# PHASE TWO ENVIRONMENTAL SITE ASSESSMENT 64 AND 66 THOMAS STREET, 95 JOYMAR DRIVE, AND 65 TANNERY STREET MISSISSAUGA, ONTARIO

## **Prepared for:**

De Zen Realty

4890 Tomken Road, Mississauga, Ontario L4W 1J8

Attention: Mark Palmieri

### Prepared By:

### SIRATI & PARTNERS CONSULTANTS LTD

Project: SP18-306-20-02

June 17, 2022



12700 Keele Street, King City

ON L7B 1H5

Tel: (905) 833-1582 Fax: (905) 833-5360

www.sirati.ca

# **TABLE OF CONTENTS**

| SECT | ION                                                       | PAGE (S) |
|------|-----------------------------------------------------------|----------|
| 1.0  | EXECUTIVE SUMMARY                                         | 1        |
|      |                                                           |          |
| 2.0  | INTRODUCTION                                              |          |
| 2.1  | PHASE TWO PROPERTY INFORMATION                            |          |
| 2.2  | CONTACT INFORMATION                                       |          |
| 2.3  | SITE DESCRIPTION                                          |          |
| 2.4  | CURRENT AND PROPOSED FUTURE USES                          |          |
| 2.5  | APPLICABLE SITE CONDITION STANDARD                        | 16       |
| 3.0  | BACKGROUND INFORMATION                                    | 17       |
| 3.1  | PHYSICAL SETTING                                          | 17       |
| 3.2  | PAST INVESTIGATIONS                                       | 17       |
| 4.0  | SCOPE OF THE INVESTIGATION                                | 18       |
| 4.1  | OVERVIEW OF SITE INVESTIGATION                            | 18       |
| 4.2  | Media Investigated                                        | 18       |
| 4.3  | PHASE ONE CONCEPTUAL SITE MODEL                           | 19       |
| 4.4  | DEVIATIONS FROM SAMPLING AND ANALYSIS PLAN                | 26       |
| 4.5  | IMPEDIMENTS                                               | 26       |
| 5.0  | INVESTIGATION METHOD                                      | 27       |
| 5.1  | GENERAL                                                   | 27       |
| 5.2  | UTILITY CLEARANCE                                         | 27       |
| 5.3  | HEALTH AND SAFETY                                         | 27       |
| 5.4  | Drilling                                                  | 28       |
| 5.5  | SOIL SAMPLING                                             | 28       |
| 5.6  | FIELD SCREENING MEASUREMENTS (SOIL)                       | 30       |
| 5.7  | GROUNDWATER MONITORING WELL INSTALLATION                  | 30       |
| 5.8  | GROUNDWATER FIELD MEASUREMENT OF WATER QUALITY PARAMETERS | 31       |
| 5.9  | GROUNDWATER SAMPLING                                      | 32       |
| 5.10 | SEDIMENT SAMPLING                                         | 32       |
| 5.11 | Analytical Testing                                        | 32       |

| 5.12    | RESIDUE MANAGEMENT PROCEDURES                              | 32 |
|---------|------------------------------------------------------------|----|
| 5.13    | ELEVATION SURVEYING                                        | 32 |
| 5.14    | QUALITY ASSURANCE (QA) AND QUALITY CONTROL (QC) MEASURES   | 32 |
| 6.0     | SUMMARY OF FINDINGS AND CONCLUSIONS                        | 34 |
| 6.1     | GEOLOGY                                                    | 34 |
| 6.2     | GROUNDWATER ELEVATIONS AND FLOW DIRECTION                  | 35 |
| 6.2.1   | Additional Groundwater Sampling                            | 36 |
| 6.3     | GROUNDWATER HYDRAULIC GRADIENT                             | 36 |
| 6.4     | SOIL TEXTURE                                               | 36 |
| 6.5     | SOIL FIELD SCREENING                                       | 36 |
| 6.6     | SOIL QUALITY                                               | 36 |
| 6.6.1   | Soil Samples                                               | 36 |
| 6.7     | GROUNDWATER QUALITY                                        | 40 |
| 6.8     | SEDIMENT QUALITY                                           | 41 |
| 7.0     | DELINEATION PROGRAM                                        | 42 |
| 7.1     | QUALITY ASSURANCE AND QUALITY CONTROL RESULTS              | 47 |
| 7.1.1   | Field Quality Assurance / Quality Control Samples          | 47 |
| 7.1.2   | Sample Handling in Accordance with the Analytical Protocol | 48 |
| 7.1.3   | Certification of Results                                   | 48 |
| 7.1.4   | Data Validation                                            | 48 |
| 7.1.5   | Data Quality Objectives                                    | 48 |
| 7.2     | PHASE TWO CONCEPTUAL SITE MODEL                            | 49 |
| 7.2.1   | Description and Assessment                                 | 49 |
| 7.2.1.1 | Description and Assessment                                 | 49 |
| 7.2.1.2 | Areas of Potential Environmental Concern                   | 54 |
| 7.2.1.3 | Subsurface Structures and Utilities                        | 58 |
| 7.2.2   | Physical Setting                                           | 58 |
| 7.2.2.1 | Stratigraphy                                               | 58 |
| 7.2.2.2 | Hydrogeological Characterization                           | 60 |
| 7.2.2.3 | Additional Groundwater Sampling                            | 60 |

| Approximate Depth to Bedrock60                                                             |
|--------------------------------------------------------------------------------------------|
| Approximate Depth to Water Table                                                           |
| Section 41 or 43.1 of the Regulation                                                       |
| Soils Placed On, In or Under the Phase Two Property                                        |
| Proposed Building and Other Structures                                                     |
| Contamination In or Under the Phase Two Property                                           |
| Area Where Contaminants are Present                                                        |
| Distribution of Contaminants                                                               |
| Contaminants Medium                                                                        |
| Reason for Discharge                                                                       |
| Migration of Contaminants                                                                  |
| Climatic or Meteorological Conditions Influencing Contaminant Distribution of Migration 62 |
| Soil Vapour Intrusion into Buildings                                                       |
| Potential Exposure Pathways and Receptors                                                  |
| SUMMARY OF FINDINGS AND CONCLUSIONS                                                        |
| SIGNATURES                                                                                 |
| LIMITATIONS AND USE OF THE REPORT                                                          |
| REFERENCES                                                                                 |
|                                                                                            |

#### **FIGURES:**

Figure 1 – Site Location Plan

Figure 2 – Potentially Contaminating Activities (PCA) from the Phase One ESA

Figure 3 – Area of Potential Environmental Concern (APEC)

Figure 4 – Borehole, Monitoring Well Location Plan

Figure 5 – Soil Samples Exceednces

Figure 6 – Groundwater Sample Exceedances

Figure 7 – Groundwater Flow Direction

#### **APPENDICES:**

Appendix A – Sampling and Analysis Plan

Appendix B – Borehole/Monitoring Well Logs

Appendix C – Certificates of Analysis (Soil)

Appendix D – Certificates of Analysis (Groundwater)

Appendix E – Property Survey Plan

### 1.0 EXECUTIVE SUMMARY

Sirati & Partners Consultants Ltd. (SIRATI) was retained by De Zen Realty (the Client) to complete a Phase Two Environmental Site Assessment (Phase Two ESA), as defined by Ontario Regulation (O. Reg.) 153/04, as amended, for the property (hereinafter referred to as the "Phase Two Property" or the "Property") located at the northwest side of the intersection of Thomas Street and Joymar Drive, in Mississauga, Ontario. The Property has an area of approximately 2.74 hectares (approximately 6.77 acres) and consisted of four (4) commercial buildings.

