

nextrans.ca

Transportation Impact Study

PROPOSED RESIDENTIAL DEVELOPMENT

3575 KANEFF CRESCENT CITY OF MISSISSAUGA, ONTARIO

July 2023 Project No: NT-19-174 520 Industrial Parkway South, Suite 201 Aurora ON L4G 6W8

> Phone: 905-503-2563 www.nextrans.ca

NextEng Consulting Group Inc.

July 18, 2023

Kaneff Properties Limited 8501 Mississauga Road Brampton, ON L6Y 5G8

Re: Transportation Impact Study Proposed Residential Development 3575 Kaneff Crescent, City of Mississauga, ON Our Project No. NT-19-174

Nextrans Consulting Engineers (a Division of NextEng Consulting Group Inc.) is pleased to present the enclosed Transportation Impact Study and Parking Justification for the above noted site in support of Official Plan Amendment and Zoning By-law Amendment Applications.

The subject property is located at 3575 Kaneff Crescent, in the City of Mississauga. The subject site is bounded by Mississauga Valley Boulevard to the east, Elm Drive East to the south, Kaneff Crescent to the north, Obelisk Way to the west. The subject site is currently occupied by the parking lot. The proposed development consists of a 40-storey residential building with a total of 467 dwelling unit. A total of 300 vehicle parking spaces and 280 bicycle parking are proposed with the ability to provide additional outdoor bicycle parking spaces at grade. The proposed development will provide a full movement access via Obelisk Way.

The transportation study concludes that the proposed development can adequately be accommodated by the existing transportation network, excellent existing Miway Service services, as well as the recommended Transportation Demand Management measures and incentives recommended in this report.

We trust the enclosed sufficiently addresses your needs. Should you have any questions, please do not hesitate to contact the undersigned.

Yours truly, Nextrans Consulting Engineers A Division of NextEng Consulting Group Inc. Prepared by:

Sam Nguyen, Dipl. Transportation Analyst

Reviewed by:

Review and Approved by:

Richard Pernicky, MITE Principal

Issues and Revisions Registry

Identification	Date	Description of issued and/or revision
Final Report 3 rd submission	July 18, 2023	For submission

EXECUTIVE SUMMARY

Nextrans Consulting Engineers (A Division of NextEng Consulting Group Inc.) was retained by Kaneff Properties Limited (the 'Client') to undertake a Transportation Impact Study and Parking Justification Study in support of Official Plan and Zoning By-law Amendment Applications for a proposed residential development. The subject property is located at 3575 Kaneff Crescent and bounded by Mississauga Valley Boulevard to the east, Elm Drive East to the south, Kaneff Crescent to the north, Obelisk Way to the west.

Proposed Development

The site is currently occupied by a parking lot. The redevelopment proposal includes a 40-storey residential building with a total of 467 dwelling units. As part of the proposed development, a total of 254 resident parking spaces, a total of 46 visitor spaces (on-site and off-site) will be provided. The proposed development will provide 280 Class A bicycle parking spaces and 23 Class B bicycle spaces (which will be provided by landscapes with the next SPA submission).

Proposed Development Access

As part of the proposed development, the access to building will be full movement via Obelisk Way.

Capacity Analysis

The proposed development is expected to generate:

- 144 total two-way trips (35 inbound and 109 outbound) and 167 total two-way trips (102 inbound and 65 outbound) during the morning and afternoon peak hours, respectively.
- 92 total two-way auto trips (22 inbound and 70 outbound) and 120 total two-way auto trips (73 inbound and 47 outbound) during the morning and afternoon peak hours, respectively.
- 37 total two-way transit trips (9 inbound and 28 outbound) and 15 total two-way transit trips (9 inbound and 6 outbound) during the morning and afternoon peak hours, respectively.
- 15 total two-way active trips (4 inbound and 11 outbound) and 32 total two-way active trips (20 inbound and 12 outbound) during the morning and afternoon peak hours, respectively.

Auto Mode Assessment

Under the existing, future background and future total conditions, the intersection operation capacity analysis indicates that all intersections considered are expected to operate at acceptable levels of service, except for the intersection of Hurontario Street and Elm Drive, the eastbound left and northbound thru due to high turning movement of the background development, it is our recommendation that the City should monitor these movements in the future when the background developments fully build out. It should be noted that the lane configurations for Hurontario Street was provided by City of Mississauga's staff to respect the Hurontario LRT project that expected to complete on Fall 2024, was applied to this horizon year assessment. The lane reduction on Hurontario from three through lanes in each direction to two through, and left turn lanes will be protective only. As such, no physical improvement is required at this horizon year, due to the change of Hurontario LTR.

The analysis indicates that the proposed access via Obelisk Way is expected to operate at acceptable levels of service with minimal delays or queues. No improvement to the existing road network is required to accommodate the proposed development.

Active Transportation Mode Assessment

Walking

Currently, there are sidewalks located on both sides of the Mississauga Valley Boulevard, Kaneff Crescent, Obelisk Way and Elm Drive East in the vicinity of the proposed development.

Since the proposed development will utilize the sidewalks on Kaneff Crescent and Mississauga Valley Boulevard, no improvements are necessary to accommodate the proposed development. Appropriate suggestions will be provided in later sections of the report that will speak to the pedestrian requirement as part of the proposed development.

Cycling

Currently, there are two dedicated cycling routes in the general area:

- Dedicated north-south bicycle lanes along Mississauga Valley Boulevard;
- Dedicated east-west bicycle lanes along Elm Drive East.

It is Nextrans' opinion that the study area is well served by existing cycling facilities. To continue to support the modal split and transportation demand management incentives for the area, it is recommended that, at the minimum, the proposed development provides 56 bicycle parking spaces.

Transit Mode Assessment

The area is currently well serviced by the existing Miway transit network. The proposed development is located adjacent to MiWay Bus Routes 8 Cawthra, 53 Kennedy and 3 Bloor. It is NexTrans' opinion that the proposed development will contribute a healthy transit ridership for the existing Miway Transit system in the area

The transit passenger demands generated by the proposed development per transit vehicle is very low (at most 5 passenger per transit vehicle per hour). As such, the proposed development impact on transit service is negligible and no improvements are required.

In reality, some of passengers could be bunched together during the peak 15 minutes, instead of spreading during the entire peak hour. Even if this is the case, our estimates indicate that the demand per vehicle is extremely low and can be accommodated without the need for additional transit vehicles or improvements during both the morning and afternoon peak periods.

Vehicle Parking Review

Based on the City of Mississauga By-Law 0225-2007 Part 3 – Parking, Loading and Stacking Lane Regulations, a total of 467 parking spaces are required for the proposed development. It is our understanding that the proposed development provides 300 vehicle parking spaces (including 254 parking spaces for resident and 46 parking spaces for visitor) or in rate of 0.54 spaces/ unit for resident and 0.10 spaces/unit for visitor parking, this presenting a technical shortfall of 167 resident parking spaces (~35.7% reduction).

It is our understand that the City Zoning Bylaw has implemented a minimum requirement of 0.6 bicycle parking spaces per unit (Class A – long term) and 0.05 bicycle parking spaces (Class B – short term).therefore, the proposed development will require 303 Class A bicycle spaces and 16 Class B bicycle spaces. The proposed development will provide 280 Class A bicycle parking spaces and 23 Class B bicycle spaces (which will be provided by landscapes with the next SPA submission) which meets the bylaw requirement.

Transportation Demand Management Measures and Incentives

The TDM measures and incentives related to the proposed development have been assessed and recommended in Section 9 of this report to support active transportation and transit, to meet the objectives and requirements of the City of Mississauga transportation policies.

Loading Requirement

The proposed development will use the private garbage pick up and a loading space is provided for garbage pick up that will meet the City's By-Law requirement. AutoTURN software was used to demonstrate the turning movement

requirements for garbage pick-up, delivery and passenger vehicles at the proposed access via Obelisk Way, the proposed loading and internal circulation to the underground parking.

Study Conclusions and Recommendations

Based on the assessment, our report recommends that:

- The proposed development implements the TDM measures and incentives identified in this report to support
 active transportation and transit and to reduce the numbers of single-occupant-vehicle trips to and from the
 proposed development.
- The proposed development provides direct shared pedestrian and cycling connections from the proposed development building entrances directly to public streets, where appropriate.
- The proposed development considers reduce 35.7% of required parking supply (or 0.64 spaces/unit) to support TDM and transit;
- Based on our review of the site plan, the warning light and a convex mirror will be installed on the wall where applicable to warning the passengers car going out from the underground parking, for safety concerns.
- The City should monitor the eastbound and northbound left movements due to high turning movements of the background developments.

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	EXISTING TRAFFIC CONDITIONS	2
	2.1. Existing Road Network	2
	2.2. Existing Active Transportation Network	3
	2.3. Existing Active Transportation Assessment	4
	2.4. Existing MiWay System	4
	2.3. Existing Traffic Volumes	6
	2.4. Existing Traffic Assessment	7
3.0	TRANSPORTATION PLANNING CONTEXT IN THE AREA	8
	3.1. Land Use Context	8
	3.2. Transportation Planning Context	9
4.0	FUTURE BACKGROUND CONDITIONS	10
	4.1. Analysis Horizon	10
	4.2. Future Background Corridor Growth	10
	4.3. Background Development Applications	11
	4.4. Future Background Traffic Assessment	11
5.0	SITE TRAFFIC	13
	5.1. Proposed Development	13
	5.2. Modes of Travel Assessment in the Area	14
	5.3. Site Trip Generation	14
	5.4. Site Trip Distribution and Assignment	14
6.0	FUTURE TOTAL TRAFFIC CONDITIONS	16
	6.1. Future Total Traffic Assessment for Auto Mode	16
	6.2. Active Transportation Mode Assessment	
	6.3. Transit Mode Assessment	19
7.0	SITE PLAN REVIEW	20
	7.1. Loading Requirement	20
	7.2. Site Access Review	20
	7.2.1. TAC 2017 Guidelines	21
	7.3. Sight Distance Analysis	23
	7.3.1. Stopping Sight Distance	23
	7.3.2. Departure Sight Distance	24
8.0	PARKING ASSESSMENT	25
	8.1. Vehicle Parking Requirement	25
	8.1.1. Recommend Parking Rates for the Proposed Development	
	8.1.2. Proposed Development Context	
	8.1.3. Existing Mode Share	27
	8.1.4. Household Demographic and Car Ownership	27
	8.1.5. City of Mississauga Official Plan (2015)	
	8.1.6. Existing Mississauga Transit Service	
	8.1.7. Available On-Street Parking and Car-share Locations in the Area	29
	8.1.8. Neighbourhood Context	
	8.1.9. Increase Housing Supply	31
	8.1.10. Covid-19 Pandemic and Working from Home	31
	8.1.11. A Reduction to the Minimum Vehicle Parking Requirements is Consistent with Pro	vincial and Regional
	Direction 32	Ŭ

	8.1.12. High Residential Vehicle Parking Rates Result in More Car Ownership and More Driving While Reducing Transit Usage	32
	8.1.13. A Reduction to the Minimum Vehicle Parking Requirements Increases the Supply of Affordable Housing 34	
	8.1.14. A Reduction to the Minimum Vehicle Parking Requirements Will Help Supporting Local Busines	ses34
	8.1.15. A Reduction to the Minimum Vehicle Parking Requirements has a Number of General Benefits .	34
	8.1.16. Transportation Demand Management Measures	35
	8.2. Bicycle Parking	35
9.0	TRANSPORTATION DEMAND MANAGEMENT	35
10.0	CONCLUSIONS / FINDINGS	36
	10.1. Study Conclusions	36
	10.2. Study Recommendations	37

LIST OF FIGURES

- Figure 1 Proposed Development Location
- Figure 2 Proposed Concept Site Plan
- Figure 3 Existing Lane Configuration and Traffic Control
- Figure 4 Existing Active Transportation Network in the Study Area
- Figure 5 Existing Transit Network in the Area
- Figure 6 Existing Traffic Volumes
- Figure 7 Amenity Within 500m Radius
- Figure 8 Hurontario LRT Map
- Figure 9 2030 Future Background Traffic Volumes
- Figure 10 Site Generated Traffic Volumes
- Figure 11 –2030 Future Total Traffic Volumes
- Figure 12 –Auto Turn
- Figure 13 Proposed Site Access Spacing
- Figure 14 Mississauga Transitway
- Figure 14 Available On-street Parking and Zipcar Locations
- Figure 15 Available Amenities in the Area Within Walking Distance

LIST OF TABLES

- Table 1 Existing Levels of Service for Signalized Intersections
- Table 2 2027 Future Background Levels of Service
- Table 3 Modes of Travel based on 2016 TTS Data for Traffic Zones 3863
- Table 4 Site Total Trip Generation for Proposed Development
- Table 5 Trip Distribution for Residential Component
- Table 6 Site Trip Distribution
- Table 7 2030 Future Total Levels of Service
- Table 8 Site Transit Trip Assignment
- Table 9 Transit Service Frequency
- Table 10 Future Transit Passenger Demand from the Proposed Development
- Table 1 Stopping Sight Distance Assessment for the proposed access
- Table 2 Departure Sight Distance Assessment for Left Turning Vehicle at the proposed access
- Table 13 City of Mississauga By-Law Vehicle Parking Requirements
- Table 14 Recommended Parking Rates for the Proposed Development
- Table 15 Modes of Travel based on 2016 TTS Data for Traffic Zones 3863
- Table 16 Proxy Site Descriptions
- Table 17 1485 Williamsport Drive (Friday April 21, 2017)
- Table 18 1485 Williamsport Drive (Sunday April 23, 2017)
- Table 19 Vehicle Ownership for Ward 4 Based on 2016 TTS Data
- Table 20 Recommended TDM Measures for the Proposed Development

APPENDICES

- Appendix A Existing Traffic Data
- Appendix B Existing Traffic Level of Service Calculations
- Appendix C Historical Traffic Count Analysis
- Appendix D Background Developments
- Appendix E Future Background Traffic Level of Service Calculations
- Appendix F 2016 TTS Data Extraction
- Appendix G Future Total Traffic Level of Service Calculations

1.0 INTRODUCTION

Nextrans Consulting Engineers (A Division of NextEng Consulting Group Inc.) was retained by Kaneff Properties Limited (the 'Client') to undertake a Transportation Impact Study and Parking Justification Study in support of Official Plan and Zoning By-law Amendment Applications for a proposed residential development. The subject property is located at 3575 Kaneff Crescent and bounded by Mississauga Valley Boulevard to the east, Elm Drive East to the south, Kaneff Crescent to the north, Obelisk Way to the west.

The location of the proposed development is illustrated in Figure 1.

Garden of the Valley The Valleywoods Place Avant Artsta Way The Maplewoods Place Royale Aspen Grove I & II Site^{orestwoods} 3575 Kaneff Crescent Kaneff Group Of Companies Grand LV Nails & Spa Mississauga Place Metro Iona Plaza ERECTRE ST Obelisk One EIMDRE Peel Condominium Corporation No 159 Alterations Idea No. 1 City Centre Stor The Elmwoods ThOlu Hair & Beauty Kids[®] Palace Nursery Schoo Edge Towe HIRONES! Condominiums 🗸 CDC Silicone Solutions PSCC 802 Stonnebrook Tim Hortons New Playland ennis Cou

Figure 1 – Proposed Development Location

Source: Google Map

The site is currently occupied by a parking lot. The redevelopment proposal includes a 40-storey apartment building with a total of 467 dwelling units. As part of the proposed development, the access to building will be full movement via Obelisk Way. The proposed development will provide a total of 82 spaces are to be accommodated off-site within existing UG at 3575 Kaneff Cres, 208 spaces within proposed UG garage for resident, a total of 46 visitor spaces (on-site and off-site). The proposed development will provide 280 Class A bicycle parking spaces and 23 Class B bicycle spaces (which will be provided by landscapes with the next SPA submission).

Figure 2 illustrates the proposed development site plan.

Figure 2 – Proposed Concept Site Plan

2.0 EXISTING TRAFFIC CONDITIONS

2.1. Existing Road Network

The subject property is located at 3575 Kaneff Crescent and bounded by Mississauga Valley Boulevard to the east, Elm Drive East to the south, Kaneff Crescent to the north, Obelisk Way to the west. The road network is described as follows:

- **Mississauga Valley Boulevard:** is a north-south minor collector road under the jurisdiction of the City of Mississauga. It has three lane cross sections and maintains a posted speed of 40 km/h in the vicinity of the subject site.
- Kaneff Crescent: is an east-west local road under the jurisdiction of the City of Mississauga. It has two lanes cross sections and maintain a posted speed of 40 km/h in the vicinity of the subject site.
- **Obelisk Way:** is a north-south local road under the jurisdiction of the City of Mississauga. It has two lane cross section and maintain an unposted speed of 40 km/h in the vicinity of the subject site.
- Elm Drive East: is an east-west minor collector road under the jurisdiction of the City of Mississauga. It has three lane cross sections and maintains an unposted speed of 40 km/h in the vicinity of the subject site.
- Hurontario Street: is a north-south arterial road under the jurisdiction of the City or Mississauga. It has six-lane cross sections and maintain a posted speed of 60 km/h in the vicinity of the subject site.

The subject site currently has one full movement access onto Kaneff Crescent servicing the existing parking lot. As indicated, the proposed residential development will provide one full movement access via Obelisk Way.

Source: Google Map

2.2. Existing Active Transportation Network

Figure 4 illustrates the existing active transportation network in the study area.

Figure 4 – Existing Active Transportation Network in the Study Area

Source: Mississauga Cycling Map 2018

2.3. Existing Active Transportation Assessment

Sidewalk

Currently, there are sidewalks located on both sides of the Mississauga Valley Boulevard, Kaneff Crescent, Obelisk Way and Elm Drive East in the vicinity of the proposed development.

Since the proposed development will utilize the sidewalks on Kaneff Crescent and Mississauga Valley Boulevard, no improvements are necessary to accommodate the proposed development. Appropriate suggestions will be provided in later sections of the report that will speak to the pedestrian requirement as part of the proposed development.

Bicycle Facility

Currently, there are two dedicated cycling routes in the general area:

- Dedicated north-south bicycle lanes along Mississauga Valley Boulevard;
- Dedicated east-west bicycle lanes along Elm Drive East.

It is Nextrans' opinion that cycling facilities could be improved in the area, as part of the future City capital projects or cycling initiatives. These types of projects are beyond the scope of the proposed development.

2.4. Existing MiWay System

The area is currently well serviced by the existing Miway transit network. The proposed development is located adjacent to MiWay Bus Routes 8 Cawthra, 53 Kennedy, 3 Bloor, about 300 m to the Miway Bus Route 2 Hurontario, 103 Hurontario Express, 302 Philip Pocock-Bloor West (School Route), GO Bus Route 21 Milton at Hurontario Street and Elm Drive East. It is NexTrans' opinion that the proposed development will contribute a healthy transit ridership for the existing Miway Transit system in the area. The existing transit network in the area is illustrated in **Figure 5**.

The proposed development is located about 1 km from City Centre Transit Terminal, which is part of Mississauga Transitway project that delivers 18 kilometers of dedicated busway. The City Centre Transit Terminal is linked to other 11 stations from Winston Churchill Boulevard to Renforth Drive. The proposed development also located about 500 m to Hurontario St and Burnhamthorpe Road intersection which will be Burnhamthorpe Stop, as part of Hurontario Light Rail (LRT) project that expected to complete on 2024. The Hurontario LRT will delivers 18 kilometres of dedicated bus lane with 19 stops, linking local transit like MiWay, Brampton Transit, Zum and Mississauga Transitway at Square One, in between Brampton and Mississauga.

Source: MiWay Route Map

Below are the bus route descriptions based on the information provided on the Mississauga Transit Website (<u>https://web.mississauga.ca/miway-transit/</u>):

- MiWay Bus Route 8 Cawthra The 8 Cawthra bus route operates generally in a north-south direction between City Centre Transit Terminal Platform J and Port Credit GO Station Platform 8. This route operates all day, every day and the service frequency are about 10 minutes during the peak periods.
- MiWay Bus Route 3 Bloor- The 3 Bloor bus route operates generally in an east-west direction between TTC Islington Subway Station and City Centre Transit Terminal Drop Off. This route operates all day, every day and the service frequency are about 10 minutes during the peak periods.
- **MiWay Bus Route 53 Kennedy** The 53 Kennedy bus route operates generally in a north-south direction between Hurontario & 407 Park and Ride Platform A and Hurontario Street at Central Parkway East. This route operates all day, every day and the service frequency are about 20 minutes during the peak periods.
- Miway Bus Route 2 Hurontario The 2 Hurontario bus route operates generally in north-south direction between City Centre Transit Terminal and Port Credit GO Station. This route operates all days, everyday and the service frequency are about 10 minutes during peak periods. The 2 Hurontario will replace the former 19 Hurontario bus route due to Hurontario LRT construction on Hurontario Street.

• **Miway Bus Route 103 Hurontario Express** – The 103 Hurontario bus route operates generally in north-south direction between Brampton Gateway Terminal and Port Credit GO Station Platform 5. The route operates all days, everyday and the service frequency are about 20 minutes.

2.3. Existing Traffic Volumes

Existing traffic volumes at the study area intersections were undertaken by Spectrum during the morning (7:00 a.m. to 10:00 a.m.) and afternoon (4:00 p.m. to 7:00 p.m.) peak periods for following intersections:

- Hurontario Street and Elm Drive: Thursday, March 05, 2020
- Elm Drive East and Mississauga Valley Blvd: Tuesday, February 04, 2020
- Kaneff Cres and Mississauga Valley Blvd: Tuesday, February 04, 2020
- Kaneff Cres and Obelisk Way: Tuesday, February 04, 2020
- Obelisk Way and Elm Drive East: Tuesday, February 04, 2020

Turning movement counts are summarized in **Appendix A**.

The signal timing plans for the signalized intersections were obtained from the City of Mississauga and incorporated into the analysis. The existing volumes are illustrated in **Figure 6**.

2.4. Existing Traffic Assessment

The existing volumes in **Figure 6** were analyzed using Synchro Version 9 software. The methodology of the software follows the procedures described and outlined in the Highway Capacity Manual, HCM 2000, published by the Transportation Research Board. The detailed results are provided in **Appendix B** and summarized in **Table 1**.

		Weeko	lay AM Peak	Hour	Weekday PM Peak Hour			
Intersection	Key Movement	LOS (v/c)	Delay (s)	Queue 95 th (m)	LOS (v/c)	Delay (s)	Queue 95 th (m)	
	Overall	B (0.34)	11.2		B (0.50)	11.5		
	EB – L	B (0.20)	15.3	7.8	B (0.30)	18.9	12.6	
Mississauga Valley	EB – TR	B (0.12)	14.8	9.8	B (0.22)	18.1	15.2	
Boulevard and Elm	WB – LTR	B (0.31)	14.1	15.3	B (0.24)	16.6	14.5	
Drive East	NB – L	A (0.10)	5.2	4.4	A (0.21)	5.0	8.4	
(signalized)	NB – TR	A (0.14)	5.3	10.7	A (0.34)	5.5	28.7	
	SB – L	B (0.02)	10.9	2.6	B (0.10)	10.3	6.6	
	SB - TR	B (0.42)	12.8	25.2	B (0.64)	14.9	49.8	
	Overall	B (0.60)	17.1		B (0.59)	16.3		
	EB – L	C (0.53)	29.7	45.9	D (0.26)	36.8	22.0	
	EB – TR	C (0.25)	26.1	31.1	D (0.56)	40.5	60.6	
Hurontario Street and	WB – L	C (0.29)	26.5	27.8	D (0.37)	38.0	28.7	
Elm Drive East	WB – TR	C (0.40)	27.4	45.6	D (0.58)	41.1	62.9	
(signalized)	NB – L	A (0.29)	9.3	11.1	A (0.37)	9.5	9.0	
	NB -TR	B (0.63)	15.1	106.1	B (0.56)	13.0	91.6	
	SB – L	B (0.26)	11.3	7.5	A (0.37)	8.5	10.1	
	SB - TR	B (0.58)	15.8	90.2	B (0.61)	13.4	112.8	
Elm Drive East and		A (0.02)	7.5	0.5	A (0.04)	7 8	0.8	
Obelisk Way		R (0.02)	10.1	28	R (0.04)	10.6	0.0	
(unsignalized)		В (0.11)	10.1	2.0	В (0.03)	10.0	2.2	
Obelisk Way and	EB – LTR	A (0.00)	0.1	0.0	A (0.00)	0.2	0.0	
Kanoff Cros	WB – LTR	A (0.02)	4.0	0.4	A (0.02)	2.4	0.5	
(unsignalized)	NB – LTR	A (0.05)	9.6	1.2	B (0.07)	10.0	1.7	
(unsignalizeu)	SB – LTR	B (0.00)	10.0	0.1	B (0.00)	10.7	0.1	
Mississauga Valley								
Boulevard and Kaneff	EB – LR	B (0.10)	10.0	2.4	B (0.09)	11.9	2.3	
Crescent	NB - LT	A (0.01)	7.6	0.2	A (0.05)	8.4	1.3	
(unsignalized)								

Table 1 – Existing	Levels of Service	for Signalized	Intersections
--------------------	-------------------	----------------	---------------

Based on the intersection capacity analysis, under the existing traffic conditions, all the intersections considered are currently operating at acceptable levels of service. No improvement is required at this time.

3.0 TRANSPORTATION PLANNING CONTEXT IN THE AREA

3.1. Land Use Context

NexTrans has conducted a comprehensive review of the area. To the west of the subject site, Hurontario Street is an important corridor that has serval institutions such as Square One Shopping Center, Sheridan College-Hazel McCallion Campus among other healthcare institutions. There are significant retail, restaurants and service establishments within walking and cycling distance to the proposed development. Amenities within a 500-m radius (approximately 8-minute walk) include Metro, Money Mart, Banks and Square One Shopping Center and others. The active transportation facilities such as sidewalks and bike lanes on Mississauga Valley Boulevard. **Figure 7** illustrates the amenities within a 500-m radius.

It is NexTrans' opinion that the proposed development is located at a great location from a transportation planning perspective and proper parking supply management will encourage residents to take transit and active transportation instead of driving single-occupant-vehicles.

Figure 7 – Amenity Within 500m Radius

Sources: Google Maps

3.2. Transportation Planning Context

As indicated in Section 2.4, the area is currently well serviced by the existing Miway transit network. The proposed development is located adjacent to MiWay Bus Routes 8 Cawthra, 53 Kennedy, 3 Bloor, about 300 m to the Miway Bus Route 2 Hurontario, 103 Hurontario Express, 302 Philip Pocock-Bloor West (School Route), GO Bus Route 21 Milton at Hurontario Street and Elm Drive East. It should be noted that the Hurontario LRT project are expected to complete on fall 2024, that will contribute new 18-kilometre dedicated bus lane with 19 bus stops from Brampton to Mississauga and all connection in between. The proposed development is located about 800 m (less then 10-minute walk) to the Burnhamthorpe Station at the Hurontario Street and Burnhamthorpe Road intersection. It is NexTrans' opinion that the proposed development will contribute a healthy transit ridership for the existing Mississauga transit system in the area. **Figure 8** illustrates the Hurontario LRT map.

The area is currently well serviced by a sufficient network of sidewalks, with sidewalks are available on both sides of Mississauga Valley Boulevard, Kaneff Crescent, Obelisk Way and Elm Drive East. There are dedicated bicycle lanes on Mississauga Valley Boulevard and Elm Drive East.

As part of this Study, NexTrans will provide appropriate recommendations that the proposed development can implement to continue positively to the area and community.

Figure 8 – Hurontario LRT Map

Source: metrolinx.com/en/greaterregion/projects/hurontario-lrt.aspx

4.0 FUTURE BACKGROUND CONDITIONS

4.1. Analysis Horizon

For the purposes of this assessment, it is assumed that the proposed development will be fully built-out by 2025. As such, a five-year horizon (2030) after the entire building process of the proposed development has been carried out for the study analysis.

4.2. Future Background Corridor Growth

A general growth rate of 2.0% compounded was applied to the all the movements on Mississauga Valley Boulevard and Elm Drive East to represent traffic growth from beyond the study area. It is our opinion that the proposed development will have negligible impact to the unsignalized intersection with no more than 2% of traffic volumes added to the existing traffic conditions. Based on the information provided by the City of Mississauga staff, the growth rate for the Hurontario Street from 2020 to 2023 will be -30% on northbound and -31% on southbound during AM peak hour, and -28% on

northbound and -30% on southbound during PM peak hour, respectively. These rate for Hurontario Street represents a one-time total change, and the changes in travel patterns as a result of LRT implementation. As such, for the conservative analysis, no corridor growth will be reflected in the analysis.

4.3. Background Development Applications

Based on the City of Mississauga development portal website, there are multiple background developments in the study area which will be included in the assessment are noted below.

- 16 Elm Street (Poulos Chung , Aug 2020): 1365 residential units, 5300 sqft daycare, 4870 sqft retail.
- 325 Burhamthorpe Road West (LEA Consulting Ltd., Nov 2021): 4300 residential units.
- 25 Hillcrest Avenue and 3154 Hurontario Stret (BA GROUP, May 2022): 2224 residential units, 6,270 sqm retail, 8,692 sqm commercial, 6,216 sqm community.
- 3085 Hurontario Street (CGH Transportation, July 2021): 1,081 residential units, 11,044 sqft of mixed-use spaces.
- 3420 &3442 Hurontario Street (Crozier, November 2020): 680 residential units, 2,001 sqm of retail.

4.4. Future Background Traffic Assessment

The estimated 2030 future background traffic volumes are illustrated in **Figure 9** and were analyzed using Synchro Version 11 software. The detailed calculations are provided in **Appendix E** and summarized in **Table 2**.

		Weeko	lay AM Peak	Hour	Weekday PM Peak Hour			
Intersection	Key Movement	LOS (v/c)	Delay (s)	Queue 95 th (m)	LOS (v/c)	Delay (s)	Queue 95 th (m)	
	Overall	B (0.40)	11.7		B (0.58)	13.8		
Mississauga Valley	EB – L	B (0.19)	16.0	9.5	B (0.30)	20.9	14.7	
	EB – TR	B (0.18)	16.0	13.1	B (0.26)	20.4	18.3	
Boulevard and Elm	WB – LTR	B (0.33)	15.2	16.7	B (0.21)	18.5	14.1	
Drive East	NB – L	A (0.14)	5.2	6.3	A (0.39)	6.8	14.3	
(signalized)	NB – TR	A (0.17)	5.5	14.0	A (0.41)	6.6	42.5	
,	SB – L	B (0.03)	10.6	3.0	B (0.11)	10.4	8.4	
	SB - TR	B (0.50)	13.1	33.4	B (0.74)	18.6	90.4	
	Overall	E (1.06)	63.5		E (1.11)	88.2		
	EB – L	F (1.08)	126.4	191.1	E (0.82)	75.6	64.2	
	EB – TR	D (0.54)	44.6	103.4	E (0.82)	65.3	107.7	
Huraptoria Streat and	WB – L	D (0.39)	42.2	38.0	D (0.70)	71.3	33.5	
Film Drive (signalized)	WB – TR	D (0.32)	40.4	61.1	F (0.56)	50.3	73.9	
Elin Drive (Signalized)	NB – L	E (0.85)	107.6	84.6	C (2.24)	644.5	197.9	
	NB -TR	E (1.05)	74.0	393.8	C (0.87)	28.1	317.1	
	SB – L	D (0.72)	109.1	13.2	E (0.71)	79.3	54.4	
	SB - TR	D (0.90)	44.6	248.4	E (1.08)	73.7	450.1	
Elm Drive East and		A (0.02)	76	0.6	A (0.05)	0 0	10	
Obelisk Way		A (0.03)	10.6	0.0	R (0.05)	0.0	1.Z 2.5	
(unsignalized)	SD - LK	В (0.12)	10.0	J. I	В (0.10)	11.5	2.0	
Obalisk Way and	EB – LTR	A (0.00)	0.1	0.0	A (0.00)	0.2	0.0	
	WB – LTR	A (0.02)	4.0	0.4	A (0.03)	2.4	0.5	
(unsignalized)	NB – LTR	A (0.05)	9.6	1.2	B (0.08)	10.0	1.7	
	SB – LTR	B (0.00)	10.0	0.1	B (0.00)	10.7	0.1	
Mississauga Valley								
Boulevard and Kaneff	EB – LR	B (0.10)	10.4	2.6	B (0.11)	13.3	2.7	
Crescent	NB - LT	A (0.01)	7.7	0.3	A (0.08)	8.9	1.9	
(unsignalized)								

Table 2 -	- 2030	Future	Background	Levels	of Service
-----------	--------	--------	------------	--------	------------

Under the future background conditions, similar to the existing conditions, the intersection operation capacity analysis indicates that all intersections considered are expected to continue operating at acceptable levels of service, except for the intersection of Hurontario Street and Elm Drive, the eastbound left and northbound thru due to high turning movement of the background development, it is our recommendation that the City should monitor these movements in the future when the background developments fully build out. It should be noted that the lane configurations for Hurontario Street was provided by City of Mississauga's staff to respect the Hurontario LRT project that expected to complete on Fall 2024, was applied to this horizon year assessment. The lane reduction on Hurontario from three through lanes in each direction to two through, and left turn lanes will be protective only. As such, no physical improvement is required at this horizon year, due to the change of Hurontario LTR.

