108.09	246.41	0.00	0.00	246.41	340.04	153.10	186.95
24	105.16	239.73	0.00	0.00	239.73	345.21	159.75	185.46
25	102.41	233.45	0.00	0.00	233.45	350.18	166.41	183.77
26	99.82	227.54	0.00	0.00	227.54	354.96	173.06	181.90
27	97.37	221.96	0.00	0.00	221.96	359.57	179.72	179.85
85	43.39	98.92	0.00	0.00	98.92	504.50	565.79	0.00
90	41.60	94.83	0.00	0.00	94.83	512.10	599.07	0.00
100	38.47	87.70	0.00	0.00	87.70	526.23	665.63	0.00
105	37.10	84.58	0.00	0.00	84.58	532.83	698.91	0.00
110	35.84	81.69	0.00	0.00	81.69	539.16	732.20	0.00
115	34.66	79.02	0.00	0.00	79.02	545.25	765.48	0.00
120	33.58	76.54	0.00	0.00	76.54	551.11	798.76	0.00
125	32.57	74.24	0.00	0.00	74.24	556.77	832.04	0.00
130	31.62	72.08	0.00	0.00	72.08	562.23	865.32	0.00
135	30.73	70.06	0.00	0.00	70.06	567.51	898.60	0.00
140	29.90	68.17	0.00	0.00	68.17	572.63	931.89	0.00

Required Storage (m ³):	190.63
Provided Storage (m³):	

Project: 4938 Catchment 224

Modified Rational Method

Internal Area	Controlled Drainage Area (ha) =	0.460
	5-year C =	0.90
	100-year C =	1.00
	Allocated Release Rate (l/s) =	61.36
	Actual Release Rate (l/s) =	61.36
External Area	Area (ha) =	0.00
External Area	Area (ha) = C =	0.00 0.00
External Area	l ' '	
External Area Groundwater	l ' '	

100 Year Storm	
Design Storm =	Mississauga
A =	1450
B =	4.9
C =	0.78

	100 Year					Total	Maximum	Required
Time	Intensity	Total	Groundwater	External	Total	Runoff	Release	Storage
(min)	100 year	Runoff	Flows	Runoff	Runoff	Volume	Volume	Volume
	(mm/hr)	(l/s)	(l/s)	(l/s)	(l/s)	(m ³)	(m ³)	(m ³)
15	140.69	179.91	0.00	0.00	179.91	161.92	55.22	106.70
16	135.41	173.16	0.00	0.00	173.16	166.24	58.90	107.34
17	130.56	166.96	0.00	0.00	166.96	170.30	62.58	107.72
18	126.09	161.25	0.00	0.00	161.25	174.15	66.26	107.89
19	121.96	155.96	0.00	0.00	155.96	177.80	69.95	107.85
20	118.12	151.06	0.00	0.00	151.06	181.27	73.63	107.64
21	114.55	146.49	0.00	0.00	146.49	184.57	77.31	107.26
22	111.21	142.22	0.00	0.00	142.22	187.73	80.99	106.74
23	108.09	138.23	0.00	0.00	138.23	190.76	84.67	106.08
24	105.16	134.48	0.00	0.00	134.48	193.66	88.35	105.30
25	102.41	130.96	0.00	0.00	130.96	196.44	92.03	104.41
26	99.82	127.64	0.00	0.00	127.64	199.13	95.72	103.41
27	97.37	124.51	0.00	0.00	124.51	201.71	99.40	102.31
85	43.39	55.49	0.00	0.00	55.49	283.01	312.92	0.00
90	41.60	53.20	0.00	0.00	53.20	287.27	331.32	0.00
100	38.47	49.20	0.00	0.00	49.20	295.20	368.14	0.00
105	37.10	47.45	0.00	0.00	47.45	298.90	386.54	0.00
110	35.84	45.83	0.00	0.00	45.83	302.46	404.95	0.00
115	34.66	44.33	0.00	0.00	44.33	305.87	423.36	0.00
120	33.58	42.94	0.00	0.00	42.94	309.16	441.76	0.00
125	32.57	41.64	0.00	0.00	41.64	312.33	460.17	0.00
130	31.62	40.44	0.00	0.00	40.44	315.40	478.58	0.00
135	30.73	39.30	0.00	0.00	39.30	318.36	496.98	0.00
140	29.90	38.24	0.00	0.00	38.24	321.23	515.39	0.00

Required Storage (m³):	107.89
Provided Storage (m³):	

0.78

Project: 4938 Catchment 225

Modified Rational Method

Internal Area	Controlled Drainage Area (ha) =	0.380
	5-year C =	0.90
	100-year C =	1.00
	Allocated Release Rate (l/s) =	50.34
	Actual Release Rate (l/s) =	50.34
External Area	Area (ha) =	0.00
	C =	0.00
External Flows		
	100 Year Storm	
	Design Storm =	Mississauga
	A =	1450
	B =	4.9

C =

	100 Year					Total	Maximum	Required
Time	Intensity	Total	Groundwater	External	Total	Runoff	Release	Storage
(min)	100 year	Runoff	Flows	Runoff	Runoff	Volume	Volume	Volume
	(mm/hr)	(l/s)	(l/s)	(l/s)	(l/s)	(m ³)	(m ³)	(m ³)
15	140.69	148.62	0.00	0.00	148.62	133.76	45.30	88.46
16	135.41	143.05	0.00	0.00	143.05	137.33	48.32	89.00
17	130.56	137.93	0.00	0.00	137.93	140.69	51.34	89.34
18	126.09	133.21	0.00	0.00	133.21	143.86	54.36	89.50
19	121.96	128.84	0.00	0.00	128.84	146.88	57.38	89.49
20	118.12	124.78	0.00	0.00	124.78	149.74	60.40	89.34
21	114.55	121.01	0.00	0.00	121.01	152.47	63.43	89.05
22	111.21	117.49	0.00	0.00	117.49	155.08	66.45	88.64
23	108.09	114.19	0.00	0.00	114.19	157.58	69.47	88.12
24	105.16	111.10	0.00	0.00	111.10	159.98	72.49	87.49
25	102.41	108.19	0.00	0.00	108.19	162.28	75.51	86.77
26	99.82	105.45	0.00	0.00	105.45	164.50	78.53	85.97
27	97.37	102.86	0.00	0.00	102.86	166.63	81.55	85.08
85	43.39	45.84	0.00	0.00	45.84	233.79	256.72	0.00
90	41.60	43.95	0.00	0.00	43.95	237.31	271.82	0.00
100	38.47	40.64	0.00	0.00	40.64	243.86	302.02	0.00
105	37.10	39.19	0.00	0.00	39.19	246.92	317.13	0.00
110	35.84	37.86	0.00	0.00	37.86	249.86	332.23	0.00
115	34.66	36.62	0.00	0.00	36.62	252.68	347.33	0.00
120	33.58	35.47	0.00	0.00	35.47	255.39	362.43	0.00
125	32.57	34.40	0.00	0.00	34.40	258.01	377.53	0.00
130	31.62	33.40	0.00	0.00	33.40	260.54	392.63	0.00
135	30.73	32.47	0.00	0.00	32.47	262.99	407.73	0.00
140	29.90	31.59	0.00	0.00	31.59	265.36	422.83	0.00

Required Storage (m³):	89.50
Provided Storage (m³):	

Project: 4938 Catchment 226

Modified Rational Method

Internal Area	Controlled Drainage Area (ha) =	0.610
	5-year C =	0.90
	100-year C =	1.00
	Allocated Release Rate (l/s) =	82.02
	Actual Release Rate (l/s) =	82.02
External Area	Area (ha) =	0.00
	C =	0.00
Groundwater	Groundwater pumping rate =	0.00 L/s

100 Year Storm	
Design Storm =	Mississauga
A =	1450
B =	4.9
C =	0.78

	100 Year					Total	Maximum	Required
Time	Intensity	Total	Groundwater	External	Total	Runoff	Release	Storage
(min)	100 year	Runoff	Flows	Runoff	Runoff	Volume	Volume	Volume
	(mm/hr)	(l/s)	(l/s)	(l/s)	(l/s)	(m ³)	(m ³)	(m ³)
15	140.69	238.58	0.00	0.00	238.58	214.72	73.81	140.91
16	135.41	229.63	0.00	0.00	229.63	220.44	78.73	141.71
17	130.56	221.41	0.00	0.00	221.41	225.84	83.66	142.18
18	126.09	213.83	0.00	0.00	213.83	230.94	88.58	142.36
19	121.96	206.82	0.00	0.00	206.82	235.77	93.50	142.28
20	118.12	200.31	0.00	0.00	200.31	240.37	98.42	141.96
21	114.55	194.25	0.00	0.00	194.25	244.76	103.34	141.42
22	111.21	188.60	0.00	0.00	188.60	248.95	108.26	140.69
23	108.09	183.30	0.00	0.00	183.30	252.96	113.18	139.78
24	105.16	178.34	0.00	0.00	178.34	256.81	118.10	138.70
25	102.41	173.67	0.00	0.00	173.67	260.50	123.02	137.48
26	99.82	169.27	0.00	0.00	169.27	264.06	127.94	136.11
27	97.37	165.11	0.00	0.00	165.11	267.49	132.86	134.62
85	43.39	73.59	0.00	0.00	73.59	375.30	418.28	0.00
90	41.60	70.55	0.00	0.00	70.55	380.95	442.88	0.00
100	38.47	65.24	0.00	0.00	65.24	391.46	492.09	0.00
105	37.10	62.92	0.00	0.00	62.92	396.37	516.70	0.00
110	35.84	60.77	0.00	0.00	60.77	401.09	541.30	0.00
115	34.66	58.78	0.00	0.00	58.78	405.61	565.91	0.00
120	33.58	56.94	0.00	0.00	56.94	409.97	590.51	0.00
125	32.57	55.22	0.00	0.00	55.22	414.18	615.12	0.00
130	31.62	53.62	0.00	0.00	53.62	418.24	639.72	0.00
135	30.73	52.12	0.00	0.00	52.12	422.17	664.32	0.00
140	29.90	50.71	0.00	0.00	50.71	425.98	688.93	0.00

Required Storage (m ³):	142.36
Provided Storage (m³):	

Project: 4938 Catchment 227

Modified Rational Method

Internal Area	Controlled Drainage Area (ha) =	0.320
	5-year C =	0.90
	100-year C =	1.00
	Allocated Release Rate (l/s) =	42.07
	Actual Release Rate (l/s) =	42.07
External Area	Area (ha) =	0.00
	C =	0.00
Groundwater	Groundwater pumping rate =	0.00 L/s

100 Year Storm	
Design Storm =	Mississauga
A =	1450
B =	4.9
C =	0.78

	100 Year					Total	Maximum	Required
Time	Intensity	Total	Groundwater	External	Total	Runoff	Release	Storage
(min)	100 year	Runoff	Flows	Runoff	Runoff	Volume	Volume	Volume
	(mm/hr)	(l/s)	(l/s)	(l/s)	(l/s)	(m ³)	(m ³)	(m ³)
15	140.69	125.16	0.00	0.00	125.16	112.64	37.87	74.78
16	135.41	120.46	0.00	0.00	120.46	115.64	40.39	75.25
17	130.56	116.15	0.00	0.00	116.15	118.47	42.92	75.56
18	126.09	112.17	0.00	0.00	112.17	121.15	45.44	75.71
19	121.96	108.50	0.00	0.00	108.50	123.69	47.96	75.72
20	118.12	105.08	0.00	0.00	105.08	126.10	50.49	75.61
21	114.55	101.90	0.00	0.00	101.90	128.40	53.01	75.39
22	111.21	98.94	0.00	0.00	98.94	130.60	55.54	75.06
23	108.09	96.16	0.00	0.00	96.16	132.70	58.06	74.64
24	105.16	93.55	0.00	0.00	93.55	134.72	60.59	74.13
25	102.41	91.10	0.00	0.00	91.10	136.66	63.11	73.55
26	99.82	88.80	0.00	0.00	88.80	138.52	65.63	72.89
27	97.37	86.62	0.00	0.00	86.62	140.32	68.16	72.16
85	43.39	38.60	0.00	0.00	38.60	196.88	214.58	0.00
90	41.60	37.01	0.00	0.00	37.01	199.84	227.20	0.00
100	38.47	34.23	0.00	0.00	34.23	205.36	252.44	0.00
105	37.10	33.01	0.00	0.00	33.01	207.93	265.06	0.00
110	35.84	31.88	0.00	0.00	31.88	210.41	277.69	0.00
115	34.66	30.84	0.00	0.00	30.84	212.78	290.31	0.00
120	33.58	29.87	0.00	0.00	29.87	215.07	302.93	0.00
125	32.57	28.97	0.00	0.00	28.97	217.27	315.55	0.00
130	31.62	28.13	0.00	0.00	28.13	219.41	328.17	0.00
135	30.73	27.34	0.00	0.00	27.34	221.47	340.80	0.00
140	29.90	26.60	0.00	0.00	26.60	223.46	353.42	0.00