The purpose of the Phase Two ESA was to determine the soil and groundwater quality at the Property, as related to the following Areas of Potential Environmental Concerns (APECs) identified in the Phase One ESA:

| APEC   | Location of Potential Environmental Concern on Phase One Property | Potentially Contaminating<br>Activity                              | Location of<br>PCA (#) | Contaminants<br>of Potential<br>Concern | Media Potentially<br>Impacted<br>(Groundwater, soil<br>and/or sediment) |
|--------|-------------------------------------------------------------------|--------------------------------------------------------------------|------------------------|-----------------------------------------|-------------------------------------------------------------------------|
| APEC-1 | Northwest section<br>of the Property (65<br>Tannery Street)       | #28: Gasoline and<br>Associated Products Storage<br>in Fixed Tanks | On-Site<br>(PCA#1)     | PHCs/VOCs                               | Soil and Groundwater                                                    |
| APEC-2 | Northwest section<br>of the Property (65<br>Tannery Street)       | #28: Gasoline and<br>Associated Products Storage<br>in Fixed Tanks | On-Site<br>(PCA #2)    | PHCs/VOCs                               | Soil and Groundwater                                                    |
| APEC-3 | Central section of<br>the Property (95<br>Joymar Drive))          | #28: Gasoline and<br>Associated Products Storage<br>in Fixed Tanks | On-Site<br>(PCA#3)     | PHCs/VOCs                               | Soil and Groundwater                                                    |
| APEC4  | Central section of<br>the Property (95<br>Joymar Drive))          | #28: Gasoline and<br>Associated Products Storage<br>in Fixed Tanks | On-Site<br>(PCA#4)     | PHCs/VOCs                               | Soil and Groundwater                                                    |
| APEC-5 | Central section of<br>the Property (95<br>Joymar Drive)           | #28: Gasoline and<br>Associated Products Storage<br>in Fixed Tanks | On-Site<br>(PCA#5)     | PHCs/VOCs                               | Soil and Groundwater                                                    |

| APEC    | Location of Potential Environmental Concern on Phase One Property | Potentially Contaminating<br>Activity                              | Location of<br>PCA (#) | Contaminants<br>of Potential<br>Concern | Media Potentially<br>Impacted<br>(Groundwater, soil<br>and/or sediment) |
|---------|-------------------------------------------------------------------|--------------------------------------------------------------------|------------------------|-----------------------------------------|-------------------------------------------------------------------------|
| APEC-6  | Central section of<br>the Property (95<br>Joymar Drive)           | #28: Gasoline and<br>Associated Products Storage<br>in Fixed Tanks | On-Site<br>(PCA#6)     | PHCs/VOCs                               | Soil and Groundwater                                                    |
| APEC-7  | South section of the<br>Property (66<br>Thomas Street)            | #28: Gasoline and<br>Associated Products Storage<br>in Fixed Tanks | On-Site<br>(PCA#7)     | PHCs/VOCs                               | Soil and Groundwater                                                    |
| APEC-8  | South section of the<br>Property (66<br>Thomas Street)            | #28: Gasoline and<br>Associated Products Storage<br>in Fixed Tanks | On-Site<br>(PCA#8)     | PHCs, VOCs                              | Soil and Groundwater                                                    |
| APEC-9  | South section of the<br>Property (66<br>Thomas Street)            | #10: Commercial Autobody<br>Shops                                  | On-Site<br>(PCA#9)     | PHCs, VOCs                              | Soil and Groundwater                                                    |
| APEC-10 | South section of the<br>Property (66<br>Thomas Street)            | #28: Gasoline and<br>Associated Products Storage<br>in Fixed Tanks | On-Site<br>(PCA#10)    | PHCs, VOCs                              | Soil and Groundwater                                                    |
| APEC-11 | South section of the<br>Property (66<br>Thomas Street)            | #10: Commercial Autobody<br>Shops                                  | On-Site<br>(PCA#11)    | PHCs, VOCs                              | Soil and Groundwater                                                    |
| APEC-12 | South section of the<br>Property (66<br>Thomas Street)            | #28: Gasoline and<br>Associated Products Storage<br>in Fixed Tanks | On-Site<br>(PCA#12)    | PHCs, VOCs                              | Soil and Groundwater                                                    |

| APEC    | Location of<br>Potential<br>Environmental<br>Concern on Phase<br>One Property | Potentially Contaminating Activity                                                    | Location of<br>PCA (#) | Contaminants<br>of Potential<br>Concern | Media Potentially<br>Impacted<br>(Groundwater, soil<br>and/or sediment) |
|---------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------|-----------------------------------------|-------------------------------------------------------------------------|
| APEC-13 | Southeast section of<br>the Phase One<br>Property (64<br>Thomas Street)       | #28: Gasoline and<br>Associated Products Storage<br>in Fixed Tanks                    | On-Site<br>(PCA#13)    | PHCs, VOCs                              | Soil and Groundwater                                                    |
| APEC-14 | Southeast section of<br>the Phase One<br>Property (64<br>Thomas Street)       | #28: Gasoline and<br>Associated Products Storage<br>in Fixed Tanks                    | On-Site<br>(PCA#13)    | PHCs, VOCs                              | Soil and Groundwater                                                    |
| APEC-15 | Northeast section of<br>the Phase One<br>Property (95<br>Joymar Drive)        | #40: Pesticides Manufacturing, Processing, Bulk Storage and Large- Scale Applications | On-Site<br>(PCA#15)    | OCPs                                    | Soil                                                                    |
| APEC-16 | Northeast section of<br>the Phase One<br>Property (95<br>Joymar Drive)        | # 55: Transformer Manufacturing, Processing and Use                                   | On-Site<br>(PCA#16)    | PHCs, VOCs,<br>M&I, PCBs                | Soil                                                                    |
| APEC-17 | South section of the<br>Phase One Property                                    | # 33: Metal Treatment,<br>Coating, Plating and<br>Finishing                           | On-Site<br>(PCA#17)    | PHCs, VOCs,<br>M&I                      | Soil and Groundwater                                                    |
| APEC-18 | Northwest section<br>of the Property (95<br>Joymar Drive)                     | # 48: Salt Manufacturing,<br>Processing and Bulk Storage                              | On-Site<br>(PCA#18)    | M&I                                     | Soil and Groundwater                                                    |
| APEC-19 | Phase One Property                                                            | #58: Not listed, Waste generators records                                             | On-Site<br>(PCA#17)    | PHCs, VOCs,<br>M&I                      | Soil and Groundwater                                                    |

| APEC    | Location of Potential Environmental Concern on Phase One Property | Potentially Contaminating Activity                                      | Location of<br>PCA (#) | Contaminants<br>of Potential<br>Concern | Media Potentially<br>Impacted<br>(Groundwater, soil<br>and/or sediment) |
|---------|-------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------|-----------------------------------------|-------------------------------------------------------------------------|
| APEC-20 | Phase One Property                                                | #58: Not listed, Waste generators records                               | Off-Site<br>(PCA#20)   | PHCs, VOCs,<br>M&I, PCBs                | Soil and Groundwater                                                    |
| APEC-21 | Southwest section of the Phase One Property                       | Not listed, Use of de-icing salts                                       | On-Site<br>(PCA#21)    | M&I                                     | Soil                                                                    |
| APEC-22 | East section of the<br>Phase One Property                         | #28: Gasoline and<br>Associated Products Storage<br>in Fixed Tanks      | Off-Site<br>(PCA#22)   | PHCs                                    | Soil and Groundwater                                                    |
| APEC-23 | East section of the<br>Phase One Property                         | #43: Plastics (including<br>Fibreglass) Manufacturing<br>and Processing | Off-Site<br>(PCA#23)   | PHCs, VOCs                              | Soil and Groundwater                                                    |
| APEC-24 | East section of the<br>Phase One Property                         | #58: Not listed, Waste generators records                               | Off-Site<br>(PCA#24)   | PHCs, VOCs,<br>M&I, PCBs                | Soil and Groundwater                                                    |

The findings of the field investigation and analytical results of the Phase Two ESA are summarized below:

- The field investigation for this Phase Two ESA consisted of drilling a total of twenty-two (22) boreholes to the maximum depths ranging from 7.9 of 11.6 mbgs. Seventeen (17) of the boreholes were completed as monitoring wells for groundwater observation, sampling and testing.
- The subsoil condition at the borehole/monitoring wells indicates a layer of asphalt followed by fill material of sand, gravel, clayey silt to sandy silt, overlying native glacial till deposit of sandy silt to clayey silt, followed underneath by residual soil and/or weathered shale deposit consists of clayey silt with till-like texture and contains varying amounts of siltstone/limestone and shale fragments. An auger refusal was observed in BH-E7 at a depth of 2.4 m to 6.1 m

Project: SP18-306-20-02

- The soil samples retrieved from the boreholes were examined for visual and olfactory evidence of
  potential contamination. No evidence of potential contamination was observed in any of the
  retrieved soil samples.
- Head space vapour screening was conducted for all retrieved soil samples using a combustible gas detector (RKI Eagle) in methane elimination mode. Soil vapour measurements ranged from non-detect to 5 ppm.
- Based on the soil vapour measurements and visual and olfactory observations, representative "worst case" soil samples were selected from each borehole for chemical analyses of the following parameters: M&I, PHCs (F1-F4), PCBs, OCPs and VOCs.
- Based on the field observation and groundwater monitoring records, shallow groundwater is present in the sandy silt till to clayey silt till layers. Water levels were recorded at depths ranging from 1.29 to 3.09 mbgs in the monitoring wells. Based on the groundwater monitoring records, the groundwater flow direction appears to be to the east.
- Based on the available groundwater table elevations, the horizontal hydraulic gradient of the groundwater flow for the site is between 0.01287 and 0.02980 (average 0.021335) in an easterly direction.
- No free product, sheen or odours were observed in the groundwater from monitoring wells installed at the subject Property. Groundwater samples collected from the monitoring wells were submitted for analysis of the following parameters: M&I, PHCs (F1-F4), PCBs and VOCs.
- As part of the QA/QC program for the investigation, QC samples in the form of field duplicate samples were analysed. Field duplicate samples were collected in the field for M&I, PHCs (F1-F4), PCBs and VOCs in soil and in groundwater.
- The analytical test results were evaluated against the MECP Table 8: Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Ground Water Condition as published in the "Soil, Ground Water and Sediment Standards for use under part XV.1 of the Environmental Protection Act" (EPA), April 15, 2011 (MECP Table 8 Standards).
- Based on the lab results, tested parameters in the soil and groundwater samples had concentrations in excess of the applicable site condition standards.
- To determine the lateral and vertical extent contaminants identified during the first round of investigations, delineation program consisted of supplementary soil and groundwater sampling from additional drilled boreholes and monitoring wells were conducted at the Site.

