1785 BLOOR HOLDING INC.

STORMWATER MANAGEMENT REPORT 1785 BLOOR STREET, MISSISSAUGA

SEPTEMBER 25, 2023

115

STORMWATER MANAGEMENT REPORT 1785 BLOOR STREET, MISSISSAUGA

1785 BLOOR HOLDING INC.

REZONING APPLICATION

PROJECT NO.: 211-10685-00 DATE: SEPTEMBER 2023

WSP 100 COMMERCE VALLEY DRIVE WEST THORNHILL, ON, CANADA L3T 0A1

WSP.COM

WSP Canada Inc.

QUALITY MANAGEMENT

ISSUE/REVISION	FIRST ISSUE	SECOND ISSUE	
Remarks	Rezoning Application	Rezoning Application	
Date	2022/05/27	2023/09/25	
Prepared by	Ramin Jalalirad, EIT	Stefanie Kurtz	
Signature	Rajalaliraa	Stefanie Kurtz	
Checked by	Vladimir Nikolic, P. Eng	Vladimir Nikolic, P. Eng	
Signature			
Project number	211-10685	211-10685	

SIGNATURES

PREPARED BY

tefanie Ku

Stefanie Kurtz Designer, Water Resources

REVIEWED BY

Flutioul?

WSP Canada INC prepared this report solely for the use of the intended recipient, 1785 BLOOR HOLDING INC., in accordance with the professional services agreement. The intended recipient is solely responsible for the disclosure of any information contained in this report. The content and opinions contained in the present report are based on the observations and/or information available to WSP Canada INC at the time of preparation. If a third party makes use of, relies on, or makes decisions in accordance with this report, said third party is solely responsible for such use, reliance or decisions. WSP Canada INC does not accept responsibility for damages, if any, suffered by any third party as a result of decisions made or actions taken by said third party based on this report. This limitations statement is considered an integral part of this report.

ROFESSION

#huticul(-V. Nikolic 100521689 25.09.2023

NCE OF

ON

The original of this digital file will be conserved by WSP Canada INC for a period of not less than 10 years. As the digital file transmitted to the intended recipient is no longer under the control of WSP Canada INC, its integrity cannot be assured. As such, WSP Canada INC does not guarantee any modifications made to this digital file subsequent to its transmission to the intended recipient.

Approval of this document is an administrative function indicating readiness for release and does not impart legal liability on to the Approver for any technical content contained herein. Technical accuracy and fit-for-purpose of this content is obtained through the review process. The Approver shall ensure the applicable review process has occurred prior to signing the document.

PRODUCTION TEAM

CLIENT	1785 BLOOR HOLDING INC.
WSP	
Designer	Stefanie Kurtz
Designer	Ramin Jalalirad, EIT

Project Engineer

Vladimir Nikolic, P.Eng.

wsp

TABLE OF CONTENTS

1		1
1.1	Scope	1
1.2	Site Location	1
1.3	Stormwater Management Plan Objectives	1
1.4	Design Criteria	1
2	PRE-DEVELOPMENT CONDITIONS	4
2.1	General	4
2.2	Rainfall Information	4
2.3	Allowable Flow Rates	4
3	POST-DEVELOPMENT CONDITIONS	7
3.1	General	7
3.2	Runoff Volume Reduction	7
3.3	Water Quality Control	10
3.4	Erosion Control	10
3.5	Water Quantity Control	10
4	CONCLUSIONS	12
BIBL	LIOGRAPHY	13

wsp

TABLES

TABLE 2.1	RAINFALL PARAMETERS	4
TABLE 2.2	PRE-DEVELOPMENT PEAK DISCHARGE	
	RATES AND ALLOWABLE RELEASE	
	RATES	5
TABLE 3.1	PROPOSED LAND-USE AREA	
	BREAKDOWN	7
TABLE 3.2	WATER BALANCE SUMMARY	8
TABLE 3.3	SUMMARY OF MODELLING RESULTS	11

FIGURES

FIGURE 1: SITE LOCATION	
FIGURE 2: PRE-DEVELOPMENT CONDITIONS	6
FIGURE 3: PROPOSED CONDITIONS	9

APPENDICES

- **A** STORMWATER MANAGEMENT CALCULATIONS
- **B** HYDROCAD MODEL RESULTS
- **C** WATER QUALITY UNIT SPECIFICATIONS
- **D** STORMTRAP CHAMBER SPECIFICATIONS

1 INTRODUCTION

1.1 SCOPE

WSP has been retained by 1785 Bloor Holding Inc. to prepare a Stormwater Management (SWM) Report to support the rezoning application for the proposed intensification of the property located at 1785 Bloor Street in the City of Mississauga. The proposed development will keep the existing 10-storey building and a 14-storey residential building will be added in the north portion of the site.

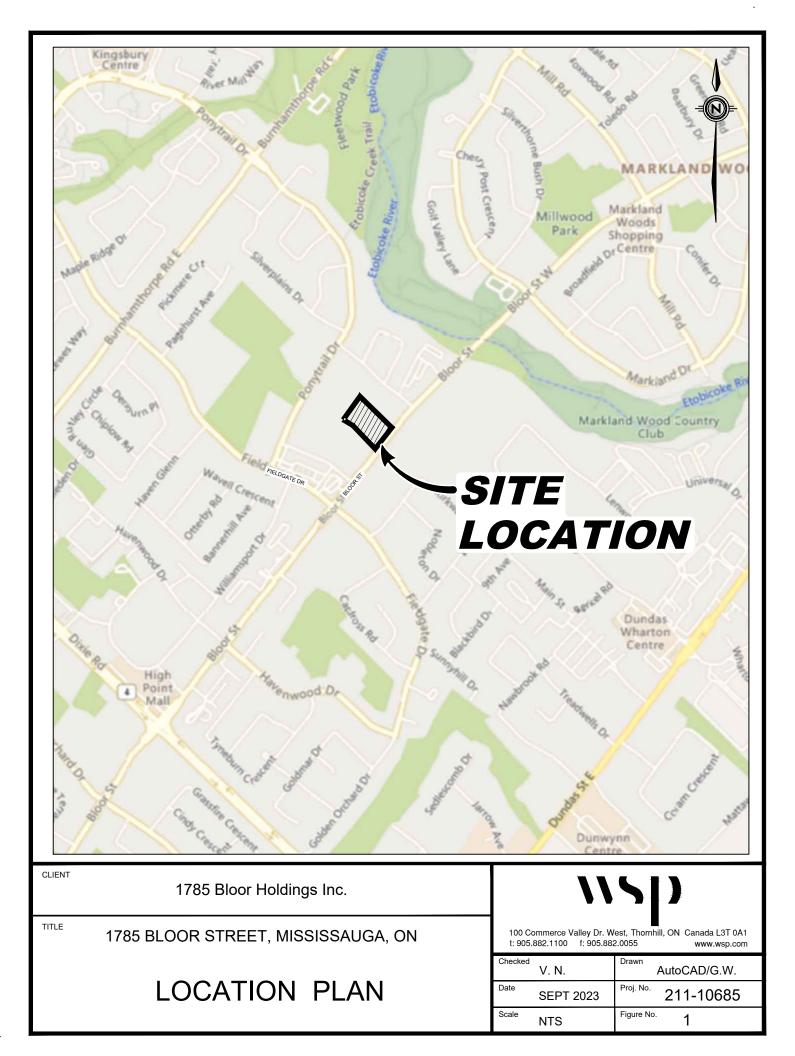
This SWM report examines the potential water quality, quantity, balance, and erosion impacts of the proposed residential development and summarizes how each will be addressed in accordance with the City of Mississauga's Development Requirements (2016).

1.2 SITE LOCATION

The site occupies an area of approximately 1.2 ha. It is bound by high density residential development to the north and west, a hydro corridor to the east and Bloor Street to the north. The site is located west of the intersection of Bloor Street and Bridgewood Dr. The location of the proposed re-development is illustrated in Figure 1.

1.3 STORMWATER MANAGEMENT PLAN OBJECTIVES

The objectives of the stormwater management plan are as follows:


- Determine the site-specific stormwater management requirements to ensure that the development is in conformance with the City of Mississauga criteria;
- Evaluate various stormwater management practices that meet the requirements of the City and recommend a preferred strategy; and,
- Prepare a stormwater management report documenting the strategy along with the technical information necessary for the justification and sizing of the proposed stormwater management facilities.

1.4 DESIGN CRITERIA

The City of Mississauga issued a Development Requirements Manual in 2016 to provide direction on the management of rainfall and runoff inside the City's jurisdiction. A summary of the stormwater management criteria applicable to this project follows:

- Runoff Volume Reduction The City's Design Manual requires the first 5 mm of runoff shall be retained on-site and managed by way of infiltration, evapotranspiration or reuse. There are no applicable subwatershed studies or master drainage plans for the subject site area published that indicates any higher minimum requirement.
- Water Quality The City's Design Requirements specify that water quality control is to be implemented in accordance with the applicable Master Drainage Plan or Subwatershed Plan, the City's Stormwater Quality Control Strategy (January 1996) and the MECP (formerly MOECC) Stormwater Management Practices Planning and Design Manual. Based on the MECP 's Manual, the long-term removal of 80% of the TSS loading is required for this site.
- Erosion Control As indicated in the City of Mississauga's Development Requirements, sites under one hectare are not required to provide long term erosion control measures.

Water Quantity Control and Discharge to Municipal Infrastructure – Through use of Table 2.01.03.03a of The City of Mississauga's Development Requirements and correspondence with City, it has been determined that water quantity control for this site will be limited by the existing storm sewer capacity. The site's post development release rate would be limited to the 2-year pre-development release rate with a runoff coefficient of 0.5 to provide relief to the system.

2 PRE-DEVELOPMENT CONDITIONS

2.1 GENERAL

Under pre-development conditions, the approximately 1.2 ha site is currently occupied by one 10-storey apartments at 1785 Bloor Street, a parking lot north of the building and some landscaping areas. The pre-development runoff coefficient is estimated at 0.53. Under pre-development conditions, the site drains to the southeast. Ultimately, all flows from the site are collected by the storm sewer along the Bloor Street. The storm sewer on Bloor Street flows east where it connects to the Bridgewood Dr storm sewer. As such, the entire site effectively discharges to Bloor Street.

The allowable flow rate will be calculated by determining the existing 2-year flows for the site. The existing condition of the site is shown in Figure 2.

2.2 RAINFALL INFORMATION

The rainfall intensity for the site was calculated using the following equation: $I = A/(T + B)^{C}$

Where;

I = rainfall intensity in mm/hour

T = time of concentration in hours

A, B, and C = constant parameters (see below)

The parameters (A, B, C) for use in the City of Mississauga are summarized in Table 2.1.

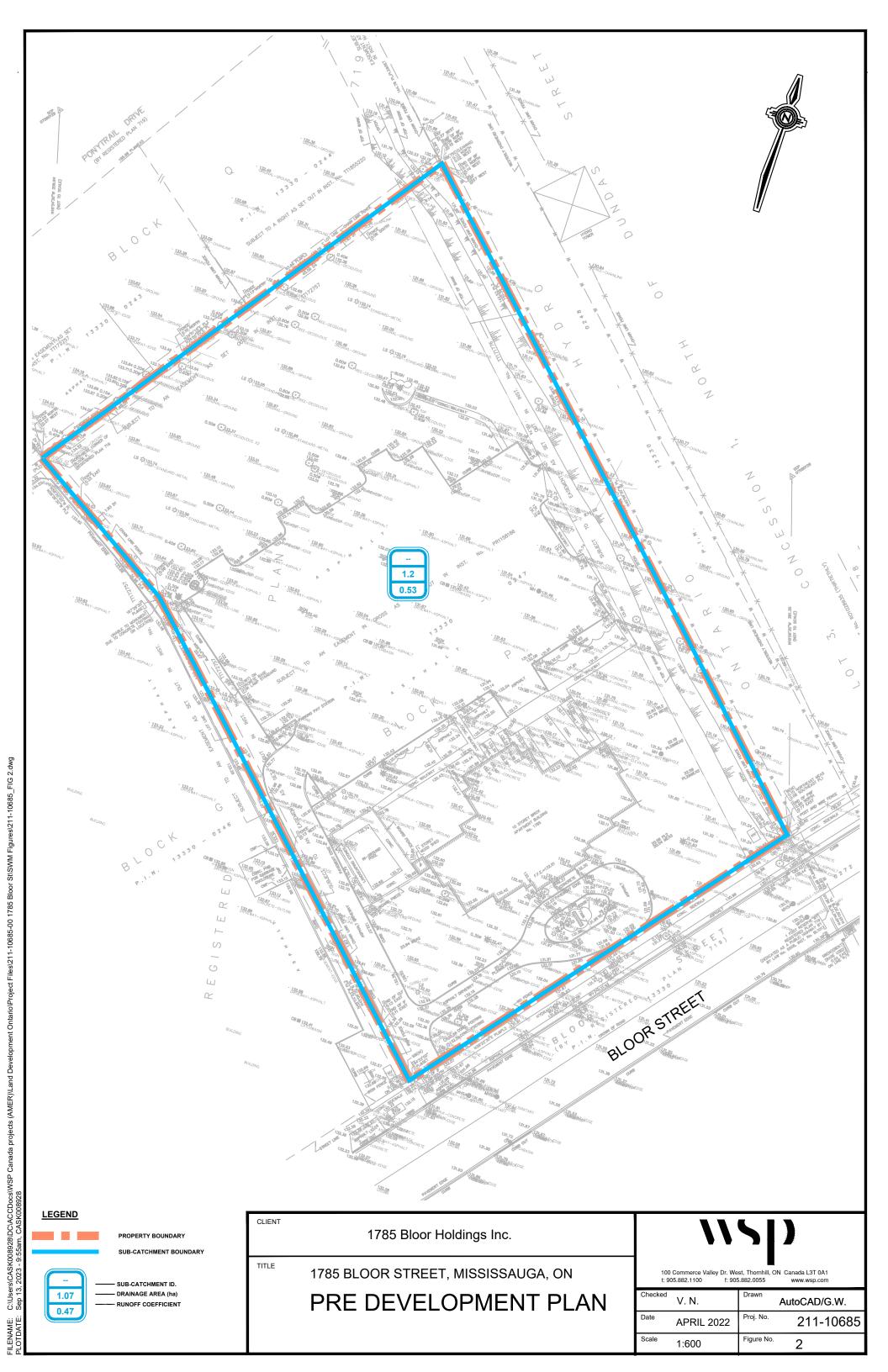
Table 2.1 Rainfall Parameters

RETURN PERIOD (years)	2	5	10	25	50	100
A	610	820	1010	1160	1300	1450
В	4.60	4.60	4.60	4.60	4.70	4.90
С	0.78	0.78	0.78	0.78	0.78	0.78

Source: City of Mississauga's Development Requirements (2016)

An initial time of concentration, T_c, of 15 minutes (or 0.25 hours) is recommended in the City of Mississauga's Development Requirements.

2.3 ALLOWABLE FLOW RATES


The City of Mississauga requires that the site's post-development discharge rates for the 2-, 5-, 10-, 25-, 50- and 100-year storm events do not exceed the 2-year pre-development flow rates. The 2-year pre-development flow is 99.9 l/s which was calculated with a runoff coefficient value of 0.5.

The calculated peak flow rates for the site under pre-development conditions are summarized below in Table 2.2. Detailed calculations are contained within **Appendix A**.

RETURN PERIOD (years)	RAINFALL INTENSITY, I (mm/hour)	ALLOWABLE RELEASE RATE, QA (L/s)*
2	59.9	99.9
5	80.5	134.3
10	99.2	165.4
25	113.9	190.0
50	127.1	212.1
100	140.7	234.7

Table 2.2 Pre-Development Peak Discharge Rates and Allowable Release Rates

* Are of 1.2 ha existing site area with a maximum runoff coefficient C=0.5 and time of concentration of 15 minutes

3 POST-DEVELOPMENT CONDITIONS

3.1 GENERAL

The proposed development consists of the construction of a new 14-storey residential condominium north of the existing 10-storey building at 1785 Bloor Street. The building provides an estimated 234 residential units and three levels of underground parking. The parking structure underlies the north portion footprint of the site. Vehicular access to the site continues to be provided via the proposed driveway connecting to Bloor Street.

An area breakdown for the proposed site layout is provided below in Table 3.1. Please refer to Figure 3 for details of the post-development conditions.

	LAND-USE	AREA (m²)	2-YEAR RUNOFF COEFFICIENT, C	IMPERVIOUSNESS
Captured & Controlled	Impervious Roof Area (Proposed Building)	2,577.9	0.90	100%
	Impervious Roof Area (Existing Building)	731.4	0.90	100%
Con	Pervious Landscaping	3,644.8	0.25	0%
	Controlled at Grade Impervious	3,352.8	0.90	100%
	Uncontrolled Pervious Landscaping	1,559.0	0.25	O%
	Total (or Average):	11,865.8	0.61	56%

Table 3.1 Proposed Land-Use Area Breakdown

3.2 RUNOFF VOLUME REDUCTION

The City of Mississauga requires that the first 5 mm of rainfall shall be retained on-site and managed by way of infiltration, evapotranspiration or re-use. Note that the City of Mississauga does not typically allow initial abstractions when calculating the water balance volume, therefore, they will be disregarded. Since the ground water level is high, infiltration is not feasible for this project. A water reuse volume stored within the stormwater cistern is the mechanism proposed to achieve the water balance requirement.

The total volume of 5 mm runoff from the site is 59.30 m^3 and will be satisfied by the re-use tank. The tank volume is 61.52 m^3 . Table 3.2 shows the required storage volume to meet the water balance target for the site. Calculations are provided in **Appendix A**.

Table 3.2Water Balance Summary

SURFACE TYPE	AREA (m²)	5 MM VOLUME (M ³)
Impervious Roof Area (Proposed Building)	2,577.9	12.9
Impervious Roof Area (Existing Building)	731.4	3.7
Pervious Landscaping	3,644.8	18.2
Controlled at Grade Impervious	3,352.8	16.8
Uncontrolled Pervious Landscaping	1,559.0	7.8
Total Site Area	11,866	59.3

The proposed rainwater reuse options may include irrigation of the trees and soft landscaping. The reuse methods for the captured stormwater are still being assessed in conjunction with the mechanical design of the building's water supply systems. It is assumed that with the proposed landscaping, enough opportunities exist to reuse the sump volume within a reasonable time frame.

3.3 WATER QUALITY CONTROL

As mentioned in Section 1.4 of this report, the WWGMF states that the site is required to target a long-term removal of 80% total suspended solids (TSS) on an annual loading basis.

Architectural plans indicate that the majority of the area will be covered by building rooftop and walkways surfaces. As those areas are free of typical sediment-generating activities (i.e., vehicle traffic) runoff will leave then effectively unchanged and can be considered clean for the purposes of water quality assessment. The site wide area also includes 0.70 ha of driveway, at-grade pervious areas and at-grade impervious areas, and runoff from those areas must be treated to the City of Mississauga standard. As all flows are conveyed to the chamber, which will hold water onsite, an OGS connected upstream of the storm sewer is recommended for the site.

