FUNCTIONAL SERVICING & STORMWATER MANAGEMENT REPORT

66 THOMAS STREET

CITY OF MISSISSAUGA REGION OF PEEL

PREPARED FOR:

DE ZEN REALTY COMPANY LTD.

PREPARED BY:

C.F. CROZIER & ASSOCIATES INC. 2800 HIGH POINT DRIVE, SUITE 100 MILTON, ON L9T 6P4

DECEMBER 2024

CFCA FILE NO. 1419-4679

The material in this report reflects best judgment in light of the information available at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties. C.F. Crozier & Associates Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

Revision Number Date		Comments
Rev.0	June 2019	Issued for OPA and ZBA
Rev.1	February 2022	Issued for OPA and ZBA
Rev.2	April 2024	Issued for OPA and ZBA
Rev.3	December 2024	Issued for OPA and ZBA

TABLE OF CONTENTS

1.0		INTRODUCTION	1
	1.1	Site Background	1
2.0		PROPOSED DEVELOPMENT	2
	2.1 2.2	Development Phasing Development Population	
3.0		WATER SERVICING	4
	3.1 3.2 3.3 3.4	Existing Water Servicing Water Design Demand Fire Flow Demand Proposed Water Servicing	4 5
4.0		SANITARY SERVICING	6
	4.1 4.2 4.3	Existing Sanitary Servicing Sanitary Design Flows Proposed Sanitary Servicing	6
		STORMWATER	B
5.0		DRAINAGE CONDITIONS	B
	5.1 5.2 5.3 5.4 5.5	Existing Storm Infrastructure	B 9 9
6.0		STORMWATER MANAGEMENT	1
	6.1 6.2 6.3 6.4 6.5	Stormwater Quality Control 1 Stormwater Quality Controls 1 Water Balance 1 Sustainable Stormwater Management 1 External Storm Sewer Capacity Analysis 1	3 4 5
7.0		FLOODPROOFING	B
8.0		GROUNDWATER DISCHARGE	B
9.0		EROSION AND SEDIMENT CONTROLS DURING CONSTRUCTION	9

LIST OF TABLES

LIST OF APPENDICES

- Appendix A: Background Information
- Appendix B: Water Servicing Calculations
- Appendix C: Sanitary Servicing Calculations
- Appendix D: Stormwater Management Calculations

LIST OF DRAWINGS

C701:	Removals Plan Erosion & Sediment Control Plan
C702:	Site Servicing Plan
C703:	Grading Plan
C706:	Composite Utility Plan

STORM DRAINAGE FIGURES

- C704: Pre-Development Drainage Plan
- C705: Post-Development Drainage Plan

FLOODPLAIN MAPPING FIGURES

- Figure 1: Existing Regulatory Floodplain and Related HEC-RAS Sections
- Figure 2: Proposed Regulatory Floodplain and Related HEC-RAS Sections
- C708: HEC-RAS Sections

1.0 Introduction

De Zen Realty Company Ltd. retained C.F. Crozier & Associates Inc. ("Crozier") to complete a Functional Servicing and Stormwater Management Report for the site located at the municipal address of 65-95 Joymar Drive and 66 Thomas Street in the City of Mississauga. This report supports the Official Plan Amendment (OPA) and Zoning By-Law Amendment (ZBA) applications for the proposed high-rise residential development.

The purpose of this report is to demonstrate that the new proposed site concept can be developed in general conformance with the City of Mississauga, Region of Peel, and the Credit Valley Conservation (CVC) guidelines from a functional servicing and stormwater management perspective.

1.1 Site Background

The subject site is approximately 2.78 ha in area and is located in an area of existing residential and commercial developments. The site is bound by Thomas Street to the south, Joymar Drive to the west, Tannery Street to the north, and the Mullet Creek to the east. The site currently features several low-rise commercial structures and an extensive paved parking area.

A portion of the site is currently within lands regulated by Credit Valley Conservation (CVC) and the floodplain of the Mullet Creek. This is identified as Subwatershed 4 (1,2,3,4 – Loyalist, Carolyn, Sawmill and Mullet Creek Subwatersheds, dated June 2009) of the Credit River Watershed. A separate Floodplain Analysis Memorandum has been prepared by Crozier (March 2024) which outlines the natural hazards associated with Mullet Creek and a cut/fill plan that establishes the proposed Regulatory Floodplain and developable area in the pre and post-developed condition.

The following reports and documents were referenced during the preparation of this report and associated civil design drawings:

- City of Mississauga Transportation and Works Development Requirements Manual, dated November 2020
- Architectural Package by SRM Architects, December 2024.
- Floodplain Analysis Memorandum by Crozier, March 2024.
- Geotechnical and Slope Stability Investigations Report by Sirati and Partners, Nov. 2018.
- Technical Memorandum "Grading Change Impact on Long Term Stable Top of Slope (LTSTS)" by Sirati & Partners, January 5, 2023.
- Grading Change Impact on the Long-Term Stable Top of Slope by Sirati and Partners, Jan 2023.
- Environmental Impact Study (Revised) by Beacon Environmental, December 2023.
- 1,2,3,4 Loyalist, Carolyn, Sawmill and Mullet Creek Subwatersheds, June 2009.
- Region of Peel and City of Mississauga As-constructed drawings (see Appendix A).

This report has been prepared with consideration of the comments received by commenting agencies on previous submissions which presented a different development concept.

2.0 Proposed Development

Based on the site plan and architectural drawings by SRM Architects (April 2024), the proposed development consists of the following elements:

- Two (2) buildings, referred to as the North and South buildings;
 - North Building (high-rise):
 - Tower A 18-storeys with 209 units
 - Tower B 22-storeys with 252 units
 - Podium 8-storey with 368 units
 - South Building (mid-rise):
 - 12-storeys with 214 units
- Four (4) total levels of underground parking
 - Note: due change in elevation across the site, the underground levels are staggered such that the majority of the underground is only 3-levels deep on average
- Two (2) site access/entrances, from Tannery to the north and Joymar to the west.
- Various outdoor amenity and landscaped areas within the private site bounds.
- A Right-of-Way (ROW) road widening along Thomas Street.
- A significant portion of re-naturalized area adjacent to Mullet Creek which will be dedicated to the City of Mississauga to act as the new floodplain and flood storage area.

The following Table 1 summaries the Pre and Post Development site areas based on the SRM Architectural plans, also refer to the Site Plan figures in Appendix A.

Predevelopment Site Area		Predevelopment Site Area		
		Development Site	1.48 ha	
Developed Site	2.78 ha	Environmental	1.26 ha	
		Road Widening	0.04 ha	

Table 1: Development Areas Summary

2.1 Development Phasing

The development, due to its size, is intended to be phased. The following Table 2 summarizes the phasing strategy as outlined by SRM Architectural, also refer to the Phasing figure in Appendix A.

Phase	Building	Component
1	North	Tower A
1	North Podium A	
2	North	Tower B
2	North	Podium B
2	South	Mid-Rise

Table 2: Development Phasing Concept

2.2 Development Population

The Region of Peel criteria was used for establishing the unit rate of 2.7 persons per unit, as the development will result in a greater density than 475 persons per hectare. The unit counts per phase/building are provided by SRM Architects.

Table	3:	Site	Po	pulation
IGNIC	ς.	0110		poranon

Phase	Units	Unit Rate	Population
1 – Towe A	209	2.7	564
1 – Podium A	180	2.7	486
2 – Tower B	252	2.7	680
2 – Podium B	188	2.7	508
Total North	829	2.7	2238
2 – Mid-Rise	214	2.7	578
Total South	214	2.7	578
TOTAL SITE	1043	2.7	2816

Based on the above, the total site population is calculated at 2816 persons, equivalent to 1903 persons per hectare based on the 1.48 ha post-development area.

3.0 Water Servicing

3.1 Existing Water Servicing

The Region of Peel is responsible for the operation and maintenance of water infrastructure within the City of Mississauga. As- constructed drawings obtained by the Region of Peel's EPAL database (see Appendix A) were reviewed and identifies the following existing watermain infrastructure:

- 300 mm diameter watermain on all three adjacent ROW's: Joymar Drive, Thomas Street and Tannery Street.
 - The Tannery Street watermain splits into a 300 mm diameter and a 200 mm diameter, which run parallel to each other.
- Four (4) fire hydrants directly adjacent to the site, all of which are serviced by the 300 mm diameter watermain.

A subsurface Utility Engineering (SUE) Level-B locates investigation was conducted by Telecon (refer to Appendix) which identified the following water service connections to the existing site:

- One (1) (size unknown) water service on Thomas Street to the 2-storey building
- Three (3) 100-200mm dia. water services on Joymar Drive to the large single-storey building
- One (1) 20mm water service on Joymar Drive to the small 1-storey building at the corner of Joymar and Tannery

Through redevelopment of the site, all existing water service connections will be abandoned and decommissioned in accordance with Region of Peel requirements.

3.2 Water Design Demand

The water demand for the proposed site was calculated with reference to the Water Master Plan Design Criteria, Section 2.2 (Region of Peel, 2020) and based on the equivalent population estimate outlined in Table 3.

An average daily demand of 280 L/capita/day for residential developments was used to determine the average daily flow. Peaking factors were applied to the average daily water demand to obtain the total estimated maximum daily demand and peak hourly demand.

A summary of the results is presented in Table 4 , refer to Appendix B for detailed calculations.

Method	Proposed Building	Average Day (L/s)	Maximum Daily Demand (L/s)	Peak Hourly Demand (L/s)
Region of Peel	North	7.25	14.51	21.76
	South	1.87	3.75	5.62
1001	Site Total	9.13	18.25	27.38

Table 4: Estimated Domestic Water Demand

3.3 Fire Flow Demand

The Fire Underwriters Survey 2020 method was used to estimate the required fire flow demand for the proposed site and each building individually. The results are as follows:

North Building = 100 L/s (1,584 USGPM); duration of 1.75 hours

South Building = 50 L/s (792 USGPM); duration of 1.25 hours

As the North Building represents the significantly larger building in both area and height, its fire flow demand will govern as the site total. Refer to Appendix B for detailed calculations. The required fire flow for the site is to be confirmed during the detailed design stage in coordination with the Mechanical Engineer and Architect.

A hydrant flow test was completed in July 2023 by Hydrant Testing Ontario, refer to Appendix B for full details. The test results identified that the 300mm watermain network adjacent to the site can deliver a flow rate of 279-284 L/s at a residual pressure of 20 psi. The tests therefore confirm the existing adjacent watermains are sufficient to provide fire flows to the subject development.

3.4 Proposed Water Servicing

The site is proposed to be serviced by several domestic and fire connections which are based on the composition of the two-buildings. The following is a summary of the proposed water servicing strategy:

North Building

- 1 Domestic connection from Joymar Drive (100-150mm)
 - At detailed design it will be determined if only a single domestic connection will be provided and metered (then split within the building) or if multiple domestic connections will be required and each metered individually.
- 1 Fire connection from Jomar Drive (200mm)
 - This will be a combined service connection with the Domestic line above.
 - Note: a second fire connection may be provided from Joymar if the Tannery Fire connection cannot be supplied dependent on phasing of the project.
- 1 Fire connection from Tannery Street (200mm)
 - Due to the height of the building, Ontario Building Code requires two separate fire service connections from separate water mains for redundancy

<u>South Building</u>

- 1 Domestic connection from Thomas Street (100-150mm)
- 1 Fire connection from Thomas Street (200mm)
 - This will be a combined service connection with the Domestic line above.

All water services will include property line valves and immediately enter the building foundation structure into a mechanical room. Domestic lines will be internally metered with backflow preventors. Fire lines will contain Double Check Valve Assemblies all per Region of Peel Criteria. Refer to the proposed Servicing Plan drawing (C702) for preliminary water servicing design and connection locations.

4.0 Sanitary Servicing

4.1 Existing Sanitary Servicing

The Region of Peel is responsible for the operation and maintenance of sanitary infrastructure within the City of Mississauga. As- constructed drawings obtained by the Region of Peel's EPAL database (see Appendix A) were reviewed and identifies the following existing sanitary infrastructure:

- 600 mm diameter sanitary sewer on Joymar Drive
- 300 mm and 600 mm diameter sanitary sewers on Thomas Street
- 200 mm and 375 mm diameter sanitary sewers on Tannery Street
- 375 mm diameter sanitary trunk sewer within an easement adjacent to Mullet Creek within the eastern portion of the site. This sanitary trunk sewer is subject to an easement outlined on the legal plan (see Appendix A)

A subsurface Utility Engineering (SUE) Level-B locates investigation was conducted by Telecon (refer to Appendix) which identified the following sanitary service connections to the existing site:

- One (1) (size unknown) sanitary service on Thomas Street to the large single-storey building
- Two (2) (size unknown) sanitary services on Joymar Drive, likely servicing the small 1-storey building at the corner of Joymar and Tannery and the medium sized 1-storey building at the central rear of the site.
- It also appears there is a service connection from the 2-storey building on Thomas Street directly to the sanitary trunk sewer within the easement.

Through redevelopment of the site, existing sanitary service connections will be abandoned and decommissioned in accordance with Region of Peel requirements.

4.2 Sanitary Design Flows

The sanitary demand for the proposed site was calculated with reference to the of Peel 2020 Wastewater Master Plan and Standard Drawing 2-9-2 and based on the equivalent population estimate outlined in Table 3. An average daily demand of 280 L/capita/day for residential developments was used to determine the average daily flow. A summary of the results is presented in Table 5, refer to Appendix C for detailed calculations.

Method	Proposed Building	Average Daily Flow Including Peaking (L/s)	Infiltration Flow (L/s)	Total Peak Flow (L/s)
	North	26.65	0.27	26.92
Region of Peel	South	7.64	0.12	7.76
	Site Total	32.76	0.39	33.14

Table 5: Estimated Sanitary Design Flows

4.3 Proposed Sanitary Servicing

The site is proposed to be serviced by a minimum of two (2) sanitary service connections which, one supplied to each of the North and South Buildings. The following is a summary of the proposed servicing strategy:

North Building

- 1-250mm @1.2% sanitary connection to 600mm sewer in Joymar Drive
 - Max capacity = 68 L/s, peak rate =27 L/s, therefore 40% full
 - Note: it is proposed to re-use the existing 250mm @ 1.2% sanitary service from Existing MH5 to EX SAN MH.

<u>South Building</u>

- 1-200mm @2.0% sanitary connection to 600mm sewer in Thomas Street
 - Max capacity = 48 L/s, peak rate =8 L/s, therefore 17% full

All sanitary flows will be collected internally by mechanical plumbing and conveyed to the respective service connection location. Refer to the proposed Servicing Plan drawing (C702) for preliminary water servicing design and connection locations.

5.0 Stormwater Drainage Conditions

5.1 Existing Storm Infrastructure

The City of Mississauga responsible for the operation and maintenance of storm infrastructure within the City of Mississauga. As-constructed drawings and record information obtained from the City (see Appendix A) were reviewed and identifies the following existing storm infrastructure:

- 1325x2075 mm box storm sewer on Thomas Street, which drains eastward and outlets at the Mullet Creek.
- 600-675 mm diameter storm sewers on Joymar Drive, which drains southward and connects to the box sewer in Thomas Street.
- 1650 mm dia. storm sewer in Tannery Street, which drains eastward and outlets at the Mullet Creek.

A subsurface Utility Engineering (SUE) Level-B locates investigation was conducted by Telecon (refer to Appendix) which identified the following storm service connections to the existing site:

- Two (2) 300mm dia. storm services on Thomas Street, which connect to an existing curbside catchbasin which connects to the 1325x2075 mm box sewer
- A series of several on-site private catchbasins all of which convey flow in an undetermined direction(s), however it is likely there are other connections to Tannery and Joymar which were not identified.

5.2 Existing Drainage Conditions

Based on the topographic survey completed by David B. Searles Surveying Ltd. (August 2017), the site is split into two predevelopment catchment areas which is illustrated on the Pre-Development Drainage Plan (C704):

- Catchment 101 (A = 0.60 ha; C = 0.90; C*=0.50) comprises the eastern portion of the site including the top of slope and side bank of Mullet Creek, some asphalt and gravel areas. All flows are conveyed overland directly to the Mullet Creek.
- Catchment 102 (A = 2.18 ha; C = 0.90; C*=0.50) comprises the western portion of the site including drainage from the existing buildings, associated paved parking and storage areas. Minor system stormwater is collected through a series of catchbasins which conveys runoff to Joymar Drive and Thomas Street sewers. Major system stormwater is conveyed overland to the Thomas Street right-of-way and then to Mullet Creek.

The actual pre-development runoff coefficient (C) is 0.90 as the site is nearly entirely impervious. However, per the City of Mississauga Development Requirements, a maximum pre-development runoff coefficient (C*) of 0.50 is to be used for any development regardless of actual predevelopment conditions.

5.3 Proposed Drainage Conditions

The proposed development will effectively divide the site into two catchments, being i) the environmental land dedication for floodplain, and ii) the private developed site. The environmental area will consist entirely of pervious landscaped surface which will drain uncontrolled directly to the Mullet Creek. The private site area will comprise of building roofs and at-grade asphalt and landscaped surfaces which will all be directed to municipal storm sewers in the adjacent ROW's.

Refer to the Post-Development Drainage Plan (C705), a summary of the detailed site catchments is as follows:

- Catchment 201 (A = 0.98 ha; C = 0.20) is the environmental floodplain area which will be renaturalized through a combination of best management practices and landscaping. All stormwater from this catchment is conveyed overland directly to Mullet Creek.
- Catchment 202 (A = ha; C = 0.70) is the North and South building roof area. Flows will be collected by the building mechanical plumbing and conveyed to the Site SWM facility prior to discharge to either Joymar or Thomas via storm service connection.
- Catchment 203 (A = ha; C = 0.80) is the Site at-grade driveway areas. Flows will be collected by the building mechanical plumbing and conveyed to the Site SWM facility prior to discharge to either Joymar or Thomas via storm service connection.
- Catchment 204 (A = ha; C = 0.30) is the Site at-grade landscaped area between 201 and 203. Flows will be collected by the building mechanical plumbing and conveyed to the Site SWM facility prior to discharge to either Joymar or Thomas via storm service connection.
- Catchment 205 (A = ha; C = 0.50) is the frontage along Joymar and Thomas which is not able to be captured and will drain uncontrolled to the adjacent ROW's.

The development only portion of the site (202-205) results in an overall runoff coefficient C = 0.64, based on total catchment area of 1.75 ha. The total site area, including the floodplain area (201-205) results in an overall runoff coefficient C = 0.48, based on the total area of 2.78 ha. Refer to detailed calculations in Appendix B.

Also refer to the Site Servicing and Site Grading Plans (C702 and C703,) that illustrate the proposed storm servicing & SWM facility locations and preliminary grading design.

5.4 Proposed Storm Servicing

The site is proposed to be serviced with two (2) storm connections, one for each the North and South buildings. This takes into consideration the construction phasing of the development as well as future ownership. The proposed storm services are as follows:

North Building

• 450mm storm service @ 2.0%, connecting to the existing 600mm storm in Joymar Drive

South Building

• 300mm storm service @ 1.5%, connecting to the existing 1325x2075mm box storm sewer in Thomas Street

See Site Servicing drawing C702 for preliminary design details. Refer to Section 6.0 for stormwater management details including orifice sizing, quantity controls, and tank volumes.

5.5 Pre and Post Flow Comparison

Based on the catchments defined above in both the pre and post-developed condition, the following Tables outline the peak stormwater flows by outlet and by Site total. It should be noted that the predevelopment flows calculated below are based on the C* runoff coefficient of 0.50, not the actual predevelopment C of 0.90.

Storm	Predev Area	Predev Flow	Postdev Area	Postdev Flow	Difference
Event	(ha)	(m³/s)	(ha)	(m³/s)	(m³/s)
2		0.050		0.035	-0.016
10	0.60	0.083	1.03	0.057	-0.026
100		0.148		0.101	-0.046

Table 6: Peak Flows to Mullet Creek

Note: for additional storm event (5, 25, 50 year) calculations refer to Appendix D.

Based on the results Table 6 , the site will result in an overall decrease of overland uncontrolled flow directly to the Mullet Creek.

Table 7: Peak Flows to Municipal Storm Sewers (Joymar & Thomas)

Storm	Predev Area	Predev Flow	Postdev Area	Postdev Flow	Difference
Event	(ha)	(m³/s)	(ha)	(m³/s)	(m³/s)
2		0.183		0.071	0.004
10	2.18	0.303	1.75	0.117	0.006
100		0.537		0.207	0.011

Note: for additional storm event (5, 25, 50 year) calculations refer to Appendix D.

Based on the results in Table 7 and Table 8, the site will result in a slight increase in flows to the Joymar and Thomas storm sewers. Therefore, quantity controls will be implemented to reduce the postdevelopment rates to the predevelopment levels at every storm event. Refer to Section 6.0 for discussion on site stormwater management.

Table 8: Total Site Peak Storm Flows

Storm Event	Predev Area (ha)	Predev Flow (m³/s)	Postdev Area (ha)	Postdev Flow (m³/s)	Difference (m³/s)
2		0.233		0.221	-0.012
10	2.78	0.386	2.78	0.366	-0.020
100		0.684		0.649	-0.035

Note: for additional storm event (5, 25, 50 year) calculations refer to Appendix D.

Based on the results in Table 8, through development of the site an overall reduction in total stormwater peak flows will be achieved. This is due to the overall decrease in C value from 0.50 to 0.48 from pre- to post-development.

6.0 Stormwater Management

Stormwater management design criteria were established using the City of Mississauga standards, Credit Valley Conservation guidelines and considering comments from all Agencies. The site-specific stormwater management criteria include:

Water Quantity Control

Provide control for the private storm system to control the post-development peak flow to predevelopment peak flow for storm events up to and including the regional storm event (per First Submission Comments dated December 23, 2019). The maximum pre-development runoff coefficient to be used for the redeveloped site cannot exceed 0.50. The City of Mississauga stormwater design requirements dictate that storm sewers must be sized to convey at least the 10-year storm event.

Water Quality Control

Private stormwater discharging from the site must achieve Ontario Ministry of the Environment, Conservation and Parks (MECP) Enhanced Level of protection (80% total suspended solids (TSS) removal) for water quality control prior to discharging to the City's storm sewer network.

<u>Water Balance</u>

Retention of the first 5 mm of rainfall for private development areas is required by the City of Mississauga Development Requirements Manual (November 2020) by way of infiltration, reuse, or evapotranspiration to achieve the water balance criteria. Filtration may be considered if options are not feasible.

6.1 Stormwater Quantity Control

The site is required to provide post-development quantity control to the pre-development peak flows for all design storms (2-year to 100-year) up to an including the Regional storm event discharging to the existing Joymar Drive and Thomas Street storm sewers. As identified in Section 5.5, no stormwater quantity control is required for the environmental floodplain area (catchment 201), therefore, quantity controls will only be implemented within the private site (catchments 202-205) to restrict discharge to predevelopment rates.

The North building subcatchment represents approximately 82% of the total developable site area, whereas the South building subcatchment is the remaining 18%. The stormwater management is designed in such a way that quantity controls will only be implemented on the North building, and thus no quantity controls will be implemented on the South building. The total peak flow from both of these Building connections (North controlled and South uncontrolled) will meet the predevelopment allowable rate at every storm event. The quantity controls for the North building will also be sufficiently restricted to account for the uncontrolled frontage portion of the site (catchment 205) adjacent to Joymar and Thomas.

The North building storm flows will be restricted using a 375mm orifice tube and providing a SWM tank with a volume of approximately 20m³. Based on a max head of 0.9m, this will reduce the total peak flows at the 100-year storm to 401 L/s (=0.401 m³/s).

The results of implementing this restriction and storage volume on the North building peak flows are summarized in Table 9 and the uncontrolled South building flows are summarized in Table 10.

Storm Event	Subcatchment Area (ha)	Target Flow Rate (m³/s)	Uncontrolled Flow Rate (m³/s)	Controlled Flow Rate (m ³ /s)	Storage Vol. Required (m ³)
2	4.425	0.150	0.153	0.150	3.3
10	1.435	0.248	0.254	0.248	5.5
100		0.440	0.440	0.440	9.4

Table 9: North Building Storm Control - Discharge to Joymar Drive

Table 10: South Building Storm Control - Discharge to Thomas Street

Storm Event	Subcatchment Area (ha)	Target Flow Rate (m³/s)	Uncontrolled Flow Rate (m³/s)	Controlled Flow Rate (m ³ /s)	Storage Vol. Required (m ³)
2	0.045	0.033	0.033	-	0.0
10	0.315	0.054	0.054	-	0.0
100		0.097	0.097	-	0.0

The sum of both stormwater outlets meets the predevelopment allowable rate (based on C*=0.50) for discharge to the municipal sewers. The results are summarized in Table 10.

Table 11: Total Development Site Discharge to Municipal Sewers

Storm Event	Site Area (ha)	Pre-dev Allowable Flow Rate (m³/s)	Uncontrolled Flow Rate (m³/s)	Controlled Flow Rate (m ³ /s)	Storage Vol. Required (m³)
2	4 75	0.183	0.186	0.183	3.3
10	1.75	0.303	0.308	0.303	5.5
100		0.537	0.537	0.537	9.4

Refer to Appendix D for detailed calculations and to Servicing Plan C702 for preliminary storm servicing and stormwater management details. At the detailed design stage (ie: Site Plan application) additional stormwater management details will be provided.

Regional Design Storm Event (Hurricane Hazel)

The Regional storm event (Hurricane Hazel) was modelled for this site using Visual OTTHYMO. A minimum time of concentration of 15 min was used and runoff coefficient adjustments per City of Mississauga standards were applied.

Results show a peak flow of 0.321 m³/s under pre-development conditions for Catchment 102 and 0.255 m³/s under post-development conditions for Catchments 202-205 combined. Refer to Table 12 for the Visual OTTHYMO results and Appendix D for Visual Otthymo model output.

	Pre-Development (102)	Post-Development (202-205)	Difference
Area (ha)	2.18	1.75	-0.43
Runoff C	0.90	0.78	-0.12
% Impervious	99%	83%	-16%
Peak Flow (m ³ /s)	0.321	0.255	-0.066

Table 12: Regional Event Peak Storm Flows to Municipal ROWs

Based on the results, the post-development conditions will reduce the overall runoff from the site directed to the Joymar and Thomas Street right-of-way by approximately 66 L/s at the Regional storm event, therefore no further quantity controls or restrictions are required.

Emergency flows throughout the developed site area will be safely conveyed to Joymar Drive, Thomas Street and to the Mullet Creek.

6.2 Stormwater Quality Controls

Water quality objectives are proposed for the development area only (Catchment 202-205) which can be met with a treatment train approach. As both rooftop and landscaped areas inherently meet the TSS removal criteria for water quality, only stormwater from at-grade asphalt/driveway areas are required to be treated prior to discharge from the site.

Runoff collected from all at-grade asphalt sources will be received by area drains and conveyed to the respective North or South building SWM facility by mechanical plumbing. It is proposed that each SWM facility contains a media filtration unit (such as a Jellyfish) within the underground foundation structure. Flows will enter this quality treatment unit prior to discharging to a quantity control tank or discharging from the site via service connection. Detailed design information on the specific media filtration units will be provided at detailed design.

After being treated, all collected stormwater runoff is directed to a cistern/storage tank for water balance and/or quantity control. Within each tank, a depth of 0.15m is reserved to promote settling, further improving water quality. The CVC/TRCA guidelines on Low Impact Development Stormwater Management Planning & Design Guide (Version 1.0, 2010) states that underground cisterns are known to significantly reduce pollutant load by capturing the runoff volume from small to medium rainfall events. The preliminary underground SWM facilities are shown on the Site Servicing Plan (Figure C702).

There is also a landscaped portion (catchment 204) that is conveyed by an at-grade drainage swale along the east limit of the development. This runoff is effectively clean as it is from at-grade landscape area only. The length of swale however does promote further TSS removal from an already 80% area.

The above system represents a treatment train approach to achieve the water quality control requirement of 80% total suspended (TSS) removal (Stormwater Management Planning and Design Manual, MOE 2003). Further details and supporting material will be provided detailed design/Site Plan Application stage.

6.3 Water Balance

The water balance objective for the site is to retain the first 5 mm of rainfall over the site by way of infiltration, evapotranspiration, or re-use. As the environmental floodplain area (catchment 201) is entire naturalized, it will inherently achieve the water balance requirement. Therefore, the 5mm criteria is applied to the developed portion of the site only (catchments 202-205).

The following Table 13 summarizes the water balance calculations and deficit depth and volume to be captured.

Catchment	с	5mm Target Volume (m³)	Initial Abstraction (mm)	Water Balance Deficit (mm)	Water Balance Deficit (m³)
201	0.20	51.5	5.0	0.0	0
202-205	0.64	87.5	2.5	2.5	44.0
Total	0.48	139.0	3.4	1.6	44.0

Table 13: Water Balance Requirements

Per the results above, a total of 44m³ will be captured and harvested for re-use through the site. The primary means of re-use will be through irrigation of on-site landscaping. Further options will be explored and details will be provided at the Site Plan application stage.

The 44m³ volume will be split between the North and South building SWM facilities based on the 82/18% area designation. Therefore the North building volume equates to 36m³ and the South building volume equates to 8m³. This water balance volume will be provided via dead storage in the underground tanks for each building. Only runoff from building rooftops is intended to be harvested for re-use.

6.4 Sustainable Stormwater Management

Low Impact Development (LID) techniques will be incorporated into the grading and drainage design of the site in the form of an underground storage tank, grassed swales, and pervious stable surfaces. These techniques have been specified with reference to the CVC/TRCA guidelines on *Low Impact Development Stormwater Management Planning & Design Guide* (Version 1.0, 2010) as described below.

Building SWM Facilities

Below-grade stormwater tanks are proposed to satisfy water quantity and water balance criteria, while also providing particle settling for additional quality control. The stormwater tank is designed to treat and capture the runoff volume from 2-year to 100-year rainfall events where treated stormwater is intended for re-use through irrigation.

Control Objective	Water Quantity	Water Quality	Water Balance
Requirement	Post- to pre-development flow control for 2 to 100-year design storms	80% total suspended solids (TSS) removal	5 mm on-site retention
Requirement	10 m ³	Jellyfish Pretreatment + Tank Settling	44 m ³

Table 14: Stormwater Control Criteria Summary

The process of intercepting rainfall and storing it for future use is largely aligned with the practice of rainwater harvesting per CVC/TRCA LID guidelines where a runoff reduction estimate of 40% can be anticipated. In terms of water quality improvements, TSS and nutrient removal will be proportional to the runoff volume that is captured by the tank as captured runoff will not be conveyed to downstream receivers.

Dry Swale and Re-Naturalization

A dry swale (without underdrain) is proposed along the top of bank in Catchment 204 that will convey runoff over grassed surfaces towards a proposed catchbasin on the south side of the site. This will provide some natural infiltration over Catchment 204 and water quality and erosion control benefits.

Areas proposed to be re-naturalized with shallow slopes can be used to slow down runoff and filter out sediment and other pollutants. This area will be landscaped with a variety of trees, shrubs, and native vegetation to add aesthetic value, water quality, and water balance benefits.

Implementation of the above-described LID techniques are sustainable means for providing stormwater quality treatment and water balance objectives. Further details will be provided at the detailed design stage.

6.5 External Storm Sewer Capacity Analysis

An external storm sewer capacity analysis was complete to determine the capacity of the 1325mm x 2075mm storm sewer on Thomas Street under pre-development and post-development conditions. The external storm sewer capacity analysis was completed by referencing the 80 Thomas Street Residential Development External Storm Sewer Analysis prepared by Crozier (May 29, 2019) which was approved by the City and the development is currently under construction.

<u>Methodology</u>

There is an existing 675 mm storm sewer flowing south along Joymar Drive west of the Site. The storm sewer on Joymar Drive discharges to the 1325mm x 2075mm storm sewer along Thomas Street, which flows east. The Thomas Street storm sewer discharges into Mullet Creek, approximately 90 m from the Joymar Drive intersection. Flows from the site are directed to the 1325mm x 2075mm Thomas Street storm sewer in both pre-development and post-development conditions. The existing storm sewer network surrounding the Site is illustrated on the 66 Thomas Street External Storm Sewer Capacity Analysis Sketch which can be referenced in Appendix D.

Drainage areas were delineated based on existing topographic information, as constructed drawings of the surrounding road networks and development areas as well as from field reconnaissance. Runoff coefficients were derived from the City of Mississauga Transportation and Works Department, Development Requirements Manual, dated November 2020. The drainage areas are illustrated on the attached sketch. A list and brief description of the drainage areas is included in Table 15.