Required Storage (m³):	75.72
Provided Storage (m ³):	

Project: 4938 Catchment 228

Modified Rational Method

Internal Area	Controlled Drainage Area (ha) =	0.350
	5-year C =	0.90
	100-year C =	1.00
	Allocated Release Rate (l/s) =	46.21
	Actual Release Rate (l/s) =	46.21
External Area	Area (ha) =	0.00
External Area	Area (ha) = C =	0.00 0.00
External Area	· · ·	
	· · ·	

100 Year Storm	
Design Storm =	Mississauga
A =	1450
B =	4.9
C =	0.78

	100 Year					Total	Maximum	Required
Time	Intensity	Total	Groundwater	External	Total	Runoff	Release	Storage
(min)	100 year	Runoff	Flows	Runoff	Runoff	Volume	Volume	Volume
	(mm/hr)	(l/s)	(l/s)	(l/s)	(l/s)	(m ³)	(m ³)	(m ³)
15	140.69	136.89	0.00	0.00	136.89	123.20	41.59	81.62
16	135.41	131.75	0.00	0.00	131.75	126.48	44.36	82.13
17	130.56	127.04	0.00	0.00	127.04	129.58	47.13	82.45
18	126.09	122.69	0.00	0.00	122.69	132.51	49.90	82.60
19	121.96	118.67	0.00	0.00	118.67	135.28	52.67	82.61
20	118.12	114.93	0.00	0.00	114.93	137.92	55.45	82.47
21	114.55	111.46	0.00	0.00	111.46	140.44	58.22	82.22
22	111.21	108.21	0.00	0.00	108.21	142.84	60.99	81.85
23	108.09	105.17	0.00	0.00	105.17	145.14	63.76	81.38
24	105.16	102.32	0.00	0.00	102.32	147.35	66.54	80.81
25	102.41	99.65	0.00	0.00	99.65	149.47	69.31	80.16
26	99.82	97.12	0.00	0.00	97.12	151.51	72.08	79.43
27	97.37	94.74	0.00	0.00	94.74	153.48	74.85	78.62
85	43.39	42.22	0.00	0.00	42.22	215.34	235.65	0.00
90	41.60	40.48	0.00	0.00	40.48	218.58	249.51	0.00
100	38.47	37.43	0.00	0.00	37.43	224.61	277.23	0.00
105	37.10	36.10	0.00	0.00	36.10	227.43	291.10	0.00
110	35.84	34.87	0.00	0.00	34.87	230.13	304.96	0.00
115	34.66	33.73	0.00	0.00	33.73	232.73	318.82	0.00
120	33.58	32.67	0.00	0.00	32.67	235.23	332.68	0.00
125	32.57	31.69	0.00	0.00	31.69	237.64	346.54	0.00
130	31.62	30.77	0.00	0.00	30.77	239.98	360.40	0.00
135	30.73	29.90	0.00	0.00	29.90	242.23	374.27	0.00
140	29.90	29.10	0.00	0.00	29.10	244.41	388.13	0.00

Required Storage (m³):	82.61
Provided Storage (m³):	

Rainfall intensity
Rainfall Intensity-City of Mississauga

Design Storm Event	Α	В	С	I (mm/hr)
2-Year	610.0	4.6	0.78	59.9
5-Year	820.0	4.6	0.78	80.5
10-Year	1010.0	4.6	0.78	99.2
25-Year	1160.0	4.6	0.78	113.9
50-Year	1300.0	4.7	0.78	127.1
100-Year	1450.0	4.9	0.780	140.7

I=A/((T+B)^C)

15 minutes

Description	Catchment #	Area (ha)	Runoff coefficent	10-year minor flows (L/s)	100-year flows (L/s)	Volumetric Requirement (m3)*	LID Refrence ID**
Park	300	0.29	0.30	23.97	34.00	-	-
Park	301	0.33	0.30	27.27	38.69	-	-
Park	302	0.34	0.30	28.10	39.86	-	-
Park	303	0.62	0.30	51.24	72.69	-	-
Park	304	0.16	0.30	13.22	18.76	-	-
Park	305	0.39	0.30	32.23	45.72	-	-
Park	306	0.16	0.30	13.22	18.76	-	-
Park	307	0.15	0.30	12.40	17.59	-	-
Park	308	0.26	0.30	21.49	30.48	-	-
Municipal ROW	401	0.20	0.90	49.58	70.34	10.00	
Municipal ROW	402	0.19	0.90	47.10	66.83	9.50	1
Municipal ROW	403	0.18	0.90	44.62	63.31	9.00	
Municipal ROW	404	0.71	0.90	176.02	249.72	35.50	2
Municipal ROW	405	0.82	0.90	203.29	288.41	41.00	3
Municipal ROW	406	0.23	0.90	57.02	80.90	11.50	4
Municipal ROW	407	0.27	0.90	66.94	94.97	13.50	5
Municipal ROW	408	0.29	0.90	71.90	102.00	14.50	6
Municipal ROW	409	0.52	0.90	128.92	182.90	26.00	7
Municipal ROW	410	0.61	0.90	151.23	214.55	30.50	8
Municipal ROW	411	0.18	0.90	44.62	63.31	9.00	9
Municipal ROW	412	0.16	0.90	39.67	56.28	8.00	10
Municipal ROW	413	0.32	0.90	79.33	112.55	16.00	11
Municipal ROW	414	0.44	0.90	109.08	154.76	22.00	12
Municipal ROW	415	0.50	0.90	123.96	175.86	25.00	13
Municipal ROW	416	0.21	0.90	52.06	73.86	10.50	-
Municipal ROW	417	0.21	0.90	52.06	73.86	10.50	-
Municipal ROW	418	0.34	0.90	84.29	119.59	17.00	-
Municipal ROW	419	0.15	0.90	37.19	52.76	7.50	14

^{*} Volumetric Requirement =Area x TIMP x 5mm x 10

^{**}Refer to LID Figure Location and Volume Requirements

Rangeview Estates

West of Lakefront Promenade Cumulative Requirements WATER QUALITY REQUIREMENT CALCULATIONS

Table: Water Quality Storage Requirements Based on Receiving Waters

Table: Trace	or addity otorago reoqu	an onnonte Bacca	011 1 (00011111	g Tratere			
Protection		Storage Volume (m³/ha) for Impervious Level					
Level	SWMP Type	0% 35% 55% 70% 85% 100%					
Level 3	Infiltration/Filtration	20	20	20	20	20	20

Input:

Estimated Imperviousness = 100%
Total ROW Area = 2.10 ha
Level of Protection: 3
SWMP Type : nfiltration/Filtration

Calculation:
Total Filter Volume Required = 20 m³/ha → 42

Calculation are subject to change based on final grading, servicing and full capture points

Given 5mm Retention requirement is higher than quality, quality control is satisfied (Tree Pits are sized for 5mm)

105 m³

Use LID Sizing Greater of 5mm retention or

volume required for 60% TSS removal filtration

Rangeview Estates

East of Lakefront Promenade Treepit Cumulative Requirements WATER QUALITY REQUIREMENT CALCULATIONS

Table: Water Quality Storage Requirements Based on Receiving Waters

Protection	, , ,	Storage Volume (m³/ha) for Impervious Level						
Level	SWMP Type	0% 35% 55% 70% 85% 100%						
Level 3	Infiltration/Filtration	20	20	20	20	20	20	

Input: 5mm Retention Requirement= Estimated Imperviousness = Total ROW Area = 3.49 Level of Protection: 3 SWMP Type : Infiltration/Filtration Calculation: $m^3/ha \rightarrow$ Total Filter Volume Required = 20 70

Calculation are subject to change based on final grading, servicing and full capture points

Given 5mm Retention requirement is higher than quality, quality control is satisfied (Tree Pits are sized for 5mm)

175 m³

Use LID Sizing Greater of 5mm retention or

volume required for 60% TSS removal filtration

5mm Retention Requirement=

Rangeview Estates

Lakefront Promenade Cumulative Treepit Requirements WATER QUALITY REQUIREMENT CALCULATIONS

Table: Water Quality Storage Requirements Based on Receiving Waters

Protection	, ,	Storage Volume (m³/ha) for Impervious Level						
Level	SWMP Type	0% 35% 55% 70% 85% 100%						
Level 1	Infiltration/Filtration	53	25	30	35	40	45	

Input:

Estimated Imperviousness = 100%

Total ROW Area = 0.79 ha

Level of Protection: 1

SWMP Type : Infiltration/Filtration

Calculation:

Total Filter Volume Required = 45 m³/ha → 36

Calculation are subject to change based on final grading, servicing and full capture points

Given 5mm Retention requirement is higher than quality, quality control is satisfied (Tree Pits are sized for 5mm)

40 m³

Use LID Sizing Greater of 5mm retention or

volume required for 80% TSS removal filtration

Full Capture Flow Calulations

Street Name	Capture MH	Trib. Area 10- Year Captured from Upstream CBs (ha)	Trib. Area 100- Year (ha)	R ₁₀	R ₁₀₀	AR ₁₀	AR ₁₀₀	Flow Length (m)	Flow Velocity (m/s)	Time of Conc. (min)	l ₁₀ (mm/hr)	l ₁₀₀ (mm/hr)	Q ₁₀ (L/s)	Q ₁₀₀ (L/s)	Q ₁₀₀ -Q ₁₀ (L/s)	Constant Flow (L/s)
Hydro Road / Rangeview (East)	5	0.34	1.25	0.9	1.00	0.31	1.25	200	1.5	20.0	83.1	118.1	70.6	410.2	339.6	339.6
Street L (East of Ogden)	15	0.16	0.72	0.9	1.00	0.14	0.72	215	1.5	20.4	82.1	116.8	32.8	233.5	200.7	200.7
East Ave / Rangeview (West)	31	1.11	1.20	0.9	1.00	1.00	1.20	370	1.5	24.3	73.4	104.5	203.6	348.2	144.7	144.7
Street L (West of Lakefront)	28	0.61	0.71	0.9	1.00	0.55	0.71	270	1.5	21.8	78.7	112.0	120.1	221.0	100.9	100.9
Ogden	7	0.48	0.97	0.9	1.00	0.43	0.97	210	1.5	20.3	82.4	117.2	98.9	315.8	216.9	216.9
Street L (West of Ogden)	23	0.35	0.51	0.9	1.00	0.32	0.51	260	1.5	21.5	79.3	112.9	69.4	159.9	90.5	90.5
Rangeview East	10	0.38	0.95	0.9	1.00	0.34	0.95	280	1.5	7	149.3	210.1	141.8	554.5	412.7	412.7
Lakeshore East (@ East)	Ex. F3-63	0.63	0.63	0.9	1.00	0.57	0.63	150	1.5	18.8	86.5	123.0	136.3	215.2	78.9	78.9
Lakeshore East (@ Lakefront)	Ex. 1	2.32	2.32	0.9	1.00	2.09	2.32	550	1.5	28.8	65.5	93.4	380.0	601.9	221.9	221.9
Hydro Road	4	0	0	0.9	1.00	0.00	0.00	90	1.5	17.3	91.1	129.4	0.0	0.0	0.0	0.0

IDF Parameters

	10-YR	100-YR
Α	1010	1450
b	4.6	4.9
С	0.78	0.78

I = A / (T.C.+b)^c
T.C. = Time of Conc. (min)
I = Rainfall Intensity (mm/hr)

I = Rainfall Intensity (mm/hr)
*Calculations Assume 10-year Minor Flows are Captured

Run-off Coefficients

 $R100 = R10 \times 1.25$ Max. R = 0.90

Time of Concentration

T.C. (min) = Flow Length (m) x Flow Velocity (m/s)

Flow Velocity Overland = 1.5 m/s

Refer to Drawing GP-1 and GP-2 for manhole IDs and pipe information

	Caladan	
	Caledon	
	Rangeview	
	Hydro Road / Rangeview (East)	
Job: 4938		Oct-22
Input:		
	Design Englisher (ODED) 402.01	

Design Specification (OPSD) 403.01

100-Year Overland Flow = 0.340 m³/s

Catchbasin Type = 2 *

Number of Catchbasins = 2

Allowable Depth of Ponding = 250 mm

Actual Depth of Ponding = 200 mm

Output:

Flow Capacity per Inlet = $0.416 \text{ m}^3/\text{s}^{**}$

Flow Capacity per Inlet with 50% Blockage = 0.208 m³/s

Number of Inlet = 2

Total Flow Capacity with 50% Blockage = $0.416 \text{ m}^3/\text{s}$

Total flow capacity with 50% blockage is greater than the incoming 100-Year overland flow, therefore the inlet structure is sized adequately.