Soil samples with parameters in excess of the applicable site condition standards are summarized in the table below:

| Sample ID | Depth<br>(mbgs) | Exceeding Parameters | Concentration | Unit | MECP Table 8<br>Standards |
|-----------|-----------------|----------------------|---------------|------|---------------------------|
|           |                 | F2 (C10-C16)         | 235           | ug/g | 10                        |
| BH2-SS3   | 1.5-2.1         | F3 (C16-C34)         | 2750          | ug/g | 240                       |
|           | 1.3-2.1         | F4 (C34-C50)         | 802           | ug/g | 120                       |
|           |                 | F4G-SG (GHH-Silica)  | 2230          | ug/g | 120                       |
| BH5-SS1   | 0006            | SAR                  | 31.4          |      | 5                         |
|           | 0.0-0.6         | EC                   | 10.2          | mS/m | 0.7                       |
|           | 1.5-2.1         | SAR                  | 8.62          |      | 5                         |
| BHE5-SS3  |                 | EC                   | 0.853         | mS/m | 0.7                       |
|           |                 | Chromium, Hexavalent | 0.78          | ug/g | 0.66                      |
| BHE4-SS4  | 2220            | SAR                  | 5.41          |      | 5                         |
| 2.3-2.9   |                 | EC                   | 0.709         | mS/m | 0.7                       |
| BHE15-SS2 | 0.8-1.4         | Chromium, Hexavalent | 0.94          | ug/g | 0.66                      |
| BHE15-SS5 | 3.1-3.7         | n-Hexane             | 1.06          | ug/g | 0.05                      |

| Sample ID | Depth<br>(mbgs) | Exceeding Parameters | Concentration | Unit | MECP Table 8<br>Standards |
|-----------|-----------------|----------------------|---------------|------|---------------------------|
|           |                 | Xylenes (Total)      | 0.676         | ug/g | 0.05                      |
|           |                 | F1 (C6-C10)          | 35            | ug/g | 25                        |
|           |                 | F1-BTEX              | 34.3          | ug/g | 25                        |
|           |                 | F2 (C10-C16)         | 321           | ug/g | 10                        |
| BHE6-SS4  | 2.3-2.9         | Xylenes (Total)      | 0.102         | ug/g | 0.05                      |
|           | 0.8-1.4         | F2 (C10-C16)         | 26            | ug/g | 10                        |
| BHE11-SS2 |                 | F3 (C16-C34)         | 648           | ug/g | 50                        |
|           |                 | F4 (C34-C50)         | 528           | ug/g | 50                        |
|           |                 | F4G-SG (GHH-Silica)  | 1670          | ug/g | 250                       |
| BHE10-SS5 | 3.1-3.7         | F2 (C10-C16)         | 69            | ug/g | 10                        |
| BHE9-SS4  | 2.3-2.9         | F2 (C10-C16)         | 108           | ug/g | 10                        |
| BHE2-SS2  | 0.8-1.4         | Chromium, Hexavalent | 0.77          | ug/g | 0.66                      |

Soil samples exceedances from delineation investigation:

| Sample ID | Depth (mbgs) | Exceeding Parameters | Concentration | Unit | MECP Table 8<br>Standards |
|-----------|--------------|----------------------|---------------|------|---------------------------|
| BH214-SS2 | 0.8-1.4      | SAR                  | 5.13          | -    | 5                         |
| BH211-SS3 | 1.5-2.1      | SAR                  | 25.5          | -    | 5                         |
| BH211-333 | 1.3-2.1      | EC                   | 1.72          | mS/m | 0.7                       |
| BH212-SS3 | 1521         | SAR                  | 13            | -    | 5                         |
| BH212-333 | 1.5-2.1      | EC                   | 1.59          | mS/m | 0.7                       |
| BH213-SS3 | 1.5-2.1      | SAR                  | 5.16          | -    | 5                         |
| DUP-S201  | -            | SAR                  | 5.11          | -    | 5                         |
|           |              | Benzene              | 2.26          | ug/g | 0.02                      |
|           |              | Ethylbenzene         | 1.77          | ug/g | 0.05                      |
|           |              | n-Hexane             | 1.49          | ug/g | 0.05                      |
| BH204-SS4 | 2.3-2.9      | Toluene              | 1             | ug/g | 0.2                       |
|           |              | Xylenes (Total)      | 10            | ug/g | 0.05                      |
|           |              | F1 (C6-C10)          | 48            | ug/g | 25                        |
|           |              | F1-BTEX              | 33            | ug/g | 25                        |

| Sample ID | Depth<br>(mbgs) | Exceeding Parameters | Concentration | Unit | MECP Table 8<br>Standards |
|-----------|-----------------|----------------------|---------------|------|---------------------------|
|           |                 | F2 (C10-C16)         | 37            | ug/g | 10                        |
| BH205-SS3 |                 | Benzene              | 0.04          | ug/g | 0.02                      |
|           |                 | Ethylbenzene         | 0.943         | ug/g | 0.05                      |
|           |                 | n-Hexane             | 0.054         | ug/g | 0.05                      |
|           | 1.5-2.1         | Xylenes (Total)      | 2.29          | ug/g | 0.05                      |
|           |                 | F1 (C6-C10)          | 71            | ug/g | 25                        |
|           |                 | F1-BTEX              | 68            | ug/g | 25                        |
|           |                 | F2 (C10-C16)         | 331           | ug/g | 10                        |
| BH207-SS4 | 2.3-2.9         | Benzene              | 0.0786        | ug/g | 0.02                      |
|           | 2.3-2.9         | n-Hexane             | 0.072         | ug/g | 0.05                      |
| BH208-SS5 |                 | Benzene              | 0.0708        | ug/g | 0.02                      |
|           | 2127            | Bromodichloromethane | <0.15         | ug/g | 0.05                      |
|           | 3.1-3.7         | Ethylbenzene         | 0.06          | ug/g | 0.05                      |
|           |                 | n-Hexane             | 0.21          | ug/g | 0.05                      |

| Sample ID | Depth (mbgs) | Exceeding Parameters | Concentration | Unit | MECP Table 8<br>Standards |
|-----------|--------------|----------------------|---------------|------|---------------------------|
|           |              | Xylenes (Total)      | 0.075         | ug/g | 0.05                      |
|           |              | F1 (C6-C10)          | 47.8          | ug/g | 25                        |
|           |              | F1-BTEX              | 47.6          | ug/g | 25                        |
|           |              | F2 (C10-C16)         | 15            | ug/g | 10                        |
| DUP-S202  |              | Benzene              | 0.0714        | ug/g | 0.02                      |
|           | -            | n-Hexane             | 0.076         | ug/g | 0.05                      |
|           |              | F2 (C10-C16)         | 13            | ug/g | 10                        |
| DUP-S203  | -            | F2 (C10-C16)         | 12            | ug/g | 10                        |
| BH209-SS7 |              | Benzene              | 0.0886        | ug/g | 0.02                      |
|           | 4.6-5.2      | Bromodichloromethane | 0.608         | ug/g | 0.05                      |
|           |              | Chloroform           | 0.626         | ug/g | 0.05                      |
|           |              | 1,2-Dibromoethane    | <0.24         | ug/g | 0.05                      |
|           |              | 1,2-Dichloroethane   | <0.070        | ug/g | 0.05                      |
|           |              | Ethylbenzene         | 0.086         | ug/g | 0.05                      |

| Sample ID | Depth (mbgs) | Exceeding Parameters | Concentration   | Unit         | MECP Table 8<br>Standards |
|-----------|--------------|----------------------|-----------------|--------------|---------------------------|
|           |              | n-Hexane             | 8.18            | ug/g         | 0.05                      |
|           |              | F1 (C6-C10)          | 208             | ug/g         | 25                        |
|           |              | F1-BTEX              | 208             | ug/g         | 25                        |
|           |              | F2 (C10-C16)         | 81              | ug/g         | 10                        |
| BH210-SS5 | 3.1-3.7      | Benzene              | 0.0326 ug/g     |              | 0.02                      |
|           |              | Bromodichloromethane | 0.137 ug/g 0.05 |              | 0.05                      |
|           |              | Chloroform           | 0.065           | ug/g         | 0.05                      |
|           |              | n-Hexane             | 0.207           | ug/g         | 0.05                      |
|           |              | Xylenes (Total)      | 0.094           | ug/g         | 0.05                      |
|           |              | F2 (C10-C16)         | 24              | ug/g         | 10                        |
|           |              | F3 (C16-C34)         | 340 ug/g 240    |              | 240                       |
|           |              | F4 (C34-C50)         | 890             | 890 ug/g 120 |                           |
|           |              | F4G-SG (GHH-Silica)  | 2430            | ug/g         | 120                       |
| BH201-SS4 | 2.3-2.9      | F2 (C10-C16)         | 29              | ug/g         | 10                        |

| Sample ID  | Depth (mbgs) | Exceeding Parameters | Concentration | Unit | MECP Table 8<br>Standards |
|------------|--------------|----------------------|---------------|------|---------------------------|
| BH202-SS5  | 3.1-3.7      | n-Hexane             | 0.208         | ug/g | 0.05                      |
| B11202-553 |              | F2 (C10-C16)         | 44            | ug/g | 10                        |