5.0 SITE TRAFFIC

5.1. Proposed Development

As indicated, the redevelopment proposal includes a 40-storey residential building with 467 dwelling units.

The 2016 Transportation Tomorrow Survey (TTS) and the Trip Generation Manual, 10th Edition published by the Institute of Transportation Engineers (ITE) were reviewed to estimate the modal split, trip distribution and trip generation for the proposed development.

5.2. Modes of Travel Assessment in the Area

Table 3 summarizes the travel mode split information, based on the review of the 2016 Transportation Tomorrow Survey data, for traffic zones 3863,3852,3864. The detailed analysis and TTS data extraction are included in **Appendix F**.

	Trips Made by Traffic Zones 3863									
Time	Auto Driver Auto Passe		Taxi/Paid Ride Share		Cycle	Walk				
AM Peak Period (6:00-9:00 AM)	53%	10%	1%	26%	0%	10%				
PM Peak Period (3:00-6:00 PM)	53%	18%	1%	9%	2%	17%				

Table 3 – Modes of Travel based on 2016 TTS Data for Traffic Zones 3863,3852,3864

Based on the information outlines in the table above, the predominant modes of travel to and from the area is auto mode (auto drive and auto passenger), which account to nearly 64% during the morning peak periods and 72% during the afternoon peak periods.

5.3. Site Trip Generation

For the purposes of this assessment, the *Trip Generation Manual, 10th Edition* published by the Institute of Transportation Engineers (ITE) was reviewed to estimate the site generated trips. Based on our review, the selected corresponding land use code is "Multifamily Housing High-Rise General/Suburban" Land Use Code (LUC) 222. **Table 4** summarizes the site trip generation estimate for the current development proposal based on the ITE trip rates using fitted curve equations, where appropriate.

The proposed development is expected to generate:

- 144 total two-way trips (35 inbound and 109 outbound) and 167 total two-way trips (102 inbound and 65 outbound) during the morning and afternoon peak hours, respectively.
- 92 total two-way auto trips (22 inbound and 70 outbound) and 120 total two-way auto trips (73 inbound and 47 outbound) during the morning and afternoon peak hours, respectively.
- 37 total two-way transit trips (9 inbound and 28 outbound) and 15 total two-way transit trips (9 inbound and 6 outbound) during the morning and afternoon peak hours, respectively.
- 15 total two-way active trips (4 inbound and 11 outbound) and 32 total two-way active trips (20 inbound and 12 outbound) during the morning and afternoon peak hours, respectively.

1110	Magnitude	Deremeter	Modal Split		Morning Peak			Afternoon Peak		
LUC	(unit)	Farameter	AM	PM	IN	OUT	TOTAL	Afternoon Per IN OUT 102 65 9 6 18 11 2 1 73 47	TOTAL	
Multifamily Housing	467	Total trips	100%	100%	35	109	144	102	65	167
		Transit Trips	26%	9%	9	28	37	9	6	15
(High-rise) (LUC		Walking Trips	10%	17%	4	11	15	18	11	29
222) General Urban/Suburban		Cycling Trips	0%	2%	0	0	0	2	1	3
		Auto Trips	64%	72%	22	70	92	73	47	120

Table 4 – Site Total Trip Generation for Proposed Development

5.4. Site Trip Distribution and Assignment

The 2016 Transportation Tomorrow Survey (TTS) data was reviewed for traffic zones 3863,3852,3864 in order to estimate the general trip distribution for the proposed development.

Table 5 summarizes the site trip assignment based on the 2016 TTS and existing transportation network in the area for the residential component of proposed development.

General Direction of Travel		AM	РМ		
(To/From)	IN	OUT	IN	OUT	
North (Hurontario St/403)	42%	35%	41%	39%	
South (Hurontario St/ QEW)	30%	31%	25%	29%	
East (Burnhamthorpe Rd/Centre Parkway)	14%	17%	17%	16%	
West (Burnhamthorpe Rd/Centre Parkway)	14%	17%	17%	16%	
Total	100%	100%	100%	100%	

Table 5 – Site Trip Distribution

NexTrans also calculated the trip distribution based on the existing traffic turning movement count of the intersection Hurontario Street and Elm Drive, **Table 6** summarized the trip distribution based on the existing TMC. Based on the reviewing the Trip Generation between existing condition and TTS data, it appears that the percentage is similar, so to be consistent, Nextrans used the TTS data for trip distribution.

General Direction of Travel (To/From)	AM	PM
North	46%	42%
South	39%	46%
East	7%	6%
West	8%	6%
Total	100%	100%

Table 6 – Existing Trip Distribution

Figure 9 illustrates the proposed development generated traffic volumes. It should be noted that the auto site trip distribution and assignment have been taken into consideration the TTS information, existing turning restrictions, as well as existing intersection operations and capacity constraints.

Figure 10 – Site Generated Traffic Volumes

6.0 FUTURE TOTAL TRAFFIC CONDITIONS

6.1. Future Total Traffic Assessment for Auto Mode

The estimated future total traffic volumes (future background traffic volumes plus site generated traffic volumes) are illustrated in **Figure 10** and were analyzed using Synchro Version 11 software. The detailed calculations are provided in **Appendix G** and summarized in **Table 7**.

The future total traffic volumes are illustrated in Figure 10, based on the layering of Figure 9 and Figure 8.

		Weekday AM Peak Hour			Weekday PM Peak Hour			
Intersection	Key Movement	LOS (v/c)	Delay (s)	Queue 95 th (m)	LOS (v/c)	Delay (s)	Queue 95 th (m)	
	Overall	B (0.40)	11.7		B (0.58)	13.9		
	EB – L	B (0.18)	15.9	9.5	C (0.30)	20.8	14.7	
Mississauga Vallev	EB – TR	B (0.19)	16.0	13.6	C (0.26)	20.4	18.5	
Boulevard and Elm	WB – LTR	B (0.33)	15.1	16.6	B (0.21)	18.5	14.1	
Drive East	NB – L	A (0.15)	5.2	6.7	A (0.41)	6.9	15.1	
(signalized)	NB – TR	A (0.17)	5.3	14.2	A (0.41)	6.6	42.7	
	SB – L	B (0.03)	10.7	3.1	B (0.11)	10.6	8.4	
	SB - TR	B (0.50)	13.2	33.7	B (0.75)	18.9	90.6	
	Overall	E (1.11)	73.8		F (1.13)	90.3		
	EB – L	F (1.14)	148.7	198.0	F (0.90)	95.9	67.4	
	EB – TR	D (0.54)	44.0	103.4	E (0.82)	65.3	107.7	
Library tanks Otras tanget	WB – L	D (0.48)	43.8	48.2	F (0.87)	105.7	45.6	
Hurontario Street and	WB – TR	D (0.35)	40.5	67.5	D (0.61)	51.9	79.7	
Eim Drive (signalized)	NB – L	E (1.07)	180.6	84.6	F (2.24)	644.5	197.9	
	NB -TR	E (1.09)	89.8	408.7	C (0.88)	29.3	323.5	
	SB – L	D (0.62)	86.5	31.3	F (0.93)	121.0	78.5	
	SB - TR	D (0.87)	41.0	248.4	E (1.08)	73.7	450.1	
Elm Drive East and		A (0.04)	77	1.0	A (0.00)	8.0	0.3	
Obelisk Way		R (0.04)	11.1	1.0 6.0	P (0.09)	0.Z 12.6	2.J 5.0	
(unsignalized)	30 - LK	В (0.21)	11.4	0.0	D (0.10)	12.0	5.0	
Obelick Way and	EB – LTR	A (0.00)	0.1	0.0	A (0.00)	0.2	0.0	
	WB – LTR	A (0.03)	4.8	0.6	A (0.03)	2.6	0.6	
(unsignalized)	NB – LTR	A (0.06)	9.7	1.6	B (0.08)	10.0	1.9	
(unsignalized)	SB – LTR	B (0.00)	10.3	0.1	B (0.00)	10.9	0.1	
Mississauga Valley								
Boulevard and Kaneff	EB – LR	B (0.14)	11.7	3.7	C (0.19)	19.1	5.3	
Crescent	NB - LT	A (0.01)	7.7	0.0	A (0.08)	8.9	1.9	
(unsignalized)								
Obelisk Way and Site	WB – LR	A (0.09)	9.9	2.3	A (0.06)	9.9	1.6	
Access (unsignalized)	SB - LT	A (0.00)	0.2	0.0	A (0.01)	1.1	0.2	

Table 7 – 2030 Future Total Levels of Service

Under the future total conditions, similar to the future background conditions, the intersection operation capacity analysis indicates that all intersections considered are expected to operate at acceptable levels of service, except for the intersection of Hurontario Street and Elm Drive, the eastbound left and northbound thru due to high turning movement of the background development, it is our recommendation that the City should monitor these movements in the future when the background developments fully build out.

The analysis indicates that the proposed access onto Obelisk Way is expected to operate at acceptable levels of service with minimal delays or queues. No improvement to the existing road network is required to accommodate the proposed development.

6.2. Active Transportation Mode Assessment

Sidewalk

Currently, there are sidewalks located on both sides of the Hurontario Mississauga Valley Boulevard, Kaneff Crescent, Obelisk Way and Elm Drive East in the vicinity of the proposed development.

Since the proposed development will utilize the sidewalks on Kaneff Crescent and Mississauga Valley Boulevard, no improvements are necessary to accommodate the proposed development. Appropriate suggestions will be provided in later sections of the report that will speak to the pedestrian requirement as part of the proposed development.

Bicycle Facility

Currently, there are two dedicated cycling routes in the general area:

- Dedicated north-south bicycle lanes along Mississauga Valley Boulevard;
- Dedicated east-west bicycle lanes along Elm Drive East.

It is Nextrans' opinion that cycling facilities could be improved in the area, as part of the future City capital projects or cycling initiatives. These types of projects are beyond the scope of the proposed development. To continue to support the modal split and transportation demand management incentives for the area, it is recommended that, at the minimum, the proposed development meet the City's bicycle parking requirements.

6.3. Transit Mode Assessment

As indicated, the proposed development is expected to generate 37 new two-way transit trips (9 inbound and 28 outbound) and 15 new two-way transit trips (9 inbound and 6 outbound) during the morning and afternoon peak hours, respectively.

Table 8 summarizes the transit trip assignments based on the transit trip generation and distribution estimated from the 2016 Transportation Tomorrow Survey data.

Transit Pouto		AM Peak Hou	r	PM Peak Hour					
ITalisit Route	In	Out	Total	In	Out	Total			
Total Transit Trips	9	28	37	9	6	15			
8 Cawthra Northbound	1	4	5	1	1	2			
8 Cawthra Southbound	1	4	5	1	1	2			
3 Bloor Eastbound	1	5	6	1	1	2			
3 Bloor Westbound	1	5	6	1	1	2			
53 Kennedy Northbound	4	5	9	4	1	5			
53 Kennedy Southbound	1	5	6	1	1	2			

Table 8 – Site Transit Trip Assignment

Nextrans has reviewed the existing transit schedules for the Miway Bus Route during the weekday morning and afternoon peak hours. **Table 9** summarizes the existing Miway bus route frequency. It should be noted that the numbers of transit vehicles per hour were calculated using the 60 minutes divided by the vehicle headway based on the latest schedules available on Miway Website (https://web.mississauga.ca/miway-transit/).

Transit Douto	Weekday	AM Peak Hour	Weekday PM Peak Hour			
Transit Route	Headway	No. transit veh/hr	Headway	No. transit veh/hr		
8 Cawthra Northbound	10 mins	6	10 mins	6		
8 Cawthra Southbound	10 mins	6	10 mins	6		
3 Bloor Eastbound	10 mins	6	10 mins	6		
3 Bloor Westbound	10 mins	6	10 mins	6		
53 Kennedy Northbound	20 mins	3	20 mins	3		
53 Kennedy Southbound	20 mins	3	20 mins	3		

Table 9 – Transit Service Frequency

Table 10 summarizes the future transit passenger demand from the proposed development per each transit vehicle during the morning and afternoon peak hours. The numbers of passenger demand per transit vehicle was calculated by using the total peak hour passenger demand generated by the proposed development divided by the numbers of transit vehicles per hour.

Transit Pouto	Weekday AM Peak Hour			Weekday PM Peak Hour				
Industi Roule	Inbound Outbour		Itbound	Inbound		Outbound		
8 Cawthra Northbound	0.2	pass/veh	0.6	pass/veh	0.2	pass/veh	0.2	pass/veh
8 Cawthra Southbound	0.2	pass/veh	0.6	pass/veh	0.2	pass/veh	0.2	pass/veh
3 Bloor Eastbound	0.2	pass/veh	0.8	pass/veh	0.2	pass/veh	0.2	pass/veh
3 Bloor Westbound	0.2	pass/veh	0.8	pass/veh	0.2	pass/veh	0.2	pass/veh
53 Kennedy Northbound	1.3	pass/veh	1.6	pass/veh	1.3	pass/veh	0.3	pass/veh
53 Kennedy Southbound	0.3	pass/veh	1.6	pass/veh	0.3	pass/veh	0.3	pass/veh

 Table 10 – Future Transit Passenger Demand from the Proposed Development

As indicated in Table 10, the transit passenger demands generated by the proposed development per transit vehicle is very low (at most 4 passenger per transit vehicle per hour). As such, the proposed development impact on transit service is negligible and no improvements are required.

In reality, some of passengers could be bunched together during the peak 15 minutes, instead of spreading during the entire peak hour. Even if this is the case, our estimates indicate that the demand per vehicle is extremely low and can be accommodated without the need for additional transit vehicles or improvements during both the morning and afternoon peak periods.

7.0 SITE PLAN REVIEW

7.1. Loading Requirement

As indicated, the redevelopment proposal consists of total 467 rental dwelling unit.

The City of Mississauga By-Law Part 3 – Parking, Loading and Stacking Lane Regulations (Revised: 2017 November 30) was reviewed to determine the loading requirement for the proposed development. Based on the current City's By-law, the proposed development will require one loading space that have an obstructed rectangular area with a minimum width of 3.5 m and a minimum length of 9.0m.

AutoTURN software was used (Garbage Truck) to generate vehicular turning templates to confirm and demonstrate the accessibility for the required loading space. **Figure 12** illustrates the turning movement templates for passenger vehicles and Garbage truck.

Based on our review of the site plan, the warning light and a convex mirror will be installed on the wall where applicable to warning the passengers car going out from the underground parking, for safety concerns.

7.2. Site Access Review

Under the existing condition, a full moves access is provided onto Obelisk Way. The redevelopment proposal will provide one full movement access via Obelisk Way. The analysis indicates that the proposed access onto Obelisk Way is expected to operate at acceptable levels of service with minimal delays or queues.

7.2.1. TAC 2017 Guidelines

The Transportation Association of Canada (TAC) Geometric Design Guide for Canadian Roads 2017 Edition describes spacing considerations for driveways on opposite side of a roadway. **Section 8.9.9. Spacing Considerations FOR DRIVEWAYS On Opposite Sides Of The Road** states that "*For low volume roadway, such as locals and most collectors, the spatial relationship between driveways on opposite sides of the road is not necessary design consideration. Similarly, if one or both of the driveways are low volume, this relationship does not impact traffic operations."* Both of the proposed development and the Obelisk One development have been considered as low volume of traffic come in and out, therefore, it is our opinion that the proposed access location will not impact traffic operations.

Pedestrian Safety

According to the Section 6.4.4 Corner Radii, it states that "In general, a smaller corner radius provides more pedestrian queuing space, facilitates a shorter crossing distance, enables straight and direct connections between sidewalk, curb ramp and crosswalk, and increases the visibility of pedestrians. A small corner radius may also encourage slower motor vehicle turning speeds. Figure 6.4.5 illustrates the effect of corner radius on pedestrian crossing distance and directness. As corner radius increases, the pedestrian crossing distance increases or directness is reduced to minimize crossing distance, changes in directness of crossing can impact visibility and likelihood of pedestrian crossing within the marked crosswalk." Based on the latest site plan, the sidewalk will be continuous across the proposed access, with a crossing setback of 1.455 meter, to provide the safety for the pedestrian from turning vehicle. The proposed access curb northside radius is 4.5m and 6.0m; and southside radius is 5.4m and 10.53m, this can helps reduce the cross-walking distance and provide safety from turning vehicle ingress and egress.

Corner Clearances at Minor Intersections

According to the Section 8.9.7 Corner Clearances at Minor Intersections, it states that "A corner clearance is the distance between the near curb of a roadway intersection and the near edge of a driveway throat. The distance is made up of three components: the intersection corner curb radius, a tangent section (C) and the radius or flare for the driveway.

Short tangent separations (C) are acceptable for residential land uses where driveway and roadway traffic volumes are normally low. A minimum distance (C) of 2.0 m is suggested for residential driveway. The result minimum corner clearance is than about 11.0 m: 6.0 m for the minimum corner curb radius, the 2.0 m distance (C), and a 3.0 m minimum driveway curb radius."

Figure 8.9.2: Driveway Spacing Guidelines- Locals and Collectors

Figure 13 – Proposed Site Access Spacing

Based on the TAC, the minimum requirement for the corner clearance is 17m (corner radius is 9m + C is 2m + curb radius is <math>6m). Based on the latest site plan, the corner radius is 9m, C is 7.6 m, and curb radius is 6m, in total result of corner clearance is 22.6 m, which is meet the minimum requirements of the corner clearance.

It is our opinion that, the proposed access location is safety and meet the TAC standard, NexTrans only recommends the crossing sidewalk should be painted as striping, and the stop sign will be installed at the access to provide the most convenient and safety for the pedestrian.

7.3. Sight Distance Analysis

7.3.1. Stopping Sight Distance

For the purpose of sight distance assessment, a design speed of 40 km/hr under stop control was utilized. Sight distance requirements were considered for passenger vehicles approaching and departing the stopped position at the proposed site access onto Campus Road.

It is noted that there is a negligible change in elevation for all approaches on both Obelisk Way. As such, a road grade of 0% was used.

In accordance with the Geometric Design Guide for Canadian Roads by the Transportation Association of Canada (TAC 2017), the required stopping distance for left turn from stop sight distance- case B1 based on the **Table 9.9.4** of the TAC 2017.

Design Speed	Stopping Sight	Intersection Sight Dista	nce for Passenger Cars		
(km/h)	Distance (m)	Calculated (m)	Design (m)		
20	20	41.7	45		
30	35	62.6	65		
40	50	83.4	85		
50	65	104.3	105		
60	85	125.1	130		
70	105	146.0	150		
80	130	166.8	170		
90	160	187.7	190		
100	185	208.5	210		
110	220	229.4	230		
120	250	250.2	255		
130	285	271.1	275		

Table 9.9.4: Design Intersection Sight Distance – Case B1, Left Turn From Stop

Table 3 – Stopping Sight Distance Assessment for the proposed access

Obelisk Way and Site	Stopping Sight Distance							
Access	Required	Achieved	Difference					
North approach	50 m	23 m	-27m					
South approach	50 m	70m	20m					

As summarized in **Table 11**, the required stopping sight distance for the northbound and southbound approaches are 50 m. In comparing the difference between the required and the achieved stopping sight distances for the north and southbound approaches, there is a short of 27 meters and surplus of 20 meters, respectively. <u>As such, it is our opinion</u> that there are adequate stopping sight distances from the west approach for the proposed driveways onto <u>Obelisk Way</u>.

The minimum and maximum achieved stopping sight distance for the proposed driveways onto Obelisk Way from the north approach is 23 m. In comparing the achieved stopping sight distances with the requirement of 50 meters, it is noted that there is shortfall of 27 meters, respectively. It is critical to note that the north approach on Obelisk Way terminates at the T-intersection of Obelisk Way and Kaneff Cres, and as such, vehicles turning onto Obelisk Way from Kaneff Cres will be decelerating as they approach Obelisk Way, allowing approaching drivers to reduce their breaking distance as they are already travelling at slower speeds. On this basis, it is our opinion that there are adequate stopping sight distances from the east approach for the proposed driveways onto Obelisk Way.

7.3.2. Departure Sight Distance

To assesses scenarios where vehicles are departing from the location of the proposed driveway, the departure sight distance was assessed under Case B1 – Left Turn from the Minor Road, in accordance with the *Geometric Design Guide for Canadian Roads (TAC 2017)*. The departure sight distance was assumed to be under stop-controlled conditions.

As stipulated in the *Geometric Design Guide for Canadian Roads (TAC 2017)*, the intersection sight distance along the major road is determined as follows:

Where:

ISD = Intersection sight distance (length of the leg of sight triangle along the major road) (m);

 V_{major} = design speed of the major road (km/h); and,

T_g = time gap for minor road vehicle to enter the major road (s)

Case B1 – Minimum intersection sight distance for vehicles turning left from the proposed driveway onto Campus Road:

ISD = 0.278 x 40 x 7.5 = 83.4 m say 85 m

As previously mentioned, actual departure sight distances at the proposed site access have been determined through vertical profile attached in the appendix H. The departure sight distances at the proposed site access are summarized in **Table 12**.

Obaliah May and Site Assess	Departure Sight Distance						
Obelisk way and Site Access	Required	Achieved	Difference				
North approach	85 m	23 m	-62 m				
South approach	85 m	70m	-15 m				

Table 4 – Departure Sight Distance Assessment for Left Turning Vehicle at the proposed access

As summarized in **Table 12**, the required departure sight distance for the westbound and eastbound approaches are 105 meters, respectively. The minimum and maximum achieved departure sight distances of the proposed driveways onto Obelisk Way from the north and south approach are 23 meters and 70 meters, respectively. In comparing the achieved departure sight distances with the requirement of 85 meters, it is noted that there are minimum and maximum shortfalls of 62 meters and 15 meters, respectively. As previously stated, it is critical to note that as the intersection of Obelisk Way and Kaneff Cres; and Obelisk Way and Elm Drive E are t-configuration, and as such, vehicles turning onto Obelisk Way from Kaneff Cres and Elm Drive E will be decelerating as they approach Obelisk Way, which will provide drivers exiting their driveways enough time to determine whether or not it is safe to exit their driveway. **On this basis, it is our opinion that there are adequate departure sight distances from the east approach for the proposed driveways onto Obelisk Way**.

8.0 PARKING ASSESSMENT

8.1. Vehicle Parking Requirement

The City of Mississauga By-Law 0225-2007 Part 3 – Parking, Loading and Stacking Lane Regulations (Revised: 2017 November 30) is applied to the proposed development. The parking requirement and supply for the proposed development is summarized in **Table 13**.

Туре	No. of Unit	Parking Rates	Parking Requirement	Parking Provided	Difference	
	302 units (one bedroom)	0.8 spaces/unit	242			
Residential – Rental	164 units (two bedroom)	0.8 spaces/unit	131	254	-120	
	1 unit (three bedroom)	0.8 spaces/unit	1			
	467 units 0.20 visitor space		93	46	-47	
	Total		467	300	-167	

Table 13 – City of Mississauga By-Law Vehicle Parking Requirements

Based on the City of Mississauga By-Law 0225-2007 Part 3 – Parking, Loading and Stacking Lane Regulations, a total of 467 parking spaces are required for the proposed development. It is our understanding that the proposed development provides 300 vehicle parking spaces (including 254 parking spaces for resident and 46 parking spaces for visitor) or in

rate of 0.54 spaces/ unit for resident and 0.10 spaces/unit for visitor parking, this presenting a technical shortfall of 167 resident parking spaces (~35.7% reduction).

Given that the proposed development is well-served by existing active transportation network, Mississauga Transit service, future Hurontario LRT and its proximity to all the amenities in the area. It is NexTrans' opinion that the parking rates for the proposed development can and shall be reduced to support transit and TDM measures in order to reduce the numbers of single-occupant-vehicle trips to and from the proposed development.

8.1.1. Recommend Parking Rates for the Proposed Development

The recommended parking rates for the proposed development to support alternative and sustainable modes of transportation are summarized in **Table 14** below, based on the following justifications:

- 1. Proposed development context;
- 2. Existing mode share;
- 3. Household demographic in the area;
- 4. Existing Mississauga Transit Service;
- 5. Available On-Street Parking and Carshare Locations in the Area
- 6. Neighbourhood Context;
- 7. Increase Housing Supply
- 8. Covid-19 Pandemic and Working from Home
- 9. A Reduction to the Minimum Vehicle Parking Requirements is Consistent with Provincial and Regional Direction
- 10. High Residential Vehicle Parking Rates Result in More Car Ownership and More Driving While Reducing Transit Usage
- 11. A Reduce to The Minimum Vehicle Parking Requirements Increases The Supply Of Affordable Housing
- 12. A Reduce to The Minimum Vehicle Parking Requirements Will Help Supporting Local Businesses
- 13. A Reduction to The Minimum Vehicle Parking Requirements Has A Number Of General Benefits and
- 14. Transportation Demand Management.

Table 14 – Recommended Parking Rates for the Proposed Development

Туре	No of Unit	Ratio	Required
Residential Uses	407 1	0.54 space per unit	254 spaces
Visitor Use	467 units	0.10 space per unit	46 spaces
Total Parking Required	d	0.64 spaces per unit	300 spaces

Based on the recommended parking rates noted above, the proposed development will require 300 parking spaces or in rate of 0.64 spaces per dwelling unit. The detail justifications for the proposed reduction and provision for shared parking are outlined the sections below.

8.1.2. Proposed Development Context

As indicated, the redevelopment proposed includes a 40-storey residential building with 467 dwelling units.

Based on NexTrans comprehensive review of the study area, it is evident that there is wide range of different types of land uses currently exist in this area such as mid-rise, high-rise residential, grocery store (Metro), medical offices and pharmacies, schools, churches, employment, banks, restaurant and retail commercial. There are high-rise apartment buildings located immediately north, south, east and west of the site. It should be noted that the site is located approximately 1 km from Square One Shopping Center, or less than 15-minute walk, and approximately 100m from Iona Plaza, or less than 2-minute walk.

8.1.3. Existing Mode Share

NexTrans has conducted a review of the existing mode share based the review of the 2016 Transportation Tomorrow Survey data, for traffic zone 3863,3852,3864. **Table 15** summarizes the mode of travel for the traffic zone 3863,3852,3864 and the detailed analysis and TTS data extraction are included in **Appendix F**.

	Trips Made by Traffic Zones 3863									
Time	Auto Driver	Auto Passenger	Taxi/Paid Ride Share	Transit	Cycle	Walk				
AM Peak Period (6:00-9:00 AM)	53%	10%	1%	26%	0%	10%				
PM Peak Period (3:00-6:00 PM)	53%	18%	1%	9%	2%	17%				

Table 15 – Modes of Travel based on 2016 TTS Data for Traffic Zones 3863,3852,3864

Based on the information outlines in the table above, the predominant modes of travel to and from the area is auto mode (auto drive and auto passenger), which account to nearly 64% during the morning peak periods and 72% during the afternoon peak periods.

It is NexTrans' opinion that if vehicle parking is not provided, residents will make smart and more sustainable choice.

8.1.4. Household Demographic and Car Ownership

NexTrans also reviewed the vehicle ownership for the City of Mississauga Ward 4. **Table 19** summarizes the vehicle ownership based on the 2016 Transportation Tomorrow Survey Data, while the detailed extraction is included in **Appendix F.**

	Household T	уре	Household Size				Number of Available Vehicles					
House	Townhouse	Apartment	1	2	3	4	5+	0	1	2	3	4+
25%	11%	64%	24%	32%	18%	16%	11%	11%	51%	30%	6%	1%

Table 19 - Vehicle Ownership for Ward 4 Based on 2016 TTS Data

As indicated in Table 18 above, there is a large percentage of apartment household in the area (79%), about 24% of a single person and 11% of households not own a car.

Parking management could help increase the number of households that does not own a car as parking management is the best Transportation Demand Management measure that helps reducing the number single-occupant-vehicle trips to and from the proposed development, which is consistent with the City of Mississauga Official Plan policies and sustainability objectives (indicated below).

8.1.5. City of Mississauga Official Plan (2015)

Over the last several decades, the City of Mississauga has relied on the public transit system such as Miway, Metrolinx, GO Transit and other modes of transportation. The integration of transportation and land use planning allows the City to enjoy its success today without widening or building more roads to accommodate population growth.

As indicate in Chapter 8: Create a Multi-Modal City of the Official Plan, future growth within Mississauga will be focused in the area which are well served by the existing public transit system, the existing road network and that have a number of properties with redevelopment potential. The growth areas are generally the locations where good transit access can be provided along bus and Go train stations.

The Official Plan also indicates that: "The City will create a multi-modal transportation network for the movement of people and goods that supports more sustainable communities. The multi-modal transportation system is composed of the following modes of travel:

- Transit;
- Vehicular (e.g., cars and trucks);
- Active transportation (e.g., walking and cycling);
- Rail (passenger and freight); and
- Air travel (passenger and freight).

While vehicle trips will continue to account for a significant share of the total trips, the length of these trips should shorten in response to the to the creation of mixed use nodes that support the daily needs of surrounding residential and business communities, and the share of auto trips will be reduced as opportunities to travel by transit, cycling and walking improve."

Our review of the Official Plan Transportation Policies and directions indicate that there is a need to reduce automobile trips by managing parking in the City in order to reduce single-occupant-vehicle trips and to support other modes of transportation such as public transit and active transportation.

8.1.6. Existing Mississauga Transit Service

The subject site is located adjacent to Miway Bus Routes 8 Cawthra, 53 Kennedy and 3 Bloor, those routes will connect to the City Center Transit Terminal. The proposed development is located about 1 km from City Centre Transit Terminal, which is part of Mississauga Transitway project that delivers 18 kilometers of dedicated busway. The City Centre Transit Terminal is linked to other 11 stations from Winston Churchill Boulevard to Renforth Drive. The proposed development also located about 500 m to Hurontario St and Burnhamthorpe Road intersection which will be part of Hurontario Light Rail (LRT) project that expected to complete on 2024. The Hurontario LRT will delivers 18 kilometres of dedicated bus lane with 19 stops, linking local transit like MiWay, Brampton Transit, Zum and Mississauga Transitway at Square One, in between Brampton and Mississauga.

It is NexTrans opinion that the vehicle parking is required for the residents who need, of the proposed development, and this provision is necessary to support transit and TDM measures in order to eliminate the numbers of single-occupant-vehicle trips to and from the proposed development.

Figure 14 illustrates the Mississauga Transitway.