^{*} Catchbasin Type (1 for single, 2 for twin)

^{**} Calculation based on MTO Design Chart 4.19: Inlet Capacity at Road Sag Allowable Depth of Ponding is based on Grading Plans

Caledo	n
Rangevio	ew
Street L (East o	of Ogden)
Job: 4938	Oct-22

Input:

Design Specification (OPSD) 403.01

100-Year Overland Flow = 0.201 m³/s

Catchbasin Type = 2 *

Number of Catchbasins = 2

Allowable Depth of Ponding = 250 mm

Actual Depth of Ponding = 150 mm

Output:

Flow Capacity per Inlet = $0.289 \text{ m}^3/\text{s}^{**}$

Flow Capacity per Inlet with 50% Blockage = $0.144 \text{ m}^3/\text{s}$

Number of Inlet = 2

Total Flow Capacity with 50% Blockage = $0.289 \text{ m}^3/\text{s}$

Total flow capacity with 50% blockage is greater than the incoming 100-Year overland flow, therefore the inlet structure is sized adequately.

^{*} Catchbasin Type (1 for single, 2 for twin)

^{**} Calculation based on MTO Design Chart 4.19: Inlet Capacity at Road Sag Allowable Depth of Ponding is based on Grading Plans

	Caledon	
	Rangeview	
	East Ave / Rangeview (West)	
Job: 4938		Oct-22
Input:		

Design Specification (OPSD) 403.01 100-Year Overland Flow = $0.145 \text{ m}^3/\text{s}$ 2 * Catchbasin Type = Number of Catchbasins = 2 Allowable Depth of Ponding = 250 mm Actual Depth of Ponding = 150 mm

Output:

0.289 m³/s ** Flow Capacity per Inlet =

 $0.144 \text{ m}^3/\text{s}$ Flow Capacity per Inlet with 50% Blockage =

> 2 Number of Inlet =

 $0.289 \text{ m}^3/\text{s}$ Total Flow Capacity with 50% Blockage =

Total flow capacity with 50% blockage is greater than the incoming 100-Year overland flow, therefore the inlet structure is sized adequately.

Catchbasin Type (1 for single, 2 for twin)

^{**} Calculation based on MTO Design Chart 4.19: Inlet Capacity at Road Sag Allowable Depth of Ponding is based on Grading Plans

Caledon	
Rangeview	
Street L (West of Lal	kefront)
Job: 4938	Oct-22

Input:

Design Specification (OPSD) 403.01

100-Year Overland Flow = 0.101 m³/s

Catchbasin Type = 1 *

Number of Catchbasins = 1

Allowable Depth of Ponding = 250 mm

Actual Depth of Ponding = 150 mm

Output:

Flow Capacity per Inlet = $0.204 \text{ m}^3/\text{s}^{**}$

Flow Capacity per Inlet with 50% Blockage = 0.102 m³/s

Number of Inlet = 1

Total Flow Capacity with 50% Blockage = $0.102 \text{ m}^3/\text{s}$

Total flow capacity with 50% blockage is greater than the incoming 100-Year overland flow, therefore the inlet structure is sized adequately.

^{*} Catchbasin Type (1 for single, 2 for twin)

^{**} Calculation based on MTO Design Chart 4.19: Inlet Capacity at Road Sag Allowable Depth of Ponding is based on Grading Plans

	Caledon							
	Rangev	iew						
	Ogde	n						
Job: 4938			Oct-22					
Input:								
	Design Specification (OPSD)	403.01						
	100-Year Overland Flow =	$0.217 \text{ m}^3/\text{s}$						
	Catchbasin Type =	2 *						
	Number of Catchbasins =	2						
	Allowable Depth of Ponding =	250 mm						
	Actual Depth of Ponding =	150 mm						

Output:

Flow Capacity per Inlet = 0.289 m³/s **

Flow Capacity per Inlet with 50% Blockage = 0.144 m³/s

Number of Inlet = 2

Total Flow Capacity with 50% Blockage = $0.289 \text{ m}^3/\text{s}$

Total flow capacity with 50% blockage is greater than the incoming 100-Year overland flow, therefore the inlet structure is sized adequately.

^{*} Catchbasin Type (1 for single, 2 for twin)

^{**} Calculation based on MTO Design Chart 4.19: Inlet Capacity at Road Sag Allowable Depth of Ponding is based on Grading Plans

Caledon	
Rangevie	W
Street L (West o	f Ogden)
Job: 4938	Oct-22

Input:

Design Specification (OPSD) 403.01

100-Year Overland Flow = 0.090 m³/s

Catchbasin Type = 2 *

Number of Catchbasins = 1

Allowable Depth of Ponding = 250 mm

Actual Depth of Ponding = 150 mm

Output:

Flow Capacity per Inlet = $0.289 \text{ m}^3/\text{s}^{**}$

Flow Capacity per Inlet with 50% Blockage = $0.144 \text{ m}^3/\text{s}$

Number of Inlet = 1

Total Flow Capacity with 50% Blockage = $0.144 \text{ m}^3/\text{s}$

Total flow capacity with 50% blockage is greater than the incoming 100-Year overland flow, therefore the inlet structure is sized adequately.

Notes:

* Catchbasin Type (1 for single, 2 for twin)

** Calculation based on MTO Design Chart 4.19: Inlet Capacity at Road Sag Allowable Depth of Ponding is based on Grading Plans

	Caledo	on	
	Rangev	iew	
	Rangeviev	v East	
Job: 4938			Oct-22
Input:			
	Design Specification (OPSD)	403.01	
	100-Year Overland Flow =	$0.413 \text{ m}^3/\text{s}$	
	Catchbasin Type =	2 *	
	Number of Catchbasins =	2	
	Allowable Depth of Ponding =	250 mm	

200 mm

Output:

Flow Capacity per Inlet = $0.416 \text{ m}^3/\text{s}^{**}$

Flow Capacity per Inlet with 50% Blockage = 0.208 m³/s

Actual Depth of Ponding =

Number of Inlet = 2

Total Flow Capacity with 50% Blockage = $0.416 \text{ m}^3/\text{s}$

Total flow capacity with 50% blockage is greater than the incoming 100-Year overland flow, therefore the inlet structure is sized adequately.

^{*} Catchbasin Type (1 for single, 2 for twin)

^{**} Calculation based on MTO Design Chart 4.19: Inlet Capacity at Road Sag Allowable Depth of Ponding is based on Grading Plans

MTO Design Chart 4.19: Inlet Capacity (OPSD 400.01,400.03)

MTO Desi	gn Chart 4	.19: Inlet C	apacity (O	PSD 400.01	,400.03)														
	SINGLE								TWIN										
Donth	400.01	400.03	400.02	400.02B	400.07	400.10	400.11	400.12	403.01	Donath	400.01	400.03	400.02	400.02B	400.07	400.10	400.11	400.12	403.01
Depth	Flow	Flow	Flow	Flow	Flow	Flow	Flow	Flow	Flow	Depth	Flow	Flow	Flow	Flow	Flow	Flow	Flow	Flow	Flow
0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.01	0.002	0.002	0.002	0.001	0.002	0.002	0.002	0.002	0.003	0.01	0.002	0.002	0.002	0.001	0.002	0.002	0.002	0.002	0.003
0.02	0.004	0.004	0.003	0.003	0.003	0.004	0.004	0.005	0.007	0.02	0.004	0.004	0.003	0.003	0.003	0.004	0.004	0.005	0.007
0.03	0.006	0.006	0.005	0.004	0.005	0.006	0.006	0.007	0.010	0.03	0.006	0.006	0.005	0.004	0.005	0.006	0.006	0.007	0.010
0.04	0.008	0.008	0.007	0.005	0.006	0.007	0.008	0.010	0.014	0.04	0.012	0.012	0.010	0.008	0.009	0.011	0.011	0.015	0.020
0.05	0.010	0.010	0.008	0.006	0.008	0.009	0.010	0.012	0.017	0.05	0.018	0.018	0.015	0.011	0.013	0.016	0.017	0.022	0.030
0.06	0.018	0.018	0.015	0.012	0.014	0.017	0.017	0.022	0.031	0.06	0.025	0.025	0.021	0.016	0.019	0.023	0.024	0.031	0.042
0.07	0.025	0.025	0.021	0.016	0.019	0.023	0.024	0.031	0.042	0.07	0.038	0.038	0.032	0.024	0.029	0.035	0.036	0.047	0.065
0.08	0.038	0.038	0.031	0.024	0.028	0.035	0.036	0.046	0.064	0.08	0.057	0.057	0.048	0.037	0.043	0.053	0.054	0.071	0.097
0.09	0.048	0.048	0.040	0.031	0.036	0.044	0.046	0.060	0.082	0.09	0.070	0.070	0.059	0.045	0.053	0.065	0.067	0.087	0.119
0.10	0.060	0.060	0.050	0.038	0.045	0.056	0.057	0.074	0.102	0.10	0.090	0.090	0.075	0.058	0.068	0.083	0.086	0.112	0.153
0.11	0.070	0.070	0.059	0.045	0.053	0.065	0.067	0.087	0.119	0.11	0.110	0.110	0.092	0.070	0.083	0.102	0.105	0.136	0.187
0.12	0.085	0.085	0.071	0.054	0.064	0.079	0.081	0.105	0.144	0.12	0.125	0.125	0.105	0.080	0.094	0.116	0.119	0.155	0.212
0.13	0.095	0.095	0.080	0.061	0.071	0.088	0.091	0.118	0.161	0.13	0.140	0.140	0.117	0.090	0.105	0.130	0.134	0.174	0.238
0.14	0.110	0.110	0.092	0.070	0.083	0.102	0.105	0.136	0.187	0.14	0.157	0.157	0.132	0.101	0.118	0.145	0.150	0.195	0.267
0.15	0.120	0.120	0.101	0.077	0.090	0.111	0.115	0.149	0.204	0.15	0.170	0.170	0.143	0.109	0.128	0.157	0.162	0.211	0.289
0.16	0.123	0.123	0.103	0.079	0.093	0.114	0.117	0.152	0.209	0.16	0.180	0.180	0.151	0.115	0.135	0.167	0.172	0.223	0.306
0.17	0.138	0.138	0.116	0.088	0.104	0.128	0.132	0.171	0.234	0.17	0.198	0.198	0.166	0.127	0.149	0.183	0.189	0.245	0.336
0.18	0.145	0.145	0.122	0.093	0.109	0.134	0.138	0.180	0.246	0.18	0.210	0.210	0.176	0.135	0.158	0.194	0.200	0.260	0.357
0.19	0.150	0.150	0.126	0.096	0.113	0.139	0.143	0.186	0.255	0.19	0.230	0.230	0.193	0.147	0.173	0.213	0.220	0.285	0.391
0.20	0.158	0.158	0.133	0.101	0.119	0.146	0.151	0.196	0.268	0.20	0.245	0.245	0.206	0.157	0.184	0.227	0.234	0.304	0.416
0.21	0.160	0.160	0.134	0.102	0.120	0.148	0.153	0.198	0.272	0.21	0.260	0.260	0.218	0.167	0.196	0.241	0.248	0.322	0.442
0.22	0.165	0.165	0.138	0.106	0.124	0.153	0.158	0.205	0.280	0.22	0.275	0.275	0.231	0.176	0.207	0.255	0.263	0.341	0.467
0.23	0.170	0.170	0.143	0.109	0.128	0.157	0.162	0.211	0.289	0.23	0.290	0.290	0.243	0.186	0.218	0.268	0.277	0.360	0.493
0.24	0.175	0.175	0.147	0.112	0.132	0.162	0.167	0.217	0.297	0.24	0.310	0.310	0.260	0.199	0.233	0.287	0.296	0.384	0.526
0.25	0.180	0.180	0.151	0.115	0.135	0.167	0.172	0.223	0.306	0.25	0.325	0.325	0.273	0.208	0.244	0.301	0.310	0.403	0.552
0.26	0.185	0.185	0.155	0.118	0.139	0.171	0.177	0.229	0.314	0.26	0.340	0.340	0.285	0.218	0.256	0.315	0.325	0.421	0.577
0.27	0.190	0.190	0.159	0.122	0.143	0.176	0.181	0.236	0.323	0.27	0.355	0.355	0.298	0.227	0.267	0.329	0.339	0.440	0.603
0.28	0.195	0.195	0.164	0.125	0.147	0.180	0.186	0.242	0.331	0.28	0.370	0.370	0.310	0.237	0.278	0.342	0.353	0.459	0.628
0.29	0.200	0.200	0.168	0.128	0.150	0.185	0.191	0.248	0.340	0.29	0.390	0.390	0.327	0.250	0.293	0.361	0.372	0.483	0.662
0.30	0.205	0.205	0.172	0.131	0.154	0.190	0.196	0.254	0.348	0.30	0.405	0.405	0.340	0.259	0.305	0.375	0.387	0.502	0.688