Groundwater samples exceedances are summarized in the table below:

| Sample ID     | Exceeding Parameters  | Concentration | Unit | MECP Table 8 Standards |
|---------------|-----------------------|---------------|------|------------------------|
| MW E4         | Chloride (Cl)         | 1500          | mg/L | 790                    |
|               | Sodium (Na)-Dissolved | 768000        | ug/L | 490000                 |
| MW E10        | Benzene               | 18.6          | ug/L | 5                      |
|               | F2 (C10-C16)          | 280           | ug/L | 150                    |
| DUP-W2        | Benzene               | 18.7          | ug/L | 5                      |
|               | F2 (C10-C16)          | 280           | ug/L | 150                    |
| MW-E7         | Chloride (Cl)         | 1280          | mg/L | 790                    |
| MW-E11        | F1 (C6-C10)           | 606           | ug/L | 420                    |
| IVI VV -E.I I | F2 (C10-C16)          | 1650          | ug/L | 150                    |

Groundwater samples exceedances from delineation investigation:

| Sample ID | Exceeding Parameters | Concentration | Unit | MECP Table 8 Standards |
|-----------|----------------------|---------------|------|------------------------|
|           | F1 (C6-C10)          | 486           | ug/L | 420                    |
| MW 202    | F1-BTEX              | 483           | ug/L | 420                    |
|           | F2 (C10-C16)         | 400           | ug/L | 150                    |
|           | Benzene              | 3760          | ug/L | 5                      |
|           | 1,2-Dichloroethane   | 3.22          | ug/L | 1.6                    |
|           | Xylenes (Total)      | 2930          | ug/L | 300                    |
|           | Ethylbenzene         | 696           | ug/L | 2.4                    |
| MW 204    | n-Hexane             | 71.6          | ug/L | 51                     |
|           | Toluene              | 518           | ug/L | 22                     |
|           | F1 (C6-C10)          | 10800         | ug/L | 420                    |
|           | F1-BTEX              | 2900          | ug/L | 420                    |
|           | F2 (C10-C16)         | 1610          | ug/L | 150                    |
|           | Benzene              | 299           | ug/L | 5                      |
| MW 207    | Ethylbenzene         | 90.5          | ug/L | 2.4                    |
|           | F1 (C6-C10)          | 4190          | ug/L | 420                    |

| Sample ID | Exceeding Parameters | Concentration | Unit | MECP Table 8 Standards |
|-----------|----------------------|---------------|------|------------------------|
|           | F1-BTEX              | 3770          | ug/L | 420                    |
|           | F2 (C10-C16)         | 1400          | ug/L | 150                    |
|           | Benzene              | 32            | ug/L | 5                      |
|           | Ethylbenzene         | 5.97          | ug/L | 2.4                    |
| MW 210    | F1 (C6-C10)          | 1680          | ug/L | 420                    |
|           | F1-BTEX              | 1630          | ug/L | 420                    |
|           | F2 (C10-C16)         | 1810          | ug/L | 150                    |

Based on the findings of the Phase Two ESA and delineation investigation, further subsurface investigation is required to delineate the vertical and horizontal extent of contamination in both soil and groundwater.

### 2.0 INTRODUCTION

SIRATI was retained by De Zen Realty To complete a Phase Two Environmental Site Assessment (ESA) as defined by Ontario Regulation (O. Reg.) 153/04, as amended for the property located at 64 and 66 Thomas Street, 95 Joymar Drive, and 65 Tannery Street, in Mississauga, Ontario (hereinafter referred to as the "Phase Two Property" or the "Property"). The Property consisted of four (4) commercial buildings.

The Phase Two ESA was conducted to assess the soil and groundwater quality with the Property in the areas of potential environmental concerns identified in the Phase One ESA.

# 2.1 Phase Two Property Information

The information for the Property is provided in the following Table.

| Phase One Property                        | Information                                                                                                                            | Source                                                                                                        |                                             |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Legal Description                         | PT LT 4, CON 5 WEST OF<br>HURONTARIO ST TORONTO<br>TWP, AS IN 275328VS; S/T<br>RO947021, ST6612<br>MISSISSAUGA; CITY OF<br>MISSISSAUGA | PT LT 4, CON 5 WEST<br>OF HURONTARIO ST<br>TORONTO TWP, AS IN<br>320279VS; S/T ST6612;<br>CITY OF MISSISSAUGA | Service Ontario<br>Land Registry Office #43 |
| Property Identification<br>Numbers (PINs) | 13123-0059 (LT)                                                                                                                        | 13123-0126 (LT)                                                                                               | Service Ontario Land Registry Office #43    |
| Municipal Address                         | 64 and 66 Thomas Street,<br>95 Joymar Drive, Mississauga 65 Tannery Street,<br>Mississauga                                             |                                                                                                               | Mississauga Map                             |
| Zoning                                    | D, Development and G1, Greenbe                                                                                                         | lt                                                                                                            | Mississauga Zoning By-law                   |

### 2.2 Contact Information

Contact information for the owner of the Phase Two Property is provided as follows:

| Property Owner | Source               |
|----------------|----------------------|
| De Zen Realty  | Land Registry Office |

# 2.3 Site Description

The Property is located at located at the northwest side of the intersection of Thomas Street and Joymar Drive in Mississauga, Ontario. The Property is a rectangular shaped parcel of land that covers an area of approximately 2.74 hectares (approximately 6.77 acres). A Plan of Survey dated May 2015 prepared by Elliott and Parr (Peterborough) Ltd., for the Phase One Property is appended in Appendix E. The location of the Property is shown in Figure 1.

Project: SP18-306-20-02

## 2.4 Current and Proposed Future Uses

The Property is currently used for commercial purposes. At the time of this report preparation, no details of the proposed future redevelopment are provided to SIRATI.

# 2.5 Applicable Site Condition Standard

The applicable soil and groundwater Standards for the Property were those contained in Table 8, Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Groundwater Conditions published in the "Soil, Ground Water and Sediment Standards for use under part XV.1 of the Environmental Protection Act" (EPA), April 15, 2011. The following information was used to select the appropriate criteria:

- The proposed redevelopment for the Property is a mixed of residential and commercial use.
- Bedrock across the site is located at a depth greater than 2 m.
- The Property is located adjacent to Mullet Creek to the north of the Property (within 30 m of a surface water body).
- The Property is not located in or adjacent to a provincial park or an area of natural significance.
- The soil pH was between 5 and 9 for surficial soils or 5 and 11 for subsurface soils.

Based on these considerations, the MECP Table 8: Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Ground Water Condition, Residential/ Parkland/Institutional/Industrial/Commercial/ Community Property Use have been selected to evaluate the environmental condition at the Phase Two Property.

#### 3.0 **BACKGROUND INFORMATION**

#### 3.1 **Physical Setting**

Based on the topographic information from the 1982 Ontario Base Map, the ground surface is at approximately 155 metres above sea level (mASL), approximately 81 m above the level of Lake Ontario.

The shallow groundwater flow is influenced by the topography; as such it is anticipated to be in a eastly direction towards the Mullet Creek, which is flowing along the northeast section of the Property to the northeast; however groundwater flow direction can only be confirmed by groundwater monitoring.

According to the geological map entitled "Quaternary Geology of Ontario-Southern Sheet" Map 2556, published by the Ministry of Northern Development and Mines, dated 1991, the overburden in the region of the Property consists of Halton Till. This material is generally characterized as silt to silty clay matrix, high in matrix carbonates content and clast poor.

According to the bedrock geology map entitled "Bedrock Geology of Ontario-Southern Sheet" published by the Ministry of Northern Development and Mines, dated 1991, the bedrock in the area consists of Upper Ordovician facies underlain by Queenston Formation, which consists of shale, limestone, dolostone, and siltstone.