Drainage	Ex.	Pr.	Runoff C	Coefficient	Discharge	Notes and Assumptions
ID	Drainage Area (ha)	Drainage Area (ha)	Existing	Proposed	Location	Notes and Assumptions
A1 80 Thomas Street	2.51	2.51	0.65	0.65	MH3	The runoff coefficient for 80 Thomas Street is 0.65. The existing conditions runoff coefficient is based on measured imperviousness.
A2 86 Joymar Drive	1.97	1.97	0.65	0.65	MH6	Although a small portion of the property drains south, as a conservative approach, the capacity analysis assumes the entire property drains to the Joymar Drive storm sewer network.
A3* 66 Thomas Street	2.60	1.60	0.90	0.90	MH2	Existing conditions show the entire site draining to the storm sewer on Thomas Drive. Under proposed conditions 1.0ha of the site will drain east directly to Mullet Creek.
A4	0.66	0.66	0.55	0.55	T2	

Table 15: External Drainage Area Summary

A5	0.31	0.31	0.55	0.55	MH2	The capacity analysis assumes that the entirety of all lots fronting Thomas Street discharge directly to catchbasins along the right of way (ROW). In reality, it is likely that some of the backyards of these lots drain south. The areas of the lots were obtained from the City of Mississauga Mapping Site.
A6	0.28	0.28	0.90	0.90	T2	
A7	0.19	0.19	0.90	0.90	MH2	Areas draining from the ROW are
A8	0.17	0.17	0.90	0.90	MH3	defined by an average ROW
Α9	0.16	0.16	0.90	0.90	MH4	width of 21 m and as constructed
A10	0.16	0.16	0.90	0.90	MH5	drawings.
A11	0.02	0.02	0.90	0.90	MH6	
A12	92.37	92.37	0.31	0.31	MH1	Flows upstream of MH1 were taken from the storm sewer design sheet prepared for Gafeny and Thomas Singles by Trafalgar Engineering, dated 2004.

*Catchment A3 (66 Thomas Street) is the only catchment that has been updated since the 80 Thomas Street Residential Development External Storm Sewer Analysis (May 2019) was submitted for City review and approval.

Storm sewer design sheets were created to determine the capacity of the external storm sewers downstream of the 66 Thomas Street development in existing and proposed conditions. The design sheets were created based on the drainage areas and pipe information illustrated on the attached sketch and Table 8 above, for the 10-Year Design Storm IDF Parameters. The design storm parameters were obtained from the City of Mississauga Transportation and Works Department, Development Requirements Manual, dated November 2020. Per the City guidelines, an initial Time of Concentration of 15 minutes was used. The internal storm sewers within the 86 Joymar Drive property were also included in the design sheets to ensure an accurate Time of Concentration was used for the system.

A storm sewer design sheet for Gafney and Thomas Singles was completed by Trafalgar Engineering, dated 2004 for the entire area draining to the Thomas Street storm sewer, upstream of Manhole T2. Through discussions with City Staff (for the 80 Thomas Street Development), the storm sewer design sheet completed by Trafalgar Engineering could be referenced with this analysis. As such, only the storm sewers downstream of Manhole T2 on Thomas Street, and the storm sewers along Joymar Drive discharging to the Thomas Street storm sewer were included within the storm sewer design sheets of this analysis.

Results and Conclusion

The stormwater quantity controls implemented on-site ensure that peak flows in post-development match those in predevelopment. However, the capacity of the existing sewers in Joymar to receive the North Building flow and Thomas to receive the South building flow are analyzed at the 10-year. The results are summarized in Table 16.

Street	Building	10-year Flow (L/s)	Pipe Size (mm)	Pre-dev Available Capacity (L/s)	Pre-dev Percent Full (%)	Post-dev Percent Full (%)
Joymar	North	226	600 mm	331	48.5	82.3
Thomas	South	72	1325 x 2075 mm box	279	95.8	96.7

Table 16: Summary of External Storm Design Analysis Results

As demonstrated, the capacity of this storm sewer under proposed conditions is sufficient to receive the post-development flow from the subject development at the two proposed service connection discharge points. Refer to Appendix D for the existing and proposed storm sewer design sheets and the external drainage catchment plan associated with this analysis.

7.0 Floodproofing

The proposed site is located within the floodplain of Mullet Creek as discussed in the Floodplain Analysis Memo (Crozier, March 2024) submitted under separate cover. The memo summarizes current floodplain and natural hazard conditions, on-going historic correspondence with Credit Valley Conservation, and potential opportunities to regularize and re-naturalize the natural hazard area. The natural hazard assessment defines an ultimate constraints limit which outlines the development limit for the site. The existing and proposed Regulatory Floodplains and associated HEC-RAS sections are shown in Figure 1 and Figure 2, respectively. These originate from the Floodplain Analysis Memo prepared by Crozier and have been included with this report for reference.

The memo proposes a cut and fill solution that demonstrates no adverse flooding impacts to any properties upstream or downstream of the site. The proposed approach alters the pre-development conditions to balance flood storage within the floodplain to provide post-to-pre-development levels of flood storage in the Regulatory storm event. This method also moves the proposed development out of the floodplain, consistent with Credit Valley Conservation's policies and vision for the site.

8.0 Groundwater Discharge

As observed through the Geotechnical and Slope Stability Investigations Report (Sirati and Partners, November 23, 2018), groundwater levels throughout the site are within the elevation of the proposed underground foundation and parking structure. As such, it is anticipated that groundwater discharge will be required both during construction and on a long-term permanent basis. All groundwater is proposed to be discharged to the storm sewer in Joymar and/or Thomas Street, both which ultimately outlets to Mullet Creek.

9.0 Erosion and Sediment Controls During Construction

Erosion and sediment controls will be installed prior to the beginning of any construction activities. They will be maintained until the site is stabilized or as directed by the Site Engineer and/or City of Mississauga. Controls will be inspected after each significant rainfall event and maintained in proper working condition. Refer to the Removals Plan Erosion & Sediment Control Plan (Figure C701) for details.

The following erosion and sediment controls will be included during construction on the site:

Robust Silt Fencing

Silt fencing will be installed on the perimeter of the site to intercept sheet flow primarily adjacent to Mullet Creek. Additional silt fence may be added based on field decisions by the Site Engineer and Owner, prior to, during and following construction.

Rock Mud Mat

A rock mud mat will be installed at the entrance to the construction zone to prevent mud tracking from the site onto surrounding lands and the perimeter roadway network. All construction traffic will be restricted to this access only.

Silt Sacks in Catch Basins

Silt sacks will be installed into catch basins on the adjacent streets (Thomas Street, Joymar Drive, and Tannery Street) during construction to prevent obstruction of storm sewers.

Interceptor Swales with Sediment Traps and Check Dams

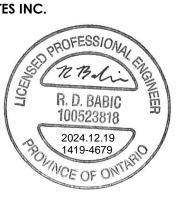
Interceptor swales will be required during site construction to direct and treat runoff prior to discharging to Mullet Creek. Check dams and sediment traps will be proposed throughout the interceptor swales to reduce runoff velocities and settle out sediment.

Further details will be provided at the detailed design stage through coordination with the City and Credit Valley Conservation to protect Mullet Creek during construction.

10.0 Conclusions and Recommendations

Based on the information contained within this report, we offer the following conclusions:

- The North building, at a population of approximately 2,238 persons in the proposed 829 units, the peak hourly water demand is equal to 21.76L/s. A fire flow of 100 L/s for 1.75 hours is required. Water demand for the proposed north building will be met using a 200 mm diameter water service connection to the existing 300 mm municipal watermain within Joymar Drive Road.
- The South building, at a population of approximately 548 persons in the proposed 203 units, the peak hourly water demand is equal to 5.62L/s. A fire flow of 50 L/s for 1.25 hours is required. Water demand for the proposed site will be met using 200 mm diameter water service connections to the existing 300 mm municipal watermain along Thomas Street.
- The North building sanitary design flow rate of 26.92 L/s was calculated for the site based on a population of approximately 2,238 persons in the proposed 829 units. Sanitary flow for the proposed site will be met using the proposed 250 mm diameter PVC sanitary sewer service connecting to the existing 600 mm diameter sanitary sewer along Joymar Drive.
- The South sanitary design flow rate of 7.76 L/s was calculated for the site based on a population of approximately 578 persons in the proposed 214 units. Sanitary flow for the proposed site will be met using the proposed 250 mm diameter PVC sanitary sewer service connecting to the existing 600 mm diameter sanitary sewer along Thomas Street.
- Stormwater runoff from the re-naturalized area (Catchment 201) is proposed to drain to Mullet Creek uncontrolled. Stormwater up to the 100-year event from the proposed development (Catchment 202) will be collected by area drains and conveyed through the internal storm network, where it will be treated for quality and stored in a stormwater tank for re-use and/or discharge from the site.
- The stormwater drainage outlet for the developed portion of the site will be through two service connections, one to Joymar Srive and one to Thomas Street, for the North and South buildings respectively. SWM facilities will be provided within the underground structure upstream of each outlet.
- The North building requires 10 m³ in quantity control volume, which will be provided in an underground stormwater tank to control the post development flows to pre-development flows. Flows will be restricted by a 375mm orifice tube.
- Enhanced Protection of water quality is achieved using a treatment train approach through a proposed media filter and underground stormwater storage.
- The required water balance storage for the site is 44m³ and will be achieved by re-use through irrigation after runoff is harvested by the SWM facilities. Stored water will be pumped for irrigation during the summer months.
- Per the Floodplain Analysis Memo (Crozier, March 2024), the proposed floodplain limits have been modified from existing conditions to balance earthworks and storage volumes within the floodplain and regularize the flood constraints on the site. The analysis provides post- to predevelopment levels of flood storage in the Regulatory event, while allowing for a regularized development limit. The proposed development is located outside of the proposed Regulatory Floodplain associated with Mullet Creek.


Based on the above conclusions, we recommend the approval of the Zoning By-law Amendment and Official Plan Amendment from the perspective of functional servicing and stormwater management.

Respectfully submitted,

C.F. CROZIER & ASSOCIATES INC.

Rht Bhi

Robert Babic, P.Eng. Project Manager

AR

I:\1400\1419-De Zen Realty Co Ltd\4679-66 Thomas St\Reports\FSR and Prelim SWM\Third Submission FSR SWM\1419-4679 66 Thomas FSR SWM.docx

APPENDIX A

Background Information

Date: 3/15/2024 Updated: 3/15/2024

Water & Wastewater Modelling Demand Table

POPULATION

Proposed Residential	Units	Persons
Total Proposed Residential	1043	2816
Proposed Institutional Population		0
Proposed Employment Population		0
Total	1043	2816

Proposed GFA	
(commercial/retail) (sqm)	0

WATER CONNECTION

Hydrant Flow Test	Locations
Test 1	Private Hyd - Joymar Dr
Test 2	Opp 92 Joymar Drive

Test		Pressure (psi)	Flow (I/s)
	Minimum Water Pressure	70	712
1	Maximum Water Pressure	70	805
	Predicted Water Pressure	20	279
	Minimum Water Pressure	65	856
2	Maximum Water Pressure	70	1113
	Predicted Water Pressure	20	284

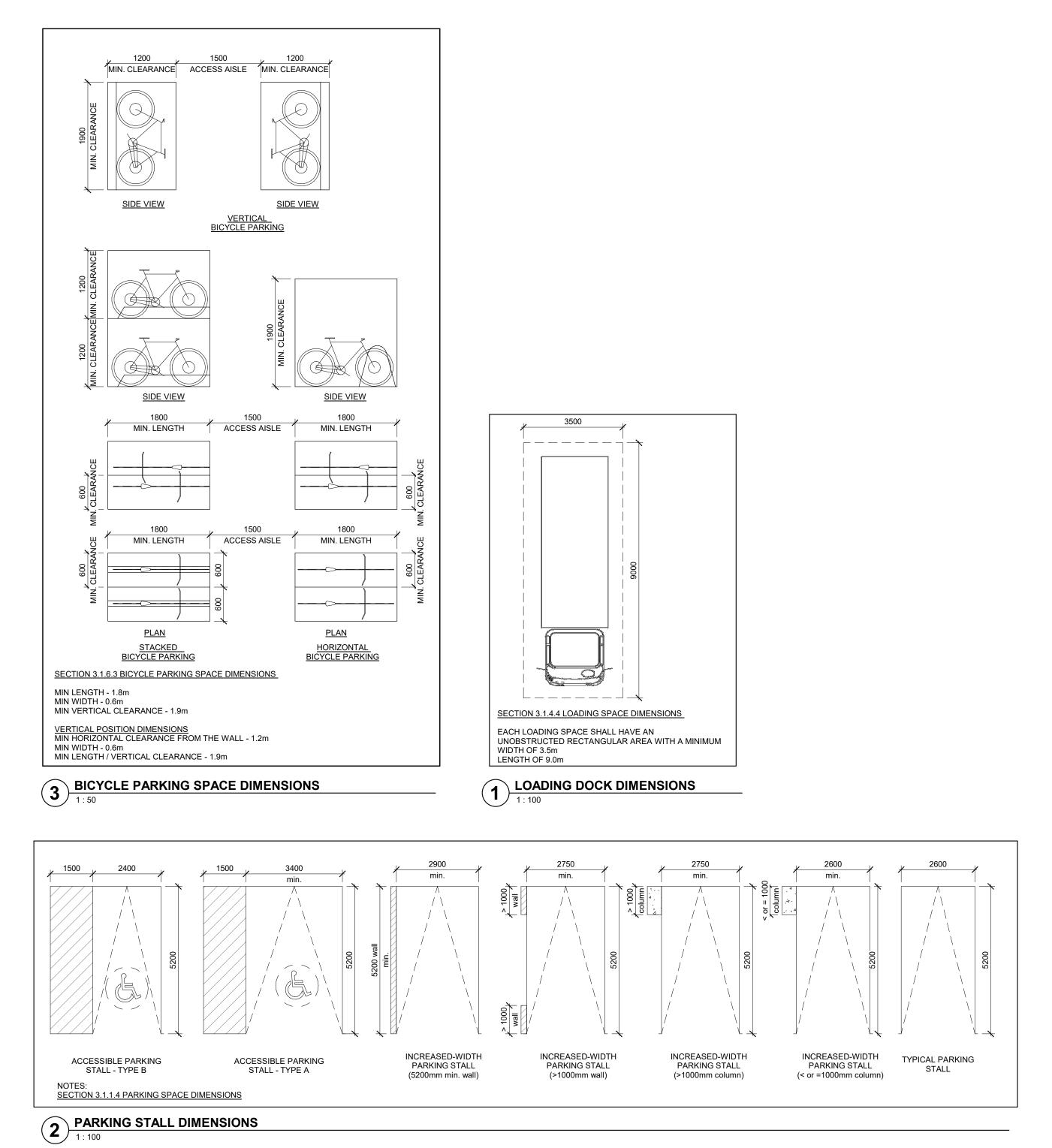
WASTEWATER CONNECTION

		North Bldg	South Bldg	Site Total
6	Discharge Location	Joymar Dr.	Thomas St.	
7	Total Peak Flow (I/s)	26.92	7.76	33.14

Notes & References

Site Plan 24025 prepared by SRM Architects Inc

	Water Demands					
		Dem	and (I/s)			
NO.	Demand Type	North Bldg	South Bldg	Site Total		
1	Average Day Demand	7.25	1.87	9.13		
2	Maximum Day Demand	14.51	3.75	18.25		
3	Peak Hour Demand	21.76	5.62	27.38		
4	Fire Flow	100.00	50.00			
Ana	Analysis					
5	Maximum Day Plus Fire Flow	114.51	53.75			


SITE PLAN D1.1

0 4 8

JOYMAR DRIVE & TANNERY ST, MISSISSAUGA

Scale 1 : 400 FULL SIZE Scale 1 : 800 HALF SIZE

20

SRM[↗] architects+ urban*designers

STATISTICS D1.2

LANDSCAPING DATA	REQUIRED	PROPOSED	PROPOSED (%)
TOTAL LANDSCAPED AREA (m2)	40% OF LOT AREA = 11,110.26 m ²	6,931.08 m ²	25%
TOTAL PAVED AREA (m2)		3,011.96 m ²	
LANDSCAPE BUFFERS (m)	4.5m	3-4.5m	
LOADING REQUIREMENTS	REQUIRED	PROPOSED	PROPOSED (%)
RESIDENTIAL	1	3	300%

AUTOMOBILE INFRASTRUCTURE	MINIMUM RATE	REQ	JIRED	PROP	OSED	PROPOSED (%
NUMBER OF RESIDENTIAL PARKING SPACES	0.80 X UNIT	(DR 1043 ITS)	8	35	100%
NUMBER OF BARRIER FREE PARKING SPACES	2.0 SPACES + 2% OF	TYPE A	TYPE B	TYPE A	TYPE B	
(INCLUDES TOTAL PARKING SPACES)	THE TOTAL = 19	10	9	XX	XX	XX%
NUMBER OF VISITOR PARKING SPACES	0.15 X UNIT	1	57	1:	31	83.4%
TOTAL PARKING SPACES		9	92	96	66	97.4%

CYCLING INFRASTRUCTURE	MINIMUM RATE	REQUIRED	PROPOSED	
NUMBER OF CLASS A - LONG-TERM BICYCLE PARKING SPACES (RESIDENTIAL)	CLASS A:0.6 SPACES PER UNIT	626	626	100%
NUMBER OF CLASS B - SHORT-TERM BICYCLE PARKING SPACES	CLASS B: THE GEATER OF 0.05 SPACES PER UNIT OR 6 SPACES	53	55	103.8%
TOTAL BICYCLE PARKING SPACES	XX	679	681	100.3 %

SHORT-TERM BICYCLE PARKING	MINIMUM RATE	REQUIRED	PROPOSED	
PHASE 1 (TOWER A)		11	12	109%
PHASE 2A (NORTH BUILDING PODIUM)	CLASS B: THE GEATER OF 0.05 SPACES PER UNIT OR 6 SPACES	9	9	100%
PHASE 2B (NORTH BUILDING PODIUM)		9	9	100%
PHASE 3 (SOUTH BUILDING)		11	12	109%
PHASE 4 (TOWER B)		13	13	100%
TOTAL COUNT		53	55	103.8%

ITS DATA - ENTIRE DEVELOPMENT					
		AF	REA		
ТҮРЕ	# OF UNITS	sqm.	sqft.	AVERAGE UNIT SIZE(sf)	PERCENTAGE
STUDIO	30	982.93	10580.17	353	3%
1 BED	565	26002.27	279886.1	493	54%
1 BED + D	116	6262.25	67406.30	581	11%
2 BED	214	14662.83	157829.39	738	21%
2 BED + D	66	5309.99	57156.26	866	6%
3 BED	52	4029.79	43376.30	834	5%
	1043	57250.06	616234.52		

AMENITY AREA REQUIREMENTS	REQUIRED	PROPOSED	PROPOSED (m2/Units)
INDOOR AMENITY AREA (m ²)		1116 m ²	1.07
OUTDOOR AMENITY AREA (m ²)		4082.67 m ²	3.91
TOTAL AMENITY AREA (5.6 m ² / UNIT) (m ²)	5.6*1043 = 5840.8 m ²	5198.67 m ²	4.98

INDOOR AMENITY AREA (m ²)	PROPOSED
LEVEL P1 (Phase 3)	77 m ²
LEVEL 1	915 m²
LEVEL 8	124 m ²
TOTAL INDOOR AMENITY	1116 m ²

OUTDOOR AMENITY AREA (m ²)	PROPOSED
LEVEL P1 (Phase 3 at Grade)	610.89 m ²
LEVEL 1 (at Grade)	2665.78 m ²
LEVEL 8 (ROOFTOP)	806 m ²
TOTAL OUTDOOR AMENITY	4082.67 m ²

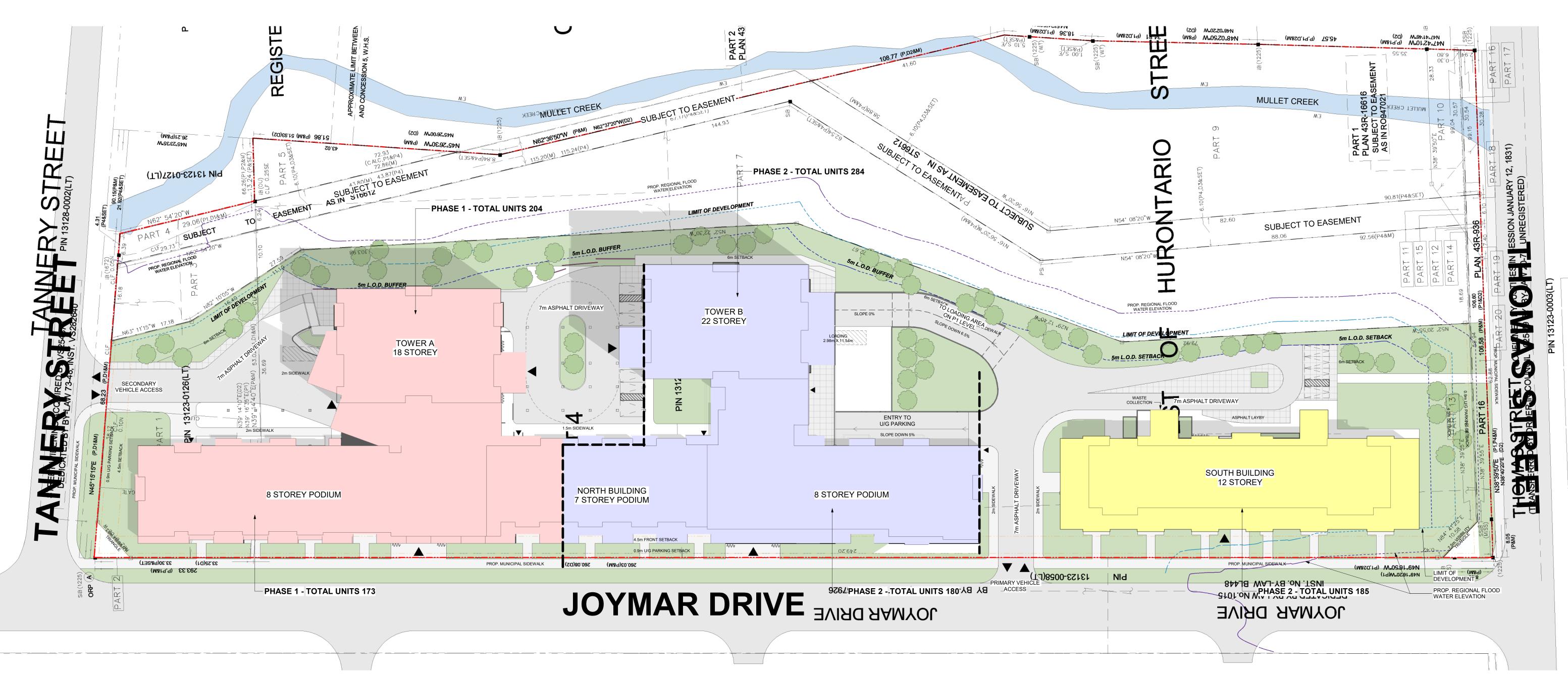
SITE AND ZONING STATISTICS

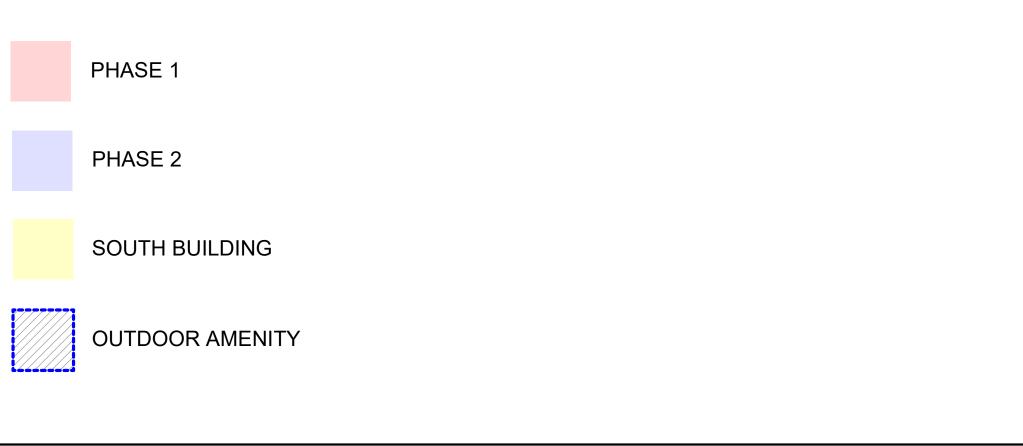
GENERAL SITE DESCRIPTION	
NAME OF PROJECT	JOYMAR DRIVE & TANNERY ST, MISSISSAUGA
MUNICIPAL ADDRESS	95 JOYMAR DR
ZONING BY LAW	RA5
ZONING DESIGNATION	D
OBC BUILDING CLASSIFICATION	C (3.2.2.42)

BUILDING DATA	REQUIRED	PROPOSED	PROPOSED (%)	
BUILDING COVERAGE AREA		7,230 m² (1.78 a)		
LOT AREA A (Environmental)		10,768m² (1.07ha)		
LOT AREA B (Development)		16,590m² (1.66 ha)		
LOT AREA C (Road widening, etc)		400m² (0.04 ha)		
TOTAL LOT AREA (A+B+C)		27,758 m² (2.78 ha)		
LOT WIDTH AT JOYMAR DR.		293.42 m		
LOT WIDTH AT TANNERY ST.		68.23 m		
LOT WIDTH AT THOMAS ST.	1			
DEVELOPABLE LOT FRONTAGE		289.63 m		
DEVELOPABLE LOT DEPTH		70.25m (max) 45.32m (min)		
DENSITY		1043 UNITS		
FLOOR AREA(EXCLUDING UG PARKING) (m ²)		72,588.01 m²		
UNDERGROUND PARKING AREA (m ²)		42,173.06 m ²		
GROSS FLOOR AREA (DEFINED AS PER ZONING) (m ²)		65,749.38 m²		
DENSITY (FSI) GFA/LOT AREA B-DEVELOPMENT		3.96		

Gross Floor Area (GFA) means the sum of the areas of each storey of a building, structure or part thereof, above or below established grade, excluding storage below established grade and a parking structure above or below established grade, measured from the exterior of outside walls, or from the midpoint of common walls. Lot Area means the total horizontal area within the lot lines of a lot. Where this By-law requires a minimum lot area for a use, such area shall be located within the same zone as the use.

Floor Space Index (FSI) means the ratio of the gross floor area of all buildings and structures to the lot area.


SETBACKS	REQUIRED	REQUIRED PROPOSED		
FRONT YARD (m)	30	4.5		
INTERIOR SIDE YARD (m)	9	4.5		
EXTERIOR SIDE YARD (m)	9	4.5		
REAR YARD (m)	15	6		

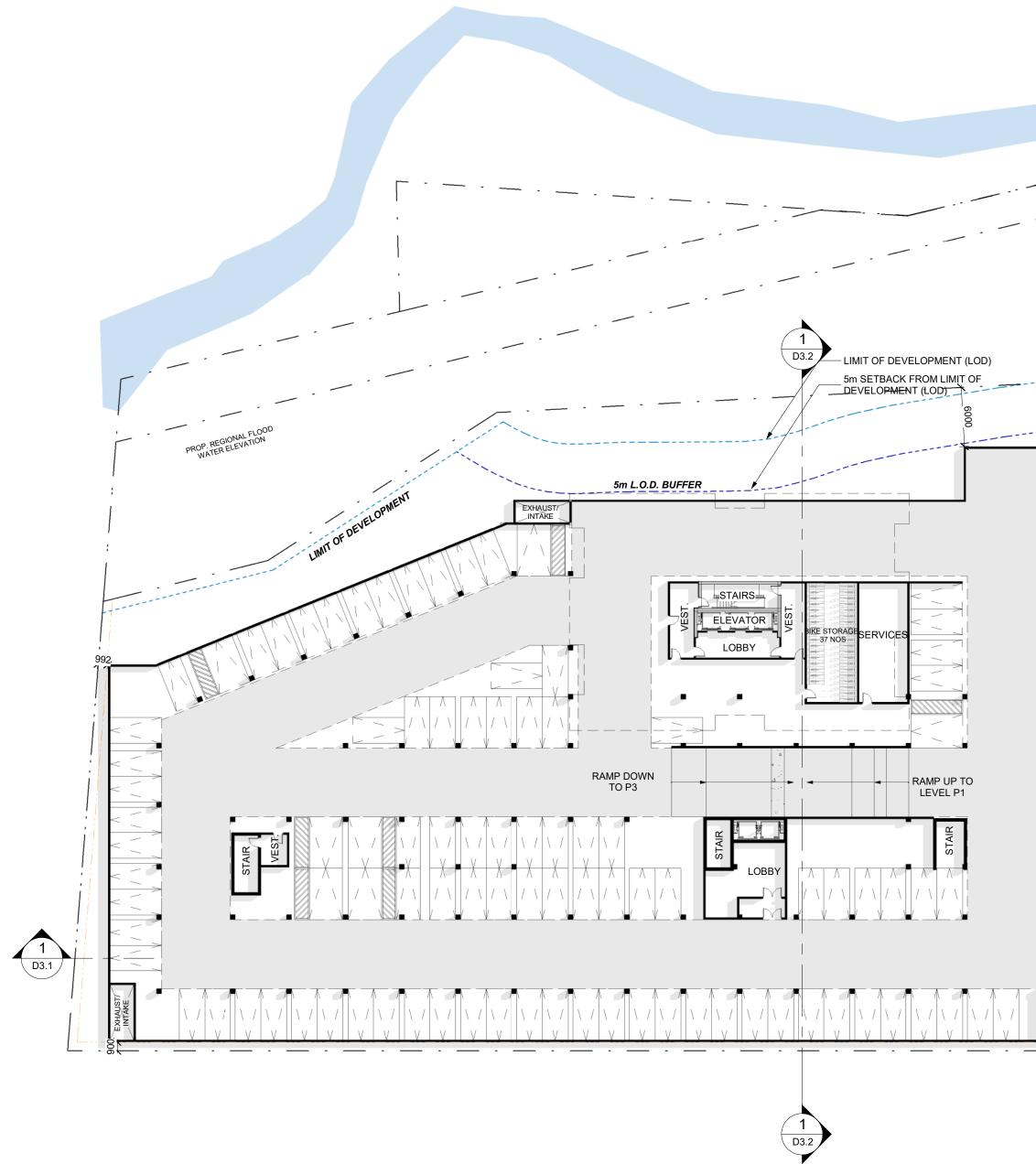

UNITS COUNT AS PER PHASING	REQUIRED	PROPOSED	PROPOSED (%)
PHASE 1 (TOWER A)		209	
PHASE 2A (NORTH BUILDING PODIUM)		180	
PHASE 2B (NORTH BUILDING PODIUM)		188	
PHASE 3 (SOUTH BUILDING)		214	
PHASE 4 (TOWER B)		252	
TOTAL UNITS COUNT		1043	

PHASE 1 (TOWER A)	REQUIRED	PROPOSED	PROPOSED (%)	
NUMBER OF STOREYS		18 STOREYS		
BUILDING HEIGHT (RESIDENTIAL STOREYS) (m)		59.40 m		
RESIDENTIAL AREA (m2)		11,566.78 m²		
AMENITY AREA (INDOOR) (m2)		88.01 m ²		
PHASE 1 (NORTH BUILDING PODIUM)	REQUIRED	PROPOSED	PROPOSED (%)	
NUMBER OF STOREYS		8 STOREYS		
BUILDING HEIGHT (RESIDENTIAL STOREYS) (m)		27.40 m		
RESIDENTIAL AREA (m2)		9,813.80 m²		
AMENITY AREA (INDOOR) (m2)		266.84 m²		
PHASE 2 (NORTH BUILDING PODIUM)	REQUIRED	PROPOSED	PROPOSED (%)	
NUMBER OF STOREYS		8 STOREYS		
BUILDING HEIGHT (RESIDENTIAL STOREYS) (m)		27.40 m		
RESIDENTIAL AREA (m2)		10,694.61 m ²		
AMENITY AREA (INDOOR) (m2)		491.97 m²		
SOUTH BUILDING	REQUIRED	PROPOSED	PROPOSED (%)	
NUMBER OF STOREYS		12 STOREYS		
BUILDING HEIGHT (RESIDENTIAL STOREYS) (m)		46.70 m		
RESIDENTIAL AREA (m2)		11,350.35 m²		
AMENITY AREA (INDOOR) (m2)		77.37 m²		
PHASE 2 (TOWER B)	REQUIRED	PROPOSED	PROPOSED (%)	
NUMBER OF STOREYS		22 STOREYS		
BUILDING HEIGHT (RESIDENTIAL STOREYS) (m)		72.20 m		
RESIDENTIAL AREA (m2)		13,824.53 m²		
AMENITY AREA (INDOOR) (m2)		190.82 m²		