A Stormceptor EFO4 is recommended to meet TSS removal requirements. This oil-grit separator is a filter-based system and has a removal rate of over 86%. The unit is sized to treat the site's uncontrolled driveway / at-grade surfaces. The remainder of the site will be captured and sent to the cistern directly. Treatment unit specifications as provided by Echelon Environmental are located in **Appendix C** of this report.

3.4 EROSION CONTROL

The City of Mississauga Design guidelines do not specify long term erosion control requirements for sites under 1.0 ha. Since the site area for this application is about 1.2 ha and the site will discharge to the municipal sewer system, no additional long-term site-specific erosion controls are recommended. However, proper erosion and sediment control measures during construction should be installed. The details will be outlined in the FSR and Erosion and Sediment Control Plan and should conform to the city requirements. See Functional Servicing Report, for more details.

3.5 GROUNDWATER

A hydrogeological investigation prepared under separate cover was carried out by Pinchin Ltd. in March 2022. It assessed the groundwater conditions, soil characteristics, dewatering requirements and tested for the presence of groundwater contamination.

The City of Mississauga requires that all groundwater be discharged to the storm sewer. The long term (permanent) groundwater flow rate (with a safety factor of 2) is 70,000 L/day which is equivalent to 0.8 L/s. The groundwater will be piped to the proposed cistern; as such, 0.8 L/s has been added as a base flow to the SWM Cistern node in the HydroCAD model. Note that a groundwater treatment system designed by other will be required and should exceed City requirements. Details on the method of treatment can be found in the hydrogeological investigation report, which will be submitted under separate cover.

3.6 WATER QUANTITY CONTROL

The City of Mississauga requires that water quantity control be designed in accordance with the capacity of the local municipal storm sewer. The allowable release rate to the municipal storm sewer system from the development site will be limited to the 2-year pre-development flow rate discussed in Section 2.3.

A HydroCAD model of the project was developed and utilized to determine the required storage volume in the stormwater cistern, and to calculate the discharge rates achieved by the proposed flow controls under all storm events. The Modified Rational Method (an inherent subroutine of the HydroCAD software) has been used for the modelling exercise. The model assumes that the sump volume of the SWM cistern is full at the start of the storm event.

An emergency overflow manhole will be provided at the top of the cistern, with discharge to street level and the adjacent right of way. This will prevent flow backing up into the building pipework if the primary outlet is blocked, or if a storm event in excess of the 100-year return period occurs.

The box culvert (DECAST OPSS Box Culvert)was designed to provide a storage volume of 236.5 m³, with a length of 40, width of 3 m, and a height of 2.4 m and will be located outside the parking structure (**Appendix D**). Chamber outflow control towards the Bloor Street storm sewer system (existing 1375 mm RCP storm sewer pipe) will be provided by a 125 mm orifice tube outlet installed at the bottom of the box culvert. Moreover, there will be a small re-use cistern in the P1 level of the proposed residential apartment building, which will be used to meet the water balance requirements. The re-use cistern has a footprint of 53.5 m², a height of 1.5 m, and the 200 mm orifice tube is placed 1.15 m from the bottom of the cistern. It will collect the roof runoff from proposed 14-storey building. A summary of the modeling result is presented in Table 3.3. Please see the accompanying Functional Servicing Report (FSR) prepared by WSP under separate cover for cistern location details.

Uncontrolled at-grade areas were modelled to ensure they were considered in the allowable release rate. The results show that the site's combined discharge rate does not exceed the allowable release rate. the long-term dewatering rate in the proposed condition will be 0.8 L/s, as such a base flow of 0.8 L/s has been added to the SWM Cistern node in the modelling.

A summary of the modelling results is provided in Table 3.3. Full HydroCAD modelling output is provided in **Appendix B**.

RETURN PERIOD (YEARS)	UTILIZED CULVERT STORAGE (m³)	PEAK WATER ELEVATION IN CULVERT* (m)	POST- DEVELOPMENT CULVERT DISCHARGE RATE (L/s)	UNCONTROLLED AREA DISCHARGE RATE (L/s)	POST- DEVELOPMENT TOTAL DISCHARGE RATE (L/s)	TARGET RELEASE RATE (L/s)
2	46.2	0.420	26.0	6.5	28.8	
5	68.4	0.621	32.5	8.7	35.6	
10	101.4	0.922	40.3	10.7	43.0	99.9
25	152.3	1.384	50.0	13.8	53.5	55.5
50	184.3	1.675	55.2	16.5	59.5	
100	210.2	1.911	59.1	18.9	64.1	

Table 3.3 Summary of Modelling Results

* Depth is from the internal cistern bottom.

The modelling results demonstrate that the post-development peak flow rates for all events up to the 100-year storm are lower than the target release rate established in accordance with the City of Mississauga's Development Requirements Manual. The maximum required storage volume to control the 100-year post-development runoff is 210.2 m³. Note that the sump volume is collected in the re-use tank in P1 level which is assumed to be full at the start of each rainfall event in modelling.

The rainfall intensity and storm duration resulting in the site's peak discharge rate has been iteratively determined at $t_d = 53$ minutes (for the 100-year event).

4 CONCLUSIONS

A stormwater management plan has been prepared to support the rezoning application for the proposed redevelopment of 1785 Bloor Street in the City of Mississauga. The key points are summarized below.

RUNOFF VOLUME REDUCTION

The site is required to retain 5 mm of runoff from each rainfall event to be for reuse on site. Water balance will be addressed through a 61.52 m³ sump volume (equivalent to the post-development 5 mm runoff volume) within the proposed reuse cistern.

WATER QUALITY

Stormwater runoff from proposed impervious roof areas is considered clean and expected to leave the site effectively unchanged in terms of water quality. The 80% TSS removal of the runoff produced by the at-grade driveway surfaces on the site will be achieved through installation of a filter-based oil and grit separator. The recommended model is a Stormceptor EFO4.

EROSION CONTROL

The 5 mm on-site retention for storage used for water balance will meet The City of Mississauga's minimum 5 mm retention requirement to satisfy erosion control.

WATER QUANTITY

Runoff from all areas of the site will be directed to a 236.5 m³ DECAST OPSS Box Culvert. Post-development flows have been controlled to below 99.9 L/s in compliance with the target release rate to the municipal storm sewer system.

The report has demonstrated that the proposed stormwater management strategy will address stormwater management related impacts from this project in adherence with The City of Mississauga's Development Requirements Manual (2016).

Respectfully submitted,

WSP Canada INC

BIBLIOGRAPHY

- City of Mississauga. (2016, September). Development Requirements Manual.
- Credit Valley Conservation Authority and Toronto and Region Conservation Authority. (2010). Low Impact Development Stormwater Management Planning and Design Guideline Version 1.0, Toronto, Ontario, Final Report. Ontario, Canada.

A STORMWATER MANAGEMENT CALCULATIONS

		Stormwater Management Calculations	Project:	1785 Bloor St.	No.:	211-10685				
	2				Area Takeoffs	By:	SK	Date:	2023-09-15	Page:
				Checked:	VN	Checked:	2023-09-15	1		

Existing							
Land Use	Area (m^2)	Runoff C	% Coverage				
Impervious Roof Area	4,974	0.90	41%				
Soft/Pervious Landscaping	7,026	0.25	59%				
At-Grade Impervious	-						
Total Site Area:	12,000	0.52	100%				

	Proposed						
	Land Use	Area (m^2)	Runoff C, 2, 5, 10	Runoff C, 25	Runoff C, 50	Runoff C, 100	Imperviousness
	Impervious Roof Area (Proposed Building)	2,577.9	0.90	0.99	1.00	1.00	100%
Controlled	Impervious Roof Area (Existing Building)	731.4	0.90	0.99	1.00	1.00	100%
and Captured	Soft/Pervious Landscaping	3,644.8	0.25	0.28	0.30	0.31	0%
	Controlled At Grade Impervious	3,352.8	0.90	0.99	1.00	1.00	100%
	Uncontrolled Landscaping	1,559.0	0.25	0.28	0.30	0.31	0%
	Total Site Area:	11,865.8	0.61	0.68	0.69	0.70	56%

			Project:	1785 Bloor St	t .	No.:	211-10685	
115			By:	RJ		Date:	2023-09-15	Page
			Checked:	VN		Checked:	2023-09-15	2
bject: Stormwater Management C	alculations -	Existing Site	e Peak Flows			1		
		_						
Calculation of existing runoff rate	e is undertaken u	sing the Ratio	onal Method:	Q = 2	.78 <i>CIA</i>			
Where	: Q = Peak flow	rate Aitres/s	econd)					
where	C = Runoff co		(ccond)					
	I = Rainfall int		hour)					
	A = Catchmen	• •	,					
Site Arres A	1.20	L						
Site Area, A	1.20	hectares						
Pre-Development Runoff Coefficient, C	0.52							
Kunoff Coefficient, C								
Where	: I = Rainfall In	tensity in mn	hr.					
	T = Time of C a, b, c = Rainfa	Concentration	in minutes, u				$=\frac{a}{\left(t+b\right)^{C}}$	
	a, b, c = Rainf	Concentration all parameters	in minutes, u s used by City	of Mississauga			(l+b)	
Return Period (Years)	a, b, c = Rainf	Concentration all parameters 5	in minutes, u s used by City 10	of Mississauga	50	100	(<i>l</i> + <i>b</i>)	
a	a, b, c = Rainfa	Concentration all parameters 5 820	in minutes, used by City 10 1010	of Mississauga 25 1160	1300	100 1450	(<i>l</i> + <i>b</i>)	
a b	a, b, c = Rainfa 2 610 4.60	Concentration all parameters 5 820 4.60	in minutes, used by City 10 1010 4.60	of Mississauga 25 1160 4.60	1300 4.70	100 1450 4.90	(<i>l</i> + <i>b</i>)	
a b c	a, b, c = Rainfa 2 610 4.60 0.78	5 820 4.60 0.78	in minutes, u s used by City 1010 4.60 0.78	of Mississauga 25 1160 4.60 0.78	1300 4.70 0.78	100 1450 4.90 0.78	(1+0)	
a b c Runoff Coefficent C*	a, b, c = Rainfa 2 610 4.60 0.78 0.52	Soncentration all parameters 5 820 4.60 0.78 0.52	in minutes, u s used by City 10 1010 4.60 0.78 0.52	of Mississauga 25 1160 4.60 0.78 0.57	1300 4.70 0.78 0.62	100 1450 4.90 0.78 0.65	(<i>l</i> + <i>b</i>)	
a b c Runoff Coefficent C* T (mins) **	a, b, c = Rainfa 2 610 4.60 0.78 0.52 15	5 820 4.60 0.78 0.52 15	in minutes, u s used by City 1010 4.60 0.78 0.52 15	of Mississauga 25 1160 4.60 0.78 0.57 15	1300 4.70 0.78 0.62 15	100 1450 4.90 0.78 0.65 15	(<i>l</i> + <i>b</i>)	
a b c Runoff Coefficent C* T (mins) ** T (hrs)	a, b, c = Rainfa 2 610 4.60 0.78 0.52 15 0.250	5 820 4.60 0.78 0.52 15 0.250 0	in minutes, u s used by City 10 1010 4.60 0.78 0.52 15 0.250	of Mississauga 25 1160 4.60 0.78 0.57 15 0.250	1300 4.70 0.78 0.62 15 0.250	100 1450 4.90 0.78 0.65 15 0.250	(<i>l</i> + <i>b</i>)	
a b c Runoff Coefficent C* T (mins) **	a, b, c = Rainfa 2 610 4.60 0.78 0.52 15	5 820 4.60 0.78 0.52 15	in minutes, u s used by City 1010 4.60 0.78 0.52 15	of Mississauga 25 1160 4.60 0.78 0.57 15	1300 4.70 0.78 0.62 15	100 1450 4.90 0.78 0.65 15	(<i>l</i> + <i>b</i>)	
a b c Runoff Coefficent C* T (mins) ** T (hrs) I (mm/hr) Q (litres/sec)	a, b, c = Rainfa 2 610 4.60 0.78 0.52 15 0.250 59.9	Soncentration all parameters 5 820 4.60 0.78 0.52 15 0.250 80.5	in minutes, u s used by City 10 1010 4.60 0.78 0.52 15 0.250 99.2	of Mississauga 25 1160 4.60 0.78 0.57 15 0.250 113.9	1300 4.70 0.78 0.62 15 0.250 127.1	100 1450 4.90 0.78 0.65 15 0.250 140.7		
a b c Runoff Coefficent C* T (mins) ** T (hrs) I (mm/hr)	a, b, c = Rainfa 2 610 4.60 0.78 0.52 15 0.250 59.9 103.8 0.104	5 820 4.60 0.78 0.52 15 0.250 80.5 139.5 0.140	in minutes, u s used by City 10 1010 4.60 0.78 0.52 15 0.250 99.2 171.8 0.172	of Mississauga 25 1160 4.60 0.78 0.57 15 0.250 113.9 217.1 0.217	1300 4.70 0.78 0.62 15 0.250 127.1 264.4 0.264	100 1450 4.90 0.78 0.65 15 0.250 140.7 304.7 0.305		
a b c Runoff Coefficent C* T (mins) ** T (hrs) I (mm/hr) Q (litres/sec) Q (m ³ /sec)	a, b, c = Rainfa 610 4.60 0.78 0.52 15 0.250 59.9 103.8 0.104 re applied to the second sec	Soncentration all parameters 5 820 4.60 0.78 0.52 15 0.250 80.5 139.5 0.140 cunoff coefficient	in minutes, u s used by City 10 1010 4.60 0.78 0.52 15 0.250 99.2 171.8 0.172 cent for larger	of Mississauga 25 1160 4.60 0.78 0.57 15 0.250 113.9 217.1 0.217	1300 4.70 0.78 0.62 15 0.250 127.1 264.4 0.264	100 1450 4.90 0.78 0.65 15 0.250 140.7 304.7 0.305		
a b c Runoff Coefficent C* T (mins) ** T (hrs) I (mm/hr) Q (litres/sec) Q (m ³ /sec) * Note that adjustment factors ar	a, b, c = Rainfa 610 4.60 0.78 0.52 15 0.250 59.9 103.8 0.104 re applied to the re-	5 820 4.60 0.78 0.52 15 0.250 80.5 139.5 0.140 cunoff coefficements Manual	in minutes, u s used by City 10 1010 4.60 0.78 0.52 15 0.250 99.2 171.8 0.172 cent for larger nal	25 1160 4.60 0.78 0.57 15 0.250 113.9 217.1 0.217 less frequent st	1300 4.70 0.78 0.62 15 0.250 127.1 264.4 0.264 torms for 10	100 1450 4.90 0.78 0.65 15 0.250 140.7 304.7 0.305		
a b c Runoff Coefficent C* T (mins) ** T (hrs) I (mm/hr) Q (litres/sec) Q (m ³ /sec) * Note that adjustment factors ar as per City of Mississauga Devo	a, b, c = Rainfa 610 4.60 0.78 0.52 15 0.250 59.9 103.8 0.104 re applied to the re-	5 820 4.60 0.78 0.52 15 0.250 80.5 139.5 0.140 cunoff coefficements Manual	in minutes, u s used by City 10 1010 4.60 0.78 0.52 15 0.250 99.2 171.8 0.172 cent for larger nal	25 1160 4.60 0.78 0.57 15 0.250 113.9 217.1 0.217 less frequent st	1300 4.70 0.78 0.62 15 0.250 127.1 264.4 0.264 torms for 10	100 1450 4.90 0.78 0.65 15 0.250 140.7 304.7 0.305		
a b c Runoff Coefficent C* T (mins) ** T (hrs) I (mm/hr) Q (litres/sec) Q (m ³ /sec) * Note that adjustment factors ar as per City of Mississauga Devo	a, b, c = Rainfa 610 4.60 0.78 0.52 15 0.250 59.9 103.8 0.104 re applied to the re-	5 820 4.60 0.78 0.52 15 0.250 80.5 139.5 0.140 cunoff coefficements Manual	in minutes, u s used by City 10 1010 4.60 0.78 0.52 15 0.250 99.2 171.8 0.172 cent for larger nal	25 1160 4.60 0.78 0.57 15 0.250 113.9 217.1 0.217 less frequent st	1300 4.70 0.78 0.62 15 0.250 127.1 264.4 0.264 torms for 10	100 1450 4.90 0.78 0.65 15 0.250 140.7 304.7 0.305		
a b c Runoff Coefficent C* T (mins) ** T (hrs) I (mm/hr) Q (litres/sec) Q (m ³ /sec) * Note that adjustment factors ar as per City of Mississauga Devo	a, b, c = Rainfa 610 4.60 0.78 0.52 15 0.250 59.9 103.8 0.104 re applied to the re-	5 820 4.60 0.78 0.52 15 0.250 80.5 139.5 0.140 cunoff coefficements Manual	in minutes, u s used by City 10 1010 4.60 0.78 0.52 15 0.250 99.2 171.8 0.172 cent for larger nal	25 1160 4.60 0.78 0.57 15 0.250 113.9 217.1 0.217 less frequent st	1300 4.70 0.78 0.62 15 0.250 127.1 264.4 0.264 torms for 10	100 1450 4.90 0.78 0.65 15 0.250 140.7 304.7 0.305		