LEGEND

OPSD	Туре	Open Area (sqin)	Open Area (sqm)		
400.01	Fishbone w/overflow	242	0.156		
400.03	Fishbone, V grate	203	0.131		
400.02	Fishbone	203	0.131		
400.02B	Beehive	155	0.100		
400.07	Circular	182	0.117		
400.10	Checkerboard	224	0.145		
400.11	Checkerboard w/overflow	231	0.149		
400.12	Birdcage	300	0.194		
403.01	Honeycomb*	411	0.265		

*72% open area per Stepcon, assumed total area = 400.01 type grate

400.03 (Fishbone, V grate)

6 Ronrose Drive Concord, Ontario L4K 4R3 Tel: (905) 738-6100 Fax: (905) 738-6875 E-Mail: general@schaeffers.com

T.O. Line: (416) 213-5590

MEMORANDUM

To: Rangeview Estates Development Land Owners Group

C/O Delta Urban

Mr. Myron Pestaluky, P.Eng.

From: Koryun Shahbikian, P.Eng.

Date: April 30, 2024

Our File: 2020-4938

Subject: Rangeview Development – Servicing Alternatives Memorandum

Introduction

The following memorandum has been completed in support of the proposed Rangeview Development on Lakeshore Rd. East and Lakefront Promenade, in the City of Mississauga, Region of Peel (herein referred to as 'Rangeview Development').

The subject site is approximately 21.94 ha of developable area and is bound by Lakeshore Road to the northwest, Hydro Rd. to the northeast, East Avenue to the southwest, and Lakeview Park and Douglas Kennedy Park to the southeast. A location plan is provided in the enclosures. The majority of the site currently consists of employment land. The master plan development concept proposes future right-of-way (ROW), residential site plans, and park areas.

Currently, the proposed development consists of 33 parcels with 21 participating and 12 non-participating properties. The primary objective of this memorandum is to provide details regarding the available alternatives for water supply servicing, sanitary servicing, and stormwater management for the subject site in accordance with the applicable design criteria and standards. To ensure serviceability for the proposed development, alternative water supply, and sanitary and stormwater servicing were explored such that the serviceability for the Rangeview Development is independent of the development of Street 'L' and Ogden Avenue.

The latest development concept was presented in the report entitled "Master Functional Servicing and Stormwater Management Report, Rangeview Master Plan" (September

2023) by Schaeffers Consulting Engineers. The Master Functional Servicing Plan (MFSR) dated September 2023 presented servicing for interim and ultimate scenarios. Based on the Rangeview Development MFSR dated September 2023, both the interim and ultimate servicing (i.e. water supply, sanitary and stormwater management) conditions were dependent on the development of Street 'L', and Ogden Avenue. Given, that there are a few nonparticipating landowners who disrupt the ultimate construction of Street 'L', there was concern from the municipality on how the project will be developed. The proposed servicing for the development was revised to use a spine servicing approach through the existing ROW and eliminates the need for blocks to be serviced from the new proposed municipal road Street 'L' and Ogden Avenue. It is proposed to incorporate future infrastructure in the ROW of Rangeview Road, East Avenue, Hydro Road, Lakefront Promenade, and Lakeshore Road East to service all the blocks in the Rangeview Development.

Background Information (Sept. 2023 Submission – Servicing Concept)

Based on the Rangeview Development MFSR dated September 2023, under the interim scenario, water supply, sanitary and storm infrastructure cannot be built along the entirety of Street 'L' due to the presence of non-participating landowners within the Rangeview site. As such, a partial buildout of Street 'L' was proposed with two cul-du sacs based on the non-participating landowners. Refer to the Drawings enclosed for the September 2023 Master Plan concept.

Two (2) alternatives were considered for water supply servicing under interim conditions. Option 1 involves servicing the parcels fronting Rangeview Road via the existing 250 mm diameter and 300 mm diameter water mains along Rangeview Road. Parcels fronting Lakeshore Road East were to be serviced directly from the existing 600 mm diameter water main along Lakeshore Road East. Option 2 involves servicing the parcels fronting Lakeshore Road East by proposed services on Street 'L' and Ogden Avenue. Temporary easements would be required to loop these water mains on Street 'L' back to Rangeview Road to limit dead-ends in the system. Parcels fronting Rangeview Road would be serviced via the existing 250 mm diameter and 300 mm diameter water mains along Rangeview Road.

For sanitary servicing in the interim scenario, the parcels fronting Rangeview Road were proposed to be serviced by Rangeview Road and parcels fronting Lakeshore Road East would be serviced by Street 'L' and Ogden Avenue. For the ultimate full buildout sanitary servicing, all future sanitary flows from the site were proposed to discharge only to the

proposed internal sewers located within the subject site, including proposed sanitary sewers on Street 'L' and Ogden Avenue.

Lastly, the stormwater management scheme for the subject site is proposed to ultimately discharge in Lake Ontario as per existing conditions. Within the interim conditions, temporary cul-du-sacs would be constructed, which requires a temporary easement for storm servicing through the proposed park block. This temporary easement would connect to the storm sewers on Rangeview Road. The proposed SWM scheme complies with the Lakeview servicing proposed to the south of the subject site. Quantity control, quality control, and volumetric controls are proposed at the site plan level. Quality control at the site plan level is proposed to be achieved via Jellyfish filters or equivalent measures. For the municipal right of way, quality control is proposed via a treatment train approach with tree pits in conjunction with OGS units to satisfy the required 80% TSS removal. Refer to the General plan enclosed for the September 2023 MFSR drawings.

Alternative Servicing Concept

There was some concern from the municipality on how the Master Plan would be developed based on the large number of parcels and non-participating lands, interrupting the construction of Street 'L'. To address this concern, an alternate servicing concept was devised. The servicing for the development was revised to rely on the proposed spine services within the existing right of way (ROW) and eliminates the need for blocks to be serviced from the new proposed municipal road Street 'L' and Ogden Avenue.

It is proposed to incorporate future municipal infrastructures (Water, sanitary, and storm) in the existing ROW of Rangeview Road, East Avenue, Hydro Road, Lakefront Promenade, and Lakeshore Road East to service all the blocks in the Rangeview Development. In order for the Rangeview Development to be independent of requiring Street 'L' and Ogden Avenue for servicing, it is proposed that the lots fronting Lakeshore Road East be serviced from Lakeshore Road. The other blocks are proposed to be serviced via the proposed infrastructure in the existing ROW (i.e.: Rangeview Road, East Avenue, and Hydro Road). Overall, the ROW for Lakefront Promenade, and Hydro Road is wide enough to incorporate the proposed infrastructure required to service the proposed development. Further details are presented in the sections below and the alternative servicing concept is illustrated in the drawings presented in the appendices.

Lakeshore Road East

As part of the City of Mississauga road improvements, Lakeshore Road East is planned to be widened. As mentioned above, it is proposed for the lots fronting Lakeshore Road East to be serviced from Lakeshore Road. Currently, the existing parcels fronting Lakeshore Road East are serviced by the existing 600mm diameter water main along Lakeshore Road East in the south boulevard. The proposed servicing solution is to mimic the existing water supply servicing, in which parcels fronting Lakeshore Road East are serviced directly from the existing 600 mm diameter water main. If the Region does not prefer connecting to the existing 600mm diameter water main, a new local water main can be installed to service these parcels. The connection to the existing water main north of the ROW on Lakeshore Road East was investigated. However, this option will require long service connections crossing the Lakeshore Road ROW under the BRT configuration. Therefore, the latter option is deemed not preferable.

For sanitary servicing, the blocks fronting Lakeshore are proposed to collect sanitary flows via the proposed sanitary sewer. During the meeting with the City of Mississauga and the Region, it was proposed to run a sanitary sewer along Lakeshore Road East to collect the sanitary flows and discharge flows to the trunk sewers running west of Lakeshore Road East. However, there is a 2.4m water main that crosses Lakefront Promenade, and to run sanitary sewers across the length of Lakeshore Road East, it would require the sanitary sewers to be deepened. To avoid deep sanitary sewers along Lakeshore Road East, it was proposed that blocks East of Ogden Avenue will connect to the existing sewer and drain towards the east on Lakeshore Road. Based on a memorandum entitled "Downstream Sanitary Sewer Analysis, Rangeview Road Proposed Development Lands" by SCE, dated September 2023, there was residual capacity for the sanitary trunk sewer going east along Lakeshore Road East (defined as SAN-3 as part of the memorandum). According to the Downstream Sanitary Sewer Analysis, the sanitary trunk sewer running east of Lakeshore Road East has a residual capacity to accommodate 2300 people (under 80% of flow ratio). The proposed population to discharge to the east trunk sewer is 1358 people. It is to be noted, that based on the residual capacity of the sanitary trunk East of Lakeshore Road East, only blocks east of the proposed Ogden Avenue are proposed to discharge to the sanitary trunk. Therefore, sanitary constraints are not expected. Refer to the memorandum enclosed for further details.

Since there is a 2.4m diameter water main at the intersection of Lakefront Promenade and Lakeshore Road East, it is proposed that the block fronting Lakeshore Road East between Ogdeb Avenue and Lakefront Promenade will connect to a new sanitary sewer on Lakeshore Road East draining to the intersection of Lakefront Promenade. Ultimately, the

flow will drain towards Rangeview via a new sewer on the Lakefront Promenade draining towards the south.

The blocks fronting Lakeshore Road East, west of the Lakefront Promenade will connect to the new sewer on Lakeshore Road East draining towards the west where it will discharge to the newly proposed regional trunk system.

The concept is presented in the enclosed drawings.

Stormwater management for the blocks fronting Lakeshore Road East is proposed to discharge runoff to existing storm sewers to the allowable release rates of the area draining to the roadway. Quality control for the blocks is proposed to satisfy 80% TSS removal. As stipulated in the City of Mississauga stormwater management guidelines 5mm retention is proposed for the blocks as part of the volumetric requirements.

East Avenue

In East Avenue, there are existing 1500mm CPP diameter watermain, 300mm PVC diameter watermain, and 900mm CPP diameter watermain. Additionally, on East Avenue, there is a future 900mm diameter CPP water main planned by the Region. To service the overall Rangeview Development, there are proposed sanitary and storm sewers on East Avenue. Overall, there is an array of existing, proposed, and future servicing planned for the roadway. Currently, it is proposed to install new sewers, and water mains within the 20.11m ROW. In the future, the East Avenue ROW will be widened when the widening blocks are conveyed. Refer to the road cross-section enclosed for East Avenue ROW details.

Rangeview Road

Rangeview Road runs east-west of the Rangeview Development. To service the Rangeview Developments, currently, spine services including (local water mains, sanitary sewers, and storm sewers) are proposed within the existing ROW limit. Furthermore, there is a future 600mm diameter CPP water main planned by the Region. Currently, it is proposed to install infrastructure within the 20.11m ROW. This spine servicing solution, which relies on the existing ROW will provide flexibility for the development of each parcel. Each parcel will convey the widening blocks along Rangeview Road at the development application stage to create a 22.24m ROW.

Refer to the road cross-section enclosed for Rangeview Road ROW details.