DRAFT FOR **DISCUSSION ONLY**

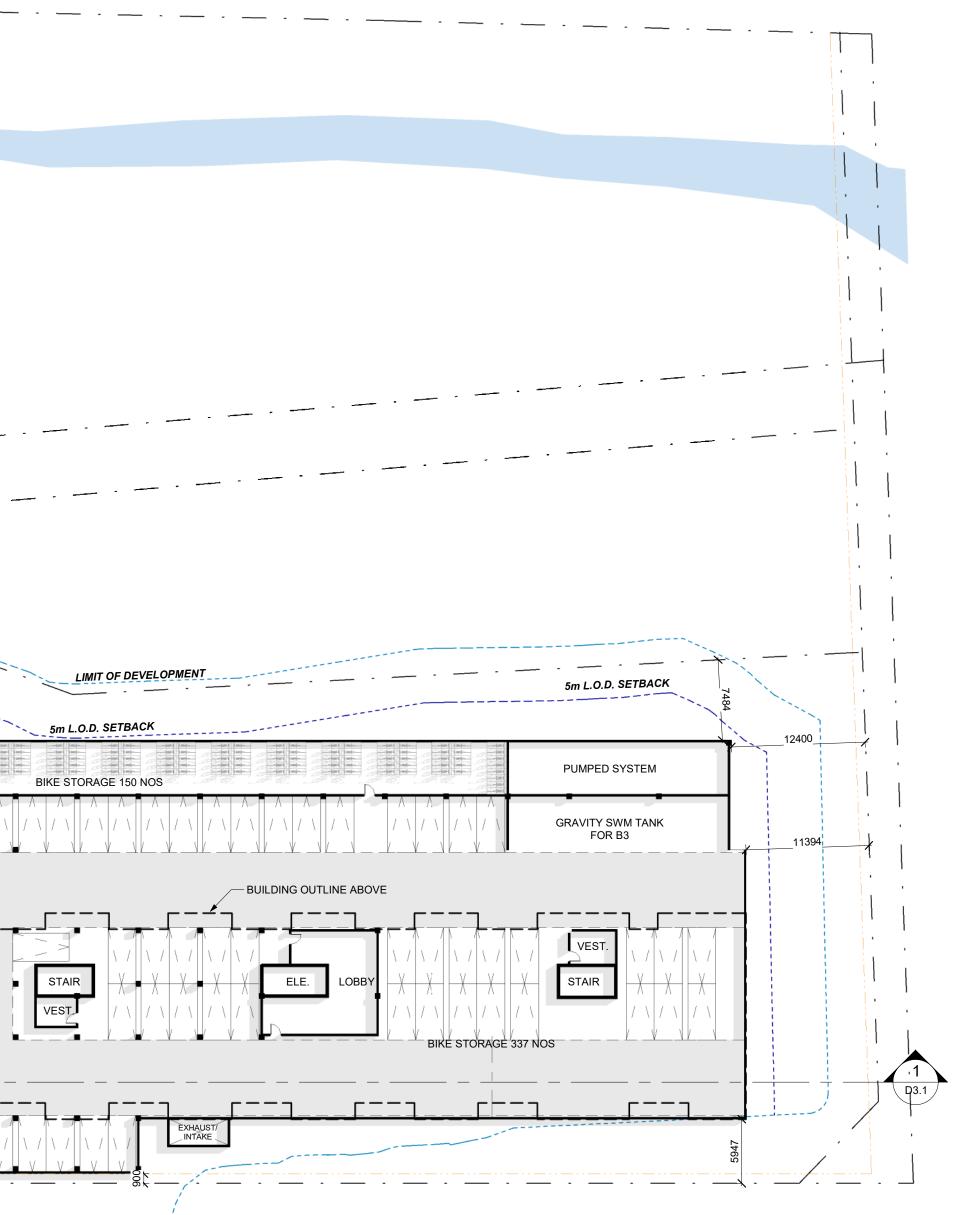
JOYMAR DRIVE & TANNERY ST, MISSISSAUGA

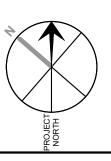
BUILDING PHASING D1.3



JOYMAR DRIVE & TANNERY ST, MISSISSAUGA

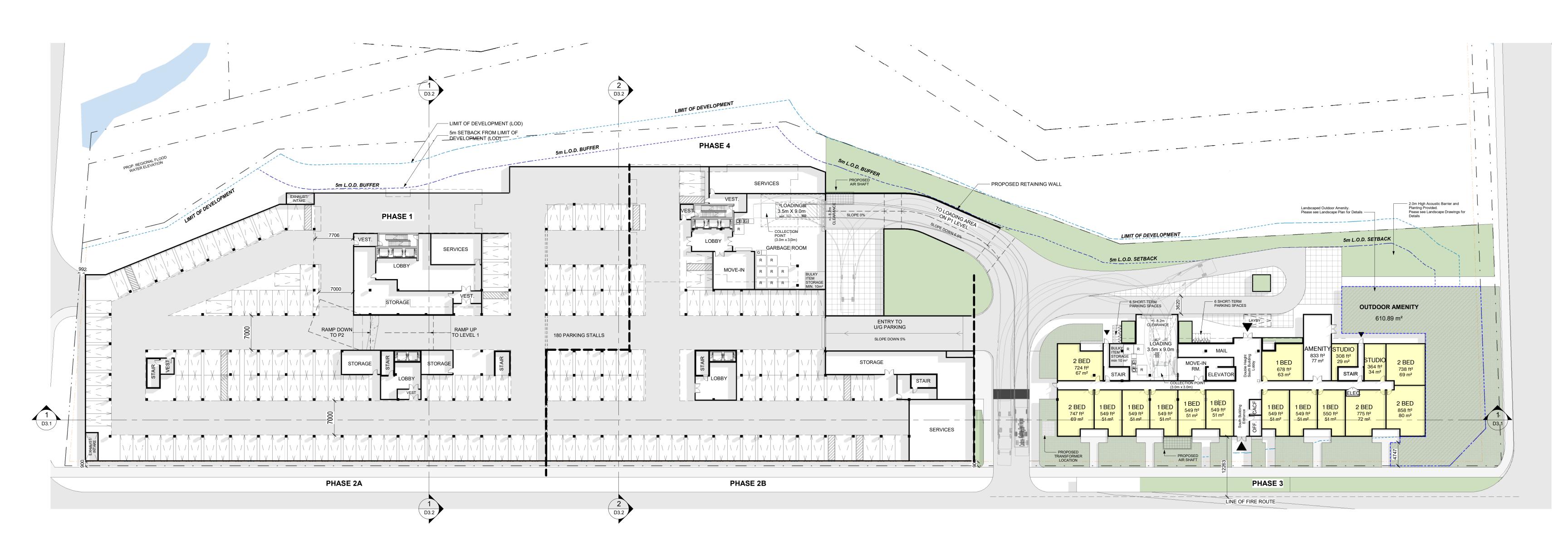
Scale 1 : 400FULL SIZEScale 1 : 800HALF SIZE




le Zen GROUP

PARKING LEVEL P2 D2.3

2 LIMIT OF DEVELOPMENT	
5m L.O.D. BUFFER	5m L.O.D. BUFFER
SERVICE STAILS	SERVICES EXHAUST INTÄKE
LOBBY	
304 PAR	
2 D3.2	

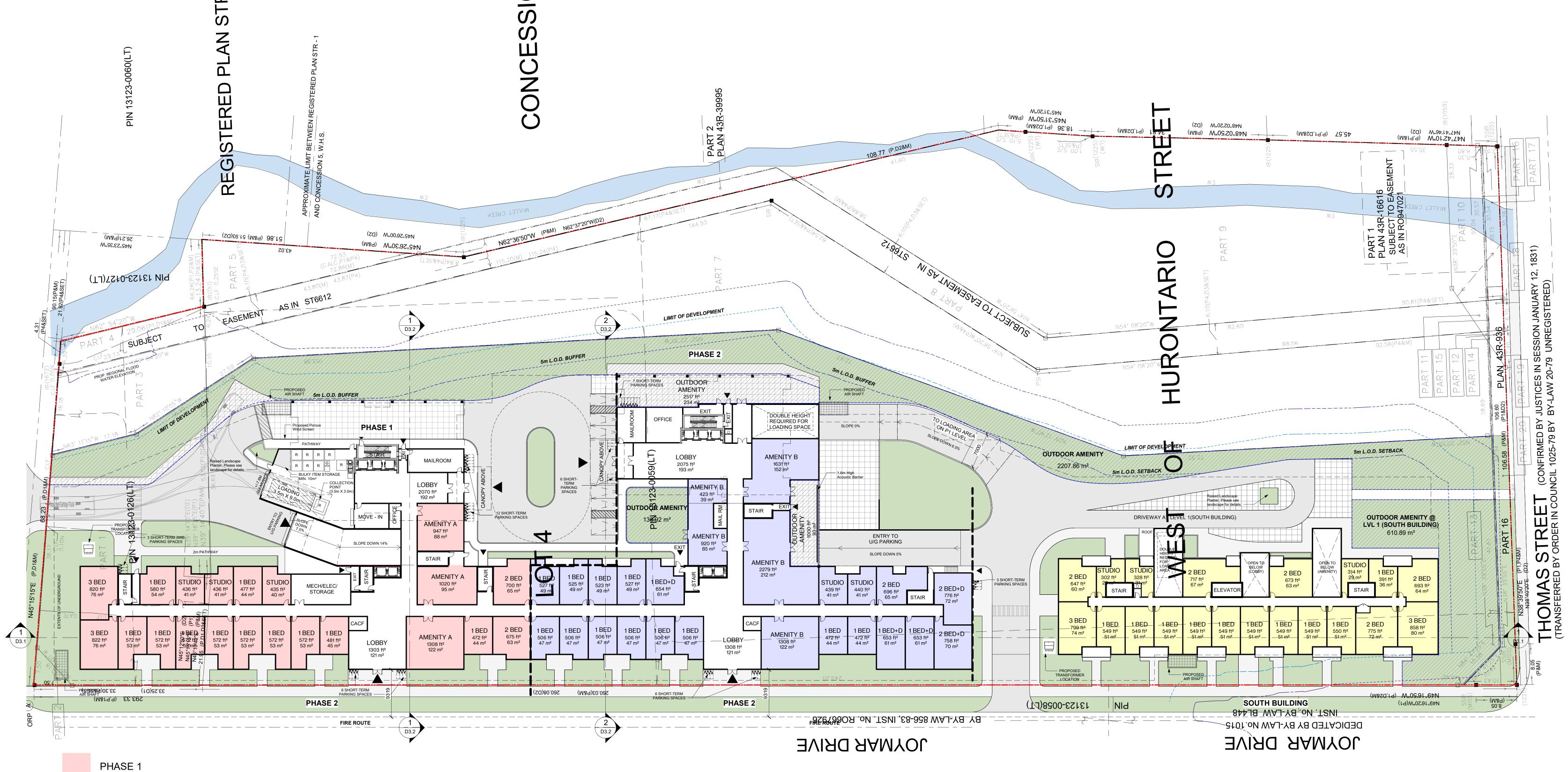


JOYMAR DRIVE & TANNERY ST, MISSISSAUGA

Scale 1 : 350FULL SIZE17.5Scale 1 : 700HALF SIZE

PARKING LEVEL P1 D2.4

JOYMAR DRIVE & TANNERY ST, MISSISSAUGA


Scale 1 : 350FULL SIZE17.5Scale 1 : 700HALF SIZE

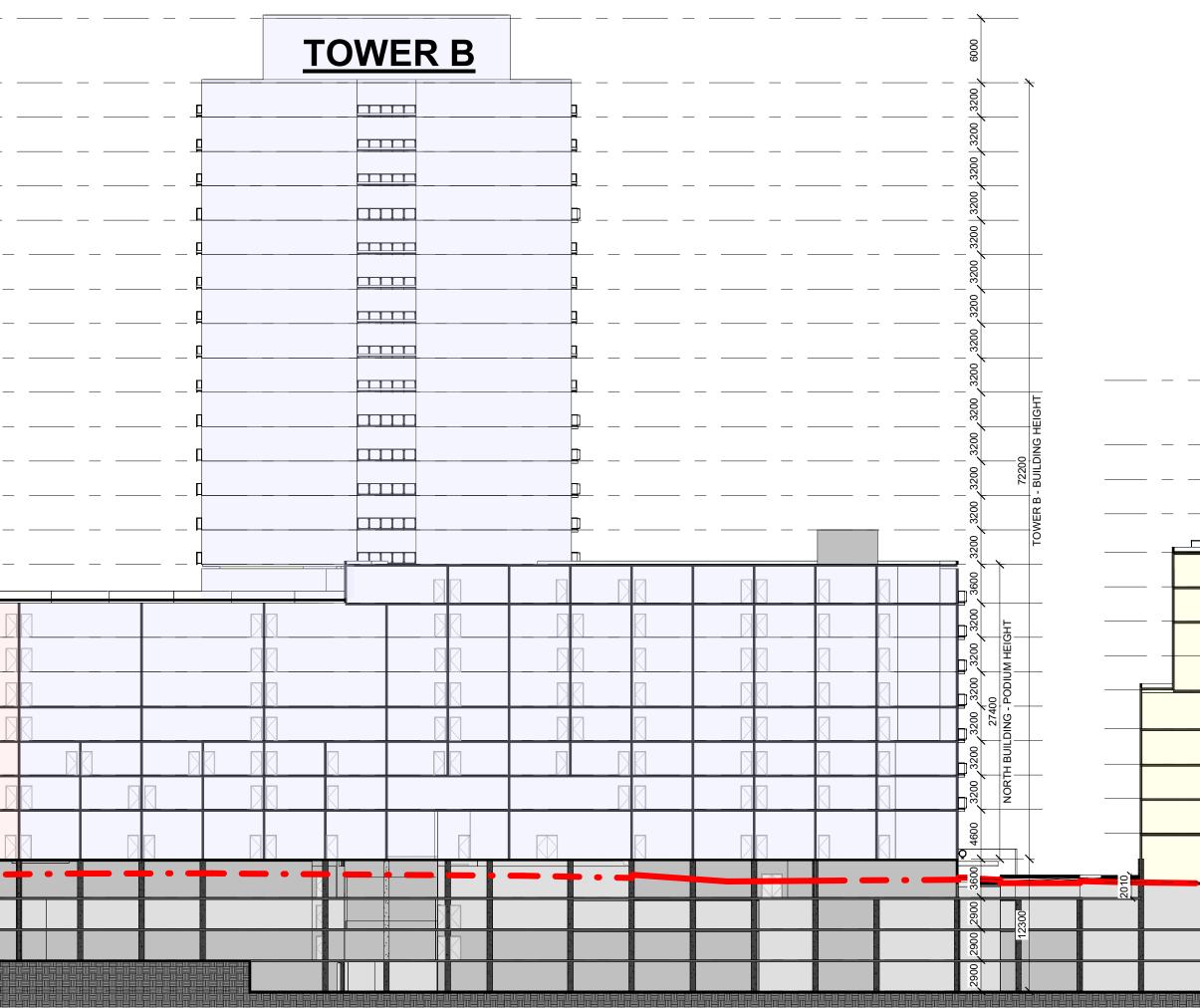
NORTH BUILDING - LEVEL 1 D2.5

PHASE 2 SOUTH BUILDING OUTDOOR AMENITY **NORTH BUILDING - LEVEL 1**

SOUTH BUILDING - LEVEL 2

JOYMAR DRIVE & TANNERY ST, MISSISSAUGA

Scale 1 : 350FULL SIZE17.5Scale 1 : 700HALF SIZE


BUILDING SECTIONS D3.1

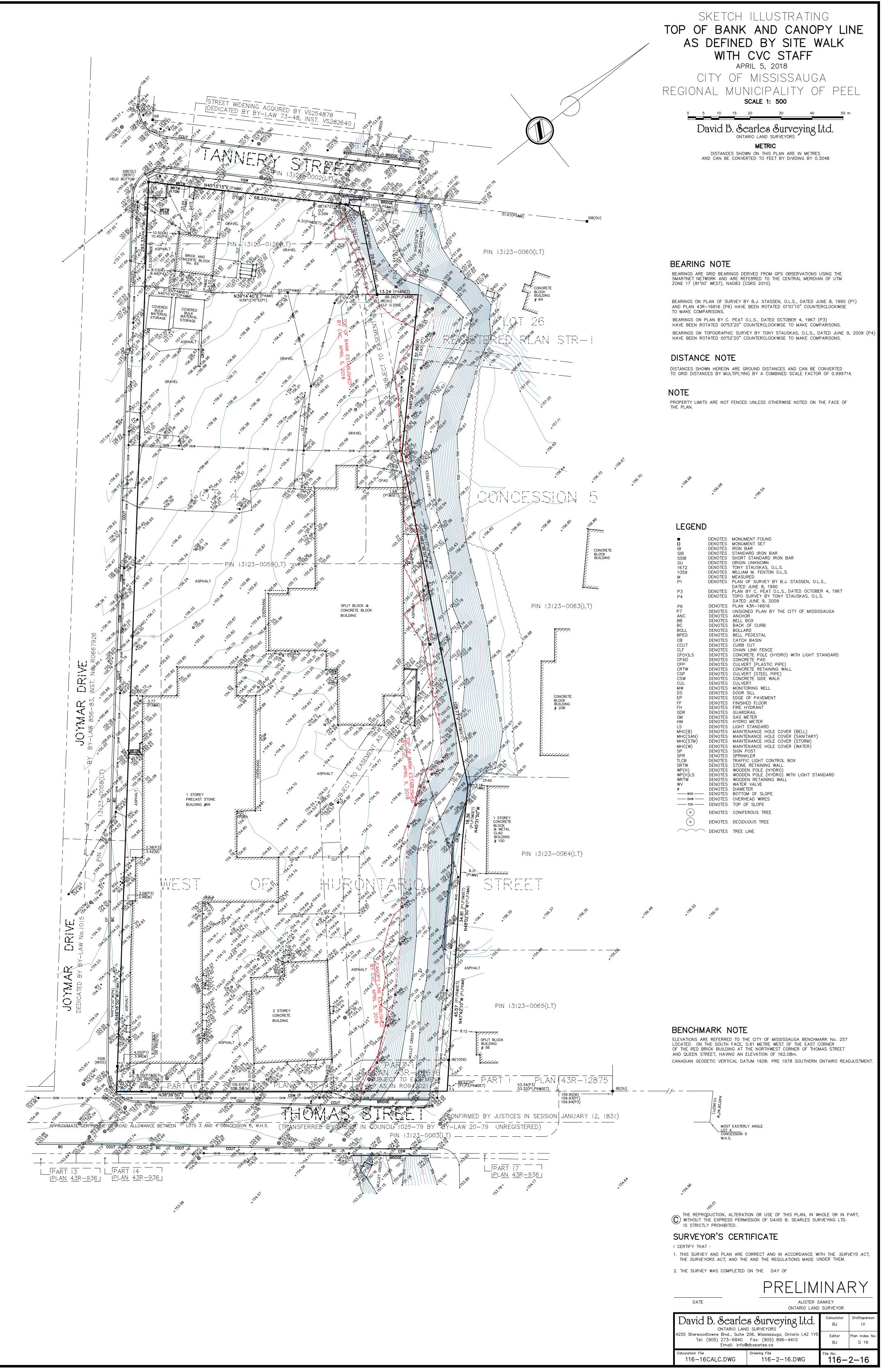
PHASE 2

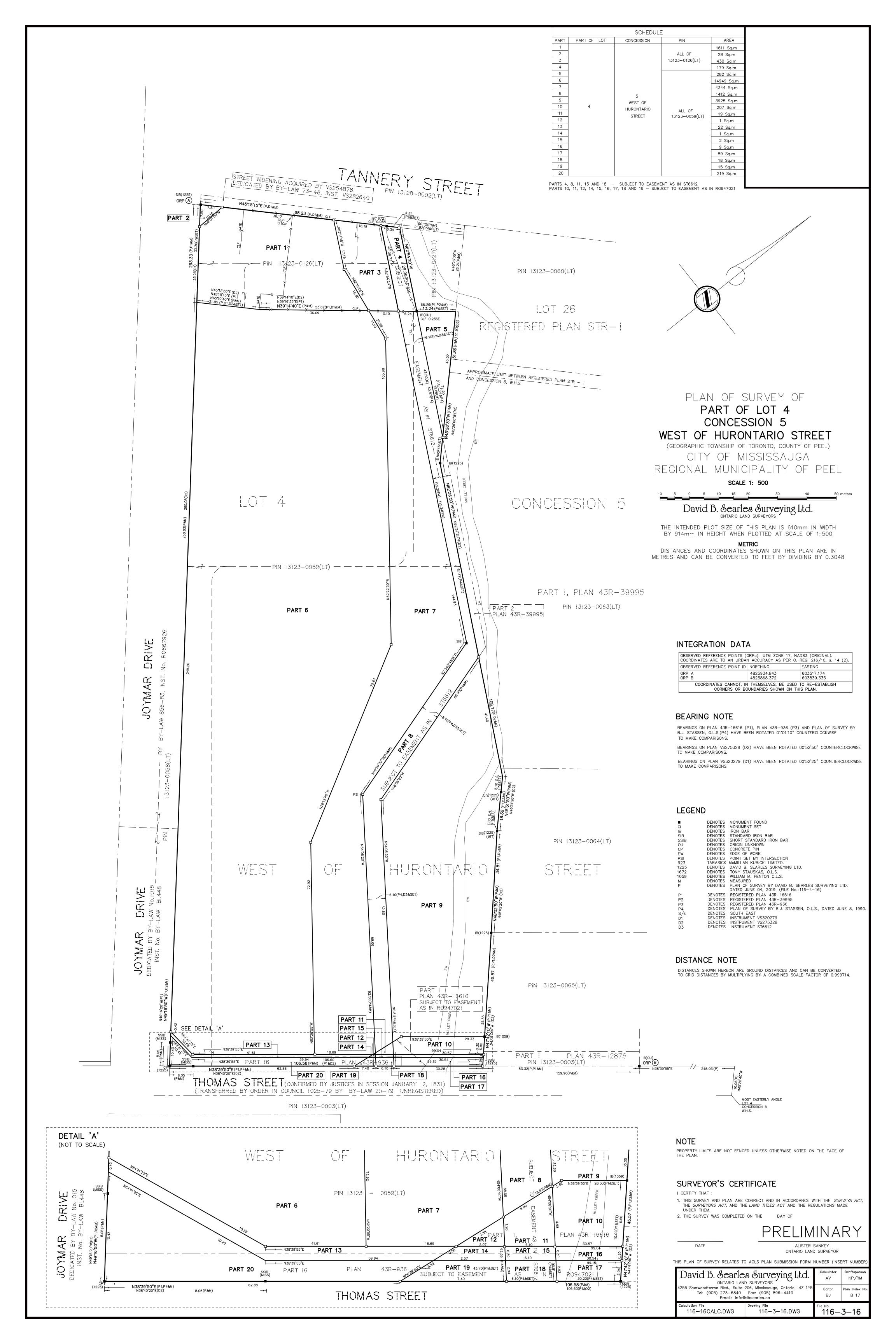
PHASE 1

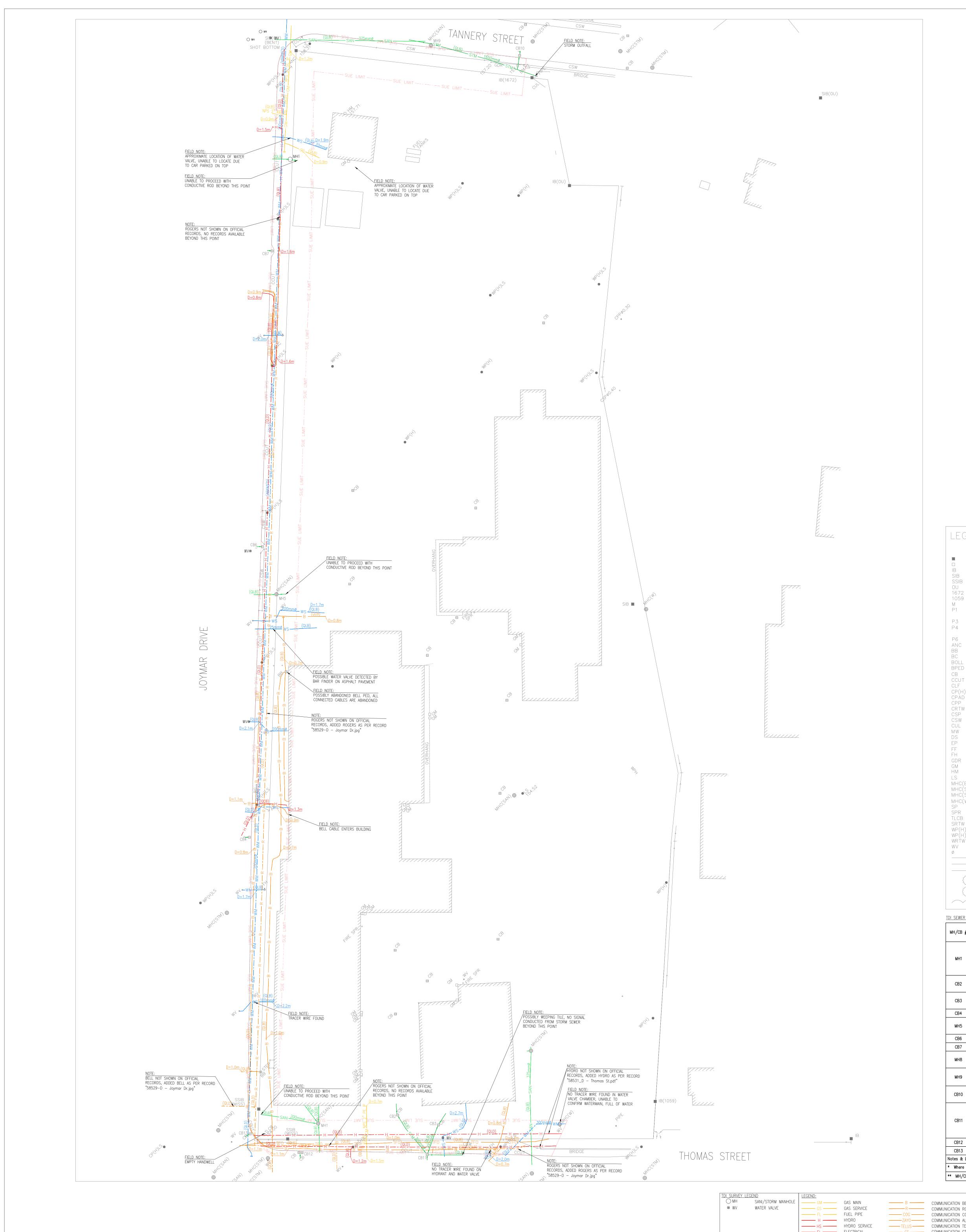
● <u>NORTH BLDG</u> - UNC H	 			 			
 ✓ 229.200 m → NORTH BLDG - 10 EL 22 → 226.000 m 	 			 			
● <u>NORTH BLDG</u> - 222.800 m	 			 			
● <u>NORTH BLDG</u> - <u>LEVEL 2(</u> 8 219.600 m	 			 OWER	A		
NORTH BLDG - LEVEL 19	 				<u> </u>	— — —	
	 		Ę				
$ \begin{array}{c} \bullet 213.200 \text{ m} \\ \bullet 00000 \text{ m} \\ \bullet 000000 \text{ m} \\ \bullet 000000 \text{ m} \\ \bullet 000000 \text{ m} \\ \bullet 0000000 \text{ m} \\ \bullet 00000000000000000000000000000000000$	 		Ę			<u> </u>	
$ \begin{array}{c} \bullet 210.000 \text{ III} \\ \bullet 206.800 \text{ m} \\ \bullet \\ \bullet$	 		Ę				
● <u>NORTH BLDG</u> - <u>L</u> EV <u>EL</u> 15 ⁰⁰ -	 		Ę			<u> </u>	
$ \begin{array}{c c} \hline \text{NORTH BLDG} - \frac{1}{L} \text{EVEL } 14^{\circ} \\ \hline \text{200.400 m} \\ \hline \text{NORTH BLDG} - \frac{1}{L} \text{EVEL } 14^{\circ} \\ \hline \text{NORTH BLDG} - \frac{1}{L} \text{EVEL } 14^{\circ} \\ \hline \text{NORTH BLDG} - \frac{1}{L} \text{EVEL } 14^{\circ} \\ \hline \text{NORTH BLDG} - \frac{1}{L} \text{EVEL } 14^{\circ} \\ \hline \text{NORTH BLDG} - \frac{1}{L} \text{EVEL } 14^{\circ} \\ \hline \text{NORTH BLDG} - \frac{1}{L} \text{EVEL } 14^{\circ} \\ \hline \text{NORTH BLDG} - \frac{1}{L} \text{EVEL } 14^{\circ} \\ \hline \text{NORTH BLDG} - \frac{1}{L} \text{EVEL } 14^{\circ} \\ \hline \text{NORTH BLDG} - \frac{1}{L} \text{EVEL } 14^{\circ} \\ \hline \text{NORTH BLDG} - \frac{1}{L} \text{EVEL } 14^{\circ} \\ \hline \text{NORTH BLDG} - \frac{1}{L} \text{EVEL } 14^{\circ} \\ \hline \text{NORTH BLDG} - \frac{1}{L} \text{EVEL } 14^{\circ} \\ \hline \text{NORTH BLDG} - \frac{1}{L} \text{EVEL } 14^{\circ} \\ \hline \text{NORTH BLDG} - \frac{1}{L} \text{EVEL } 14^{\circ} \\ \hline \text{NORTH BLDG} - \frac{1}{L} \text{EVEL } 14^{\circ} \\ \hline \text{NORTH BLDG} - \frac{1}{L} \text{EVEL } 14^{\circ} \\ \hline \text{NORTH BLDG} - \frac{1}{L} \text{EVEL } 14^{\circ} \\ \hline \text{NORTH BLDG} - \frac{1}{L} \text{EVEL } 14^{\circ} \\ \hline \text{NORTH BLDG} - \frac{1}{L} \text{EVEL } 14^{\circ} \\ \hline \text{NORTH BLDG} - \frac{1}{L} \text{EVEL } 14^{\circ} \\ \hline \text{NORTH BLDG} - \frac{1}{L} \text{EVEL } 14^{\circ} \\ \hline \text{NORTH BLDG} - \frac{1}{L} \text{EVEL } 14^{\circ} \\ \hline \text{NORTH BLDG} - \frac{1}{L} \text{EVEL } 14^{\circ} \\ \hline \text{NORTH BLDG} - \frac{1}{L} \text{EVEL } 14^{\circ} \\ \hline \text{NORTH BLDG} - \frac{1}{L} \text{EVEL } 14^{\circ} \\ \hline \text{NORTH BLDG} - \frac{1}{L} \text{EVEL } 14^{\circ} \\ \hline \text{NORTH BLDG} - \frac{1}{L} \text{EVEL } 14^{\circ} \\ \hline \text{NORTH BLDG} - \frac{1}{L} \text{EVEL } 14^{\circ} \\ \hline \text{NORTH BLDG} - \frac{1}{L} \text{EVEL } 14^{\circ} \\ \hline \text{NORTH BLDG} - \frac{1}{L} \text{EVEL } 14^{\circ} \\ \hline \text{NORTH BLDG} - \frac{1}{L} \text{EVEL } 14^{\circ} \\ \hline \text{EVEL } 14^{\circ} \\ \hline \text{NORTH BLDG} - \frac{1}{L} \text{EVEL } 14^{\circ} \\ \hline \text{NORTH BLDG} - \frac{1}{L} \text{EVEL } 14^{\circ} \\ \hline \text{NORTH BLDG} - \frac{1}{L} \text{EVEL } 14^{\circ} \\ \hline \text{NORTH BLDG} - \frac{1}{L} \text{EVEL } 14^{\circ} \\ \hline \text{NORTH BLDG} - \frac{1}{L} \text{EVEL } 14^{\circ} \\ \hline \text{NORTH BLDG} - \frac{1}{L} \text{EVEL } 14^{\circ} \\ \hline \text{NORTH BLDG} - \frac{1}{L} \text{EVEL } 14^{\circ} \\ \hline \text{NORTH BLDG} - \frac{1}{L} \text{EVEL } 14^{\circ} \\ \hline \text{NORTH BLDG} - \frac{1}{L} \text{EVEL } 14^{\circ} \\ \hline \text{NORTH BLDG} - \frac{1}{L} \text{EVEL } 14^{\circ} \\ \hline \text{NORTH BLDG} - \frac{1}{L} \text{EVEL } 14^{\circ} \\ \hline \text{NORTH BLDG} - \frac{1}{L} \text{EVEL } 14^{\circ} \\ \hline \text{NORTH BLDG} - \frac{1}{L} \text{EVEL } 14^{\circ} \\ \hline \ \text{NORTH BLDG} -$	 		Ę			<u> </u>	
● <u>NORTH BLDG</u> - <u>L</u> EV <u>EL 13</u> ,	 		Ę			<u> </u>	
	 	·				<u> </u>	
	 	·				<u> </u>	
● 190.800 m 9 8 ● NORTH BLDG - LEVELO	 					<u> </u>	
● <u>NORTH BLDG</u> - LEVE 000 187.600 m - LEVE 000 0000	'					<u> </u>	
					R		
NORTH BLDG - LEVEL 5 🔨 🗌							
🗥 NORTH BLDG - I FVEL 4 °							
🗥 NORTH BLDG - LEVEL 3 🔨 🗌							
● 164.800 m ● 164.800 m ● 161.600 m ● 161.600 m							
NORTH BLDG - LEVEL 1 157.000 m						•	
0 153.400 m						5	
150.500 m							
● <u>LEVEL P3</u> 147.600 m ● <u>LEVEL P4</u> 144.700 m							

NORTH BUILDING

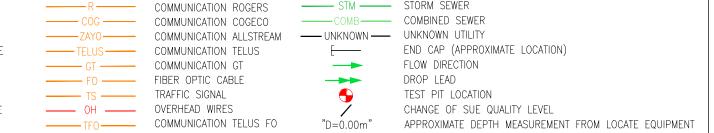
Scale 1 : 350FULL SIZE17.5Scale 1 : 700HALF SIZE