Based on the Areas of Natural and Scientific Interests (ANSIs) map, and Ministry of Natural Resources Natural Heritage Information Centre (NHIC) database files for listings of the various classes of natural areas located within the vicinity of the Property, there is no Area of Natural Significance located at the Property or neighbouring properties within 250 m of the Phase Two Property.

#### 3.2 **Past Investigations**

Except the recent Phase One ESA which was conducted by SIRATI on July 27, 2018, no other reports were provided to SIRATI for review.

# 4.0 SCOPE OF THE INVESTIGATION

# 4.1 Overview of Site Investigation

The purpose of this Phase Two ESA was to assess soil and groundwater quality at the Property, based on the findings of Phase One ESA, Phase Two ESA was conducted in general conformance with the O. Reg. 153/04, as amended.

The scope of work for this investigation included:

- Locating the underground and overhead utilities.
- Drilling a total of twenty-two (22) boreholes on the Property to depths ranging from 2.4 to 6.3 mbgs.
- Analysing twenty-nine (29) selected soil samples including QC/QA assurance samples, for PHCs F1-F4 fractions, VOCs, PCBs, OCPs and M&I.
- Undertaking soil vapour measurements for the retrieved soil samples using a combustible gas detector (RKI Eagle) in methane elimination mode.
- Installation of groundwater monitoring wells in seventeen (17) boreholes to investigate groundwater condition at the Property.
- Surveying the monitoring wells and measuring the groundwater levels for identification of groundwater flow direction and verifying the presence/absence of free product and/or sheen.
- Analysing eighteen (18) groundwater samples including QC/QA samples, and trip blank for PHCs F1-F4, VOCs, and M&I.
- Reviewing the analytical results and comparing them with applicable MOECC Standards.
- Reviewing reports from previous investigations completed at the Property.
- Summarizing the result of investigations and prepare a Phase Two ESA report.

### 4.2 Media Investigated

Based on the findings of Phase One ESA report, soil and groundwater were investigated during the Phase Two ESA in accordance with the Sampling and Analysis Plan Provided in Appendix A. Sampling was conducted for soil from boreholes BH/MW2, BH3, BH5, BH/MW6, BH/MW7, BH/MW E1, BH/MW E2, BH/MW E4, BH/MW E5, BH/MW E6, BH/MW E8 to BH/MW E15 and for groundwater from monitoring wells BH/MW6, BH/MW7, BH/MW E1 to BH/MW E13. No surface water was present on the Property; therefore, surface water or sediment sampling was not conducted. Soil sampling was conducted during the drilling program by use of a split spoon sampler for visual observation purposes. Groundwater samples were obtained from monitoring wells.

# 4.3 Phase One Conceptual Site Model

The Phase One Conceptual Site Model (CSM) provided in the Phase One ESA includes:

- Use of the Property and other properties within 250 m;
- Presence of water bodies located in the Property or Phase One Study Area, if any;
- Areas where any potentially contaminating activity has occurred; and,
- Areas of potential environmental concern on the Phase One Property.

The identified Potentially Contaminating Activities (PCAs) causing Areas of Potential Environmental Concern (APECs) at the Property are summarized in the following table.

| Number | Location                                                 | Potentially Contaminating Activity                              | Details                                                                                           |
|--------|----------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
|        |                                                          | Phase One Property                                              |                                                                                                   |
| PCA-1  | Northwest section of the<br>Property (65 Tannery Street) | #28: Gasoline and Associated Products<br>Storage in Fixed Tanks | One (1) waste oil tank is located in an auto shop (Aussie Auto Inc.)                              |
| PCA-2  | Northwest section of the<br>Property (65 Tannery Street) | #28: Gasoline and Associated Products<br>Storage in Fixed Tanks | (2) diesel storage tanks are located in a storage yard, east of the building (65 Tannery Street). |
| PCA-3  | Central section of the<br>Property (95 Joymar Drive)     | #28: Gasoline and Associated Products<br>Storage in Fixed Tanks | One (1) waste oil tank is located in an auto shop (J. Saleman & Sons Auto Service Ltd.)           |
| PCA-4  | Central section of the<br>Property (95 Joymar Drive)     | #28: Gasoline and Associated Products<br>Storage in Fixed Tanks | One (1) waste oil tank is located in a landscaping shop (Turf Lawn Care & Maintenance Inc.)       |
| PCA-5  | Central section of the<br>Property (95 Joymar Drive)     | #28: Gasoline and Associated Products<br>Storage in Fixed Tanks | One (1) waste oil tank is located against the northeast wall of the building (95 Joymar Drive)    |
| PCA-6  | Central section of the<br>Property (95 Joymar Drive)     | #28: Gasoline and Associated Products<br>Storage in Fixed Tanks | One (1) waste oil tank is located in a landscaping shop (Cedar Grounds Maintenance Inc.)          |
| PCA-7  | South section of the Property (66 Thomas Street)         | #28: Gasoline and Associated Products<br>Storage in Fixed Tanks | One (1) waste oil tank is located in an auto shop (Richard's Auto Repair).                        |
| PCA-8  | South section of the Property (66 Thomas Street)         | #28: Gasoline and Associated Products<br>Storage in Fixed Tanks | One (1) waste oil tank is located in an auto shop (Meadowvale Collision Centre Atlantic).         |
| PCA-9  | South section of the Property (66 Thomas Street)         | #10: Commercial Autobody Shops                                  | Meadowvale Collision Centre<br>Atlantic is registered as a commercial<br>autobody shop.           |
| PCA-10 | South section of the Property (66 Thomas Street)         | #28: Gasoline and Associated Products<br>Storage in Fixed Tanks | One (1) waste oil tank is located in an auto shop (L.A. Auto Repairs).                            |

| Number | Location                                                             | Potentially Contaminating Activity                                                          | Details                                                                                                                                                                                                                                                                                                                                        |
|--------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PCA-11 | South section of the Property (66 Thomas Street)                     | #10: Commercial Autobody Shops                                                              | Fix Auto Collision is registered as a commercial autobody shop.                                                                                                                                                                                                                                                                                |
| PCA-12 | South section of the Property (66 Thomas Street)                     | #28: Gasoline and Associated Products<br>Storage in Fixed Tanks                             | One (1) waste oil tank is located in an auto shop (Jorge's Auto Repair).                                                                                                                                                                                                                                                                       |
| PCA-13 | Southeast section of the<br>Phase One Property (64<br>Thomas Street) | #28: Gasoline and Associated Products<br>Storage in Fixed Tanks                             | One (1) waste oil tank is located in an auto shop (Correct Automotive)                                                                                                                                                                                                                                                                         |
| PCA-14 | Southeast section of the<br>Phase One Property (64<br>Thomas Street) | #28: Gasoline and Associated Products<br>Storage in Fixed Tanks                             | One (1) waste oil tank is located in an auto shop (Streetsville Auto & Tire)                                                                                                                                                                                                                                                                   |
| PCA-15 | Northeast section of the<br>Phase One Property (95<br>Joymar Drive)  | #40: Pesticides Manufacturing,<br>Processing, Bulk Storage and Large-<br>Scale Applications | Clitar Groundskeeping and Cedar<br>Grounds Maintenance (95 Joymar<br>Drive) were registered as pesticide<br>operators. The northeast section of<br>the Property was used as the storage<br>area for the landscaping companies.                                                                                                                 |
| PCA-16 | Northeast section of the<br>Phase One Property (95<br>Joymar Drive)  | # 55: Transformer Manufacturing,<br>Processing and Use                                      | Power line supplies and commercial electrical boxes were observed on the associated parking area of AL Power Lines Ltd located at 95 Joymar Drive.                                                                                                                                                                                             |
| PCA-17 | South section of the Phase<br>One Property                           | # 33: Metal Treatment, Coating, Plating and Finishing                                       | Metal industrial shops including aluminum shops were located at 66 Thomas Street in the 1980s.                                                                                                                                                                                                                                                 |
| PCA-18 | Northwest section of the<br>Property (95 Joymar Drive)               | # 48: Salt Manufacturing, Processing<br>and Bulk Storage                                    | Two (2) dome road salt shelters were observed in the northwest section of the Property.                                                                                                                                                                                                                                                        |
| PCA-19 | Phase One Property                                                   | Not listed, waste generators records                                                        | According to the ERIS report, waste generators records were located at the Phase One Property.                                                                                                                                                                                                                                                 |
| PCA-20 | Phase One Property                                                   | Not listed, use of de-icing salts                                                           | The use of de-icing salts on the parking area, driveways, and Thomas Street, Joymar Drive and Tannery Street may have impacted the subsurface soils of the Property in relation to electrical conductivity (EC) and sodium adsorption ratio (SAR)                                                                                              |
|        |                                                                      | Phase One Study Area                                                                        | A P ( ) EDIG                                                                                                                                                                                                                                                                                                                                   |
| PCA-21 | 80 Thomas Street                                                     | Not listed, waste generators records                                                        | According to the ERIS report and city directory search, waste generators records were located at the industrial property (CTS Canada). CTS of Canada Limited was listed in Ontario Regulation 347 Waste Generators Summary for producing elect. Parts & component, acid waste – heavy metals, other specified inorganics, inorganic laboratory |