				Project:	1785 Bloor St	t .	No.:	211-10685	
				By:	RJ		Date:	2023-09-15	-
				Checked:	VN		Checked:	2023-09-15	
ct:	Stormwater Management Ca	algulations -	Allowable F	Release Rate					
	Gommaner management			leicase mare					
	Calculation of existing runoff rate	e is undertaken 1	using the Rat	ional Method:	Q=2.	.78 <i>CIA</i>			
	XX/71	0 D 1 4	a. /	1\					
	w nere:	Q = Peak flow C = Runoff c	``	,					
		I = Rainfall int							
		A = Catchmer	nt area (hecta	res)					
	Site Area, A	1.20	hectares						
	Pre-Development		literares						
	Runoff Coefficient, C*	0.50							
	······································	· · · · ·	- 1		• • • •	•••• • •=•1 1			c
	This area will be controlled down the site's 2-year existing flow rate							rate will be the sum	ot
	the site's 2-year existing now rate	with a runoin co	Setficient or	0.5 and the exi	sting 2-year exu	ernal area no	w rate.		
	*Section 2.01.03.03 of The City o	f Micciesanoa's ?	Developmen	+ Requirement	e Manual (2016)	etates a max	imum of 0.5 r	nay be used for the	nre-
	development runoff coefficient.	1 Mississauga 5 1	Jevelopmen	t Keyunemene	5 Ivianuar (2010)) States a 111an		llay be used for the	pre-
	development								
	Rainfall Intensity is calculated bas	sed on City of N	fississauga Ir	itensity-Durati	on-Frequency (IDF) Equation	ons: $I =$	a	
				J.	· · ·	. / .	1	$\frac{a}{(t+b)^{C}}$	
	Where:	: I = Rainfall In						(- <i>,</i>	
		T = Time of C							
		a, b, $c = Rainf$	all parameter	s used by City	of Mississauga				
ļ	Determa Deviad (Vasua)		F	10			100		
	Return Period (Years)	2 610	5 820	10 1010	25 1160	50 1300	100 1450	4	
	a b	4.60	4.60	4.60	4.60	4.70	4.90	-	
	C C	0.78	0.78	0.78	0.78	0.78	0.78	-	
	C C		15		15		0.10	_	
	T (mins) **	15	1.)	10		10	15		
	T (mins) ** T (hrs)	15 0.250		15 0.250		15 0.250	15 0.250	-	
	T (hrs)	0.250	0.250	0.250	0.250	0.250	0.250	-	
	T (hrs) I (mm/hr)	0.250 59.9	0.250 80.5	0.250 99.2	0.250 113.9	0.250 127.1	0.250 140.7		
	T (hrs) I (mm/hr) Q Site (litres/sec)	0.250 59.9 99.9	0.250 80.5 134.3	0.250 99.2 165.4	0.250 113.9 190.0	0.250 127.1 212.1	0.250 140.7 234.7	- - -	
	T (hrs) I (mm/hr) Q Site (litres/sec) Q (area A) (m3/sec)	0.250 59.9 99.9 0.10	0.250 80.5 134.3 0.13	0.250 99.2 165.4 0.17	0.250 113.9 190.0 0.19	0.250 127.1 212.1 0.21	0.250 140.7 234.7 0.23	rents	
	T (hrs) I (mm/hr) Q Site (litres/sec)	0.250 59.9 99.9 0.10 re applied to the	0.250 80.5 134.3 0.13 runoff coeffi	0.250 99.2 165.4 0.17 icent for larger	0.250 113.9 190.0 0.19	0.250 127.1 212.1 0.21	0.250 140.7 234.7 0.23	/ents	
	T (hrs) I (mm/hr) Q Site (litres/sec) Q (area A) (m3/sec) * Note that adjustment factors are	0.250 59.9 99.9 0.10 re applied to the elopment Requir	0.250 80.5 134.3 0.13 runoff coeffi rements Man	0.250 99.2 165.4 0.17 icent for larger	0.250 113.9 190.0 0.19 :, less frequent s	0.250 127.1 212.1 0.21 storms for 10	0.250 140.7 234.7 0.23	vents	
	T (hrs) I (mm/hr) Q Site (litres/sec) Q (area A) (m3/sec) * Note that adjustment factors are as per City of Mississauga Deve	0.250 59.9 99.9 0.10 re applied to the elopment Requir	0.250 80.5 134.3 0.13 runoff coeffi rements Man	0.250 99.2 165.4 0.17 icent for larger	0.250 113.9 190.0 0.19 :, less frequent s	0.250 127.1 212.1 0.21 storms for 10	0.250 140.7 234.7 0.23	/vents	
	T (hrs) I (mm/hr) Q Site (litres/sec) Q (area A) (m3/sec) * Note that adjustment factors are as per City of Mississauga Deve ** Note recommended minimum	0.250 59.9 99.9 0.10 re applied to the elopment Requir n value for time of	0.250 80.5 134.3 0.13 runoff coeffi rements Man of concentrat	0.250 99.2 165.4 0.17 icent for larger tion for small s	0.250 113.9 190.0 0.19 c, less frequent s sites (<2.0ha) is	0.250 127.1 212.1 0.21 storms for 10 15 minutes.	0.250 140.7 234.7 0.23 to 100 year ev		
	T (hrs) I (mm/hr) Q Site (litres/sec) Q (area A) (m3/sec) * Note that adjustment factors are as per City of Mississauga Deve ** Note recommended minimum Through review of the CVC's gui	0.250 59.9 99.9 0.10 re applied to the elopment Requir a value for time of idelines, City of	0.250 80.5 134.3 0.13 runoff coeffi rements Man of concentrat	0.250 99.2 165.4 0.17 icent for larger ual tion for small s	0.250 113.9 190.0 0.19 c, less frequent s sites (<2.0ha) is t Requirements	0.250 127.1 212.1 0.21 storms for 10 15 minutes. Manual (2010	0.250 140.7 234.7 0.23 to 100 year ex	lence with City Staf	
	T (hrs) I (mm/hr) Q Site (litres/sec) Q (area A) (m3/sec) * Note that adjustment factors are as per City of Mississauga Devee ** Note recommended minimum Through review of the CVC's gui and through downstream analysis	0.250 59.9 99.9 0.10 re applied to the elopment Requir a value for time of idelines, City of 1 s, it was determined	0.250 80.5 134.3 0.13 runoff coeffi rements Man of concentrat Mississauga's ned that the o	0.250 99.2 165.4 0.17 icent for larger tual tion for small s s Development downstream se	0.250 113.9 190.0 0.19 c, less frequent s sites (<2.0ha) is t Requirements ewer capacity wa	0.250 127.1 212.1 0.21 storms for 10 15 minutes. Manual (2010 as the govern	0.250 140.7 234.7 0.23 to 100 year ex 6), corresponding factor. It v	lence with City Staf was decided that the	
	T (hrs) I (mm/hr) Q Site (litres/sec) Q (area A) (m3/sec) * Note that adjustment factors areas per City of Mississauga Deve ** Note recommended minimum Through review of the CVC's gui and through downstream analysis release rate to the municipal storm	0.250 59.9 99.9 0.10 re applied to the elopment Requir a value for time of idelines, City of 1 s, it was determined	0.250 80.5 134.3 0.13 runoff coeffi rements Man of concentrat Mississauga's ned that the o	0.250 99.2 165.4 0.17 icent for larger tual tion for small s s Development downstream se	0.250 113.9 190.0 0.19 c, less frequent s sites (<2.0ha) is t Requirements ewer capacity wa	0.250 127.1 212.1 0.21 storms for 10 15 minutes. Manual (2010 as the govern	0.250 140.7 234.7 0.23 to 100 year ex 6), corresponding factor. It v	lence with City Staf was decided that the	
	T (hrs) I (mm/hr) Q Site (litres/sec) Q (area A) (m3/sec) * Note that adjustment factors are as per City of Mississauga Devee ** Note recommended minimum Through review of the CVC's gui and through downstream analysis	0.250 59.9 99.9 0.10 re applied to the elopment Requir a value for time of idelines, City of 1 s, it was determined	0.250 80.5 134.3 0.13 runoff coeffi rements Man of concentrat Mississauga's ned that the o	0.250 99.2 165.4 0.17 icent for larger tual tion for small s s Development downstream se	0.250 113.9 190.0 0.19 c, less frequent s sites (<2.0ha) is t Requirements ewer capacity wa	0.250 127.1 212.1 0.21 storms for 10 15 minutes. Manual (2010 as the govern	0.250 140.7 234.7 0.23 to 100 year ex 6), corresponding factor. It v	lence with City Staf was decided that the	
	T (hrs) I (mm/hr) Q Site (litres/sec) Q (area A) (m3/sec) * Note that adjustment factors are as per City of Mississauga Devee ** Note recommended minimum Through review of the CVC's gui and through downstream analysis release rate to the municipal storm municipal storm sewer system.	0.250 59.9 99.9 0.10 re applied to the elopment Requir a value for time of s, it was determin m sewer system of	0.250 80.5 134.3 0.13 runoff coeffi rements Man of concentrat Mississauga's ned that the would be lim	0.250 99.2 165.4 0.17 icent for larger ual tion for small s s Development downstream sec nited to the 2 ye	0.250 113.9 190.0 0.19 c, less frequent s sites (<2.0ha) is t Requirements ewer capacity wa ear pre-develop	0.250 127.1 212.1 0.21 storms for 10 15 minutes. Manual (2010 as the govern oment release	0.250 140.7 234.7 0.23 to 100 year ex 6), corresponding factor. It wrate to provid	lence with City Staf was decided that the	
	T (hrs) I (mm/hr) Q Site (litres/sec) Q (area A) (m3/sec) * Note that adjustment factors areas per City of Mississauga Deve ** Note recommended minimum Through review of the CVC's gui and through downstream analysis release rate to the municipal storm	0.250 59.9 99.9 0.10 re applied to the elopment Requir a value for time of s, it was determin m sewer system of	0.250 80.5 134.3 0.13 runoff coeffi rements Man of concentrat Mississauga's ned that the would be lim	0.250 99.2 165.4 0.17 icent for larger ual tion for small s s Development downstream sec nited to the 2 ye	0.250 113.9 190.0 0.19 c, less frequent s sites (<2.0ha) is t Requirements ewer capacity wa ear pre-develop	0.250 127.1 212.1 0.21 storms for 10 15 minutes. Manual (2010 as the govern oment release	0.250 140.7 234.7 0.23 to 100 year ex 6), corresponding factor. It wrate to provid	lence with City Staf was decided that the	
	T (hrs) I (mm/hr) Q Site (litres/sec) Q (area A) (m3/sec) * Note that adjustment factors are as per City of Mississauga Devee ** Note recommended minimum Through review of the CVC's gui and through downstream analysis release rate to the municipal storm municipal storm sewer system.	0.250 59.9 99.9 0.10 re applied to the elopment Requir a value for time of s, it was determin m sewer system of	0.250 80.5 134.3 0.13 runoff coeffi rements Man of concentrat Mississauga's ned that the would be lim	0.250 99.2 165.4 0.17 icent for larger ual tion for small s s Development downstream sec nited to the 2 ye	0.250 113.9 190.0 0.19 c, less frequent s sites (<2.0ha) is t Requirements ewer capacity wa ear pre-develop	0.250 127.1 212.1 0.21 storms for 10 15 minutes. Manual (2010 as the govern oment release	0.250 140.7 234.7 0.23 to 100 year ex 6), corresponding factor. It wrate to provid	lence with City Staf was decided that the	
	T (hrs) I (mm/hr) Q Site (litres/sec) Q (area A) (m3/sec) * Note that adjustment factors are as per City of Mississauga Devee ** Note recommended minimum Through review of the CVC's gui and through downstream analysis release rate to the municipal storm municipal storm sewer system.	0.250 59.9 99.9 0.10 re applied to the elopment Requir a value for time of s, it was determin m sewer system of	0.250 80.5 134.3 0.13 runoff coeffi rements Man of concentrat Mississauga's ned that the would be lim	0.250 99.2 165.4 0.17 icent for larger ual tion for small s s Development downstream sec nited to the 2 ye	0.250 113.9 190.0 0.19 c, less frequent s sites (<2.0ha) is t Requirements ewer capacity wa ear pre-develop	0.250 127.1 212.1 0.21 storms for 10 15 minutes. Manual (2010 as the govern oment release	0.250 140.7 234.7 0.23 to 100 year ex 6), corresponding factor. It wrate to provid	lence with City Staf was decided that the	
	T (hrs) I (mm/hr) Q Site (litres/sec) Q (area A) (m3/sec) * Note that adjustment factors are as per City of Mississauga Devee ** Note recommended minimum Through review of the CVC's gui and through downstream analysis release rate to the municipal storm municipal storm sewer system.	0.250 59.9 99.9 0.10 re applied to the elopment Requir a value for time of s, it was determin m sewer system of	0.250 80.5 134.3 0.13 runoff coeffi rements Man of concentrat Mississauga's ned that the would be lim	0.250 99.2 165.4 0.17 icent for larger ual tion for small s s Development downstream sec nited to the 2 ye	0.250 113.9 190.0 0.19 c, less frequent s sites (<2.0ha) is t Requirements ewer capacity wa ear pre-develop	0.250 127.1 212.1 0.21 storms for 10 15 minutes. Manual (2010 as the govern oment release	0.250 140.7 234.7 0.23 to 100 year ex 6), corresponding factor. It wrate to provid	lence with City Staf was decided that the	
	T (hrs) I (mm/hr) Q Site (litres/sec) Q (area A) (m3/sec) * Note that adjustment factors are as per City of Mississauga Devee ** Note recommended minimum Through review of the CVC's gui and through downstream analysis release rate to the municipal storm municipal storm sewer system.	0.250 59.9 99.9 0.10 re applied to the elopment Requir a value for time of s, it was determin m sewer system of	0.250 80.5 134.3 0.13 runoff coeffi rements Man of concentrat Mississauga's ned that the would be lim	0.250 99.2 165.4 0.17 icent for larger ual tion for small s s Development downstream sec nited to the 2 ye	0.250 113.9 190.0 0.19 c, less frequent s sites (<2.0ha) is t Requirements ewer capacity wa ear pre-develop	0.250 127.1 212.1 0.21 storms for 10 15 minutes. Manual (2010 as the govern oment release	0.250 140.7 234.7 0.23 to 100 year ex 6), corresponding factor. It wrate to provid	lence with City Staf was decided that the	

				Project:	1785 Bloor St.	No.:	211-10685	
				By:	SK	Date:	2023-09-15	F
				Checked:	VN	Checked:	2023-09-15	
ıbject:	Stormwater Management Calculation	s - W	Vater Balance Calo	culations				
	In this case, best efforts on-site runoff retention wi	ll be provided su	ich that the site reta	ins all runoff from 5 n	nm storm event			
t	for rainwater reuse.							
7	The current area measurements and land use types	for the site are a	s follows:					
1	The current area measurements and fand use types	for the site are a	s 10110ws.					
	Land Use	Area (m ²)	2,5,10 Year	Imperviousness	CN			
			Runoff C					
ntrolled	Impervious Roof Area (Proposed Building)	2,578	0.90	100%	98			
and	Impervious Roof Area (Existing Building)	731	0.90	100%	98			
otured -	Soft/Pervious Landscaping	3,645	0.25	0%	74			
	Controlled At Grade Impervious	3,353	0.90	100%	98			
	Uncontrolled Landscoping	1,559	0.25	0%	74			
	Uncontrolled Landscaping Total Site Area:	11,866	0.61	56%	87			

1,559

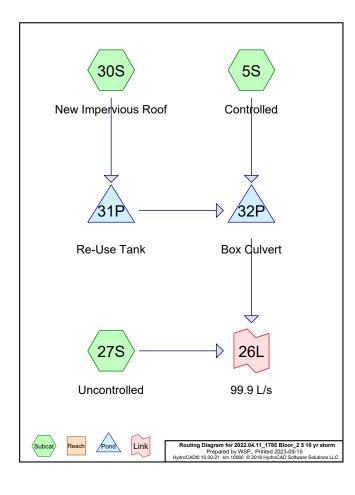
11,866

Uncontrolled Landscaping

Total Site Area:

Therefore, volume of runoff during a 5 mm storm event:

7.8


59.3

59.33

 m^3

B HYDROCAD MODEL RESULTS

2022.04.11_1785	Bloor_2 5 10 yr storm	
Prepared by WSP		
HydroCAD® 10.00-21	s/n 10060 © 2018 HydroCAD Software Solutions LLC	

Area Listing (selected nodes)

		• ·
Area	С	Description
(hectares)		(subcatchment-numbers)
0.3353	0.90	At Grade Impervious (5S)
0.1559	0.25	At Grade-Pervious (27S)
0.3309	0.90	Impervious Roof (5S, 30S)
0.3645	0.25	Soft Landscaping (5S)
1.1866	0.61	TOTAL AREA

2022.04.11_178 Prepared by WSF HydroCAD® 10.00-2	-	•	Software Solutions LLC	Printed 2023-09-15 Page 3					
Soil Listing (selected nodes)									
Area	Soil	Subcatchment							
(hectares)	Group	Numbers							
0.0000	HSG A								
0.0000	HSG B								
0.0000	HSG C								
0.0000	HSG D								

1.1866 **1.1866**

Other

5S, 27S, 30S TOTAL AREA

2022.04.11	1785 Bloor	2 5 10	yr storm

Printed 2023-09-15 Prepared by WSP HydroCAD® 10.00-21 s/n 10060 © 2018 HydroCAD Software Solutions LLC

Ground Covers (selected nodes)										
HSG-A (hectares)	HSG-B (hectares)	HSG-C (hectares)	HSG-D (hectares)	Other (hectares)	Total (hectares)	Ground Cover	Subcatchment Numbers			
0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.3353 0.1559	0.3353 0.1559	At Grade Impervious At Grade-Pervious	5S 27S			
0.0000	0.0000	0.0000	0.0000	0.3309	0.3309	Impervious Roof	5S, 30S			
0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.3645 1.1866	0.3645 1.1866	Soft Landscaping TOTAL AREA	5S			

Page 4

2022.04.11_1785 Bloor_2 5 10 y Prepared by WSP HydroCAD® 10.00-21 s/n 10060 © 2018	r Mississauga IDF 2-Year Duration=54 min, Inten=25.5 mm/hr Printed 2023-09-15 HydroCAD Software Solutions LLC Page 5						
Time span=0.00-6.00 hrs, dt=0.01 hrs, 601 points Runoff by Rational method, Rise/Fall=1.0/1.0 xTc Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method							
Subcatchment5S: Controlled	Runoff Area=7,729.0 m ² 0.00% Impervious Runoff Depth=14 mm Tc=15.0 min C=0.59 Runoff=0.0323 m³/s 0.105 MI						
Subcatchment27S: Uncontrolled	Runoff Area=1,559.0 m ² 0.00% Impervious Runoff Depth=6 mm Tc=15.0 min C=0.25 Runoff=0.0028 m³/s 0.009 MI						
Subcatchment30S: New Impervious	Runoff Area=2,577.9 m ² 0.00% Impervious Runoff Depth=21 mm Tc=15.0 min C=0.90 Runoff=0.0164 m³/s 0.053 MI						
Pond 31P: Re-Use Tank	Peak Elev=10.995 m Storage=0.053 MI Inflow=0.0164 m³/s 0.053 MI Outflow=0.0000 m³/s 0.000 MI						
Pond 32P: Box Culvert	Peak Elev=0.420 m Storage=46.2 m³ Inflow=0.0331 m³/s 0.122 MI Outflow=0.0260 m³/s 0.130 MI						
Link 26L: 99.9 L/s	Inflow=0.0285 m³/s 0.139 MI Primary=0.0285 m³/s 0.139 MI						

Total Runoff Area = 1.1866 ha Runoff Volume = 0.167 MI Average Runoff Depth = 14 mm 100.00% Pervious = 1.1866 ha 0.00% Impervious = 0.0000 ha 2022.04.11_1785 Bloor_2 5 10 yr Mississauga IDF 2-Year Duration=54 min, Inten=25.5 mm/hr Prepared by WSP Printed 2023.09.15 HydroCAD® 10.00-21 s/n 10060 © 2018 HydroCAD Software Solutions LLC Page 6

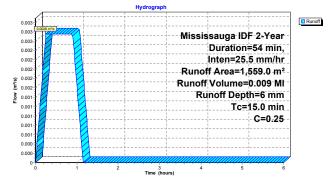
Summary for Subcatchment 5S: Controlled

= 0.0323 m³/s @ 0.25 hrs, Volume= 0.105 MI, Depth= 14 mm

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-6.00 hrs, dt= 0.01 hrs Mississauga IDF 2-Year Duration=54 min, Inten=25.5 mm/hr