2024-12-18


JOYMAR DRIVE & TANNERY ST, MISSISSAUGA


DRAFT FOR **DISCUSSION ONLY**

SOUTH BUILDING


		Ш	SOUTH BLDG - ROOF 201.500 m SOUTH BLDG - MECH 195.500 m SOUTH BLDG - LEVEL 12 192.300 m SOUTH BLDG - LEVEL 11 189.100 m SOUTH BLDG - LEVEL 10 185.500 m
		46700 46700 3200	SOUTH BLDG - LEVEL 9 182.300 m SOUTH BLDG - LEVEL 8 179.100 m SOUTH BLDG - LEVEL 7 175.900 m SOUTH BLDG - LEVEL 6 172.700 m SOUTH BLDG - LEVEL 5 169.100 m SOUTH BLDG - LEVEL 4 165.800 m SOUTH BLDG - LEVEL 3 162.600 m SOUTH BLDG - LEVEL 2 159.400 m

OW	GAS MAIN
—— GS ——	GAS SERVICE
FL	FUEL PIPE
— н —	HYDRO
——— HS ———	HYDRO SERVICE
EL	ELECTRICAL
	STREET LIGHT
— WM —	WATERMAIN
——— WS ———	WATER SERVICE
CHEM	CHEMICAL
	FL H HS EL SL WM WS

		-,		
** MH/CB or pipe	opening contains deb	ris. May require flushing or cleaning prior to obtaining measureme	ients.	
MMUNICATION BELL MMUNICATION ROGERS MMUNICATION COGECO MMUNICATION ALLSTREAM MMUNICATION TELUS MMUNICATION GT ER OPTIC CABLE AFFIC SIGNAL ERHEAD WIRES	STM СОМВ	 SANITARY SEWER STORM SEWER COMBINED SEWER UNKNOWN UTILITY END CAP (APPROXIMATE LOCATION) FLOW DIRECTION DROP LEAD TEST PIT LOCATION CHANGE OF SUE QUALITY LEVEL 	SURVEY NOTE THE GEODETIC ELEVATION LAYE IS TURNED OFF FOR PRESENTATION PURPOSES ONL ALL RELATIVE UTILITY ELEVATIONS ARE SHOWN IN THE AUTOCAD DIGITA FILE (_DWG).	THIS DOCUMENT HAS BEEN PREF NOTED TELECON CUENT(S) REFE USE, AND WHEN REQUIRED BY L APPROPRIATE GOVERNMENT REVIE AGENCIES. THE DRAWING HAS BE FOR THE USE OF TELECON'S CL NOT BE USED, REPRODUCED OR BY THIRD PARTIES, UNLESS WRIT HAS BEEN GRANTED. E NOT TO BE USED FOR EXCAVATION CONTACT ONTARIO ONE CALL 1 –
MMUNICATION TELUS FO	"D=0.00m"	APPROXIMATE DEPTH MEASUREMENT FROM LOCATE EQUIPMENT		

н/СВ #	Type of sewer	Grade Elevation (m)	Direction	Materials	Depth Inv (m)	Depth Obv (m)	Size (mm)	Flows to	Elevation Invert (m)	Elevation Obvert (m)	Remarks
		154.04	N	Clay	2.32	2.12	200		151.72	151.92	
MU1	Sanitary	154.04	S	Clay	2.35	2.15	200	ç	151.69	151.89	
MH1	Sumury	154.04	NW	Clay	1.94	1.74	200	S	152.10	152.30	
		154.04	W	Clay	2.07	1.82	250		151.97	152.22	
CB2	Charma	153.64	Ν	Concrete	1.03	0.83	200	SE	152.61	152.81	
CBZ	Storm	153.64	SE	Concrete	1.17	0.87	300	SE	152.47	152.77	
CB3	Charma	153.97	NE	Clay	1.34	1.19	150	SW	152.63	152.78	
CBS	Storm	153.97	SW	Concrete	1.60	1.30	300	5W	152.37	152.67	
CB4	Storm	154.46	W	Plastic	0.84	0.59	250	W	153.62	153.87	
MUE	Sanitary	156.00	W	Plastic	3.90	3.65	250		152.10	152.35	
MH5	Sumury	156.00	E	Plastic	3.89	3.64	250	w	152.11	152.36	
CB6	Storm	156.24	W	Plastic	1.25	1.00	250	W	154.99	155.24	
CB7	Storm	157.21	W	Plastic	1.23	0.98	250	W	155.98	156.23	
MH8	Sanitary	157.83	W	Plastic	4.58	4.33	250	w	153.25	153.50	
мпо	Sumury	157.83	E	Plastic	4.54	4.29	250	vv	153.29	153.54	
14110	0	157.49	W	Concrete	N/A	N/A	N/A	ſ	N/A	N/A	Battern of abarabar - 7 74m CCC required
MH9	Storm	157.49	E	Concrete	N/A	N/A	N/A	E	N/A	N/A	Bottom of chamber = 3.34m, CSE required
		156.85	N	Concrete	1.50	1.25	250		155.35	155.60	
CB10	Storm	156.85	S	Concrete	1.65	1.40	250	S	155.20	155.45	
		153.86	S	Concrete	N/A	N/A	N/A		N/A	N/A	Pipe size as per measurement = 375mmø
		153.86	E	Metal	1.38	1.23	150		152.48	152.63	Weeping tile pipe
CB11	Storm	153.86	NW	Concrete	N/A	N/A	N/A	S	N/A	N/A	
		153.86	NE	Concrete	N/A	N/A	N/A		N/A	N/A	Bottom of chamber = 2.07m, CSE required
CB12	Strom	153.69	S	Concrete	1.42	1.12	300	S	152.27	152.57	
CB13	Storm	153.73	SW	Plastic	1.07	0.77	300	SW	152.66	152.96	