Figure 14 – Mississauga Transitway

Source: www.metrolinx.com/en/greaterregion/projects/hurontario-Irt.aspx

8.1.7. Available On-Street Parking and Car-share Locations in the Area

Currently, there are on-street parking along north side of Elm Drive East within a few minutes walk to the proposed development.

Carshare services or membership also play an important role in car ownership reduction. This helps minimizing the car ownership costs, as well as the numbers of auto trips to and from the proposed development. This is also a great option for the residents that only need to use the cars on the weekend for grocery shopping or for non-work-related trips. Based on NexTrans' review of the area, there are some available rental car services located within walking distance from the proposed development.

Figure 15 illustrates the Zipcar locations and on-street parking

Source: Google Maps

8.1.8. Neighbourhood Context

Based on NexTrans comprehensive review of the study area, it is evident that there is a wide range of different types of land uses currently exist in this area such as high-rise, low-rise residential, grocery store (Metro), medical offices and pharmacies, schools, employment, banks, restaurant and retail commercial. It should be noted that the site is located approximately 1 km from Square One Shopping Center or less than 15-minute walk, and 100 m from Iona Plan that including Metro, or less than 2-minute walk.

Figure 16 illustrate the approximate walking distance (approximately 15-minute walk or less) to/from the proposed development.

Figure 16 – Available Amenities in the Area Within Walking Distance

Source: Google Maps

8.1.9. Increase Housing Supply

The Greater Toronto Area, including the City of Mississauga, is currently facing a housing shortage and affordability issues. Demand for new housing is high; especially during the COVID-19 pandemic. Once the pandemic is over, housing availability and affordability are expected to further decline. One component that increases the cost of new units in multistorey buildings, is the requirement to provide a minimum rate of parking; even in areas well serviced by transit with historically low vehicle ownership and use rates. The cost of providing one underground parking space is in the range of \$48,000 to \$160,000 per space due to the aggregate impact of land costs, constructability, site constraints and other factors leading to high construction costs (Source: City of Toronto Presentation: Review of Parking Requirements for New Development - Sept 2021).

Furthermore, the more residential or visitor parking spaces that a proposed development has to provide, the more expensive the maintenance costs will be for the owners. Monthly maintenance cost for a parking space could be up to

\$100 per month, on top of the capital costs of a parking space. The provision of less parking can reduce overall maintenance costs and result in lower housing costs/greater housing affordability.

8.1.10. Covid-19 Pandemic and Working from Home

As the COVID-19 pandemic is still impacting globally, in Canada, the Province of Ontario, and particularly, the Town of Aurora and York Region, this pandemic will permanently alter the way people work and travel in the future. For example, since the lockdown in March 2020, the Town experienced a significant decrease in peak hour travel on both private vehicles and other trips in general. This is due to the fact that many office employees and employers elected to work from home.

Based on various reporting from media, this working from home trend for office workers may continue even when the pandemic is over as both employees and employers have invested significantly in remote working equipment and

infrastructures, as well as faster internet and online meeting platforms such as Zoom, Microsoft Teams and Skype for business.

8.1.11. A Reduction to the Minimum Vehicle Parking Requirements is Consistent with Provincial and Regional Direction

The Provincial Policy Statement, 2020 provides policy direction province-wide on land use planning and development to promote strong communities, a strong economy, and a clean and healthy environment. It includes policies which encourage land use patterns that minimize the length and number of vehicle trips and support current and future use of transit and active transportation.

The Growth Plan (2019) contains policies related to reducing dependence on the automobile and promoting and supporting active transportation and transit. Discouraging auto-dependence requires that there are reasonable alternatives to cars available. The Region is working with the Province to ensure that areas near new stations develop in a transit-supportive way. Widely available automobile parking, mandated by parking minimums, supports continued widespread automobile use and puts the financial viability of the transit investments at risk. This is also addressed by the Growth Plan (2019) Policy 2.2.4.9 which says that "within all major transit station areas, development will be supported, where appropriate, by: c) providing alternative development standards, such as reduced parking standards."

8.1.12. High Residential Vehicle Parking Rates Result in More Car Ownership and More Driving While Reducing Transit Usage

Many municipalities have historically required new development projects to include parking, out of fear that if new residents are not provided with parking they will park around the local community, and this will cause issues. The assumption here, behind both the policy and the pushback on reductions, is that people will always choose to drive, and the urban environment should be designed to accommodate that inevitable choice. But new research shows how that assumption is often backwards — offering the strongest evidence yet that parking doesn't just follow driving in cities, but can actually cause it. The new work comes from a group of urban planning scholars at UCLA and UC-Santa Cruz, led by Adam Millard- Ball, and has been published in an issue of the journal Urban Studies. Using an innovative and elegant study method, the researchers show clearly that "increased parking causes more car ownership and more driving while reducing transit use." They continue: "In summary, the evidence from our study robustly supports that urban residents' transportation behavior— but not their employment — is affected by local features of the built environment, and particularly so by parking." The conclusion underscores the importance of urban design in shaping behavior.

This new study distinguishes itself by finding a way to effectively (and ethically) randomize a population: San Francisco's housing lottery. In San Francisco, inclusionary zoning regulations typically require new developments with 10 or more residential units to provide affordable housing, which is offered to income-eligible households through a lottery. This is the gold standard for showing causation through a randomized trial.

In spring 2019 — pre-pandemic — the researchers mailed a travel behavior survey to housing lottery winners in 197 development projects across San Francisco. The short questionnaire, provided in four different languages, asked about typical travel mode (car, transit, bike, walking), car-ownership status, and employment status. Roughly 780 households responded.

When the researchers matched travel behavior to parking requirements, they found "a clear and substantive trend." as parking supply rose, so did car-ownership. In buildings without any parking, only 38 percent of respondents owned a car. Car-ownership climbed as parking requirements increased, reaching 81 percent of respondents in buildings that required one parking space per housing unit. **Figure 17** illustrates the survey responses for car ownership by residential parking ratio.

Figure 17 – Survey Responses for Car Ownership by Residential Parking Ratio

Owning a car isn't the same as using it, but further analysis found a statistically significant relationship between parking supply and driving, too. Generally speaking, households that lived near public transit, or that had good walking or cycling access, tended to use those options more often than households that did not. But when it came to using transit the effect of a building's parking ratio was "more than twice as large" as that of its transit access.

In other words, even in buildings with transit access, parking supply was the stronger pull — increasing driving behavior by the same amount it reduced transit use. When buildings provide ample parking, residents buy a car and drive. But when buildings have transit access without easy parking, residents use other ways to get around.

"Where streets are relatively walkable and transit service is frequent," writes the research team, "parking emerges as the key factor shaping household travel behavior."

One final, critical result: the researchers found no connection at all between parking supply and full-time employment status. That's very important, because it suggests that reducing or eliminating parking spaces won't negatively impact a household's ability to keep a job, as is often feared.

The study represents a significant step forward for urban mobility policy and offers robust, conclusive, and definitive evidence through a controlled study that parking minimums do indeed cause more driving. In alignment with this study, San Francisco eliminated parking minimums. And likewise, supported by this study, San Jose; Cambridge, Massachusetts; Culver City, California; Lexington, Kentucky; and Anchorage, Alaska has all eliminated parking minimums as of October of last year.

The results of this "gold standard" study was published after the preparation of the parking background study, Parking Master Plan and Implementation Strategy, May 2019, prepared by WSP which was used to inform the current Mississauga parking rates implemented December 6, 2021. Had this study proving the direct causation between providing a 0.6 spaces/unit and driving been available before the preparation of their report, it is expected that WSP would have

recommended a much lower minimum parking rate nearing 0.3 to 0.4 spaces/unit and / or recommended a complete elimination of minimum rates in areas well-served by transit.

(Source: https://people.ucsc.edu/~jwest1/articles/MillardBall_West_Rezaei_Desai_SFBMR_UrbanStudies.pdf).

8.1.13. A Reduction to the Minimum Vehicle Parking Requirements Increases the Supply of Affordable Housing

Increasing the supply of affordable housing is a Provincial, Region of Peel and City of Mississauga priority. Parking minimums increase the cost of housing, by adding to construction costs which may in turn be passed on to residents. Typical underground parking costs in the GTA Complex conditions can add up to \$200/ft2 more (Source: AltusGroup - 2021 Canadian Cost Guide). This translates to a \$48,000 - \$160,000 increase in the cost of housing. There are also short term and long-term maintenance/condo fees related to this parking. The ability to avoid the cost of parking by choosing housing without parking is limited by the existence of minimum parking requirements. Many municipalities in Ontario, Canada and abroad have acknowledged that current automobile parking standards represent a barrier to the City achieving its housing vision and have recently made decisions to severely reduce and / or eliminate parking minimums in areas well- served by transit:

8.1.14. A Reduction to the Minimum Vehicle Parking Requirements Will Help Supporting Local Businesses

A lower parking rate can help to support local businesses and improve the overall vibrancy of the community. When tenants are encouraged to use alternative forms of transportation, they are more likely to walk or bike to local shops, restaurants, and other businesses. This can help to support the local economy and create a more vibrant and dynamic community. A study from London England found that implementing policies aimed at reducing auto-dependence and encouraging transportation alternatives to automobiles, increased retail spends by 30% in local town centres and on main streets. And over a month, people who walk to the main street spend up to 40% more than people who drive there.

(Source: https://content.tfl.gov.uk/town-centres-report-13.pdf).

This is consistent with other policy and design interventions implemented in other cities like the City of Toronto, New York City and Seattle. For example, the introduction of bike lanes, and the recent removal of parking minimums, on Vanderbilt Avenue, in New York City, led to a 102% increase in retails sales and, similarly, on Latona Avenue and 65 Street, in Seattle, a similar intervention increased retail sale by 400%.

(Source:https://www.toronto.ca/wp-content/uploads/2019/11/8fd3-Bloor-Bike-Lane-Economic-Impact-ResearchSummary-2019.pdf).

8.1.15. A Reduction to the Minimum Vehicle Parking Requirements has a Number of General Benefits

A reduction in the minimum parking requirements which decreases vehicle trips and increases transit usage (as proven via the UCLA study above) also provides the following benefits:

- Reduced traffic congestion in the area. Refer to Section 5.2 (2016 TTS Mode Share) of this report which demonstrates that a reduction in vehicle parking reduces the number single-occupancy trips.
- Reduced GHG emissions. The grams of CO2 per person kilometer traveled for a car is 243.8 grams, 20 grams for a streetcar, and zero grams for walking and biking.

(Source: https://sensibletransport.org.au/project/transport-and-climate-change/)

• Safer streets for all road users, other drivers, bicyclists, pedestrians. A new controlled study from the Department of Safety and the Environment Institute of Transport Economics in Oslo, Norway showed that the more bikes there were,

the more drivers saw bikes and were able to coexist safely with riders. The number of accidents between cars and bicycles decreased substantially as the number of people riding bicycles increased.

8.1.16. Transportation Demand Management Measures

The main objective of the Transportation Demand Management (TDM) is to encourage residents to take alternative modes of transportation such as public transit, walking, cycling and carpooling. Based on NexTrans' experience in conducting transportation impact studies in various jurisdictions in the Great Toronto and Hamilton Area, parking management is the best Transportation Demand Management measure that helps reducing the number single-occupant-vehicle trips to and from the proposed development, which is consistent with the City of Mississauga Official Plan policies and sustainability objectives. NexTrans provides additional recommendations for the TDM measures in Section 9 of this study to support the recommended parking rates reduction for the proposed development.

8.2. Bicycle Parking

It is our understand that the City Zoning Bylaw has implemented a minimum requirement of 0.6 bicycle parking spaces per unit (Class A – long term) and 0.05 bicycle parking spaces (Class B – short term). therefore, the proposed development will require 303 Class A bicycle spaces and 16 Class B bicycle spaces. The proposed development will provide 280 Class A bicycle parking spaces and 23 Class B bicycle spaces (which will be provided by landscapes with the next SPA submission) which meets the bylaw requirement.

9.0 TRANSPORTATION DEMAND MANAGEMENT

Transportation Demand Management (TDM) is a co-ordinated series of actions aimed at maximizing the people moving capability of the transportation system. It is intended help reduce single-occupant auto use. Potential TDM measures may include but not limited to: TDM supportive land use, bicycle and pedestrian programs and facilities, public transit improvements, preferential treatments for buses and high occupancy vehicles (if applicable), ridesharing, and employee incentives.

Based on the review of the context of the proposed development in relation to the TDM requirements in the City of Mississauga Traffic Impact Study Guidelines, the following TDM measures and incentives are recommended for the proposed development and summarizes in **Table 20**.

Category	TDM Initiative suggested by NexTrans	Recommended Actions	Responsibility
Cycling	 Visible, well-lit, short-term bicycle parking for visitors Secure, indoor bicycle parking storage spaces for tenants/residents Ensure development connects to bicycle network 	 Provide 303 bicycle parking spaces including short-term and long-term 	Applicant
Walking	 Safe, attractive and direct walkways for pedestrian linking building entrances with public sidewalks and with key destinations such as schools. Enhanced pedestrian amenities on-site (benches, landscaping, lighting) 	Provide direct shared pedestrian and cycling connections from the proposed development to Mississauga Valley Boulevard and Elm Drive East	Applicant

Table 20 – Recommended TDM Measures for the Proposed Development

Transit	•	Enhanced walking routes between main	•	Provide direct	•	Applicant
		building entrance(s) and transit		connections from the		. 1.1
		stops/stations		proposed development to		
	•	Bicycle parking located at or near transit		the closest bus stop on		
		stops		Mississauga Valley Drive		
Parking	•	Reduced minimum parking requirements	•	Consider unbundle	•	Applicant
		based on proximity to transit and non-		parking rent with the unit.		
		auto mode	•	Reduced parking supply		
	•	Shared parking with nearby		to support TDM and		
		developments or on-street spaces		transit		
	•	Unbundle parking costs from unit costs				
Information	•	Provide an information brochure/letter	•	Provide a brochure (or	٠	Applicant
Brochure/Letter		for each residential unit that including		letter) to new residents		
		Mississauga Transit System (Miway)		that includes all website		
		schedules, GO Transit, Cycling maps,		links to Mississauga		
		and community maps		Transit System (Miway)		
				schedules, community		
				maps and cycling maps.		
				The information package		
				can be distributed at the		
				rental office.		

10.0 CONCLUSIONS / FINDINGS

10.1. Study Conclusions

The findings and conclusions of the analysis are as follows:

- The proposed development is expected to generate:
 - 144 total two-way trips (35 inbound and 109 outbound) and 167 total two-way trips (102 inbound and 65 outbound) during the morning and afternoon peak hours, respectively.
 - 92 total two-way auto trips (22 inbound and 70 outbound) and 120 total two-way auto trips (73 inbound and 47 outbound) during the morning and afternoon peak hours, respectively.
 - 37 total two-way transit trips (9 inbound and 28 outbound) and 15 total two-way transit trips (9 inbound and 6 outbound) during the morning and afternoon peak hours, respectively.
 - 15 total two-way active trips (4 inbound and 11 outbound) and 32 total two-way active trips (20 inbound and 12 outbound) during the morning and afternoon peak hours, respectively.
- Under the existing, future background and future total conditions, the intersection operation capacity analysis
 indicates that all intersections considered are expected to operate at acceptable levels of service except for the
 intersection of Hurontario Street and Elm Drive, the eastbound left and northbound thru due to high turning
 movement of the background development, it is our recommendation that the City should monitor these
 movements in the future when the background developments fully build out. It should be noted that the lane
 configurations for Hurontario Street was provided by City of Mississauga's staff to respect the Hurontario LRT
 project that expected to complete on Fall 2024, was applied to this horizon year assessment. The lane reduction
 on Hurontario from three through lanes in each direction to two through, and left turn lanes will be protective
 only. As such, no physical improvement is required at this horizon year, due to the change of Hurontario LTR.

- The analysis indicates that the proposed access via Obelisk Way is expected to operate at acceptable levels of service with minimal delays or queues. No improvement to the existing road network is required to accommodate the proposed development.
- For the reasons noted above, it is our opinion that the existing transportation network is adequate and Nextrans does not recommend any additional physical improvements for the area at this time under the future total conditions.
- Based on the City of Mississauga By-Law 0225-2007 Part 3 Parking, Loading and Stacking Lane Regulations, a total of 467 parking spaces are required for the proposed development. It is our understanding that the proposed development provides 300 vehicle parking spaces (including 254 parking spaces for resident and 46 parking spaces for visitor) or in rate of 0.54 spaces/ unit for resident and 0.10 spaces/unit for visitor parking, this presenting a technical shortfall of 167 resident parking spaces (~35.7% reduction).
- It is our understand that the City Zoning Bylaw has implemented a minimum requirement of 0.6 bicycle parking spaces per unit (Class A long term) and 0.05 bicycle parking spaces (Class B short term). therefore, the proposed development will require 303 Class A bicycle spaces and 16 Class B bicycle spaces. The proposed development will provide 280 Class A bicycle parking spaces and 23 Class B bicycle spaces (which will be provided by landscapes with the next SPA submission) which meets the bylaw requirement.
- The proposed development will use the private garbage pick up and a loading space is provided for garbage pick up that will meet the City's By-Law requirement. AutoTURN software was used to demonstrate the turning movement requirements for garbage pick-up, delivery and passenger vehicles at the proposed access via Obelisk Way, the proposed loading and internal circulation to the underground parking.

10.2. Study Recommendations

Based on the assessment, our report recommends that:

- The proposed development implements the TDM measures and incentives identified in this report to support active transportation and transit and to reduce the numbers of single-occupant-vehicle trips to and from the proposed development.
- The proposed development provides direct shared pedestrian and cycling connections from the proposed development building entrances directly to public streets, where appropriate.
- The proposed development considers reduce 35.7% of required parking supply (or 0.64 spaces/unit) to support TDM and transit.
- Based on our review of the site plan, the warning light and a convex mirror will be installed on the wall where applicable to warning the passengers car going out from the underground parking, for safety concerns.
- The City should monitor the eastbound and northbound left movements due to high turning movements of the background developments.

	KEY PLAN
	₩ [™]
	BENCHMARK
	II I
	II I
	II I
	REVISONS
	NO REVISION DATE BY
	Suite 201, 520 industrial Parkway South
	Tel: 905-503-2563 Web: www.nextrans.ca
	PROJECT NAME:
	RESIDENTIAL DEVELOPMENT
	3575 Kaneff Groscont
	Soro Rallell Crescellt
5600	(City of Mississauga)
	DRAWING TITLE:
ï100 3200 [°]	AutoTURN Analysis
Ρ	(P TAC-2017)
Width 2000	
Lock to Lock Time 6.0	CHECKED BY: R.P. PROJECT NO.
steering Angle : 35,9	DRAWN BY: K.A. IN I - 19 - 174 SCALE: NTS DRAWING NO.
	Figure 12
	· · · · · · · · · · · · · · · · · · ·

APPENDIX A

Existing Traffic Data

,,

Turning Movement Count (1 . HURONTARIO ST & ELM DR)

Start Time			HU	N Approa RONTAR	ich IO ST				E	Approac ELM DR	h				HL	S Approa JRONTAR	ich IO ST				v	Approa	ch ł		Int. Total (15 min)	Int. Total (1 hr)
Start Time	Right N:W	Thru N:S	Left N:E	U-Turn N:N	Peds N:	Approach Total	Right E:N	Thru E:W	Left E:S	U-Turn E:E	Peds E:	Approach Total	Right S:E	Thru S:N	Left S:W	U-Turn S:S	Peds S:	Approach Total	Right W:S	Thru W:E	Left W:N	U-Turn W:W	Peds W:	Approach Total		
07:00:00	9	235	6	0	11	250	22	8	14	0	16	44	3	231	9	0	9	243	17	8	25	0	7	50	587	
07:15:00	2	222	7	0	10	231	25	4	8	0	11	37	8	305	6	0	5	319	14	6	26	0	6	46	633	
07:30:00	8	283	10	0	19	301	31	9	29	0	10	69	5	305	12	0	7	322	15	9	28	0	16	52	744	
07:45:00	6	319	8	0	17	333	32	14	24	0	11	70	8	361	11	0	9	380	21	15	33	0	15	69	852	2816
08:00:00	10	377	10	1	11	398	25	16	11	0	11	52	9	400	13	0	7	422	24	7	37	0	6	68	940	3169
08:15:00	9	296	11	0	13	316	33	9	24	0	12	66	17	335	16	0	8	368	19	13	39	0	9	71	821	3357
08:30:00	11	238	11	2	14	262	35	24	17	0	6	76	12	341	26	0	9	379	16	14	22	0	8	52	769	3382
08:45:00	18	252	14	0	8	284	18	16	14	0	12	48	11	387	20	0	25	418	17	15	35	0	14	67	817	3347
09:00:00	14	227	17	1	11	259	17	21	10	0	13	48	5	348	24	0	4	377	15	8	33	0	8	56	740	3147
09:15:00	11	224	11	0	12	246	20	18	9	0	10	47	10	301	17	0	14	328	10	12	25	0	13	47	668	2994
09:30:00	8	230	9	2	15	249	13	9	8	0	13	30	9	314	14	0	5	337	13	10	12	0	6	35	651	2876
09:45:00	8	253	18	0	14	279	16	15	12	0	1	43	11	251	12	0	9	274	15	11	25	0	5	51	647	2706
***BREAK	***	·····				-																				
16:00:00	10	337	23	0	16	370	19	17	12	0	18	48	18	317	17	0	1	352	28	21	16	0	2	65	835	
16:15:00	8	396	19	0	12	423	16	19	5	0	13	40	16	337	20	0	4	373	41	19	10	0	6	70	906	
16:30:00	10	410	18	2	14	440	13	24	9	0	17	46	20	284	11	0	2	315	29	20	11	0	15	60	861	
16:45:00	14	398	20	2	20	434	21	26	8	0	14	55	23	303	15	0	10	341	30	20	11	0	11	61	891	3493
17:00:00	21	460	17	3	10	501	17	19	16	0	10	52	18	289	18	0	6	325	23	23	13	0	14	59	937	3595
17:15:00	8	404	27	0	13	439	20	28	15	0	24	63	18	304	25	0	8	347	31	14	6	0	11	51	900	3589
17:30:00	20	410	22	0	19	452	23	21	16	0	26	60	13	347	8	0	9	368	31	21	10	0	12	62	942	3670
17:45:00	9	383	14	1	19	407	30	23	13	0	19	66	28	316	21	0	10	365	17	18	7	0	21	42	880	3659
18:00:00	6	400	18	1	16	425	21	24	15	0	17	60	20	370	18	0	14	408	27	19	13	0	20	59	952	3674
18:15:00	11	411	26	1	12	449	15	19	14	0	21	48	18	385	22	0	7	425	26	18	11	0	12	55	977	3751
18:30:00	10	371	23	2	14	406	26	21	15	0	8	62	18	340	20	0	12	378	26	25	21	0	19	72	918	3727
18:45:00	10	328	16	1	10	355	14	23	10	0	19	47	15	322	16	0	4	353	25	17	7	0	15	49	804	3651
Grand Total	251	7864	375	19	330	8509	522	427	328	0	332	1277	333	7793	391	0	198	8517	530	363	476	0	271	1369	19672	-
Approach%	2.9%	92.4%	4.4%	0.2%		-	40.9%	33.4%	25.7%	0%			3.9%	91.5%	4.6%	0%			38.7%	26.5%	34.8%	0%				-
Totals %	1.3%	40%	1.9%	0.1%		43.3%	2.7%	2.2%	1.7%	0%		6.5%	1.7%	39.6%	2%	0%		43.3%	2.7%	1.8%	2.4%	0%		7%	-	-
Heavy	10	217	5	0		-	7	63	1	0		-	6	208	6	0		-	3	61	19	0			-	-
Heavy %	4%	2.8%	1.3%	0%		-	1.3%	14.8%	0.3%	0%		-	1.8%	2.7%	1.5%	0%		-	0.6%	16.8%	4%	0%		-	-	-
Bicycles	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-
Bicycle %	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-	-	-			-	-

,,

							Peak I	Hour	: 07:4	5 AM	- 08:4	ISAM W	eathe	r: Fe	N Clo	ouds	(-2.64	°C)							
Start Time			n Huf	I Approa RONTARI	ch O ST				E	Approa	ch				ې HU	5 Approa RONTAR	ich IO ST				v	V Approa ELM DR	ch		Int. Total (15 min)
	Right	Thru	Left	U-Turn	Peds	Approach Total	Right	Thru	Left	U-Turn	Peds	Approach Total	Right	Thru	Left	U-Turn	Peds	Approach Total	Right	Thru	Left	U-Turn	Peds	Approach Total	
07:45:00	6	319	8	0	17	333	32	14	24	0	11	70	8	361	11	0	9	380	21	15	33	0	15	69	852
08:00:00	10	377	10	1	11	398	25	16	11	0	11	52	9	400	13	0	7	422	24	7	37	0	6	68	940
08:15:00	9	296	11	0	13	316	33	9	24	0	12	66	17	335	16	0	8	368	19	13	39	0	9	71	821
08:30:00	11	238	11	2	14	262	35	24	17	0	6	76	12	341	26	0	9	379	16	14	22	0	8	52	769
Grand Total	36	1230	40	3	55	1309	125	63	76	0	40	264	46	1437	66	0	33	1549	80	49	131	0	38	260	3382
Approach%	2.8%	94%	3.1%	0.2%		-	47.3%	23.9%	28.8%	0%			3%	92.8%	4.3%	0%		-	30.8%	18.8%	50.4%	0%			•
Totals %	1.1%	36.4%	1.2%	0.1%		38.7%	3.7%	1.9%	2.2%	0%		7.8%	1.4%	42.5%	2%	0%		45.8%	2.4%	1.4%	3.9%	0%		7.7%	-
PHF	0.82	0.82	0.91	0.38		0.82	0.89	0.66	0.79	0		0.87	0.68	0.9	0.63	0		0.92	0.83	0.82	0.84	0		0.92	-
Heavy	2	50	3	0		55	1	13	1	0		15	3	35	2	0		40	1	12	3	0		16	
Heavy %	5.6%	4.1%	7.5%	0%		4.2%	0.8%	20.6%	1.3%	0%		5.7%	6.5%	2.4%	3%	0%		2.6%	1.3%	24.5%	2.3%	0%		6.2%	-
Lights	34	1180	37	3		1254	124	50	75	0		249	43	1402	64	0		1509	79	36	128	0		243	
Lights %	94.4%	95.9%	92.5%	100%		95.8%	99.2%	79.4%	98.7%	0%		94.3%	93.5%	97.6%	97%	0%		97.4%	98.8%	73.5%	97.7%	0%		93.5%	-
Single-Unit Trucks	1	18	0	0		19	0	0	0	0		0	0	9	0	0		9	0	0	1	0		1	-
Single-Unit Trucks %	2.8%	1.5%	0%	0%		1.5%	0%	0%	0%	0%		0%	0%	0.6%	0%	0%		0.6%	0%	0%	0.8%	0%		0.4%	-
Buses	1	31	3	0		35	1	13	1	0		15	3	24	2	0		29	1	12	2	0		15	-
Buses %	2.8%	2.5%	7.5%	0%		2.7%	0.8%	20.6%	1.3%	0%		5.7%	6.5%	1.7%	3%	0%		1.9%	1.3%	24.5%	1.5%	0%		5.8%	-
Articulated Trucks	0	1	0	0		1	0	0	0	0		0	0	2	0	0		2	0	0	0	0		0	-
Articulated Trucks %	0%	0.1%	0%	0%		0.1%	0%	0%	0%	0%		0%	0%	0.1%	0%	0%		0.1%	0%	0%	0%	0%		0%	-
Bicycles on Road	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	1	0	0		1	-
Bicycles on Road %	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	2%	0%	0%		0.4%	-
Pedestrians	-	-	-	-	55	-	-	-	-	-	40	-	-	-	-	-	33	-	-	-	-	-	38	-	-
Pedestrians%	-	-	-	-	33.1%		-	-	-	-	24.1%		-	-	-	-	19.9%		-	-	-	-	22.9%		-
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
Bicycles on Crosswalk%	-	-	-	-	0%		-	-	-	-	0%		-	-	-	-	0%		-	-	-	-	0%		-

						P	eak H	our:	05:30	РМ -	06:30	PM Wea	ther	Scat	tered	Clou	ds (5	.31 °C)							
Start Time			n Huf	Approa RONTARI	ch O ST				I	E Approa	ich R				н	S Appro JRONTAF	ach RIO ST				v	V Approa ELM DF	ch		Int. Total (15 min)
	Right	Thru	Left	U-Turn	Peds	Approach Total	Right	Thru	Left	U-Turn	Peds	Approach Total	Right	Thru	Left	U-Turn	Peds	Approach Total	Right	Thru	Left	U-Turn	Peds	Approach Total	
17:30:00	20	410	22	0	19	452	23	21	16	0	26	60	13	347	8	0	9	368	31	21	10	0	12	62	942
17:45:00	9	383	14	1	19	407	30	23	13	0	19	66	28	316	21	0	10	365	17	18	7	0	21	42	880
18:00:00	6	400	18	1	16	425	21	24	15	0	17	60	20	370	18	0	14	408	27	19	13	0	20	59	952
18:15:00	11	411	26	1	12	449	15	19	14	0	21	48	18	385	22	0	7	425	26	18	11	0	12	55	977
Grand Total	46	1604	80	3	66	1733	89	87	58	0	83	234	79	1418	69	0	40	1566	101	76	41	0	65	218	3751
Approach%	2.7%	92.6%	4.6%	0.2%			38%	37.2%	24.8%	0%		-	5%	90.5%	4.4%	0%		-	46.3%	34.9%	18.8%	0%		-	•
Totals %	1.2%	42.8%	2.1%	0.1%		46.2%	2.4%	2.3%	1.5%	0%		6.2%	2.1%	37.8%	1.8%	0%		41.7%	2.7%	2%	1.1%	0%		5.8%	-
PHF	0.58	0.98	0.77	0.75		0.96	0.74	0.91	0.91	0		0.89	0.71	0.92	0.78	0		0.92	0.81	0.9	0.79	0		0.88	-
Heavy	1	25	0	0		26	2	9	0	0		11	0	21	0	0		21	0	10	0	0		10	•
Heavy %	2.2%	1.6%	0%	0%		1.5%	2.2%	10.3%	0%	0%		4.7%	0%	1.5%	0%	0%		1.3%	0%	13.2%	0%	0%		4.6%	-
Lights	45	1579	80	3		1707	87	78	58	0		223	79	1397	69	0		1545	101	66	41	0		208	-
Lights %	97.8%	98.4%	100%	100%		98.5%	97.8%	89.7%	100%	0%		95.3%	100%	98.5%	100%	0%		98.7%	100%	86.8%	100%	0%		95.4%	-
Single-Unit Trucks	1	6	0	0		7	2	0	0	0		2	0	4	0	0		4	0	0	0	0		0	-
Single-Unit Trucks %	2.2%	0.4%	0%	0%		0.4%	2.2%	0%	0%	0%		0.9%	0%	0.3%	0%	0%		0.3%	0%	0%	0%	0%		0%	-
Buses	0	19	0	0		19	0	9	0	0		9	0	15	0	0		15	0	10	0	0		10	-
Buses %	0%	1.2%	0%	0%		1.1%	0%	10.3%	0%	0%		3.8%	0%	1.1%	0%	0%		1%	0%	13.2%	0%	0%		4.6%	-
Articulated Trucks	0	0	0	0		0	0	0	0	0		0	0	2	0	0		2	0	0	0	0		0	-
Articulated Trucks %	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0.1%	0%	0%		0.1%	0%	0%	0%	0%		0%	-
Bicycles on Road	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	-
Bicycles on Road %	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	-
Pedestrians	-	-	-	-	66	-	-	-	-	-	83	-	-	-	-	-	40	-	-	-	-	-	65	-	-
Pedestrians%	-	-	-	-	26%		-	-	-	-	32.7%		-	-	-	-	15.7%		-	-	-	-	25.6%		-
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
Bicycles on Crosswalk%	-	-	-	-	0%		-	-	-	-	0%		-	-	-	-	0%		-	-	-	-	0%		-