| Number | Location         | Potentially Contaminating Activity                                | Details                                                                                                                                                                                                                                              |
|--------|------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |                  |                                                                   | chemicals, aromatic solvents,<br>aliphatic solvents, petroleum<br>distillates, light fuels, waste oils &<br>lubricants, emulsified oils, organic<br>laboratory chemicals, halogenated<br>solvents, and oil skimmings &<br>sludges from 1989 to 2017. |
| PCA-22 | 56 Thomas Street | #28: Gasoline and Associated Products<br>Storage in Fixed Tanks   | According to the city directory search, the neighbouring property located adjoint to the east boundary of the Phase One Property (56 Thomas Street), was occupied by a gas station in the 1960s and 1970s.                                           |
| PCA-23 | 44 Thomas Street | #43: Plastics (including Fibreglass) Manufacturing and Processing | According to the city directory search, the neighbouring property located approximately 55 m northeast of the Phase One Property (44 Thomas Street), was occupied by a plastic manufacture.                                                          |
| PCA-24 | 100 Emby Drive   | Not listed, waste generators records                              | According to ERIS report, Mississauga Engines Inc. was listed in Ontario Regulation 347 Waste Generators Summary for producing petroleum distillates, alkaline wastes – other metals, and aromatic solvents from 1992 to 1998 and from 1999 to 2001. |

The identified Areas of Potential Environmental Concern (APECs) and Potential Contaminants of Concern (PCOCs) are summarized below (Figure 2):

| APEC   | Location of Potential Environmental Concern on Phase One Property | Potentially Contaminating Activity                                    | Location<br>of PCA<br>(#) | Contaminants<br>of Potential<br>Concern | Media Potentially<br>Impacted<br>(Groundwater,<br>soil and/or<br>sediment) |
|--------|-------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------|-----------------------------------------|----------------------------------------------------------------------------|
| APEC-1 | Northwest section of the Property (65 Tannery Street)             | #28: Gasoline and<br>Associated Products<br>Storage in Fixed<br>Tanks | On-Site<br>(PCA#1)        | PHCs/VOCs                               | Soil and<br>Groundwater                                                    |
| APEC-2 | Northwest section of the                                          | #28: Gasoline and<br>Associated Products                              | On-Site                   | PHCs/VOCs                               | Soil and                                                                   |

| APEC   | Location of Potential Environmental Concern on Phase One Property | Potentially<br>Contaminating<br>Activity                              | Location<br>of PCA<br>(#) | Contaminants<br>of Potential<br>Concern | Media Potentially Impacted (Groundwater, soil and/or sediment) |
|--------|-------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------|-----------------------------------------|----------------------------------------------------------------|
|        | Property (65<br>Tannery Street)                                   | Storage in Fixed<br>Tanks                                             | (PCA #2)                  |                                         | Groundwater                                                    |
| APEC-3 | Central section<br>of the Property<br>(95 Joymar<br>Drive))       | #28: Gasoline and<br>Associated Products<br>Storage in Fixed<br>Tanks | On-Site<br>(PCA#3)        | PHCs/VOCs                               | Soil and<br>Groundwater                                        |
| APEC4  | Central section<br>of the Property<br>(95 Joymar<br>Drive))       | #28: Gasoline and<br>Associated Products<br>Storage in Fixed<br>Tanks | On-Site<br>(PCA#4)        | PHCs/VOCs                               | Soil and<br>Groundwater                                        |
| APEC-5 | Central section<br>of the Property<br>(95 Joymar<br>Drive)        | #28: Gasoline and<br>Associated Products<br>Storage in Fixed<br>Tanks | On-Site<br>(PCA#5)        | PHCs/VOCs                               | Soil and<br>Groundwater                                        |
| APEC-6 | Central section<br>of the Property<br>(95 Joymar<br>Drive)        | #28: Gasoline and<br>Associated Products<br>Storage in Fixed<br>Tanks |                           | PHCs/VOCs                               | Soil and<br>Groundwater                                        |
| APEC-7 | South section of<br>the Property (66<br>Thomas Street)            | #28: Gasoline and<br>Associated Products<br>Storage in Fixed<br>Tanks | On-Site<br>(PCA#7)        | PHCs/VOCs                               | Soil and<br>Groundwater                                        |

| APEC        | Location of Potential Environmental Concern on Phase One Property | Potentially<br>Contaminating<br>Activity                              | Location<br>of PCA<br>(#) | Contaminants<br>of Potential<br>Concern | Media Potentially Impacted (Groundwater, soil and/or sediment) |
|-------------|-------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------|-----------------------------------------|----------------------------------------------------------------|
| APEC-8      | South section of<br>the Property (66<br>Thomas Street)            | #28: Gasoline and<br>Associated Products<br>Storage in Fixed<br>Tanks | On-Site<br>(PCA#8)        | PHCs, VOCs                              | Soil and<br>Groundwater                                        |
| APEC-9      | South section of<br>the Property (66<br>Thomas Street)            | #10: Commercial<br>Autobody Shops                                     | On-Site<br>(PCA#9)        | PHCs, VOCs                              | Soil and<br>Groundwater                                        |
| APEC-<br>10 | South section of<br>the Property (66<br>Thomas Street)            | #28: Gasoline and<br>Associated Products<br>Storage in Fixed<br>Tanks | On-Site<br>(PCA#10)       | PHCs, VOCs                              | Soil and<br>Groundwater                                        |
| APEC-       | South section of<br>the Property (66<br>Thomas Street)            | #10: Commercial<br>Autobody Shops                                     | On-Site<br>(PCA#11)       | PHCs, VOCs                              | Soil and<br>Groundwater                                        |
| APEC-<br>12 | South section of<br>the Property (66<br>Thomas Street)            | #28: Gasoline and<br>Associated Products<br>Storage in Fixed<br>Tanks | On-Site<br>(PCA#12)       | PHCs, VOCs                              | Soil and<br>Groundwater                                        |

| APEC        | Location of Potential Environmental Concern on Phase One Property         | Potentially<br>Contaminating<br>Activity                                              | Location<br>of PCA<br>(#) | Contaminants<br>of Potential<br>Concern | Media Potentially Impacted (Groundwater, soil and/or sediment) |
|-------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------|-----------------------------------------|----------------------------------------------------------------|
| APEC-       | Southeast section of the Phase One Property (64 Thomas Street)            | #28: Gasoline and<br>Associated Products<br>Storage in Fixed<br>Tanks                 | On-Site<br>(PCA#13)       | PHCs, VOCs                              | Soil and<br>Groundwater                                        |
| APEC-<br>14 | Southeast section of the Phase One Property (64 Thomas Street)            | #28: Gasoline and<br>Associated Products<br>Storage in Fixed<br>Tanks                 | On-Site<br>(PCA#13)       | PHCs, VOCs                              | Soil and<br>Groundwater                                        |
| APEC-<br>15 | Northeast<br>section of the<br>Phase One<br>Property (95<br>Joymar Drive) | #40: Pesticides Manufacturing, Processing, Bulk Storage and Large- Scale Applications | On-Site<br>(PCA#15)       | OCPs                                    | Soil                                                           |
| APEC-<br>16 | Northeast<br>section of the<br>Phase One<br>Property (95<br>Joymar Drive) | # 55: Transformer<br>Manufacturing,<br>Processing and Use                             | On-Site<br>(PCA#16)       | PHCs, VOCs,<br>M&I, PCBs                | Soil                                                           |
| APEC-<br>17 | South section of the Phase One                                            | # 33: Metal Treatment,<br>Coating, Plating and                                        | On-Site<br>(PCA#17)       | PHCs, VOCs,<br>M&I                      | Soil and<br>Groundwater                                        |