1059		WILLIAM M. FENION U.L.S.
M P1		MEASURED Plan of survey by B.J. stassen, O.L.S.,
	DENUTES	DATED JUNE 8, 1990
P3	DENOTES	PLAN BY C. PEAT O.L.S., DATED OCTOBER 4, 1967
P4	DENOTES	TOPO SURVEY BY TONY STAUSKAS, O.L.S.
	DENOTES	DATED JUNE 9, 2009
P6	DENOTES	PLAN 43R-16616
ANC		ANCHOR
BB		BELL BOX
BC		BACK OF CURB
BOLL		BOLLARD
BPED		BELL PEDESTAL
СВ	DENOTES	CATCH BASIN
CCUT	DENOTES	CURB CUT
CLF CP(H)LS	DENOTES	CHAIN LINK FENCE CONCRETE POLE (HYDRO) WITH LIGHT STANDARD
CP(H)LS	DENOTES	CONCRETE POLE (HYDRO) WITH LIGHT STANDARD
CPAD	DENOTES	CONCRETE PAD
CPP		CULVERT (PLASTIC PIPE)
CRTW		CONCRETE RETAINING WALL
CSP CSW		CULVERT (STEEL PIPE)
CUL		CONCRETE SIDE WALK CULVERT
MW		MINITORING WELL
DS		DOOR SILL
EP		EDGE OF PAVEMENT
FF		FINISHED FLOOR
FH	DENOTES	FIRE HYDRANT
GDR		GUARDRAIL
GM		GAS METER
HM		HYDRO METER
	DENOTES	LIGHT STANDARD
MHC(B)	DENOTES	MAINTENANCE HOLE COVER (BELL)
MHC(SAN) MHC(STM)	DENOTES	MAINTENANCE HOLE COVER (SANITARY) MAINTENANCE HOLE COVER (STORM)
MHC(W)	DENOTES	MAINTENANCE HOLE COVER (WATER)
SP		SIGN POST
SPR		SPRINKLER
TLCB		TRAFFIC LIGHT CONTROL BOX
SRIW	DENOTES	STONE RETAINING WALL
		WOODEN POLE (HYDRO)
WP(H)LS	DENOTES	WOODEN POLE (HYDRO) WITH LIGHT STANDARD
WRTW	DENOTES	WOODEN RETAINING WALL
WV	DENOTES	WATER VALVE
Ø	DENOTES	DIAMETER BOTTOM OF SLOPE
	DENOTES	
	DENOTES	OVERHEAD WIRES
~~~	DENOTES	TOP OF SLOPE
{0}	DENOTES	CONIFEROUS TREE
	DENOTES	DECIDUOUS TREE
	DENOTES	TREE LINE

DENOTES MONUMENT FOUND

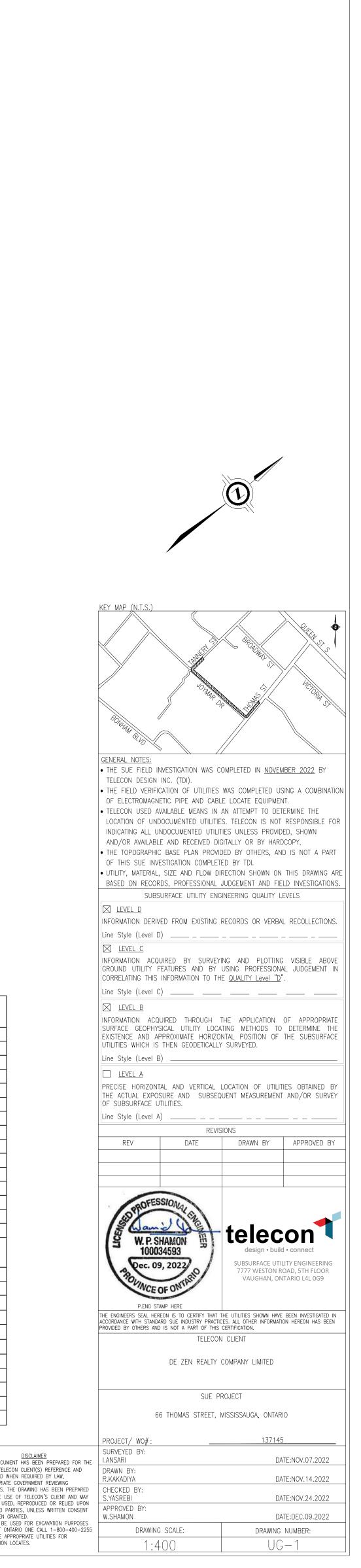
DENOTES STANDARD IRON BAR

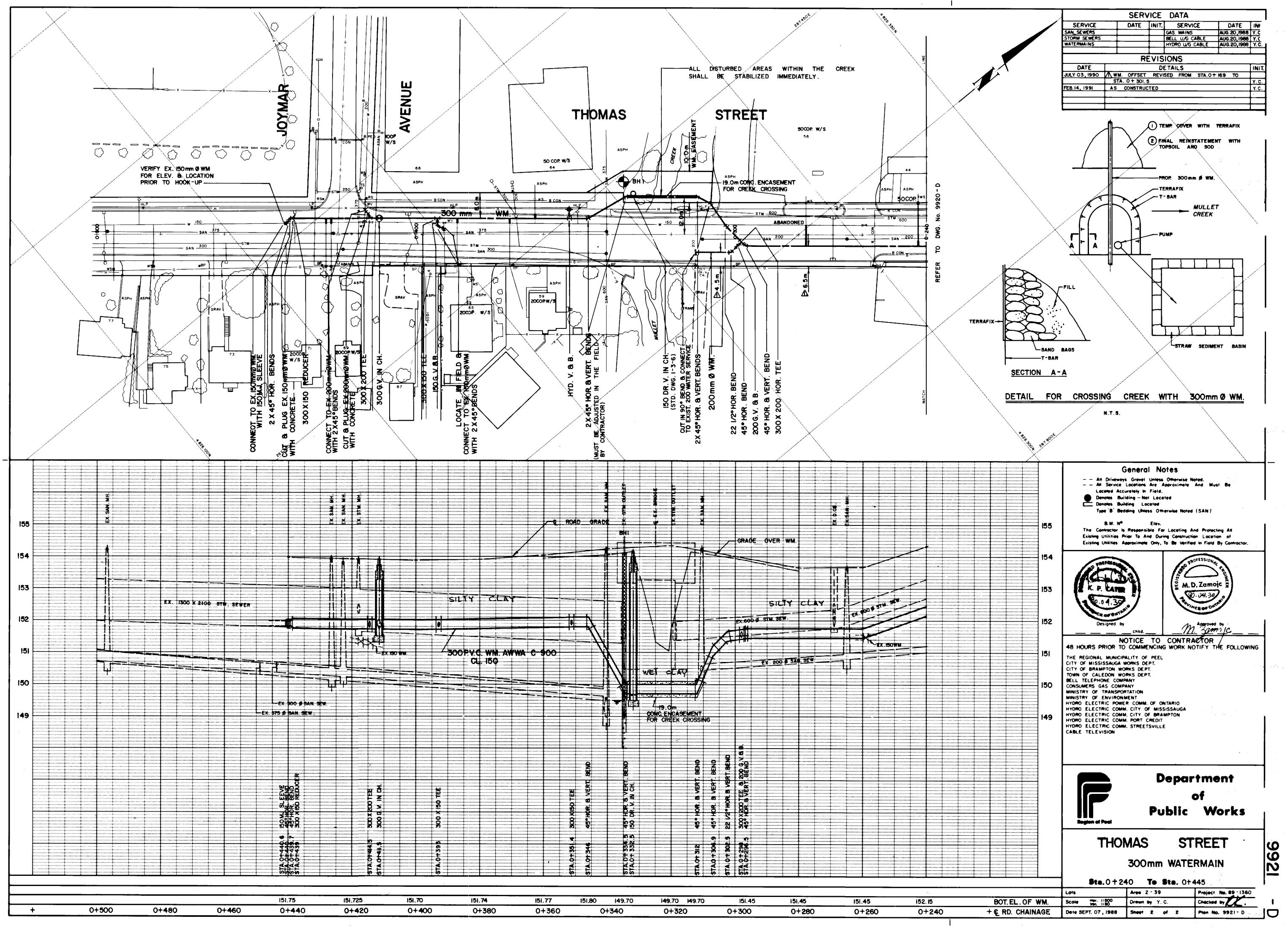
DENOTES SHORT STANDARD IRON BAR

DENOTES WILLIAM M. FENTON O.L.S.

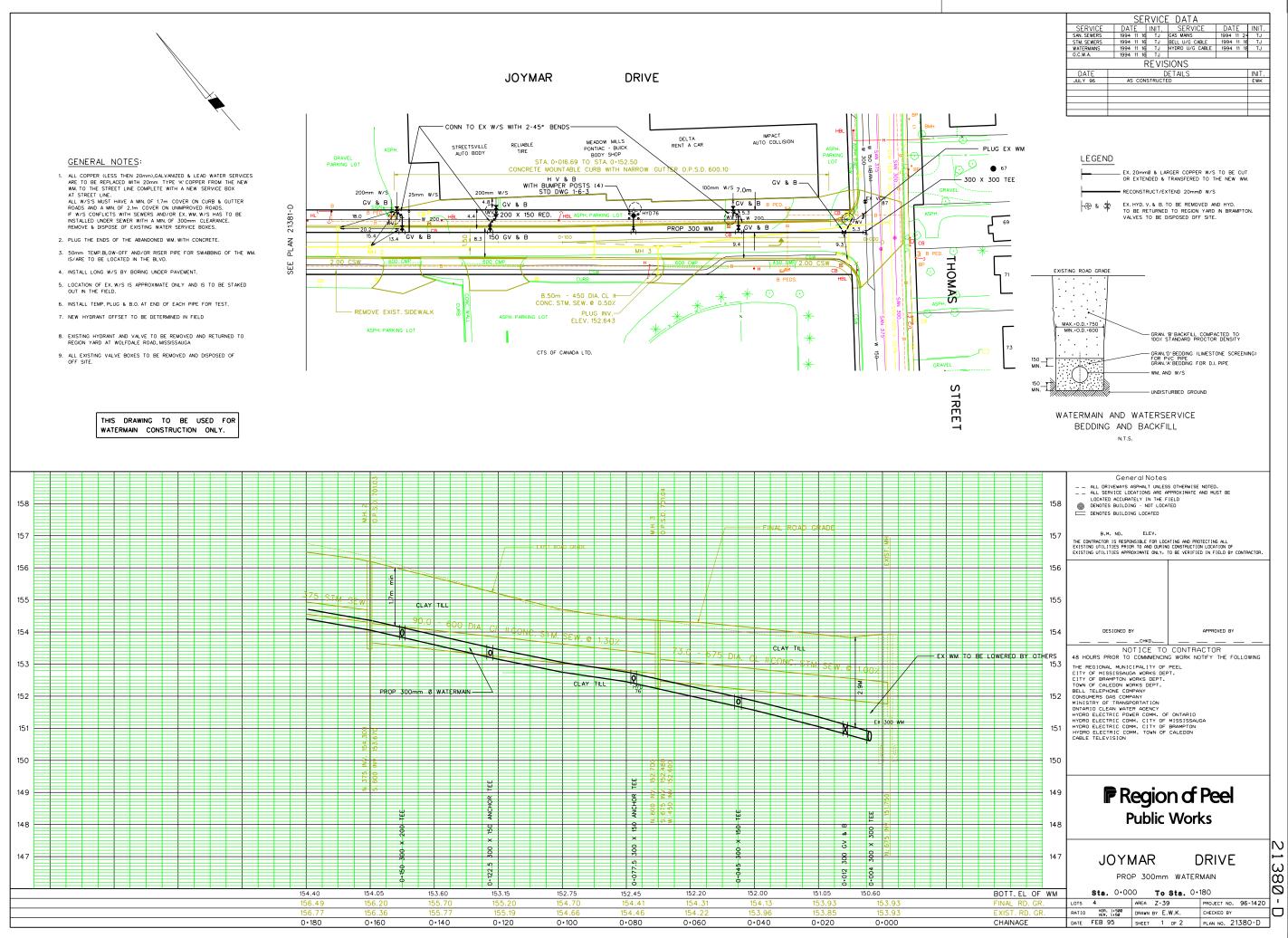
DENOTES MONUMENT SET DENOTES IRON BAR

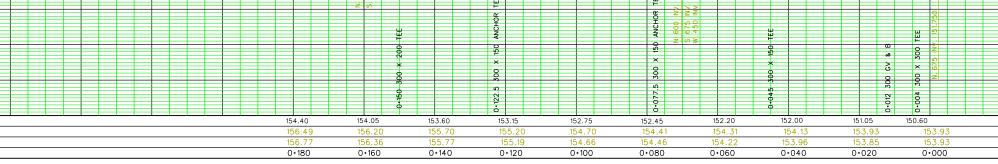
DENOTES ORIGIN UNKNOWN DENOTES TONY STAUSKAS, O.L.S.

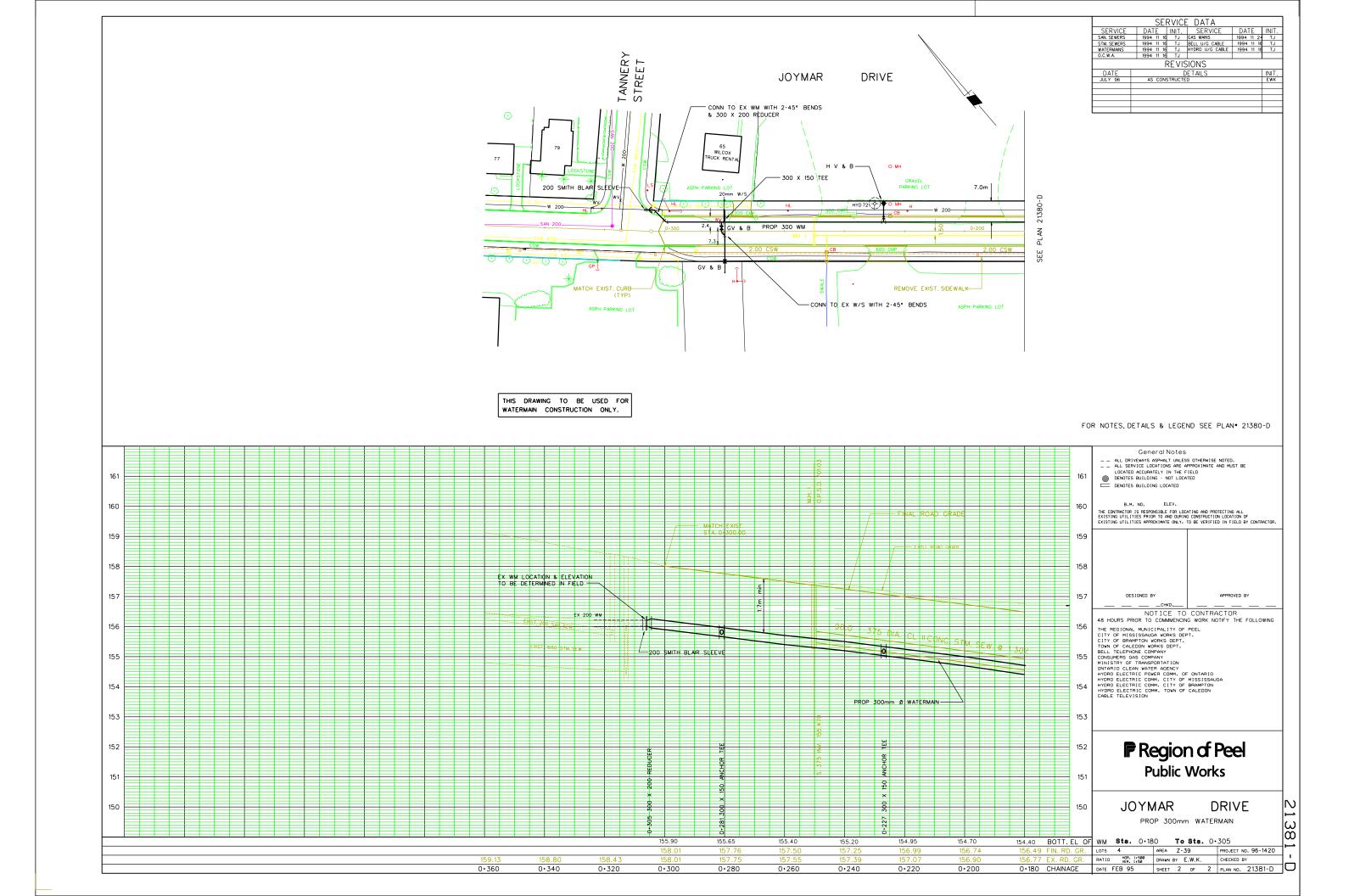

LEGEND

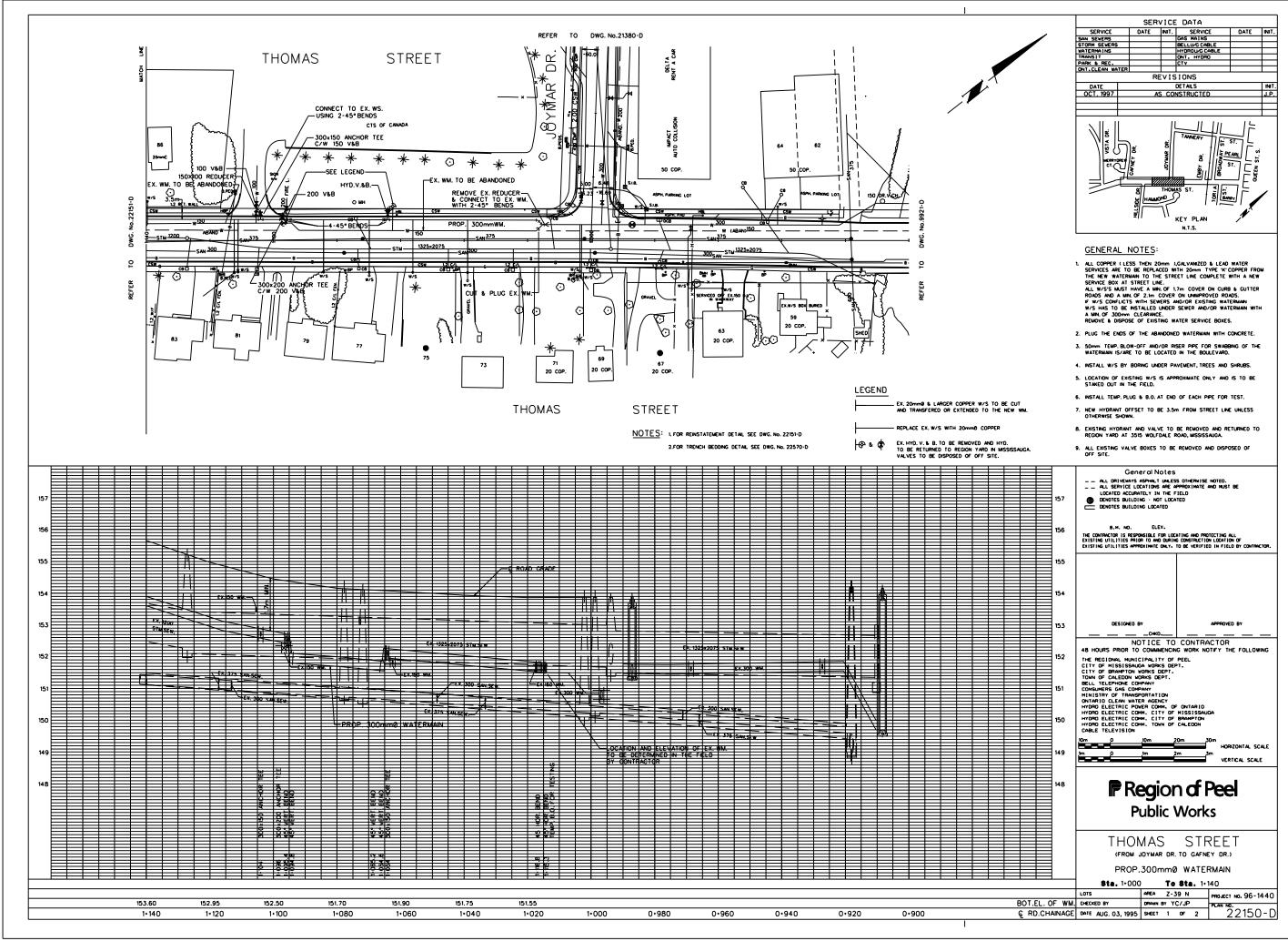

SIB

SSIB

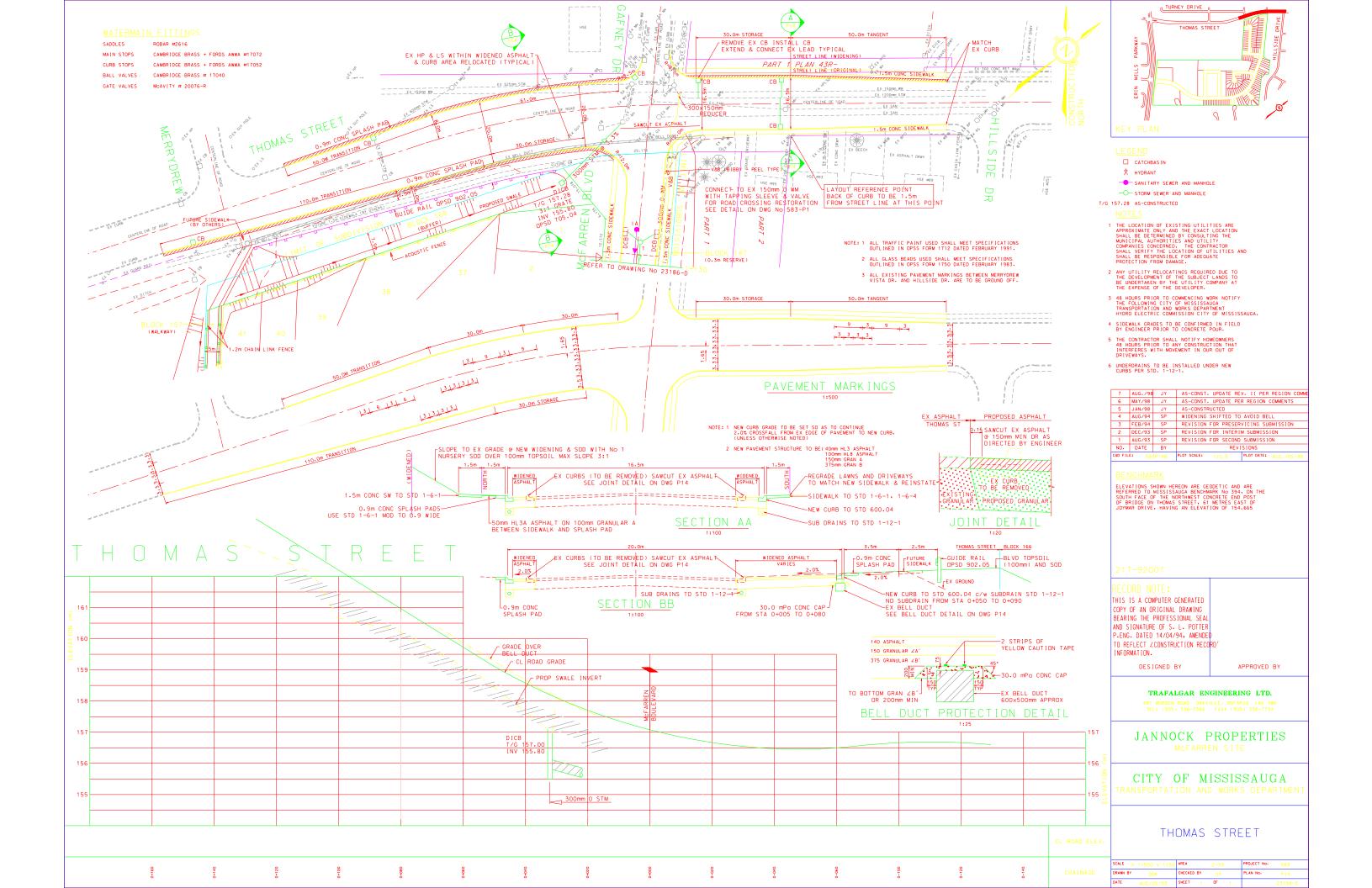

1672

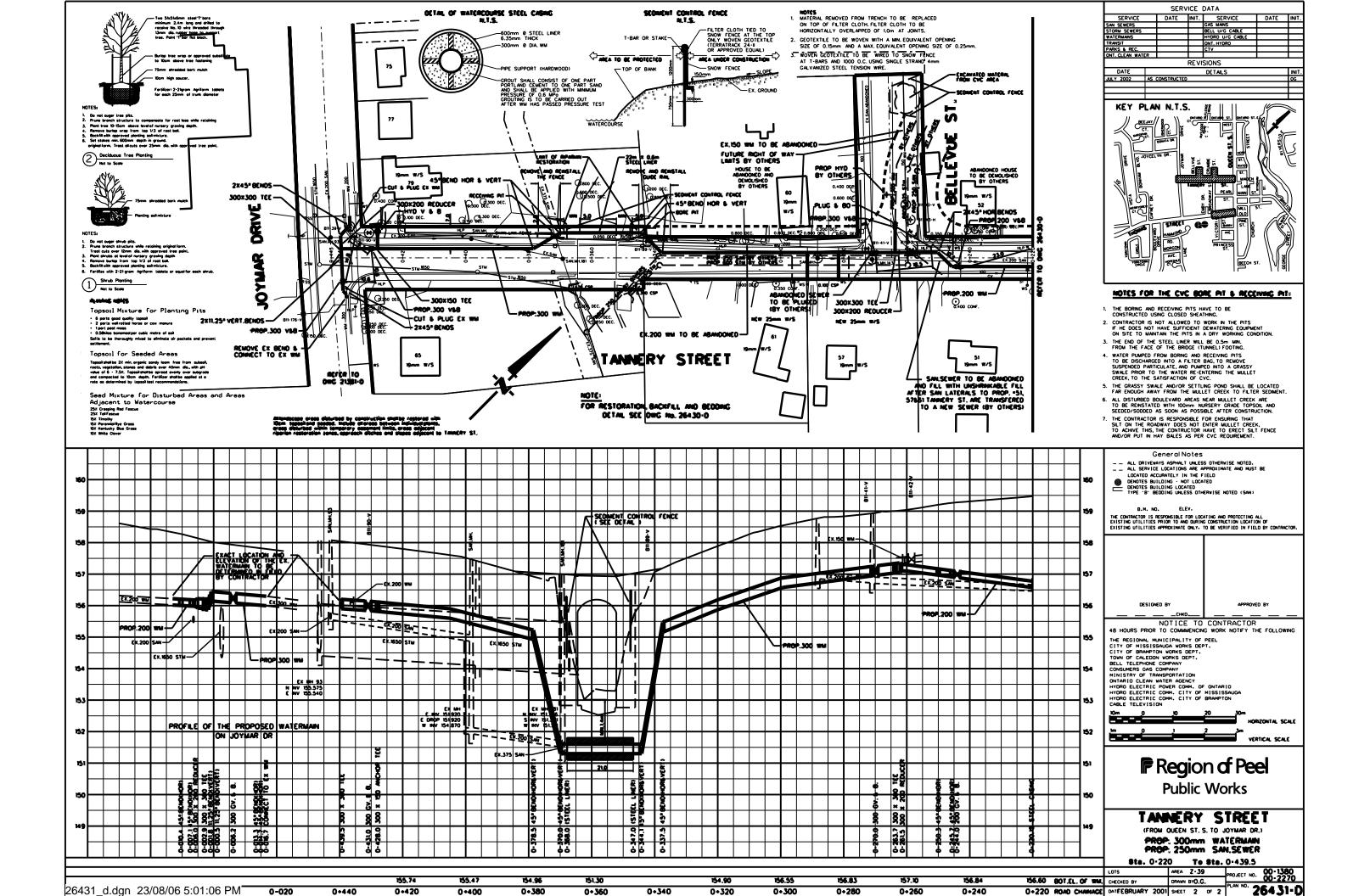

1059

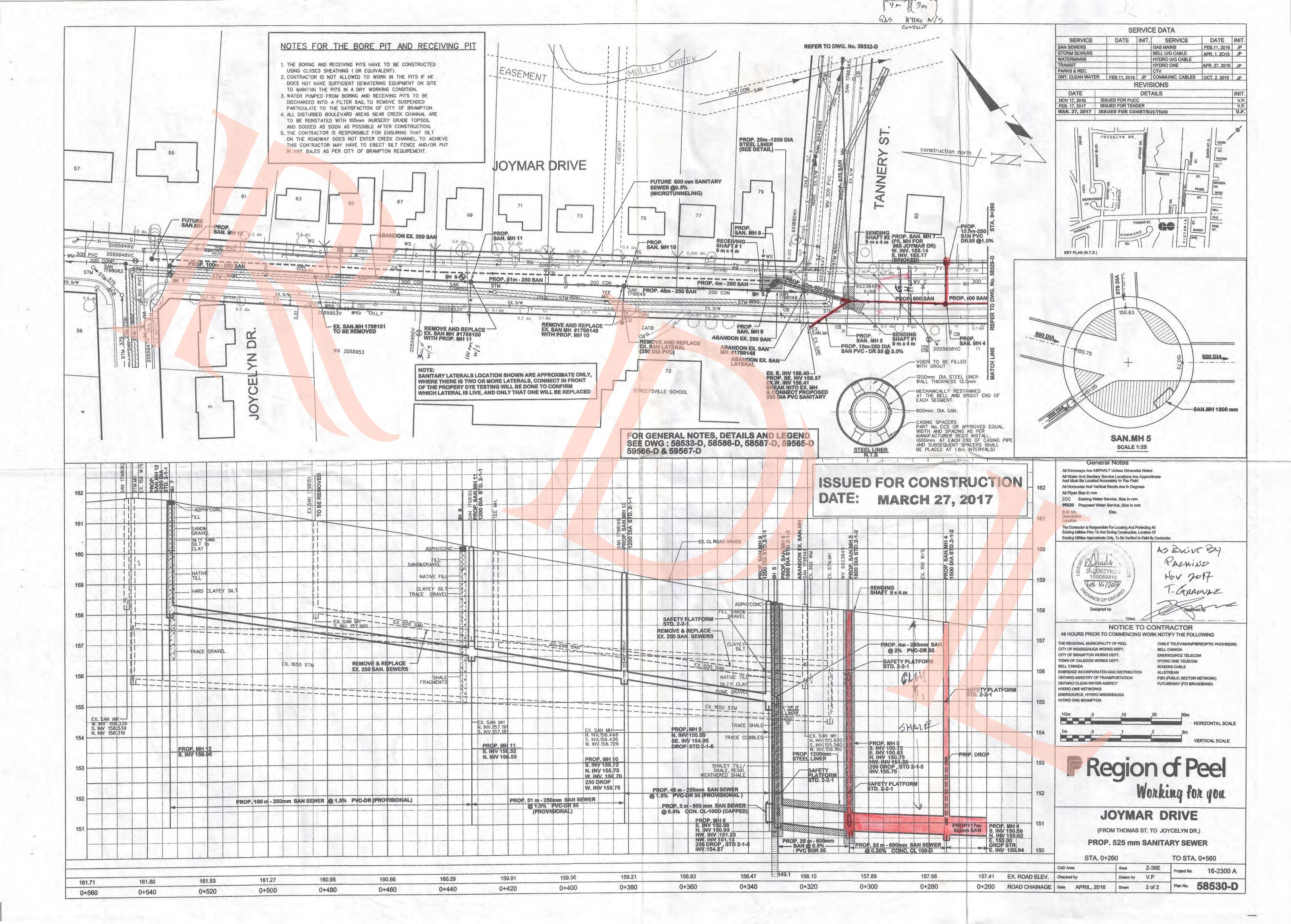


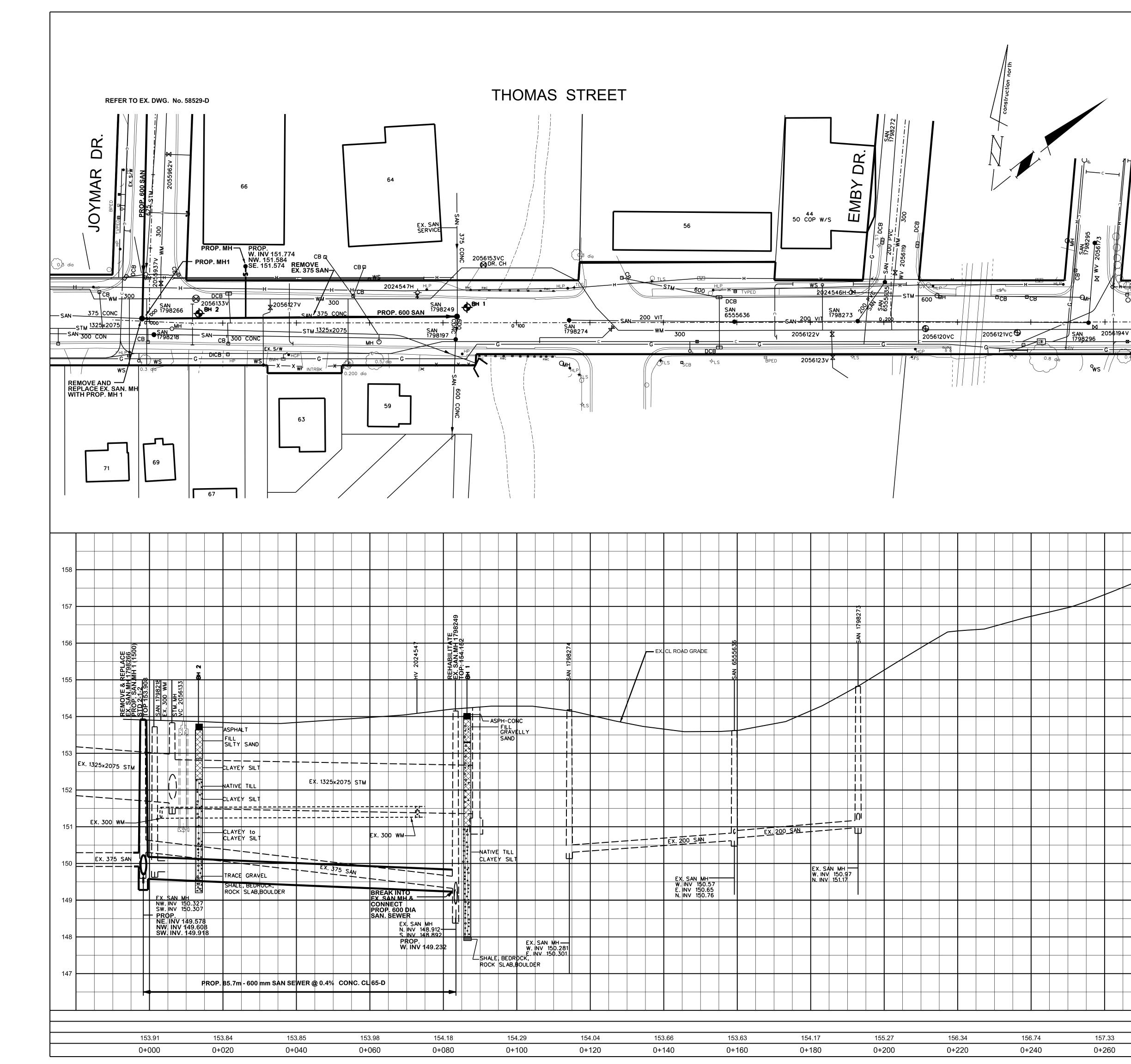



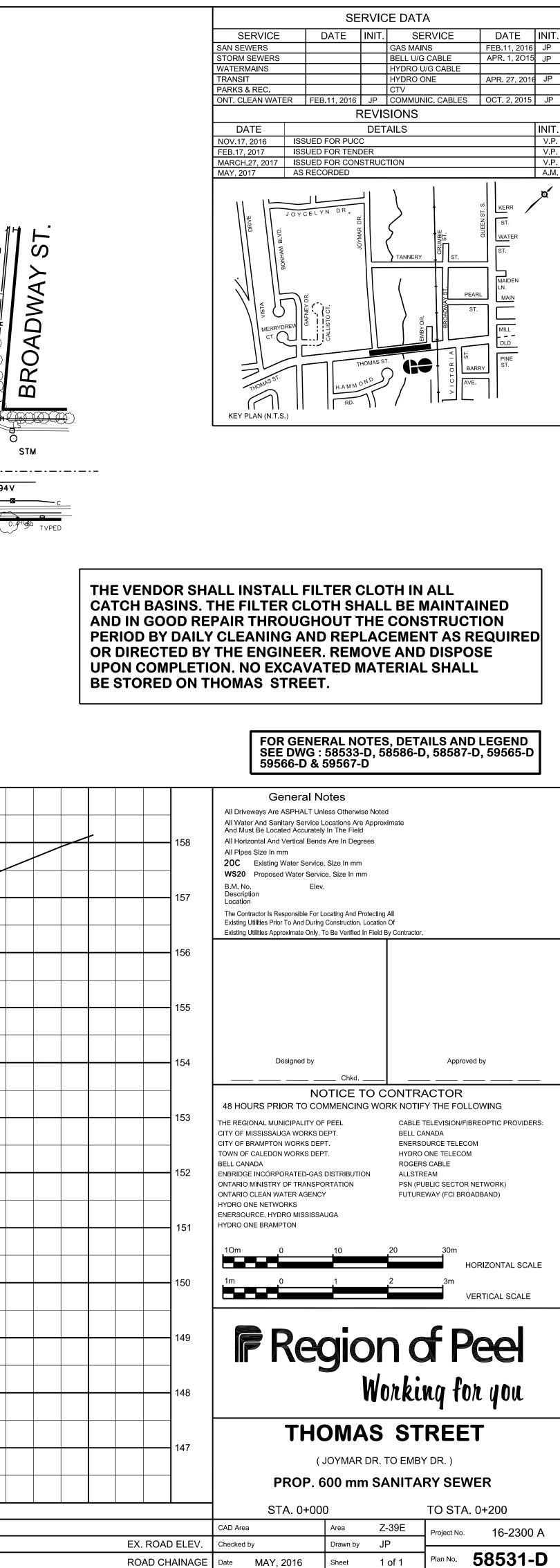

151.70	151.74	151.77	151,80	<b>149.70</b>	l <b>49</b> .70	149.70	151.45	151.45	151.45
0+400	0+380	0+360	0+3	340	0+320	)	0+300	0+280	0+260



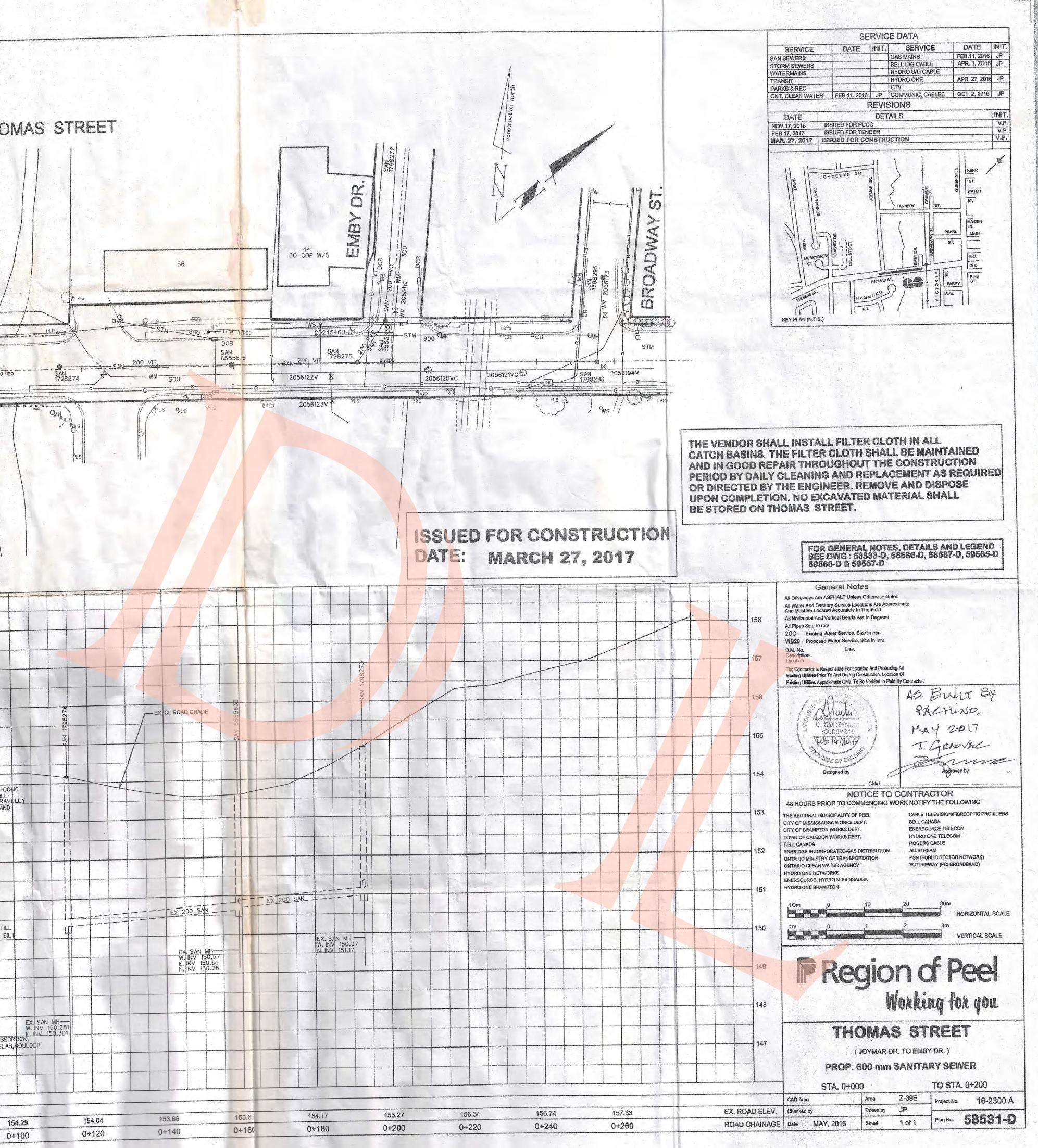



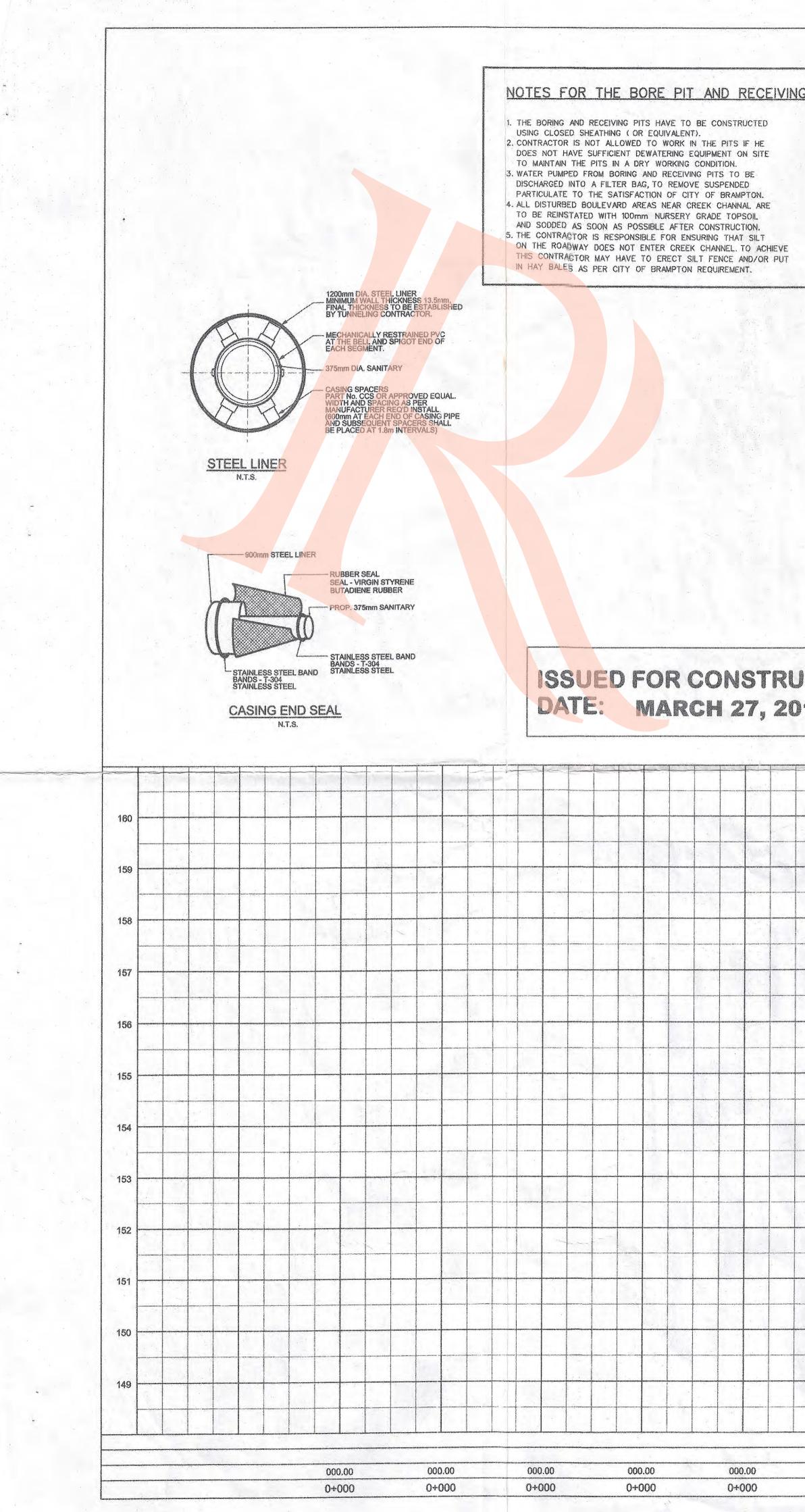


22150-D.dgn 2010-12-01 8:54:01 AM



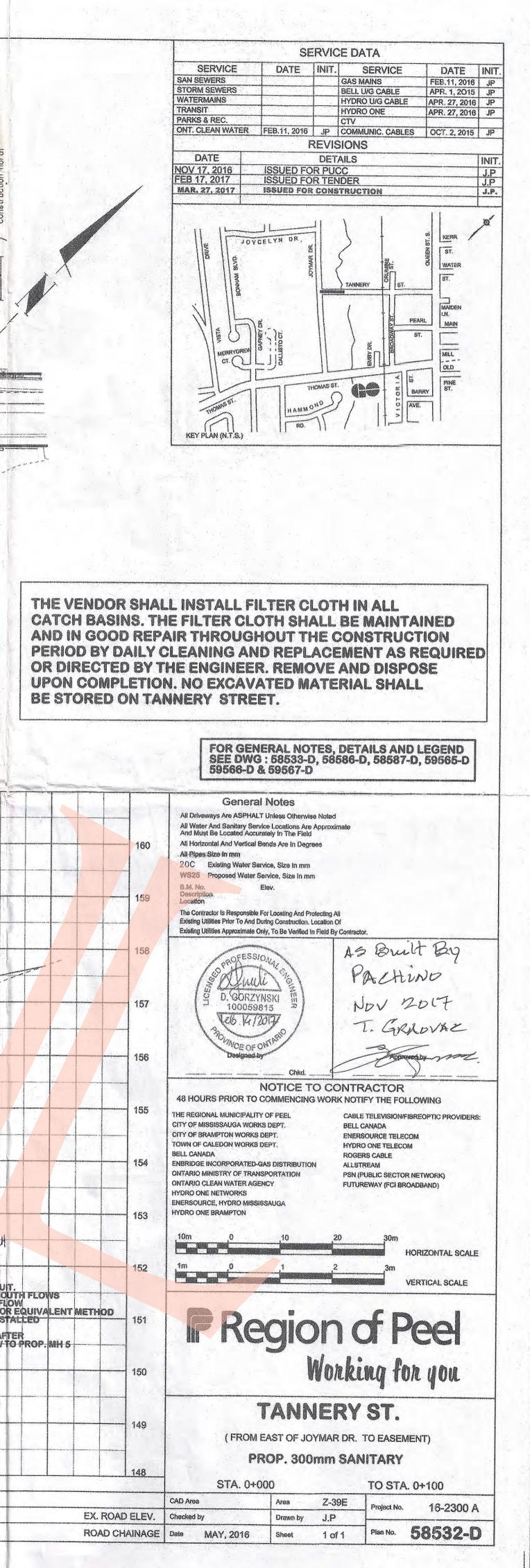







REFER T	P. 600 SAN	66			64 Ex.	SAN	
Obs dia	675 5		EMOVE X. 375 SAN	3 П. СВ П	36 LUTAL 36 LUTAL 2024547H HP		CO. STATE
SAN 375 CONC SAN 1325x2075 SAN 300 CON	0000 CMH 0	DCB	\$2056127V	M-30 275 JNO 325-075 WW MH		N 98249 + - <u>S</u> 8197	C
REMOVE AND REPLACE EX. SAN. MH WITH PROP. 240 5 17	DE MH 1	DICE U	BNH CHOP		6.5) do G	SAN BOO CONC	
			63				
			1 /				
		67					
158		67					
		67			454	ILITATE ILITATE V.MH 1798249	
158	EPLACE 17982666 MH 1 (1500)				HV 2024547	REHABILITATE EX. SAN:MH 1798249 BH 1	
	FEMOVE & REPLACE           EX.SAN.MH 1798266           PROP.SAN.MH 1798266           PROP.SAN.MH 1798266           PROP.SAN.MH 1798266           PROP.SAN.MH 1798266           PROP.SAN.MH 1798266           Fraction	ASPHALT FILL SILTY SAND					
158 157 156 155 154 153 EX. 1325x2075 152	M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M <td>ASPHAL T FILE</td> <td>T E</td> <td>X. 1325×075 STM</td> <td></td> <td></td> <td></td>	ASPHAL T FILE	T E	X. 1325×075 STM			
158 157 156 155 154 153 EX. 1325×2075	M     11500       M     1798266       PROPE & REPLACE     REMOVE & REPLACE       PROPE & SANIN 1798266     PROPE & REPLACE       PROPE & SANIN 1798266     PROPE & REPLACE       PROPE & REPLACE     PROPLACE       PROPE & REPLACE    <	ASPHALT FILL SILTY SAND CLAYEY SIL		X. 1325X 075 STM	A		


0+000

-----





NG PIT	REFER PROP. SAN. MH 9 ABANDON EX. SAN MH # 1798148 ABANDON EX. SAN MH # 1798148 ABANDON EX. SAN MH # 1798148 ABANDON EX. SAN LATERAL Og SM BREAK INTO EX. MH- AGANDON EX. SAN LATERAL Og SM BREAK INTO EX. MH- AGANDON EX. SAN LATERAL Og SM BREAK INTO EX. MH- ACONNECT PROPOSED SENDING SMAFT #1 9 x 4 m	TX S/W S/THI/ME S/THI/ME D/ D/ D/ D/ D/ D/ D/ D/ D/ D/ D/ D/ D/	PROP. SAN. MH 8 PROP. 25m - 600 DIA SAL AND 1200 DIA STEEL LIP AD 300 dia HLP MITRON HV 6518804 HE SAN 200 SA ABANDON V 44 WM 300 PVC	NER DGF HLP CHLF X HGRAN AN 6542688 200 CON MM SAN EX. SW MH	ABANDON EX EX. SAN. MILLE 6542686 SX. SANITARY TO BE ABANDONED REMABILITIATE EX. MILL 1798245
		REFER TO EX. DWG. No.	#65 JOYMAR DR)	P/L MH FOR	SAN 1798246
	Ex. tho san	EX. STM.MH EX. STM.MH SAN 1798148 SAN 1798148 500 PVC WA 500 PVC WA 52384	VDING AFT#1 4 m EETY PLATFORM 5. 2-2-1	EX. CROWN GRADE	
	PROP 15 m-250 DIA SAN. PVC -DR 35 @3.00% 200 DROP STRUCTURE STD 2-1-5	EX SAN MH IN INV.155.56 IN INV.155.56 W. INV.156.16 UNV.156.16 INV.156.16 STE	EX. 200 SAN 200 SAN TO BE ABANDONE EX. 1650 STM EX. 1650 STM ETY PLATFORM 2.2-1 3 m -1200mm DIA TEEL LINER E DETAILS	D TTT EX 1650 STM	GRAVELLY SAND CLAYEY SILT CLAYEY SILT REMABILITATE EX. SAN.MH 1798245 TRACE GRAVEL TRACE GRAVEL NATIVE TILL CLAYEY SILT - RE DENCHED. CORE NEW OPENING
		PROP. MH 5 N. INV 150,75 S. INV 150,72 E. INV 150,83 NW. INV 151,0 250 DROP ST NW. INV. 155,7	EX. SAN W. INV. 15 0 2-1-5	EX. SAN MH W. INV.I51.53 E. INV. 51.946 S. INV. 51.271	CONTRACTOR TO RE-BENCH EX. MH TO SUT WAINITAIN EX. NORTH-SOL CONTRACTOR TO USE FIG TROUGH SEWER PLUGO UNTIL PROP. MH 5 IS INST AND OPERATIONAL PLUG SOUTH OUTLET AFT REDIRECTING EX. FLOW T
000.0 0+00		158.07 0+000	157.91 0+020	157.62         157.12           0+040         0+060	END OF BH EL. 147.1 156.97 0+080



# APPENDIX B

Water Servicing Calculations



Created By: CM/LE Checked By: RB

## Domestic Water Demand - North Building

.....

				Notes & References
Total Site Area:	2.78	ha		R 1.0 Region of Peel Linear Wastewater Standards
Total Development Area:	1.48	ha		(March 2023)
Number of Units:	829			
Population Density:	2.7	persons/unit		Site Plan 24025 prepared by SRM Architects Inc
Population:	2238	persons		
Design Parameters				
Average Demand (L/ca	pita/d)			Region of Peel Public Works Watermain Design Criteria
280				(June 2010)
Water Demand: Average Daily	Demand =	626,724 <b>7.25</b>	L/day <b>L/s</b>	
	ing Factors Max Day = Peak Hour =	2.0 3.0		Region of Peel Public Works Watermain Design Criteria (June 2010)
Ave	erage Day =	7.25	L/s	
	Max Day =	14.51	L/s	Max Day = Average Day Demand * Max Day
I	Peak Hour =	21.76	L/s	Peak Hour = Average Day Demand * Peak Hour
Municipality	Average Daily Water Demand (L/s)	Max Day Demand (L/s)	Peak Hourly Demand (L/s)	
Region of Peel	7.25	14.51	21.76	]



Created By: CM/LE Checked By: RB

## **Domestic Water Demand - South Building**

.....

				Notes & References
Total Site Area:	2.78	ha		R 1.0 Region of Peel Linear Wastewater Standards
Total Development Area:	1.48	ha		(March 2023)
Number of Units:	214			
Population Density:	2.7	persons/unit		Site Plan 24025 prepared by SRM Architects Inc
Population:	578	persons		
Design Parameters				
Average Demand (L/ca	ıpita/d)			Region of Peel Public Works Watermain Design Criteria
280				(June 2010)
Water Demand: Average Daily	/ Demand =	161,784 <b>1.87</b>	L/day L/s	
	ing Factors Max Day = Peak Hour =	2.0 3.0		Region of Peel Public Works Watermain Design Criteria (June 2010)
Ave	erage Day =	1.87	L/s	
	Max Day =	3.75	L/s	Max Day = Average Day Demand * Max Day
I	Peak Hour =	5.62	L/s	Peak Hour = Average Day Demand * Peak Hour
Municipality	Average Daily Water Demand (L/s)	Max Day Demand (L/s)	Peak Hourly Demand (L/s)	
Region of Peel	1.87	3.75	5.62	]



**Region of Peel** 

9.13

18.25

Created By: CM/LE Checked By: RB

#### Notes & References Total Site Area: 2.78 ha R 1.0 Region of Peel Linear Wastewater Standards (March 2023) Total Development Area: 1.48 ha Total Number of Units: 1043 Site Plan 24025 prepared by SRM Architects Inc Population Density: 2.7 persons/unit Population: 2816 persons **Design Parameters** Average Demand (L/capita/d) Region of Peel Public Works Watermain Design Criteria 280 (June 2010) Water Demand: Average Daily Demand = 788,508 L/day 9.13 L/s Peaking Factors Region of Peel Public Works Watermain Design Criteria Max Day = 2.0 (June 2010) Peak Hour = 3.0 L/s Average Day = 9.13 Max Day = 18.25 L/s Max Day = Average Day Demand * Max Day Peak Hour = 27.38 Peak Hour = Average Day Demand * Peak Hour L/s Average Peak Max Day Daily Water Hourly **Municipality** Demand Demand Demand (L/s) (L/s) (L/s)

27.38

## Domestic Water Demand - Site Total



CROZZIER CONSULTING EXEMPERS CONSULTING EXEMPERS CONSULTING EXEMPERS CONTROL Plaza Fire Protection Volume Calculation CFCA File: 1419-6615 Date: 12/Mar/2024 Designed By: CM/LE Checked By: RB

Nater Supply for Public Fire Protectio Fire Underwriters Survey	n (2020)			Page
	<b></b>	and the local second of the second		
	Fire Flow	v per Fire Underwriter Survey 2020 - N	orth Building	
1. An estimate of fire flow require	d for a given area may be determi	ned by the formula:		
	RFF = 220 * C * √A			
Where: RFF = fi	ire flow in litres per minute			
C	coefficient related to the type of co	and truction:		
C = C	= 1.5	for type V wood frame construction (struc	ture essentially all c	combustible)
	= 0.8 = 0.9	for type IV-A mass timber construction		
	= 0.9	for type IV-B mass timber construction for type IV-C mass timber construction		
	= 1.5	for type IV-D mass timber construction		
	= 1.0	for type III ordinary construction (brick or o		
	= 0.8 = 0.6	for type II non-combustible construction (u for type I fire-resistive construction (fully pr		
A= T	he largest floor area in square met	ers (plus the following percentages of the t	otal areas of the ot	her floors).
	or Construction Coefficient from 1.			
	= 100% of ALL Floor Area	as		
	or Construction Coefficient below Floors With Any Unprotected Vertic			
-	, ,	floors + 50% all floors immediately above (r	max 8 floors)	
-	Floors With Any Protected Vertical	Openings and Protected Exterior Vertical C	Communications	
	= largest floor area + 25	5% each of two immediately adjoining floor	rs	
Proposed Buildings				
Area, A =	8,565 sq.m	Area and type of construction are provide	ed by architect.	
100% 3rd Floor =	5,710 sq.m			
25% 4th Floor = 25% 5th Floor =	5,710 sq.m 5,710 sq.m			
	0,, 10 94.11			
C=_ Therefore RFF =	0.6 12,000 L/min (rounded	to nearest 1000 L/min)		
	· · ·	·····,		
Fire flow determ	nined above shall not exceed: 30000 L/min for wood frame of	construction		
	30000 L/min for ordinary consi			
	25000 L/min for non-combusti			
	25000 L/min for fire-resistive co			
Note: Maximum flows per ISO C	Suide for Determination of Needeo	d Fire Flow, Chapter 2, Section 5 Maximum (	and Minimum Value	e of C (pg. 10).
<ol> <li>Values obtained in No. 1 may b high fire hazard.</li> </ol>	be reduced by as much as 25% for	occupancies having low contents fire haze	ard or may be incre	ased by up to 25% surcharge for occupancies having
*Non-Combustible	-25%	Free Burning	15%	Defects Table 2 Decements de l
Limited Combustible	-15%	Rapid Burning	25%	Refer to Table 3 Recommended Occupancy/Contents Charges by Major Occupance
Combustible	0%			Examples.
	Reduction %:	-15%		
	1,800 L/min reduction			
Therefore RFF =	10,200			
Note: Flow determined shall no	t be less than 2.000 L/min per FUS V	Vater Supply for Public Fire Protection (2020	)), Part 2 (pa. 33), De	o not round to the nearest 1,000 LPM.
2 Covielders The velue eleksing		huun te 5007 fer eenenlete suitenestie envir		
3. Spirikiers - The value obtaine	a in No. 2 above may be reduced	by up to 50% for complete automatic sprin	ikier protection.	
	ıkler Design System	Credit to part of building with coverage	e	
	kler protection designed and ordance with NFPA 13.	-30%		
	standard for both the system and	1077		
Fire Departmen	t hose lines.	-10%		
Fully supervised	system.	-10%		
Reduction %:	50%			
Total Reduced Flow =	5,100 L/min reduction			
Note: Do not ro	und to the nearest 1,000 LPM.			

r Supply for Public Fire Prote Inderwriters Survey	2		0		Pa 0
inderwiners solvey					for Determination of Required Fire Flow
					structures exposed within 30 meters
by the fire area under cons	ideration. The p	percentage	shall depen	nd upon the he	height, area, and construction of the
building(s) being exposed,	the separation,	openings in	the expose	d building(s), th	), the length and height of exposure,
the provision of automatic	sprinklers and/o	r outside spr	inklers in the	e building(s) ex	exposed, the occupancy of the
exposed building(s) and th					
Separation	Charge	Separation		Charge	To minimize surcharges for exposure , refer to Table 6 Exposure Adjustment Charges
0 to 3 m		20.1 to 30 m		4%	Subject Building considering Construction types of Exposed Building Face
3.1 to 10 m		>30 m		0%	subject building considering considering to exposed building race
10.1 to 20 m	8%	200111		078	
10.1 10 20 111	0%				
Exposed buildings					Note: The maximum experience adjustment charge to be applied to a subject building
· ·	Dista		Charac	Suraharaa	Note: The maximum exposure adjustment charge to be applied to a subject buildin 75%.
Name			Charge	Surcharge	/ 5%.
	(m		007	(L/min)	
North	>3		0%	0	
East	>3		0%		
South	16.9		8%		
West	2	7	4%		
Te	otal Surcharge			1,224	
Ex¢	RFF kler Reduction posure Charge	1,224	) reduction 4 surcharge		
Exp RFF = Requ Rounded to near Req	kler Reduction bosure Charge ired Fire Flow:	5,100 1,224 <b>6,324</b>	) reduction 4 surcharge L/min L/min		100 L/s 1,584 USGPM
Exp RFF = Requ Rounded to near Req : USGPM = 0.264*(L/min)	kler Reduction bosure Charge ired Fire Flow: est 1000 L/min: uired Duration:	5,100 1,224 6,324 6,000 1.75	) reduction surcharge L/min L/min 5 Hr		
Ex; RFF = Requ Rounded to near Req : USGPM = 0.264*(L/min) Required Duration of Fire F	kler Reduction posure Charge ired Fire Flow: est 1000 L/min: uired Duration:	5,100 1,224 6,324 6,000 1.75 1 (FUS 2020)	) reduction surcharge L/min L/min 5 Hr		
Exp RFF = Requ Rounded to near Req : USGPM = 0.264* (L/min) Required Duration of Fire f Flow Required	kler Reduction posure Charge ired Fire Flow: est 1000 L/min: uired Duration: low as per Part Dura	5,100 1,224 6,324 6,000 1.75 1 (FUS 2020) ttion	) reduction surcharge L/min L/min 5 Hr		
Exp RFF = Requ Rounded to near Req : USGPM = 0.264*(L/min) Required Duration of Fire F Flow Required (L/min)	kler Reduction posure Charge ired Fire Flow: est 1000 L/min: uired Duration:	5,100 1,224 6,324 6,000 1.75 1 (FUS 2020) Ition urs)	) reduction surcharge L/min L/min 5 Hr		
Exp RFF = Requ Rounded to near Req : USGPM = 0.264*(L/min) Required Duration of Fire f Flow Required (L/min) 2,000 or less	kler Reduction posure Charge ired Fire Flow: est 1000 L/min: uired Duration: ilow as per Part Dura (hoa 1.0	5,100 1,224 6,324 6,000 1.75 1 (FUS 2020) 11 (FUS 2020) urs) 20	) reduction surcharge L/min L/min 5 Hr		
Exp RFF = Requ Rounded to near Req : USGPM = 0.264*(L/min) : USGPM = 0.264*(L/min) : USGPM = 0.264*(L/min) : L/min) 2,000 or less 3,000	kler Reduction posure Charge ired Fire Flow: est 1000 L/min: uired Duration:	5,100 1,224 6,324 6,000 1.75 1 (FUS 2020) tition urs) 00 25	) reduction surcharge L/min L/min 5 Hr		
Exp RFF = Requ Rounded to near Req : USGPM = 0.264*(L/min) Required Duration of Fire f Flow Required (L/min) 2,000 or less	kler Reduction posure Charge ired Fire Flow: est 1000 L/min: uired Duration: ilow as per Part Dura (hoa 1.0	5,100 1,224 6,324 6,000 1.75 1 (FUS 2020) tition urs) 00 25	) reduction surcharge L/min L/min 5 Hr		
Exp RFF = Requ Rounded to near Req : USGPM = 0.264*(L/min) : USGPM = 0.264*(L/min) : USGPM = 0.264*(L/min) : L/min) 2,000 or less 3,000	kler Reduction posure Charge ired Fire Flow: est 1000 L/min: uired Duration:	5,100 1,224 6,324 6,000 1.75 1 (FUS 2020) dtion urs) 20 25 50	) reduction surcharge L/min L/min 5 Hr		
Exp RFF = Requ Rounded to near Req : USGPM = 0.264* (L/min) : USG	kler Reduction posure Charge ired Fire Flow: est 1000 L/min: uired Duration: ilow as per Part Dura (hou (hou 1.1, 1.1,	5,100 1,224 6,324 6,000 1.75 1 (FUS 2020) 1 (FUS 2020) 1 (FUS 2020) 1 (FUS 2020) 20 25 50 75	) reduction surcharge L/min L/min 5 Hr		
Exp RFF = Required Rounded to near Req : USGPM = 0.264*(L/min) : USGPM = 0.264*(L/min) Required Duration of Fire f Flow Required (L/min) 2,000 or less 3,000 4,000 6,000	kler Reduction posure Charge ired Fire Flow: est 1000 L/min: uired Duration: ilow as per Part Dura (hou 1.1, 1.2, 1.3, 1.3, 2.0,	5,100 1,224 6,324 6,000 1,75 1 (FUS 2020) (filon yrs) 30 25 50 50 55 50	) reduction surcharge L/min L/min 5 Hr		
Exp <b>RFF = Requ</b> <b>Required to near</b> <b>Required Duration of Fire f</b> (L/min) 2,000 or less 3,000 4,000 5,000 6,000 8,000	kler Reduction posure Charge ired Fire Flow: est 1000 L/min: uired Duration: ilow as per Part liow as per Part liou 1.0 1.1 1.1 1.3 2.0 2.0	5,100 1,224 6,324 6,324 6,300 1.75 1 (FUS 2020) 0 1.75 1.75 200 0 0 0 0 0	) reduction surcharge L/min L/min 5 Hr		
Exp <b>RFF = Requ</b> <b>Rounded to near</b> <b>Req</b> : USGPM = 0.264* (L/min) <u>Required Duration of Fire F</u> Flow Required (L/min) 2,000 or less 3,000 4,000 5,000 6,000 10,000	kler Reduction posure Charge ired Fire Flow: est 1000 L/min: uired Duration: ilow as per Part Dura (fhor 1.1, 1.3, 1.1, 2.0, 2.0, 2.0, 2.0, 2.0,	5,100 1,224 6,324 6,300 1.75 1 (FUS 2020) tition urs) 20 25 50 25 50 20 20 20 20 20 20 20 20 20 20 20 20 20	) reduction surcharge L/min L/min 5 Hr		
Exp RFF = Required Rounded to near Req : USGPM = 0.264*(L/min) Required Duration of Fire f Flow Required (L/min) 2,000 or less 3,000 4,000 5,000 6,000 8,000 10,000 12,000	kler Reduction posure Charge ired Fire Flow: ast 1000 L/min: uired Duration: low as per Part Dura (hou (hou (hou (a.1., 1.3.) 1.3.) 2.4. 2.4. 2.4. 2.4. 2.4. 2.4. 2.4. 2.	5,100 1,224 6,324 6,000 1,75 1 (FUS 2020) dtion yrs) 20 25 50 55 20 20 20 20 20 20 20 20 20 20 20 20 20	) reduction surcharge L/min L/min 5 Hr		
Exp RFF = Required Rounded to near Req : USGPM = 0.264*(L/min) : U	kler Reduction posure Charge ired Fire Flow: est 1000 L/min: uired Duration: ilow as per Part liow as per Part liow as per Part liow as per Part liow as per 2 liow as per	5,100 1,224 6,324 6,324 6,300 1,75 1 (FUS 2020) 0 0 1,75 50 50 50 50 50 50 50 50 50 50 50 50	) reduction surcharge L/min L/min 5 Hr		
Exp RFF = Requ Rounded to near Req : USGPM = 0.264* (L/min) : USG	kler Reduction posure Charge ired Fire Flow: est 1000 L/min: uired Duration: low as per Part Dura (hou (hou 1.3, 1.4, 1.7, 1.4, 1.7, 2.0, 2.4, 2.4, 3.3, 3.4, 3.4, 3.4, 3.4, 3.4, 3.4, 3	5,100 1,224 6,324 6,324 6,000 1.75 1 (FUS 2020) tition urs) 20 25 50 20 20 20 20 20 20 20 20 20 20 20 20 20	) reduction surcharge L/min L/min 5 Hr		
Exp RFF = Required Rounded to near Req : USGPM = 0.264* (L/min) Required Duration of Fire F Flow Required (L/min) 2,000 or less 3,000 4,000 5,000 6,000 8,000 12,000 12,000 14,000 16,000 18,000	kler Reduction posure Charge ired Fire Flow: est 1000 L/min: uired Duration: low as per Part Dura (hou (hou 1 1 1 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0	5,100 1,224 6,324 6,000 1,75 1 (FUS 2020) 11 (FUS 2020) 11 (FUS 2020) 12 (FUS 2020) 10	) reduction surcharge L/min L/min 5 Hr		