,,

Turning Movement Count (4 . ELM DR E & MISSISSAUGA VALLEY BLVD)

			N	Approa	ch				E	Approa	ch				s	Approa	ch				w	/ Approa	ch		Int. Total	Int. Total
Start Time	Right N:W	Thru N:S	Left N:E	UTurn N:N	Peds N:	Approach Total	Right E:N	Thru E:W	Left E:S	UTurn E:E	Peds E:	Approach Total	Right S:E	Thru S:N	Left S:W	UTurn S:S	Peds S:	Approach Total	Right W:S	Thru W:E	Left W:N	UTurn W:W	Peds W:	Approach Total	(15 min)	(1 hr)
07:00:00	3	24	2	0	2	29	1	6	12	0	2	19	7	24	5	0	1	36	19	0	4	0	1	23	107	
07:15:00	3	23	1	0	5	27	6	5	6	0	2	17	1	26	5	0	2	32	14	2	4	0	1	20	96	
07:30:00	3	42	2	0	8	47	8	4	12	0	8	24	4	29	9	0	6	42	26	1	8	0	4	35	148	
07:45:00	3	35	2	0	8	40	4	6	13	0	8	23	2	22	7	0	6	31	14	2	13	0	7	29	123	474
08:00:00	9	44	3	0	12	56	6	5	21	0	11	32	4	22	13	0	12	39	26	3	6	0	10	35	162	529
08:15:00	6	45	1	0	4	52	5	8	8	0	1	21	9	21	13	0	7	43	13	2	10	0	5	25	141	574
08:30:00	4	27	1	0	10	32	9	6	8	0	4	23	4	29	10	0	7	43	25	2	7	0	7	34	132	558
08:45:00	4	46	2	0	8	52	3	10	10	0	6	23	3	34	16	0	1	53	17	5	8	0	10	30	158	593
09:00:00	6	36	1	0	3	43	2	7	8	0	8	17	5	36	12	0	9	53	17	4	8	0	0	29	142	573
09:15:00	6	35	1	0	7	42	1	4	13	0	12	18	7	35	13	0	7	55	22	3	4	0	0	29	144	576
09:30:00	6	38	3	0	5	47	3	6	8	0	6	17	3	22	12	0	3	37	15	3	8	0	5	26	127	571
09:45:00	5	29	2	0	6	36	3	2	5	0	4	10	3	26	9	0	6	38	11	3	6	0	8	20	104	517
***BREAK	***																									
16:00:00	8	64	9	0	7	81	4	5	6	0	11	15	14	50	23	0	12	87	26	3	10	0	9	39	222	
16:15:00	11	65	3	0	10	79	1	3	9	0	18	13	11	48	24	0	12	83	29	5	7	0	7	41	216	
16:30:00	16	65	4	0	6	85	4	0	7	0	19	11	11	42	34	0	10	87	28	3	5	0	9	36	219	
16:45:00	16	65	9	0	5	90	5	4	5	0	20	14	17	67	18	0	12	102	31	2	8	0	5	41	247	904
17:00:00	11	67	11	0	8	89	2	3	13	0	10	18	9	64	31	0	15	104	27	4	7	0	11	38	249	931
17:15:00	20	72	9	0	9	101	2	5	4	0	14	11	10	68	26	0	8	104	27	6	9	0	14	42	258	973
17:30:00	20	63	6	0	7	89	3	8	7	0	24	18	18	69	18	0	8	105	24	9	12	0	5	45	257	1011
17:45:00	28	70	5	0	15	103	7	7	7	0	21	21	17	70	36	0	15	123	23	9	17	0	11	49	296	1060
18:00:00	11	56	4	0	14	71	3	4	11	0	16	18	16	56	29	0	9	101	13	5	7	0	9	25	215	1026
18:15:00	10	50	6	0	9	66	3	4	9	0	15	16	15	71	21	0	7	107	25	6	11	0	8	42	231	999
18:30:00	15	50	8	0	6	73	2	4	16	0	22	22	10	61	37	0	16	108	20	3	7	0	8	30	233	975
18:45:00	14	41	7	0	7	62	1	3	6	0	12	10	5	35	22	0	10	62	20	4	14	0	4	38	172	851
Grand Total	238	1152	102	0	181	1492	88	119	224	0	274	431	205	1027	443	0	201	1675	512	89	200	0	158	801	4399	-
Approach%	16%	77.2%	6.8%	0%		-	20.4%	27.6%	52%	0%		-	12.2%	61.3%	26.4%	0%		-	63.9%	11.1%	25%	0%			-	
Totals %	5.4%	26.2%	2.3%	0%		33.9%	2%	2.7%	5.1%	0%		9.8%	4.7%	23.3%	10.1%	0%		38.1%	11.6%	2%	4.5%	0%		18.2%	-	-
Heavy	26	29	0	0		-	0	2	1	0		-	2	24	39	0		-	48	3	21	0		-	-	-
Heavy %	10.9%	2.5%	0%	0%		-	0%	1.7%	0.4%	0%		-	1%	2.3%	8.8%	0%		-	9.4%	3.4%	10.5%	0%			-	-
Bicycles	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-
Bicycle %	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-

NexTrans

,,

							Peak	Hour	: 08:0	0 AM	- 09:	00 AM W	eathe	er: Ov	ercas	t Clou	uds (1	°C)							
Chart Time			N	I Approa	ach				E	Approa	ach				s	Approa	ch				v	/ Approa	ch		Int. Total
Start Time	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	(15 min)
08:00:00	9	44	3	0	12	56	6	5	21	0	11	32	4	22	13	0	12	39	26	3	6	0	10	35	162
08:15:00	6	45	1	0	4	52	5	8	8	0	1	21	9	21	13	0	7	43	13	2	10	0	5	25	141
08:30:00	4	27	1	0	10	32	9	6	8	0	4	23	4	29	10	0	7	43	25	2	7	0	7	34	132
08:45:00	4	46	2	0	8	52	3	10	10	0	6	23	3	34	16	0	1	53	17	5	8	0	10	30	158
Grand Total	23	162	7	0	34	192	23	29	47	0	22	99	20	106	52	0	27	178	81	12	31	0	32	124	593
Approach%	12%	84.4%	3.6%	0%		-	23.2%	29.3%	47.5%	0%			11.2%	59.6%	29.2%	0%		-	65.3%	9.7%	25%	0%		-	-
Totals %	3.9%	27.3%	1.2%	0%		32.4%	3.9%	4.9%	7.9%	0%		16.7%	3.4%	17.9%	8.8%	0%		30%	13.7%	2%	5.2%	0%		20.9%	-
PHF	0.64	0.88	0.58	0		0.86	0.64	0.73	0.56	0		0.77	0.56	0.78	0.81	0		0.84	0.78	0.6	0.78	0		0.89	-
Heavy	6	4	0	0		10	0	1	1	0		2	0	3	5	0		8	10	1	3	0		14	
Heavy %	26.1%	2.5%	0%	0%		5.2%	0%	3.4%	2.1%	0%		2%	0%	2.8%	9.6%	0%		4.5%	12.3%	8.3%	9.7%	0%		11.3%	-
Lights	17	158	7	0		182	23	28	46	0		97	20	103	47	0		170	71	11	28	0		110	-
Lights %	73.9%	97.5%	100%	0%		94.8%	100%	96.6%	97.9%	0%		98%	100%	97.2%	90.4%	0%		95.5%	87.7%	91.7%	90.3%	0%		88.7%	-
Single-Unit Trucks	1	1	0	0		2	0	1	0	0		1	0	0	0	0		0	3	1	0	0		4	-
Single-Unit Trucks %	4.3%	0.6%	0%	0%		1%	0%	3.4%	0%	0%		1%	0%	0%	0%	0%		0%	3.7%	8.3%	0%	0%		3.2%	-
Buses	5	3	0	0		8	0	0	1	0		1	0	3	5	0		8	7	0	3	0		10	-
Buses %	21.7%	1.9%	0%	0%		4.2%	0%	0%	2.1%	0%		1%	0%	2.8%	9.6%	0%		4.5%	8.6%	0%	9.7%	0%		8.1%	-
Bicycles on Road	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	-
Bicycles on Road %	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	-
Pedestrians	-	-	-	-	34	-	-	-	-	-	22	-	-	-	-	-	27	-	-	-	-	-	32	-	-
Pedestrians%	-	-	-	-	29.6%		-	-	-	-	19.1%		-	-	-	-	23.5%		-	-	-	-	27.8%		-
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
Bicycles on Crosswalk%	-	-	-	-	0%		-	-	-	-	0%		-	-	-	-	0%		-	-	-	-	0%		-

0%

NexTrans

Int. Total (15 min)

> > - - -

- - -

, ,

						Р	eak H	lour:	05:00	PM -	06:00	PM Wea	ther:	Over	cast C	loud	s (1.6	5 °C)						
Olard Time			N	I Approa	ach				E	Approa	ich				s	Approa	ch				w	Approa	ch	
Start Time	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total
17:00:00	11	67	11	0	8	89	2	3	13	0	10	18	9	64	31	0	15	104	27	4	7	0	11	38
17:15:00	20	72	9	0	9	101	2	5	4	0	14	11	10	68	26	0	8	104	27	6	9	0	14	42
17:30:00	20	63	6	0	7	89	3	8	7	0	24	18	18	69	18	0	8	105	24	9	12	0	5	45
17:45:00	28	70	5	0	15	103	7	7	7	0	21	21	17	70	36	0	15	123	23	9	17	0	11	49
Grand Total	79	272	31	0	39	382	14	23	31	0	69	68	54	271	111	0	46	436	101	28	45	0	41	174
Approach%	20.7%	71.2%	8.1%	0%			20.6%	33.8%	45.6%	0%		-	12.4%	62.2%	25.5%	0%		-	58%	16.1%	25.9%	0%		-
Totals %	7.5%	25.7%	2.9%	0%		36%	1.3%	2.2%	2.9%	0%		6.4%	5.1%	25.6%	10.5%	0%		41.1%	9.5%	2.6%	4.2%	0%		16.4%
PHF	0.71	0.94	0.7	0		0.93	0.5	0.72	0.6	0		0.81	0.75	0.97	0.77	0		0.89	0.94	0.78	0.66	0		0.89
Heavy	4	4	0	0		8	0	0	0	0		0	0	2	6	0		8	6	0	3	0		9
Heavy %	5.1%	1.5%	0%	0%		2.1%	0%	0%	0%	0%		0%	0%	0.7%	5.4%	0%		1.8%	5.9%	0%	6.7%	0%		5.2%
Lights	75	267	31	0		373	14	23	31	0		68	54	268	105	0		427	94	28	42	0		164
Lights %	94.9%	98.2%	100%	0%		97.6%	100%	100%	100%	0%		100%	100%	98.9%	94.6%	0%		97.9%	93.1%	100%	93.3%	0%		94.3%
Single-Unit Trucks	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0
Single-Unit Trucks %	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%
Buses	4	4	0	0		8	0	0	0	0		0	0	2	6	0		8	6	0	3	0		9
Buses %	5.1%	1.5%	0%	0%		2.1%	0%	0%	0%	0%		0%	0%	0.7%	5.4%	0%		1.8%	5.9%	0%	6.7%	0%		5.2%
Bicycles on Road	0	1	0	0		1	0	0	0	0		0	0	1	0	0		1	1	0	0	0		1
Bicycles on Road %	0%	0.4%	0%	0%		0.3%	0%	0%	0%	0%		0%	0%	0.4%	0%	0%		0.2%	1%	0%	0%	0%		0.6%
Pedestrians	-	-	-	-	39	-	-	-	-	-	69	-	-	-	-	-	46	-	-	-	-	-	41	-
Pedestrians%	-	-	-	-	20%		-	-	-	-	35.4%		-	-	-	-	23.6%		-	-	-	-	21%	
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-

0%

Bicycles on Crosswalk%

0%

0%

, ,

Turning Movement Count (1. KANEFF CRES & MISSISSAUGA VALLEY BLVD)

			N Арр	oroach				S App	oroach				W Ap	proach		Int. Total	Int. Total
Start Time	Right N:W	Thru N:S	UTurn N:N	Peds N:	Approach Total	Thru S:N	Left S:W	UTurn S:S	Peds S:	Approach Total	Right W:S	Left W:N	UTurn W:W	Peds W:	Approach Total	(15 min)	(1 hr)
07:00:00	2	20	0	2	22	22	7	0	0	29	9	8	0	3	17	68	
07:15:00	2	20	0	0	22	34	2	0	0	36	8	8	0	1	16	74	
07:30:00	1	36	0	0	37	30	4	0	1	34	10	10	0	5	20	91	
07:45:00	3	29	0	2	32	37	1	0	1	38	10	7	0	0	17	87	320
08:00:00	1	50	0	1	51	32	3	0	0	35	5	8	0	4	13	99	351
08:15:00	1	45	0	0	46	31	4	0	0	35	7	11	0	1	18	99	376
08:30:00	4	23	0	2	27	43	3	0	0	46	14	7	0	3	21	94	379
08:45:00	3	34	0	1	37	42	3	0	0	45	13	5	0	5	18	100	392
09:00:00	2	38	0	0	40	43	3	0	2	46	4	5	0	2	9	95	388
09:15:00	1	35	0	2	36	33	7	0	0	40	7	7	0	1	14	90	379
09:30:00	2	42	0	0	44	29	3	0	1	32	5	1	0	5	6	82	367
09:45:00	2	26	0	0	28	32	4	0	0	36	10	3	0	4	13	77	344
BREAK	(,
16:00:00	7	77	0	2	84	54	10	0	1	64	2	2	0	3	4	152	
16:15:00	14	75	0	1	89	50	5	0	1	55	8	5	0	2	13	157	
16:30:00	14	71	0	0	85	45	7	0	1	52	11	1	0	6	12	149	
16:45:00	15	84	0	2	99	67	12	0	0	79	8	2	0	6	10	188	646
17:00:00	11	75	0	1	86	58	16	0	0	74	11	3	0	6	14	174	668
17:15:00	13	97	0	0	110	65	13	0	0	78	5	6	0	4	11	199	710
17:30:00	10	84	0	0	94	74	11	0	1	85	6	2	0	0	8	187	748
17:45:00	13	97	0	2	110	78	16	0	2	94	9	6	0	7	15	219	779
18:00:00	12	59	0	1	71	45	20	0	2	65	6	4	0	7	10	146	751
18:15:00	15	65	0	0	80	72	13	0	0	85	7	3	0	10	10	175	727
18:30:00	21	57	0	0	78	54	16	0	1	70	10	4	0	3	14	162	702

NexTrans

18:45:00	11	53	0	1	64	41	9	0	0	50	11	4	0	2	15	129	612
Grand Total	180	1292	0	20	1472	1111	192	0	14	1303	196	122	0	90	318	3093	-
Approach%	12.2%	87.8%	0%		-	85.3%	14.7%	0%		-	61.6%	38.4%	0%		-	-	-
Totals %	5.8%	41.8%	0%		47.6%	35.9%	6.2%	0%		42.1%	6.3%	3.9%	0%		10.3%	-	-
Heavy	1	54	0		-	45	1	0		-	2	2	0		-	-	-
Heavy %	0.6%	4.2%	0%		-	4.1%	0.5%	0%		-	1%	1.6%	0%		-	-	-
Bicycles	-	-	-		-	-	-	-		-	-	-	-		-	-	-
Bicycle %	-	-	-		-	-	-	-		-	-	-	-		-	-	-

, ,

.....

				Peak	Hour: 08:00 A	M - 09:	00 AN	I Wea	ather:	Overcast Clou	uds (1	° C)				
0			N Ар	proach				S App	oroach				W Ap	proach		Int. Tota
Start Time	Right	Thru	UTurn	Peds	Approach Total	Thru	Left	UTurn	Peds	Approach Total	Right	Left	UTurn	Peds	Approach Total	(15 min)
08:00:00	1	50	0	1	51	32	3	0	0	35	5	8	0	4	13	99
08:15:00	1	45	0	0	46	31	4	0	0	35	7	11	0	1	18	99
08:30:00	4	23	0	2	27	43	3	0	0	46	14	7	0	3	21	94
08:45:00	3	34	0	1	37	42	3	0	0	45	13	5	0	5	18	100
Grand Total	9	152	0	4	161	148	13	0	0	161	39	31	0	13	70	392
Approach%	5.6%	94.4%	0%	·	-	91.9%	8.1%	0%		-	55.7%	44.3%	0%		-	-
Totals %	2.3%	38.8%	0%		41.1%	37.8%	3.3%	0%		41.1%	9.9%	7.9%	0%		17.9%	-
PHF	0.56	0.76	0		0.79	0.86	0.81	0		0.88	0.7	0.7	0		0.83	-
Heavy	0	10	0		10	6	0	0		6	0	1	0		1	-
Heavy %	0%	6.6%	0%		6.2%	4.1%	0%	0%		3.7%	0%	3.2%	0%		1.4%	-
Lights	9	142	0		151	142	13	0		155	39	30	0		69	-
Lights %	100%	93.4%	0%		93.8%	95.9%	100%	0%		96.3%	100%	96.8%	0%		98.6%	-
Single-Unit Trucks	0	2	0		2	0	0	0		0	0	0	0		0	-
Single-Unit Trucks %	0%	1.3%	0%		1.2%	0%	0%	0%		0%	0%	0%	0%		0%	-
Buses	0	8	0		8	6	0	0		6	0	1	0		1	-
Buses %	0%	5.3%	0%		5%	4.1%	0%	0%		3.7%	0%	3.2%	0%		1.4%	-
Bicycles on Road	0	0	0		0	0	0	0		0	0	0	0		0	-
Bicycles on Road %	0%	0%	0%		0%	0%	0%	0%		0%	0%	0%	0%		0%	-
Pedestrians	-	-	-	4	-	-	-	-	0	-	-	-	-	13	-	-
Pedestrians%	-	-	-	23.5%		-	-	-	0%		-	-	-	76.5%		-

Peak Hour: 05:00 PM - 06:00 PM Weather: Overcast Clouds (1.65 °C)

		,	,

Start Time			N Арр	oroach				S App	roach				Int. Total			
Start Time	Right	Thru	UTurn	Peds	Approach Total	Thru	Left	UTurn	Peds	Approach Total	Right	Left	UTurn	Peds	Approach Total	(15 min)
17:00:00	11	75	0	1	86	58	16	0	0	74	11	3	0	6	14	174
17:15:00	13	97	0	0	110	65	13	0	0	78	5	6	0	4	11	199
17:30:00	10	84	0	0	94	74	11	0	1	85	6	2	0	0	8	187
17:45:00	13	97	0	2	110	78	16	0	2	94	9	6	0	7	15	219
Grand Total	47	353	0	3	400	275	56	0	3	331	31	17	0	17	48	779
Approach%	11.8%	88.3%	0%		-	83.1%	16.9%	0%		-	64.6%	35.4%	0%		-	-
Totals %	6%	45.3%	0%		51.3%	35.3%	7.2%	0%		42.5%	4%	2.2%	0%		6.2%	-
PHF	0.9	0.91	0		0.91	0.88	0.88	0		0.88	0.7	0.71	0		0.8	-
Heavy	0	8	0		8	5	0	0		5	0	0	0		0	
Heavy %	0%	2.3%	0%		2%	1.8%	0%	0%		1.5%	0%	0%	0%		0%	-
Lights	47	344	0		391	269	56	0		325	31	17	0		48	-
Lights %	100%	97.5%	0%		97.8%	97.8%	100%	0%		98.2%	100%	100%	0%		100%	-
Single-Unit Trucks	0	0	0		0	0	0	0		0	0	0	0		0	-
Single-Unit Trucks %	0%	0%	0%		0%	0%	0%	0%		0%	0%	0%	0%		0%	-
Buses	0	8	0		8	5	0	0		5	0	0	0		0	-
Buses %	0%	2.3%	0%		2%	1.8%	0%	0%		1.5%	0%	0%	0%		0%	-
Bicycles on Road	0	1	0		1	1	0	0		1	0	0	0		0	-
Bicycles on Road %	0%	0.3%	0%		0.3%	0.4%	0%	0%		0.3%	0%	0%	0%		0%	-
Pedestrians	-	-	-	3	-	-	-	-	3	-	-	-	-	17	-	-
Pedestrians%	-	-	-	13%		-	-	-	13%		-	-	-	73.9%		-

NexTrans

, ,

Peak Hour: 08:00 AM - 09:00 AM Weather: Overcast Clouds (1 ° C) MISSISSAUGA I Legend: ### (#.# %) [#.##] TOTAL VEHICLES (HEAVY %) [PHF] * 179 AT 167 Miccon Disilese * ISS IN VINE EV 148 (4.1%) [0.86] KANEFF CR KANEFF CR 16, OBELISKWAY ELMORE Pedestrians Ν 4 S 0 W 13 ELMDRE

af

, ,

Peak Hour: 05:00 PM - 06:00 PM Weather: Overcast Clouds (1.65 °C)

,,

Turning Mayamant Count	10 VANEEE ODEO (
Turning Movement Count	(Z. NANEFF URES (VDELION WAT
Tarring more country		

	N Approach						E Approach S Approach W Approach									Int. Total	Int. Total									
Start Time	Right N:W	Thru N:S	Left N:E	UTurn N:N	Peds N:	Approach Total	Right E:N	Thru E:W	Left E:S	UTurn E:E	Peds E:	Approach Total	Right S:E	Thru S:N	Left S:W	UTurn S:S	Peds S:	Approach Total	Right W:S	Thru W:E	Left W:N	UTurn W:W	Peds W:	Approach Total	(15 min)	(1 hr)
07:00:00	0	0	0	0	0	0	2	6	3	0	0	11	5	0	2	1	0	8	5	6	0	0	0	11	30	
07:15:00	0	0	0	0	1	0	1	3	0	0	1	4	2	2	1	0	1	5	12	7	0	0	3	19	28	
07:30:00	0	0	0	0	4	0	2	4	2	0	1	8	4	1	2	0	0	7	9	10	1	0	3	20	35	
07:45:00	0	1	1	0	2	2	3	2	4	0	1	9	3	1	7	0	4	11	6	11	0	0	8	17	39	132
08:00:00	0	1	0	0	9	1	1	2	9	0	6	12	1	0	5	0	0	6	11	8	0	0	0	19	38	140
08:15:00	0	0	0	0	2	0	0	8	5	0	1	13	4	2	7	0	0	13	7	3	1	0	2	11	37	149
08:30:00	0	0	0	0	2	0	1	4	5	0	2	10	2	1	4	1	0	8	8	12	0	0	0	20	38	152
08:45:00	0	0	0	0	2	0	0	4	7	0	1	11	5	1	3	0	1	9	3	8	0	0	2	11	31	144
09:00:00	0	1	0	0	0	1	2	3	3	0	0	8	2	0	1	0	2	3	3	5	0	0	0	8	20	126
09:15:00	0	0	0	0	2	0	2	3	1	0	0	6	3	1	4	0	0	8	5	7	0	0	0	12	26	115
09:30:00	0	2	0	0	0	2	0	3	2	0	0	5	1	0	3	0	1	4	4	5	0	0	1	9	20	97
09:45:00	0	0	0	0	4	0	0	7	3	0	1	10	3	0	2	0	3	5	2	7	0	0	0	9	24	90
***BREAK	***					-																				
16:00:00	0	0	0	0	3	0	1	7	4	1	1	13	3	0	4	0	1	7	5	3	0	0	1	8	28	
16:15:00	0	0	0	0	8	0	1	5	8	0	5	14	3	1	8	0	2	12	10	8	0	0	2	18	44	
16:30:00	0	0	1	0	2	1	1	7	4	0	2	12	0	0	6	0	1	6	9	10	0	0	0	19	38	
16:45:00	0	0	2	0	3	2	1	11	9	0	3	21	5	0	9	0	0	14	10	6	0	0	0	16	53	163
17:00:00	0	1	0	0	4	1	2	14	7	0	2	23	3	1	2	0	1	6	5	9	0	0	5	14	44	179
17:15:00	0	0	0	0	5	0	1	11	12	0	5	24	5	1	4	0	3	10	8	10	0	0	1	18	52	187
17:30:00	0	0	0	0	3	0	1	9	7	0	1	17	3	0	7	0	3	10	6	6	2	0	3	14	41	190
17:45:00	0	0	0	0	7	0	4	14	3	0	5	21	4	2	4	0	2	10	7	9	0	0	5	16	47	184
18:00:00	0	0	0	0	2	0	3	17	10	0	1	30	7	1	8	0	5	16	6	6	1	0	3	13	59	199
18:15:00	0	0	1	0	6	1	3	12	12	0	2	27	7	0	6	0	1	13	14	4	0	0	5	18	59	206
18:30:00	0	0	2	0	4	2	2	17	7	0	2	26	3	0	7	0	3	10	9	13	1	0	2	23	61	226
18:45:00	0	0	2	0	3	2	2	7	7	0	1	16	5	1	3	0	1	9	8	8	0	0	1	16	43	222
Grand Total	0	6	9	0	78	15	36	180	134	1	44	351	83	16	109	2	35	210	172	181	6	0	47	359	935	-
Approach%	0%	40%	60%	0%		-	10.3%	51.3%	38.2%	0.3%		-	39.5%	7.6%	51.9%	1%			47.9%	50.4%	1.7%	0%			-	-
Totals %	0%	0.6%	1%	0%		1.6%	3.9%	19.3%	14.3%	0.1%		37.5%	8.9%	1.7%	11.7%	0.2%		22.5%	18.4%	19.4%	0.6%	0%		38.4%	-	-
Heavy	0	1	0	0		-	0	0	0	0		-	0	1	0	0		-	1	4	0	0		-	-	-
Heavy %	0%	16.7%	0%	0%		-	0%	0%	0%	0%		-	0%	6.3%	0%	0%			0.6%	2.2%	0%	0%			-	-
Bicycles	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-
Bicycle %	-	-	-	-		-	-	-	-	-		-	-	-		-		-	-	-	-	-		-	-	-

NexTrans

							Peak	Hour	: 07:4	5 AM	- 08:	45 AM W	eathe	r: Ove	ercast	Clou	ds (1	°C)							
Ohard Times			M	Approa	ich				E	Approa	ch				s	Approa	ch				v	V Approa	ach		Int. Total
Start Time	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	(15 min)
07:45:00	0	1	1	0	2	2	3	2	4	0	1	9	3	1	7	0	4	11	6	11	0	0	8	17	39
08:00:00	0	1	0	0	9	1	1	2	9	0	6	12	1	0	5	0	0	6	11	8	0	0	0	19	38
08:15:00	0	0	0	0	2	0	0	8	5	0	1	13	4	2	7	0	0	13	7	3	1	0	2	11	37
08:30:00	0	0	0	0	2	0	1	4	5	0	2	10	2	1	4	1	0	8	8	12	0	0	0	20	38
Grand Total	0	2	1	0	15	3	5	16	23	0	10	44	10	4	23	1	4	38	32	34	1	0	10	67	152
Approach%	0%	66.7%	33.3%	0%		-	11.4%	36.4%	52.3%	0%		-	26.3%	10.5%	60.5%	2.6%		-	47.8%	50.7%	1.5%	0%		-	•
Totals %	0%	1.3%	0.7%	0%		2%	3.3%	10.5%	15.1%	0%		28.9%	6.6%	2.6%	15.1%	0.7%		25%	21.1%	22.4%	0.7%	0%		44.1%	-
PHF	0	0.5	0.25	0		0.38	0.42	0.5	0.64	0		0.85	0.63	0.5	0.82	0.25		0.73	0.73	0.71	0.25	0		0.84	-
Heavy	0	1	0	0		1	0	0	0	0		0	0	0	0	0		0	0	2	0	0		2	
Heavy %	0%	50%	0%	0%		33.3%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	5.9%	0%	0%		3%	-
Lights	0	1	1	0		2	5	16	23	0		44	10	4	23	1		38	32	32	1	0		65	
Lights %	0%	50%	100%	0%		66.7%	100%	100%	100%	0%		100%	100%	100%	100%	100%		100%	100%	94.1%	100%	0%		97%	-
Single-Unit Trucks	0	1	0	0		1	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	-
Single-Unit Trucks %	0%	50%	0%	0%		33.3%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	-
Buses	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	2	0	0		2	-
Buses %	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	5.9%	0%	0%		3%	-
Pedestrians	-	-	-	-	15	-	-	-	-	-	10	-	-	-	-	-	4	-	-	-	-	-	10	-	-
Pedestrians%		-	-	-	38.5%		-	-	-	-	25.6%		-	-	-	-	10.3%		-	-	-	-	25.6%		-

,,

							Peak	Hour	: 05:4	5 PM	- 06:4	5 PM We	ather	Ove	rcast	Clou	ds (1.	.65 °C)							
01				N Appro	bach				E	E Approa	ch				s	Approa	ch				,	W Appro	ach		Int. Total
Start Time	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	(15 min)
17:45:00	0	0	0	0	7	0	4	14	3	0	5	21	4	2	4	0	2	10	7	9	0	0	5	16	47
18:00:00	0	0	0	0	2	0	3	17	10	0	1	30	7	1	8	0	5	16	6	6	1	0	3	13	59
18:15:00	0	0	1	0	6	1	3	12	12	0	2	27	7	0	6	0	1	13	14	4	0	0	5	18	59
18:30:00	0	0	2	0	4	2	2	17	7	0	2	26	3	0	7	0	3	10	9	13	1	0	2	23	61
Grand Total	0	0	3	0	19	3	12	60	32	0	10	104	21	3	25	0	11	49	36	32	2	0	15	70	226
Approach%	0%	0%	100%	0%		-	11.5%	57.7%	30.8%	0%		-	42.9%	6.1%	51%	0%		-	51.4%	45.7%	2.9%	0%			•
Totals %	0%	0%	1.3%	0%		1.3%	5.3%	26.5%	14.2%	0%		46%	9.3%	1.3%	11.1%	0%		21.7%	15.9%	14.2%	0.9%	0%		31%	-
PHF	0	0	0.38	0		0.38	0.75	0.88	0.67	0		0.87	0.75	0.38	0.78	0		0.77	0.64	0.62	0.5	0		0.76	-
Heavy	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	
Heavy %	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	-
Lights	0	0	3	0		3	12	60	32	0		104	21	3	25	0		49	36	32	2	0		70	
Lights %	0%	0%	100%	0%		100%	100%	100%	100%	0%		100%	100%	100%	100%	0%		100%	100%	100%	100%	0%		100%	-
Single-Unit Trucks	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	-
Single-Unit Trucks %	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	-
Buses	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	-
Buses %	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	-
Pedestrians	-	-	-	-	19	-	-	-	-	-	10	-	-	-	-	-	11	-	-	-	-	-	15	-	-
Pedestrians%	-	-	-	-	34.5%		-	-	-	-	18.2%		-	-	-	-	20%		-	-	-	-	27.3%		-

Turning Movement Count Location Name: OBELISK WAY & ELM DR E Date: Tue, Feb 04, 2020 Deployment Lead: Theo Daglis

Turning Movement Count (3 . OBELISK WAY & ELM DR E)