Closing Remarks

This memorandum illustrates the alternative servicing strategy for the Rangeview study area. The alternative municipal servicing strategy has been proposed to satisfy the City of Mississauga and Region standards. The proposed alternative servicing strategy provides flexibility for the development and eliminates the need for spine servicing on the proposed municipal ROW on Street 'L' and Ogden Avenue. The proposed spine servicing solution will provide the required services to all parcels independent of conveying future ROWs and widening blocks.

The conveyance of ROW blocks and future ROWs could be secured properly by legal instruments that can be discussed and finalized between the LOG and the City. The Trustee/Landowner Group will enter into an agreement with the City (the "Spine Services Agreement" or "SSA") to coordinate and provide for the timely delivery of the land required for the new spine roads (Street L, Ogden Avenue). This SSA (subject to discussions) will provide certainty that the lands required for the new spine roads will be conveyed to the City, which conveyances will be coordinated among the participating landowners by the Trustee. The lands can be conveyed directly to the City as part of individual owner's site plan applications. Alternatively, should the City prefer, these lands can be held in escrow by the Trustee as part of individual owner's site plan applications. The Trustee will hold these lands in escrow until they can be collectively delivered and conveyed to the City for the construction of Street L and Ogden Avenue. The obligations under the SSA would be addressed in the cost-sharing arrangements among the landowners, ensuring that the value of the conveyed lands is shared among all benefitting, participating owners.

We trust that you will find this material satisfactory, and we are looking forward to receiving your comments soon. Should you have any questions or comments, please contact the undersigned.

Respectfully Submitted,

SCHAEFFER & ASSOCIATES LTD.

Ishraque Chandan, EIT. Water Resources Analyst

Koryun Shahbikian, P.Eng.
Partner

ENCLOSURES

LOCATION PLAN

APRIL 2024

SCALE: N.T.S.

2020-4938

MASTER FUNCTIONAL SERVICING AND STORMWATER MANAGEMENT REPORT, RANGEVIEW MASTER PLAN SEPTEMBER 2023

DRAWINGS

SCHAEFFERS
CONSULTING ENGINEERS

SCHAEFFER & ASSOCIATES LTD.

Ontario L4K 4R3
Tel: (905) 738-6100
Fax: (905) 738-6875
E-mail:
design@schaeffers.com

6 Ronrose Drive, Concord,

PUBLIC RIGHT-OF-WAY SECTIONS

DRAWN BY: M.P.	DESIGNED BY:	н.н.т.	CHECKED BY:	H.H.T.
SCALE: AS S	HOWN	DATE:	SEPTEMBER	2023
PROJECT No. 20	022-4938	DRAWING	No.	D-2

ALTERNATIVE SERVICING CONCEPT DRAWINGS

PUBLIC RIGHT-OF-WAY SECTIONS (MODIFIED)

DRAWN BY: M.P.	DESIGNED BY:	H.H.T.	CHECKED BY	HJHJT.
SCALE: AS S	HOWN	DATE:	SEPTEMBER	2023
PROJECT No. 2	022-4938	DRAWING	No.	D-3

ALTERNATIVE SERVICING CONCEPT
O I I O IO

Equivalent Population Calculations

Project Title: 4938 - Rangeview Last Edited: 2024-04-26 Region of Peel Municipality

50

Project: 4938 Rangeview Mississauga 2024-04-26

Design Criteria

Commercial

Unit Type Population Density Rowhouses/Other Multiples 3.5 ppu Per correspondence with Region of Peel (Oct 3, 2022) 2.7 ppu Per correspondence with Region of Peel (Oct 3, 2022) Apartment

Population Density Land Use Single Family (>10m frontage) ppha Per Region of Peel Sanitary Sewer Design Criteria (July 2009) Single Family (<10m frontage) ppha Per Region of Peel Sanitary Sewer Design Criteria (July 2009) ppha Per Region of Peel Sanitary Sewer Design Criteria (July 2009) Semi-detached 70 ppha Per Region of Peel Sanitary Sewer Design Criteria (July 2009) Row dwellings 175 ppha Per Region of Peel Sanitary Sewer Design Criteria (July 2009) 475 **Apartments**

ppha Per Region of Peel Sanitary Sewer Design Criteria (July 2009)

Commercial	ppila Pel Region di Peel Santary Sewer Design Criteria (July 2005)									Low-rise Unit			Mid-rise Units	Tall Building Units	Commercial					Equivalen	t Population			
								Townhouses	Back-to-Back Townhouses	k Stacked s Townhouses	Stacked Back to-Back Townhouses	- Apartments	Mid-rise Buildings	Tall Buildings			L	Init Type Met	hod			La	and Use Method	
Parcel	Landowners	Parcel Area (Gross)	Net Deve	elopable		Parcel Area (Apartments)			(Up to 4-Store	ys)		(5- to 8-Storeys)	(9- to 15-Storeys)	Floor Area	Townhouses	s Apartment	s Commercia	l Institutional	Total	Townhouses A	partments	Commercial Institut	ional Total
		sq.m.	ha	sq.m.	ha	ha	ha	units	units	units	units	units	units	units	sq. m.	persons	persons	persons	persons	persons	persons	persons	persons perso	ons persons
1	ELGROUP HOLDINGS INC./ELIAS BROS. CONSTRUCTION LIMITED (Elias Brothers Construction)	6,198.99	0.62	5,211.39	0.52		0.52	0	0	0	0	0	98	160	363.67		697	2		699		248	2	250
2	DORSAY (LAKESHORE) INC./DORSAY (LAKEFRONT PROMENADE) INC./DORSAY (RANGEVIEW) INC.	8,451.90	0.85	7,632.77	0.76	0.38	0.38	0	0	0	52	0	162	0	594.63	182	438	3		623	67	182	3	252
3	1127792 ONTARIO LIMITED (Dino Collini)	4,339.04	0.43	3,868.37	0.39		0.39	0	0	0	0	0	148	0	550.55		400	3		403		184	3	187
4	896 Lakeshore Road East	4,338.68	0.43	3,868.33	0.39		0.39	0	0	0	0	0	151	0	562.90		408	3		411		184	3	187
5	910 - 920 Lakeshore Road East	8,686.81	0.87	4,755.51	0.48		0.48	0	0	0	0	0	0	204	1,731.60		551	9		560		226	9	235
6	946 Lakeshore Road East	7,040.36	0.70	5,723.87	0.57		0.57	0	0	0	0	0	83	144	1,207.11		613	7		620		272	7	279
7	DORSAY (LAKESHORE) INC./DORSAY (LAKEFRONT PROMENADE) INC./DORSAY (RANGEVIEW) INC.	10,735.57	1.07	9,334.79	0.93	0.65	0.28	0	0	0	80	0	162	0	578.31	280	438	3		721	115	134	3	252
8	447111 ONTARIO LIMITED (Norstar)	7,833.20	0.78	7,133.15	0.71	0.21	0.50	0	0	0	36	0	136	0	487.48	126	368	3		497	38	238	3	279
9	RANGEVIEW 1035 HOLDING INC./RANGEVIEW 1045 HOLDING INC./1207238 ONTARIO INC. (Oasis Banquet Hall)	8,590.92	0.86	2,089.15	0.21		0.21	0	0	0	0	0	0	172	443.49		465	3		468		100	3	103
10	ILSCO OF CANADA LIMITED (Thomas Quinn)	6,980.11	0.70	5,820.65	0.58		0.58	0	0	0	0	0	85	170	750.14		689	4		693		277	4	281
11	1076 Lakeshore Road East	13,573.97	1.36	8,378.98	0.84	0.34	0.50	9	0	0	0	0	0	230	2,277.43	32	621	12		665	59	239	12	310
12	ELGROUP HOLDINGS INC./ELIAS BROS. CONSTRUCTION LIMITED (Elias Brothers Construction)	15,357.62	1.54	8,586.32	0.86	0.43	0.43	0	0	40	0	0	199	0	0.00	140	538			678	76	204	1	280
13	DORSAY (LAKESHORE) INC./DORSAY (LAKEFRONT PROMENADE) INC./DORSAY (RANGEVIEW) INC.	4,189.30	0.42	2,036.86	0.20	0.20		0	22	0	0	0	0	0	0.00	77				77	36		1	36
14	895 Rangeview Road	4,465.52	0.45	3,975.17	0.40	0.40		0	0	0	48	0	0	0	0.00	168				168	70		1	70
15	DORSAY (LAKESHORE) INC./DORSAY (LAKEFRONT PROMENADE) INC./DORSAY (RANGEVIEW) INC.	5,653.29	0.57	3,747.11	0.37		0.37	0	0	0	0	0	0	199	0.00		538			538		178	1	178
16	DORSAY (LAKESHORE) INC./DORSAY (LAKEFRONT PROMENADE) INC./DORSAY (RANGEVIEW) INC.	7,259.45	0.73	7,109.98	0.71	0.28	0.43	0	0	0	56	0	0	253	0.00	196	684			880	50	203	1	253
17	DORSAY (LAKESHORE) INC./DORSAY (LAKEFRONT PROMENADE) INC./DORSAY (RANGEVIEW) INC.	3,627.10	0.36	775.00	0.08	0.08		0	0	0	0	0	0	0	0.00								1	
18	2547046 ONTARIO INC./2545488 ONTARIO INC. (Vittorio Torchia)	3,627.76	0.36	1,856.79	0.19	0.19		0	18	0	0	0	0	0	0.00	63				63	33		1	33
19	DORSAY (LAKESHORE) INC./DORSAY (LAKEFRONT PROMENADE) INC./DORSAY (RANGEVIEW) INC.	5,075.55	0.51	3,554.25	0.36		0.36	0	0	0	0	0	0	190	0.00		513			513		169	1	169
20	RANGEVIEW 1035 HOLDING INC./RANGEVIEW 1045 HOLDING INC./1207238 ONTARIO INC. (Oasis Banquet Hall)	4 <i>,</i> 587.89	0.46	1,612.07	0.16		0.16	0	0	0	0	0	0	182	0.00		492			492		77	1	77
21	RANGEVIEW 1035 HOLDING INC./RANGEVIEW 1045 HOLDING INC./1207238 ONTARIO INC. (Oasis Banquet Hall)	4,829.66	0.48	4,205.37	0.42		0.42	0	0	0	0	54	0	0	0.00		146			146		200	1	200
22	2547046 ONTARIO INC./2545488 ONTARIO INC. (Vittorio Torchia)	6,054.50	0.61	5,655.26	0.57	0.28	0.28	0	0	20	0	0	0	177	0.00	70	478			548	50	135	1	185
23	850 Rangeview Road	10,354.01	1.04	9,964.00	1.00	1.00		24	0	28	0	0	0	0	0.00	182				182	175		1	175
24	WHITEROCK 880 RANGEVIEW INC. (Dream)	13,146.95	1.31	12,996.05	1.30	0.71	0.58	9	0	36	0	0	240	0	0.00	158	648			806	126	278	1	404
25	890 Rangeview Road (Canada Post)	8,627.44	0.86	7,383.00	0.74		0.15	0	0	0	0	47	0	168	0.00		581		450	1031		71	450	ر 521
26	ELGROUP HOLDINGS INC./ELIAS BROS. CONSTRUCTION LIMITED (Elias Brothers Construction)	7,258.96	0.73	7,128.44	0.71	0.14	0.57	0	20	0	0	0	83	186	0.00	70	727			797	25	271	1	296
27	ELGROUP HOLDINGS INC./ELIAS BROS. CONSTRUCTION LIMITED (Elias Brothers Construction)	3,621.46	0.36	2,087.67	0.21	0.06	0.15	0	0	0	0	0	0	0	0.00								1	
28	ELGROUP HOLDINGS INC./ELIAS BROS. CONSTRUCTION LIMITED (Elias Brothers Construction)	3,625.21	0.36	3,573.99	0.36	0.11	0.25	0	16	0	0	0	86	0	0.00	56	233			289	19	119	1	138
29	1008 Rangeview Road	3,621.63	0.36	3,569.56	0.36		0.36	0	0	0	0	0	0	177	0.00		478			478		170	1	170
30	1024 Rangeview Road	3,623.21	0.36	276.43	0.03			0	0	0	0	0	0	0	0.00								1	
31	2120412 ONTARIO INC. (Xtreme Tire)	7,248.77	0.72	6,069.04	0.61		0.61	0	0	0	0	58	0	180	0.00		643			643		289	1	289
32	1062 Rangeview Road	3,273.04	0.33	3,232.41	0.32	0.32		4	0	12	0	0	0	0	0.00	56				56	57		1	57
33	KOTYCK INVESTMENTS LTD. (Laurie McPherson)	3,491.56	0.35	3,437.21	0.34		0.34	0	0	0	0	0	0	186	0.00		503			503		164		164
	TOTALS	219,389.43	21.94	166,648.93	16.66	5.79	10.25	46	76	136	272	159	1,633	2,978	9,547	1,856	12,890	52		15,248	996	4,812	52 450	0 6,310

LEGEND

Non-participating Landowners

Notes:

Parcel area for breakdown between townhouses and apartments was based on spatial estimates Parcel 25 was assumed to include a senior public school with 900 students (minimum per Region's standards) September 21, 2023

Our File: 2020-4938

Rangeview Landowners Group Inc. C/O Delta Urban Inc. 8800 Dufferin Street, Suite 104 Vaughan, ON L4K 0C5

6 Ronrose Drive, Vaughan, Ontario L4K 4R3
Tel: (905) 738-6100 Fax: (905) 738-6875
Tor. Line: (416) 213-5590 E-mail:
general@schaeffers.com

RE: Downstream Sanitary Sewer Analysis
Rangeview Road Proposed Development Lands
City of Mississauga

1. Introduction

Schaeffer and Associates Ltd. (SCE) has been retained to analyze sanitary servicing options for the Rangeview Road proposed development lands (herein referred to as "the site") in the City of Mississauga. The proposed lands are bound by Lakeshore Road East to the north, Hydro Road to the east, Waterfront Trail to the south and East Avenue to the west. Lakefront Promenade runs in the north-south direction in the middle of the proposed lands. The majority of the lands currently consist of employment land uses and are proposed to be developed into mixed-use high-rise buildings.