Exp RFF = Requ Rounded to near Req : USGPM = 0.264* (L/min) : USG	kler Reduction posure Charge ired Fire Flow: est 1000 L/min: uired Duration: low as per Part Dura (hou (hou 1.3, 1.4, 1.7, 1.4, 1.7, 2.0, 2.4, 2.4, 3.3, 3.4, 3.4, 3.4, 3.4, 3.4, 3.4, 3	5,100 1,224 6,324 6,000 1,75 1 (FUS 2020) 11 (FUS 2020) 11 (FUS 2020) 12 (FUS 2020) 10	) reduction surcharge L/min L/min 5 Hr		
Exp RFF = Required Rounded to near Req : USGPM = 0.264* (L/min) Required Duration of Fire F Flow Required (L/min) 2,000 or less 3,000 4,000 5,000 6,000 8,000 12,000 12,000 14,000 16,000 18,000	kler Reduction posure Charge ired Fire Flow: est 1000 L/min: uired Duration: low as per Part Dura (hou (hou 1 1 1 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0	5,100 1,224 6,324 6,324 6,324 6,324 6,324 7,524 7,5 50 50 50 50 50 50 50 50 50	) reduction surcharge L/min L/min 5 Hr		
Exp RFF = Requ Rounded to near Req : USGPM = 0.264* (L/min) : USG	kler Reduction posure Charge ired Fire Flow: est 1000 L/min: uired Duration: 	5,100 1,224 6,324 6,324 6,000 1,75 1(FUS 2020) ution urs) 20 25 50 50 50 50 50 50 50 50 50 50 50 50 50	) reduction surcharge L/min L/min 5 Hr		
Exp RFF = Required Rounded to near Required to near USGPM = 0.264* (L/min) Required Duration of Fire F Flow Required (L/min) 2,000 or less 3,000 4,000 5,000 6,000 10,000 12,000 14,000 14,000 14,000 14,000 14,000 14,000 22,000 24,000	kler Reduction posure Charge ired Fire Flow: est 1000 L/min: uired Duration: low as per Part Dura (frou 1.1, 1.3, 1.1, 2.0, 2.0, 2.4, 3.3, 4.4, 3.4, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.	5,100 1,224 6,324 6,300 1.75 1 (FUS 2020) trition JUS 25 50 25 50 20 50 20 50 20 50 20 50 20 50 20 50 20 50 20 20 20 20 20 20 20 20 20 20 20 20 20	) reduction surcharge L/min L/min 5 Hr		
Exp RFF = Required Rounded to near Req USGPM = 0.264*(L/min) Required Duration of Fire f Flow Required (L/min) 2,000 or less 3,000 4,000 5,000 6,000 6,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,00	kler Reduction posure Charge ired Fire Flow: est 1000 L/min: uired Duration: ilow as per Part	5,100 1,224 6,324 6,324 6,324 6,324 6,324 7,524 7,5 50 50 50 50 50 50 50 50 50 50 50 50 50	) reduction surcharge L/min L/min 5 Hr		
Exp RFF = Requ Rounded to near Req : USGPM = 0.264* (L/min) : USG	kler Reduction posure Charge ired Fire Flow: est 1000 L/min: uired Duration: low as per Part Dura (hou 1.1, 1.3, 1.3, 1.4, 1.3, 1.4, 1.4, 1.5, 2.6, 2.4, 3.6, 3.6, 5.6, 6.6, 6.6, 5.5, 6.6, 5.5, 6.6, 5.5, 6.6, 5.5, 6.6, 5.5, 6.6, 6.6, 5.5, 6.6, 6.6, 5.5, 6.6, 6.6, 6.5, 6.6, 6.5, 6.6, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5,	5,100 1,224 6,324 6,324 6,000 1,75 1 (FUS 2020) 10 1,75 20 20 25 50 20 20 25 50 20 20 25 50 20 25 50 20 25 50 20 25 50 20 25 50 25 50 20 25 50 25 50 25 50 25 50 25 50 50 50 50 50 50 50 50 50 5	) reduction surcharge L/min L/min 5 Hr		
Exp RFF = Required to near Required Duration of Fire F Flow Required (L/min) 2,000 or less 3,000 4,000 5,000 0,000 12,000 10,000 12,000 10,000 12,000 10,000 12,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 1	kler Reduction posure Charge ired Fire Flow: est 1000 L/min: uired Duration: 	5,100 1,224 6,324 6,000 1.75 1 (FUS 2020) tition urs) 20 25 50 20 20 20 25 50 20 20 25 50 20 20 25 50 20 20 25 50 20 20 25 50 20 25 50 20 25 50 20 25 50 20 25 50 20 25 50 20 25 50 20 25 50 20 25 50 20 25 50 20 25 50 20 25 50 20 25 50 20 25 50 20 25 50 20 25 50 20 25 50 20 25 50 20 25 50 20 25 50 20 25 50 20 25 50 20 20 25 50 20 20 25 50 20 20 20 25 50 20 20 20 25 50 20 20 20 25 50 20 20 20 20 20 20 20 20 20 2	) reduction surcharge L/min L/min 5 Hr		
Exp RFF = Required Rounded to neuron Required Duration of Fire F Flow Required (L/min) 2,000 or less 3,000 4,000 5,000 6,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000	kler Reduction posure Charge ired Fire Flow: est 1000 L/min: uired Duration: ilow as per Part low as per Part 1.1. 1.3. 1.4. 1.4. 1.4. 1.4. 1.4. 1.5. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4. 1.4	5,100 1,224 6,324 6,324 6,324 6,324 1,75 1 (FUS 2020) 100 1,75 200 200 200 200 200 200 200 20	) reduction surcharge L/min L/min 5 Hr		
Exp RFF = Required to near Required Duration of Fire F Flow Required (L/min) 2,000 or less 3,000 4,000 5,000 0,000 12,000 10,000 12,000 10,000 12,000 10,000 12,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 1	kler Reduction posure Charge ired Fire Flow: est 1000 L/min: uired Duration: 	5,100 1,224 6,324 6,324 6,324 6,324 1,75 1 (FUS 2020) 100 1,75 200 200 200 200 200 200 200 20	) reduction surcharge L/min L/min 5 Hr		
Exp RFF = Requ Required to near Required Duration of Fire F Flow Required (L/min) 2,000 or less 3,000 6,000 6,000 12,000 14,000 14,000 14,000 14,000 14,000 22,000 24,000 22,000 24,000 22,000 24,000 22,000 30,000 30,000 30,000 34,000	kler Reduction posure Charge ired Fire Flow: est 1000 L/min: uired Duration: low as per Part low as per Part 1.1 1.3 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.4 1.3 1.4 1.4 1.4 1.5 1.4 1.4 1.5 1.4 1.5 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	5,100 1,224 6,324 6,324 6,000 1,75 1 (FUS 2020) 10 1,75 20 20 25 50 20 20 25 50 20 20 25 50 20 20 25 50 20 20 25 50 20 25 50 20 25 50 20 25 50 20 25 50 20 25 50 25 50 20 25 50 20 25 50 20 25 50 20 25 50 50 50 50 50 50 50 50 50 5	) reduction surcharge L/min L/min 5 Hr		
Exp RFF = Required to near Required to near IUSGPM = 0.264* (L/min) Required Duration of Fire F Flow Required (L/min) 2,000 or less 3,000 4,000 5,000 6,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000	kler Reduction posure Charge ired Fire Flow: est 1000 L/min: uired Duration: 	5,100 1,224 6,324 6,000 1.75 1 (FUS 2020) tition urs) 20 25 50 20 20 20 20 20 20 20 20 20 2	) reduction surcharge L/min L/min 5 Hr		
Exp RFF = Requ Required to near Required Duration of Fire F Flow Required (L/min) 2,000 or less 3,000 6,000 6,000 12,000 14,000 14,000 14,000 14,000 14,000 22,000 24,000 22,000 24,000 22,000 24,000 22,000 30,000 30,000 30,000 34,000	kler Reduction posure Charge ired Fire Flow: est 1000 L/min: uired Duration: low as per Part low as per Part 1.1 1.3 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.4 1.5 1.4 1.4 1.5 1.4 1.5 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	5,100 1,224 6,324 6,300 1.75 1 (FUS 2020) 1tion urs) 20 25 50 20 50 50 50 50 50 50 50 50 50 5	) reduction surcharge L/min L/min 5 Hr		



CORDITIES Control Plaza Fire Protection Volume Calculation CFCA File: 1419-6615 Date: 12/Mar/2024 Designed By: CM/LE Checked By: RB

Water Supply for Public Fire Protection (2020) Fire Underwriters Survey		Page 1
Fire Flow	, nor Fire Underwriter Survey 2020 - South	h Puilding
1. An estimate of fire flow required for a given area may be determ	v per Fire Underwriter Survey 2020 - South ined by the formula:	
RFF = 220 * C * √A		
Where:		
RFF = fire flow in litres per minute		
C = coefficient related to the type of co		
= 1.5 = 0.8	for type V wood frame construction (structure for type IV-A mass timber construction	essentially all combustible)
= 0.9	for type IV-B mass timber construction	
= 1.0 = 1.5	for type IV-C mass timber construction for type IV-D mass timber construction	
= 1.0	for type III ordinary construction (brick or othe	er masonry walls, combustible floor and interior)
= 0.8 = 0.6	for type II non-combustible construction (unput for type I fire-resistive construction (fully prote-	
	ers (plus the following percentages of the total	
For Construction Coefficient from 1 = 100% of ALL Floor Are		
For Construction Coefficient below	1.0:	
<ul> <li>Floors With Any Unprotected Vertic = two largest adjoining</li> </ul>	cal Openings in the Building floors + 50% all floors immediately above (max	(8 floors)
- Floors With Any Protected Vertical	Openings and Protected Exterior Vertical Com	
	5% each of two immediately adjoining floors	
Proposed Buildings		
<b>Area</b> , <b>A</b> =2,279 sq.m	Area and type of construction are provided b	by architect.
100% 2nd Floor = 1,542 sq.m 25% 3rd Floor = 1,474 sq.m		
25% 4th Floor = 1,474 sq.m		
C= <u>0.6</u> Therefore RFF = <b>6,000</b> L/min (rounded	to nearest 1000 L/min)	
Fire flow determined above shall not exceed:		
30000 L/min for wood frame	construction	
30000 L/min for ordinary cons		
25000 L/min for non-combust 25000 L/min for fire-resistive c		
Note: Maximum flows per ISO Guide for Determination of Neede	d Fire Flow, Chapter 2, Section 5 Maximum and	Minimum Value of C (pg. 10).
<ol> <li>Values obtained in No. 1 may be reduced by as much as 25% for high fire hazard.</li> </ol>	occupancies having low contents fire hazard	or may be increased by up to 25% surcharge for occupancies having c
*Non-Combustible -25%	Free Burning 155	
Limited Combustible -15% Combustible 0%	Rapid Burning 255	% Occupancy/Contents Charges by Major Occupancy Examples.
Reduction %	-15%	
- 900 L/min reduction		
Therefore RFF = 5,100		
Note: Flow determined shall not be less than 2,000 L/min per FUS	Nater Supply for Public Fire Protection (2020), Po	art 2 (pg. 33). Do not round to the nearest 1,000 LPM.
3. Sprinklers - The value obtained in No. 2 above may be reduced	by up to 50% for complete automatic sprinkler	protection.
Automatic Sprinkler Design System	Credit to part of building with coverage	
Automatic sprinkler protection designed and installed in accordance with NFPA 13.	-30%	
Water supply is standard for both the system and Fire Department hose lines.	-10%	
Fully supervised system.	-10%	
Reduction %: 50%		
Total Reduced Flow = 2,550 L/min reduction		
Note: Do not round to the nearest 1,000 LPM.		

Underwriters Survey	ction - 2020		0		Pa.
			Pa	t II - Guide f	for Determination of Required Fire Flow
by the fire area under consid building(s) being exposed, th	deration. The he separation prinklers and/	percentages , openings in or outside spri	shall deper the expose inklers in the	nd upon the h d building(s), e building(s) e	tructures exposed within 30 meters neight, area, and construction of the the length and height of exposure, exposed, the occupancy of the of fine
oxposod bonanig(s) and mo	011001 01 11115			ibio sproda e	
Separation		Separation		Charge	To minimize surcharges for exposure , refer to Table 6 Exposure Adjustment Charges
0 to 3 m	15%	20.1 to 30 m		4%	Subject Building considering Construction types of Exposed Building Face
3.1 to 10 m 10.1 to 20 m	11% 8%	>30 m		0%	
		1			
Exposed buildings					Note: The maximum exposure adjustment charge to be applied to a subject buildir
Name	Dist	ance	Charge	Surcharge	
		m)	-	(L/min)	
North		5.9m	8%	408	
East South		>30 >30	0% 0%	0	
West		×30	0%		
	tal Surcharge			408	
RFF = Requi Rounded to neare		2,958 3,000	L/min	or	50 L/s 792 USGPM
RFF = Requi Rounded to neare Requ	red Fire Flow:	2,958 3,000	L/min L/min		
RFF = Requi Rounded to neare	red Fire Flow: st 1000 L/min:	2,958 3,000	L/min L/min		
RFF = Requi Rounded to neare Requ	red Fire Flow: st 1000 L/min: ired Duration:	2,958 3,000 1.25	L/min L/min		
RFF = Requi Rounded to neare Requi USGPM = 0.264*(L/min) Required Duration of Fire Fi Flow Required	red Fire Flow: st 1000 L/min: ired Duration: ow as per Par	2,958 3,000 1.25 <u>† 1 (FUS 2020)</u> ation	L/min L/min		
RFF = Requi Rounded to neare Requi : USGPM = 0.264*(L/min) Required Duration of Fire Fi Flow Required (L/min)	red Fire Flow: st 1000 L/min: ired Duration: ow as per Par Dur (hr	2,958 3,000 1.25 t 1 (FUS 2020) ation burs)	L/min L/min		
RFF = Requi Rounded to neare Requi :: USGPM = 0.264* (L/min) Required Duration of Fire Fi Flow Required (L/min) 2.000 or less	red Fire Flow: st 1000 L/min: ired Duration: ow as per Par Dur (hi	2,958 3,000 1.25 t 1 (FUS 2020) ation ours) .00	L/min L/min		
RFF = Requi Rounded to neare Requi :: USGPM = 0.264*(L/min) :: USGPM = 0.264*(L/min) :: USGPM = 0.264*(L/min) :: USGPM = 0.264*(L/min)	red Fire Flow: st 1000 L/min: ired Duration: ow as per Par Dur (hr 1	2,958 3,000 1.25 t 1 (FUS 2020) ation pours) .00 .25	L/min L/min		
RFF = Requi Rounded to neare Requi :: USGPM = 0.264* (L/min) Required Duration of Fire Fi Flow Required (L/min) 2.000 or less	red Fire Flow: st 1000 L/min: ired Duration: ow as per Par bur (hr (hr 1 1 1	2,958 3,000 1.25 t 1 (FUS 2020) ation ours) .00	L/min L/min		
RFF = Requi Rounded to neare Requi USGPM = 0.264*(L/min) Required Duration of Fire Fi Flow Required (L/min) 2,000 or less 3,000 4,000	red Fire Flow: st 1000 L/min: ired Duration: ow as per Par Dur (h	2,958 3,000 1.25 t 1 (FUS 2020) ation purs) .00 .25 .50	L/min L/min		
RFF = Require           Rounded to neare           Required           :: USGPM = 0.264* (L/min)           Required Duration of Fire FI           Flow Required           (L/min)           2,000 or less           3,000           4,000           5,000	red Fire Flow: st 1000 L/min: ired Duration: ow as per Pai Dur (hi 1 1 1 2 2	2,958 3,000 1.25 t 1 (FUS 2020) ation ours) .00 .25 .50 .75	L/min L/min		
RFF = Require           Rounded to neare           Required           : USGPM = 0.264*(L/min)           Required Duration of Fire FI           Flow Required           (L/min)           2,000 or less           3,000           4,000           5,000           6,000           8,000           10,000	red Fire Flow: st 1000 L/min: ired Duration: ow as per Par Dur (h 1 1 1 1 2 2 2 2	2,958 3,000 1.25 t 1 (FUS 2020) ation Dours) .00 .25 .50 .75 .00 .00 .00	L/min L/min		
RFF = Requir           Rounded to neare           Required           :: USGPM = 0.264* (L/min)           Required           (L/min)           2,000 or less           3,000           4,000           5,000           6,000           8,000           10,000           12,000	ow as per Par Duration:	2,958 3,000 1.25 t 1 (FUS 2020) ation ours) .00 .25 .50 .75 .00 .00 .50	L/min L/min		
RFF = Requit           Rounded to neare:           Required           :: USGPM = 0.264*(L/min)           Required           (L/min)           2,000 or less           3,000           4,000           5,000           6,000           8,000           10,000           12,000           14,000	red Fire Flow: st 1000 L/min: ired Duration: ow as per Par Dur (h: 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2,958 3,000 1.25 t 1 (FUS 2020) ation ours) .00 .25 .50 .00 .00 .50 .00	L/min L/min		
RFF = Requit           Rounded to neare           Required           : USGPM = 0.264*(L/min)           : 0.000 or less           : 3,000           : 4,000           : 0.000           : 0.000           : 0.000           : 12,000           : 14,000           : 16,000	red Fire Flow: st 1000 L/min: ired Duration: ow as per Pai (h) (h) (h) 1 1 1 2 2 2 2 2 3 3 3	2,958 3,000 1.25 t 1 (FUS 2020) ation ours) .00 .25 .50 .75 .00 .00 .00 .50 .50	L/min L/min		
RFF = Require           Rounded to neare           Required           :: USGPM = 0.264* (L/min)           Required           (L/min)           2.000 or less           3,000           4,000           5,000           6,000           8,000           10,000           12,000           14,000           16,000           18,000	red Fire Flow: st 1000 L/min: ired Duration: ow as per Par Dur (hr 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2,958 3,000 1.25 1 (FUS 2020) ation ours) .00 .25 .50 .75 .00 .00 .50 .50 .50 .50 .50 .50 .50 .5	L/min L/min		
RFF = Requit           Rounded to neare           Required           :: USGPM = 0.264*(L/min)           ?: USGPM = 0.264*(L/min)           !: USGPM = 0.264*(L/min)	red Fire Flow: st 1000 L/min: ired Duration: ow as per Par Dur (hi 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2,958 3,000 1.25 t 1 (FUS 2020) ation ours) .00 .25 .50 .75 .00 .00 .50 .50 .50 .50 .50 .50 .50	L/min L/min		
RFF = Require           Rounded to neare           Required           :: USGPM = 0.264* (L/min)           Required           (L/min)           2.000 or less           3,000           4,000           5,000           6,000           8,000           10,000           12,000           14,000           16,000           18,000	red Fire Flow: st 1000 L/min: ired Duration: ow as per Par Dur (h 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2,958 3,000 1.25 1 (FUS 2020) ation ours) .00 .25 .50 .75 .00 .00 .50 .50 .50 .50 .50 .50 .50 .5	L/min L/min		
RFF = Requit           Rounded to neare:           Required           :: USGPM = 0.264*(L/min)           : USGPM = 0.264*(L/min)	red Fire Flow: st 1000 L/min: ired Duration: ow as per Par Dur (hr 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2,958 3,000 1.25 t 1 (FUS 2020) ation ours) .00 .25 .50 .00 .50 .00 .50 .50 .50 .50 .50 .5	L/min L/min		
RFF = Require           Rounded to neare           Required           :: USGPM = 0.264* (L/min)           Required           Flow Required           (L/min)           2,000 or less           3,000           4,000           5,000           6,000           8,000           10,000           12,000           14,000           16,000           18,000           20,000           24,000	red Fire Flow: st 1000 L/min: ired Duration: ow as per Pai Dur (hi 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	2,958 3,000 1.25 1 (FUS 2020) ation ours) .00 .25 .50 .75 .00 .00 .50 .50 .50 .50 .50 .50 .50 .5	L/min L/min		
RFF = Require           Rounded to neare           Required           :: USGPM = 0.264* (L/min)           Plow Required (L/min)           2,000 or less           3,000           4,000           5,000           6,000           8,000           10,000           12,000           14,000           16,000           18,000           20,000           24,000           26,000           28,000           30,000	red Fire Flow: st 1000 L/min: ired Duration:	2,958 3,000 1.25 1 (FUS 2020) ation purs) .00 .25 .50 .75 .00 .00 .50 .50 .50 .50 .50 .50 .50 .5	L/min L/min		
RFF = Requir           Rounded to neare           Required           USGPM = 0.264*(L/min)           Required Duration of Fire File           Flow Required           (L/min)           2,000 or less           3,000           4,000           5,000           6,000           8,000           12,000           14,000           16,000           18,000           20,000           24,000           26,000           28,000           30,000           32,000	red Fire Flow: st 1000 L/min: ired Duration: ow as per Par Dur (hr 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	2,958 3,000 1.25 1 (FUS 2020) ation 200 25 50 .00 .00 .50 .00 .50 .00 .50 .50 .50	L/min L/min		
RFF = Requit Rounded to neare Requi :: USGPM = 0.264*(L/min) Required Duration of Fire FI Flow Required (L/min) 2,000 or less 3,000 4,000 5,000 6,000 8,000 10,000 10,000 10,000 14,000 14,000 14,000 14,000 14,000 20,000 22,000 24,000 24,000 26,000 28,000 30,000 32,000 34,000	red Fire Flow: st 1000 L/min: ired Duration:	2,958 3,000 1.25 11 (FUS 2020) ation burs) .00 .25 .50 .50 .00 .50 .50 .50 .50 .50 .50 .5	L/min L/min		