,,

			N Арр	oroach				Е Арј	proach	I			W Ap	I	Int. Total	Int. Total	
Start Time	Right N:W	Left N:E	UTurn N:N	Peds N:	Approach Total	Right E:N	Thru E:W	UTurn E:E	Peds E:	Approach Total	Thru W:E	Left W:N	UTurn W:W	Peds W:	Approach Total	(15 min)	(1 hr)
07:00:00	15	4	0	4	19	1	15	0	0	16	18	4	0	3	22	57	
07:15:00	15	4	0	4	19	0	15	0	0	15	17	5	0	3	22	56	
07:30:00	18	3	0	5	21	1	18	0	0	19	32	4	0	3	36	76	
07:45:00	21	4	0	13	25	4	17	0	0	21	27	6	0	4	33	79	268
08:00:00	20	4	0	10	24	1	29	0	1	30	30	6	0	2	36	90	301
08:15:00	17	3	0	2	20	1	28	0	1	29	21	11	0	0	32	81	326
08:30:00	11	7	0	7	18	1	26	0	1	27	29	7	0	0	36	81	331
08:45:00	13	5	0	9	18	2	29	0	0	31	30	5	0	1	35	84	336
09:00:00	11	2	0	2	13	1	26	0	0	27	30	2	0	0	32	72	318
09:15:00	9	3	0	7	12	0	23	0	0	23	27	7	0	0	34	69	306
09:30:00	8	0	0	4	8	1	27	0	1	28	25	1	0	1	26	62	287
09:45:00	8	0	0	7	8	2	18	0	1	20	23	4	0	1	27	55	258
***BREAK	K ***	,															
16:00:00	6	1	0	8	7	2	39	0	0	41	39	9	0	3	48	96	
16:15:00	14	1	0	1	15	1	43	0	0	44	38	13	0	0	51	110	
16:30:00	14	4	0	5	18	3	49	0	0	52	36	11	1	0	48	118	
16:45:00	11	4	0	4	15	0	35	0	1	35	41	15	0	0	56	106	430
17:00:00	12	0	0	5	12	1	45	0	0	46	42	8	0	0	50	108	442
17:15:00	16	1	0	6	17	2	47	0	1	49	41	13	0	0	54	120	452
17:30:00	9	4	0	1	13	2	48	0	0	50	45	13	0	0	58	121	455
17:45:00	14	1	0	15	15	2	69	0	3	71	47	10	0	3	57	143	492
18:00:00	13	3	0	10	16	1	42	0	1	43	26	18	0	3	44	103	487
18:15:00	20	1	0	6	21	2	35	0	0	37	42	11	0	2	53	111	478
18:30:00	12	2	0	6	14	3	48	0	0	51	29	11	0	3	40	105	462

Turning Movement Count

Turning Movement Count Location Name: OBELISK WAY & ELM DR E Date: Tue, Feb 04, 2020 Deployment Lead: Theo Daglis

NexTrans

, ,

18:45:00	9	1	0	7	10	1	42	0	1	43	39	9	0	0	48	101	420
Grand Total	316	62	0	148	378	35	813	0	12	848	774	203	1	32	978	2204	-
Approach%	83.6%	16.4%	0%		-	4.1%	95.9%	0%		-	79.1%	20.8%	0.1%		-	-	-
Totals %	14.3%	2.8%	0%		17.2%	1.6%	36.9%	0%		38.5%	35.1%	9.2%	0%		44.4%	-	-
Heavy	2	1	0		-	0	66	0		-	69	1	0		-	-	-
Heavy %	0.6%	1.6%	0%		-	0%	8.1%	0%		-	8.9%	0.5%	0%		-	-	-
Bicycles	-	-	-		-	-	-	-		-	-	-	-		-	-	-
Bicycle %	-	-	-		-	-	-	-		-	-	-	-		-	-	-

Turning Movement Count Location Name: OBELISK WAY & ELM DR E Date: Tue, Feb 04, 2020 Deployment Lead: Theo Daglis

,,

			F	Peak Ho	our: 08:00 AM	- 09:0	D AM	Weat	her: C	Overcast Cloud	ls (1 ° (C)				
Otorit Time			N Ар	proach				Е Ар	oroach	1			W App	oroach		Int. Total
Start Time	Right	Left	UTurn	Peds	Approach Total	Right	Thru	UTurn	Peds	Approach Total	Thru	Left	UTurn	Peds	Approach Total	(15 min)
08:00:00	20	4	0	10	24	1	29	0	1	30	30	6	0	2	36	90
08:15:00	17	3	0	2	20	1	28	0	1	29	21	11	0	0	32	81
08:30:00	11	7	0	7	18	1	26	0	1	27	29	7	0	0	36	81
08:45:00	13	5	0	9	18	2	29	0	0	31	30	5	0	1	35	84
Grand Total	61	19	0	28	80	5	112	0	3	117	110	29	0	3	139	336
Approach%	76.3%	23.8%	0%	·	-	4.3%	95.7%	0%		-	79.1%	20.9%	0%		-	-
Totals %	18.2%	5.7%	0%		23.8%	1.5%	33.3%	0%		34.8%	32.7%	8.6%	0%		41.4%	-
PHF	0.76	0.68	0		0.83	0.63	0.97	0		0.94	0.92	0.66	0		0.97	-
Heavy	0	1	0		1	0	12	0		12	11	0	0		11	
Heavy %	0%	5.3%	0%		1.3%	0%	10.7%	0%		10.3%	10%	0%	0%		7.9%	-
Lights	61	18	0		79	5	100	0		105	99	29	0		128	-
Lights %	100%	94.7%	0%		98.8%	100%	89.3%	0%		89.7%	90%	100%	0%		92.1%	-
Single-Unit Trucks	0	1	0		1	0	2	0		2	1	0	0		1	-
Single-Unit Trucks %	0%	5.3%	0%		1.3%	0%	1.8%	0%		1.7%	0.9%	0%	0%		0.7%	-
Buses	0	0	0		0	0	10	0		10	10	0	0		10	-
Buses %	0%	0%	0%		0%	0%	8.9%	0%		8.5%	9.1%	0%	0%		7.2%	-
Bicycles on Road	0	0	0		0	0	0	0		0	0	0	0		0	-
Bicycles on Road %	0%	0%	0%		0%	0%	0%	0%		0%	0%	0%	0%		0%	-
Pedestrians	-	-	-	28	-	-	-	-	3	-	-	-	-	3	-	-
Pedestrians%	-	-	-	82.4%		-	-	-	8.8%		-	-	-	8.8%		-
Bicycles on Crosswalk	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
Bicycles on Crosswalk%	-	-	-	0%		-	-	-	0%		-	-	-	0%		-

_ _ _ _ _ _

Turning Movement Count Location Name: OBELISK WAY & ELM DR E Date: Tue, Feb 04, 2020 Deployment Lead: Theo Daglis

, ,

Peak Hour: 05:00 PM - 06:00 PM Weather: Overcast Clouds (1.65 °C)																
Ctout Time			N Арј	proach				Е Ар	proach				W Ap	proach		Int. Total
Start Time	Right	Left	UTurn	Peds	Approach Total	Right	Thru	UTurn	Peds	Approach Total	Thru	Left	UTurn	Peds	Approach Total	(15 min)
17:00:00	12	0	0	5	12	1	45	0	0	46	42	8	0	0	50	108
17:15:00	16	1	0	6	17	2	47	0	1	49	41	13	0	0	54	120
17:30:00	9	4	0	1	13	2	48	0	0	50	45	13	0	0	58	121
17:45:00	14	1	0	15	15	2	69	0	3	71	47	10	0	3	57	143
Grand Total	51	6	0	27	57	7	209	0	4	216	175	44	0	3	219	492
Approach%	89.5%	10.5%	0%		-	3.2%	96.8%	0%		-	79.9%	20.1%	0%		-	-
Totals %	10.4%	1.2%	0%		11.6%	1.4%	42.5%	0%		43.9%	35.6%	8.9%	0%		44.5%	-
PHF	0.8	0.38	0		0.84	0.88	0.76	0		0.76	0.93	0.85	0		0.94	-
Heavy	0	0	0		0	0	10	0		10	9	0	0		9	-
Heavy %	0%	0%	0%		0%	0%	4.8%	0%		4.6%	5.1%	0%	0%		4.1%	-
Lights	51	6	0		57	7	199	0		206	165	44	0		209	-
Lights %	100%	100%	0%		100%	100%	95.2%	0%		95.4%	94.3%	100%	0%		95.4%	-
Single-Unit Trucks	0	0	0		0	0	0	0		0	0	0	0		0	-
Single-Unit Trucks %	0%	0%	0%		0%	0%	0%	0%		0%	0%	0%	0%		0%	-
Buses	0	0	0		0	0	10	0		10	9	0	0		9	-
Buses %	0%	0%	0%		0%	0%	4.8%	0%		4.6%	5.1%	0%	0%		4.1%	-

Bicycles on Road

Bicycles on Road %

Pedestrians

Pedestrians%

Bicycles on Crosswalk

Bicycles on Crosswalk%

0

0%

-

0

0%

-

0

0%

-

-

_

27

79.4%

0

0%

0

0%

-

_

0

0%

_

0

0%

-

0

0%

-

-

-

4

11.8%

0

0%

0

0%

_

1

0.6%

-

0

0%

-

0

0%

_

-

-

-

3

8.8%

0

0%

1

0.5%

-

_

-

-

-

Turning Movement Count Location Name: OBELISK WAY & ELM DR E Date: Tue, Feb 04, 2020 Deployment Lead: Theo Daglis

Peak Hour: 08:00 AM - 09:00 AM

Weather: Overcast Clouds (1 °C)

, ,

"ISSISSAUGA VALLEY BLVD Legend: ### (#.# %) [#.##] TOTAL VEHICLES (HEAVY %) [PHF] RANEFF CR KANEF 28FLISK WAL # 112/10: ELM DR E ELMORE RONIARIOST Bicycles on Crosswalk Pedestrians Ν 0 28 Е 0 3 W 0 3 TRAL

ORN

Turning Movement Count Location Name: OBELISK WAY & ELM DR E Date: Tue, Feb 04, 2020 Deployment Lead: Theo Daglis

, ,

Signal Timing Report

Device:

2108

Runtime: 2020-03-04 13:16:40

Region: Missis	ssauga	Signal ID:	2108	Loc	ation: HURO	NTARIO STREE	ET E at Elm Str	eet	
Phase	Units	1	2	3	4	5	6	7	8
Walk	Sec	0	9	0	15	0	9	0	15
Ped Clear	Sec	0	13	0	22	0	13	0	22
Min Green	Sec	5	8	0	8	5	8	0	8
Passage	Sec	2.0	3.0	0.0	3.0	2.0	3.0	0.0	3.0
Maximum 1	Sec	10	33	0	35	10	33	0	35
Maximum 2	Sec	10	33	0	35	10	33	0	35
Yellow Change	Sec	3.0	4.0	3.0	4.0	3.0	4.0	3.0	4.0
Red Clearance	Sec	0.0	3.0	0.0	4.0	0.0	3.0	0.0	4.0
Red Revert	Sec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Added Initial	Sec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Max Initial	Sec	0	0	0	0	0	0	0	0
Time Before	Sec	0	0	0	0	0	0	0	0
Cars Before	Veh	0	0	0	0	0	0	0	0
Time To Reduce	Sec	0	0	0	0	0	0	0	0
Reduce By	Sec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Min Gap	Sec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dynamic Max Limit	Sec	0	0	0	0	0	0	0	0
Dynamic Max Step	Sec	0.0	0.0	0.0	U.U	0.0	0.0	0.0	U.U
[P2] Start Up	Enum	phaseNotOn	redClear	otner	phaseNotOn	pnaseNotOn	redClear	otner	pnaseNotOn
[P2] Options	Bit	Enabled Non Lock Det	Enabled Non-Actuated 1 Max Veh Recall Ped Recall Dual Entry Act Rest In Walk	0	Enabled Non Lock Det Dual Entry	Enabled Non Lock Det	Enabled Non-Actuated 1 Max Veh Recall Ped Recall Dual Entry Act Rest In Walk	0	Enabled Non Lock Det Dual Entry
[P2] Ring	Ring	1	1	0	1	2	2	0	2
[P2] Concurrency	Phase (,)	(5,6)	(5,6)	0	(8)	(1,2)	(1,2)	0	(4)
Coord Pattern	Units	1	2	3	4	5	6	7	8
Cycle Time	Sec	160	160	160	0	0	0	0	0
Offset	Sec	10	26	123	0	0	0	0	0
Split	Split	1	2	3	4	5	6	7	8
Sequence	Sequence	1	1	1	1	1	1	1	1
Coord Split	Units	1	2	3	4	5	6	7	8
Split 1 - Mode	Enum	phaseOmitted	none	none	none	phaseOmitted	none	none	none
Split 1 - Time	Sec	0	102	0	58	0	102	0	58
Split 1 - Coord	Enum	false	true	false	false	false	true	false	false
Split 2 - Mode	Enum	phaseOmitted	none	none	none	none	none	none	none
Split 2 - Time	Sec	0	101	0	59	13	88	0	59
Split 2 - Coord	Enum	taise	true	Taise	Taise	Taise	true	Taise	Taise
Split 3 - Mode	Enum	none	none	none	none	none	none	none	none
Split 3 - Coord	Enum	falso	09 true	U falso	Jo	27 falso	75 true	U falso	Jo
TD Cabadula	Linite	1	0	2	4	5	C C	7	0
I B Schedule					4	5	•	' M	•
North Day of Week	Bit		S		SMTWTES	SMTWTES	SMTWTES	SMTWTES	SMTWTES
Day of Month	Bit	123456789012345	12345678901234	12345678901234	1	77	0	8	1
buy or month	Bit	678901234567890 1	56789012345678 901	56789012345678 901					
Day Plan	Number	1	3	2	3	3	3	3	3
TB Schedule	Units	9	10	11	12	13	14	15	16
Month	Bit	A	S	O	D	D	D	0	0
Day of Week	Bit	SMTWTFS	SMTWTFS	SMTWTFS	SMTWTFS	SMTWTFS	SMTWTFS	SMTWTFS	SMTWTFS
Day of Month	Bit	3	7 	22	 5	8	4	0	0
Day Plan	Number	3	3	3	3	3	3	0	0
TB Dayplan	Units	1	2	3	4	5	6	7	8
Plan 1 Hour	Hour	0	3	6	9	15	19	0	0
Plan 1 Minute	Min	0	0	0	30	0	30	0	0
Plan 1 Action	Number	8	7	1	2	3	2	0	0
Plan 2 Hour	Hour	0	7	3	0	0	0	0	0
Plan 2 Minute	Min	0	0	0	0	0	0	0	0
Plan 2 Action	Number	8	2	7	0	0	0	0	0
Plan 3 Hour	Hour	0	8	23	3	0	0	0	0
Plan 3 Minute	Min	0	0	0	0	0	0	0	0
Plan 3 Action	Number	8	2	8	7	0	0	0	0
TB Action	Units	1	2	3	4	5	6	7	8
Pattern	Enum	Pattern 1	Pattern 2	Pattern 3	Pattern 4	Pattern 5	Pattern 6	Free	Free
Aux. Functions	Bit	0	0	0	0	0	0	0	0
Spec. Functions	Bit	0	0	U	U	U	U	U	Special Func 1 Special Func 3

Signal Timing Report

Device:

2116

Runtime: 2020-02-06 15:08:21

Region Mississa	auga	Signal ID: 2	116	Loc	ation: MISSI	SSAUGA VALLE	EY BOULEVAR	D N at Elm Driv	е
: Phase	Units	1- NBL	2-NB/SB	3	4-EB-WB	5	6	7	8
Walk	Sec	0	9	0	9	0	0	0	0
Ped Clear	Sec	0	16	0	17	0	0	0	0
Min Green	Sec	5	8	0	8	0	0	0	0
Passage	Sec	2.0	3.0	0.0	3.0	0.0	0.0	0.0	0.0
Maximum 1	Sec	10	15	0	30	0	0	0	0
Maximum 2	Sec	10	15	0	30	0	0	0	0
Yellow Change	Sec	3.0	4.0	3.0	4.0	3.0	4.0	3.0	4.0
Red Clearance	Sec	0.0	3.0	0.0	2.5	0.0	0.0	0.0	0.0
Red Revert	Sec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Added Initial	Sec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Max Initial	Sec	0	0	0	0	0	0	0	0
Time Before	Sec	0	0	0	0	0	0	0	0
Cars Before	Ven	0	0	0	0	0	0	0	0
Poduce By	Sec	0	0	0	0	0	0	0	0
Min Gan	Sec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dynamic Max Limit	Sec	0	0	0	0	0	0	0	0
Dynamic Max Step	Sec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
[P2] Start Up	Enum	phaseNotOn	redClear	other	phaseNotOn	other	other	other	other
[P2] Options	Bit	Enabled	Enabled	0	Enabled	0	0	0	0
		Non Lock Det	Non-Actuated 1 Max Veh Recall Ped Recall Act Rest In Walk		Non Lock Det				
[P2] Ring	Ring	1	1	0	1	0	0	0	0
[P2] Concurrency	Phase (,)	0	0	()	()	0	0	0	()
Coord Pattern	Units	1	2	3	4	5	6	7	8
Cycle Time	Sec	0	0	0	0	0	0	0	0
Offset	Sec	0	0	0	0	0	0	0	0
Split	Split	1	2	3	4	5	6	7	8
Sequence	Sequence	1	1	1	1	1	1	1	1
Coord Split	Units	1	2	3	4	5	6	7	8
Split 1 - Mode	Enum	none	none	none	none	none	none	none	none
Split 1 - Time	Sec	0	0	0	0	0	0	0	0
Split 1 - Coord	Enum	false	true	false	false	false	false	false	false
Split 2 - Mode	Enum	none	none	none	none	none	none	none	none
Split 2 - Time	Sec	0	U truce	U falaa	U falaa	U falaa	U false	U falaa	U falaa
Split 2 - Coord	Enum	laise	Irue	laise	laise	laise	laise	laise	laise
Split 3 - Mode Split 3 - Time	Sec	0		0		0	0	0	none
Split 3 - Coord	Enum	false	true	false	false	false	false	false	false
TR Schedule	Unite	1	2	3	4	5	6	7	8
Month	Bit					-F	A	, M	
Dav of Week	Bit	-MTWTF-	S	S	SMTWTFS	SMTWTFS	SMTWTFS	SMTWTFS	SMTWTFS
Day of Month	Bit	12345678901234 56789012345678 901	12345678901234 56789012345678 901	12345678901234 56789012345678 901	1 	77	0	8	1
Day Plan	Number	1	3	2	3	3	3	3	3
TB Dayplan	Units	1	2	3	4	5	6	7	8
Plan 1 Hour	Hour	0	3	0	0	0	0	0	0
Plan 1 Minute	Min	0	0	0	0	0	0	0	0
Plan 1 Action	Number	8	7	0	0	0	0	0	0
Plan 2 Hour	Hour	0	3	0	0	0	0	0	0
Plan 2 Minute	Min	0	0	0	0	0	0	0	0
Plan 2 Action	Number	8	/	U	U	U	U	U	υ
Plan 3 Hour	Hour	U	3	U	U	U	U	U	U
Plan 3 Minute	Min	U	U	U	U	U	0	U	U
	Number	0	, ,	0	0	5	0	7	0
		l Dattar: 1	Z	J Dottorr 0	4 Dottor: 1	J Dottor: 5	O Dottor: C	í Fran	o Free
	Enum Bit		rallern 2 0	Fallern 3	rallern 4	rallern o	rallern o	гіее	F166
Spec Functions	Bit	0	0	0	0	0	0	0	0
opeo. 1 unotiona		~	•			•	•	v	~

APPENDIX B

Existing Traffic Level of Service Calculations

APPENDIX C

Historical Traffic Count Analysis

Queues 1: Hurontario St & Elm Drive E

	٦	-	4	+	1	t	4	ţ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	5	ĥ	5	ĥ	5	#†1 ₆	3	#†\$	
Traffic Volume (vph)	131	49	76	63	66	1437	40	1230	
Future Volume (vph)	131	49	76	63	66	1437	40	1230	
Lane Group Flow (vph)	142	140	83	204	72	1612	43	1376	
Turn Type	Perm	NA	Perm	NA	pm+pt	NA	pm+pt	NA	
Protected Phases		4		8	5	2	1	6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	5	2	1	6	
Switch Phase									
Minimum Initial (s)	8.0	8.0	8.0	8.0	5.0	8.0	5.0	8.0	
Minimum Split (s)	45.0	45.0	45.0	45.0	10.0	33.0	10.0	33.0	
Total Split (s)	60.0	60.0	60.0	60.0	13.0	90.0	10.0	87.0	
Total Split (%)	37.5%	37.5%	37.5%	37.5%	8.1%	56.3%	6.3%	54.4%	
Yellow Time (s)	4.0	4.0	4.0	4.0	3.0	4.0	3.0	4.0	
All-Red Time (s)	4.0	4.0	4.0	4.0	0.0	3.0	0.0	3.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	8.0	8.0	8.0	8.0	3.0	7.0	3.0	7.0	
Lead/Lag					Lead	Lag	Lead	Lag	
Lead-Lag Optimize?					Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	Min	None	Min	
Act Effct Green (s)	18.8	18.8	18.8	18.8	50.1	41.5	47.3	38.1	
Actuated g/C Ratio	0.23	0.23	0.23	0.23	0.61	0.51	0.58	0.47	
v/c Ratio	0.53	0.33	0.29	0.47	0.24	0.63	0.18	0.59	
Control Delay	39.0	21.3	32.6	24.3	8.7	16.8	8.5	17.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	39.0	21.3	32.6	24.3	8.7	16.8	8.5	17.8	
LOS	D	С	С	С	A	В	A	В	
Approach Delay		30.2		26.7		16.4		17.5	
Approach LOS		С		С		В		В	
Queue Length 50th (m)	20.1	11.1	11.0	18.5	3.7	67.5	2.2	55.6	
Queue Length 95th (m)	45.9	31.1	27.8	45.6	11.1	106.1	7.5	90.2	
Internal Link Dist (m)		217.5		214.8		169.2		328.4	
Turn Bay Length (m)	22.5		41.0		28.0		69.0		
Base Capacity (vph)	789	1155	837	1150	350	4610	260	4520	
Starvation Cap Reductr	n 0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.18	0.12	0.10	0.18	0.21	0.35	0.17	0.30	
Intersection Summary									
Cycle Length: 160									
Actuated Cycle Length:	81.5								
Natural Cycle: 90									
Control Type: Semi Act-	-Uncoor	ď							
Maximum v/c Ratio: 0.6	3								
Intersection Signal Dela	ıy: 18.7			I	ntersec	tion LOS	S: B		
Intersection Capacity U	tilizatior	n 73.7%		I	CU Lev	el of Se	rvice D		
Analysis Period (min) 1	5								

Splits and Phases: 1: Hurontario St & Elm Drive E

HCM Signalized Intersection Capacity Analysis 1: Hurontario St & Elm Drive E

	٨	→	7	4	+	*	1	t	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	f,		7	ef -		2	*††		7	*††	
Traffic Volume (vph)	131	49	80	76	63	125	66	1437	46	40	1230	36
Future Volume (vph)	131	49	80	76	63	125	66	1437	46	40	1230	36
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	8.0	8.0		8.0	8.0		3.0	7.0		3.0	7.0	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	0.91		1.00	0.91	
Frt	1.00	0.91		1.00	0.90		1.00	1.00		1.00	1.00	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1750	1670		1750	1658		1750	5005		1750	5007	
Flt Permitted	0.63	1.00		0.67	1.00		0.13	1.00		0.11	1.00	
Satd. Flow (perm)	1158	1670		1230	1658		240	5005		197	5007	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	142	53	87	83	68	136	72	1562	50	43	1337	39
RTOR Reduction (vph)	0	42	0	0	52	0	0	2	0	0	2	0
Lane Group Flow (vph)	142	98	0	83	152	0	72	1610	0	43	1374	0
Turn Type	Perm	NA		Perm	NA		pm+pt	NA		pm+pt	NA	
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)	18.8	18.8		18.8	18.8		47.5	41.5		42.3	38.9	
Effective Green, g (s)	18.8	18.8		18.8	18.8		47.5	41.5		42.3	38.9	
Actuated g/C Ratio	0.23	0.23		0.23	0.23		0.58	0.51		0.52	0.48	
Clearance Time (s)	8.0	8.0		8.0	8.0		3.0	7.0		3.0	7.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	266	384		283	381		250	2542		166	2383	
v/s Ratio Prot		0.06			0.09		c0.02	c0.32		0.01	0.27	
v/s Ratio Perm	c0.12			0.07			0.15			0.12		
v/c Ratio	0.53	0.25		0.29	0.40		0.29	0.63		0.26	0.58	
Uniform Delay, d1	27.6	25.7		26.0	26.7		8.6	14.6		10.5	15.5	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	2.1	0.4		0.6	0.7		0.6	0.5		0.8	0.3	
Delay (s)	29.7	26.1		26.5	27.4		9.3	15.1		11.3	15.8	
Level of Service	С	С		С	С		A	В		В	В	
Approach Delay (s)		27.9			27.1			14.9			15.7	
Approach LOS		С			С			В			В	
Intersection Summary												
HCM 2000 Control Dela		17.1	F	ICM 20	00 Leve	l of Serv	/ice	В				
HCM 2000 Volume to C	apacity	ratio	0.60									
Actuated Cycle Length (Actuated Cycle Length (s)				Sum of l	ost time	e (s)		18.0			
Intersection Capacity Ut	ilization		73.7%	10	CU Leve	el of Se	rvice		D			
Analysis Period (min)			15									

c Critical Lane Group

	٠	7	1	T.	Ŧ	-	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	¥		5	•	ţ,		
Traffic Volume (veh/h)	31	39	13	148	152	9	
Future Volume (Veh/h)	31	39	13	148	152	9	
Sign Control	Stop		-	Free	Free	-	
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	34	42	14	161	165	10	
Pedestrians	4			13	13		
Lane Width (m)	3.5			3.5	3.5		
Walking Speed (m/s)	1.1			1.1	1.1		
Percent Blockage	0			1	1		
Right turn flare (veh)	Ŭ						
Median type			т	WLTIT	WLTI		
Median storage veh)				2	2		
Upstream signal (m)				77	2		
pX platoon unblocked							
vC conflicting volume	376	187	179				
vC1_stage 1 conf vol	174	.07					
vC2_stage 2 conf vol	202						
vCu unblocked vol	376	187	179				
tC single (s)	64	62	4 1				
tC_2 stage (s)	5.4	0.2					
tE (s)	3.5	33	22				
n queue free %	95	95	90				
cM capacity (yeb/b)	737	847	1404				
	101	047	1404				
Direction, Lane #	EB 1	NB 1	NB 2	SB 1			
Volume Total	76	14	161	175			
Volume Left	34	14	0	0			
Volume Right	42	0	0	10			
cSH	794	1404	1700	1700			
Volume to Capacity	0.10	0.01	0.09	0.10			
Queue Length 95th (m)	2.4	0.2	0.0	0.0			
Control Delay (s)	10.0	7.6	0.0	0.0			
Lane LOS	В	А					
Approach Delay (s)	10.0	0.6		0.0			
Approach LOS	В						
Intersection Summary							
Average Delay			2.0				
Intersection Capacity Uti	lization		25.3%	IC	CU Leve	el of Servio	ce
Analysis Period (min)			15				

	٠	-	7	1	+	*	1	t	1	4	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	1	34	32	23	16	5	23	4	10	1	2	0
Future Volume (Veh/h)	1	34	32	23	16	5	23	4	10	1	2	0
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	1	37	35	25	17	5	25	4	11	1	2	0
Pedestrians		15			15			10			10	
Lane Width (m)		3.5			3.5			3.5			3.5	
Walking Speed (m/s)		1.1			1.1			1.1			1.1	
Percent Blockage		1			1			1			1	
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	32			82			152	148	80	164	164	44
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	32			82			152	148	80	164	164	44
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			98			97	99	99	100	100	100
cM capacity (veh/h)	1579			1515			779	721	965	755	707	1009
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	73	47	40	3								
Volume Left	1	25	25	1								
Volume Right	35	5	11	0								
cSH	1579	1515	816	723								
Volume to Capacity	0.00	0.02	0.05	0.00								
Queue Length 95th (m)	0.0	0.4	1.2	0.1								
Control Delay (s)	0.1	4.0	9.6	10.0								
Lane LOS	А	А	А	В								
Approach Delay (s)	0.1	4.0	9.6	10.0								
Approach LOS			А	В								
Intersection Summary												
Average Delay			3.8									
Intersection Capacity Uti	lization		24.3%	I	CU Leve	el of Ser	vice		А			
Analysis Period (min)			15									

	٠	→	+	*	1	1		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	7	1	f,		Y			
Traffic Volume (veh/h)	29	110	112	5	19	61		
Future Volume (Veh/h)	29	110	112	5	19	61		
Sign Control		Free	Free		Stop			
Grade		0%	0%		0%			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	32	120	122	5	21	66		
Pedestrians		28	28		3			
Lane Width (m)		3.5	3.5		3.5			
Walking Speed (m/s)		1.1	1.1		1.1			
Percent Blockage		2	2		0			
Right turn flare (veh)								
Median type		None	None					
Median storage veh)								
Upstream signal (m)		239	69					
pX, platoon unblocked								
vC, conflicting volume	130				340	156		
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	130				340	156		
tC, single (s)	4.1				6.4	6.2		
tC, 2 stage (s)								
tF (s)	2.2				3.5	3.3		
p0 queue free %	98				97	92		
cM capacity (veh/h)	1464				619	871		
Direction. Lane #	EB 1	EB 2	WB 1	SB 1				
Volume Total	32	120	127	87				
Volume Left	32	0	0	21				
Volume Right	0	0	5	66				
cSH	1464	1700	1700	793				
Volume to Capacity	0.02	0.07	0.07	0 11				
Queue Length 95th (m)	0.5	0.07	0.0	2.8				
Control Delay (s)	7.5	0.0	0.0	10.1				
Lane LOS	A	0.0	0.0	B				
Approach Delay (s)	1.6		0.0	10.1				
Approach LOS			0.0	B				
				_				
Intersection Summary								
Average Delay			3.1					
Intersection Capacity Uti	lization		25.1%	IC	JU Leve	el of Servi	ce	
Analysis Period (min)			15					

Queues 7: Mississauga Valley Blvd & Elm Drive E

	۶	→	1	+	1	t	4	ţ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	5	ĥ		4	٦	ĥ	5	ţ,	
Traffic Volume (vph)	31	12	47	29	52	106	7	162	
Future Volume (vph)	31	12	47	29	52	106	7	162	
Lane Group Flow (vph)	34	101	0	108	57	137	8	201	
Turn Type	Perm	NA	Perm	NA	pm+pt	NA	Perm	NA	
Protected Phases		4		8	5	2		6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	5	2	6	6	
Switch Phase									
Minimum Initial (s)	8.0	8.0	5.0	5.0	5.0	8.0	8.0	8.0	
Minimum Split (s)	32.5	32.5	22.5	22.5	10.0	32.0	32.0	32.0	
Total Split (s)	32.5	32.5	22.5	22.5	10.0	32.0	32.0	32.0	
Total Split (%)	43.6%	43.6%	30.2%	30.2%	13.4%	43.0%	43.0%	43.0%	
Yellow Time (s)	4.0	4.0	3.5	3.5	3.0	4.0	4.0	4.0	
All-Red Time (s)	2.5	2.5	1.0	1.0	0.0	3.0	3.0	3.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.5	6.5		4.5	3.0	7.0	7.0	7.0	
Lead/Lag					Lead		Lag	Lag	
Lead-Lag Optimize?					Yes		Yes	Yes	
Recall Mode	None	None	None	None	Min	Min	Min	Min	
Act Effct Green (s)	8.7	8.7		9.3	24.5	22.5	10.4	10.4	
Actuated g/C Ratio	0.23	0.23		0.24	0.64	0.58	0.27	0.27	
v/c Ratio	0.14	0.27		0.31	0.09	0.13	0.02	0.42	
Control Delay	16.5	7.9		14.0	4.2	5.8	12.0	15.6	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay	16.5	7.9		14.0	4.2	5.8	12.0	15.6	
LOS	В	А		В	А	А	В	В	
Approach Delay		10.0		14.0		5.4		15.5	
Approach LOS		В		В		А		В	
Queue Length 50th (m)	2.0	0.7		4.7	1.4	4.2	0.4	11.4	
Queue Length 95th (m)	7.8	9.8		15.3	4.4	10.7	2.6	25.2	
Internal Link Dist (m)		44.7		15.4		104.6		53.4	
Turn Bay Length (m)	17.0				16.0		21.0		
Base Capacity (vph)	770	987		1024	685	1538	813	1179	
Starvation Cap Reductn	0	0		0	0	0	0	0	
Spillback Cap Reductn	0	0		0	0	0	0	0	
Storage Cap Reductn	0	0		0	0	0	0	0	
Reduced v/c Ratio	0.04	0.10		0.11	0.08	0.09	0.01	0.17	
Intersection Summary									
Cycle Length: 74.5									
Actuated Cycle Length:	38.5								
Natural Cycle: 75									
Control Type: Semi Act-	Uncoor	d							
Maximum v/c Ratio: 0.4	2								
Intersection Signal Dela	y: 11.1			I	ntersec	tion LOS	S: B		
Intersection Capacity Ut	ilization	o 56.0%		I	CU Lev	el of Se	rvice B		
Analysis Period (min) 15	5								