This memo is written to present the residual capacity of the existing sewers and the population and units that could be developed within the residual capacity during the interim condition.

2. Existing Condition

The existing sewer network is presented in **Figure 1**. There are three existing sanitary systems that could be utilized to service the site listed as follows:

- Sewers routing west on Rangeview Road, south on East Avenue, west on Easement and Montbeck Crescent, south on Goodwin Road and further discharging to Beach Street Pumping Station (SAN-1)
- Sewers routing west on Lakeshore Road East, south on Montbeck Crescent, west on Byngmount Avenue and south connecting the aforementioned sewer on Goodwin Road (SAN-2)
- Sewers routing east on Lakeshore Road East and further connecting to the Lakeview Pumping Station (SAN-3)

It is to be noted that the last sewer on Aviation Road connecting to the Beach Street Pumping Station was identified to be surcharged under pre-development condition in the previous submitted sanitary analysis. This leg is required to be upgraded from 300mm to 450mm in order to utilize the existing sewers connecting to the Beach Street Pumping Station (SAN-1 & SAN-2) as servicing the site during interim condition.

3. Scenarios

As previously discussed, the last sewer is required to be upgraded in order to service the site. The following scenarios consider the upgrade of the last sewer has already been implemented:

Scenario A

Existing sewers are analysed without any upgrade except the last sewer on Aviation Road.

Scenario B

Existing sewers are analysed based on Scenario A but with an additional upgrade on one sewer on East Avenue (83.5m) from 250mm to 300mm diameter. This sewer was identified as the most critical sewer of the existing sanitary system along Rangeview Road and Montbeck Crescent (SAN-1) under Scenario A. As a result, it is proposed to upgrade this sewer to provide more capacity for the existing sewers. However, upgrades on other sanitary systems (SAN-2 & SAN-3) are not suggested since the downstream sewer would need to be upsized as the upstream if the sewer upstream is proposed to be upgraded. It might not be economically reasonable to upgrade few downstream sewers for an interim servicing solution.

The sanitary tributary areas and sanitary sewer network of Scenario A and B are shown in **Figures 2 and 3** respectively.

4. Result

Scenario A

The following table summarises the residual capacity of the most critical sewer in different existing systems and the allowable population and units that could be developed under Scenario A. The allowable population is presented with reaching 80% and 90% of the pipe capacity since the Region may accept 90% utilization of the sewers as an interim solution. It is to be noted that, in the estimation of the equivalent unit, 2.7 persons per unit are assumed as the design criteria of the apartment since the unit breakdown of the site during interim condition has not been decided.

Table 1 - Result of Scenario A

Existing	Residual	80% of Pipe	e Capacity	90% of Pipe Capacity					
Sanitary System	Capacity (L/s)	Allowable Population	Equivalent Unit	Allowable Population	Equivalent Unit				
SAN-1	16.93	790	292	1000	370				
SAN-2	14.59	510	188	850	314				
SAN-3	37.78	2300	851	2700	1000				

Scenario B

The following table summarises the residual capacity of the most critical sewer in different existing systems and the allowable population and units that could be developed under Scenario

B. Similar to Scenario A, the population is presented with reaching 80% and 90% of the pipe capacity and 2.7 persons per unit are assumed in the estimation of the equivalent unit.

Table 2 - Result of Scenario B

Existing	Residual	80% of Pipe	e Capacity	90% of Pipe Capacity					
Sanitary System	Capacity (L/s)	Allowable Population	Equivalent Unit	Allowable Population	Equivalent Unit				
SAN-1	22.84	1000	370	1450	537				
SAN-2	14.59	510	188	850	314				
SAN-3	37.78	2300	851	2700	1000				

The detail of the capacity analysis for Scenario A and B is provided in Attachment A.

5. Flow Monitoring

The above mentioned calculation is based on the theoretical calculation using design guideline. Flow monitoring can be utilized to estimate the actual flow and assess the residual capacity in the system. To conduct flow monitoring, the Region's acceptance and permit is required. Having said that considering the edge of sewers in this neighbourhood and being at the vicinity of Lake Ontario, there might be a chance that monitoring exercise observes higher I/I from groundwater. Thus, the monitoring exercise might weaken our argument with respect to using residual capacity. Should the landowners willing to conduct monitoring, we can approach the Region and start the conversation.

6. Conclusion

This memo has been prepared to present the residual capacity of the existing sewers and the population and units that could be developed within the residual capacity during the interim condition.

Three existing sewer systems were identified that could accommodate the site. It is to be noted that the last sewer on Aviation Road is required to be upgraded in order to utilize the existing sewers connecting to the Beach Street Pumping Station (SAN-2 & SAN-3) as servicing the site during interim condition. Two scenarios with different upgrading options and the residual capacity in different scenarios are presented. Furthermore, allowable population and unit are estimated based on the residual capacity in different scenarios.

We trust that you will find the contents of this memo satisfactory. Should you have any questions or comments, please do not hesitate to contact the undersigned.

Respectfully,

SCHAEFFER & ASSOCIATES LTD.

Paul Wong, E.I.T

Water Resources Analyst

Koryun Shahbikian, M.Eng., P.Eng., PMP

Partner

Summary of Population & Units for Rangeview Development

Scenario A:

Location	Minimum Available Capacity (I/s)	Current populatoin	Population	Equivalent Unit	Equivalent Area (ha)	Total Peak Flow (L/s)	
D/S Rangeview Rd (to Montbeck Cres & Goodwin Rd)*	16.93	912	790	292	1.10	10.29	80%
D/S Lakeshore Rd E (Western System to Montbeck Cres & Goodwin Rd)*	14.59	1513	510	188	0.71	6.54	80%
D/S of Montbeck Cres & Goodwin Rd to Beach St PS							
D/S Lakeshore Rd E (Eastern System to Lakeview PS)**	37.78	273	2300	851	3.19	28.84	80%

Population	Equivalent Unit	
1000	370	90%
850	314	90%
2700	1000	90%

Ex.Flow at critical location	Full pipe Capacity at critical location	
15.8	32.73	
24.86	39.45	
4.94	42.42	

Scenario B:

				No Surcharg	e Conditions		
Location	Minimum Available Capacity (I/s)	Current populatoin	Population	Equivalent Unit	Equivalent Area (ha)	Total Peak Flow (L/s)	
D/S Rangeview Rd (to Montbeck Cres & Goodwin Rd)*	22.84	1812	1000	370	1.39	12.43	80%
D/S Lakeshore Rd E (Western System to Montbeck Cres & Goodwin Rd)**	14.59	1513	510	188	0.71	6.54	80%
D/S of Montbeck Cres & Goodwin Rd to Beach St PS							
D/S Lakeshore Rd E (Eastern System to Lakeview PS)**	37.78	273	2300	851	3.19	28.84	80%

Population	Equivalent Unit	
1450	537	90%
850	314	90%
2700	1000	90%

Ex.Flow at critical location	Full pipe Capacity at critical location	
29.19	52.04	
24.86	39.45	
·		
4.94	42.42	

^{*} last pipe to PS should be upgraded

^{**}Equivalent Area for Lakeshore Eastern System is greater than Proposed Development Area

^{***}The surcharge conditions downstream of Montbeck Cres & Goodwin Rd are due to the contraints from the upstream sewers in the Rangeview and Lakeshore Rd E Western locations. In the event these two systems do not have surcharge conditions, there will be no surcharge conditions downstream of Montbeck Cres & Goodwin Rd

^{*} last pipe to PS as well as 83.5m of 250mm should be upgraded

^{**} last pipe to PS should be upgraded

^{***}Equivalent Area for Lakeshore Eastern System is greater than Proposed Development Area

^{****}The surcharge conditions downstream of Montbeck Cres & Goodwin Rd are due to the contraints from the upstream sewers in the Rangeview and Lakeshore Rd E Western locations. In the event these two systems do not have surcharge conditions, there will be no surcharge conditions downstream of Montbeck Cres & Goodwin Rd

SCHAEFFERS Consulting Engineers SCHAEFFER & ASSOCIATES LTD. 6 Ronrose Drive, Concord, Ontario L4K 4R3 Tel: (905) 738-6100 Fax: (905) 738-6875 design@schaeffers.com

STORM SEWER DESIGN SHEET

CITY OF MISSISSAGUA

4938 - RANGEWVIEW ESTATES PRECINCT
(10-YR. RAINFALL INTENSITY)