Runoff

Mississauga IDF 2-Year Duration=54 min, Inten	=25.5 mm/m
Area (m ²) C Description	
731.4 0.90 Impervious Roof	
3,644.8 0.25 Soft Landscaping	
3,352.8 0.90 At Grade Impervious	
7,729.0 0.59 Weighted Average	
7.729.0 100.00% Pervious Are	a
Tc Length Slope Velocity Capacity	Description
(min) (meters) (m/m) (m/sec) (m ³ /s)	•
15.0	Direct Entry,
Subcatchm	ent 5S: Controlled
Hydrog	raph
0.036	Runoff
0.034 0.0323 m ^{1/s}	
0.032	Mississauga IDF 2-Year
0.03	-
0.028	Duration=54 min,
0.026	Inten=25.5 mm/hr
0.024	Runoff Area=7,729.0 m ²
0.022	
2 0.02 0.02 0 · · · · · · · · · · · · · · · · · ·	Runoff Volume=0.105 MI
	Runoff Depth=14 mm
0.014	Tc=15.0 min
0.012	C=0.59
0.01	
0.008	
0.006	
0.004	
0.002	
	3 4 5 6
Time	e (hours)


2022.04.11_1785 Bloor_2 5 10 yr Mississauga IDF 2-Year Duration=54 min, Inten=25.5 mm/hr Prepared by WSP Printed 2023-09-15 HydroCADB 01.00-21 s/n 10060 © 2018 HydroCAD Software Solutions LLC Page 7

Summary for Subcatchment 27S: Uncontrolled

Runoff = 0.0028 m³/s @ 0.25 hrs, Volume= 0.009 Ml, Depth= 6 mm

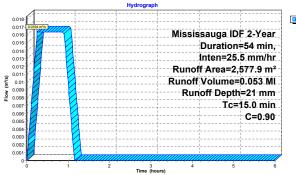
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-6.00 hrs, dt= 0.01 hrs Mississauga IDF 2-Year Duration=54 min, Inten=25.5 mm/hr

	A	rea (m²)	С	Description						
		1,559.0 0.25 At Grade-Pervious								
	1,559.0 100.00% Pervious Area									
	Tc (min)	Length (meters)	Slop (m/m		Capacity (m³/s)	Description				
-	15.0					Direct Entry,				
	Subcatchment 27S: Uncontrolled									

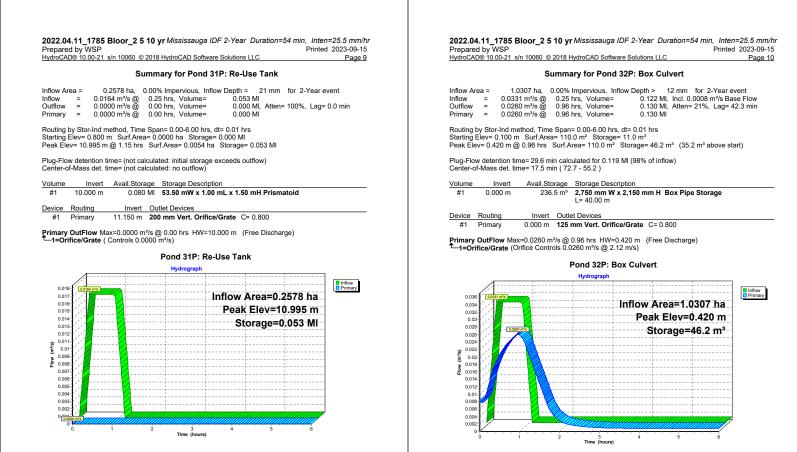
 2022.04.11_1785 Bloor_2 5 10 yr Mississauga IDF 2-Year Duration=54 min, Inten=25.5 mm/hr

 Prepared by WSP
 Printed 2023-09-15

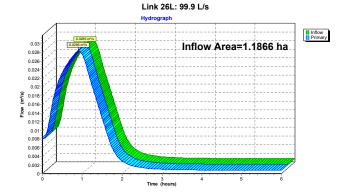
 HydroCAD® 10.00-21 s/n 10060 © 2018 HydroCAD Software Solutions LLC
 Page 8


Summary for Subcatchment 30S: New Impervious Roof

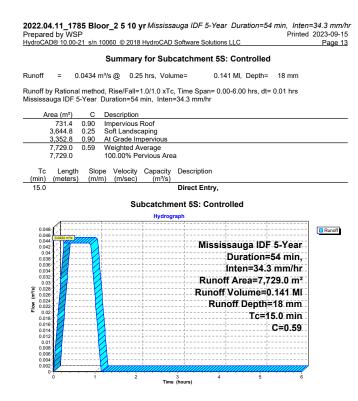
Runoff = 0.0164 m³/s @ 0.25 hrs, Volume= 0.053 Ml, Depth= 21 mm


Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-6.00 hrs, dt= 0.01 hrs Mississauga IDF 2-Year Duration=54 min, Inten=25.5 mm/hr

	A	rea (m²)	С	Description		
		2,577.9	0.90	mpervious	Roof	
		2,577.9		100.00% Pe	ervious Area	а
	Tc	Lenath	Slope	Velocity	Capacity	Description
	(min)	(meters)	(m/m)		(m ³ /s)	
-	15.0					Direct Entry,

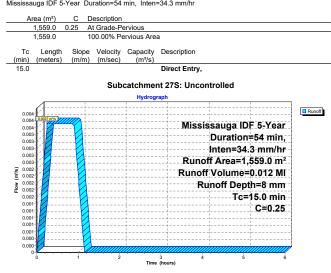

Runoff

2022.04.11_1785 Bloor_2 5 10 yr Mississauga IDF 2-Year Duration=54 mi	n, Inten=25.5 mm/hr
Prepared by WSP	Printed 2023-09-15
HydroCAD® 10.00-21 s/n 10060 © 2018 HydroCAD Software Solutions LLC	Page 11


Summary for Link 26L: 99.9 L/s

Inflow Are	a =	1.1866 ha,	0.00% Impervious, Inflo	w Depth > 12 mm	for 2-Year event	
Inflow	=	0.0285 m ³ /s @	0.90 hrs, Volume=	0.139 MI		
Primary	=	0.0285 m³/s @	0.90 hrs, Volume=	0.139 MI, Atten	= 0%, Lag= 0.0 min	
Primary outflow = Inflow, Time Span= 0.00-6.00 hrs, dt= 0.01 hrs						

HydroCAD® 10.00-21 s/n 10060 © 2018	HydroCAD Software Solutions LLC Page 12				
Time span=0.00-6.00 hrs, dt=0.01 hrs, 601 points Runoff by Rational method, Rise/Fall=1.0/1.0 xTc Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method					
Subcatchment5S: Controlled	Runoff Area=7,729.0 m ² 0.00% Impervious Runoff Depth=18 mm Tc=15.0 min C=0.59 Runoff=0.0434 m³/s 0.141 MI				
Subcatchment27S: Uncontrolled	Runoff Area=1,559.0 m² 0.00% Impervious Runoff Depth=8 mm Tc=15.0 min C=0.25 Runoff=0.0037 m³/s 0.012 MI				
Subcatchment30S: New Impervious	Runoff Area=2,577.9 m² 0.00% Impervious Runoff Depth=28 mm Tc=15.0 min C=0.90 Runoff=0.0221 m³/s 0.072 MI				
Pond 31P: Re-Use Tank	Peak Elev=11.241 m Storage=0.066 MI Inflow=0.0221 m³/s 0.072 MI Outflow=0.0105 m³/s 0.010 MI				
Pond 32P: Box Culvert	Peak Elev=0.621 m Storage=68.4 m ³ Inflow=0.0442 m ³ /s 0.168 MI Outflow=0.0325 m ³ /s 0.176 MI				
Link 26L: 99.9 L/s	Inflow=0.0354 m³/s 0.188 MI Primary=0.0354 m³/s 0.188 MI				


Total Runoff Area = 1.1866 ha Runoff Volume = 0.224 Mi Average Runoff Depth = 19 mm 100.00% Pervious = 1.1866 ha 0.00% Impervious = 0.0000 ha

2022.04.11_1785 Bloor_2 5 10 yr Mississauga IDF 5-Year Duration=54 min, Inten=34.3 mm/hr Prepared by WSP HydroCAD® 10.00-21 s/n 10060 © 2018 HydroCAD Software Solutions LLC Printed 2023-09-15 Page 14

Summary for Subcatchment 27S: Uncontrolled

= 0.0037 m³/s @ 0.25 hrs, Volume= Runoff 0.012 MI. Depth= 8 mm Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-6.00 hrs, dt= 0.01 hrs Mississauga IDF 5-Year Duration=54 min, Inten=34.3 mm/hr

2022.04.11_1785 Bloor_2 5 10 yr Mississauga IDF 5-Year Duration=54 min, Inten=34.3 mm/hi Prepared by WSP Printed 2023-09-15 HydroCAD® 10.00-21 s/n 10060 © 2018 HydroCAD Software Solutions LLC Page 15

Summary for Subcatchment 30S: New Impervious Roof

= 0.0221 m³/s @ 0.25 hrs, Volume= 0.072 MI, Depth= 28 mm Runoff

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-6.00 hrs, dt= 0.01 hrs Mississauga IDF 5-Year Duration=54 min, Inten=34.3 mm/hr

A	vrea (m²)	СС	escription					
	2,577.9	0.90 l	mpervious	Roof				
	2,577.9	1	00.00% Pe	ervious Are	а			
Tc (min)	Length (meters)	Slope (m/m)	Velocity (m/sec)	Capacity (m³/s)	Description			
15.0					Direct Entry,			
0.02	Subcatchment 30S: New Impervious Roof Hydrograph							Runoff
0.02 0.02 0.02 0.0 0.0 0.01 0.01 0.01 0.	23 00221 m/b 221				Runof	sauga IDF 5 Duration=54 Inten=34.3 r f Area=2,57 Volume=0.0 off Depth=2	4 min, nm/hr 7.9 m²)72 Ml	

3 Time (hours)

Tc=15.0 min

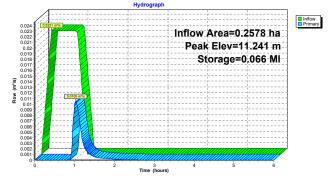
C=0.90

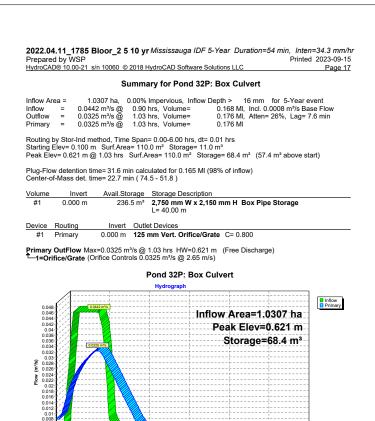
2022.04.11_1785 Bloor_2 5 10 yr Mississauga IDF 5-Year Duration=54 min, Inten=34.3 mm/hr Prepared by WSF Printed 2023-09-15 HydroCAD® 10.00-21 s/n 10060 © 2018 HydroCAD Software Solutions LLC Page 16

Summary for Pond 31P: Re-Use Tank

Inflow Area =		0.2578 ha, 0.0221 m³/s @	0.00% Impervious, Inflow 0.25 hrs, Volume=	Depth = 28 mm 0.072 MI	for 5-Year event			
Inflow Outflow	-	0.0105 m ³ /s @			= 53%. Lag= 46.9 min			
Primarv	Ē.			0.010 MI, Allen-	- 5570, Lag- 40.5 min			
,	······							
Routing by Stor-Ind method, Time Span= 0.00-6.00 hrs, dt= 0.01 hrs								
Starting Elev= 0.800 m Surf.Area= 0.0000 ha Storage= 0.000 MI								
Peak Flev	Peak Elev= 11 241 m @ 1 03 hrs Surf Area= 0 0054 ha Storage= 0 066 MI							

Plug-Flow detention time= 62.6 min calculated for 0.010 MI (14% of inflow) Center-of-Mass det. time= 38.6 min (73.1 - 34.5)

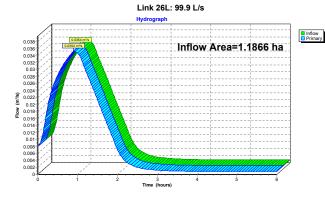

Volume	Invert	Avail.Storage	Storage Description
#1	10.000 m	0.080 MI	53.50 mW x 1.00 mL x 1.50 mH Prismatoid


Device Routing #1 Primary
 Invert
 Outlet Devices

 11.150 m
 200 mm Vert. Orifice/Grate
 C= 0.800

Primary OutFlow Max=0.0104 m³/s @ 1.03 hrs HW=11.241 m (Free Discharge) 1=Orifice/Grate (Orifice Controls 0.0104 m³/s @ 0.75 m/s)

 2022.04.11_1785 Bloor_2 5 10 yr Mississauga IDF 5-Year Duration=54 min, Inten=34.3 mm/hr


 Prepared by WSP
 Printed 2023-09-15

 HydroCAD® 10.00-21 s/n 10060 © 2018 HydroCAD Software Solutions LLC
 Page 18

Summary for Link 26L: 99.9 L/s

Inflow Area = Inflow = Primary =	0.0354 m³/s @	0.00% Impervious, Inflow 0.90 hrs, Volume= 0.90 hrs, Volume=	0.188 MI	for 5-Year event = 0%, Lag= 0.0 min		
Primary outflow = Inflow, Time Span= 0.00-6.00 hrs, dt= 0.01 hrs						

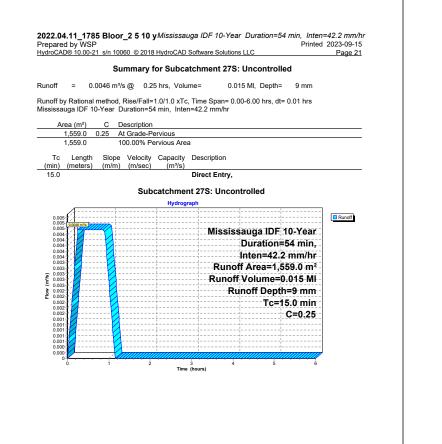
nary outliow – initiow, nine Span- 0.00-0.00 his, ut- 0.01 his

2022.04.11_1785 Bloor_2 5 10 yMississauga IDF 10-Year Duration=5	4 min, Inten=42.2 mm/hr
Prepared by WSP	Printed 2023-09-15
HydroCAD® 10.00-21 s/n 10060 © 2018 HydroCAD Software Solutions LLC	Page 20

Summary for Subcatchment 5S: Controlled

Runoff = 0.0535 m³/s @ 0.25 hrs, Volume= 0.173 Ml, Depth= 22 mm

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-6.00 hrs, dt= 0.01 hrs Mississauga IDF 10-Year Duration=54 min, Inten=42.2 mm/hr


7314 0.90 Impervious Roof 3.644.8 0.25 Soft Landscaping 3.352.8 0.90 At Grade Impervious 7.729.0 0.59 Weighted Average 7.729.0 0.59 Weighted Average 7.729.0 100.00% Pervious Area Tc Length Slope Velocity Capacity Description (m/m) (m/sec) (m ³ /s) 15.0 Direct Entry, Subcatchment 5S: Controlled Hydrograph Inten=42.2 mm/hr Quarticle Area Runoff Area=7,729.0 m ² Runoff Area=7,729.0 m ² Runoff Dopth=22 mm Tc=15.0 min C=0.59 Tree (hour)		Area	(m²)	С	Description						
3.352.8 0.90 At Grade Impervious 7.729.0 0.59 Weighted Average 7.729.0 100.00% Pervious Area Tc Length Slope Velocity Capacity Description (m/m) (m/sec) (m%) 15.0 Direct Entry, Subcatchment 5S: Controlled Hydrograph 0.005 0.	_										
7,729.0 0.59 Weighted Average 7,729.0 100.00% Pervious Area Tc Length Slope Velocity Capacity Description (min) (m/sec) (m/%) Direct Entry, Subcatchment 5S: Controlled Hydrograph United Average Output Output Output Output Output Mississauga IDF 10-Year Duration=54 min, - Planet Runoff Area=7,729.0 m ² Runoff Volume=0.173 Mi Runoff Dolpth=22 mm C=0.59 Output Output Output 0.000 C=0.59 Output Hydrograph Runoff Volume=0.173 Mi Output 0.001 C=0.59 Output Output Output											
7,729.0 100.00% Pervious Area Tc Length Slope Velocity Capacity Description (min) (meters) (m/m) (m/sec) (m%) 15.0 Direct Entry, Subcatchment 5S: Controlled Hydrograph - Duration=54 min,- Inten=42.2 mm/hr - Runoff Area=7,729.0 m ² - Runoff Volume=0.173 MI - Runoff Depth=22 mm - Tc=15.0 min C=0.59											
Tc Length Supervision (min) (m/m) (m/sec) (m/s) 15.0 Direct Entry, Subcatchment 5S: Controlled hydrograph Optimized in the second in the				0.59			~				
(min) (meters) (m/m) (m/sec) (m ² /s) 15.0 Direct Entry, Subcatchment 5S: Controlled Hydrograph Outsiton=54 min, Inten=42.2 rm/hr Runoff Volume=0.173 MI C=0.59 Outsiton=50 min C=0.59 Outsiton=50 min C=0.59 Outsiton=50 min C=0.59 Outsiton=50 min C=0.59 Outsiton=50 min C=0.59 Outsiton=50 min C=0.59 Outsiton=50 min C=0.59 Outsiton=50 min C=0.59		7,1	29.0		100.00% F	ervious Area	a				
15.0 Direct Entry, Subcatchment 5S: Controlled Hydrograph Mississauga IDF 10-Year Duration=54 min, Inten=42.2 mm/hr Runoff Area=7,729.0 m ² Runoff Depth=22 mm Tc=15.0 min C=0.59		Тс	Length	Slop	e Velocity	Capacity	De	scription			
Subcatchment 5S: Controlled Hydrograph Mississauga IDF, 10-Year Duration=54 min, Inten=42.2 mm/hr Runoff Araa=7,729.0 m ² Runoff Depth=22 mm Tc=15.0 min C=0.59	_(min) (r	neters)	(m/r	n) (m/sec)	(m³/s)		•			
Hydrograph Mississauga IDF-10-Year Duration=54 min, Inten=42.2 mm/hr Runoff Area=7,729.0 m ² Runoff Depth=22 mm Tc=15.0 min C=0.59		15.0					Dir	ect Entry,			
Mississauga IDF 10-Year Duration=54 min, Inten=42.2 mm/hr Runoff Area=7,729.0 m ² Runoff Volume=0.173 MI Runoff Depth=22 mm Tc=15.0 min C=0.59					Sı	bcatchm	ent	5S: Contr	olled		
0055 Mississauga IDF 10-Year 004 Duration=54 min, 004 Inten=42.2 mm/hr 004 Runoff Area=7,729.0 m² 005 Runoff Volume=0.173 MI 002 C=0.59 004 C=0.59 005 C=0.59						Hydrog	raph				
0055 Mississauga IDF 10-Year 004 Duration=54 min, 004 Inten=42.2 mm/hr 004 Runoff Area=7,729.0 m² 005 Runoff Volume=0.173 MI 002 C=0.59 004 C=0.59 005 C=0.59		ſ	\square		1				1		Runoff
0.06 0.04 0.04 Inten=42.2 mm/hr 0.03 Runoff Area=7,729.0 m² 0.035 Runoff Volume=0.173 MI 0.035 Runoff Depth=22 mm 0.035 C=0.59 0.04 C=0.59 0.05 C=0.59		0.055	0535 m ¹ /s		+						
Duration=54 min, Inten=42.2 mm/hr Runoff Area=7,729.0 m² Runoff Volume=0.173 MI Runoff Depth=22 mm Cc=0.59 Cost Cc=0.59 Cc=0.59		0.05	1			+		Mississ	auga IDF	10-Year	
0.04 Inten=42.2 mm/hr 0.035 Runoff Area=7,729.0 m² 0.035 Runoff Volume=0.173 MI 0.025 C=0.59 0.01 C=0.59 0.01 C=0.59			H			· +			Duration	=54 min,	
0.04 Runoff Area=7,729.0 m² 0.035 Runoff Volume=0.173 MI 0.025 Runoff Depth=22 mm 0.025 C=0.59 0.016 C=0.59 0.016 C=0.59 0.016 C=0.59		0.045				1			Inton=42	2 mm/hr	
0.0035 Runoff Volume=0.173 MI 0.002 Runoff Depth=22 mm 0.002 C=0.59 0.01 C=0.59 0.01 C=0.59		0.04									
E 0.03 C=0.173 Mi 0.02		0.035	·			+					
C=0.59			·//			+		Runoff	Volume=	0.173-MI -	
C=0.59		0.03	Ø					Run	off Depth	=22 mm	
0.02 0.015 0.01 0.005 0 0 1 2 3 4 5 6	Ē	0.025		F		1		-			
		0.02	1								
		0.045				· •				C=0.59	
			/		2	+					
		0.01			1	1	İ.				
0 1 2 3 4 5 6		0.005	1								
		ار ا			///////////////////////////////////////		1111				
		0		1	2	Time		4 rs)	5	6	