Splits and Phases: 7: Mississauga Valley Blvd & Elm Drive E

	٠	-	7	*	-	*	1	1	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٢	f,			4		7	¢Î,		7	ţ,	
Traffic Volume (vph)	31	12	81	47	29	23	52	106	20	7	162	23
Future Volume (vph)	31	12	81	47	29	23	52	106	20	7	162	23
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5			4.5		3.0	7.0		7.0	7.0	
Lane Util. Factor	1.00	1.00			1.00		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	0.96			0.99		1.00	0.99		1.00	0.99	
Flpb, ped/bikes	0.97	1.00			0.99		1.00	1.00		0.98	1.00	
Frt	1.00	0.87			0.97		1.00	0.98		1.00	0.98	
Flt Protected	0.95	1.00			0.98		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1573	1409			1717		1623	1777		1745	1746	
Flt Permitted	0.69	1.00			0.80		0.49	1.00		0.67	1.00	
Satd. Flow (perm)	1138	1409			1405		839	1777		1230	1746	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	34	13	88	51	32	25	57	115	22	8	176	25
RTOR Reduction (vph)	0	75	0	0	18	0	0	8	0	0	7	0
Lane Group Flow (vph)	34	26	0	0	90	0	57	129	0	8	194	0
Confl. Peds. (#/hr)	32		32	22		22			27	34		34
Heavy Vehicles (%)	10%	8%	12%	2%	3%	0%	10%	3%	0%	0%	2%	26%
Turn Type	Perm	NA		Perm	NA		pm+pt	NA		Perm	NA	
Protected Phases		4			8		5	2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)	6.1	6.1			8.1		20.2	20.2		10.5	10.5	
Effective Green, g (s)	6.1	6.1			8.1		20.2	20.2		10.5	10.5	
Actuated g/C Ratio	0.15	0.15			0.20		0.51	0.51		0.26	0.26	
Clearance Time (s)	6.5	6.5			4.5		3.0	7.0		7.0	7.0	
Vehicle Extension (s)	3.0	3.0			3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	174	215			285		557	901		324	460	
v/s Ratio Prot		0.02					0.02	c0.07			c0.11	
v/s Ratio Perm	0.03				c0.06		0.03			0.01		
v/c Ratio	0.20	0.12			0.31		0.10	0.14		0.02	0.42	
Uniform Delay, d1	14.7	14.5			13.5		5.1	5.2		10.9	12.1	
Progression Factor	1.00	1.00			1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.6	0.3			0.6		0.1	0.1		0.0	0.6	
Delay (s)	15.3	14.8			14.1		5.2	5.3		10.9	12.8	
Level of Service	В	В			В		A	A		В	В	
Approach Delay (s)		14.9			14.1			5.3			12.7	
Approach LOS		В			В			A			В	
Intersection Summary												
HCM 2000 Control Dela		11.2	ŀ	ICM 200	00 Leve	l of Serv	/ice	В				
HCM 2000 Volume to C	ratio	0.34										
Actuated Cycle Length (s)			39.8	S	Sum of l	ost time	(s)		16.5			
tersection Capacity Utilization			56.0%	I	CU Leve	el of Ser	vice		В			
Analysis Period (min)			15									

c Critical Lane Group

	٠	7	1	t	ŧ	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	Y		5	•	1.		
Traffic Volume (veh/h)	17	31	56	275	353	47	
Future Volume (Veh/h)	17	31	56	275	353	47	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	18	34	61	299	384	51	
Pedestrians	3			17	17		
Lane Width (m)	3.5			3.5	3.5		
Walking Speed (m/s)	1.1			1.1	1.1		
Percent Blockage	0			2	2		
Right turn flare (veh)							
Median type			Т	WLTLT	WLTL		
Median storage veh)				2	2		
Upstream signal (m)				77			
pX, platoon unblocked	0.98						
vC, conflicting volume	850	430	438				
vC1, stage 1 conf vol	412						
vC2, stage 2 conf vol	438						
vCu, unblocked vol	835	430	438				
tC, single (s)	6.4	6.2	4.1				
tC, 2 stage (s)	5.4						
tF (s)	3.5	3.3	2.2				
p0 queue free %	96	95	95				
cM capacity (veh/h)	510	619	1130				
Direction, Lane #	EB 1	NB 1	NB 2	SB 1			
Volume Total	52	61	299	435			
Volume Left	18	61	0	0			
Volume Right	34	0	0	51			
cSH	576	1130	1700	1700			
Volume to Capacity	0.09	0.05	0.18	0.26			
Queue Length 95th (m)	2.3	1.3	0.0	0.0			
Control Delay (s)	11.9	8.4	0.0	0.0			
Lane LOS	В	А					
Approach Delay (s)	11.9	1.4		0.0			
Approach LOS	В						
Intersection Summarv							
Average Delay			1.3				
Intersection Capacity Uti	lization		42.8%	10	CU Leve	l of Service	А
Analysis Period (min)			15				

HCM Unsignalized Intersection Capacity Analysis 5: Obelisk Way & Kaneff Cres

	٠	-	7	1	+	*	1	Ť	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$			\$	
Traffic Volume (veh/h)	2	32	36	32	60	12	25	3	21	3	0	0
Future Volume (Veh/h)	2	32	36	32	60	12	25	3	21	3	0	0
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	2	35	39	35	65	13	27	3	23	3	0	0
Pedestrians		19			19			15			15	
Lane Width (m)		3.5			3.5			3.5			3.5	
Walking Speed (m/s)		1.1			1.1			1.1			1.1	
Percent Blockage		2			2			1			1	
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	93			89			234	236	88	258	250	106
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	93			89			234	236	88	258	250	106
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			98			96	100	98	100	100	100
cM capacity (veh/h)	1494			1499			676	634	946	634	624	926
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	76	113	53	3								
Volume Left	2	35	27	3								
Volume Right	39	13	23	0								
cSH	1494	1499	768	634								
Volume to Capacity	0.00	0.02	0.07	0.00								
Queue Length 95th (m)	0.0	0.5	1.7	0.1								
Control Delay (s)	0.2	2.4	10.0	10.7								
Lane LOS	А	А	В	В								
Approach Delay (s)	0.2	2.4	10.0	10.7								
Approach LOS			В	В								
Intersection Summary												
Average Delay			3.5									
Intersection Capacity Uti	lization		27.4%	I	CU Leve	el of Ser	vice		А			
Analysis Period (min)			15									

	٠	→	+	*	4	1			
Movement	EBL	EBT	WBT	WBR	SBL	SBR			
Lane Configurations	7	+	ħ		Y				
Traffic Volume (veh/h)	44	175	209	7	6	51			
Future Volume (Veh/h)	44	175	209	7	6	51			
Sign Control		Free	Free		Stop				
Grade		0%	0%		0%				
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92			
Hourly flow rate (vph)	48	190	227	8	7	55			
Pedestrians		28	28		3				
Lane Width (m)		3.5	3.5		3.5				
Walking Speed (m/s)		1.1	1.1		1.1				
Percent Blockage		2	2		0				
Right turn flare (veh)									
Median type		None	None						
Median storage veh)									
Upstream signal (m)		167	69						
pX, platoon unblocked									
vC, conflicting volume	238				548	262			
vC1, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol	238				548	262			
tC, single (s)	4.1				6.4	6.2			
tC, 2 stage (s)									
tF (s)	2.2				3.5	3.3			
p0 queue free %	96				98	93			
cM capacity (veh/h)	1337				462	760			
Direction Lane #	ER 1	EB 2	\//R 1	SR 1					
Volume Total		100	225	62					
Volume Loft	40 40	190	235	02					
Volume Leit	40	0	0	1					
	1227	1700	1700	709					
Volume to Canacity	0.04	0.11	0.14	700					
Ourse Length Of the (m)	0.04	0.11	0.14	0.09					
Queue Length 95th (m)	0.0	0.0	0.0	2.2					
	٥. <i>۲</i>	0.0	0.0	10.0					
Lane LUS	A		0.0	10 G					
Approach LOS	1.0		0.0	10.0					
Approach LOS				В					
Intersection Summary									
Average Delay			1.9						
Intersection Capacity Uti	lization		35.3%	IC	CU Leve	el of Servi	се		Α
Analysis Period (min)			15						

Queues 7: Mississauga Valley Blvd & Elm Drive E

	٠	-	-	1	Ť	4	ŧ	
Lane Group	EBL	EBT	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	49	140	74	121	354	34	382	
Act Effct Green (s)	9.5	9.5	10.0	30.7	28.9	15.7	15.7	
Actuated g/C Ratio	0.21	0.21	0.22	0.68	0.64	0.35	0.35	
v/c Ratio	0.20	0.35	0.23	0.18	0.31	0.10	0.65	
Control Delay	21.5	10.3	16.8	4.4	6.5	11.5	18.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	21.5	10.3	16.8	4.4	6.5	11.5	18.2	
LOS	С	В	В	A	А	В	В	
Approach Delay		13.2	16.8		6.0		17.7	
Approach LOS		В	В		A		В	
Queue Length 50th (m)	3.5	2.1	4.0	3.2	13.6	1.9	24.9	
Queue Length 95th (m)	12.6	15.2	14.5	8.4	28.7	6.6	49.8	
Internal Link Dist (m)		44.7	15.4		104.6		53.4	
Turn Bay Length (m)	17.0			16.0		21.0		
Base Capacity (vph)	710	959	913	673	1368	598	1007	
Starvation Cap Reductn	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.07	0.15	0.08	0.18	0.26	0.06	0.38	
Intersection Summary								
Cycle Length: 74.5								
Actuated Cycle Length: 4	5.1							
Control Type: Semi Act-L	Jncoord	t l						
Maximum v/c Ratio: 0.65	5							
Intersection Signal Delay	r: 12.1			h	ntersect	ion LOS	: B	
Intersection Capacity Util	lization	73.3%		[(CU Leve	el of Ser	vice D	
Analysis Period (min) 15								

HCM Signalized Intersection Capacity Analysis 7: Mississauga Valley Blvd & Elm Drive E

07-11-2023

	٠	→	7	1	-	*	1	1	1	1	ŧ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	Ţ.			4		5	ţ,		٢	ţ,	
Traffic Volume (vph)	45	28	101	31	23	14	111	271	54	31	272	79
Future Volume (vph)	45	28	101	31	23	14	111	271	54	31	272	79
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5			4.5		3.0	7.0		7.0	7.0	
Lane Util. Factor	1.00	1.00			1.00		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	0.96			0.99		1.00	0.99		1.00	0.99	
Flpb, ped/bikes	0.95	1.00			0.99		1.00	1.00		0.98	1.00	
Frt	1.00	0.88			0.97		1.00	0.97		1.00	0.97	
Flt Protected	0.95	1.00			0.98		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1589	1514			1723		1700	1798		1746	1669	
Flt Permitted	0.71	1.00			0.80		0.42	1.00		0.55	1.00	
Satd. Flow (perm)	1186	1514			1408		751	1798		1009	1669	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	49	30	110	34	25	15	121	295	59	34	296	86
RTOR Reduction (vph)	0	95	0	0	12	0	0	8	0	0	14	0
Lane Group Flow (vph)	49	45	0	0	62	0	121	346	0	34	368	0
Confl. Peds. (#/hr)	41		41	22		22			46	39		39
Heavy Vehicles (%)	7%	0%	6%	2%	3%	0%	5%	1%	0%	0%	2%	26%
Turn Type	Perm	NA		Perm	NA		pm+pt	NA		Perm	NA	
Protected Phases		4			8		5	2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)	6.4	6.4			8.4		26.2	26.2		16.0	16.0	
Effective Green, g (s)	6.4	6.4			8.4		26.2	26.2		16.0	16.0	
Actuated g/C Ratio	0.14	0.14			0.18		0.57	0.57		0.35	0.35	
Clearance Time (s)	6.5	6.5			4.5		3.0	7.0		7.0	7.0	
Vehicle Extension (s)	3.0	3.0			3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	164	210			256		575	1021		350	579	
v/s Ratio Prot		0.03					0.03	c0.19			c0.22	
v/s Ratio Perm	0.04				c0.04		0.09			0.03		
v/c Ratio	0.30	0.22			0.24		0.21	0.34		0.10	0.64	
Uniform Delay, d1	17.8	17.6			16.1		4.8	5.3		10.2	12.6	
Progression Factor	1.00	1.00			1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	1.0	0.5			0.5		0.2	0.2		0.1	2.3	
Delay (s)	18.9	18.1			16.6		5.0	5.5		10.3	14.9	
Level of Service	В	В			В		A	A		В	В	
Approach Delay (s)		18.3			16.6			5.4			14.5	
Approach LOS		В			В			A			В	
Intersection Summary												
HCM 2000 Control Dela	у		11.5	F	ICM 20	00 Leve	l of Serv	/ice	В			
HCM 2000 Volume to Ca	apacity	ratio	0.50									
Actuated Cycle Length (s)		46.1	S	Sum of l	ost time	(s)		16.5			
Intersection Capacity Ut	ilization		73.3%	[(CU Leve	el of Ser	vice		D			
Analysis Period (min)			15									
- Onitional Laws One con												

c Critical Lane Group

Queues 11: Hurontario St/Hurontario St & Elm Drive E

	٠	-	1	+	1	1	1	Ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	45	193	63	192	75	1627	87	1793	
Act Effct Green (s)	16.3	16.3	16.3	16.3	69.0	56.6	67.4	58.0	
Actuated g/C Ratio	0.16	0.16	0.16	0.16	0.70	0.57	0.68	0.59	
v/c Ratio	0.26	0.61	0.37	0.62	0.31	0.57	0.36	0.61	
Control Delay	45.6	41.4	48.6	44.1	7.8	13.8	8.9	14.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	45.6	41.4	48.6	44.1	7.8	13.8	8.9	14.7	
LOS	D	D	D	D	А	В	А	В	
Approach Delay		42.2		45.2		13.5		14.5	
Approach LOS		D		D		В		В	
Queue Length 50th (m)	7.5	26.3	10.8	28.1	3.6	65.6	4.1	78.6	
Queue Length 95th (m)	22.0	60.6	28.7	62.9	9.0	91.6	10.1	112.8	
Internal Link Dist (m)		124.5		143.4		120.1		174.5	
Turn Bay Length (m)	22.5		41.0		28.0		69.0		
Base Capacity (vph)	580	959	577	964	284	4166	252	4067	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.08	0.20	0.11	0.20	0.26	0.39	0.35	0.44	
Intersection Summary									
Cycle Length: 160									
Actuated Cycle Length: 9	8.8								

 Cycle Length: 160

 Actuated Cycle Length: 98.8

 Control Type: Semi Act-Uncoord

 Maximum v/c Ratio: 0.62

 Intersection Signal Delay: 17.6

 Intersection Capacity Utilization 75.5%

 ICU Level of Service D

 Analysis Period (min) 15

07-11-2023

HCM Signalized Intersection Capacity Analysis 11: Hurontario St/Hurontario St & Elm Drive E

07-11-2023

	٠	-	7	-	-	*	1	Ť	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	ţ,		5	Ţ.		٦	**%		5	*††	
Traffic Volume (vph)	41	76	101	58	87	89	69	1418	79	80	1604	46
Future Volume (vph)	41	76	101	58	87	89	69	1418	79	80	1604	46
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	8.0	8.0		8.0	8.0		3.0	7.0		3.0	7.0	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	0.91		1.00	0.91	
Frt	1.00	0.91		1.00	0.92		1.00	0.99		1.00	1.00	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1750	1685		1750	1702		1750	4989		1750	5008	
Flt Permitted	0.56	1.00		0.56	1.00		0.09	1.00		0.11	1.00	
Satd. Flow (perm)	1041	1685		1036	1702		158	4989		198	5008	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	45	83	110	63	95	97	75	1541	86	87	1743	50
RTOR Reduction (vph)	0	37	0	0	28	0	0	3	0	0	2	0
Lane Group Flow (vph)	45	156	0	63	164	0	75	1624	0	87	1791	0
Turn Type	Perm	NA		Perm	NA		pm+pt	NA		pm+pt	NA	
Protected Phases		4			8		5	2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)	16.3	16.3		16.3	16.3		63.9	57.5		64.9	58.0	
Effective Green, g (s)	16.3	16.3		16.3	16.3		63.9	57.5		64.9	58.0	
Actuated g/C Ratio	0.17	0.17		0.17	0.17		0.65	0.58		0.66	0.59	
Clearance Time (s)	8.0	8.0		8.0	8.0		3.0	7.0		3.0	7.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	171	278		171	281		205	2906		238	2942	
v/s Ratio Prot		0.09			c0.10		0.02	0.33		c0.03	c0.36	
v/s Ratio Perm	0.04			0.06			0.21			0.21		
v/c Ratio	0.26	0.56		0.37	0.58		0.37	0.56		0.37	0.61	
Uniform Delay, d1	36.0	37.9		36.6	38.1		8.4	12.7		7.6	13.1	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.8	2.6		1.3	3.1		1.1	0.2		1.0	0.4	
Delay (s)	36.8	40.5		38.0	41.1		9.5	13.0		8.5	13.4	
Level of Service	D	D		D	D		А	В		А	В	
Approach Delay (s)		39.8			40.3			12.8			13.2	
Approach LOS		D			D			В			В	
Intersection Summary												
HCM 2000 Control Dela	у		16.3	F	ICM 200	00 Leve	l of Serv	vice	В			
HCM 2000 Volume to C	apacity	ratio	0.59									
Actuated Cycle Length (s)		98.7	S	Sum of le	ost time	(s)		18.0			
Intersection Capacity Ut	ilization		75.5%	[(CU Leve	el of Ser	vice		D			
Analysis Period (min)			15									

c Critical Lane Group

Good Morning Sam,

Using the City's Travel Demand Model and supporting traffic count data, the City's Transportation Planning section has determined the projected growth on Hurontario Street to be used as part of your study. The recommended projected growth is shown below:

Hurontario Street

	Existing to 2023							
	NB	SB						
Time								
AM Peak								
Hour	-30.0%	-31.0%						
PM Peak								
Hour	-28.0%	-30.0%						

Note:

-The above analysis assumes the lane reduction on Hurontario Street from 3 through lanes in each direction to 2 through lanes in each direction, therefore your analysis should also reflect these changes.

-Rates for Hurontario Street represent a one-time total change, this represents the changes in travel patterns as a result of LRT implementation.

If you have any questions regarding the information provided please let me know.

Regards,

Tyler

From: Sam Nguyen [mailto:sam@nextrans.ca] Sent: 2020/03/02 9:38 AM To: Tyler Xuereb Subject: RE: Growth Rate

Hi Tyler,

I have submitted the TOR of 3575 kaneff cres to the City, please see the attached. The transportation analysis for 3575 kaneff cres doesn't consider any background development, the horizon year is 5 year after full build out on 2023. Please provide the information for 3575 Kaneff Cres due to urgent work.

Thanks,

Sam (Trang) Nguyen

Transportation Analyst

o: 905-503-2563 ext. 207 c: 416-904-1461 e: <u>sam@nextrans.ca</u> w: <u>www.nextrans.ca</u>

NexTrans Consulting Engineers A Division of NextEng Consulting Group Inc. 520 Industrial Parkway South, Suite 201 Aurora ON L4G 6W8

From: Tyler Xuereb <Tyler.Xuereb@mississauga.ca>
Sent: Monday, March 2, 2020 8:15 AM
To: Sam Nguyen <sam@nextrans.ca>
Subject: RE: Growth Rate

Good Morning Sam,

Thanks for your email.

Unfortunately we only provide growth rates for major collectors and arterials and as such will not be able to provide rates for Campus Road and Bresler Drive, I will however provide rates for Hurontario Street. I just had a few questions in regards to your analysis:

-Has a TOR been submitted to the City for the TIS scope and has it been approved?

-Does your transportation analysis consider any background developments?

-Could you provide me with your horizon year?

-Could I ask that you prepare a quick map showing the locations of both your subject site and also the locations of the background developments if any that you are including in your analysis?

Regards,

Tyler

From: Sam Nguyen [mailto:sam@nextrans.ca] Sent: 2020/02/28 4:38 PM To: Tyler Xuereb Subject: Growth Rate

Hi Tyler,

NexTrans is undertaking the transportation impact study for 3575 Kaneff Crescent and 5830 Campus Road.

Can you provide me the growth rate for Hurontario Street, Campus Road and Bresler Drive?

Thanks,

Sam (Trang) Nguyen

Transportation Analyst

o: 905-503-2563 ext. 207 c: 416-904-1461 e: <u>sam@nextrans.ca</u> w: <u>www.nextrans.ca</u>

NexTrans Consulting Engineers A Division of NextEng Consulting Group Inc. 520 Industrial Parkway South, Suite 201 Aurora ON L4G 6W8

APPENDIX D

Background Developments

Trip Generation Rate	es (ITE 9th Edi	tion)							
-					Weekday	1		Weekday	1
		Units	ITE Code	A	M Peak Ho	our	PI	M Peak Ho	our
Land use	Building			In	Out	Total	In	Out	Total
Condominium		units	230	0.07	0.37	0.44	0.35	0.17	0.52
Retail Commercial		1000 sq.ft	820	0.60	0.36	0.96	1.78	1.93	3.71
Daycare		1000 sq.ft	565	6.46	5.72	12.18	5.80	6.54	12.34
Trip Generation Rate	e Reductions		· · ·				1		
Transit reduction (assuming <u>No</u> LRT) applied to Residential Trips Transit reduction (assuming LRT) applied to Residential Trips 'Synergy' Trip Reduction applied to Retail Trips 'Synergy' Trip Reduction applied to Daycare Trips						12 19 20 20	2% 9% 9% 9%		

Values used in Original Report

Estimated Vehicle Trips (with Reductions)													
Condominium (no LRT) Condominium (yes LRT)	1347 1347		89 82	433 398	522 480	413 380	203 187	616 567					
Daycare	6.18		32	28	60	29	32	61					
Retail Commercial	6.86		3	2	_ 5	10	11	20					
Vehicle Trips Grand Total (no LRT)			124	463	587	451	246	698					
Vehicle Trips Grand Total (yes LRT)			117	429	546	419	230	649					

Using updated statistics

Estimated Vehicle Trips (with Redu	ctions)	-				-		
Condominium (no LRT) Condominium (yes LRT)	1365 1365		90 83	439 404	529 486	418 385	206 190	625 575
Daycare	5.30		27	24	52	25	28	52
Retail Commercial	4.87		2	1	4	7	8	14
Vehicle Trips Grand Total (no LRT)			120	464	584	450	241	691
Vehicle Trips Grand Total (yes LRT)			112	429	542	417	225	642

Difference (in total trips generated)						
			-			
Vehicle Trips Grand Total (no LRT)	-4	1	-3	-1	-5	-6
Vehicle Trips Grand Total (ves LRT)	-4	1	-4	-2	-5	-7

Note: Negative values indicate that the updated statistics generate fewer trips than the original statistics.

Comparison of Trip Generation (Original vs Updated Statistics) Figure 1

FIGURE 13 RESIDENTIAL SITE TRAFFIC VOLUMES - EXTERNAL

Figure 12: New Site Generated Auto Volumes

5.1 Site Generated Traffic

The proposed development will result in additional vehicles on the boundary road network that previously did not exist. The proposed development will also result in additional turning movements at the boundary road intersections.

The trip generation of the proposed development was forecasted using the rates provided in the Institute of Transportation Engineers (ITE) Trip Generation Manual, 10th Edition.

2016 Transportation Tomorrow Survey (TTS) data was used to determine the existing modal split. Based on the Transportation Tomorrow Survey, there are 23% and 26% modal split during a.m. and p.m. peak hours. We have considered a 20% modal split during the weekday a.m. peak period and 25% modal split during the weekday p.m. peak period. Modal split calculations are attached. Land use Category 222 "Multifamily Housing (High-Rise)" and Land use Category 820 "Shopping Centre" was used to forecast the trips generated by the development. The forecasted primary trips are tabulated in Table 6.

The pass-by trips were estimated using the information in Chapter 5 of the ITE's Trip Generation handbook. The ITE handbook defines primary trips as "trips made for the specific purpose of visiting the generator". When applying pass-by trips to the commercial part of the proposed development, the trips were applied the weekday p.m. and not the weekday a.m. peak hour. The percentage of pass-by trips applied to the trip generation calculations was found in Chapter 5 of the ITE's Trip Generation Handbook. A pass-by rate of 34% was applied to the p.m. Pass-by assignment, and gross trips assignments are shown in Appendix H.

Given that the proposed development has multiple land uses, the ITE Multi-Use Trip Generation calculation was used. The worksheets to estimate the internal capture trips for the proposed development in weekday p.m. peak hours are presented in Appendix H.

			ip Generati	OH							
	Land Use Code	A.M. Peak Hour			P.M. Peak Hour						
		Inbound	Outbound	Total	Inbound	Outbound	Total				
Multifamily Housing (High-Rise)											
Total Gross Trips	222 - Multifamily Housing (High-Rise)	49	154	203	146	94	240				
Pass-by Trips		0	0	0	0	0	0				
Modal Split		10	32	42	37	24	61				
Internal Capture Trips		1	2	3	10	4	14				
New Primary Trips		38	120	158	99	66	165				
Shopping Center											
Total Gross Trips	820 - Shopping Center	12	7	19	36	40	76				
Pass-by Trips		0	0	0	12	14	26				
Modal Split		0	0	0	0	0	0				
Internal Capture Trips		2	1	3	4	10	14				
New Primary Trips		10	6	16	20	16	36				
TOTAL GROSS TRIPS		61	161	222	182	134	316				
TOTAL PASS-BY TRIPS		0	0	0	12	14	26				
TOTAL MODAL SPLIT		10	32	42	37	24	61				
TOTAL INTERNAL CAPTURE TRIPS		3	3	6	14	14	28				
TOTAL PRIMARY TRIPS		48	126	174	119	82	201				

Table 6: Trip Generation

5.1 Site Generated Traffic

The proposed development will result in additional vehicles on the boundary road network that previously did not exist. The proposed development will also result in additional turning movements at the boundary road intersections.

The trip generation of the proposed development was forecasted using the rates provided in the Institute of Transportation Engineers (ITE) Trip Generation Manual, 10th Edition.

2016 Transportation Tomorrow Survey (TTS) data was used to determine the existing modal split. Based on the Transportation Tomorrow Survey, there are 23% and 26% modal split during a.m. and p.m. peak hours. We have considered a 20% modal split during the weekday a.m. peak period and 25% modal split during the weekday p.m. peak period. Modal split calculations are attached. Land use Category 222 "Multifamily Housing (High-Rise)" and Land use Category 820 "Shopping Centre" was used to forecast the trips generated by the development. The forecasted primary trips are tabulated in Table 6.

The pass-by trips were estimated using the information in Chapter 5 of the ITE's Trip Generation handbook. The ITE handbook defines primary trips as "trips made for the specific purpose of visiting the generator". When applying pass-by trips to the commercial part of the proposed development, the trips were applied the weekday p.m. and not the weekday a.m. peak hour. The percentage of pass-by trips applied to the trip generation calculations was found in Chapter 5 of the ITE's Trip Generation Handbook. A pass-by rate of 34% was applied to the p.m. Pass-by assignment, and gross trips assignments are shown in Appendix H.