Designed By: H.H.T. Checked By: H.H.T.
Date: 02-Jul-24 File No.: 2020-4938

								, -				· /					F:\4938\4938-DESIGN-SHEETS\[4938-STM Design.xls]10YR			
LOCATION				CONTR	RIBUTING AF	REA			FLOW						SEWER D	ESIGN				(22)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
STREET	FROM	2	AREA "A" (ha.)	RATIONAL METHOD RUNOFF FACTOR "R"	SECTION AR (ha.)	ACCUMLATED AR (ha.)	RAINFALL INTENSITY "I" (mm/hr)	FLOW Q=RAIN =(7)(8)x0.0028 (L/s)	CONSTANT FLOW (L/s)	ACCUM. CONST. FLOW (L/s)	ACCUMULATED FLOW (L/s)	LENGTH (m)	SLOPE %	DIAMETER (mm)	FULL FLOW CAPACITY (L/s)	FULL FLOW VELOCITY (m/s)	TIME OF FLOW TO SECTION (min)	TIME OF FLOW IN PIPE	TIME OF CONCENTRATION (min)	COMMENTS
LIVERO BOAR	4		0.04	0.00	0.0400	0.0400	00.0	50.5	0.00	0.0	50.5	04.0	0.00	075	00.0	0.07	45.00	4.40	40.40	00.00/ 5. !!
HYDRO ROAD	2	2	0.24	0.90	0.2160	0.2160	99.2	59.5 78.2	0.00	0.0	59.5	61.6	0.30	375	96.0	0.87	15.00	1.18		62.0% Full
	3	5 5	0.09	0.90	0.0810 0.1890	0.2970 0.4860	94.7 92.3	124.7	0.00	0.0	78.2 124.7	36.3 89.3	0.30	375 450	96.0 155.8	0.67	16.18 16.88	0.70 1.52	16.88 18.40	81.4% Full 80.0% Full
	3	J	0.21	0.90	0.1090	0.4860	92.5	124.7	0.00	0.0	124.7	09.5	0.30	430	133.0	0.90	18.40	1.52	10.40	80.0 % Full
						0.4000				0.0	124.7						10.40			
HYDRO ROAD	4	5	0.21	0.90	0.1890	0.1890	99.2	52.1	27.66	27.7	79.7	79.0	0.55	375	130.4	1.18	15.00	1.12	16.12	61.2% Full
IT BRO ROAD		<u> </u>	0.21	0.30	0.1030	0.1890	33.2	JZ. 1	21.00	27.7	79.7	13.0	0.55	313	150.4	1.10	16.12	1.12	10.12	01.2701 uii
		<u> </u>				0.1000					70.7						10.12			
CATCHMENT 219		5	0.56	0.90	0.5040	0.5040	99.2		78.51	78.5							15.00			Const. flow per SWM Req.
CATCHMENT 228		5	0.34	0.90	0.3060	0.3060	99.2		48.21	48.2							15.00			Const. flow per SWM Req.
CATCHMENT 227		5	0.32	0.90	0.2880	0.2880	99.2		44.07	44.1							15.00			Const. flow per SWM Req.
RANGEVIEW ROAD	5	6	0.28	0.90	0.2520	0.9270	87.5	225.4	150.60	321.4	546.8	126.2	0.30	825	786.1	1.47	18.40	1.43	19.83	69.6% Full
CATCHMENT 218		6	0.57	0.90	0.5130	0.5130	99.2		79.88	79.9							15.00			Const. flow per SWM Req.
CATCHMENT 226		6	0.61	0.90	0.5490	0.5490	99.2		84.02	84.0							15.00			Const. flow per SWM Req.
PARK BLOCK		6	0.18	0.30	0.0540	0.0540	99.2		14.88								15.00			Const. flow per SWM Req.
PARK BLOCK 306		6	0.16	0.30	0.0480	0.0480	99.2		13.22								15.00			Const. flow per SWM Req.
	6	7	0.22	0.90	0.1980	0.3000	83.5	69.6	0.00	485.3	554.9	100.8	0.30	825	786.2	1.47	19.83	1.14	20.97	70.6% Full
From RANGEVIEW RD.						0.3000				485.3	554.9						20.97			
PARK BLOCK 301		12	0.34	0.30	0.1020	0.1020	99.2		28.10								15.00			
OGDEN AVENUE	12	13	0.18	0.90	0.1620	0.2640	99.2	72.7	0.00	0.0	72.7	50.0	0.30	375	96.0	0.87	15.00	0.96	15.96	75.7% Full
	13	14	0.14	0.90	0.1260	0.3900	95.5	103.5	0.00	0.0	103.5	68.3	0.30	450	156.2	0.98	15.96	1.16	17.12	66.3% Full
From OGDEN AVE.						0.3900				0.0	103.5						17.12			
PARK BLOCK 302		15	0.34		0.1020	0.1020	99.2		28.10								15.00			Const. flow per SWM Req.
STREET L	15	16		1	0.2520			97.5	52.41	80.5	178.0					1.09			17.00	75.6% Full
STREET L	16	17	0.16		0.1440	0.4980	91.9	127.2	0.00	80.5	207.7	75.5	0.30	600	336.3	1.19	17.00	1.06		61.8% Full
LAKEFRONT PROMENADE	17	14	0.00	0.90	0.0000	0.4980	88.6	122.5	0.00	80.5	203.0	7.8	0.30	600	336.3	1.19	18.06	0.11	18.17	60.4% Full
						0.4980				80.5	203.0						18.17			
			<u> </u>													.				
STREET L	21	18	0.11		0.0990	0.0990	99.2	27.3	0.00	0.0	27.3	61.0	0.30	300	53.0	0.75	15.00	1.36		51.5% Full
STREET L	18	19	0.09		0.0810	0.1800	94.1	47.1	0.00	0.0	47.1	34.8	0.30	375	96.0	0.87	16.36		17.02	49.0% Full
LAKEFRONT PROMENADE	19	14	0.00	0.90	0.0000	0.1800	91.8	45.9	0.00	0.0	45.9	8.1	0.30	375	96.0	0.87	17.02	0.16	17.18	47.8% Full
						0.1800				0.0	45.9						17.18			
OCDENIAVENIIE	4.4	7	0.40	0.00	0.4440	4.0400	00.0	207.4	0.00	90.5	277.0	05.7	0.00	750	600.0	4.00	10.47	1.00	10.00	04 00/ F.:!!
OGDEN AVENUE	14	/	0.16	0.90	0.1440	1.2120 1.2120	88.2	297.1	0.00	80.5 80.5	377.6 377.6	85.7	0.30	750	609.8	1.38	18.17 19.20	1.03	19.20	61.9% Full
		 				1.2120				00.5	3//.0						19.20			
CATCHMENT 217		7	0.35	0.00	0.3150	0.3150	99.2		49.58	49.6	}	1				+	15.00			Const. flow per SWM Req.
RANGEVIEW ROAD	7	8	0.33		0.3730	1.6560	80.6	370.8	57.39	672.8	1043.5	71.4	0.30	1050	1495.7	1.73	20.97	0.60	21.66	69.8% Full
CATCHMENT 216	'	8	0.18		0.1440	0.1620	99.2	370.0	26.17	26.2	1043.3	7 1.4	0.00	1000	1733.1	1.73	15.00	0.08	21.00	Const. flow per SWM Req.
PARK BLOCK 305		8	0.70	0.30	0.1110	0.1110	99.2		30.58	20.2	 					+	15.00			Const. flow per SWM Req.
	8	9	0.22		0.1110	1.9650	78.9	430.9	0.00	698.9	1129.8	100.0	0.30	1200	2135.4	1.89	21.66	0.88	22.54	52.9% Full
CATCHMENT 215		9	0.79	0.90		0.7110	99.2		118.45	118.5	1.20.0	. 55.5	0.00	00	2.00.7	1	15.00	0.00	22.07	Const. flow per SWM Req.
	9	10	0.22		0.1980	2.1630	76.9	462.3	5. 10	943.6	1405.9	100.9	0.30	1200	2135.4	1.89	22.54	0.89	23.43	65.8% Full
		<u> </u>	 ~:		0000		. 5.5			5.0.0		. 50.0	0.00	00		1		0.00		55.570 T GII

SCHAEFFERS Consulting Engineers SCHAEFFER & ASSOCIATES LTD. 6 Ronrose Drive, Concord, Ontario L4K 4R3 Tel: (905) 738-6100 Fax: (905) 738-6875 design@schaeffers.com

STORM SEWER DESIGN SHEET

CITY OF MISSISSAGUA

4938 - RANGEWVIEW ESTATES PRECINCT
(10-YR. RAINFALL INTENSITY)

Designed By: H.H.T. Checked By: H.H.T.
Date: 02-Jul-24 File No.: 2020-4938

			ı				1				,	1								F:\4938\4938-DESIGN-SHEETS\[4938-STM Design.xls]10YR
LOCATION	(-)		(1)		IBUTING AF		(2)	(=)	FLOW		(1.5)				SEWER DE			()	(2.1)	(22)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	
STREET	FROM	2	AREA "A" (ha.)	RATIONAL METHOD RUNOFF FACTOR "R"	SECTION AR (ha.)	ACCUMLATED AR (ha.)	RAINFALL INTENSITY "I" (mm/hr)	FLOW Q=RAIN =(7)(8)x0.0028 (L/s)	CONSTANT FLOW (L/s)	ACCUM. CONST. FLOW (L/s)	ACCUMULATED FLOW (L/s)	LENGTH (m)	SLOPE %	DIAMETER (mm)	FULL FLOW CAPACITY (L/s)	FULL FLOW VELOCITY (m/s)	TIME OF FLOW TO SECTION (min)	TIME OF FLOW IN PIPE	TIME OF CONCENTRATION (min)	COMMENTS
						2.1630				943.6	1405.9						23.43			
LAKESHORE ROAD EAST		5000	2.32	0.90	2.0880	2.0880	307.2	1781.7	0.00	0.0	1781.7								28.80	
						2.0880				0.0	1781.7						28.80			
LAKEFRONT PROMENADE	EX.1	20	0.29	0.90	0.2610	2.3490	65.4	427.0	221.93	16.6	443.6	106.3	0.70	1050	2284.7	2.64	28.80	0.67	29.47	19.4% Full
						2.3490				16.6	443.6						29.47			
	21	22	0.16		0.1440	0.1440	99.2	39.7	0.00	0.0	39.7	81.1	0.30	300	53.0	0.75	15.00	1.80		74.9% Full
	22	23	0.16		0.1440	0.2880	92.6	74.1		0.0	74.1	71.6	0.30	375	96.0	0.87	16.80	1.37		77.1% Full
	23	20	0.00	0.90	0.0000	0.2880	88.2	70.6	58.76	58.8	129.3	13.5	0.30	525	235.6	1.09	18.18	0.21	18.38	54.9% Full
						0.2880				58.8	129.3		\vdash				18.38			
		07	0.40	0.00	0.4000	0.4000	00.0	00.0	04.04	04.0	1110	20.0	0.00	450	450.0	0.00	45.00	4.07	10.07	-4.404 - 11
	28	27	0.12		0.1080	0.1080	99.2	29.8	81.21	81.2	111.0	63.2	0.30	450	156.2	0.98	15.00	1.07	16.07	71.1% Full
	27	26	0.15	0.90	0.1350	0.2430	95.1	64.2	0.00	81.2	145.4	76.8	0.30	525	235.6	1.09	16.07	1.18	17.25	61.7% Full
		+		-		0.2430	1			81.2	145.4		+				17.25			
	26	25	0.14	0.90	0.1260	0.3690	91.1	93.4	0.00	81.2	174.6	72.7	0.30	525	235.6	1.09	17.25	1.11	18.36	74.1% Full
STREET A	25	24	0.17		0.1530	0.5220	87.6	127.1	0.00	81.2	208.3	60.8	0.30	600	336.3	1.19	18.36	0.85		61.9% Full
STREET A	24	20	0.17		0.1530	0.6750	85.2	159.7	0.00	81.2	241.0	25.1	0.30	600	336.3	1.19	19.21	0.35		71.6% Full
						0.6750				81.2	241.0						19.57			
LAKEFRONT PROMENADE	20	10	0.27	0.90	0.2430	3.5550	64.4	636.3	0.00	156.6	792.9	105.4	0.70	1050	2284.7	2.64	29.47	0.67	30.14	34.7% Full
						3.5550				156.6	792.9						30.14			(Pipe size designed per
																				fut. Conn. From Street L W)
																			10.00	
LAKESHORE ROAD EAST	Ex. CB	Ex. F3-63	0.63	0.90	0.5670	0.5670	307.2	483.8	0.00	0.0	483.8						40.00		18.80	
						0.5670	<u> </u>			0.0	483.8						18.80			
CATCHMENT 203	42	12	0.40	0.00	0.3600	0.3600	99.2	99.2	E 42	5.4	E 1	62.1	0.30	375	96.0	0.87	15.00	1.21	16.21	5.7% Full
CATCHMENT 203 CATCHMENT 202	43	43 44	0.40		0.3600	1.2420	99.2	326.5	5.43 10.59	5.4 16.0	5.4 16.0	63.1 60.9	0.30	375	96.0	0.87	15.00 16.21	1.17		16.7% Full
CATCHMENT 202	44	45	0.73		0.6730	1.0440	90.7	263.0	7.24	23.3	23.3	58.0	0.30	375	96.0	0.87	17.38	1.17		24.2% Full
OATOTIMENT 201	1 77	75	0.00	0.50	0.4770	1.0440	30.7	200.0	1.24	23.3	23.3	30.0	0.50	010	30.0	0.07	18.49	1.11	10.43	24.270 T dii
				 						23.0	23.0						10.40			
				<u> </u>									\vdash							
EAST AVENUE	Ex. F3-63	29	0.32	0.90	0.2880	0.8550	86.4	205.1	78.94	78.9	284.1	83.4	0.50	600	434.2	1.54	18.80	0.91	19.71	65.4% Full
EAST AVENUE	29	31	0.19		0.1710	1.0260	83.8	239.0	0.00	78.9	317.9	93.7	1.10	600	644.0	2.28	19.71	0.69		49.4% Full
RANGEVIEW ROAD	31	32	0.09		0.0810	1.1070	82.0	252.3	128.16	207.1	459.4	39.4	0.30	1050	1495.7	1.73	20.39	0.38		30.7% Full
CATCHMENT 220		32	1.01	0.90	0.9090	0.9090	99.2		137.73	137.7							15.00			Const. flow per SWM Req.
CATCHMENT 211		32	0.88		0.7920	0.7920	99.2		118.45	118.5							15.00			Const. flow per SWM Req.
	32	33	0.23	0.90	0.2070	0.2070	81.1	46.6	0.00	463.3	509.9	103.8	0.30	1050	1495.7	1.73	20.77	1.00	21.77	34.1% Full
						0.2070				463.3	509.9						21.77			
PARK BLOCK 303		33	0.62		0.1860	0.1860	99.2		51.24	514.5							15.00	<u> </u>		Const. flow per SWM Req.
	33	41	0.17		0.1530	0.1530	78.7	33.4	0.00	514.5	548.0	76.6	0.30	1050	1495.7	1.73			22.51	36.6% Full
RANGEVIEW ROAD	41	35	0.20	0.90	0.1800	0.1800	78.7	39.3	0.00	514.5	553.9	89.7	0.30	1050	1495.7	1.73	21.77	0.87	22.64	37.0% Full
CATCHMENT 221		35	1.30	0.90	1.1700	1.1700	99.2		179.05	179.1		89.3	0.30	450			15.00			Const. flow per SWM Req.