2022.04.11_1785	6 Bloor_2	5 10 yMississauga	IDF 10-Year	Duration=54 min,	Inten=42.2 mm/hr
Prepared by WSP		•		F	Printed 2023-09-15
HvdroCAD® 10.00-21	s/n 10060	© 2018 HydroCAD Soft	ware Solutions	LLC	Page 19

3 Time (hours)

Time span=0.00-6.00 hrs, dt=0.01 hrs, 601 points Runoff by Rational method, Rise/Fall=1.0/1.0 xTc Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method					
Subcatchment5S: Controlled	Runoff Area=7,729.0 m ² 0.00% Impervious Runoff Depth=22 mm Tc=15.0 min C=0.59 Runoff=0.0535 m ³ /s 0.173 MI				
Subcatchment27S: Uncontrolled	Runoff Area=1,559.0 m ² 0.00% Impervious Runoff Depth=9 mm Tc=15.0 min C=0.25 Runoff=0.0046 m ³ /s 0.015 MI				
Subcatchment30S: New Impervious	Runoff Area=2,577.9 m ² 0.00% Impervious Runoff Depth=34 mm Tc=15.0 min C=0.90 Runoff=0.0272 m ³ /s 0.088 MI				
Pond 31P: Re-Use Tank	Peak Elev=11.298 m Storage=0.069 MI Inflow=0.0272 m³/s 0.088 MI Outflow=0.0241 m³/s 0.027 MI				
Pond 32P: Box Culvert	Peak Elev=0.922 m Storage=101.4 m³ Inflow=0.0775 m³/s 0.217 MI Outflow=0.0403 m³/s 0.225 MI				
Link 26L: 99.9 L/s	Inflow=0.0430 m ³ /s 0.240 MI Primary=0.0430 m ³ /s 0.240 MI				

Total Runoff Area = 1.1866 ha Runoff Volume = 0.276 MI Average Runoff Depth = 23 mm 100.00% Pervious = 1.1866 ha 0.00% Impervious = 0.0000 ha

 2022.04.11_1785 Bloor_2 5 10 yMississauga IDF 10-Year Duration=54 min, Inten=42.2 mm/hr

 Prepared by WSP
 Printed 2023-09-15

 HydroCAD® 10.00-21 s/n 10060 © 2018 HydroCAD Software Solutions LLC
 Page 22

Summary for Subcatchment 30S: New Impervious Roof

 Runoff
 =
 0.0272 m²/s @
 0.25 hrs, Volume=
 0.088 Ml, Depth=
 34 mm

 Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span=
 0.00-6.00 hrs, dt=
 0.01 hrs

 Mississauga IDF
 10-Year
 Duration=54 min, Inten=42.2 mm/hr

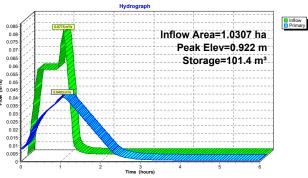
1111551558	iuga iDF	IU-Teal D	urauori-04	+ min, me	11-42.2 11111/11			
A	rea (m²)		escription					
	2,577.9		npervious					
	2,577.9	10	00.00% Pe	ervious Area	а			
Tc (min)	Length (meters)		Velocity (m/sec)	Capacity (m³/s)	Description			
15.0					Direct Entry,			
		:	Subcatc	hment 30 Hydrogi	S: New Imper	rvious Roof	f	
	A	+		+				1
0.0	4			+				Runoff
	8 0.0272 m ¹ /s			+	Missis	auga IDF	10-Year	
0.02	 1.本/// 			+	1113313			
0.02	1.4			+		Duration		
0.02	1.1/1			+		Inten=42.	2_mm/hr_	
0.0	1 1			+	Runo	ff Area=2.	577.9 m ²	
^{0.01} و	A			+	1	Volume=	1	
0.01 0.01 Ng 0.01	· · · · · · · · ·			+		1	1	
8 0.01	1			+	Rur	noff Depth		
0.01	1			+		Tc=	15.0 min	
0.0	1			+			C=0.90	
0.00	· · · · · · · ·			+				
0.00	· · · · · · · · ·							
0.00				İ				
0.00	2							
	0	1	2	Time	3 4 (hours)	5	6	

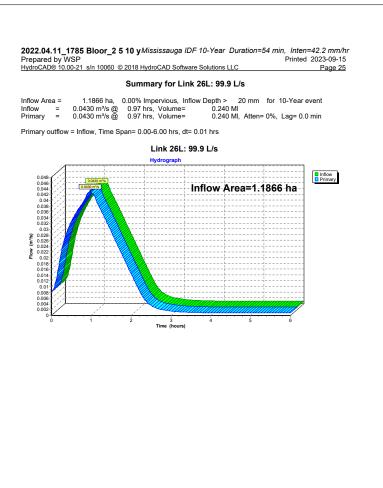
Prepared by WSP HydroCAD® 10.00-21 s/n 10060	© 2018 HydroCAD Software Solutions LLC Page 23	F L
:	Summary for Pond 31P: Re-Use Tank	
		li li C F
Starting Elev= 0.800 m Surf.A	ime Span= 0.00-6.00 hrs, dt= 0.01 hrs Area= 0.0000 ha Storage= 0.000 Ml rrs Surf.Area= 0.0054 ha Storage= 0.069 Ml	F S F
Plug-Flow detention time=47.1 Center-of-Mass det. time=28.1	I min calculated for 0.027 MI (30% of inflow) 1 min (62.6 - 34.5)	F
	torage Storage Description 080 MI 53.50 mW x 1.00 mL x 1.50 mH Prismatoid	<u>v</u>
Device Routing Inve	ert Outlet Devices	
	m 200 mm Vert. Orifice/Grate C= 0.800	Ξ
#1 Primary 11.150 Primary OutFlow Max=0.0241	m 200 mm Vert. Orifice/Grate C= 0.800 1 m³/s @ 0.93 hrs HW=11.298 m (Free Discharge)	Ξ
#1 Primary 11.150 Primary OutFlow Max=0.0241	m 200 mm Vert. Orifice/Grate C= 0.800	F
#1 Primary 11.150 Primary OutFlow Max=0.0241	m 200 mm Vert. Orifice/Grate C= 0.800 1 m³/s @ 0.93 hrs HW=11.298 m (Free Discharge)	-
#1 Primary 11.150 Primary OutFlow Max=0.0241	m 200 mm Vert. Orifice/Grate C= 0.800 1 m³/s @ 0.93 hrs HW=11.298 m (Free Discharge) nhrols 0.0241 m³/s @ 0.96 m/s)	F
#1 Primary 11.150 Primary OutFlow Max=0.024 	m 200 mm Vert. Orifice/Grate C= 0.800 1 m³/s @ 0.93 hrs HW=11.298 m (Free Discharge) ontrols 0.0241 m³/s @ 0.96 m/s) Pond 31P: Re-Use Tank Hydrograph	F
#1 Primary 11.150 Primary OutFlow Max=0.0241 1=Orifice/Grate (Orifice Co	m 200 mm Vert. Orifice/Grate C= 0.800 1 m³/s @ 0.93 hrs HW=11.298 m (Free Discharge) ntrols 0.0241 m³/s @ 0.96 m/s) Pond 31P: Re-Use Tank Hydrograph	F
#1 Primary 11.150 Primary OutFlow Max=0.0241 1=Orifice/Grate (Orifice Co	m 200 mm Vert. Orifice/Grate C= 0.800 1 m³/s @ 0.93 hrs HW=11.298 m (Free Discharge) ntrols 0.0241 m³/s @ 0.96 m/s) Pond 31P: Re-Use Tank Hydrograph Inflow Area=0.2578 ha	F
#1 Primary 11.150 Primary OutFlow Max=0.0241 1=Orifice/Grate (Orifice Co	m 200 mm Vert. Orifice/Grate C= 0.800 1 m³/s @ 0.93 hrs HW=11.298 m (Free Discharge) ntrols 0.0241 m³/s @ 0.96 m/s) Pond 31P: Re-Use Tank Hydrograph Inflow Area=0.2578 ha Peak Elev=11.298 m	F
#1 Primary 11.150 Primary OutFlow Max=0.0241 -1=Orifice/Grate (Orifice Co	m 200 mm Vert. Orifice/Grate C= 0.800 1 m³/s @ 0.93 hrs HW=11.298 m (Free Discharge) ntrols 0.0241 m³/s @ 0.96 m/s) Pond 31P: Re-Use Tank Hydrograph Inflow Area=0.2578 ha	F
#1 Primary 11.150 Primary OutFlow Max=0.024 -1=Orifice/Grate (Orifice Co	m 200 mm Vert. Orifice/Grate C= 0.800 1 m³/s @ 0.93 hrs HW=11.298 m (Free Discharge) ntrols 0.0241 m³/s @ 0.96 m/s) Pond 31P: Re-Use Tank Hydrograph Inflow Area=0.2578 ha Peak Elev=11.298 m	F
#1 Primary 11.150 Primary OutFlow Max=0.0241 -1=Orifice/Grate (Orifice Co	m 200 mm Vert. Orifice/Grate C= 0.800 1 m³/s @ 0.93 hrs HW=11.298 m (Free Discharge) ntrols 0.0241 m³/s @ 0.96 m/s) Pond 31P: Re-Use Tank Hydrograph Inflow Area=0.2578 ha Peak Elev=11.298 m	F
#1 Primary 11.150 Primary OutFlow Max=0.0241 -1=Orifice/Grate (Orifice Co	m 200 mm Vert. Orifice/Grate C= 0.800 1 m³/s @ 0.93 hrs HW=11.298 m (Free Discharge) ntrols 0.0241 m³/s @ 0.96 m/s) Pond 31P: Re-Use Tank Hydrograph Inflow Area=0.2578 ha Peak Elev=11.298 m	F
#1 Primary 11.150 Primary OutFlow Max=0.0241 1=Orifice/Grate (Orifice Co	m 200 mm Vert. Orifice/Grate C= 0.800 1 m³/s @ 0.93 hrs HW=11.298 m (Free Discharge) ntrols 0.0241 m³/s @ 0.96 m/s) Pond 31P: Re-Use Tank Hydrograph Inflow Area=0.2578 ha Peak Elev=11.298 m	F
#1 Primary 11.150 Primary OutFlow Max=0.0241 -1=Orifice/Grate (Orifice Co	m 200 mm Vert. Orifice/Grate C= 0.800 1 m³/s @ 0.93 hrs HW=11.298 m (Free Discharge) ntrols 0.0241 m³/s @ 0.96 m/s) Pond 31P: Re-Use Tank Hydrograph Inflow Area=0.2578 ha Peak Elev=11.298 m	F
#1 Primary 11.150 Primary OutFlow Max=0.0241 -1=Orifice/Grate (Orifice Co	m 200 mm Vert. Orifice/Grate C= 0.800 1 m³/s @ 0.93 hrs HW=11.298 m (Free Discharge) ntrols 0.0241 m³/s @ 0.96 m/s) Pond 31P: Re-Use Tank Hydrograph Inflow Area=0.2578 ha Peak Elev=11.298 m	F

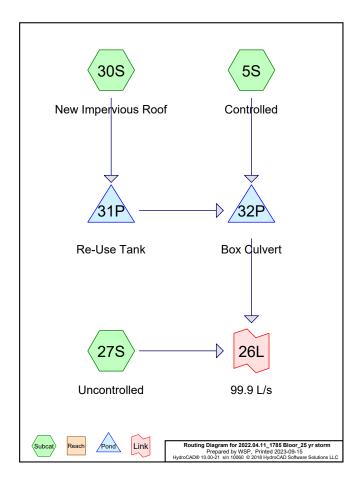
Prepared by WSP	Printed 2023-09-15
HydroCAD® 10.00-21 s/n 10060 © 2018 HydroCAD Software Solutions LLC	Page 24
Summary for Pond 32P: Box Culvert	

Inflow Area =	1.0307 ha,	0.00% Impervious, Inflow	Depth > 21 mm for 10-Year event
Inflow =	0.0775 m ³ /s @	0.90 hrs, Volume=	0.217 MI, Incl. 0.0008 m3/s Base Flow
Outflow =	0.0403 m³/s @	1.04 hrs, Volume=	0.225 MI, Atten= 48%, Lag= 8.8 min
Primary =	0.0403 m³/s @	1.04 hrs, Volume=	0.225 MI

Routing by Stor-Ind method, Time Span= 0.00-6.00 hrs, dt= 0.01 hrs Starting Elev= 0.100 m Surf.Area= 110.0 m² Storage= 11.0 m³ Peak Elev= 0.922 m @ 1.04 hrs Surf.Area= 110.0 m² Storage= 101.4 m³ (90.4 m³ above start)


Plug-Flow detention time= 34.7 min calculated for 0.214 MI (99% of inflow) Center-of-Mass det. time= 27.6 min (77.2 - 49.5)


Volume	Invert	Avail.Storage	Storage Description
#1	0.000 m	236.5 m ³	2,750 mm W x 2,150 mm H Box Pipe Storage L= 40.00 m


Device	Routing	Invert	Outlet Devices		
#1	Primary	0.000 m	125 mm Vert. Orifice/Grate	C= 0.800	

Primary OutFlow Max=0.0403 m³/s @ 1.04 hrs HW=0.922 m (Free Discharge) -1=Orifice/Grate (Orifice Controls 0.0403 m³/s @ 3.29 m/s)

2022.04.11_1785 Bloor_25 yr storm
Prepared by WSP
HydroCAD® 10.00-21 s/n 10060 © 2018 HydroCAD Software Solutions LLC
Area Listing (selected nodes)

Area (hectares)	С	Description (subcatchment-numbers)
0.3353	0.99	At Grade Impervious / Walkway (5S)
0.1559	0.28	At Grade-Impervious/Driveway (27S)
0.2578	0.99	Impervious At-Grade (30S)
0.0731	0.99	Impervious Roof (5S)
0.3645	0.28	Soft Landscaping (5S)
1.1866	0.68	TOTAL AREA

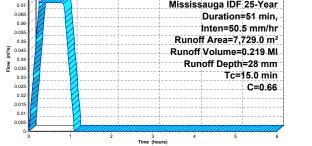
epared by WSF droCAD® 10.00-2	Printed 2023-09-15		
		Soil Listing (selected nod	es)
Area	Soil	Subcatchment	
(hectares)	Group	Numbers	
0.0000	HSG A		
0.0000	HSG B		
0.0000	HSG C		
0.0000	HSG D		
1.1866	Other	5S, 27S, 30S	
1.1866		TOTAL AREA	

2022.04.11_1785 Bloor_25 yr storm Prepared by WSP HydroCAD® 10.00-21 s/n 10060 © 2018 HydroCAD Software Solutions LLC Printed 2023-09-15 Page 4

	Ground Covers (selected nodes)									
Subcatc Number	Ground Cover	Total (hectares)	Other (hectares)	HSG-D (hectares)	HSG-C (hectares)	HSG-B (hectares)	HSG-A (hectares)			
	At Grade Impervious / Walkway	0.3353	0.3353	0.0000	0.0000	0.0000	0.0000			
	At Grade-Impervious/Driveway	0.1559	0.1559	0.0000	0.0000	0.0000	0.0000			
	Impervious At-Grade	0.2578	0.2578	0.0000	0.0000	0.0000	0.0000			
	Impervious Roof	0.0731	0.0731	0.0000	0.0000	0.0000	0.0000			
	Soft Landscaping	0.3645	0.3645	0.0000	0.0000	0.0000	0.0000			
	TOTAL AREA	1.1866	1.1866	0.0000	0.0000	0.0000	0.0000			

2022.04.11_1785 Bloor_25 yr si Prepared by WSP HydroCAD® 10.00-21 s/n 10060 © 2018	t Mississauga IDF 25-Year Duration=51 min, Inten=50.5 mm/hr Printed 2023-09-15 HydroCAD Software Solutions LLC Page 5	2022.04 Prepare <u>HydroCA</u>
Runoff by	a=0.00-6.00 hrs, dt=0.01 hrs, 601 points Rational method, Rise/Fall=1.0/1.0 xTc d+Trans method - Pond routing by Stor-Ind method	Runoff
Subcatchment5S: Controlled	Runoff Area=7,729.0 m ² 52.84% Impervious Runoff Depth=28 mm Tc=15.0 min C=0.66 Runoff=0.0716 m ³ /s 0.219 MI	Runoff b Mississa
Subcatchment27S: Uncontrolled	Runoff Area=1,559.0 m ² 0.00% Impervious Runoff Depth=12 mm Tc=15.0 min C=0.28 Runoff=0.0061 m ³ /s 0.019 MI	A
Subcatchment30S: New Impervious	Runoff Area=2,577.9 m² 100.00% Impervious Runoff Depth=42 mm Tc=15.0 min C=0.99 Runoff=0.0358 m²/s 0.110 MI	
Pond 31P: Re-Use Tank	Peak Elev=11.346 m Storage=0.072 MI Inflow=0.0358 m³/s 0.110 MI Outflow=0.0345 m³/s 0.048 MI	
Pond 32P: Box Culvert	Peak Elev=1.384 m Storage=152.3 m³ Inflow=0.1071 m³/s 0.284 MI Outflow=0.0500 m³/s 0.293 MI	Tc (min)
Link 26L: 99.9 L/s	Inflow=0.0535 m³/s 0.311 MI Primary=0.0535 m³/s 0.311 MI	15.0

Total Runoff Area = 1.1866 ha Runoff Volume = 0.347 MI Average Runoff Depth = 29 mm 43.86% Pervious = 0.5204 ha 56.14% Impervious = 0.6662 ha