Given that the proposed development has multiple land uses, the ITE Multi-Use Trip Generation calculation was used. The worksheets to estimate the internal capture trips for the proposed development in weekday p.m. peak hours are presented in Appendix H.

			ip Generati	OH							
	Land Use Code	A.M. Peak Hour			P.M. Peak Hour						
		Inbound	Outbound	Total	Inbound	Outbound	Total				
Multifamily Housing (High-Rise)											
Total Gross Trips	222 - Multifamily Housing (High-Rise)	49	154	203	146	94	240				
Pass-by Trips		0	0	0	0	0	0				
Modal Split		10	32	42	37	24	61				
Internal Capture Trips		1	2	3	10	4	14				
New Primary Trips		38	120	158	99	66	165				
Shopping Center											
Total Gross Trips	820 - Shopping Center	12	7	19	36	40	76				
Pass-by Trips		0	0	0	12	14	26				
Modal Split		0	0	0	0	0	0				
Internal Capture Trips		2	1	3	4	10	14				
New Primary Trips		10	6	16	20	16	36				
TOTAL GROSS TRIPS		61	161	222	182	134	316				
TOTAL PASS-BY TRIPS		0	0	0	12	14	26				
TOTAL MODAL SPLIT		10	32	42	37	24	61				
TOTAL INTERNAL CAPTURE TRIPS		3	3	6	14	14	28				
TOTAL PRIMARY TRIPS		48	126	174	119	82	201				

Table 6: Trip Generation

Figure 3-6: Site Traffic Volumes – Future Trips to Remove

Figure 3-7: Net Site Traffic Volumes

APPENDIX E

Future Background Traffic Level of Service Calculations
Queues 1: Hurontario St & Elm Drive E

	٠	-	4	+	1	1	1	ŧ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	357	356	83	214	118	1922	43	1495	
Act Effct Green (s)	52.0	52.0	52.0	52.0	11.9	83.1	6.8	76.0	
Actuated g/C Ratio	0.33	0.33	0.33	0.33	0.08	0.53	0.04	0.48	
v/c Ratio	1.08	0.59	0.39	0.36	0.89	1.05	0.58	0.90	
Control Delay	120.7	35.9	48.1	31.4	124.6	71.6	103.8	45.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	120.7	35.9	48.1	31.4	124.6	71.6	103.8	45.2	
LOS	F	D	D	С	F	E	F	D	
Approach Delay		78.4		36.0		74.7		46.8	
Approach LOS		E		D		E		D	
Queue Length 50th (m)-	~127.2	68.9	20.5	37.7	38.3	~353.1	13.7	217.6	
Queue Length 95th (m)#	¥191.1	103.4	38.0	61.1	#84.6	#393.8	#30.8	248.4	
Internal Link Dist (m)		217.5		214.8		169.2		328.4	
Turn Bay Length (m)	22.5		41.0		28.0		69.0		
Base Capacity (vph)	331	605	215	587	132	1833	77	1758	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.08	0.59	0.39	0.36	0.89	1.05	0.56	0.85	
Intersection Summary									

Cycle Length: 160	
Actuated Cycle Length: 158	
Control Type: Semi Act-Uncoord	
Maximum v/c Ratio: 1.08	
Intersection Signal Delay: 63.4	Intersection LOS: E
Intersection Capacity Utilization 105.4%	ICU Level of Service G
Analysis Period (min) 15	

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 1: Hurontario St & Elm Drive E

	٠	-	7	4	+	•	1	Ť	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	f)		7	ĥ		7	† î»		7	≜ ↑₽	
Traffic Volume (vph)	328	82	246	76	72	125	109	1722	46	40	1288	87
Future Volume (vph)	328	82	246	76	72	125	109	1722	46	40	1288	87
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	8.0	8.0		8.0	8.0		3.0	7.0		3.0	7.0	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	0.95		1.00	0.95	
Frt	1.00	0.89		1.00	0.90		1.00	1.00		1.00	0.99	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1750	1635		1750	1666		1750	3486		1750	3467	
Flt Permitted	0.55	1.00		0.36	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1009	1635		655	1666		1750	3486		1750	3467	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	357	89	267	83	78	136	118	1872	50	43	1400	95
RTOR Reduction (vph)	0	67	0	0	39	0	0	1	0	0	3	0
Lane Group Flow (vph)	357	289	0	83	175	0	118	1921	0	43	1492	0
Turn Type	Perm	NA		Perm	NA		Prot	NA		Prot	NA	
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8								
Actuated Green, G (s)	52.0	52.0		52.0	52.0		12.6	83.1		5.5	76.0	
Effective Green, g (s)	52.0	52.0		52.0	52.0		12.6	83.1		5.5	76.0	
Actuated g/C Ratio	0.33	0.33		0.33	0.33		0.08	0.52		0.03	0.48	
Clearance Time (s)	8.0	8.0		8.0	8.0		3.0	7.0		3.0	7.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	330	536		214	546		139	1826		60	1661	
v/s Ratio Prot		0.18			0.11		0.07	c0.55		0.02	c0.43	
v/s Ratio Perm	c0.35			0.13								
v/c Ratio	1.08	0.54		0.39	0.32		0.85	1.05		0.72	0.90	
Uniform Delay, d1	53.3	43.5		41.0	40.0		72.1	37.8		75.8	37.8	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	73.1	1.0		1.2	0.3		35.5	36.3		33.3	6.9	
Delay (s)	126.4	44.6		42.2	40.4		107.6	74.0		109.1	44.6	
Level of Service	F	D		D	D		F	E		F	D	
Approach Delay (s)		85.6			40.9			76.0			46.4	
Approach LOS		F			D			E			D	
Intersection Summary												
HCM 2000 Control Dela	у		65.3	F	ICM 200	00 Leve	l of Serv	/ice	Е			
HCM 2000 Volume to C	apacity	ratio	1.06									
Actuated Cycle Length (s)		158.6	S	Sum of le	ost time	(s)		18.0			
Intersection Capacity Ut	ilization	1	05.4%	10	CU Leve	el of Ser	vice		G			
Analysis Period (min)			15									

	٠	7	1	t	ţ	1			
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations	Y		7	1	¢Î,				
Traffic Volume (veh/h)	31	39	14	184	198	10			
Future Volume (Veh/h)	31	39	14	184	198	10			
Sign Control	Stop			Free	Free				
Grade	0%			0%	0%				
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92			
Hourly flow rate (vph)	34	42	15	200	215	11			
Pedestrians	4			13	13				
Lane Width (m)	3.5			3.5	3.5				
Walking Speed (m/s)	1.1			1.1	1.1				
Percent Blockage	0			1	1				
Right turn flare (veh)									
Median type				None	None				
Median storage veh)									
Upstream signal (m)				77					
pX, platoon unblocked									
vC, conflicting volume	468	238	230						
vC1, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol	468	238	230						
tC, single (s)	6.4	6.2	4.1						
tC, 2 stage (s)									
tF (s)	3.5	3.3	2.2						
p0 queue free %	94	95	99						
cM capacity (veh/h)	538	794	1345						
Direction, Lane #	EB 1	NB 1	NB 2	SB 1					
Volume Total	76	15	200	226					
Volume Left	34	15	0	0					
Volume Right	42	0	0	11					
cSH	655	1345	1700	1700					
Volume to Capacity	0.12	0.01	0.12	0.13					
Queue Length 95th (m)	3.0	0.3	0.0	0.0					
Control Delay (s)	11.2	7.7	0.0	0.0					
Lane LOS	В	А							
Approach Delay (s)	11.2	0.5		0.0					
Approach LOS	В								
Intersection Summary									
Average Delay			1.9						
Intersection Capacity Uti	lization		26.1%	l	CU Leve	el of Servic	Э	А	
Analysis Period (min)			15						

HCM Unsignalized Intersection Capacity Analysis 5: Obelisk Way & Kaneff Cres

	٠	-	7	1	-	*	1	t	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$			\$	
Traffic Volume (veh/h)	1	34	32	23	16	5	23	4	10	1	2	0
Future Volume (Veh/h)	1	34	32	23	16	5	23	4	10	1	2	0
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	1	37	35	25	17	5	25	4	11	1	2	0
Pedestrians		15			15			10			10	
Lane Width (m)		3.5			3.5			3.5			3.5	
Walking Speed (m/s)		1.1			1.1			1.1			1.1	
Percent Blockage		1			1			1			1	
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	32			82			152	148	80	164	164	44
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	32			82			152	148	80	164	164	44
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			98			97	99	99	100	100	100
cM capacity (veh/h)	1579			1515			779	721	965	755	707	1009
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	73	47	40	3								
Volume Left	1	25	25	1								
Volume Right	35	5	11	0								
cSH	1579	1515	816	723								
Volume to Capacity	0.00	0.02	0.05	0.00								
Queue Length 95th (m)	0.0	0.4	1.2	0.1								
Control Delay (s)	0.1	4.0	9.6	10.0								
Lane LOS	А	А	А	В								
Approach Delay (s)	0.1	4.0	9.6	10.0								
Approach LOS			А	В								
Intersection Summary												
Average Delay			3.8									
Intersection Capacity Uti	lization		24.3%	I	CU Leve	el of Ser	vice		А			
Analysis Period (min)			15									

	٠	→	+	*	1	~		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	7	1	ţ,		¥			
Traffic Volume (veh/h)	36	170	148	6	19	61		
Future Volume (Veh/h)	36	170	148	6	19	61		
Sign Control		Free	Free		Stop			
Grade		0%	0%		0%			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	39	185	161	7	21	66		
Pedestrians		28	28		3			
Lane Width (m)		3.5	3.5		3.5			
Walking Speed (m/s)		1.1	1.1		1.1			
Percent Blockage		2	2		0			
Right turn flare (veh)								
Median type		None	None					
Median storage veh)								
Upstream signal (m)		239	69					
pX. platoon unblocked								
vC, conflicting volume	171				458	196		
vC1. stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	171				458	196		
tC, single (s)	4.1				6.4	6.2		
tC, 2 stage (s)								
tF (s)	2.2				3.5	3.3		
p0 queue free %	97				96	92		
cM capacity (veh/h)	1415				525	828		
Direction Lane #	FR 1	FB 2	WR 1	SB 1				
Volume Total	30	185	168	87				
Volume Left	30	0	0	21				
Volume Right	0	0	7	66				
cSH	1415	1700	1700	727				
Volume to Canacity	0.03	0 11	0 10	0 12				
Oueue Length 95 th (m)	0.00	0.11	0.10	3.1				
Control Delay (s)	7.6	0.0	0.0	10.6				
	Δ	0.0	0.0	10.0 R				
Annroach Delay (s)	1 3		0.0	10.6				
Approach LOS	1.5		0.0	10.0 R				
				D				
Intersection Summary			0.0					
Average Delay			2.6			L (O)	Δ	
Intersection Capacity Uti	lization		32.1%	IC	U Leve	el of Servi	ce A	
Analysis Period (min)			15					

Queues 7: Mississauga Valley Blvd & Elm Drive E

	٠	-	-	1	1	1	ţ
Lane Group	EBL	EBT	WBT	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	42	162	108	80	170	10	259
Act Effct Green (s)	9.1	9.1	9.7	26.4	24.5	12.0	12.0
Actuated g/C Ratio	0.22	0.22	0.24	0.65	0.60	0.29	0.29
v/c Ratio	0.13	0.39	0.32	0.12	0.16	0.03	0.50
Control Delay	17.1	8.1	15.3	4.4	6.0	11.9	16.5
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	17.1	8.1	15.3	4.4	6.0	11.9	16.5
LOS	В	А	В	А	А	В	В
Approach Delay		9.9	15.3		5.5		16.3
Approach LOS		А	В		А		В
Queue Length 50th (m)	2.6	1.0	5.1	2.1	5.5	0.6	15.5
Queue Length 95th (m)	9.5	13.1	16.7	6.3	14.0	3.0	33.4
Internal Link Dist (m)		44.7	15.4		104.6		53.4
Turn Bay Length (m)	17.0			16.0		21.0	
Base Capacity (vph)	979	962	947	681	1469	759	1116
Starvation Cap Reductn	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0
Reduced v/c Ratio	0.04	0.17	0.11	0.12	0.12	0.01	0.23
Intersection Summary							
Cycle Length: 74.5							
Actuated Cycle Length: 4	0.7						
Control Type: Semi Act-U	Jncoord	ł					
Maximum v/c Ratio: 0.50							
Intersection Signal Delay	r: 11.4			I	ntersect	ion LOS	: B
Intersection Capacity Util	lization	72.4%		10	CU Leve	el of Ser	vice C
Analysis Period (min) 15							

HCM Signalized Intersection Capacity Analysis 7: Mississauga Valley Blvd & Elm Drive E

07-11-2023

	٠	-	7	1	-	*	1	Ť	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	ţ,			4		٦	ţ,		٢	ţ,	
Traffic Volume (vph)	39	15	134	47	29	23	74	132	25	9	201	38
Future Volume (vph)	39	15	134	47	29	23	74	132	25	9	201	38
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5			4.5		3.0	7.0		7.0	7.0	
Lane Util. Factor	1.00	1.00			1.00		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	0.96			0.99		1.00	0.99		1.00	0.99	
Flpb, ped/bikes	0.97	1.00			0.99		1.00	1.00		0.98	1.00	
Frt	1.00	0.86			0.97		1.00	0.98		1.00	0.98	
Flt Protected	0.95	1.00			0.98		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1571	1397			1716		1623	1777		1745	1721	
Flt Permitted	0.91	1.00			0.77		0.48	1.00		0.65	1.00	
Satd. Flow (perm)	1506	1397			1353		821	1777		1193	1721	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	42	16	146	51	32	25	80	143	27	10	218	41
RTOR Reduction (vph)	0	124	0	0	18	0	0	8	0	0	10	0
Lane Group Flow (vph)	42	38	0	0	90	0	80	162	0	10	249	0
Confl. Peds. (#/hr)	32		32	22		22			27	34		34
Heavy Vehicles (%)	10%	8%	12%	2%	3%	0%	10%	3%	0%	0%	2%	26%
Turn Type	Perm	NA		Perm	NA		pm+pt	NA		Perm	NA	
Protected Phases		4			8		5	2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)	6.3	6.3			8.3		22.1	22.1		12.2	12.2	
Effective Green, g (s)	6.3	6.3			8.3		22.1	22.1		12.2	12.2	
Actuated g/C Ratio	0.15	0.15			0.20		0.53	0.53		0.29	0.29	
Clearance Time (s)	6.5	6.5			4.5		3.0	7.0		7.0	7.0	
Vehicle Extension (s)	3.0	3.0			3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	226	210			268		565	937		347	501	
v/s Ratio Prot		0.03					0.02	c0.09			c0.14	
v/s Ratio Perm	0.03				c0.07		0.05			0.01		
v/c Ratio	0.19	0.18			0.33		0.14	0.17		0.03	0.50	
Uniform Delay, d1	15.6	15.5			14.4		5.0	5.1		10.6	12.3	
Progression Factor	1.00	1.00			1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.4	0.4			0.7		0.1	0.1		0.0	0.8	
Delay (s)	16.0	16.0			15.2		5.2	5.2		10.6	13.1	
Level of Service	В	В			В		A	A		В	В	
Approach Delay (s)		16.0			15.2			5.2			13.0	
Approach LOS		В			В			A			В	
Intersection Summary												
HCM 2000 Control Delay	у		11.7	F	ICM 20	00 Leve	l of Serv	/ice	В			
HCM 2000 Volume to Ca	apacity	ratio	0.40									
Actuated Cycle Length (s)		41.9	S	Sum of l	ost time	(s)		16.5			
Intersection Capacity Ut	ilization		72.4%	I	CU Leve	el of Sei	vice		С			
Analysis Period (min)			15									

	٠	7	1	t	ŧ	1		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	Y		ሻ	↑	ţ,			
Traffic Volume (veh/h)	17	31	70	342	468	58		
Future Volume (Veh/h)	17	31	70	342	468	58		
Sign Control	Stop			Free	Free			
Grade	0%			0%	0%			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	18	34	76	372	509	63		
Pedestrians	3			17	17			
Lane Width (m)	3.5			3.5	3.5			
Walking Speed (m/s)	1.1			1.1	1.1			
Percent Blockage	0			2	2			
Right turn flare (veh)								
Median type				NoneT	WLTL			
Median storage veh)					2			
Upstream signal (m)				77				
pX, platoon unblocked	0.93							
vC, conflicting volume	1084	560	575					
vC1, stage 1 conf vol	544							
vC2, stage 2 conf vol	541							
vCu, unblocked vol	1052	560	575					
tC, single (s)	6.4	6.2	4.1					
tC, 2 stage (s)	5.4							
tF (s)	3.5	3.3	2.2					
p0 queue free %	96	93	92					
cM capacity (veh/h)	428	522	1006					
Direction, Lane #	EB 1	NB 1	NB 2	SB 1				
Volume Total	52	76	372	572				
Volume Left	18	76	0	0				
Volume Right	34	0	0	63				
cSH	485	1006	1700	1700				
Volume to Capacity	0.11	0.08	0.22	0.34				
Queue Length 95th (m)	2.7	1.9	0.0	0.0				
Control Delay (s)	13.3	8.9	0.0	0.0				
Lane LOS	В	А						
Approach Delay (s)	13.3	1.5		0.0				
Approach LOS	В							
Intersection Summary								
Average Delay			1.3					
Intersection Capacity Uti	ilization		50.1%	IC	CU Leve	l of Service	А	
Analysis Period (min)			15					

HCM Unsignalized Intersection Capacity Analysis 5: Obelisk Way & Kaneff Cres

	٠	-	7	1	+	*	1	Ť	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$			\$	
Traffic Volume (veh/h)	2	32	36	32	60	12	25	3	21	3	0	0
Future Volume (Veh/h)	2	32	36	32	60	12	25	3	21	3	0	0
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	2	35	39	35	65	13	27	3	23	3	0	0
Pedestrians		19			19			15			15	
Lane Width (m)		3.5			3.5			3.5			3.5	
Walking Speed (m/s)		1.1			1.1			1.1			1.1	
Percent Blockage		2			2			1			1	
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	93			89			234	236	88	258	250	106
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	93			89			234	236	88	258	250	106
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			98			96	100	98	100	100	100
cM capacity (veh/h)	1494			1499			676	634	946	634	624	926
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	76	113	53	3								
Volume Left	2	35	27	3								
Volume Right	39	13	23	0								
cSH	1494	1499	768	634								
Volume to Capacity	0.00	0.02	0.07	0.00								
Queue Length 95th (m)	0.0	0.5	1.7	0.1								
Control Delay (s)	0.2	2.4	10.0	10.7								
Lane LOS	А	А	В	В								
Approach Delay (s)	0.2	2.4	10.0	10.7								
Approach LOS			В	В								
Intersection Summary												
Average Delay			3.5									
Intersection Capacity Uti	lization		27.4%	I	CU Leve	el of Ser	vice		А			
Analysis Period (min)			15									

	٠	→	+	*	1	~		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	٦	+	Þ		Y			
Traffic Volume (veh/h)	55	247	289	8	6	51		
Future Volume (Veh/h)	55	247	289	8	6	51		
Sign Control		Free	Free		Stop			
Grade		0%	0%		0%			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	60	268	314	9	7	55		
Pedestrians		28	28		3			
Lane Width (m)		3.5	3.5		3.5			
Walking Speed (m/s)		1.1	1.1		1.1			
Percent Blockage		2	2		0			
Right turn flare (veh)								
Median type		None	None					
Median storage veh)								
Upstream signal (m)		167	69					
pX, platoon unblocked	0.98				0.98	0.98		
vC, conflicting volume	326				738	350		
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	307				725	331		
tC, single (s)	4.1				6.4	6.2		
tC, 2 stage (s)								
tF (s)	2.2				3.5	3.3		
p0 queue free %	95				98	92		
cM capacity (veh/h)	1242				353	685		
Direction, Lane #	EB 1	EB 2	WB 1	SB 1				
Volume Total	60	268	323	62				
Volume Left	60	0	0	7				
Volume Right	0	0	9	55				
cSH	1242	1700	1700	619				
Volume to Capacity	0.05	0.16	0.19	0.10				
Queue Length 95th (m)	1.2	0.0	0.0	2.5				
Control Delay (s)	8.0	0.0	0.0	11.5				
Lane LOS	А			В				
Approach Delay (s)	1.5		0.0	11.5				
Approach LOS				В				
Intersection Summarv								
Average Delay			1.7					
Intersection Capacity Lti	lization		39.4%	IC	CULeve	l of Serv	vice	
Analysis Period (min)			15					

Queues 7: Mississauga Valley Blvd & Elm Drive E

	٠	-	+	1	Ť	1	ŧ	
Lane Group	EBL	EBT	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	61	206	74	182	439	42	505	
Act Effct Green (s)	9.5	9.5	11.5	36.3	32.3	22.2	22.2	
Actuated g/C Ratio	0.17	0.17	0.21	0.66	0.58	0.40	0.40	
v/c Ratio	0.31	0.53	0.25	0.36	0.42	0.11	0.76	
Control Delay	25.5	11.7	18.3	6.0	7.8	11.7	22.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	25.5	11.7	18.3	6.0	7.8	11.7	22.9	
LOS	С	В	В	А	А	В	С	
Approach Delay		14.9	18.3		7.3		22.0	
Approach LOS		В	В		А		С	
Queue Length 50th (m)	5.8	3.5	5.3	5.1	18.4	2.4	37.3	
Queue Length 95th (m)	14.7	18.3	14.1	14.3	42.5	8.4	#90.4	
Internal Link Dist (m)		44.7	15.4		104.6		53.4	
Turn Bay Length (m)	17.0			16.0		21.0		
Base Capacity (vph)	544	786	718	509	1147	421	754	
Starvation Cap Reductn	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.11	0.26	0.10	0.36	0.38	0.10	0.67	
Intersection Summary								
Cycle Length: 74.5								
Actuated Cycle Length: 5	55.4							
Control Type: Semi Act-L	Jncoord	t						
Maximum v/c Ratio: 0.76	5							
Intersection Signal Delay	r: 14.5			li li	ntersect	ion LOS	S: B	

Intersection Capacity Utilization 79.6%

ICU Level of Service D

Analysis Period (min) 15# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 7: Mississauga Valley Blvd & Elm Drive E

07-11-2023

	٠	→	7	4	-	*	1	t	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	ţ,			4		٢	ţ,		٢	ţ,	
Traffic Volume (vph)	56	35	155	31	23	14	167	337	67	39	338	127
Future Volume (vph)	56	35	155	31	23	14	167	337	67	39	338	127
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5			4.5		3.0	7.0		7.0	7.0	
Lane Util. Factor	1.00	1.00			1.00		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	0.95			0.99		1.00	0.99		1.00	0.98	
Flpb, ped/bikes	0.94	1.00			0.99		1.00	1.00		0.98	1.00	
Frt	1.00	0.88			0.97		1.00	0.98		1.00	0.96	
Flt Protected	0.95	1.00			0.98		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1573	1492			1720		1700	1796		1743	1632	
Flt Permitted	0.71	1.00			0.80		0.31	1.00		0.51	1.00	
Satd. Flow (perm)	1174	1492			1402		555	1796		932	1632	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	61	38	168	34	25	15	182	366	73	42	367	138
RTOR Reduction (vph)	0	139	0	0	12	0	0	7	0	0	16	0
Lane Group Flow (vph)	61	67	0	0	62	0	182	432	0	42	489	0
Confl. Peds. (#/hr)	41		41	22		22			46	39		39
Heavy Vehicles (%)	7%	0%	6%	2%	3%	0%	5%	1%	0%	0%	2%	26%
Turn Type	Perm	NA		Perm	NA		pm+pt	NA		Perm	NA	
Protected Phases		4			8		5	2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)	9.5	9.5			11.5		32.3	32.3		22.3	22.3	
Effective Green, g (s)	9.5	9.5			11.5		32.3	32.3		22.3	22.3	
Actuated g/C Ratio	0.17	0.17			0.21		0.58	0.58		0.40	0.40	
Clearance Time (s)	6.5	6.5			4.5		3.0	7.0		7.0	7.0	
Vehicle Extension (s)	3.0	3.0			3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	201	256			291		469	1049		375	658	
v/s Ratio Prot		0.04					0.05	c0.24			c0.30	
v/s Ratio Perm	c0.05				0.04		0.18			0.05		
v/c Ratio	0.30	0.26			0.21		0.39	0.41		0.11	0.74	
Uniform Delay, d1	20.0	19.9			18.2		6.3	6.3		10.3	14.1	
Progression Factor	1.00	1.00			1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.9	0.5			0.4		0.5	0.3		0.1	4.5	
Delay (s)	20.9	20.4			18.5		6.8	6.6		10.4	18.6	
Level of Service	С	С			В		А	А		В	В	
Approach Delay (s)		20.5			18.5			6.6			18.0	
Approach LOS		С			В			А			В	
Intersection Summary												
HCM 2000 Control Delay	у		13.8	F	ICM 20	00 Leve	l of Serv	/ice	В			
HCM 2000 Volume to Ca	apacity	ratio	0.58									
Actuated Cycle Length (s)		55.3	S	Sum of l	ost time	(s)		16.5			
Intersection Capacity Uti	ilization		79.6%	10	CU Leve	el of Ser	vice		D			
Analysis Period (min)			15									

Queues 11: Hurontario St/Hurontario St & Elm Drive E

	onta			Dinto				
	۲	+	4	+	1	1	1	ţ
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	147	337	63	223	284	1771	87	2177
Act Effct Green (s)	29.0	29.0	29.0	29.0	10.0	80.6	9.7	80.3
Actuated g/C Ratio	0.21	0.21	0.21	0.21	0.07	0.59	0.07	0.58
v/c Ratio	0.82	0.84	0.70	0.58	2.24	0.87	0.71	1.08
Control Delay	84.0	59.9	88.2	48.5	605.3	31.0	92.8	73.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	84.0	59.9	88.2	48.5	605.3	31.0	92.8	73.9
LOS	F	E	F	D	F	С	F	E
Approach Delay		67.3		57.2		110.4		74.6
Approach LOS		E		E		F		E
Queue Length 50th (m)	38.2	72.5	15.9	48.3	~123.9	204.8	23.4	~346.5
Queue Length 95th (m)	64.2	107.7	33.5	73.9	#197.9	#317.1	#54.4	#450.1
Internal Link Dist (m)		124.5		143.4		120.1		174.5
Turn Bay Length (m)	22.5		41.0		28.0		69.0	
Base Capacity (vph)	323	670	162	670	127	2040	127	2017
Starvation Cap Reductn	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.46	0.50	0.39	0.33	2.24	0.87	0.69	1.08

Intersection Summary		
Cycle Length: 160		
Actuated Cycle Length: 137.4		
Control Type: Semi Act-Uncoord		
Maximum v/c Ratio: 2.24		
Intersection Signal Delay: 87.4	Intersection LOS: F	
Intersection Capacity Utilization 118.0%	ICU Level of Service H	
Analysis Period (min) 15		
 Volume execute concepts, queue is theoretic; 	ally infinite	

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 11: Hurontario St/Hurontario St & Elm Drive E

07-11-2023

	٠	-	7	4	+	*	1	t	1	1	ŧ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	¢Î,		7	ħ		7	≜ t}		7	≜ †₽	
Traffic Volume (vph)	135	105	205	58	116	89	261	1550	79	80	1783	220
Future Volume (vph)	135	105	205	58	116	89	261	1550	79	80	1783	220
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	8.0	8.0		8.0	8.0		3.0	7.0		3.0	7.0	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	0.95		1.00	0.95	
Frt	1.00	0.90		1.00	0.93		1.00	0.99		1.00	0.98	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1750	1659		1750	1722		1750	3474		1750	3442	
Flt Permitted	0.46	1.00		0.23	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)	853	1659		427	1722		1750	3474		1750	3442	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	147	114	223	63	126	97	284	1685	86	87	1938	239
RTOR Reduction (vph)	0	51	0	0	21	0	0	2	0	0	5	0
Lane Group Flow (vph)	147	286	0	63	202	0	284	1769	0	87	2172	0
Turn Type	Perm	NA		Perm	NA		Prot	NA		Prot	NA	
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8								
Actuated Green, G (s)	29.0	29.0		29.0	29.0		10.0	80.6		9.7	80.3	
Effective Green, g (s)	29.0	29.0		29.0	29.0		10.0	80.6		9.7	80.3	
Actuated g/C Ratio	0.21	0.21		0.21	0.21		0.07	0.59		0.07	0.58	
Clearance Time (s)	8.0	8.0		8.0	8.0		3.0	7.0		3.0	7.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	180	350		90	363		127	2039		123	2013	
v/s Ratio Prot		0.17			0.12		c0.16	0.51		0.05	c0.63	
v/s Ratio Perm	c0.17			0.15								
v/c Ratio	0.82	0.82		0.70	0.56		2.24	0.87		0.71	1.08	
Uniform Delay, d1	51.6	51.6		50.1	48.4		63.7	23.9		62.4	28.5	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	24.0	13.7		21.1	1.9		580.9	4.2		16.9	45.2	
Delay (s)	75.6	65.3		71.3	50.3		644.5	28.1		79.3	73.7	
Level of Service	E	Е		Е	D		F	С		E	E	
Approach Delay (s)		68.4			54.9			113.2			73.9	
Approach LOS		Е			D			F			Е	
Intersection Summary												
HCM 2000 Control Dela	у		88.2	F	ICM 200	00 Leve	l of Serv	/ice	F			
HCM 2000 Volume to C	apacity	ratio	1.11									
Actuated Cycle Length (s)		137.3	S	Sum of l	ost time	(s)		18.0			
Intersection Capacity Ut	ilization	1	18.0%	[(CU Leve	el of Ser	vice		Н			
Analysis Period (min)			15									

APPENDIX F

2016 TTS Data Extraction

Mon Oct 17 2022 13:26:40 GMT-0400 (Eastern Daylight Time) - Run Time: 2763ms

Cross Tabulation Query Form - Trip - 2016 v1.1 Row: 2006 GTA zone of origin - gta06_orig Column: Primary travel mode of trip - mode_prime

Filters: Filters: 2006 GTA z 3863 3864 and Primary trav c d g j and m p t u w and Start time of trip - start_time In 600-900 and Type of dwe Trip 2016 Table:
 Transit exc Auto drive GO rail oni Joint GO ra Auto passe Paid ridesh Walk

 3852
 154
 849
 14
 0
 13
 0
 109

 3863
 1524
 2331
 54
 41
 603
 119
 332

 3864
 41.70.0
 1882.00
 139.00
 73.00
 369.00
 0.00
 562.00

 2095
 5062
 207
 114
 985
 119
 1003

 21.9%
 52.8%
 2.2%
 1.2%
 10.3%
 1.2%
 10.5%

 Mon Oct 17 2022 13.25.28 GMT-0400 (Eastern Daylight Time) - Run Time: 2571ms
 10.5%
 10.5%
 10.5%
 9585 Cross Tabulation Query Form - Trip - 2016 v1.1 Row: 2006 GTA zone of origin - gta06_orig Column: Primary travel mode of trip - mode_prime Filters: 2006 GTA z 3863 3864 2006 GTA z 3863 3864 and Primary tarv c d g j m p t u w and Start time of trip - start_time in 1500-1800 and Type of dwe Trip 2016 Table:
 Transit exc Cycle
 Auto drive Auto passe Paid ridesh Walk

 3852
 0
 173
 0
 188

 3863
 195
 0
 116
 188

 3864
 114.00
 58.00
 711.00
 191.00
 43.00
 133.00

 309
 59
 188
 644
 41
 599

 9%
 2%
 53%
 18%
 1%
 17%

3540

					0.7127			0.59
				AM			PM	
			IN	OUT	TOTAL	IN	OUT	TOTAL
			25	81	106	72	46	118
PARAMETER	AM	PM	24%	76%	100%	61%	39%	100%
transit	26%	9%	6.6	21	28	6	4	11
walk	10%	17%	2.5	8	11	12	8	20
cycling	0%	2%	0.0	0	0	1	1	2
auto passenger	11%	19%	2.8	9	12	14	9	22
Auto trip	53%	53%	13.5	43	56	38	24	63

T= 0.28 (X) +12.86 T= 0.34 (X) +8.56

General Direction of	A	M	Р	М
Travel (To/From)	IN	OUT	IN	OUT
North (Hurontario St/403)	42%	35%	41%	39%
South (Hurontario St/ QEW)	30%	31%	25%	29%
East (Burnhamthorpe Rd/Centre Parkway)	14%	17%	17%	16%
West (Burnhamthorpe Rd/Centre Parkway)	14%	17%	17%	16%
Total	100%	100%	100%	100%

A	M	P	М
IN	OUT	IN	OUT
15	52	52	33
6	18	21	13
5	16	13	10
2	9	9	5
2	9	9	5

Mon Oct 17 2022 12:52:41 GMT-0400 (Eastern Daylight Time) - Run Time: 2785ms

Cross Tabulation Query Form - Trip - 2016 v1.1

Row: 2006 GTA zone of destination - gta06_dest Column: Planning district of origin - pd_orig

 Filters:
 2006 GTA 2:
 3863
 3864

 and
 Primary Irany
 p
 t
 u

 and
 Start time of trip - start_time in 600-900
 Start time of trip - start_time in 600-900

Trip 2016 Table:

Mon Oct 17 2022 12:44:53 GMT-0400 (Eastern Daylight Time) - Run Time: 2605ms

Cross Tabulation Query Form - Trip - 2016 v1.1

Row: 2006 GTA zone of origin - gta06_orig Column: Planning district of destination - pd_dest

Filters: 2006 GTA z 3863 3864 and Primarytraw m p t u and Start time of trip - start_time in 600-900

Trip 2016 Table:

PD 1 0	F TOI PD 2 C	of Toi PD :	s of Tor PD s	of for PD	6 of Tor PD	/ of Toi PL	0 8 of Toi PD	9 of Toi PL	D 10 of It P	D 11 of ICPL	15 of IcNe	wmarke Ric	hmond Ma	arknam V	aughan	Brampton	Mississaug Oa	kville	Burlington Fla	imborou Hamilto	n Water	rloo Exter	nal	
2	31	0	0	26	0	0	9	24	0	0	0	29	0	0	0	100	596	55	0	0	0	19	0	
3	73	0	0	38	22	45	170	46	81	22	51	0	0	0	85	199	2192	106	0	0	33	18	0	
4	69	22	13	0	0	0	158	80	26	19	0	21	35	13	34	214	1519	40	17	18	0	0	19	
1	173	22	13	64	22	45	337	150	107	41	51	50	35	13	119	513	4307	201	17	18	33	37	19	6387
	3%	0%	0%	1%	0%	1%	5%	2%	2%	1%	1%	1%	1%	0%	2%	8%	67%	3%	0%	0%	٤%	1%	0%	
AM		OUT																						
	north		35%																					
	south		31%																					
	east		17%																					
	west		17%																					
			100%																					

Mon Oct 17 2022 12:46:33 GMT-0400 (Eastern Daylight Time) - Run Time: 2529ms

Cross Tabulation Query Form - Trip - 2016 v1.1

Row: 2006 GTA zone of origin - gta06_orig Column: Planning district of destination - pd_dest

Filtens: 2008 GTA z 3863 3864 and Primary traw m p t u and time of trip - start_time in 1500-1800