RFF = Requir           Rounded to neare           Required           USGPM = 0.264*(L/min)           Required Duration of Fire File           Flow Required           (L/min)           2,000 or less           3,000           4,000           5,000           6,000           8,000           12,000           14,000           16,000           18,000           20,000           24,000           26,000           28,000           30,000           32,000	red Fire Flow: st 1000 L/min: ired Duration: ow as per Par Dur (h) 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	2,958 3,000 1.25 1 (FUS 2020) ation ours) .00 .25 .50 .50 .00 .50 .50 .50 .50 .50 .50 .5	L/min L/min		

# ${}^{\text{APPENDIX}} C$

Sanitary Servicing Calculations



 Created By: CM/LE
 Date:
 10/13/2023

 Checked By: RB
 Updated:
 3/12/2024

## Domestic Sanitary Design Flow - North Building

					Notes & References
	Total Site Area:	2.78	ha		R 1.0 Region of Peel Linear Wastewater Standards
Total Dev	elopment Area:	1.48	ha		(March 2023)
Unit Pop	oulation Density:	2.7	persons/unit		
1	Number of Units:	829			Site Plan 24025 prepared by SRM Architects Inc
	Population:	2238	persons		
Design Parameter	s				
Avera	ıge Flow (L/capi	ta/d)			R 1.0 Region of Peel Linear Wastewater Standards
	290				(March 2023)
	Ave	rage Daily Flow =	7.51	L/s	
		aking Factor, PF =	3.55		PF = 1 + 14 / (4 + (p/1000)^.5)
		Peak Flow =	26.65	L/s	Peak Flow = Average Daily Flow * M
		Infiltration =	0.26	L/s/ha	
	1	Total Infiltration =	0.27	L/s	TI = Infiltration * (0.7 * Total Development Area)
		Total Peak Flow =	26.92	L/s	Total Peak Flow = Peak Flow + Total Infiltration
Summary Table					
Average Daily Flow (L/s)	Peaking Factor	Peak Flow (L/s)	Infiltration Flow (L/s)	Total Peak Flow (L/s)	
7.51	3.55	26.65	0.27	26.92	
·				•	



 Created By: CM/LE
 Date:
 10/13/2023

 Checked By: RB
 Updated:
 3/12/2024

## Domestic Sanitary Design Flow - South Building

					Notes & References
	Total Site Area	: 2.78	ha		R 1.0 Region of Peel Linear Wastewater Standards
Total Dev	elopment Area	: 1.48	ha		(March 2023)
Unit Pop	oulation Density	: 2.7	persons/unit		
1	Number of Units	: 214			Site Plan 24025 prepared by SRM Architects Inc
	Population	: 578	persons		
Design Parameter	'S				
Avera	ige Flow (L/cap	ita/d)			R 1.0 Region of Peel Linear Wastewater Standards
	290				(March 2023)
	Ave	erage Daily Flow =	1.94	L/s	
	Pe	aking Factor, PF =	3.94		PF = 1 + 14 / (4 + (p/1000)^.5)
		Peak Flow =	7.64	L/s	Peak Flow = Average Daily Flow * M
		Infiltration =	0.26	L/s/ha	
		Total Infiltration =	0.12	L/s	TI = Infiltration * (0.3 * Total Development Area)
		Total Peak Flow =	7.76	L/s	Total Peak Flow = Peak Flow + Total Infiltration
Summary Table					
Average Daily Flow	Peaking Factor	Peak Flow	Infiltration Flow (L/s)	Total Peak Flow	
(L/s)		(L/s)	(1) 3)	(2/3)	
1.94	3.94	7.64	0.12	7.76	
1.94	3.94	7.64	0.12	7.76	



## **Domestic Sanitary Design Flow - Site Total**

					Notes & References
	Total Site Area:	2.78	ha		R 1.0 Region of Peel Linear Wastewater Standards
Total Dev	velopment Area:	1.48	ha		(March 2023)
Unit Pop	pulation Density:	2.7	persons/unit		
	Number of Units:	1043			Site Plan 24025 prepared by SRM Architects Inc
	Population:	2816	persons		
Design Parameter	rs				
Avero	age Flow (L/capil	la/d)			R 1.0 Region of Peel Linear Wastewater Standards
	290				(March 2023)
	Aver	rage Daily Flow =	9.45	L/s	
	Pec	king Factor, PF =	3.47		PF = 1 + 14 / (4 + (p/1000)^.5)
		Peak Flow =	32.76	L/s	Peak Flow = Average Daily Flow * M
		Infiltration =	0.26	L/s/ha	
	T	otal Infiltration =	0.39	L/s	
	1	Total Peak Flow =	33.14	L/s	Total Peak Flow = Peak Flow + Total Infiltration
Summary Table					
Average Daily Flow (L/s)	Peaking Factor	Peak Flow (L/s)	Infiltration Flow (L/s)	Total Peak Flow (L/s)	
9.45	3.47	32.76	0.39	33.14	
r					

# APPENDIX D

Stormwater Management Calculations

## Storm Sewer Use By-law Acknowledgement

City of Mississauga Transportation & Works Environmental Services 300 City Centre Drive, 8th Floor Mississauga, Ontario L5B 3C1 Env.Inquiries@mississauga.ca

insert Legal Corporate Name of Company



Note that the purpose of this form is an acknowledgement that the owner or owner's representative is aware of the City of Mississauga and the Region of Peel's requirements for temporary construction dewatering during development. The submission of this form through the ePlans portal is required to form a complete development application for Official Plan Amendment, Zoning By-law Amendment, Plan of Subdivision, Removal of Holding Symbol and Site Plan Approval (only with land dedications to the City of Mississauga).

#### Address

Legal Description of Property (optional)

Property Owner/Company

**Development Application File Number** 

insert Full Name

As an authorized representative of the owner of the subject property as referenced above,

Ι,	of,

am aware of the City of Mississauga ("City") Storm Sewer Use By-law No. 0046-2022 and do commit to apply for and obtain a Temporary Storm Sewer Discharge Approval from the Transportation and Works Department, prior to any construction-related discharge from the subject property to the City's storm sewer system, if applicable.

Otherwise, if any construction-related discharge will be directed towards the Region of Peel's sanitary sewer system, then an application for such discharge will be made to the Region of Peel.

I acknowledge that the City requires the Storm Sewer Temporary Discharge Approval Form to be fully completed, including all required supporting documentation attached, to ensure that any discharge of groundwater and surface water to the storm sewer system will comply with the City's Storm Sewer Use By-law No. 0046-2022 at all times.

When details regarding discharge become available, then I, or my designate, will complete the Storm Sewer Temporary Discharge Approval Form, and work with the Transportation and Works Department to acquire the necessary approval prior to discharge. I understand that the discharge approval requires the collection and laboratory analysis of water quality samples, and that it could take approximately one to two weeks to coordinate the approval. As such, I will contact the Transportation and Works Department with sufficient lead time prior to any discharge.

I further acknowledge that I will need to provide a plan approved by the Transportation and Works Department prior to approval of a Shoring Permit or prior to construction dewatering activities where water will be discharged to the City's storm sewer system.

Title

I certify that I have authority to sign on behalf of the above-referenced company.

Signature

Mark Palmisri

Date



### Rational Method Calculations Site Catchment & Input Parameters

#### Storm Data: City of Mississauga

Time of Concentrat	tion:	T _c =	15	min	As per Transportation and Works Section 8, page 1, dated November 2020
Return Period	А	В	с	l (mm/hr)	
2 yr	610	4.6	0.78	59.89	
5 yr	820	4.6	0.78	80.51	
10 yr	1010	4.6	0.78	99.17	
25 yr	1160	4.6	0.78	113.89	]
50 yr	1300	4.7	0.78	127.13	]
100 yr	1450	4.9	0.78	140.69	]

**Pre - Development Conditions** Weighted Area Area Catchment ID Description  $C^1$ (ha) (m²) Average C¹ 101 to Mullet Creek 0.60 6,000 0.50 0.11 102 to Storm Sewers 2.18 21,800 0.50 0.39 **Total Site** 2.78 27,800 0.50

1. Pre-Development Runoff Coefficient of 0.5 used for pre-developed areas as per Transportation and Works Section 8.3.3, page 18, dated November 2020

Catchment Area	Description	Area (ha)	Area (m ² )	С	Weighted Average C	
201	Watercourse	1.03	10,300	0.20	0.07	
202	Buildings	0.72	7,200	0.70	0.18	Captured and Controlled
203	At-Grade	0.53	5,300	0.80	0.15	
204	Landscape	0.29	2,900	0.30	0.03	- Captured
205	Uncontrolled	0.21	2,100	0.50	0.04	
Total	2.78	27,800		0.48		

Post Development Run-off Coefficients as per Transportation and Works Section 8, page 2, dated November 2020

Pre- Development Adjusted Runoff Coefficients									
Return Period	Adjustment Factor	101	102						
2 yr	1.00	0.50	0.50						
5 yr	1.00	0.50	0.50						
10 yr	1.00	0.50	0.50						
25 yr	1.10	0.55	0.55						
50 yr	1.20	0.60	0.60						
100 yr	1.25	0.63	0.63						

Pre-Development Runoff Coefficient of 0.5 used for pre-developed areas as per Transportation and Works Section 8.3.3, page 18, dated November 2020

	Post-Development Adjusted Runoff Coefficients										
Return Period	Adjustment Factor	201	202	203	204	205					
2 yr	1.00	0.20	0.70	0.80	0.30	0.50					
5 yr	1.00	0.20	0.70	0.80	0.30	0.50					
10 yr	1.00	0.20	0.70	0.80	0.30	0.50					
25 yr	1.10	0.22	0.77	0.88	0.33	0.55					
50 yr	1.20	0.24	0.84	0.96	0.36	0.60					
100 yr	1.25	0.25	0.88	1.00	0.38	0.63					

Equations:

Peak Flow	
$Q_{post} = 0.0028 \cdot C_{post} \cdot i(T_d) \cdot A$	

Intensity i(T_d) = A / (T + B)^C

I:\1400\1419-De Zen Realty Co Ltd\4679-66 Thomas St\Design\Civil\4679_STM-Site MRM_Post to Pre



#### Rational Method Calculations - Uncontrolled Peak Flows Summary

(using Pre-Development Runoff Coefficient = 0.50)

#### **Peak Flows to Mullet Creek**

	Pre-Dev	elopment Catchment 1	01		Post-Develo	oment Catchme	nt 201	
Return Period	Area (ha)	Adjusted RC	Peak Flows (m ³ /s)	Area (ha)	Adjusted RC	Peak Flows (m ³ /s)	Difference (m3/s)	Difference (+/·
2 yr		0.50	0.050		0.20	0.035	-0.016	-31%
5 yr		0.50	0.068		0.20	0.046	-0.021	-31%
10 yr	0.60	0.50	0.083	1.03	0.20	0.057	-0.026	-31%
25 yr	0.00	0.55	0.105	1.00	0.22	0.072	-0.033	-31%
50 yr		0.60	0.128		0.24	0.088	-0.040	-31%
100 yr		0.63	0.148		0.25	0.101	-0.046	-31%

Note: ¹ Percent difference between pre-development Catchment 101 and post-development Catchment 201.

#### Peak Flows to Municipal Storm Sewer Network (Joymar & Thomas)

	Pre-Dev	elopment Catchment 1	02		Post-Development Catchment 202-205 TOTAL						
Return Period	Area (ha)	Adjusted RC	Peak Flows (m ³ /s)	Total Area (ha)	202	203	204	205	Peak Flows (m ³ /s)	Difference (m3/s)	Difference (+/-) ²
2 yr		0.50	0.183		0.084	0.071	0.014	0.017	0.186	0.004	2.0%
5 yr		0.50	0.246		0.113	0.095	0.019	0.024	0.251	0.005	2.0%
10 yr	2.18	0.50	0.303	1.75	0.139	0.117	0.024	0.029	0.309	0.006	2.0%
25 yr	2.10	0.55	0.382	1.75	0.176	0.148	0.030	0.037	0.390	0.008	2.0%
50 yr		0.60	0.466		0.214	0.180	0.037	0.045	0.475	0.009	2.0%
100 yr		0.63	0.537		0.246	0.207	0.043	0.051	0.548	0.011	2.0%

Note: ² Percent difference between pre-development Catchment 102 and post-development Catchment 202.

#### Total Peak Flows from the Site

		Peak Flows (m ³ /s)	
Return Period	Pre-Development (101-102)	Post-Development (201-205)	Difference (+/-)
2 yr	0.233	0.221	-5.5%
5 yr	0.313	0.297	-5.5%
10 yr	0.386	0.366	-5.5%
25 yr	0.488	0.462	-5.5%
50 yr	0.594	0.563	-5.5%
100 yr	0.684	0.649	-5.5%

#### Equations:

Peak Flow $Q_{post} = 0.0028 \bullet C_{post} \bullet i(T_d) \bullet A$	Intensity i(T _d ) = A / (T + B)^C	
----------------------------------------------------------------------------	-------------------------------------------------	--



## Rational Method Calculations - Controlled Peak Flow Summary

2-Year Post-Dev Controlled to 2-Year Pre-Dev Rate

#### Peak Flows to JOYMAR (North Building)

Catchment	Description				Target Flow Rate	Uncontrolled Flow Rate	Controlled Flow Rate
Area	Description	Area (ha)	С	% Area	(2-yr)	(2-yr)	(2-yr)
202	Buildings	0.585	0.70				
203	At-Grade	0.450	0.80			0.140	0.137
204	Landscape	0.240	0.30				
205	Uncontrolled	0.160	0.50			0.013	0.013
	Total	1.435	0.64	82%	0.150	0.153	0.150
							0.07

Equivalent C = 0.27

#### Peak Flows to THOMAS (South Building)

Catchment	Description				Target Flow Rate	Uncontrolled Flow Rate	Controlled Flow Rate
Area	Description	Area (ha)	С	% Area	(2-yr)	(2-yr)	(2-yr)
202	Buildings	0.135	0.70			0.026	0.026
203	At-Grade	0.080	0.80			0.020	0.028
204	Landscape	0.050	0.30			0.002	0.002
205	Uncontrolled	0.050	0.50			0.004	0.004
	Total	0.315	0.63	18%	0.033	0.033	0.033
		•	•	•	•	Equivalent C =	0.27
	TOTAL	1.750	0.64	100.0%	0.183	0.186	0.183
						Equivalent C =	0.27

Return Period	Allowable Flow (m3/s)	Total Flow to Sewers (202-205) (m3/s)	% Difference
2 yr	0.183	0.183	0.0%



## Rational Method Calculations - Controlled Peak Flow Summary

10-Year Post-Dev Controlled to 10-Year Pre-Dev Rate

#### Peak Flows to JOYMAR (North Building)

Catchment	Description				Target Flow Rate	Uncontrolled Flow Rate	Controlled Flow Rate
Area	Description	Area (ha)	С	% Area	(10-yr)	(10-yr)	(10-yr)
202	Buildings	0.585	0.70				
203	At-Grade	0.450	0.80			0.232	0.226
204	Landscape	0.240	0.30	]			
205	Uncontrolled	0.160	0.50	]		0.022	0.022
	Total	1.435	0.64	82%	0.248	0.254	0.248

Equivalent C = 0.44

#### Peak Flows to THOMAS (South Building)

Catchment	Description				Target Flow Rate	Uncontrolled Flow Rate	Controlled Flow Rate
Area	Description	Area (ha)	С	% Area	(10-yr)	(10-yr)	(10-yr)
202	Buildings	0.135	0.70			0.043	0.043
203	At-Grade	0.080	0.80			0.043	0.043
204	Landscape	0.050	0.30			0.004	0.004
205	Uncontrolled	0.050	0.50			0.007	0.007
	Total	0.315	0.63	18%	0.054	0.054	0.054
		•	•		•	Equivalent C =	0.44
	TOTAL	1.750	0.64	100.0%	0.303	<b>0.308</b> Equivalent C =	<b>0.303</b> 0.44

Return Period	Allowable Flow (m3/s)	Total Flow to Sewers (202-205) (m3/s)	% Difference
10 yr	0.303	0.303	0.0%



## Rational Method Calculations - Controlled Peak Flow Summary

100-Year Post-Dev Controlled to 100-Year Pre-Dev Rate

#### Peak Flows to JOYMAR (North Building)

Catchment	Description				Target Flow Rate	Uncontrolled Flow Rate	Controlled Flow Rate
Area	Description	Area (ha)	С	% Area	(100-yr)	(100-yr)	(100-yr)
202	Buildings	0.585	0.70				
203	At-Grade	0.450	0.80			0.411	0.401
204	Landscape	0.240	0.30				
205	Uncontrolled	0.160	0.50			0.039	0.039
	Total	1.435	0.64	82%	0.440	0.451	0.440
							0.70

Equivalent C = 0.78

#### Peak Flows to THOMAS (South Building)

Catchment	Description				Target Flow Rate	Uncontrolled Flow Rate	Controlled Flow Rate
Area	Description	Area (ha)	С	% Area	(100-yr)	(100-yr)	(100-yr)
202	Buildings	0.135	0.70			0.077	0.077
203	At-Grade	0.080	0.80			0.077	0.077
204	Landscape	0.050	0.30			0.007	0.007
205	Uncontrolled	0.050	0.50			0.012	0.012
	Total	0.315	0.63	18%	0.097	0.097	0.097
				ł	•	Equivalent C =	0.78
	TOTAL	1.750	0.64	100.0%	0.537	<b>0.548</b> Equivalent C =	<b>0.537</b> 0.78

Return Period	Allowable Flow (m3/s)	Total Flow to Sewers (202-205) (m3/s)	% Difference
100 yr	0.537	0.537	0.0%



 Project:
 66 Thomas Street

 Project No:
 1419-4679

 Created By:
 JL

 Checked By:
 RB

 Date:
 2021-03-15

 Updated:
 2024-03-15

### **ORIFICE SIZING**

NORTH BUILDING				SOUTH BUILDING	
Orifice Parameters				Orifice Parameters	
Diameter Ø (m) =	0.375			Diameter Ø (m) =	-
Area (A) $(m^2) =$	0.1104			Area (A) $(m^2) =$	
Coefficient (C) =	0.82			Coefficient (C) =	
Discharge, Q =	CA x sqrt(2gh)			Discharge, Q =	CA x sqrt(2gh)
Max Head, m =	0.9			Max Head, m =	-
Max Flow Rate (10yr) =	226			Max Flow Rate (10yr) =	43
Max Flow Rate (100yr) =	401			Max Flow Rate (100yr) =	77
Orifice Discharge Rate, L/s =	370			Max Discharge Rate, L/s =	-
Head	Discharge	Vol. Req.	Stm Event		NOTE: NO ORIFICE OR QUANTITY CONTROL
1.0	401.2				REQUIRED FOR SOUTH BUILDING.
0.9	380.6	9.4	-100yr		
0.8	358.8		,.		
0.7	335.6				
0.6	310.7				
0.5	283.7				
0.4	253.7		10		
0.3 0.2	219.7 179.4	5.5	-10 yr		
0.2	179.4 126.9	3.3	0. m		
0.0	0.0	3.3	-2yr		



Project: 66 Thomas Street Project No: 1419-4679 Created By: BP Updated: 2024-03-15 Date: 9-21-2021

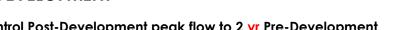
## **MODIFIED RATIONAL CALCULATIONS**

## **POST-DEVELOPMENT**

2 yr: Control Post-Development peak flow to 2 yr Pre-Devel	opment
------------------------------------------------------------	--------

2 yr Uncontrolled Post-Development Flow:	A=	1.275
$\mathbf{Q}_{\mathbf{post}} = 0.140 \text{ m}^3/\text{s}$	C=	0.66
Target Flow (2-year Pre-development Flow):	C*=	0.66 (=C*1.0)
<b>Q_{target} =</b> 0.137 m ³ /s		

Storage Volume Determination (Detailed)						
T _d	i	T _d	T _d Q _{post}			
min	mm/hr	sec	m³/s	m ³		
10	75.36	600	0.176	3.3		
15	59.89	900	0.140	3.2		
20	50.16	1200	0.117	-2.6		
25	43.42	1500	0.102	-11.5		
26	42.31	1560	0.099	-13.6		
27	41.26	1620	0.097	-15.7		
28	40.27	1680	0.094	-17.9		
29	39.34	1740	0.092	-20.2		
30	38.45	1800	0.090	-22.5		
35	34.60	2100	0.081	-34.9		
40	31.54	2400	0.074	-48.3		
45	29.03	2700	0.068	-62.5		
50	26.94	3000	0.063	-77.3		
55	25.16	3300	0.059	-92.6		
60	23.62	3600	0.055	-108.3		


REQUIRED STORAGE VOLUME:

m³ 3.3

Equations:

$$\frac{\text{Peak Flow}}{\text{Q}_{\text{post}} = 0.0028 \bullet \text{C}_{\text{post}} \bullet \text{i}_{(\text{Td})} \bullet \text{A}}$$

<u>Storage</u>  $\overline{S_d = Q_{post}} \bullet T_d - Q_{pre} (T_d + T_c) / 2$  Discharge Q. t. t_d Time





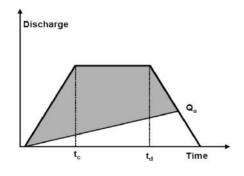
Project: 66 Thomas Street Project No: 1419-4679 Created By: BP Updated: 2024-03-15 Date: 9-21-2021

## **MODIFIED RATIONAL CALCULATIONS**

## **POST-DEVELOPMENT**

10 yr: Control Post-Development peak flow to	o 10 yr Pre-Development
----------------------------------------------	-------------------------

10 yr Uncontrolled Post-Development Flow:	A=	1.275
<b>Q_{post} =</b> 0.232 m ³ /s	C=	0.66
Target Flow (10-year Pre-development Flow):	C*=	0.66 (=C*1.0)
$Q_{target} = 0.226 \text{ m}^3/\text{s}$		


Storage Volume Determination (Detailed)						
T _d	i	T _d	T _d Q _{post}			
min	mm/hr	sec	m³/s	m ³		
10	124.77	600	0.292	5.5		
15	99.17	900	0.232	5.3		
20	83.06	1200	0.194	-4.3		
25	71.90	1500	0.168	-19.1		
26	70.06	1560	0.164	-22.5		
27	68.32	1620	0.160	-26.0		
28	66.68	1680	0.156	-29.6		
29	65.13	1740	0.152	-33.4		
30	63.66	1800	0.149	-37.2		
35	57.30	2100	0.134	-57.7		
40	52.22	2400	0.122	-79.9		
45	48.07	2700	0.112	-103.4		
50	44.60	3000	0.104	-127.9		
55	41.65	3300	0.097	-153.3		
60	39.11	3600	0.092	-179.4		

REQUIRED STORAGE VOLUME:

5.5 m³

Equations:

 $\frac{\text{Storage}}{S_d = Q_{post}} \bullet T_d - Q_{pre} (T_d + T_c) / 2$ 





Project: 66 Thomas Street Project No: 1419-4679 Created By: BP Updated: 2024-03-15 Date: 9-21-2021

## **MODIFIED RATIONAL CALCULATIONS**

m³

9.4

## **POST-DEVELOPMENT**

100 yr: Control Post-Development peak flow to 1	100 yr Pre-Development
-------------------------------------------------	------------------------

100 yr Uncontrolled Post-Development Flow:	A=	1.275
$Q_{post} = 0.411 \text{ m}^3/\text{s}$	C=	0.66
Target Flow (100-year Pre-development Flow):	C*=	0.83 (=C*1.25)
$Q_{target} = 0.401 \text{ m}^3/\text{s}$		

Storage Volume Determination (Detailed)					
T _d	i	T _d	<b>Q</b> _{post}	S _d	
min	mm/hr	sec	m³/s	m ³	
10	176.31	600	0.516	8.6	
15	140.69	900	0.411	9.4	
16	135.41	960	0.396	7.2	
17	130.56	1020	0.382	4.5	
18	126.09	1080	0.369	1.2	
19	121.96	1140	0.357	-2.5	
20	118.12	1200	0.345	-6.6	
25	102.41	1500	0.299	-32.0	
30	90.77	1800	0.265	-63.6	
35	81.77	2100	0.239	-99.4	
40	74.58	2400	0.218	-138.3	
45	68.68	2700	0.201	-179.5	
50	63.75	3000	0.186	-222.7	
55	59.56	3300	0.174	-267.3	
60	55.95	3600	0.164	-313.3	

REQUIRED STORAGE VOLUME:

Equations:

$$\frac{\text{Peak Flow}}{\text{Q}_{\text{post}} = 0.0028 \bullet \text{C}_{\text{post}} \bullet \text{i}_{(\text{Td})} \bullet \text{A}}$$

 $\frac{\text{Storage}}{S_d = Q_{post}} \bullet T_d - Q_{pre} (T_d + T_c) / 2$ 

Discharge

## MENT



## Storm Outlet Pipe Sizing to Thomas Street (100-yr)

<u>Building</u>	NORTH	SOUTH	
100-yr Post-Dev Rate	401	84	L/s
Pipe Diameter	450	300	mm
Slope	2.00	1.50	%
Mannings "n"	0.013	0.013	
Cross-Sectional Area (A)	0.16	0.07	m2
Hydraulic Radius (R)	0.11	0.08	m
Full Flow Velocity (V)	2.54	1.68	m/s
Pipe Capacity (Q)	403	118	m3/s
Pipe Capacity Used	<b>99</b> %	71%	



Project: 66 Thomas Street Project No.: 1419-4679 Created By: BP Checked By: RB 
 Date:
 2023-10-18

 Updated:
 2024-03-15

#### Water Balance Calculations

Water Balance Target = 5mm

Site VolumeTarget = 139 m3

Post - Development Conditions								
Catchment Area	Description	Area (ha)	с	%Imp	IA (mm)	Water Balance Deficit (mm)	IA (m3)	Water Balance Deficit (m3)
201	Watercourse	1.03	0.2	0%	5.0	0.0	51.5	0.0
202	Buildings	0.72	0.7	71%	2.1	2.9	15.4	20.6
203	At-Grade	0.53	0.8	86%	1.6	3.4	8.3	18.2
204	Landscape	0.29	0.3	14%	4.4	0.6	12.8	1.7
205	Uncontrolled	0.21	0.5	43%	3.3	1.7	6.9	3.6
Total	Site	2.78	0.48	40%	3.4	1.6	95.0	44.0

Initial Abstraction (IA):

IA + WB Deficit = 139.0

Pervious Area = 5mm

Impervious Area = 1mm



## LEGEND:

- Storm sewer Manhole
- Stormsewer
- Headwall
- Ex. Drainage Boundary

Pr. Drainage Boundary

## DRAINAGE AREAS:

	AREA (ha)	RC
A1:	2.51	0.72/0.65*
A2:	1.97	0.65
A3:	2.60	0.90
A4:	0.66	0.55
A5:	0.31	0.55
A6:	0.28	0.90
A7:	0.19	0.90
A8:	0.17	0.90
A9:	0.16	0.90
A10:	0.16	0.90
A11:	0.02	0.90
A12:	92.37	0.31

#### NOTES:

-Runoff coefficients for A1 (80 Thomas St) is 0.72 in existing conditions and 0.65 in post-development conditions

-80 Thomas Street existing conditions runoff coefficient is based on measured imperviousness

-Runoff coefficients for A1-A11 is from the City of

Mississauga Transportation and Works

Department, Development Requirements Manual, Section 2, dated September 2016

-Runoff coefficient for A12 is from Gafeny and

Thomas Singles by Trafalgar Engineering, dated 2004

- Pipe dimensions, slope and length from T2 to MH2 and MH2 to HW is from Turney Drive, dated 1979

 Pipe dimensions, slope and length from MH6 to MH2 is from Region of Peel, drawing 58529-D, dated 2016

 Drainage area for A2 is from Joymar Rental Townhomes, by Trafalgar Engineering LTD., dated 2004

 Drainage area for A4 and A5 is from the City of Mississauga Mapping Site. A4 and A5 is the entire lot area of properties fronting Thomas St

 Drainage areas for sections of the road is based on as constructed drawings

100 m

CROZIER &ASSOCIATES				DOM	/NSTREAM	DESIGN	ANALYSIS	S STORM SE		PROJECT: 66 Thomas St PROJECT No.: 1419-4679 FILE: Ext. Storm Sewer Desig DATE: 2021.12.23				-					
$\sim$	Consulting Engineers				A	10 YE 1010	EAR DESIGN S	TORM - CIT 4.6	Y OF MISSISSA C	AUGA 0.78							Design: Check:	BP JRK/AP	
				INI			TRATION (m	15.00		MANNI	」 NGS "n"	0.013						01.1.07.1	
Drainage	FR	то		RUN-		Cummul.	TIME OF			PIPE	PIPE		VEL.	Q/A			TIME		
Area ID	мн	мн	AREA (A)	OFF	AxC	AxC	CONC.	1	Q	SLOPE	DIA.	Area			Hv	LENGTH	OF FLOW	CAPACITY	% capacity
	NO	NO	На	COEFF			min	mm/hr	l/sec	%	mm	m2	m/sec	m/s	m	m	min	l/sec	
			1					A1 S	TORAGE										
A12	MH1	T2	92.37	0.31	28.72	28.72	28.43	66.00	5383.28	1.66	1200	1.13	4.44	4.76	1.15	139.0	0.52	5023.16	107.2
A6+A4	T2	MH2	0.94	0.65	0.61	29.33	28.95	65.20	5316.29	0.22	1325 x 2075	2.75	1.97	1.93	0.19	134.0	1.13	5423.99	98.0
A2	86 Joymar Drive	MH6	1.97	0.50	0.99	0.99	15.00	99.17	271.55	0.50	525	0.22	1.40	1.25	0.08	242.0	2.87	304.10	89.3
A11	MH6	MH5	0.02	0.90	0.02	1.00	17.87	89.14	248.54	0.90	600	0.28	2.06	0.88	0.04	59.5	0.48	582.50	42.7
A10	MH5	MH4	0.16	0.90	0.14	1.15	18.35	87.67	279.56	0.90	600	0.28	2.06	0.99	0.05	30.0	0.24	582.50	48.0
A9	MH4	MH3	0.16	0.90	0.14	1.29	18.60	86.96	312.09	1.10	600	0.28	2.28	1.10	0.06	93.0	0.68	643.98	48.5
A8+A1 (80 Thomas Street)	МНЗ	MH2	2.68	0.67	1.80	3.09	19.28	85.02	729.53	0.97	675	0.36	2.31	2.04	0.21	75.5	0.54	827.88	88.1
A7+A5+ A3 (66 Thomas Street)	MH2	HW	3.10	0.87	2.70	35.11	28.95	65.20	6364.57	0.33	1325 x 2075	2.75	2.42	2.31	0.27	87.0	0.60	6643.00	95.8

Notes:

- Calculations for MH1 to T2 is from Gafney and Thomas Singles, by Trafalgar Engineering, dated 2004

- For the section "86 Joymar Drive" to MH6, the length of pipe is given by the longest chain of stormsewer and the slope is per the average slope for all the sections of stormsewer in the longest chain of stormsewer. Details can be found in Gafney and Thomas Singles, by Trafalgar Engineering, dated 2004

- Pipe dimensions, slope and length from T2 to MH2 and MH2 to HW is from Turney Drive, dated 1979

- Pipe dimensions, slope and length from MH6 to MH2 is from Region of Peel, drawing 58529-D, dated 2016

- Drainage area for A2 is from Joymar Rental Townhomes, by Trafalgar Engineering LTD., dated 2004

- Drainage area for A4 and A5 is from the City of Mississauga Mapping Site. A4 and A5 is the entire lot area of properties fronting Thomas St

- Drainage areas for sections of the road is based on as constructed drawings with an average road width of 21 m

- Runoff coefficients for A1-A11 is from the City of Mississauga Transportation and Works Department, Development Requirements Manual, Section 2, dated September 2016

- Runoff coefficient for A12 is from Gafeny and Thomas Singles by Trafalgar Engineering, dated 2004

<b>CROZIER</b> &ASSOCIATES			DOM			ISTING CONI ' ANALYSIS \$ N SHEET		EWER	PROJECT: 66 Thomas St PROJECT No.: 1419-4679 FILE: Ext. Storm Sewer Des DATE: 2021.12.23										
	Consulting Engineers					10 Y	EAR DESIGN S	STORM - CITY	OF MISSISS	AUGA	1						Design:		
					Α	1010	В	4.6	С	0.78							Check:	JRK/AP	
				INI	TIAL TIME	OF CONCEN	ITRATION (m	15.00		MANNIN	IGS "n"	0.013							
Drainage	FR	то		RUN-		Cummul.	TIME OF			PIPE	PIPE		VEL.	Q/A			TIME		-
Area ID	МН	мн	AREA (A)	OFF	AxC	AxC	CONC.	I.	Q	SLOPE	DIA.	Area			Hv	LENGTH	OF FLOW	CAPACITY	% capacity
l	NO	NO	На	COEFF			min	mm/hr	l/sec	%	mm	m2	m/sec	m/s	m	m	min	l/sec	
			1					A1 STO	RAGE										
A12	MH1	T2	92.37	0.31	28.72	28.72	28.43	66.00	5383.3	1.66	1200	1.13	4.44	4.76	1.15	139.0	0.52	5023.2	107.2
A6+A4	T2	MH2	1.25	0.65	0.81	29.53	28.95	65.20	5352.8	0.22	1325 x 2075	2.75	1.97	1.95	0.19	134.0	1.13	5424.0	98.7
A2	86 Joymar Drive	MH6	1.97	0.50	0.99	0.99	15.00	99.17	271.5	0.50	525	0.22	1.40	1.25	0.08	242.0	2.87	304.1	89.3
A11	MH6	MH5	0.02	0.80	0.02	1.00	17.87	89.14	248.0	0.90	600	0.28	2.06	0.88	0.04	59.5	0.48	582.5	42.6
A10	MH5	MH4	0.16	0.80	0.13	1.13	18.35	87.67	275.2	0.90	600	0.28	2.06	0.97	0.05	30.0	0.24	582.5	47.2
A3 (66 Thomas -																			
NORTH BLDG)	MH3	MH2				NORT	H BI DG Cont	trolled Rate ->	226.0	1.10	600	0.28	2.28	0.80	0.03	93.0	0.68	644.0	35.1
A9	MH4	MH3	0.16	0.80	0.13	1.26	18.60	86.96	529.9	1.10	600	0.28	2.28	1.87	0.18	93.0	0.68	644.0	82.3
A8+A1 (80	MH3	MH2	2.37	0.50	1.19	2.44	19.28	85.02	002.0	0.97	675	0.36	2.31	2.24	0.26	75.5	0.54	827.9	97.0
Thomas St)	IVITI3	IVIH2	2.37	0.50	1.19	2.44	19.28	00.02	803.2	0.97	0/5	0.30	2.31	2.24	0.26	10.0	0.34	027.9	97.0
A3 (66 Thomas - SOUTH BLDG)	MH2	нw				SOUT	H BI DG Cont	trolled Rate ->	72.0	0.33	1325 x 2075	2.75	2.42	0.03	0.00	87.0	0.60	6643.0	1.1
A7+A5+A3	MH2	HW	2.10	0.87	1.83	33.80	28.95	65.20	6424.6	0.33	1325 x 2075	2.75	2.42	2.34	0.28	87.0	0.60	6643.0	96.7
A/TA0TA3	IVIH2	ΠVV	2.10	0.87	1.83	33.80	20.90	05.20	0424.0	0.33	1929 X 2079	2.75	2.42	2.34	0.28	07.0	0.00	0043.0	

Notes:

- Calculations for MH1 to T2 is from Gafney and Thomas Singles, by Trafalgar Engineering, dated 2004

- For the section "86 Joymar Drive" to MH6, the length of pipe is given by the longest chain of stormsewer and the slope is per the average slope for all the sections of stormsewer in the longest chain of stormsewer. Details can be found in Gafney and Thomas Singles, by Trafalgar Engineering, dated 2004

- Pipe dimensions, slope and length from T2 to MH2 and MH2 to HW is from Turney Drive, dated 1979

- Pipe dimensions, slope and length from MH6 to MH2 is from Region of Peel, drawing 58529-D, dated 2016

- Drainage area for A2 is from Joymar Rental Townhomes, by Trafalgar Engineering LTD., dated 2004

- Drainage area for A4 and A5 is from the City of Mississauga Mapping Site. A4 and A5 is the entire lot area of properties fronting Thomas St

- Drainage areas for sections of the road is based on as constructed drawings with an average road width of 21 m

- Runoff coefficients for A1-A11 is from the City of Mississauga Transportation and Works Department, Development Requirements Manual, Section 2, dated September 2016

- Runoff coefficient for A12 is from Gafeny and Thomas Singles by Trafalgar Engineering, dated 2004

### **REGIONAL STORM EVENT (HAZEL) VO MODEL RESULTS**

_____ _____ V V I SSSSS U U A L (v 6.2.2015) V V I SS U U AA L V V I SS U U AAAAA L V V I SS U U A A L I SSSSS UUUUU A A LLLLL SS U U A A L VV OOO TTTTT TTTTT H H Y Y M M OOO ͲМ 0 0 T T H H Y Y MM MM 0 0 0 0 Т Т Н Н Ү М М 0 0 000 Т Т Н Н Ү М М 000 Developed and Distributed by Smart City Water Inc Copyright 2007 - 2022 Smart City Water Inc All rights reserved. ***** DETAILED OUTPUT ***** Input filename: C:\Program Files (x86)\Visual OTTHYMO 6.2\VO2\voin.dat Output filename: C:\Users\rbabic\AppData\Local\Civica\VH5\5a6e919e-ae29-4dc4-a33e-9ac27a082ae2\debf1f0c-7378-49ee-992b-0a3b292590c9\scena Summary filename: C:\Users\rbabic\AppData\Local\Civica\VH5\5a6e919e-ae29-4dc4-a33e-9ac27a082ae2\debf1f0c-7378-49ee-992b-0a3b292590c9\scena DATE: 03-15-2024 TIME: 03:30:42 _____ _____ ***** ** SIMULATION : Run 05 ***** _____ 1 READ STORM | Filename: C:\Users\rbabic\AppD ata\Local\Temp\ adlf5cac-24b1-4ac2-b927-11ee8ce214c9\37fa28f2 | Ptotal=212.00 mm | Comments: Hazel _____ TIME RAIN | TIME RAIN | ' TIME RAIN | TIME RAIN hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr 0.00 6.00 | 3.00 13.00 | 6.00 23.00 | 9.00 53.00 

 4.00 |
 4.00
 17.00 |
 7.00
 13.00 |
 10.00
 38.00

 6.00 |
 5.00
 13.00 |
 8.00
 13.00 |
 11.00
 13.00

 1.00 2.00 6.00 | 5.00 _____ _____ L CALTB 1 | STANDHYD ( 0001)| Area (ha)= 2.18 |ID=1 DT=15.0 min | Total Imp(%)= 99.00 Dir. Conn.(%)= 99.00 _____ IMPERVIOUS PERVIOUS (i) Surface Area (ha) = 2.16 0.02 Dep. Storage (mm) = 1.00 1.50 
 Average Slope
 (%) =
 1.00
 2.00

 Length
 (m) =
 120.55
 40.00

 Mannings n
 =
 0.013
 0.250

NOTE: RAINFALL WAS TRANSFORMED	TO 15.0	MIN. T	IME STEP.
--------------------------------	---------	--------	-----------

 TRANSFORMED	HYETOGRAPH	

			RAIN  ' T			
	hrs mm/hr	hrs	mm/hr  '	hrs mm/hr	hrs	mm/h
0.	.250 6.00	3.250	13.00   6.2	50 23.00	9.25	53.00
0.	.500 6.00	3.500	13.00   6.5	00 23.00	9.50	53.00
0.	.750 6.00	3.750	13.00   6.5 13.00   6.7	50 23.00	9.75	53.00
1.	.000 6.00	4.000	13.00   7.0	00 23.00	10.00	53.00
1.	.250 4.00	4.250	17.00   7.2	50 13.00	10.25	38.00
			17.00   7.5			
			17.00   7.7			
			17.00   8.0			
			13.00   8.2			
2	.500 6.00		13.00   8.5		11 50	13 00
	750 6.00		13 00   8 7	50 13 00	1 11 75	13 00
2.	0.00		13.00   8.7 13.00   9.0	00 13.00	1 12 00	13.00
J.	.000 0.00	1 0.000	13.00   9.0	13.00	12.00	13.00
Max.Eff.Inter	(mm/hr) =	53 00	50.27			
ov Storage Coeff	(min) =	3 68	(ii) 12.98			
Unit Hud Th	(min) =	15 00	15 00	(±±)		
Unit Hyd. Tpe Unit Hyd. pea	sak (min)-	10.00	10.00			
onite nya, pea	ik (CIIIS)-	0.11	0.00		FALS*	
PEAK FLOW	(cmc) -	0 22	0.00			`
PLAK FLOW	(CIIIS) =	10.32	10.00	0.	.321 (iii	.)
TIME TO PEAK	(IIIS) = (mm) =	10.00	10.00	210	0.00	
RUNOFF VOLUME	E (mm) =	211.00	173.55	210	0.62	
RUNOFF VOLUME TOTAL RAINFAI	E (mm) = LL (mm) =	211.00 212.00	173.55 212.00	210 212	0.62 2.00	
RUNOFF VOLUME TOTAL RAINFAI RUNOFF COEFFI	E (mm) = LL (mm) = ICIENT =	211.00 212.00 1.00	173.55 212.00 0.82	210 212 (	0.62 2.00	
RUNOFF VOLUME TOTAL RAINFAI RUNOFF COEFFI **** WARNING: STO (i) CN PROC CN* = (ii) TIME ST THAN TH	E (mm) = LL (mm) = LCIENT = DRAGE COEFF. CEDURE SELEC = 85.0 I TEP (DT) SHO HE STORAGE C	211.00 212.00 1.00 IS SMALLE TED FOR PE a = Dep. S ULD BE SMA COEFFICIENT	173.55 212.00 0.82 ER THAN TIME ERVIOUS LOSSE Storage (Abo ALLER OR EQUA	210 212 ( STEP! S: ve) L	0.62 2.00	
RUNOFF VOLUME TOTAL RAINFAI RUNOFF COEFFI **** WARNING: STO (i) CN PROC CN* = (ii) TIME ST THAN TH (iii) PEAK FI	E (mm) = LL (mm) = ICIENT = DRAGE COEFF. CEDURE SELEC = 85.0 I TEP (DT) SHO HE STORAGE C LOW DOES NOT	211.00 212.00 1.00 IS SMALLE TED FOR PE a = Dep. S ULD BE SMA COEFFICIENT	173.55 212.00 0.82 ER THAN TIME ERVIOUS LOSSE Storage (Abo ALLER OR EQUA	210 212 ( STEP! S: ve) L	0.62 2.00	
RUNOFF VOLUME TOTAL RAINFAI RUNOFF COEFFI **** WARNING: STO (i) CN PROC CN* = (ii) TIME ST THAN TH (iii) PEAK FI	E (mm) = LL (mm) = ICIENT = DRAGE COEFF. CEDURE SELEC = 85.0 I TEP (DT) SHO HE STORAGE C LOW DOES NOT	211.00 212.00 1.00 IS SMALLE TED FOR PH a = Dep. S DULD BE SMA COEFFICIENT INCLUDE F	173.55 212.00 0.82 CR THAN TIME CRVIOUS LOSSE Storage (Abo ALLER OR EQUA C. BASEFLOW IF A	210 212 ( STEP! S: ve) L	0.62 2.00	
RUNOFF VOLUME TOTAL RAINFAI RUNOFF COEFFI **** WARNING: STO (i) CN PROC CN* = (ii) TIME ST THAN TH (iii) PEAK FI 	E (mm) = LL (mm) = ICIENT = DRAGE COEFF. CEDURE SELEC = 85.0 I TEP (DT) SHO HE STORAGE C LOW DOES NOT 	211.00 212.00 1.00 IS SMALLE TED FOR PH a = Dep. S DULD BE SMA COEFFICIENT 'INCLUDE F 	173.55 212.00 0.82 CR THAN TIME CRVIOUS LOSSE Storage (Abo ALLER OR EQUA C. BASEFLOW IF A 	210 212 ( STEP! S: ve) L NY.	0.62	
RUNOFF VOLUME TOTAL RAINFAI RUNOFF COEFFI **** WARNING: STO (i) CN PROC CN* = (ii) TIME ST THAN TH (iii) PEAK FI 	E (mm) = LL (mm) = ICIENT = DRAGE COEFF. CEDURE SELEC = 85.0 I TEP (DT) SHO HE STORAGE C LOW DOES NOT 	211.00 212.00 1.00 IS SMALLE TED FOR PH a = Dep. S DULD BE SMA COEFFICIENT 'INCLUDE F 	173.55 212.00 0.82 CR THAN TIME CRVIOUS LOSSE Storage (Abo ALLER OR EQUA C. BASEFLOW IF A 	210 212 ( STEP! S: ve) L NY.	0.62	
RUNOFF VOLUME TOTAL RAINFAI RUNOFF COEFFI **** WARNING: STO (i) CN PROC CN* = (ii) TIME ST THAN TH (iii) PEAK FI 	E (mm) = LL (mm) = ICIENT = DRAGE COEFF. CEDURE SELEC = 85.0 I TEP (DT) SHO HE STORAGE C LOW DOES NOT 	211.00 212.00 1.00 IS SMALLE TED FOR PH a = Dep. S DULD BE SMA COEFFICIENT INCLUDE F INCLUDE F (ha) = Imp(%) = 8	173.55 212.00 0.82 CR THAN TIME CRVIOUS LOSSE Storage (Abo ALLER OR EQUA C. BASEFLOW IF A 1.75 33.00 Dir.	210 212 ( STEP! S: ve) L NY. 	0.62	
RUNOFF VOLUME TOTAL RAINFAI RUNOFF COEFFI **** WARNING: STO (i) CN PROC CN* = (ii) TIME ST THAN TH (iii) PEAK FI (iii) PEAK FI CALIB STANDHYD ( 0002 ID= 1 DT=15.0 mir	E (mm) = LL (mm) = ICIENT = DRAGE COEFF. CEDURE SELEC = 85.0 I TEP (DT) SHO HE STORAGE C LOW DOES NOT 	211.00 212.00 1.00 IS SMALLE TED FOR PE a = Dep. S DULD BE SMA COEFFICIENT 'INCLUDE F (ha) = Imp(%) = S IMPERVIOU	173.55 212.00 0.82 ER THAN TIME ERVIOUS LOSSE Storage (Abo ALLER OR EQUA C. BASEFLOW IF A 1.75 33.00 Dir. US PERVIOU	210 212 ( STEP! S: ve) L NY. 	0.62	
RUNOFF VOLUME TOTAL RAINFAI RUNOFF COEFFI **** WARNING: STO (i) CN PROC CN* = (ii) TIME ST THAN TH (iii) PEAK FI CALIB STANDHYD ( 0002 ID= 1 DT=15.0 mir Surface Area	E (mm) = LL (mm) = ICIENT = DRAGE COEFF. CEDURE SELEC = 85.0 I TEP (DT) SHO HE STORAGE C LOW DOES NOT 	211.00 212.00 1.00 IS SMALLE TED FOR PE a = Dep. S DUD BE SMA COEFFICIENT 'INCLUDE F (ha) = Imp(%) = { IMPERVIOU 1.45	173.55 212.00 0.82 ER THAN TIME ERVIOUS LOSSE Storage (Abo ALLER OR EQUA 2. BASEFLOW IF A 1.75 3.00 Dir. JS PERVIOU 0.30	210 212 ( STEP! S: ve) L NY. Conn.(%)= 8 S (i)	0.62	
RUNOFF VOLUME TOTAL RAINFAI RUNOFF COEFFI **** WARNING: STO (i) CN PROC CN* = (ii) TIME ST THAN TH (iii) PEAK FI 	E (mm) = LL (mm) = ICIENT = DRAGE COEFF. CEDURE SELEC = 85.0 I TEP (DT) SHO HE STORAGE C LOW DOES NOT 	211.00 212.00 1.00 IS SMALLE TED FOR PE a = Dep. S ULD BE SMA COEFFICIENT INCLUDE E (ha) = Imp(%) = % IMPERVIOU 1.45 1.00	173.55 212.00 0.82 ER THAN TIME ERVIOUS LOSSE Storage (Abo LLER OR EQUA C. BASEFLOW IF A 	210 212 ( STEP! S: ve) L NY. 	0.62	
RUNOFF VOLUME TOTAL RAINFAI RUNOFF COEFFI **** WARNING: STO (i) CN PROC CN* = (ii) TIME ST THAN TH (iii) PEAK FI 	E (mm) = LL (mm) = ICIENT = DRAGE COEFF. CEDURE SELEC = 85.0 I TEP (DT) SHO HE STORAGE C LOW DOES NOT 	211.00 212.00 1.00 IS SMALLE TED FOR PE a = Dep. S ULD BE SMA COEFFICIENT INCLUDE E (ha) = Imp(%) = % IMPERVIOU 1.45 1.00	173.55 212.00 0.82 ER THAN TIME ERVIOUS LOSSE Storage (Abo LLER OR EQUA C. BASEFLOW IF A 	210 212 ( STEP! S: ve) L NY. 	0.62	
RUNOFF VOLUME TOTAL RAINFAI RUNOFF COEFFI **** WARNING: STO (i) CN PROC CN* = (ii) TIME ST THAN TH (iii) PEAK FI CALIB STANDHYD ( 0002 ID= 1 DT=15.0 min Surface Area Dep. Storage Average Slope Length	E (mm) = LL (mm) = ICIENT = DRAGE COEFF. CEDURE SELEC = 85.0 I TEP (DT) SHO HE STORAGE C LOW DOES NOT 	211.00 212.00 1.00 IS SMALLE TED FOR PE a = Dep. S ULD BE SMA COEFFICIENT 'INCLUDE E (ha) = Imp(%) = 8 IMPERVIOU 1.45 1.00 1.00 1.00.01	173.55 212.00 0.82 ER THAN TIME ERVIOUS LOSSE Storage (Abo ALLER OR EQUA C. BASEFLOW IF A 	210 212 ( STEP! S: ve) L NY. 	0.62	
RUNOFF VOLUME TOTAL RAINFAI RUNOFF COEFFI **** WARNING: STO (i) CN PROC CN* = (ii) TIME ST THAN TH (iii) PEAK FI 	E (mm) = LL (mm) = ICIENT = DRAGE COEFF. CEDURE SELEC = 85.0 I TEP (DT) SHO HE STORAGE C LOW DOES NOT 	211.00 212.00 1.00 IS SMALLE TED FOR PE a = Dep. S ULD BE SMA COEFFICIENT 'INCLUDE E (ha) = Imp(%) = 8 IMPERVIOU 1.45 1.00 1.00 1.00.01	173.55 212.00 0.82 ER THAN TIME ERVIOUS LOSSE Storage (Abo ALLER OR EQUA C. BASEFLOW IF A 	210 212 ( STEP! S: ve) L NY. 	0.62	

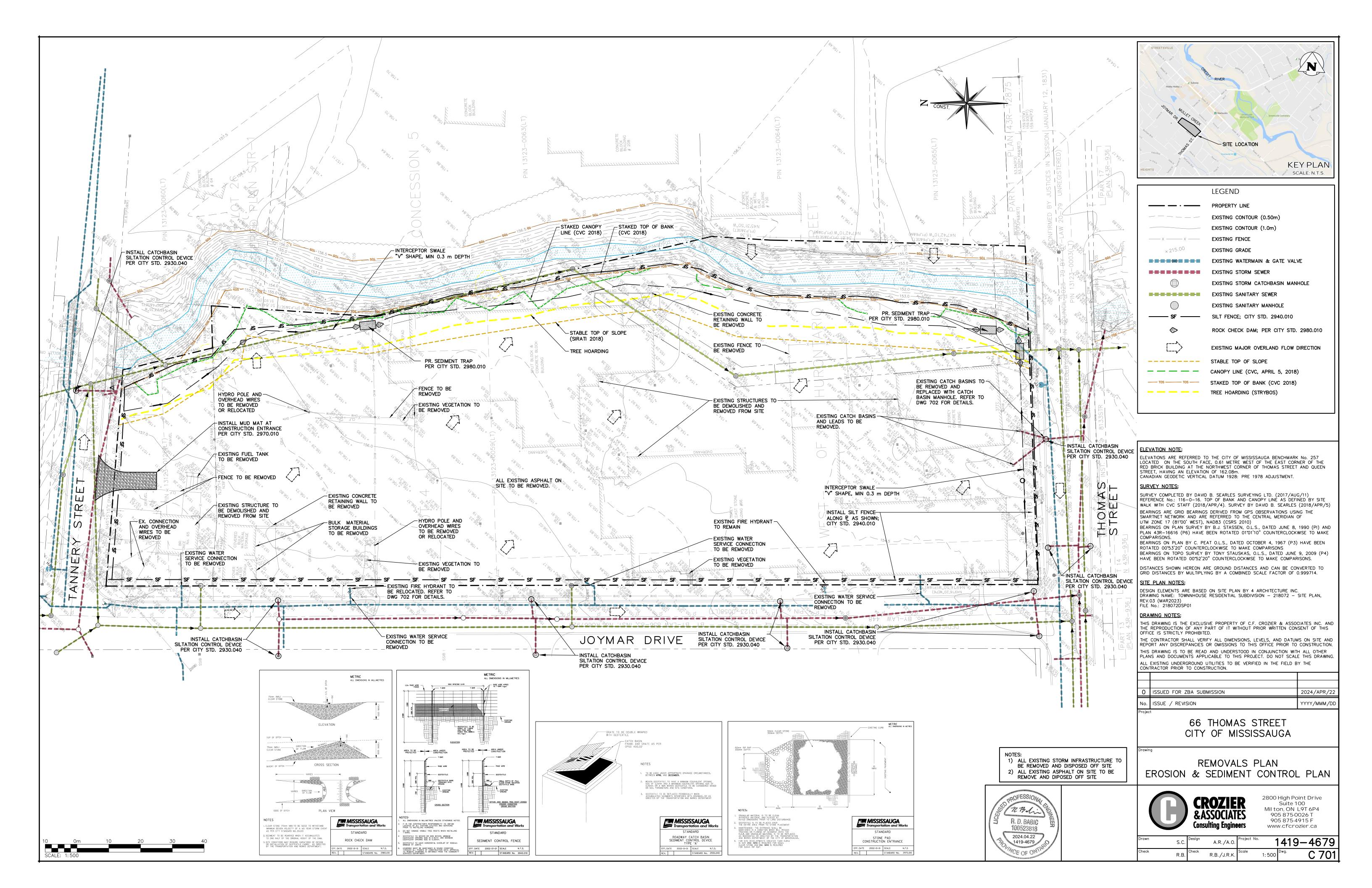
#### ---- TRANSFORMED HYETOGRAPH ----

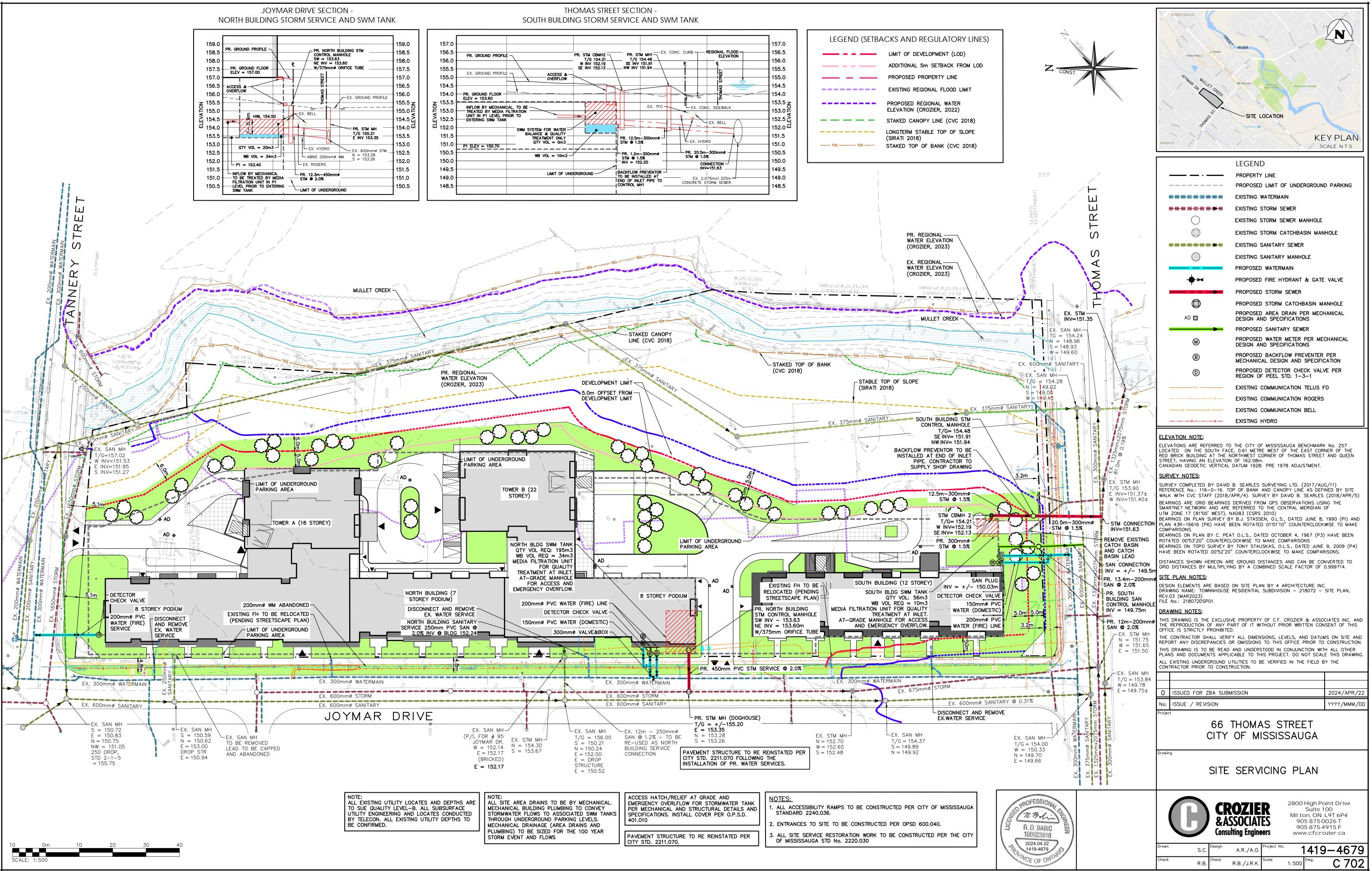
TIME	RAIN	TIME	RAIN  ' TIME	C RAIN   TIME	RAIN
hrs	mm/hr	hrs	mm/hr  ' hrs	s mm/hr   hrs	mm/hr
0.250	6.00	3.250	13.00   6.250	23.00   9.25	53.00
0.500	6.00	3.500	13.00   6.500	23.00   9.50	53.00
0.750	6.00	3.750	13.00   6.750	23.00   9.75	53.00
1.000	6.00	4.000	13.00   7.000	23.00   10.00	53.00
1.250	4.00	4.250	17.00   7.250	13.00   10.25	38.00
1.500	4.00	4.500	17.00   7.500	13.00   10.50	38.00
1.750	4.00	4.750	17.00   7.750	13.00   10.75	38.00

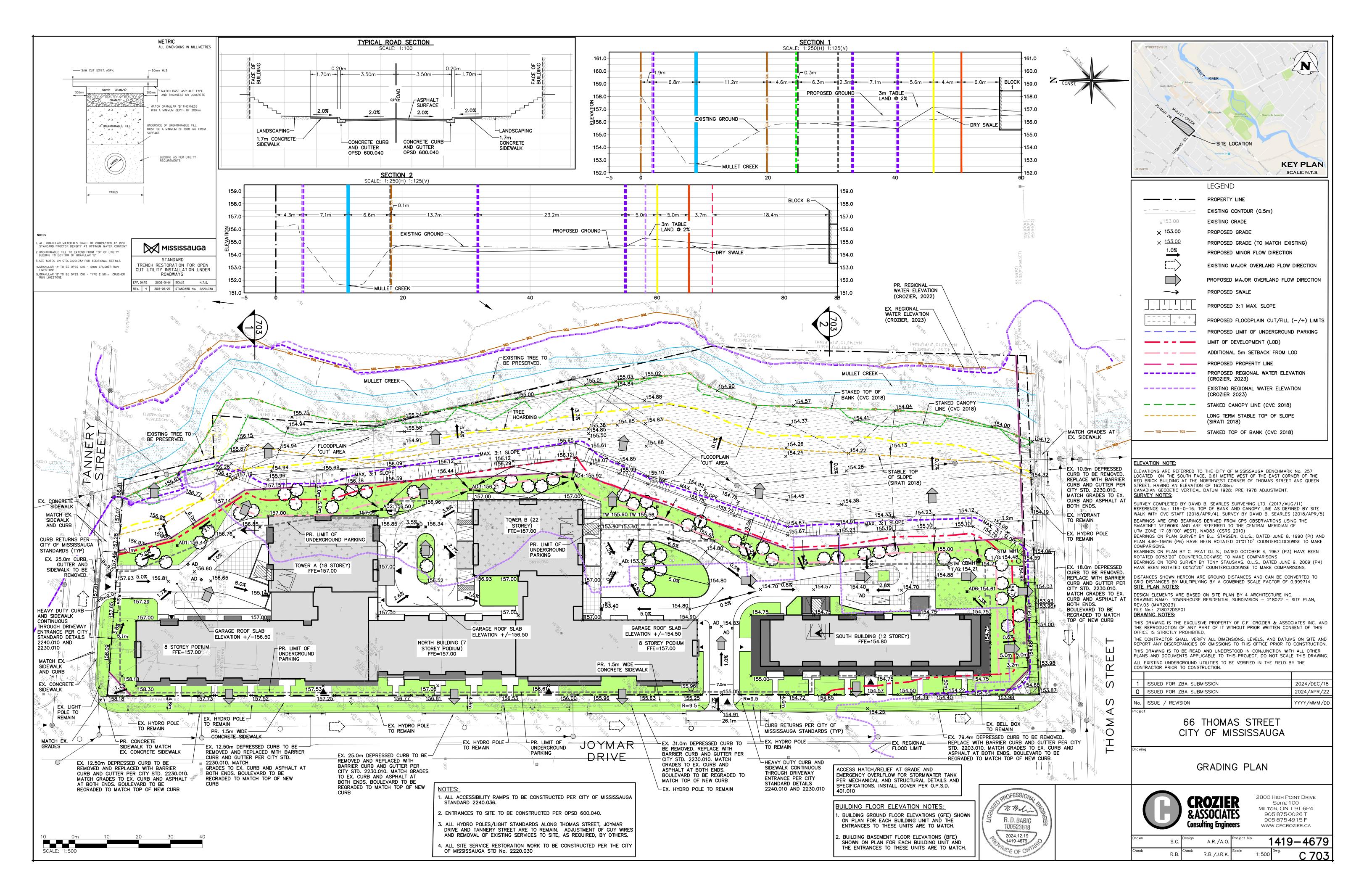
2.000 2.250 2.500 2.750 3.000	6.00 6.00 6.00	5.000   5.250   5.500   5.750   6.000	17.00   8.000 13.00   8.250 13.00   8.500 13.00   8.750 13.00   9.000	13.00   11.00 13.00   11.25 13.00   11.50 13.00   11.75 13.00   12.00	38.00 13.00 13.00 13.00 13.00
Max.Eff.Inten.(m over	nm/hr)= (min)	53.00 15.00	59.87 15.00		
Storage Coeff.	. ,		(ii) 12.11 (i	i)	
Unit Hyd. Tpeak	(min)=	15.00	15.00		
Unit Hyd. peak	(cms) =	0.11	0.08		
				*TOTALS*	
PEAK FLOW	(cms) =	0.21	0.05	0.255 (iii	)
TIME TO PEAK	(hrs)=	10.00	10.00	10.00	
RUNOFF VOLUME	(mm) =	211.00	178.46	204.49	
TOTAL RAINFALL	(mm) =	212.00	212.00	212.00	
RUNOFF COEFFICIE	ENT =	1.00	0.84	0.96	

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

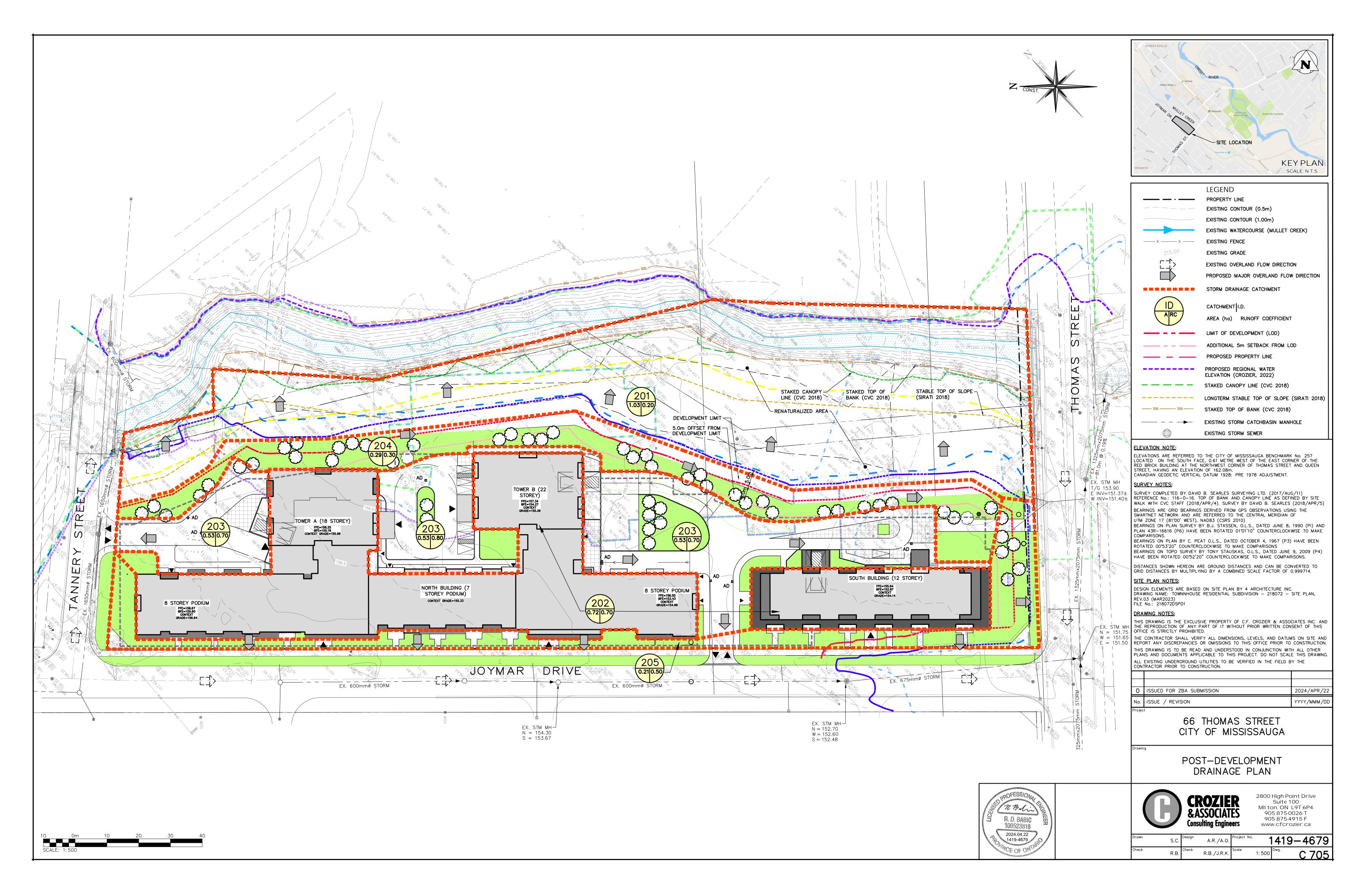
- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 85.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
- THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.


_____


_____


FINISH


_____


# DRAWINGS & FIGURES