2022.04.11_1785 Bloor_25 yr st Mississauga IDF 25-Year Duration=51 min, Inten=50.5 mm/hr droCAD® 10.00-21 s/n 10060 © 2018 HydroCAD Software Solutions LLC Printed 2023-09-15 Page 6

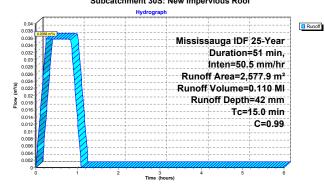
Summary for Subcatchment 5S: Controlled

= 0.0716 m³/s @ 0.25 hrs, Volume= 0.219 MI. Depth= 28 mm

noff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-6.00 hrs, dt= 0.01 hrs ssissauga IDF 25-Year Duration=51 min, Inten=50.5 mm/hr

	- 3							
Ar	ea (m²)	С	Description					
	731.4	0.99	Impervious	Roof				
	3,644.8	0.28	Soft Landso	aping				
	3,352.8	0.99	At Grade Im	pervious /	Walkway			
	7,729.0	0.66	Weighted A	verage				
	3,644.8		47.16% Per	vious Area				
	4,084.2		52.84% Imp	ervious Are	ea			
_		-						
Tc	Length			Capacity	Description			
(min)	(meters)) (m/n	n) (m/sec)	(m³/s)				
15.0					Direct Entry,			
			Su	bcatchm	ent 5S: Contr	olled		
				Hydrog	raph			
0.08	1			1			1	
	1.4							Runoff
	0.075 0.074 Mississauga IDF 25-Year							
0.07	1/1/	/	+	+	11133135	uuga iDi	20-10ai	

2022.04.11_1785 Bloor_25 yr st Mississauga IDF 25-Year Duration=51 min, Inten=50.5 mm/hr Prepared by WSF Printed 2023-09-15 HydroCAD® 10.00-21 s/n 10060 © 2018 HydroCAD Software Solutions LLC Page 8


Summary for Subcatchment 30S: New Impervious Roof

= 0.0358 m³/s @ 0.25 hrs, Volume= 0.110 MI, Depth= 42 mm Runoff

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-6.00 hrs, dt= 0.01 hrs Mississauga IDF 25-Year Duration=51 min, Inten=50.5 mm/hr

A	rea (m²)	С	Description				
	2,577.9	0.99	mpervious	At-Grade			
2,577.9 100.00% Impervious Area							
Tc (min)	Length (meters)			Capacity (m³/s)	Description		
15.0					Direct Entry,		

2022.04.11_1785 Bloor_25 yr st Mississauga IDF 25-Year Duration=51 min, Inten=50.5 mm/hr Prepared by WSP Printed 2023-09-15 HydroCAD® 10.00-21 s/n 10060 © 2018 HydroCAD Software Solutions LLC Page 7

Summary for Subcatchment 27S: Uncontrolled

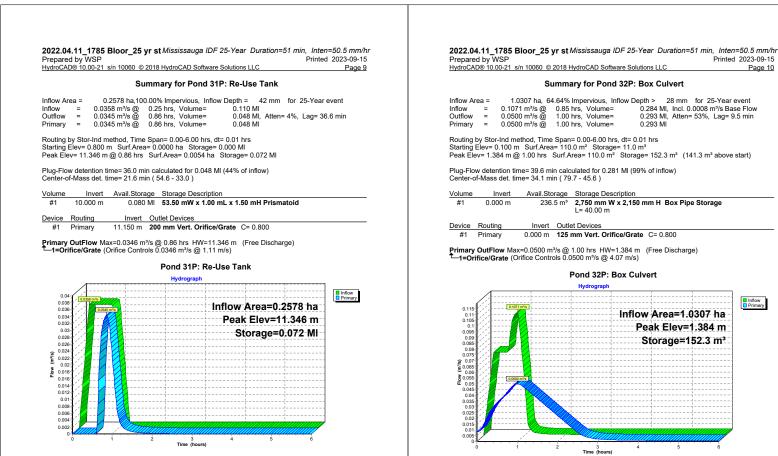
Runoff = 0.0061 m³/s @ 0.25 hrs, Volume= 0.019 MI, Depth= 12 mm

0.002

0.002

0.00 0.00

0.00

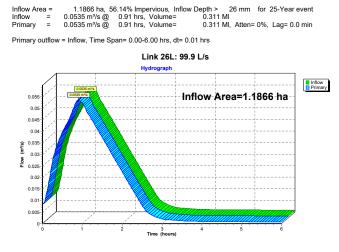

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-6.00 hrs, dt= 0.01 hrs Mississauga IDF 25-Year Duration=51 min, Inten=50.5 mm/hr

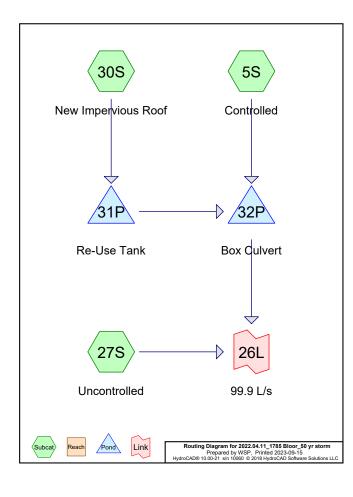
	Area (m²)	СС	escription					
	1,559.0	0.28 A	t Grade-In	npervious/D	Driveway			
	1,559.0	1	00.00% Pe	ervious Are	а			
T (min) (meters)		Velocity (m/sec)	Capacity (m³/s)	Description			
15.	D				Direct Entry,			
	4		Sub	catchme Hydrog	nt 27S: Uncor	ntrolled	1	Runoff
	007	~ +-			Missis	sauga IDF	25-Year	Runon
	005					Duration		
	005					Inten=50.	5 mm/hr	
	004			+	Runo	ff Area=1,	559.0 m ²	
i.	004					f Volume=		
*	003			+	Ru	noff Depth	=12 mm	

3 Time (hours)

Tc=15.0 min

C=0.28


Printed 2023-09-15


Page 10

Inflow

2022.04.11_1785 Bloor_25 yr st Mississauga IDF 25-Year Duration=51 min, Inten=50.5 mm/hr Prepared by WSP Printed 2023-09-15 HydroCAD® 10.00-21 s/n 10060 © 2018 HydroCAD Software Solutions LLC Page 11

Summary for Link 26L: 99.9 L/s

2022.04.11_1785 Prepared by WSP	Bloor_5	i0 yr storm
	s/n 10060	© 2018 HydroCAD Software Solutions LLC
		Area Listing (selected nodes)

С	Description (subcatchment-numbers)
1.00	At Grade Impervious / Walkway (5S)
0.30	At Grade-Impervious/Driveway (27S)
1.00	Impervious At-Grade (30S)
1.00	Impervious Roof (5S)
0.30	Soft Landscaping (5S)
0.69	TOTAL AREA
	1.00 0.30 1.00 1.00 0.30

repared by WSF /droCAD® 10.00-2	pared by WSP Printed 2023-09-1 roCAD® 10.00-21 s/n 10060 © 2018 HydroCAD Software Solutions LLC Page								
		Soil Listing (selected node	es)						
Area	Soil	Subcatchment							
(hectares)	Group	Numbers							
0.0000	HSG A								
0.0000	HSG B								
0.0000	HSG C								
0.0000	HSG D								
1.1866	Other	5S, 27S, 30S							
1.1866		TOTAL AREA							

2022.04.11_1785 Bloor_50 yr storm Prepared by WSP HydroCAD® 10.00-21 s/n 10060 © 2018 HydroCAD Software Solutions LLC Printed 2023-09-15 Page 4

Ground Covers (selected nodes)								
HSG-A (hectares)	HSG-B (hectares)	HSG-C (hectares)	HSG-D (hectares)	Other (hectares)	Total (hectares)	Ground Cover	Subcatc Number	
0.0000	0.0000	0.0000	0.0000	0.3353	0.3353	At Grade Impervious / Walkway		
0.0000	0.0000	0.0000	0.0000	0.1559	0.1559	At Grade-Impervious/Driveway		
0.0000	0.0000	0.0000	0.0000	0.2578	0.2578	Impervious At-Grade		
0.0000	0.0000	0.0000	0.0000	0.0731	0.0731	Impervious Roof		
0.0000	0.0000	0.0000	0.0000	0.3645	0.3645	Soft Landscaping		
0.0000	0.0000	0.0000	0.0000	1.1866	1.1866	TOTAL AREA		

2022.04.11_1785 Bloor_50 yr st Prepared by WSP HydroCAD® 10.00-21 s/n 10060 © 2018	Mississauga IDF 25-Year Duration=53 min, Inten=49.1 mm/hr Printed 2023-09-15 HydroCAD Software Solutions LLC Page 5	2022.04 Prepared <u>HydroCAI</u>
Runoff by	=0.00-6.00 hrs, dt=0.01 hrs, 601 points Rationai method, Rise/Fall=1.0/1.0 xTc d+Trans method - Pond routing by Stor-Ind method	Runoff
Subcatchment5S: Controlled	Runoff Area=7,729.0 m² 52.84% Impervious Runoff Depth=29 mm Tc=15.0 min C=0.67 Runoff=0.0707 m³/s 0.225 MI	Runoff by Mississa
Subcatchment27S: Uncontrolled	Runoff Area=1,559.0 m² 0.00% Impervious Runoff Depth=13 mm Tc=15.0 min C=0.30 Runoff=0.0064 m³/s 0.020 MI	Ar
Subcatchment30S: New Impervious	Runoff Area=2,577.9 m² 100.00% Impervious Runoff Depth=43 mm Tc=15.0 min C=1.00 Runoff=0.0352 m³/s 0.112 MI	
Pond 31P: Re-Use Tank	Peak Elev=11.344 m Storage=0.072 MI Inflow=0.0352 m³/s 0.112 MI Outflow=0.0342 m³/s 0.050 MI	
Pond 32P: Box Culvert	Peak Elev=1.413 m Storage=155.4 m ³ Inflow=0.1058 m ³ /s 0.292 MI Outflow=0.0505 m ³ /s 0.301 MI	Tc (min) 15.0
Link 26L: 99.9 L/s	Inflow=0.0543 m³/s 0.321 MI Primary=0.0543 m³/s 0.321 MI	13.0

Total Runoff Area = 1.1866 ha Runoff Volume = 0.357 Mi Average Runoff Depth = 30 mm 43.86% Pervious = 0.5204 ha 56.14% Impervious = 0.6662 ha

2022.04.11_1785 Bloor_50 yr st Mississauga IDF 25-Year Duration=53 min, Inten=49.1 mm/hr CAD® 10.00-21 s/n 10060 © 2018 HydroCAD Software Solutions LLC Printed 2023-09-15 Page 6

Summary for Subcatchment 5S: Controlled

= 0.0707 m³/s @ 0.25 hrs, Volume= 0.225 MI. Depth= 29 mm

Runoff Depth=29 mm

Tc=15.0 min

C=0.67

Page 8

ff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-6.00 hrs, dt= 0.01 hrs ssauga IDF 25-Year Duration=53 min, Inten=49.1 mm/hr

Mississauga IDF 23-1ea	Duration-55 min, inten-49.1 min/m
Area (m ²) C	Description
731.4 1.00	Impervious Roof
3.644.8 0.30	Soft Landscaping
3,352.8 1.00	At Grade Impervious / Walkway
7.729.0 0.67	Weighted Average
3.644.8	47.16% Pervious Area
4,084.2	52.84% Impervious Area
Tc Length Slo	pe Velocity Capacity Description
(min) (meters) (m/	m) (m/sec) (m ³ /s)
15.0	Direct Entry,
	Subcatchment 5S: Controlled
	Hydrograph
0.075	Runoff
0.073 0.0707 m1/s	Mississauga IDF 25-Year
0.065	e e e e e e e e e e e e e e e e e e e
	Duration=53 min,
0.06	Inten=49.1 mm/hr
0.055	
0.05	Runoff Area=7,729.0 m ²
© 0.045	Runoff Volume=0.225 MI
3	Runoff Denth=29 mm

2022.04.11_1785 Bloor_50 yr st Mississauga IDF 25-Year Duration=53 min, Inten=49.1 mm/hr Prepared by WSP Printed 2023-09-15 HydroCAD® 10.00-21 s/n 10060 © 2018 HydroCAD Software Solutions LLC

Flow 0.035

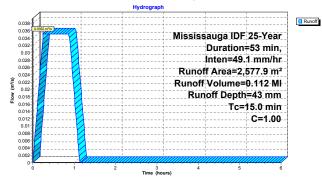
F

0.03 0.025

0.02 0.015 0.01 0.005

Summary for Subcatchment 30S: New Impervious Roof

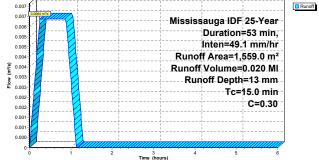
3 Time (hours)

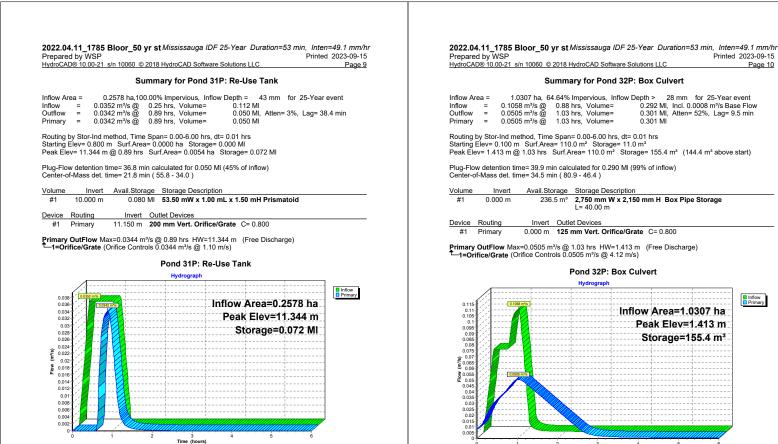

Runoff	=	0.0352 m³/s @	0.25 hrs. Volume=	0.112 MI. Depth=	43 mm

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-6.00 hrs, dt= 0.01 hrs Mississauga IDF 25-Year Duration=53 min, Inten=49.1 mm/hr

	A	rea (m²)	CI	Description					
		2,577.9	1.00	mpervious.	At-Grade				
	2,577.9 100.00% Impervious Area								
	_		-						
	Tc	Length	Slope	Velocity	Capacity	Description			
	(min)	(meters)	(m/m)	(m/sec)	(m³/s)				
1	15.0					Direct Entry.			

Subcatchment 30S: New Impervious Roof

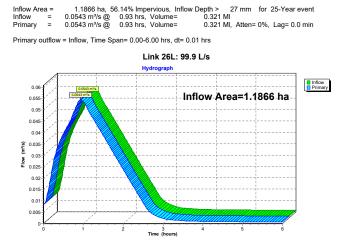

2022.04.11_1785 Bloor_50 yr st Mississauga IDF 25-Year Duration=53 min, Inten=49.1 mm/hr Prepared by WSP Printed 2023-09-15 HydroCAD® 10.00-21 s/n 10060 © 2018 HydroCAD Software Solutions LLC Page 7

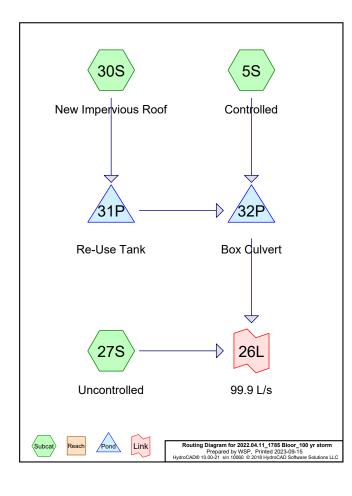

Summary for Subcatchment 27S: Uncontrolled

Runoff = 0.0064 m³/s @ 0.25 hrs, Volume= 0.020 MI, Depth= 13 mm

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-6.00 hrs, dt= 0.01 hrs Mississauga IDF 25-Year Duration=53 min, Inten=49.1 mm/hr

A	Area (m²)	С	Description					
	1,559.0 0.30 At Grade-Impervious/Driveway							
	1,559.0		100.00% Pe	ervious Are	3			
Tc (min)	Tc Length Slope Velocity Capacity Description (min) (meters) (m/m) (m/sec) (m ³ /s)							
15.0	15.0 Direct Entry,							
	Subcatchment 27S: Uncontrolled							
	Hydrograph							


3 Time (hours)


 2022.04.11_1785 Bloor_50 yr st Mississauga IDF 25-Year Duration=53 min, Inten=49.1 mm/hr

 Prepared by WSP
 Printed 2023-09-15

 HydroCAD® 10.00-21 s/n 10060 © 2018 HydroCAD Software Solutions LLC
 Page 11

Summary for Link 26L: 99.9 L/s

2022.04.11_1785 Bloor_100 yr storm
Prepared by WSP
HydroCAD® 10.00-21 s/n 10060 © 2018 HydroCAD Software Solutions LLC

Printed	2023-09-15
	Page 2

Area Listing (selected nodes) C Description Area (sg-meters) nt-numbers)

(sq-me	eters)		(subcatchment-numbers)
3,3	352.8	1.00	At Grade Impervious (5S)
1,5	559.0	0.31	At Grade-Pervious (27S)
2,5	577.9	1.00	Impervious At-Grade (30S)
7	731.4	1.00	Impervious Roof (5S)
3,6	644.8	0.31	Soft Landscaping (5S)
11,	865.9	0.70	TOTAL AREA

2022.04.11_1785 Prepared by WSP HydroCAD® 10.00-21	-	-	O Software Solutions LLC
Area	Soil	Soil Listir	ng (selected nodes)
(sq-meters)	Group	Numbers	

Printed 2023-09-15

Page 3

-meters)	Group	Numbers
0.0	HSG A	
0.0	HSG B	
0.0	HSG C	
0.0	HSG D	
11,865.9	Other	5S, 27S, 30S
11,865.9		TOTAL AREA

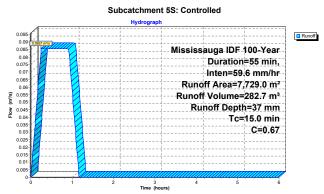
2022.04.11_1785 Bloor_100 yr storm Prepared by WSP HydroCAD® 10.00-21 s/n 10060 © 2018 HydroCAD Software Solutions LLC Printed 2023-09-15 Page 4

		Ground Co	overs (selecte	d nodes)		
HSG-A (sq-meters)	HSG-B (sq-meters)	HSG-C (sq-meters)	HSG-D (sq-meters)	Other (sq-meters)	Total (sq-meters)	Ground Cover
0.0	0.0	0.0	0.0	3,352.8	3,352.8	At Grade Impervious
0.0	0.0	0.0	0.0	1,559.0	1,559.0	At Grade-Pervio us
0.0	0.0	0.0	0.0	2,577.9	2,577.9	Impervious At-Grade
0.0	0.0	0.0	0.0	731.4	731.4	Impervious Roof
0.0	0.0	0.0	0.0	3,644.8	3,644.8	Soft Landscaping
0.0	0.0	0.0	0.0	11,865.9	11,865.9	TOTAL