| APEC        | Location of Potential Environmental Concern on Phase One Property | Potentially Contaminating Activity                                    | Location<br>of PCA<br>(#) | Contaminants<br>of Potential<br>Concern | Media Potentially Impacted (Groundwater, soil and/or sediment) |
|-------------|-------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------|-----------------------------------------|----------------------------------------------------------------|
|             | Property                                                          | Finishing                                                             |                           |                                         |                                                                |
| APEC-<br>18 | Northwest<br>section of the<br>Property (95<br>Joymar Drive)      | # 48: Salt Manufacturing, Processing and Bulk Storage                 | On-Site<br>(PCA#18)       | M&I                                     | Soil and<br>Groundwater                                        |
| APEC-       | Phase One<br>Property                                             | #58: Not listed, Waste generators records                             | On-Site<br>(PCA#17)       | PHCs, VOCs,<br>M&I                      | Soil and<br>Groundwater                                        |
| APEC-<br>20 | Phase One<br>Property                                             | #58: Not listed, Waste generators records                             | Off-Site<br>(PCA#20)      | PHCs, VOCs,<br>M&I, PCBs                | Soil and<br>Groundwater                                        |
| APEC-<br>21 | South portion of<br>Phase One<br>Property                         | Not listed, Use of deicing salts                                      | On-Site<br>(PCA#21)       | M&I                                     | Soil                                                           |
| APEC-<br>22 | East section of<br>the Phase One<br>Property                      | #28: Gasoline and<br>Associated Products<br>Storage in Fixed<br>Tanks | Off-Site<br>(PCA#22)      | PHCs                                    | Soil and<br>Groundwater                                        |
| APEC-<br>23 | East section of<br>the Phase One<br>Property                      | #43: Plastics (including Fibreglass) Manufacturing and                | Off-Site<br>(PCA#23)      | PHCs, VOCs                              | Soil and<br>Groundwater                                        |

| APEC        | Location of Potential Environmental Concern on Phase One Property  Potentially Contaminating Activity |                                           | Location Contaminants of PCA of Potential (#) Concern |                          | Media Potentially Impacted (Groundwater, soil and/or sediment) |
|-------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------|--------------------------|----------------------------------------------------------------|
|             |                                                                                                       | Processing                                |                                                       |                          |                                                                |
| APEC-<br>24 | East section of<br>the Phase One<br>Property                                                          | #58: Not listed, Waste generators records | Off-Site (PCA#24)                                     | PHCs, VOCs,<br>M&I, PCBs | Soil and<br>Groundwater                                        |

# 4.4 Deviations from Sampling and Analysis Plan

No deviations were made during the investigation for the Phase Two ESA.

# 4.5 Impediments

No impediments were encountered during the investigation for the Phase Two ESA.

### 5.0 INVESTIGATION METHOD

#### 5.1 General

The Phase Two ESA was carried out in accordance with the Sampling and Analysis Plan provided in Appendix A, and in accordance with the SIRATI Standard Operating Procedures.

The Phase Two ESA consisted of drilling twenty-two (22) boreholes (denoted BH/MW2, BH3, BH5, BH/MW6, BH/MW7, BH/MW E1, BH/MW E2, BH/MW E4, BH/MW E5, BH/MW E6, and BH/MW E8 to BH/MW E15) and installation of monitoring wells in seventeen (17) boreholes (denoted BH/MW2, BH/MW6, BH/MW7, and BH/MW E1 to BH/MW E13) on April 30, May1, May7, May8, 2018 and for BH/MW E3 and BH/MW E7 on June 5, 2018.

The monitoring wells consisted of PVC screen and riser section, with monument casing. A sand pack was placed around the screen section to a height of approximately 600 mm above the top of the screen. A seal consisting of bentonite clay was then added on top of the sand pack, and a final seal of concrete was placed around the top of the well (ground surface).

The sampling and decontamination procedures were conducted in accordance with the "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", May 1996, revised December 1996, as amended by O. Reg. 511/09.

Laboratory analytical methods, protocols and procedures were carried out in accordance with the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act", dated March 9, 2004, amended as of July 1, 2011, in accordance with O. Reg. 511/09 and O. Reg. 269/11.

# **5.2** Utility Clearance

Prior to the commencement of the investigation, various utility agencies were contacted to identify buried services on public land in the vicinity of the Property. A private locator was retained to survey the proposed borehole locations for buried services. No conflicts between the proposed borehole locations and underground utilities were encountered.

# 5.3 Health and Safety

Prior to commencing the investigation, a Health and Safety Plan (H&S) was developed and implemented by SIRATI. The H&S Plan identified and provided mitigative actions for potential physical and chemical hazards associated with the Phase Two ESA activities and information for procedures to follow in the event of an emergency.

# 5.4 Drilling

The field work for this investigation was consisted of drilling twenty-two (22) boreholes (denoted BH/MW2, BH3, BH5, BH/MW6, BH/MW7, BH/MW E1, BH/MW E2, BH/MW E4, BH/MW E5, BH/MW E6, and BH/MW E8 to BH/MW E15) and installation of monitoring wells in seventeen (17) boreholes (denoted BH/MW2, BH/MW6, BH/MW7, and BH/MW E1 to BH/MW E13), conducted on April 30, May1, May7, May8, 2018 and for BH/MW E3 and BH/MW E7 on June 5, 2018, to depths ranging from 2.4 to 6.3 mbgs.

The locations of the boreholes/monitoring wells are shown on Figure 4. The drilling information for the Phase Two ESA is provided in the Table below:

| Date of Drilling                | - April 30, May1, May7, May8, 2018 and June 5, 2018                                                                                           |  |  |  |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Name of Contractor              | -Tri Phase Group.                                                                                                                             |  |  |  |
| Equipment Used                  | <ul> <li>Limited Access Rig</li> <li>Solid Stem Auger and Pionjar Drilling System</li> <li>2-inch split spoon soil sampling device</li> </ul> |  |  |  |
| <b>Decontamination Measures</b> | The split spoon sampling device was washed between each sample to minimize potential cross-contamination                                      |  |  |  |
| Sample Frequency                | Refer to the borehole logs in Appendix B for recovered soil samples                                                                           |  |  |  |

The borehole drilling activity was supervised by a field technician who logged the boreholes and screened the samples as they were retained. All samples obtained during the investigation were sealed into clean plastic containers, for visual and olfactory inspection. The samples were examined in detail. The results of the boreholes are recorded in detail on the accompanying borehole logs. The complete borehole logs are presented in Appendix B.

#### 5.5 Soil Sampling

Soil samples were collected from the overburden materials using a split spoon sampler. Measures were taken in the field and during transport to maintain sample integrity prior to chemical analysis. Recommended volumes of soil samples selected for chemical analysis were collected from the recovered cores into pre-cleaned, laboratory-supplied glass sample jars/vials identified for the specified analytical test group.

Project: SP18-306-20-02

Samples intended for VOCs and the F1 fraction of petroleum hydrocarbons analysis were collected using a laboratory-supplied soil core sampler, placed into vials containing methanol for preservation purposes and sealed using teflon lined septa lids. All soil samples were placed in clean coolers containing ice prior to and during transportation to the laboratory, ALS Environmental (ALS) was used to conduct chemical testings on soil and groundwater samples.

Decontamination and other protocols were followed during sample collection and handling to minimize the potential for sample cross-contamination. New, dedicated disposable nitrile gloves were used for the handling and sampling of each retrieved soil core. The core barrel samplers were decontaminated between sampling intervals by the drilling contractor using a potable water/phosphate-free detergent solution followed by rinses with potable water and de-ionized water. Wash and rinse waters were collected in sealed, labeled containers.

The subsurface conditions in the boreholes are summarized in the following paragraphs:

#### **Ground Cover:**

A layer of asphalt pavement was encountered in BH3, BH4, BH6, BH7, BH-E1, BH-E2, BH-E4, BH-E5 and BH-E8 to BH-E11. The thickness of asphalt was observed to vary between 75 mm to 150 mm. The layer was observed to be underlain by 75 mm to 180 mm of granular material.

BH2, E3 and E7 were advanced through 100 mm to 180 mm-thick concrete slabs underlain by 100 mm of granular material at BH-2.

#### **Topsoil/Fill Material:**

A layer of fill material was encountered in all boreholes, extending between 0.2 m to 4.6 m depth. The fill was comprised of sand & gravel, clayey silt, construction debris and sandy silt with trace to some topsoil. Buried layers of topsoil were encountered locally in BH-E5 from 0.8 mbgs to 1.5mbgs, and BH-E15 from 2.3 mbgs to 3.0 mbgs.

#### **Glacial Till Deposit:**

Except BH1, BH-E9 and BH-E10, a layer of glacial till deposit, comprising sandy silt to clayey silt, was encountered in all boreholes underlying the fill material.

#### **Shale bedrock (Georgian Bay Formation):**

The presence of bedrock was inferred from auger/sampler refusal or confirmed by split spoon sampling in all boreholes at depths, generally varying between 4.0 m and 6.1 m. An auger refusal was observed in BH-E7 at a depth of 2.4 m, which is much shallower than the other locations. This could be due to boulder obstruction and not necessarily a bedrock depth.

Detailed descriptions of the encountered subsurface conditions are presented on the borehole logs provided in Appendix B.

Based on the soil vapour measurements and visual and olfactory observations, representative worst-case soil samples from each borehole were selected and sent to the laboratory for chemical analyses.