Trip 2 Table

ip 2016 able:																										
	PD 1 of To	oi PD 2 o	f Toi PD 4 of	Tor PD 7	of Tor PD 8	of Toi PE	9 of Toi PD	10 of Ti PD	11 of Ti PD	13 of Ti PD	16 of Tc Ajax	R	ichmond Ma	arkham Vau	ughan	Brampton M	Aississaug H	alton Hill Milto	n Oa	kville B	urlington St.	Cathari Nia	agara Fa Barrie	A	djala-Tosoror	ıtio
385	52 46	5	0	0	33	68	0	0	0	18	0	0	0	0	0	13	63	0	0	0	0	0	0	0	0	
386	63 17	7	13	18	0	38	0	0	0	0	0	28	0	49	45	12	1491	62	0	35	51	0	0	22	55	
386	64 15	5	15	12	22	84	68	40	33	0	40	0	9	0	32	92	1089	7	76	127	75	27	51	0	0	
	78	3	28	30	55	190	68	40	33	18	40	28	9	49	77	117	2643	69	76	162	126	27	51	22	55	4091
	2%	6	1%	1%	1%	5%	2%	1%	1%	0%	1%	1%	0%	1%	2%	3%	65%	2%	2%	4%	3%	1%	1%	1%	1%	
		PM		out																						
			north		39%																					
			south		29%																					
			east		16%																					

east 10% west 16% 100%

APPENDIX E

Future Total Traffic Level of Service Calculations

	٠	7	1	t	ţ	1						
Movement	EBL	EBR	NBL	NBT	SBT	SBR						
Lane Configurations	¥		5	1	ţ,							
Traffic Volume (veh/h)	43	39	16	184	198	14						
Future Volume (Veh/h)	43	39	16	184	198	14						
Sign Control	Stop			Free	Free							
Grade	0%			0%	0%							
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92						
Hourly flow rate (vph)	47	42	17	200	215	15						
Pedestrians	4			13	13							
Lane Width (m)	3.5			3.5	3.5							
Walking Speed (m/s)	1.1			1.1	1.1							
Percent Blockage	0			1	1							
Right turn flare (veh)												
Median type				None	None							
Median storage veh)												
Upstream signal (m)				77								
pX, platoon unblocked												
vC, conflicting volume	474	240	234									
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	474	240	234									
tC, single (s)	6.4	6.2	4.1									
tC, 2 stage (s)												
tF (s)	3.5	3.3	2.2									
p0 queue free %	91	95	99									
cM capacity (veh/h)	533	792	1341									
Direction, Lane #	EB 1	NB 1	NB 2	SB 1								
Volume Total	89	17	200	230								
Volume Left	47	17	0	0								
Volume Right	42	0	0	15								
cSH	630	1341	1700	1700								
Volume to Capacity	0.14	0.01	0.12	0.14								
Queue Length 95th (m)	3.7	0.3	0.0	0.0								
Control Delay (s)	11.7	7.7	0.0	0.0								
Lane LOS	В	А										
Approach Delay (s)	11.7	0.6		0.0								
Approach LOS	В											
Intersection Summary												
Average Delay			2.2									
Intersection Capacity Uti	lization		28.2%	I	CU Leve	l of Servic	ce	•	•)	e A	e A
Analysis Period (min)			15	•							-	

HCM Unsignalized Intersection Capacity Analysis 5: Obelisk Way & Kaneff Cres

	٠	-	7	1	+	*	1	Ť	1	4	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			4			\$			\$	
Traffic Volume (veh/h)	1	34	32	36	16	5	23	4	22	1	2	0
Future Volume (Veh/h)	1	34	32	36	16	5	23	4	22	1	2	0
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	1	37	35	39	17	5	25	4	24	1	2	0
Pedestrians		15			15			10			10	
Lane Width (m)		3.5			3.5			3.5			3.5	
Walking Speed (m/s)		1.1			1.1			1.1			1.1	
Percent Blockage		1			1			1			1	
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	32			82			180	176	80	205	192	44
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	32			82			180	176	80	205	192	44
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			97			97	99	98	100	100	100
cM capacity (veh/h)	1579			1515			742	689	965	695	676	1009
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	73	61	53	3								
Volume Left	1	39	25	1								
Volume Right	35	5	24	0								
cSH	1579	1515	823	682								
Volume to Capacity	0.00	0.03	0.06	0.00								
Queue Length 95th (m)	0.0	0.6	1.6	0.1								
Control Delay (s)	0.1	4.8	9.7	10.3								
Lane LOS	А	А	А	В								
Approach Delay (s)	0.1	4.8	9.7	10.3								
Approach LOS			А	В								
Intersection Summary												
Average Delay			4.5									
Intersection Capacity Uti	lization		24.8%	I	CU Leve	el of Ser	vice		А			
Analysis Period (min)			15									

	٠	→	+	*	4	~		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	7	1	ħ		Y			
Traffic Volume (veh/h)	52	170	148	9	32	106		
Future Volume (Veh/h)	52	170	148	9	32	106		
Sign Control		Free	Free		Stop			
Grade		0%	0%		0%			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	57	185	161	10	35	115		
Pedestrians		28	28		3			
Lane Width (m)		3.5	3.5		3.5			
Walking Speed (m/s)		1.1	1.1		1.1			
Percent Blockage		2	2		0			
Right turn flare (veh)								
Median type		None	None					
Median storage veh)								
Upstream signal (m)		177	69					
pX, platoon unblocked								
vC, conflicting volume	174				496	197		
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	174				496	197		
tC, single (s)	4.1				6.4	6.2		
tC, 2 stage (s)								
tF (s)	2.2				3.5	3.3		
p0 queue free %	96				93	86		
cM capacity (veh/h)	1411				493	826		
Direction, Lane #	EB 1	EB 2	WB 1	SB 1				
Volume Total	57	185	171	150				
Volume Left	57	0	0	35				
Volume Right	0	0	10	115				
cSH	1411	1700	1700	713				
Volume to Capacity	0.04	0.11	0.10	0.21				
Queue Length 95th (m)	1.0	0.0	0.0	6.0				
Control Delay (s)	7.7	0.0	0.0	11.4				
Lane LOS	А			В				
Approach Delay (s)	1.8		0.0	11.4				
Approach LOS				В				
Intersection Summary								
Average Delay			3.8					
Intersection Capacity Uti	lization		34.3%	IC	CU Leve	el of Servi	се	А
Analysis Period (min)			15					

Queues 7: Mississauga Valley Blvd & Elm Drive E

	٠	-	-	1	1	4	ŧ
Lane Group	EBL	EBT	WBT	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	42	176	108	84	170	10	259
Act Effct Green (s)	9.1	9.1	9.7	26.5	24.6	12.0	12.0
Actuated g/C Ratio	0.22	0.22	0.24	0.65	0.60	0.29	0.29
v/c Ratio	0.13	0.41	0.32	0.13	0.16	0.03	0.50
Control Delay	17.0	8.0	15.3	4.5	6.1	11.9	16.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	17.0	8.0	15.3	4.5	6.1	11.9	16.6
LOS	В	А	В	А	А	В	В
Approach Delay		9.7	15.3		5.6		16.4
Approach LOS		А	В		A		В
Queue Length 50th (m)	2.6	1.0	5.1	2.2	5.5	0.6	15.5
Queue Length 95th (m)	9.5	13.6	16.6	6.7	14.2	3.1	33.7
Internal Link Dist (m)		44.7	15.4		104.6		53.4
Turn Bay Length (m)	17.0			16.0		21.0	
Base Capacity (vph)	975	963	939	680	1467	758	1114
Starvation Cap Reductn	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0
Reduced v/c Ratio	0.04	0.18	0.12	0.12	0.12	0.01	0.23
Intersection Summary							
Cycle Length: 74.5							
Actuated Cycle Length: 4	8.0						
Control Type: Semi Act-U	Jncoord	ł					
Maximum v/c Ratio: 0.50	1						
Intersection Signal Delay	: 11.3			I	ntersect	ion LOS	: B
Intersection Capacity Util	ization	72.6%		10	CU Leve	el of Ser	vice C
Analysis Period (min) 15							

HCM Signalized Intersection Capacity Analysis 7: Mississauga Valley Blvd & Elm Drive E

	٠	-	7	4	+	*	1	t	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	Ţ.			4		٢	ţ,		5	ţ,	
Traffic Volume (vph)	39	15	147	47	29	23	77	132	25	9	201	38
Future Volume (vph)	39	15	147	47	29	23	77	132	25	9	201	38
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5			4.5		3.0	7.0		7.0	7.0	
Lane Util. Factor	1.00	1.00			1.00		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	0.96			0.99		1.00	0.99		1.00	0.99	
Flpb, ped/bikes	0.97	1.00			0.99		1.00	1.00		0.98	1.00	
Frt	1.00	0.86			0.97		1.00	0.98		1.00	0.98	
Flt Protected	0.95	1.00			0.98		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1571	1394			1717		1623	1777		1745	1721	
Flt Permitted	0.91	1.00			0.76		0.48	1.00		0.65	1.00	
Satd. Flow (perm)	1501	1394			1342		821	1777		1193	1721	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	42	16	160	51	32	25	84	143	27	10	218	41
RTOR Reduction (vph)	0	136	0	0	18	0	0	8	0	0	10	0
Lane Group Flow (vph)	42	40	0	0	90	0	84	162	0	10	249	0
Confl. Peds. (#/hr)	32		32	22		22			27	34		34
Heavy Vehicles (%)	10%	8%	12%	2%	3%	0%	10%	3%	0%	0%	2%	26%
Turn Type	Perm	NA		Perm	NA		pm+pt	NA		Perm	NA	
Protected Phases		4			8		5	2			6	
Permitted Phases	4			8	-		2			6	-	
Actuated Green, G (s)	6.4	6.4			8.4		22.1	22.1		12.2	12.2	
Effective Green, q (s)	6.4	6.4			8.4		22.1	22.1		12.2	12.2	
Actuated g/C Ratio	0.15	0.15			0.20		0.53	0.53		0.29	0.29	
Clearance Time (s)	6.5	6.5			4.5		3.0	7.0		7.0	7.0	
Vehicle Extension (s)	3.0	3.0			3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	228	212			268		563	935		346	499	
v/s Ratio Prot		0.03					0.02	c0.09		• • •	c0.14	
v/s Ratio Perm	0.03				c0.07		0.05			0.01		
v/c Ratio	0.18	0.19			0.33		0.15	0.17		0.03	0.50	
Uniform Delay, d1	15.5	15.5			14.4		5.1	5.2		10.7	12.4	
Progression Factor	1.00	1.00			1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.4	0.4			0.7		0.1	0.1		0.0	0.8	
Delay (s)	15.9	16.0			15.1		5.2	5.3		10.7	13.2	
Level of Service	В	В			В		A	A		В	В	
Approach Delay (s)	_	16.0			15.1			5.3		_	13.1	
Approach LOS		В			В			A			В	
Intersection Summary												
HCM 2000 Control Delay	у		11.7	ŀ	ICM 20	00 Leve	l of Serv	/ice	В			
HCM 2000 Volume to Ca	apacity	ratio	0.40									
Actuated Cycle Length (s)		42.0	S	Sum of l	ost time	e (s)		16.5			
Intersection Capacity Ut	ilization		72.6%	I	CU Leve	el of Se	rvice		С			

	4	•	Ť	1	1	Ļ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	¥		î,			•	
Traffic Volume (veh/h)	58	12	49	19	3	123	
Future Volume (Veh/h)	58	12	49	19	3	123	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	63	13	53	21	3	134	
Pedestrians					-		
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)							
nX platoon unblocked							
vC conflicting volume	204	64			74		
vC1_stage 1 conf vol	201	01					
vC2_stage 2 conf vol							
vCu_unblocked vol	204	64			74		
tC single (s)	64	62			4 1		
tC_2 stage (s)	0.1	0.2					
tE (s)	35	33			22		
n0 queue free %	92	99			100		
cM capacity (veh/h)	783	1001			1526		
	100	1001			1020		
Direction, Lane #	WB 1	NB 1	SB 1				
Volume Total	76	74	137				
Volume Left	63	0	3				
Volume Right	13	21	0				
cSH	814	1700	1526				
Volume to Capacity	0.09	0.04	0.00				
Queue Length 95th (m)	2.3	0.0	0.0				
Control Delay (s)	9.9	0.0	0.2				
Lane LOS	А		А				
Approach Delay (s)	9.9	0.0	0.2				
Approach LOS	А						
Intersection Summary							
Average Delay			27				
Intersection Canacity Liti	ilization		19.5%	10		of Serv	vice
Analysis Period (min)			15	I.			

Queues 15: Hurontario St & Elm Drive E

	٠	-	4	+	1	Ť	1	ŧ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	357	356	105	240	118	1931	52	1495	
Act Effct Green (s)	52.1	52.1	52.1	52.1	10.0	80.1	8.9	77.0	
Actuated g/C Ratio	0.33	0.33	0.33	0.33	0.06	0.51	0.06	0.49	
v/c Ratio	1.14	0.59	0.48	0.40	1.06	1.09	0.53	0.88	
Control Delay	141.1	35.7	51.8	31.2	169.5	86.1	92.1	42.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	141.1	35.7	51.8	31.2	169.5	86.1	92.1	42.8	
LOS	F	D	D	С	F	F	F	D	
Approach Delay		88.5		37.5		90.9		44.5	
Approach LOS		F		D		F		D	
Queue Length 50th (m)	~134.1	68.9	26.9	42.1	~41.7	~368.0	16.3	215.3	
Queue Length 95th (m);	#198.0	103.4	48.2	67.5	#84.6	#408.7	31.3	248.4	
Internal Link Dist (m)		175.7		152.8		182.3		254.4	
Turn Bay Length (m)	22.5		41.0		28.0		69.0		
Base Capacity (vph)	313	608	218	594	111	1776	111	1769	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.14	0.59	0.48	0.40	1.06	1.09	0.47	0.85	
Intersection Summary									
Cycle Length: 160									
Actuated Cycle Length:	157 1								

Cycle Lengin. 160	
Actuated Cycle Length: 157.1	
Control Type: Semi Act-Uncoord	
Maximum v/c Ratio: 1.14	
Intersection Signal Delay: 71.1	Intersection LOS: E
Intersection Capacity Utilization 107.1%	ICU Level of Service G
Analysis Period (min) 15	

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 15: Hurontario St & Elm Drive E

	٠	-	7	4	+	•	1	Ť	1	4	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	1		٦	ţ,		7	≜ †₽		٦	≜ ↑₽	
Traffic Volume (vph)	328	82	246	97	72	149	109	1722	54	48	1288	87
Future Volume (vph)	328	82	246	97	72	149	109	1722	54	48	1288	87
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	8.0	8.0		8.0	8.0		3.0	7.0		3.0	7.0	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	0.95		1.00	0.95	
Frt	1.00	0.89		1.00	0.90		1.00	1.00		1.00	0.99	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1750	1635		1750	1656		1750	3484		1750	3467	
Flt Permitted	0.51	1.00		0.36	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)	945	1635		660	1656		1750	3484		1750	3467	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	357	89	267	105	78	162	118	1872	59	52	1400	95
RTOR Reduction (vph)	0	67	0	0	46	0	0	1	0	0	3	0
Lane Group Flow (vph)	357	289	0	105	194	0	118	1930	0	52	1492	0
Turn Type	Perm	NA		Perm	NA		Prot	NA		Prot	NA	
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8								
Actuated Green, G (s)	52.1	52.1		52.1	52.1		10.0	80.1		7.6	77.7	
Effective Green, g (s)	52.1	52.1		52.1	52.1		10.0	80.1		7.6	77.7	
Actuated g/C Ratio	0.33	0.33		0.33	0.33		0.06	0.51		0.05	0.49	
Clearance Time (s)	8.0	8.0		8.0	8.0		3.0	7.0		3.0	7.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	312	539		217	546		110	1768		84	1707	
v/s Ratio Prot		0.18			0.12		c0.07	c0.55		0.03	0.43	
v/s Ratio Perm	c0.38			0.16								
v/c Ratio	1.14	0.54		0.48	0.35		1.07	1.09		0.62	0.87	
Uniform Delay, d1	52.9	43.0		42.1	40.1		73.9	38.9		73.7	35.7	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	95.9	1.0		1.7	0.4		106.7	50.9		12.8	5.3	
Delay (s)	148.7	44.0		43.8	40.5		180.6	89.8		86.5	41.0	
Level of Service	F	D		D	D		F	F		F	D	
Approach Delay (s)		96.5			41.5			95.0			42.5	
Approach LOS		F			D			F			D	
Intersection Summary												
HCM 2000 Control Dela	у		73.8	F	ICM 200	00 Leve	l of Serv	/ice	E			
HCM 2000 Volume to C	apacity	ratio	1.11									
Actuated Cycle Length (s)		157.8	S	Sum of lo	ost time	(s)		18.0			
Intersection Capacity Ut	ilization	1	07.1%	10	CU Leve	el of Ser	vice		G			
Analysis Period (min)			15									

	٠	7	1	T.	ŧ	-	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	¥		5	+	ţ,		
Traffic Volume (veh/h)	24	31	70	342	468	71	
Future Volume (Veh/h)	24	31	70	342	468	71	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	26	34	76	372	509	77	
Pedestrians	3			17	17		
Lane Width (m)	3.5			3.5	3.5		
Walking Speed (m/s)	1.1			1.1	1.1		
Percent Blockage	0			2	2		
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (m)				77			
pX, platoon unblocked	0.93						
vC, conflicting volume	1092	568	589				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	1060	568	589				
tC, single (s)	6.4	6.2	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free %	88	93	92				
cM capacity (veh/h)	208	517	994				
Direction Lane #	FB 1	NB 1	NB 2	SB 1			
Volume Total	60	76	372	586			
Volume Left	26	76	072	000			
Volume Right	34	0	0	77			
cSH	315	994	1700	1700			
Volume to Capacity	0.10	0.08	0.22	0.34			
Queue Length 95th (m)	53	1 0	0.22	0.04			
Control Delay (s)	10.1	8.0	0.0	0.0			
	10.1 C	Δ	0.0	0.0			
Approach Delay (s)	10 1	15		0.0			
Approach LOS	13.1 C	1.5		0.0			
Intersection Summary	5						
Average Delay			4 7				
Average Delay	lingtion		1.7				
Analysis Period (min)	IZation		01.U%	I	CU Leve	ei oi Servic	e
Analysis Period (min)			15				

HCM Unsignalized Intersection Capacity Analysis 5: Obelisk Way & Kaneff Cres

	٠	-	7	1	+	*	1	Ť	1	4	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$			\$	
Traffic Volume (veh/h)	2	32	36	35	60	12	25	3	28	3	0	0
Future Volume (Veh/h)	2	32	36	35	60	12	25	3	28	3	0	0
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	2	35	39	38	65	13	27	3	30	3	0	0
Pedestrians		19			19			15			15	
Lane Width (m)		3.5			3.5			3.5			3.5	
Walking Speed (m/s)		1.1			1.1			1.1			1.1	
Percent Blockage		2			2			1			1	
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	93			89			240	242	88	272	256	106
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	93			89			240	242	88	272	256	106
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			97			96	100	97	100	100	100
cM capacity (veh/h)	1494			1499			669	628	946	616	618	926
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	76	116	60	3								
Volume Left	2	38	27	3								
Volume Right	39	13	30	0								
cSH	1494	1499	781	616								
Volume to Capacity	0.00	0.03	0.08	0.00								
Queue Length 95th (m)	0.0	0.6	1.9	0.1								
Control Delay (s)	0.2	2.6	10.0	10.9								
Lane LOS	А	А	А	В								
Approach Delay (s)	0.2	2.6	10.0	10.9								
Approach LOS			А	В								
Intersection Summary												
Average Delay			3.7									
Intersection Capacity Uti	lization		27.5%	I	CU Leve	el of Ser	vice		А			
Analysis Period (min)			15									

	٠	→	+	*	1	~	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	7	1	ħ		Y		
Traffic Volume (veh/h)	102	247	289	22	13	84	
Future Volume (Veh/h)	102	247	289	22	13	84	
Sign Control		Free	Free		Stop		
Grade		0%	0%		0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	111	268	314	24	14	91	
Pedestrians		28	28		3		
Lane Width (m)		3.5	3.5		3.5		
Walking Speed (m/s)		1.1	1.1		1.1		
Percent Blockage		2	2		0		
Right turn flare (veh)							
Median type		None	None				
Median storage veh)							
Upstream signal (m)		224	69				
pX, platoon unblocked	0.98				0.98	0.98	
vC, conflicting volume	341				847	357	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	314				832	331	
tC, single (s)	4.1				6.4	6.2	
tC, 2 stage (s)							
tF (s)	2.2				3.5	3.3	
p0 queue free %	91				95	87	
cM capacity (veh/h)	1226				290	680	
Direction, Lane #	EB 1	EB 2	WB 1	SB 1			
Volume Total	111	268	338	105			
Volume Left	111	0	0	14			
Volume Right	0	0	24	91			
cSH	1226	1700	1700	577			
Volume to Capacity	0.09	0.16	0.20	0.18			
Queue Length 95th (m)	2.3	0.0	0.0	5.0			
Control Delay (s)	8.2	0.0	0.0	12.6			
Lane LOS	А			В			
Approach Delay (s)	2.4		0.0	12.6			
Approach LOS				В			
Intersection Summarv							
Average Delav			2.7				
Intersection Capacity Uti	lization		43.5%	IC	CU Leve	el of Serv	ice A
Analysis Period (min)			15				· ·

Queues 7: Mississauga Valley Blvd & Elm Drive E

	٠	-	-	1	Ť	1	Ŧ	
Lane Group	EBL	EBT	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	61	212	74	191	439	42	505	
Act Effct Green (s)	9.5	9.5	11.5	36.3	32.3	22.2	22.2	
Actuated g/C Ratio	0.17	0.17	0.21	0.66	0.58	0.40	0.40	
v/c Ratio	0.31	0.53	0.25	0.38	0.42	0.11	0.76	
Control Delay	25.5	11.7	18.3	6.2	7.8	11.8	22.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	25.5	11.7	18.3	6.2	7.8	11.8	22.9	
LOS	С	В	В	А	А	В	С	
Approach Delay		14.8	18.3		7.3		22.1	
Approach LOS		В	В		А		С	
Queue Length 50th (m)	5.8	3.5	5.3	5.4	18.4	2.4	37.3	
Queue Length 95th (m)	14.7	18.5	14.1	15.1	42.7	8.4	#90.6	
Internal Link Dist (m)		44.7	15.4		104.6		53.4	
Turn Bay Length (m)	17.0			16.0		21.0		
Base Capacity (vph)	544	787	716	507	1146	420	754	
Starvation Cap Reductn	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.11	0.27	0.10	0.38	0.38	0.10	0.67	
Intersection Summary								
Cycle Length: 74.5								
Actuated Cycle Length: 5	5.4							
Control Type: Semi Act-L	Jncoord	t						
Maximum v/c Ratio: 0.76	i							
Intersection Signal Delay	: 14.5			li	ntersect	ion LOS	S: B	

Intersection Signal Delay: 14.5 Intersection Capacity Utilization 80.1%

ICU Level of Service D

Analysis Period (min) 15 # 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 7: Mississauga Valley Blvd & Elm Drive E

07-13-2023

	٠	→	7	1	-	*	1	t	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	ţ,			4		۲	ţ,		۲	ţ,	
Traffic Volume (vph)	56	35	160	31	23	14	176	337	67	39	338	127
Future Volume (vph)	56	35	160	31	23	14	176	337	67	39	338	127
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5			4.5		3.0	7.0		7.0	7.0	
Lane Util. Factor	1.00	1.00			1.00		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	0.95			0.99		1.00	0.99		1.00	0.98	
Flpb, ped/bikes	0.94	1.00			0.99		1.00	1.00		0.98	1.00	
Frt	1.00	0.88			0.97		1.00	0.98		1.00	0.96	
Flt Protected	0.95	1.00			0.98		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1573	1489			1720		1700	1796		1743	1632	
Flt Permitted	0.71	1.00			0.80		0.31	1.00		0.51	1.00	
Satd. Flow (perm)	1174	1489			1399		552	1796		932	1632	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	61	38	174	34	25	15	191	366	73	42	367	138
RTOR Reduction (vph)	0	144	0	0	12	0	0	8	0	0	16	0
Lane Group Flow (vph)	61	68	0	0	62	0	191	431	0	42	489	0
Confl. Peds. (#/hr)	41		41	22		22			46	39		39
Heavy Vehicles (%)	7%	0%	6%	2%	3%	0%	5%	1%	0%	0%	2%	26%
Turn Type	Perm	NA		Perm	NA		pm+pt	NA		Perm	NA	
Protected Phases		4			8		5	2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)	9.6	9.6			11.6		32.3	32.3		22.2	22.2	
Effective Green, g (s)	9.6	9.6			11.6		32.3	32.3		22.2	22.2	
Actuated g/C Ratio	0.17	0.17			0.21		0.58	0.58		0.40	0.40	
Clearance Time (s)	6.5	6.5			4.5		3.0	7.0		7.0	7.0	
Vehicle Extension (s)	3.0	3.0			3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	203	258			292		468	1047		373	653	
v/s Ratio Prot		0.05					0.05	c0.24			c0.30	
v/s Ratio Perm	c0.05				0.04		0.19			0.05		
v/c Ratio	0.30	0.26			0.21		0.41	0.41		0.11	0.75	
Uniform Delay, d1	20.0	19.8			18.1		6.4	6.3		10.4	14.2	
Progression Factor	1.00	1.00			1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.8	0.6			0.4		0.6	0.3		0.1	4.7	
Delay (s)	20.8	20.4			18.5		6.9	6.6		10.6	18.9	
Level of Service	С	С			В		A	A		В	В	
Approach Delay (s)		20.5			18.5			6.7			18.3	
Approach LOS		С			В			A			В	
Intersection Summary												
HCM 2000 Control Dela	у		13.9	F	ICM 20	00 Leve	l of Serv	/ice	В			
HCM 2000 Volume to C	apacity	ratio	0.58									
Actuated Cycle Length (s)		55.4	S	Sum of l	ost time	(s)		16.5			
Intersection Capacity Ut	ilization		80.1%	10	CU Leve	el of Sei	vice		D			
Analysis Period (min)			15									
a Critical Lana Croup												

	4	*	t	1	4	ţ		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	M		ĥ			د		
Traffic Volume (veh/h)	40	7	56	60	13	85		
Future Volume (Veh/h)	40	7	56	60	13	85		
Sign Control	Stop		Free			Free		
Grade	0%		0%			0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	43	8	61	65	14	92		
Pedestrians								
Lane Width (m)								
Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Median type			None			None		
Median storage veh)								
Upstream signal (m)								
pX, platoon unblocked								
vC, conflicting volume	214	94			126			
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	214	94			126			
tC, single (s)	6.4	6.2			4.1			
tC, 2 stage (s)								
tF (s)	3.5	3.3			2.2			
p0 queue free %	94	99			99			
cM capacity (veh/h)	767	963			1460			
Direction Lane #	\//R 1	NR 1	SR 1					
Volumo Total	51 E1	106	106					
	10	120	100					
Volume Leit	43	0	14					
	0 702	1700	1460					
Volume te Conseitu	793	0.07	1400					
Our of the constant of the con	0.06	0.07	0.01					
Queue Length 95th (m)	1.0	0.0	0.2					
Control Delay (S)	9.9	0.0	1.1					
Lane LOS	A	0.0	A					
Approach Delay (s)	9.9	0.0	1.1					
Approach LOS	A							
Intersection Summary								
Average Delay			2.2					
Intersection Capacity Ut	ilization		21.9%	IC	CU Leve	el of Serv	/ice	
Analysis Period (min)			15					

Queues 15: Hurontario St/Hurontario St & Elm Drive E

07-13-2023

	٠	-	4	+	1	1	4	ŧ
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	147	337	78	243	284	1790	118	2177
Act Effct Green (s)	29.0	29.0	29.0	29.0	10.0	80.3	10.0	80.3
Actuated g/C Ratio	0.21	0.21	0.21	0.21	0.07	0.58	0.07	0.58
v/c Ratio	0.90	0.84	0.87	0.63	2.24	0.88	0.93	1.08
Control Delay	100.8	59.9	117.2	49.8	605.3	32.0	125.3	73.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	100.8	59.9	117.2	49.8	605.3	32.0	125.3	73.9
LOS	F	E	F	D	F	С	F	E
Approach Delay		72.4		66.2		110.5		76.5
Approach LOS		E		E		F		E
Queue Length 50th (m)	39.1	72.5	20.6	52.8	~123.9	209.9	32.4	~346.5
Queue Length 95th (m)	#67.4	107.7	#45.6	79.7	#197.9	#323.5	#78.5	#450.1
Internal Link Dist (m)		72.3		200.1		471.9		278.6
Turn Bay Length (m)	22.5		41.0		28.0		69.0	
Base Capacity (vph)	294	670	162	668	127	2028	127	2017
Starvation Cap Reductn	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.50	0.50	0.48	0.36	2.24	0.88	0.93	1.08

Intersection Summary	
Cycle Length: 160	
Actuated Cycle Length: 137.4	
Control Type: Semi Act-Uncoord	
Maximum v/c Ratio: 2.24	
Intersection Signal Delay: 89.1	Intersection LOS: F
Intersection Capacity Utilization 118.0%	ICU Level of Service H
Analysis Period (min) 15	

~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 15: Hurontario St/Hurontario St & Elm Drive E

07-13-2023

	٠	-	7	1	+	*	1	t.	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	ţ,		5	Ţ.		٢	† Ъ		5	† Ъ	
Traffic Volume (vph)	135	105	205	72	116	108	261	1550	97	109	1783	220
Future Volume (vph)	135	105	205	72	116	108	261	1550	97	109	1783	220
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	8.0	8.0		8.0	8.0		3.0	7.0		3.0	7.0	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	0.95		1.00	0.95	
Frt	1.00	0.90		1.00	0.93		1.00	0.99		1.00	0.98	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1750	1659		1750	1709		1750	3469		1750	3442	
Flt Permitted	0.42	1.00		0.23	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)	776	1659		427	1709		1750	3469		1750	3442	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	147	114	223	78	126	117	284	1685	105	118	1938	239
RTOR Reduction (vph)	0	51	0	0	24	0	0	2	0	0	5	0
Lane Group Flow (vph)	147	286	0	78	219	0	284	1788	0	118	2172	0
Turn Type	Perm	NA		Perm	NA		Prot	NA		Prot	NA	
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8								
Actuated Green, G (s)	29.0	29.0		29.0	29.0		10.0	80.3		10.0	80.3	
Effective Green, g (s)	29.0	29.0		29.0	29.0		10.0	80.3		10.0	80.3	
Actuated g/C Ratio	0.21	0.21		0.21	0.21		0.07	0.58		0.07	0.58	
Clearance Time (s)	8.0	8.0		8.0	8.0		3.0	7.0		3.0	7.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	163	350		90	360		127	2028		127	2013	
v/s Ratio Prot		0.17			0.13		c0.16	0.52		0.07	c0.63	
v/s Ratio Perm	c0.19			0.18								
v/c Ratio	0.90	0.82		0.87	0.61		2.24	0.88		0.93	1.08	
Uniform Delay, d1	52.8	51.6		52.3	49.0		63.7	24.4		63.3	28.5	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	43.1	13.7		53.4	2.9		580.9	4.9		57.7	45.2	
Delay (s)	95.9	65.3		105.7	51.9		644.5	29.3		121.0	73.7	
Level of Service	F	E		F	D		F	С		F	E	
Approach Delay (s)		74.6			65.0			113.5			76.1	
Approach LOS		E			E			F			E	
Intersection Summary												
HCM 2000 Control Dela	у		90.3	F	ICM 200	00 Leve	l of Serv	vice	F			
HCM 2000 Volume to C	apacity	ratio	1.13									
Actuated Cycle Length (s)		137.3	S	Sum of le	ost time	(s)		18.0			
Intersection Capacity Ut	ilization	1	18.0%	[(CU Leve	el of Ser	vice		Н			
Analysis Period (min)			15									