2022.04.11_1785 Bloor_100 yr A Prepared by WSP HydroCAD® 10.00-21 s/n 10060 © 2018	/lississauga IDF 100-Year Duration=55 min, Inten=59.6 mm/hr Printed 2023-09-15 HydroCAD Software Solutions LLC Page 5
Time span Runoff by	=0.00-6.00 hrs, dt=0.01 hrs, 601 points Rational method, Rise/Fall=1.0/1.0 xTc d+Trans method - Pond routing by Stor-Ind method
Subcatchment5S: Controlled	Runoff Area=7,729.0 m² 52.84% Impervious Runoff Depth=37 mm Tc=15.0 min C=0.67 Runoff=0.0857 m³/s 282.7 m³
Subcatchment27S: Uncontrolled	Runoff Area=1,559.0 m ² 0.00% Impervious Runoff Depth=17 mm Tc=15.0 min C=0.31 Runoff=0.0080 m³/s 26.4 m ³
Subcatchment30S: New Impervious	Runoff Area=2,577.9 m ² 100.00% Impervious Runoff Depth=55 mm Tc=15.0 min C=1.00 Runoff=0.0427 m³/s 140.8 m ³
Pond 31P: Re-Use Tank	Peak Elev=11.393 m Storage=74.5 m³ Inflow=0.0427 m³/s 140.8 m³ Outflow=0.0421 m³/s 79.2 m³
Pond 32P: Box Culvert	Peak Elev=1.911 m Storage=210.2 m³ Inflow=0.1279 m³/s 364.1 m³ Outflow=0.0591 m³/s 363.2 m³
Link 26L: 99.9 L/s	Inflow=0.0641 m³/s. 389.6 m³ Primary=0.0641 m³/s. 389.6 m³

Total Runoff Area = 11,865.9 m² Runoff Volume = 449.9 m³ Average Runoff Depth = 38 mm 43.86% Pervious = 5,203.8 m² 56.14% Impervious = 6,662.1 m²

2022.04.11_1785 Bloor_100 yr Mississauga IDF 100-Year Duration=55 min, Inten=59.6 mm/hr Prepared by WSP HydroCAD® 10.00-21 s/n 10060 © 2018 HydroCAD Software Solutions LLC Printed 2023-09-15 Page 6


Summary for Subcatchment 5S: Controlled

= 0.0857 m³/s @ 0.25 hrs, Volume= 282.7 m³. Depth= 37 mm

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-6.00 hrs, dt= 0.01 hrs Mississauga IDF 100-Year Duration=55 min, Inten=59.6 mm/hr

Runoff

A	rea (m²)	С	Description		
	731.4	1.00	mpervious	Roof	
	3,644.8	0.31	Soft Landso	aping	
	3,352.8	1.00	At Grade In	pervious	
	7,729.0	0.67	Weighted A	verage	
	3,644.8		47.16% Per	vious Area	l i i i i i i i i i i i i i i i i i i i
	4,084.2		52.84% Imp	ervious Are	ea
Тс	Lenath	Slope	Velocity	Capacity	Description
(min)				(m ³ /s)	Description
	(moters)	UNIT	(11/300)	(11/3)	Dive et Entre
15.0					Direct Entry,

2022.04.11_1785	Bloor_100 yr	Mississauga IDF	100-Year	Duration=55 min,	Inten=59.6 mm/hr
Prepared by WSP				F	Printed 2023-09-15
HvdroCAD® 10 00-21	s/n 10060 @ 201	8 HydroCAD Softwar	e Solutions	uс	Page 7

Summary for Subcatchment 27S: Uncontrolled

= 0.0080 m³/s @ 0.25 hrs, Volume= 26.4 m³, Depth= 17 mm Runoff

0.004

0.00

0.003

0.002

0.00 0.00

0.000

No

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-6.00 hrs, dt= 0.01 hrs Mississauga IDF 100-Year Duration=55 min, Inten=59.6 mm/hr

_	Area (m ²)	С	Description					
	1,559.0	0.31	At Grade-P	ervious				
-	1,559.0		100.00% Pe	ervious Are	а			
	Tc Lengt (min) (meters			Capacity (m³/s)	Description			
	15.0				Direct Entry,			
			Sub		nt 27S: Uncor	trolled		
	1		1	Hydrog	rapn			1
	0.009		+	+				Runoff
	0.008		+	+	Mississ	auga IDF	100-Year	
	0.007		+			Duration	=55 min,	
	0.006			+		Inten=59	6 mm/hr	
	0.006			+	Runo	off Area=1	,559.0 m²	
	ເຊິ່ 0.005			+	Runc	off Volume	=26.4 m ³	

3 Time (hours)

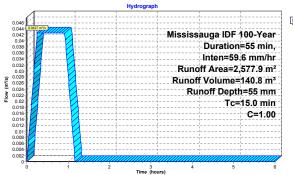
Runoff Depth=17 mm

Tc=15.0 min

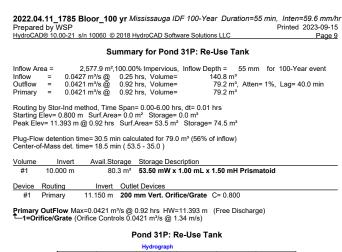
C=0.31

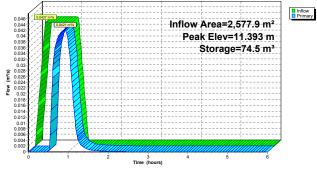
2022.04.11_1785 Bloor_100 yr Mississauga IDF 100-Year Duration=55 min, Inten=59.6 mm/hr Prepared by WSP Printed 2023-09-15 HydroCAD® 10.00-21 s/n 10060 © 2018 HydroCAD Software Solutions LLC Page 8

Summary for Subcatchment 30S: New Impervious Roof


Runoff = 0.0427 m³/s @ 0.25 hrs, Volume= 140.8 m³, Depth= 55 mm

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-6.00 hrs, dt= 0.01 hrs Mississauga IDF 100-Year Duration=55 min, Inten=59.6 mm/hr


A	rea (m²)	С	Description		
	2,577.9	1.00	mpervious	At-Grade	
	2,577.9		100.00% Im	pervious A	rea
Tc (min)	Length (meters)		Velocity (m/sec)	Capacity (m³/s)	Description
15.0					Direct Entry,


nin)	(meters)		Docemption	
5.0			Direct Entry	

Subcatchment 30S: New Impervious Roof

Runoff

 2022.04.11_1785 Bloor_100 yr Mississauga IDF 100-Year Duration=55 min, Inten=59.6 mm/hr

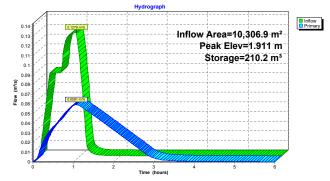
 Prepared by WSP
 Printed 2023-09-15

 HydroCAD® 10.00-21 s/n 10060 @ 2018 HydroCAD Software Solutions LLC
 Page 10

Summary for Pond 32P: Box Culvert

Inflow Are	ea =	10,306.9 m²,	64.64% Impervious,	Inflow Depth > 35 mm for 100-Year event
Inflow	=	0.1279 m³/s @	0.91 hrs, Volume=	364.1 m ³ , Incl. 0.0001 m ³ /s Base Flow
Outflow	=	0.0591 m³/s @	1.07 hrs, Volume=	363.2 m ³ , Atten= 54%, Lag= 9.8 min
Primary	=	0.0591 m³/s @	1.07 hrs, Volume=	363.2 m ³
			e Span= 0.00-6.00 hrs Surf.Area= 110.0 m²	

Plug-Flow detention time= 44.3 min calculated for 363.2 m³ (100% of inflow) Center-of-Mass det. time= 43.7 min (83.6 - 39.9)


Volume	Invert	Avail.Storage	Storage Description
#1	0.000 m	236.5 m ³	2,750 mm W x 2,150 mm H Box Pipe Storage L= 40.00 m

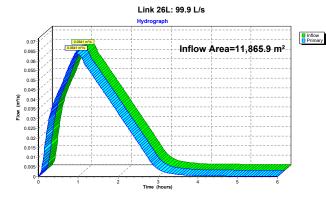
 Device
 Routing
 Invert
 Outlet Devices

 #1
 Primary
 0.000 m
 125 mm Vert. Orifice/Grate
 C= 0.800

Primary OutFlow Max=0.0591 m³/s @ 1.07 hrs HW=1.911 m (Free Discharge) —1=Orifice/Grate (Orifice Controls 0.0591 m³/s @ 4.82 m/s)

Pond 32P: Box Culvert

 2022.04.11_1785 Bloor_100 yr Mississauga IDF 100-Year Duration=55 min, Inten=59.6 mm/hr


 Prepared by WSP
 Printed 2023-09-15

 HydroCAD B 10.00-21 s/n 10060 © 2018 HydroCAD Software Solutions LLC
 Page 11

Summary for Link 26L: 99.9 L/s

Primary outflow = Inflow, Time Span= 0.00-6.00 hrs, dt= 0.01 hrs

C WATER QUALITY UNIT SPECIFICATIONS

Target TSS Removal (%): 80.0 (TSS) Load Reduction Sizing Summary Required Water Quality Runoff Volume Capture (%): 90.00 Sizing Summary Estimated Water Quality Flow Rate (L/s): 12.19 Stormceptor TSS Removal Oil / Fuel Spill Risk Site? Yes Model Provide Upstream Flow Control? No EFO4 86 Peak Conveyance (maximum) Flow Rate (L/s): EFO6 94	e: Stefanie Kurtz any: WSP Canada Group Limited		Mississauga	
Nearest Rainfall Station: TORONTO INTL AP Designer Name: Stefanie Kurtz Climate Station Id: 6158731 Designer Company: WSP Canada Group Limited Years of Rainfall Data: 20 Designer Phone: 289-982-9258 Site Name: Image Area (ha): 0.70 EOR Name: Image Area (ha): 0.70 Drainage Area (ha): 0.70 EOR Company: Image Area (ha): Image Area (ha): 0.56 Particle Size Distribution: Fine Image Area (ha): 0.56 Image Area (ha): Image Area (ha):	any: WSP Canada Group Limited	Designer Na		City:
Years of Rainfall Data: 20 Years of Rainfall Data: 20 Designer Email: stefanie.kurtz@wsp.com Designer Phone: 289-982-9258 EOR Name: EOR Company: Drainage Area (ha): 0.70 Runoff Coefficient 'c': 0.56 Particle Size Distribution: Fine Target TSS Removal (%): 80.0 Required Water Quality Runoff Volume Capture (%): 90.00 Estimated Water Quality Flow Rate (L/s): 12.19 Oil / Fuel Spill Risk Site? Yes Upstream Flow Control? No Peak Conveyance (maximum) Flow Rate (L/s): No	· ·		TORONTO INTL AP	
Years of Rainfall Data: 20 Designer Phone: 289-982-9258 Designer Phone: 289-982-9258 EOR Name: EOR Company: EOR Email: EOR Phone: Particle Size Distribution: Fine Target TSS Removal (%): 80.0 Required Water Quality Runoff Volume Capture (%): 90.00 Estimated Water Quality Flow Rate (L/s): 12.19 Oil / Fuel Spill Risk Site? Yes Upstream Flow Control? No Peak Conveyance (maximum) Flow Rate (L/s): No	• stefanie kurtz@wsp.com	Designer Cor	6158731	Climate Station Id:
Site Name: EOR Name: EOR Name: EOR Company: Drainage Area (ha): 0.70 EOR Company: EOR Email: Runoff Coefficient 'c': 0.56 EOR Phone: EOR Phone: Particle Size Distribution: Fine Fine Image: TSS Removal (%): 80.0 Required Water Quality Runoff Volume Capture (%): 90.00 90.00 Image: TSS Removal (%): Stormceptor Stimated Water Quality Flow Rate (L/s): 12.19 Stormceptor TSS Ren Oil / Fuel Spill Risk Site? Yes Model Provide Upstream Flow Control? No EFO4 860 Peak Conveyance (maximum) Flow Rate (L/s): No EFO6 94	oteraniental (2,6 hop-toom	Designer Em	20	Years of Rainfall Data:
Drainage Area (ha): 0.70 Runoff Coefficient 'c': 0.56 Particle Size Distribution: Fine Target TSS Removal (%): 80.0 Required Water Quality Runoff Volume Capture (%): 90.00 Estimated Water Quality Flow Rate (L/s): 12.19 Oil / Fuel Spill Risk Site? Yes Upstream Flow Control? No Peak Conveyance (maximum) Flow Rate (L/s): No	289-982-9258	Designer Pho		
Drainage Area (ha): 0.70 Runoff Coefficient 'c': 0.56 Particle Size Distribution: Fine Target TSS Removal (%): 80.0 Required Water Quality Runoff Volume Capture (%): 90.00 Estimated Water Quality Flow Rate (L/s): 12.19 Oil / Fuel Spill Risk Site? Yes Upstream Flow Control? No Peak Conveyance (maximum) Flow Rate (L/s): No		EOR Name:		Site Name:
Runoff Coefficient 'c': 0.56 EOR Phone: EOR Phone: Particle Size Distribution: Fine Target TSS Removal (%): 80.0 Required Water Quality Runoff Volume Capture (%): 90.00 Estimated Water Quality Flow Rate (L/s): 12.19 Oil / Fuel Spill Risk Site? Yes Upstream Flow Control? No Peak Conveyance (maximum) Flow Rate (L/s): No			0.70	Drainage Area (ha):
Particle Size Distribution: Fine Target TSS Removal (%): 80.0 Required Water Quality Runoff Volume Capture (%): 90.00 Estimated Water Quality Flow Rate (L/s): 12.19 Oil / Fuel Spill Risk Site? Yes Upstream Flow Control? No Peak Conveyance (maximum) Flow Rate (L/s): No			0.56	Runoff Coefficient 'c':
Target TSS Removal (%): 80.0 (TSS) Load Reduction Required Water Quality Runoff Volume Capture (%): 90.00 Sizing Summary Estimated Water Quality Flow Rate (L/s): 12.19 Stormceptor TSS Removed Oil / Fuel Spill Risk Site? Yes Model Provide Upstream Flow Control? No EFO4 86 Peak Conveyance (maximum) Flow Rate (L/s): EFO6 94		EOR Phone:		
Required Water Quality Runoff Volume Capture (%): 90.00 Sizing Summary Estimated Water Quality Flow Rate (L/s): 12.19 Stormceptor TSS Ren Oil / Fuel Spill Risk Site? Yes Model Provide Upstream Flow Control? No EFO4 86 Peak Conveyance (maximum) Flow Rate (L/s): EFO6 94	Net Annual Sediment		Fine	Particle Size Distribution:
Estimated Water Quality Flow Rate (L/s): 12.19 Oil / Fuel Spill Risk Site? Yes Upstream Flow Control? No Peak Conveyance (maximum) Flow Rate (L/s): EFO4	(TSS) Load Reduction		80.0	Target TSS Removal (%):
Estimated Water Quality Flow Rate (L/s):12.19Stormceptor ModelTSS Ren ProvideOil / Fuel Spill Risk Site?YesModelProvideUpstream Flow Control?NoEFO486Peak Conveyance (maximum) Flow Rate (L/s):EFO694	Sizing Summary	90.00	f Volume Capture (%):	Required Water Quality Runof
Upstream Flow Control? No EFO4 86 Peak Conveyance (maximum) Flow Rate (L/s): EFO6 94	Stormceptor TSS Removal	12.19	Rate (L/s):	Estimated Water Quality Flow
Peak Conveyance (maximum) Flow Rate (L/s): EFO6 94	Model Provided (%)	Yes		Oil / Fuel Spill Risk Site?
	EFO4 86	No		Upstream Flow Control?
	EFO6 94		Flow Rate (L/s):	Peak Conveyance (maximum)
Influent TSS Concentration (mg/L): EFO8 97	EFO8 97		g/L):	Influent TSS Concentration (m
Estimated Average Annual Sediment Volume (L/yr): 260 EFO10 99	EFO10 99	260	liment Volume (L/yr):	Estimated Average Annual Sec
EFO12 100	EFO12 100			
Recommended Stormceptor EFO Model:	nded Stormceptor EFO Model: EFO	Recomm		
Estimated Net Annual Sediment (TSS) Load Reduction (%):	ent (TSS) Load Reduction (%): 86	ated Net Annual Sedi	Estim	
Water Quality Runoff Volume Capture (%):				

THIRD-PARTY TESTING AND VERIFICATION

Stormceptor[®] **EF** and **Stormceptor**[®] **EFO** are the latest evolutions in the Stormceptor[®] oil-grit separator (OGS) technology series, and are designed to remove a wide variety of pollutants from stormwater and snowmelt runoff. These technologies have been third-party tested in accordance with the Canadian ETV **Procedure for Laboratory Testing of Oil-Grit Separators** and performance has been third-party verified in accordance with the **ISO 14034 Environmental Technology Verification (ETV)** protocol.

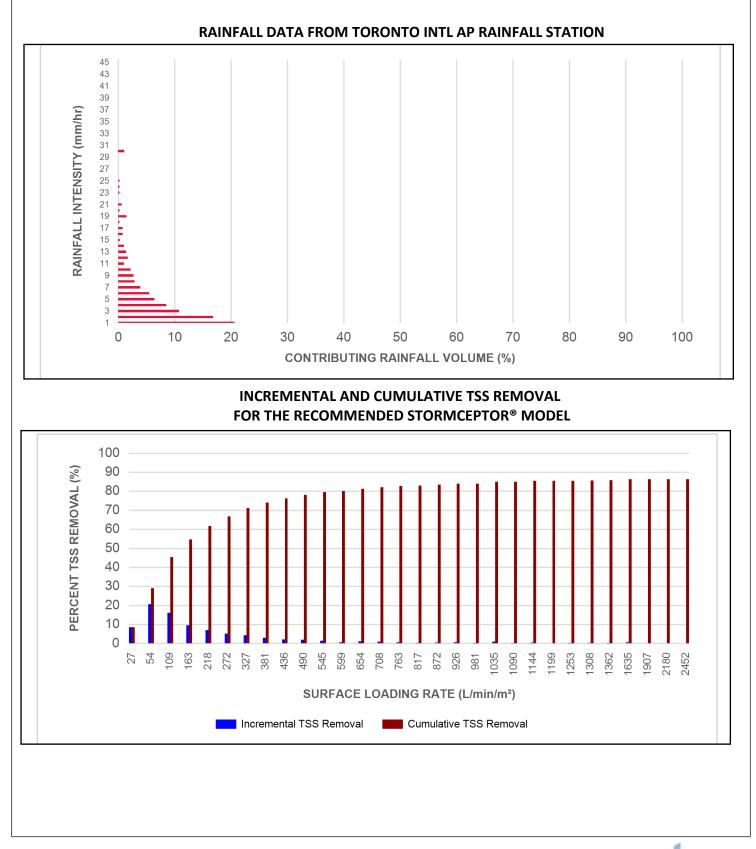
PERFORMANCE

► Stormceptor® EF and EFO remove stormwater pollutants through gravity separation and floatation, and feature a patentpending design that generates positive removal of total suspended solids (TSS) throughout each storm event, including highintensity storms. Captured pollutants include sediment, free oils, and sediment-bound pollutants such as nutrients, heavy metals, and petroleum hydrocarbons. Stormceptor is sized to remove a high level of TSS from the frequent rainfall events that contribute the vast majority of annual runoff volume and pollutant load. The technology incorporates an internal bypass to convey excessive stormwater flows from high-intensity storms through the device without resuspension and washout (scour) of previously captured pollutants. Proper routine maintenance ensures high pollutant removal performance and protection of downstream waterwavs.