SCHAEFFERS Consulting Engineers Consulting Engineers SCHAEFFER & ASSOCIATES LTD. 6 Ronrose Drive, Concord, Ontario 144 483 Fax: (905) 738-6100 Fax: (905) 738-6875 design@schaeffers.com

STORM SEWER DESIGN SHEET

CITY OF MISSISSAGUA 4938 - RANGEWVIEW ESTATES PRECINCT (10-YR. RAINFALL INTENSITY) Designed By: H.H.T. Checked By: H.H.T. Date: 02-Jul-24 File No.: 2020-4938

LOCATION (1)	(2)	(2)		CONTR	IRLITING AR	Γ.									0EWED DE	01011				
(1)	(2)														(22)					
		(3)	(4)	(5)	(6)	(7)	(8)	(9)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	
STREET	FROM	01	AREA "A" (ha.)	RATIONAL METHOD RUNOFF FACTOR "R"	SECTION AR (ha.)	ACCUMLATED AR (ha.)	RAINFALL INTENSITY "I" (mm/hr)	FLOW Q=RAIN =(7)(8)x0.0028 (L/s)	CONSTANT FLOW (L/s)	ACCUM. CONST. FLOW (L/s)	ACCUMULATED FLOW (L/s)	LENGTH (m)	% 3KODE %	DIAMETER (mm)	FULL FLOW CAPACITY (L/s)	FULL FLOW VELOCITY (m/s)	TIME OF FLOW TO SECTION (min)	TIME OF FLOW IN PIPE	TIME OF CONCENTRATION (min)	COMMENTS
CATCHMENT 212		35	0.20	0.90	0.1800	0.1800	99.2		27.55	27.6		89.3	0.30	450			15.00			Const. flow per SWM Req.
CATCHMENT 213		35	0.39	0.90	0.3510	0.3510	99.2		55.09	55.1		89.3	0.30	450			15.00			Const. flow per SWM Req.
	35	36	0.13	0.90	0.1170	0.2970	76.7	63.3	0.00	776.2	839.5	47.6	0.30	1200	2135.4	1.89	22.64	0.42	23.06	39.3% Full
CATCHMENT 222		36	0.74	0.90	0.6660	0.6660	99.2		82.64	82.6							15.00			Const. flow per SWM Req.
CATCHMENT 214		36	0.34	0.90	0.3060	0.3060	99.2		46.83	46.8							15.00			Const. flow per SWM Req.
	35	36	0.13	0.90	0.1170	0.4140	75.8	87.2	0.00	905.7	992.9	47.6	0.30	1200	2135.4	1.89	23.06	0.42	23.48	46.5% Full
	36	10	0.00	0.90	0.0000	0.4140	74.9	86.2	0.00	905.7	991.8	11.8	0.30	1200	2136.8	1.89	23.48	0.10	23.58	46.4% Full
						0.4140				905.7	991.8						23.58			
CATCHMENT 223		10	0.82	0.90	0.7380	0.7380	99.2		112.94	112.9							15.00			
PARK BLOCK		10	0.15	0.30	0.0450	0.0450	99.2		12.40	12.4							15.00			Const. flow per SWM Req.
LAKEFRONT PROMENADE	10	11	0.23		0.2070	6.3390	63.5	1117.5	126.25	2257.5	3375.0	83.2	0.30	1650	5021.7	2.35			30.73	67.2% Full
	11	301	0.00	0.90	0.0000	6.3390	62.6	1102.9	0.00	2257.5	3360.4	35.8	0.30	1650	4992.2	2.33	30.73	0.26	30.98	67.3% Full
						6.3390				2257.5	3360.4						30.98			
CATCHMENT 225		39	0.39		0.3510	0.3510	99.2		52.34	52.3							15.00			
OGDEN AVENUE	39	40	0.18	0.90	0.1620	0.1620	99.2	44.6	0.00	52.3	97.0	51.4	0.30	450	156.0	0.98	15.00	0.87	15.87	62.1% Full
						0.1620				52.3	97.0						15.87			
CATCHMENT 224		37	0.46		0.4140	0.4140	99.2		63.36	63.4							15.00			
STREET G	37	38	0.15	0.90	0.1350	0.1350	99.2	37.2	0.00	63.4	100.6	51.7	0.30	450	156.2	0.98	15.00	0.88	15.88	64.4% Full
						0.1350				63.4	100.6						15.88			

2750.00 l/s

Area ID	Capture MH	Trib. Area (ha)	R ₁₀	R ₁₀₀	AR ₁₀	AR ₁₀₀	Flow Length (m)	Flow Velocity (m/s)	Time of Conc. (min)	l ₁₀ (mm/hr)	l ₁₀₀ (mm/hr)	Q ₁₀ (m ³ /s)	Q ₁₀₀ (m³/s)	Q ₁₀₀ -Q ₁₀ (m³/s)	Constant Flow (m³/s)
	5	1.25	0.9	1.00	1.13	1.25	200	1.5	20.0	83.1	118.1	259.6	410.2	150.6	150.6
	15	0.44	0.9	1.00	0.40	0.44	215	1.5	20.4	82.1	116.8	90.3	142.7	52.4	52.4
	31	1.20	0.9	1.00	1.08	1.20	370	1.5	24.3	73.4	104.5	220.1	348.2	128.2	128.2
	28	0.71	0.9	1.00	0.64	0.71	270	1.5	21.8	78.7	112.0	139.7	221.0	81.2	81.2
	7	0.48	0.9	1.00	0.43	0.48	210	1.5	20.3	82.4	117.2	98.9	156.3	57.4	57.4
	23	0.51	0.9	1.00	0.46	0.51	260	1.5	21.5	79.3	112.9	101.1	159.9	58.8	58.8
	10	0.6	0.9	1.00	0.54	0.60	280	1.5	7	149.3	210.1	224.0	350.2	126.2	126.2
	Ev E3 63	0 63	0.0	1 00	0.57	0.63	150	15	10.0	86.5	123.0	136 3	215.2	78.0	78.9
															221.9
	LA. I	2.52	0.9	1.00	2.09	2.02	330	1.0	20.0	00.0	33.4	300.0	001.9	221.9	221.9
	4	0.21	0.9	1.00	0.19	0.21	90	1.5	17.3	91.1	129.4	47.8	75.5	27.7	27.7
	Area ID	31 28 7 23	5 1.25 15 0.44 31 1.20 28 0.71 7 0.48 23 0.51 10 0.6 Ex. F3-63 0.63 Ex. 1 2.32	5 1.25 0.9 15 0.44 0.9 31 1.20 0.9 28 0.71 0.9 7 0.48 0.9 23 0.51 0.9 10 0.6 0.9 Ex. F3-63 0.63 0.9 Ex. 1 2.32 0.9	5 1.25 0.9 1.00 15 0.44 0.9 1.00 31 1.20 0.9 1.00 28 0.71 0.9 1.00 7 0.48 0.9 1.00 23 0.51 0.9 1.00 10 0.6 0.9 1.00 Ex. F3-63 0.63 0.9 1.00 Ex. 1 2.32 0.9 1.00	5 1.25 0.9 1.00 1.13 15 0.44 0.9 1.00 0.40 31 1.20 0.9 1.00 1.08 28 0.71 0.9 1.00 0.64 7 0.48 0.9 1.00 0.43 23 0.51 0.9 1.00 0.46 10 0.6 0.9 1.00 0.54 Ex. F3-63 0.63 0.9 1.00 0.57 Ex. 1 2.32 0.9 1.00 2.09	5 1.25 0.9 1.00 1.13 1.25 15 0.44 0.9 1.00 0.40 0.44 31 1.20 0.9 1.00 1.08 1.20 28 0.71 0.9 1.00 0.64 0.71 7 0.48 0.9 1.00 0.43 0.48 23 0.51 0.9 1.00 0.46 0.51 10 0.6 0.9 1.00 0.54 0.60 Ex. F3-63 0.63 0.9 1.00 0.57 0.63 Ex. 1 2.32 0.9 1.00 2.09 2.32	(na) (na) (ma) 5 1.25 0.9 1.00 1.13 1.25 200 15 0.44 0.9 1.00 0.40 0.44 215 31 1.20 0.9 1.00 1.08 1.20 370 28 0.71 0.9 1.00 0.64 0.71 270 7 0.48 0.9 1.00 0.43 0.48 210 23 0.51 0.9 1.00 0.46 0.51 260 10 0.6 0.9 1.00 0.54 0.60 280 Ex. F3-63 0.63 0.9 1.00 0.57 0.63 150 Ex. 1 2.32 0.9 1.00 2.09 2.32 550	(na) (m) (m/s) 5 1.25 0.9 1.00 1.13 1.25 200 1.5 15 0.44 0.9 1.00 0.40 0.44 215 1.5 31 1.20 0.9 1.00 1.08 1.20 370 1.5 28 0.71 0.9 1.00 0.64 0.71 270 1.5 7 0.48 0.9 1.00 0.43 0.48 210 1.5 23 0.51 0.9 1.00 0.46 0.51 260 1.5 10 0.6 0.9 1.00 0.54 0.60 280 1.5 Ex. F3-63 0.63 0.9 1.00 0.57 0.63 150 1.5 Ex. 1 2.32 0.9 1.00 2.09 2.32 550 1.5	(na) (m) (m/s) (min) 5 1.25 0.9 1.00 1.13 1.25 200 1.5 20.0 15 0.44 0.9 1.00 0.40 0.44 215 1.5 20.4 31 1.20 0.9 1.00 1.08 1.20 370 1.5 24.3 28 0.71 0.9 1.00 0.64 0.71 270 1.5 21.8 7 0.48 0.9 1.00 0.43 0.48 210 1.5 20.3 23 0.51 0.9 1.00 0.46 0.51 260 1.5 21.5 10 0.6 0.9 1.00 0.54 0.60 280 1.5 7 Ex. F3-63 0.63 0.9 1.00 0.57 0.63 150 1.5 28.8 Ex. 1 2.32 0.9 1.00 2.09 2.32 550 1.5 28.8	(na) (na) (may) (mys) (min) (mm/hr) 5 1.25 0.9 1.00 1.13 1.25 200 1.5 20.0 83.1 15 0.44 0.9 1.00 0.40 0.44 215 1.5 20.4 82.1 31 1.20 0.9 1.00 1.08 1.20 370 1.5 24.3 73.4 28 0.71 0.9 1.00 0.64 0.71 270 1.5 21.8 78.7 7 0.48 0.9 1.00 0.43 0.48 210 1.5 20.3 82.4 23 0.51 0.9 1.00 0.46 0.51 260 1.5 21.5 79.3 10 0.6 0.9 1.00 0.54 0.60 280 1.5 7 149.3 Ex. F3-63 0.63 0.9 1.00 0.57 0.63 150 1.5 28.8 65.5	(na) (na) (max) ((na) (na) (man) ((ha) (ha) (ha) (m) (m/s) (min) (min/hr) (min/hr)	(na) (na) (ma) (ma) (min) (mi

IDF Parameters

	10-YR	100-YR
Α	1010	1450
b	4.6	4.9
С	0.78	0.78

I = A / (T.C.+b)^c
T.C. = Time of Conc. (min)
I = Rainfall Intensity (mm/hr)

Run-off Coefficients

R100 = R10 x 1.25 Max. R = 0.90

Time of Concentration

T.C. (min) = Flow Length (m) x Flow Velocity (m/s)

Flow Velocity Overland = 1.5 m/s

Appendix E Engineering Drawings Refer to Submission

Refer to Submission Package