PARTICLE SIZE DISTRIBUTION (PSD)

► The **Canadian ETV PSD** shown in the table below was used, or in part, for this sizing. This is the identical PSD that is referenced in the Canadian ETV *Procedure for Laboratory Testing of Oil-Grit Separators* for both sediment removal testing and scour testing. The Canadian ETV PSD contains a wide range of particle sizes in the sand and silt fractions, and is considered reasonably representative of the particle size fractions found in typical urban stormwater runoff.

Particle	Percent Less	Particle Size	Percent
Size (µm)	Than	Fraction (µm)	Percent
1000	100	500-1000	5
500	95	250-500	5
250	90	150-250	15
150	75	100-150	15
100	60	75-100	10
75	50	50-75	5
50	45	20-50	10
20	35	8-20	15
8	20	5-8	10
5	10	2-5	5
2	5	<2	5


Rainfall Intensity (mm / hr)	Percent Rainfall Volume (%)	Cumulative Rainfall Volume (%)	Flow Rate (L/s)	Flow Rate (L/min)	Surface Loading Rate (L/min/m²)	Removal Efficiency (%)	Incremental Removal (%)	Cumulative Removal (%)
0.50	8.5	8.5	0.54	33.0	27.0	100	8.5	8.5
1.00	20.6	29.1	1.09	65.0	54.0	100	20.6	29.1
2.00	16.8	45.9	2.18	131.0	109.0	96	16.1	45.3
3.00	10.8	56.7	3.27	196.0	163.0	88	9.5	54.7
4.00	8.5	65.2	4.36	262.0	218.0	83	7.0	61.7
5.00	6.4	71.6	5.45	327.0	272.0	80	5.1	66.8
6.00	5.5	77.0	6.54	392.0	327.0	78	4.2	71.1
7.00	3.9	81.0	7.63	458.0	381.0	75	3.0	74.0
8.00	2.9	83.9	8.72	523.0	436.0	72	2.1	76.1
9.00	2.7	86.5	9.81	588.0	490.0	70	1.9	78.0
10.00	2.2	88.7	10.90	654.0	545.0	67	1.5	79.5
11.00	1.0	89.7	11.99	719.0	599.0	65	0.6	80.1
12.00	1.7	91.3	13.08	785.0	654.0	64	1.1	81.2
13.00	1.4	92.8	14.17	850.0	708.0	64	0.9	82.1
14.00	1.0	93.7	15.26	915.0	763.0	63	0.6	82.7
15.00	0.3	94.0	16.35	981.0	817.0	63	0.2	82.9
16.00	0.8	94.8	17.44	1046.0	872.0	63	0.5	83.4
17.00	0.8	95.7	18.53	1112.0	926.0	62	0.5	83.9
18.00	0.2	95.8	19.62	1177.0	981.0	62	0.1	84.0
19.00	1.5	97.3	20.71	1242.0	1035.0	61	0.9	84.9
20.00	0.2	97.5	21.80	1308.0	1090.0	59	0.1	85.0
21.00	0.6	98.2	22.88	1373.0	1144.0	58	0.4	85.4
22.00	0.0	98.2	23.97	1438.0	1199.0	57	0.0	85.4
23.00	0.2	98.4	25.06	1504.0	1253.0	56	0.1	85.5
24.00	0.2	98.6	26.15	1569.0	1308.0	55	0.1	85.6
25.00	0.2	98.9	27.24	1635.0	1362.0	53	0.1	85.8
30.00	1.1	100.0	32.69	1962.0	1635.0	45	0.5	86.3
35.00	0.0	100.0	38.14	2288.0	1907.0	39	0.0	86.3
40.00	0.0	100.0	43.59	2615.0	2180.0	34	0.0	86.3
45.00	0.0	100.0	49.04	2942.0	2452.0	30	0.0	86.3
	-	-	Es	timated Ne	t Annual Sedim	ent (TSS) Loa	d Reduction =	86 %

Climate Station ID: 6158731 Years of Rainfall Data: 20

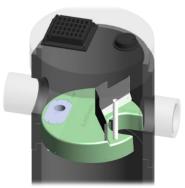
Stormceptor[®]

Stormceptor[®]EF Sizing Report

Maximum Pipe Diameter / Peak Conveyance													
Stormceptor EF / EFO	Model Diameter		Model Diameter		Model Diameter		Min Angle Inlet / Outlet Pipes	Max Inle Diame		Max Outl Diamo	•		nveyance Rate
	(m)	(ft)		(mm)	(in)	(mm)	(in)	(L/s)	(cfs)				
EF4 / EFO4	1.2	4	90	609	24	609	24	425	15				
EF6 / EFO6	1.8	6	90	914	36	914	36	990	35				
EF8 / EFO8	2.4	8	90	1219	48	1219	48	1700	60				
EF10 / EFO10	3.0	10	90	1828	72	1828	72	2830	100				
EF12 / EFO12	3.6	12	90	1828	72	1828	72	2830	100				

SCOUR PREVENTION AND ONLINE CONFIGURATION

► Stormceptor® EF and EFO feature an internal bypass and superior scour prevention technology that have been demonstrated in third-party testing according to the scour testing provisions of the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators, and the exceptional scour test performance has been third-party verified in accordance with the ISO 14034 ETV protocol. As a result, Stormceptor EF and EFO are approved for online installation, eliminating the need for costly additional bypass structures, piping, and installation expense.


DESIGN FLEXIBILITY

► Stormceptor[®] EF and EFO offers design flexibility in one simplified platform, accepting stormwater flow from a single inlet pipe or multiple inlet pipes, and/or surface runoff through an inlet grate. The device can also serve as a junction structure, accommodate a 90-degree inlet-to-outlet bend angle, and can be modified to ensure performance in submerged conditions.

OIL CAPTURE AND RETENTION

► While Stormceptor[®] EF will capture and retain oil from dry weather spills and low intensity runoff, **Stormceptor[®] EFO** has demonstrated superior oil capture and greater than 99% oil retention in third-party testing according to the light liquid reentrainment testing provisions of the Canadian ETV **Procedure for Laboratory Testing of Oil-Grit Separators**. Stormceptor EFO is recommended for sites where oil capture and retention is a requirement.

INLET-TO-OUTLET DROP

Elevation differential between inlet and outlet pipe inverts is dictated by the angle at which the inlet pipe(s) enters the unit.

- 0° 45° : The inlet pipe is 1-inch (25mm) higher than the outlet pipe.
- 45° 90° : The inlet pipe is 2-inches (50mm) higher than the outlet pipe.

HEAD LOSS

The head loss through Stormceptor EF is similar to that of a 60-degree bend structure. The applicable K value for calculating minor losses through the unit is 1.1. For submerged conditions the applicable K value is 3.0.

Stormceptor EF / EFO	Moo Diam		Depth Pipe In Sump		Oil Vo	Oil Volume Sediment Maintenance Depth *		Maximum Sediment Volume *		Maximum Sediment Mass **		
	(m)	(ft)	(m)	(ft)	(L)	(Gal)	(mm)	(in)	(L)	(ft³)	(kg)	(lb)
EF4 / EFO4	1.2	4	1.52	5.0	265	70	203	8	1190	42	1904	5250
EF6 / EFO6	1.8	6	1.93	6.3	610	160	305	12	3470	123	5552	15375
EF8 / EFO8	2.4	8	2.59	8.5	1070	280	610	24	8780	310	14048	38750
EF10 / EFO10	3.0	10	3.25	10.7	1670	440	610	24	17790	628	28464	78500
EF12 / EF012	3.6	12	3.89	12.8	2475	655	610	24	31220	1103	49952	137875

Pollutant Capacity

*Increased sump depth may be added to increase sediment storage capacity ** Average density of wet packed sediment in sump = 1.6 kg/L (100 lb/ft³)

Feature	Benefit	Feature Appeals To	
Patent-pending enhanced flow treatment and scour prevention technology	Superior, verified third-party performance	Regulator, Specifying & Design Engineer	
Third-party verified light liquid capture and retention for EFO version	Proven performance for fuel/oil hotspot locations	Regulator, Specifying & Design Engineer, Site Owner	
Functions as bend, junction or inlet structure	Design flexibility	Specifying & Design Engineer	
Minimal drop between inlet and outlet	Site installation ease	Contractor	
Large diameter outlet riser for inspection and maintenance	Easy maintenance access from grade	Maintenance Contractor & Site Owner	

STANDARD STORMCEPTOR EF/EFO DRAWINGS

For standard details, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef

STANDARD STORMCEPTOR EF/EFO SPECIFICATION

For specifications, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef

STANDARD PERFORMANCE SPECIFICATION FOR "OIL GRIT SEPARATOR" (OGS) STORMWATER QUALITY TREATMENT DEVICE

PART 1 – GENERAL

1.1 WORK INCLUDED

This section specifies requirements for selecting, sizing, and designing an underground Oil Grit Separator (OGS) device for stormwater quality treatment, with third-party testing results and a Statement of Verification in accordance with ISO 14034 Environmental Management – Environmental Technology Verification (ETV).

1.2 REFERENCE STANDARDS & PROCEDURES

ISO 14034:2016 Environmental management – Environmental technology verification (ETV)

Canadian Environmental Technology Verification (ETV) Program's **Procedure for Laboratory Testing of Oil-Grit Separators**

1.3 SUBMITTALS

1.3.1 All submittals, including sizing reports & shop drawings, shall be submitted upon request with each order to the contractor then forwarded to the Engineer of Record for review and acceptance. Shop drawings shall detail all OGS components, elevations, and sequence of construction.

1.3.2 Alternative devices shall have features identical to or greater than the specified device, including: treatment chamber diameter, treatment chamber wet volume, sediment storage volume, and oil storage volume.

1.3.3 Unless directed otherwise by the Engineer of Record, OGS stormwater quality treatment product substitutions or alternatives submitted within ten days prior to project bid shall not be accepted. All alternatives or substitutions submitted shall be signed and sealed by a local registered Professional Engineer, based on the exact same criteria detailed in Section 3, in entirety, subject to review and approval by the Engineer of Record.

PART 2 – PRODUCTS

2.1 OGS POLLUTANT STORAGE

The OGS device shall include a sump for sediment storage, and a protected volume for the capture and storage of petroleum hydrocarbons and buoyant gross pollutants. The minimum sediment & petroleum hydrocarbon storage capacity shall be as follows:

- 2.1.1 4 ft (1219 mm) Diameter OGS Units:
 - 6 ft (1829 mm) Diameter OGS Units:
 - 8 ft (2438 mm) Diameter OGS Units:
 - 10 ft (3048 mm) Diameter OGS Units:
 - 12 ft (3657 mm) Diameter OGS Units:

 $\begin{array}{l} 1.19 \ m^{3} \ sediment \ / \ 265 \ L \ oil \\ 3.48 \ m^{3} \ sediment \ / \ 609 \ L \ oil \\ 8.78 \ m^{3} \ sediment \ / \ 1,071 \ L \ oil \\ 17.78 \ m^{3} \ sediment \ / \ 1,673 \ L \ oil \\ 31.23 \ m^{3} \ sediment \ / \ 2,476 \ L \ oil \\ \end{array}$

PART 3 – PERFORMANCE & DESIGN

3.1 GENERAL

The OGS stormwater quality treatment device shall be verified in accordance with ISO 14034:2016 Environmental management – Environmental technology verification (ETV). The OGS stormwater quality treatment device shall

remove oil, sediment and gross pollutants from stormwater runoff during frequent wet weather events, and retain these pollutants during less frequent high flow wet weather events below the insert within the OGS for later removal during maintenance. The Manufacturer shall have at least ten (10) years of local experience, history and success in engineering design, manufacturing and production and supply of OGS stormwater quality treatment device systems, acceptable to the Engineer of Record.

3.2 SIZING METHODOLOGY

The OGS device shall be engineered, designed and sized to provide stormwater quality treatment based on treating a minimum of 90 percent of the average annual runoff volume and a minimum removal of an annual average 60% of the sediment (TSS) load based on the Particle Size Distribution (PSD) specified in the sizing report for the specified device. Sizing of the OGS shall be determined by use of a minimum ten (10) years of local historical rainfall data provided by Environment Canada. Sizing shall also be determined by use of the sediment removal performance data derived from the ISO 14034 ETV third-party verified laboratory testing data from testing conducted in accordance with the Canadian ETV protocol Procedure for Laboratory Testing of Oil-Grit Separators, as follows:

3.2.1 Sediment removal efficiency for a given surface loading rate and its associated flow rate shall be based on sediment removal efficiency demonstrated at the seven (7) tested surface loading rates specified in the protocol, ranging 40 L/min/m² to 1400 L/min/m², and as stated in the ISO 14034 ETV Verification Statement for the OGS device.

3.2.2 Sediment removal efficiency for surface loading rates between 40 L/min/m² and 1400 L/min/m² shall be based on linear interpolation of data between consecutive tested surface loading rates.

3.2.3 Sediment removal efficiency for surface loading rates less than the lowest tested surface loading rate of 40 $L/min/m^2$ shall be assumed to be identical to the sediment removal efficiency at 40 $L/min/m^2$. No extrapolation shall be allowed that results in a sediment removal efficiency that is greater than that demonstrated at 40 $L/min/m^2$.

3.2.4 Sediment removal efficiency for surface loading rates greater than the highest tested surface loading rate of 1400 L/min/m² shall assume zero sediment removal for the portion of flow that exceeds 1400 L/min/m², and shall be calculated using a simple proportioning formula, with 1400 L/min/m² in the numerator and the higher surface loading rate in the denominator, and multiplying the resulting fraction times the sediment removal efficiency at 1400 L/min/m².

The OGS device shall also have sufficient annual sediment storage capacity as specified and calculated in Section 2.1.

3.3 CANADIAN ETV or ISO 14034 ETV VERIFICATION OF SCOUR TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of third-party scour testing conducted in accordance with the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators**.

3.3.1 To be acceptable for on-line installation, the OGS device must demonstrate an average scour test effluent concentration less than 10 mg/L at each surface loading rate tested, up to and including 2600 L/min/m².

3.4 LIGHT LIQUID RE-ENTRAINMENT SIMULATION TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of completed third-party Light Liquid Re-entrainment Simulation Testing in accordance with the Canadian ETV **Program's Procedure for Laboratory Testing of Oil-Grit Separators,** with results reported within the Canadian ETV or ISO 14034 ETV verification. This reentrainment testing is conducted with the device pre-loaded with low density polyethylene (LDPE) plastic beads as a surrogate for light liquids such as oil and fuel. Testing is conducted on the same OGS unit tested for sediment removal to

assess whether light liquids captured after a spill are effectively retained at high flow rates.

3.4.1 For an OGS device to be an acceptable stormwater treatment device on a site where vehicular traffic occurs and the potential for an oil or fuel spill exists, the OGS device must have reported verified performance results of greater than 99% cumulative retention of LDPE plastic beads for the five specified surface loading rates (ranging 200 L/min/m² to 2600 L/min/m²) in accordance with the Light Liquid Re-entrainment Simulation Testing within the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators.** However, an OGS device shall not be allowed if the Light Liquid Re-entrainment Simulation Testing was performed with screening components within the OGS device that are effective at retaining the LDPE plastic beads, but would not be expected to retain light liquids such as oil and fuel.

D DECAST BOX CULVERT SPECIFICATION

MANUFACTURED 100% INDOORS WITH CONTROLLED CONDITIONS

FAST AND EASY

REDUCED RISK

BOX CULVERTS

APPLICATIONS

- Conveyance of storm water from urban developments
- Designed for gravity flow of fluids
- Can be used as small bridges and for stream crossing where natural stream bed does not have to be maintained

STANDARD(S) REFERENCES

- Plant Prequalification Program
- OPSS 422
- OPSS 1821
- CSA S6 CHDBC
- ASTM C1433
- CSA A23.4

ADDITIONAL INFORMATION

Contact us at sales@decastltd.com for:

- Box culvert sizes, not listed on next page
- 3-sided box culverts
- · Special loading conditions (increased depth of cover, railway loading, other special loading conditions)
- Post tensioned box culverts

DIMENSIONS

OPSS Design: standard length of sections is 2.44m DECAST Design: standard length of sections is 2.5m

decastltd.com

OPSS DESIGN

SPAN X RISE (mm)	WALL THICKNESS (mm)	APPROX. MASS (kg/m)
1800 x 900	200	3,380
1800 x 1200	200	3,690
2400 x 1200	200	4,560
2400 ×1500	200	4,870
2400 x 1800	200	5,170
3000 x 150	250	6,860
3000 x 1800	250	7,250
3000 x 2100	250	7,630
3000 x 2400	250	8,020

DECAST DESIGN

SPAN X RISE (mm)	WALL THICKNESS (mm)	APPROX. MASS (kg/m)
3600 x 2400	300	10,130
3600 x 3000	300	11,010
3600 x 3600	300	11,900
3600 x 4200	300	12,780
4200 x 2400	300	11,010
4200 x 3000	300	11,900
4200 x 3600	₃₀₀ 10	12,780
4200 x 4200	300	13,660
4800 x 2400	350	14,140
4800 × 3000	350	15,160
4800 x 3600	350	16,190
4800 x 4200	350	17,220
5400 x 2400	350	15,160
5400 x 3000	350	16,190
5400 x 3600	350	17,220
5400 x 4200	350	18,250

FEATURES AVAILABLE ON REQUEST

- Bends
- Reducers & Increasers
- Radius Sections
- Beveled Ends
- Scribed Holes

- - Flush Ends
 - Maintenance Hole Tees • Plugs and Caps
 - Dowels and Inserts 15 M
- ACCO 0

ENGINEERED PRECAST SOLUTIONS

Our **engineering** team can work with you to design the exact precast concrete products you need to achieve your **project objectives**.

With DECAST you get higher quality, long asset life and leading engineered precast solutions.

CONTACT

ر	Rob Micieli Vice President, Sales	416.605.7374
	Frank Mazza, C.E.T. Sales	416.520.2779
	John Pozzobon, C.E.T. Sales	905.302.1062
	Martin Fischer Sales	705.796.8868
	Jorge Silveira, A.Sc.T. Sales	416.453.6837
	Mark Eaton Sales	519.717.1313
	Nicholas Halcovitch Sales	437.328.2489
	Mauro DeFranco, P.Eng. Technical Sales Engineer	647.500.3789
	Anthony Abbruscato, P.Eng. Technical Sales Engineer	705.715.1269
	Katya Seraville, PMP Manager, New Products	705.229.7035
	Jenny Ogden Manager, Shipping	705.734.2892 ext 2240

	SALES sales@decastltd.com
	ENGINEERING engineering@decastltd.com
	INFO & INQUIRIES info@decastltd.com
•	DECAST Ltd. 8807 County Road 56 Utopia, ON L0M 1T0 1.800.461.5632 705.734.2892
Ð	WEB www.decastltd.com

decastltd.com