## **5.6** Field Screening Measurements (Soil)

The samples were screened using RKI Instruments, Eagle Potable Multi-gas detector (with Methane Elimination Switch), S/N E2F426, operated in the methane elimination mode. The instrument measures combustible gases in the atmosphere. The monitor has a range of 0 ppm to 50,000 ppm and an accuracy of  $\pm$  5 %. The monitor was calibrated with hexane prior to field screening as per the calibration procedure outlined by RKI Instruments in "Instruction Manual Eagle Series Portable Multi-Gas Detector 71-0154RK" released March 11, 2016.

The representative worst-case soil samples based on the soil vapour measurements and visual and olfactory observations were selected from each borehole and submitted to the laboratory for chemical analyses.

# 5.7 Groundwater Monitoring Well Installation

A total of seventeen (17) monitoring wells (denoted BH/MW2, BH/MW6, BH/MW7, and BH/MW E1 to BH/MW E13) were installed at the Property for groundwater monitoring and sampling. The monitoring wells were installed by Tri Phase Group., licensed well contractors. This was performed under the full-time supervision of a SIRATI field technician. The monitoring wells were constructed using 2-inch (50 mm) diameter PVC screen, 3.05 m in length as shown in the borehole logs. A PVC riser, capped at the top, was installed from the screen section above the top grade. A sand pack, consisting of clean silica sand, was placed around the screened zone with a bentonite seal placed above the sand pack. The top of each well was sealed with concrete to approximately 0.15 mbgs. The monitoring wells were completed with flush mount protector at ground surface. The monitoring well construction details are provided in the borehole logs in Appendix B. The monitoring installation details are summarized in the table below.

| Monitoring<br>Well | Bottom of<br>Monitoring Well<br>(mbgs) | Ground<br>Surface<br>Elevation<br>(mASL) | Screen<br>Length<br>(m) | Water elevation<br>(mASL) | Water level (mbgs) |
|--------------------|----------------------------------------|------------------------------------------|-------------------------|---------------------------|--------------------|
| BH/MW2             | 6.1                                    | 155.02                                   | 3.05                    | 153.82                    | 1.98               |
| BH/MW4             | 6.2                                    | 154.14                                   | 3.05                    | 154.58                    | 3.13               |
| BH/MW6             | 4.0                                    | 154.74                                   | 3.05                    | 153.52                    | 1.22               |
| BH/MW7             | 6.1                                    | 154.76                                   | 3.05                    | 152.96                    | 1.8                |
| BH/MW E1           | 5.64                                   | 154.63                                   | 3.05                    | 151.72                    | 2.91               |
| BH/MW E2           | 5.49                                   | 154.01                                   | 3.05                    | 152.453                   | 1.56               |

| BH/MW E3  | 3.7  | 154.73 | 3.05 | 152.568 | 2.16 |
|-----------|------|--------|------|---------|------|
| BH/MW E4  | 5.49 | 154.31 | 3.05 | 152.807 | 1.05 |
| BH/MW E5  | 5.8  | 155.30 | 3.05 | 152.853 | 2.45 |
| BH/MW E6  | 4.9  | 154.47 | 3.05 | 151.683 | 2.79 |
| BH/MW E7  | 2.44 | 154.78 | 3.05 | 153.4   | 1.38 |
| BH/MW E8  | 5.18 | 155.23 | 3.05 | 152.142 | 3.09 |
| BH/MW E9  | 4.27 | 155.66 | 3.05 | 152.731 | 2.93 |
| BH/MW E10 | 4.72 | 155.72 | 3.05 | 152.686 | 3.03 |
| BH/MW E11 | 5.79 | 155.26 | 3.05 | 152.409 | 2.85 |
| BH/MW E12 | 5.33 | 157.59 | 3.05 | 155.194 | 2.40 |
| BH/MW E13 | 5.03 | 157.04 | 3.05 | 154.552 | 2.49 |

Note: mASL: metres above sea level, mbgs: metres below ground surface

The monitoring wells were installed with dedicated low-density polyethylene tubing to facilitate well development, purging and sampling requirements. Groundwater development was performed following the drilling date. The monitoring wells were developed to remove any fluids that may have been introduced into the wells during the drilling and to remove particles that may have become entrained in the well screen and filter pack (minimum three well casing volumes of groundwater in each well). Purged water was contained and stored at the Property for future disposal.

## 5.8 Groundwater Field Measurement of Water Quality Parameters

The monitoring wells were allowed to stabilize prior to well development. The monitoring well development, groundwater monitoring and purging were conducted at the Property after being installed. Groundwater observations were recorded for colour, clarity, the presence or absence of any free product/surface sheen and any odours present during the purging of the wells. The water level measuring device was cleaned after each measurement using Alconox solution and water, followed by a distilled water rinse and a methanol rinse, in order to prevent cross-contamination between monitoring wells. Well development continued until approximately 3 to 5 wetted well volumes were removed and monitoring indicated the condition in the purged water had stabilized.

# 5.9 Groundwater Sampling

Groundwater sampling was conducted on June 12 and 13, 2018 after purging and allowing the water to stabilize. The groundwater purging and sampling activities were carried out using dedicated low-density polyethylene tubing. Groundwater samples were collected into laboratory-supplied containers, prepared with preservative for the analysis being conducted. The samples scheduled for analysis of metals were passed through a 0.45-micron filter as part of the sampling process. Disposable latex gloves were worn at each sample location. The groundwater samples were immediately placed into coolers packed with ice pending delivery to the analytical laboratory.

# 5.10 Sediment Sampling

Sediment sampling was not carried out as part of this investigation as there were no surface water bodies (ponds, creek, lake) found on the Property.

# **5.11 Analytical Testing**

The soil and groundwater samples were completed by ALS Environmental, located at 5730 Coopers Avenue in Mississauga, Ontario. ALS is accredited by the Canadian Association for Laboratory Accreditation (CALA) in accordance with ISO/IEC 17025:2005 – "General Requirements for the Competence of Testing and Calibration Laboratories" for all the parameters analysed during this investigation.

## **5.12 Residue Management Procedures**

Drilling residue generated by the drilling program was stored at the Property in drums. Groundwater purged from the monitoring wells was stored in containers, using a separate container for each well. The metal barrels and containers are clearly marked and stored temporarily at the Property for later disposal.

## **5.13 Elevation Surveying**

The ground elevations of the boreholes and monitoring wells were surveyed by SIRATI personnel using differential GPS system. The elevations at the borehole and monitoring well locations are presented in the borehole logs (Appendix B).

# 5.14 Quality Assurance (QA) and Quality Control (QC) Measures

Laboratory-supplied sample containers, containing the appropriate preservatives as required by the given analyses, were used for all sampling conducted on the Property. All sample containers were labelled accordingly to identify the sample location. Documentation related to sample location, and time of

sampling was recorded for each sample. The samples were immediately placed in coolers packed with ice. The sampling and decontamination procedures were conducted in accordance with the "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", May 1996, revised December 1996, as amended by O. Reg. 511/09. Laboratory analytical methods, protocols and procedures were carried out in accordance with the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act", dated March 9, 2004, amended as of July 1, 2011, in accordance with O. Reg. 511/09 and O. Reg. 269/11.

Soil samples for analytical testing were collected from the undisturbed split spoon samples. Samples that were collected for analysis of BTEX and the F1 fraction of petroleum hydrocarbons were collected directly from the split spoon core using the Terra Core sampling devices. These are dedicated single use sampling devices. There is no potential for cross-contamination associated with this sampling method. Until delivery to the analytical laboratory, custody of the samples was maintained by SIRATI. On completion of daily field activities, the samples were returned to SIRATI facility and stored in a refrigerator pending selection of samples for analytical testing. SIRATI transferred custody of the samples that had been selected for analysis to ALS Environmental within an adequate time frame to ensure 'hold times' would be within the acceptable criteria. Chain of Custody forms identifying the samples and analyses were submitted to the laboratory to document the transfer of custody.

Quality control samples included field duplicates. The following quality control measures were implemented for this investigation.

- The collection of at least one field duplicate sample per site for every sampled medium (where three or more such samples are collected).
- Where volatile organic chemical analysis was required, the collection of discrete samples directly
  into laboratory-prepared sample vials and immediate placement into a cooler with ice to maintain
  the temperature at less than 10 °C for transport to the laboratory, was conducted.
- The use of dedicated equipment (bailers, Waterra tubing, etc.) for groundwater sampling at different monitors and the thorough cleaning of soil sampling equipment between sample sites, was conducted.
- If trace organics in the collected samples are anticipated (organic chemicals with a concentration of less than 1 µg/g), precautions were made to avoid any possible cross-contamination (eliminating bare hand or latex glove contacts with the soil or water); soil sampling equipment used for the collection of trace organics were cleaned using a phosphate-free detergent and water, followed by a distilled water rinse and a methanol rinse between sampling sites.

There were no deviations from the procedures of the quality assurance and quality control program set out in the sampling and analysis plan. Summary of field Investigation protocol is presented in Appendix A.

Phase Two ESA, 64,66 Thomas Street, 95 Joymar Drive, 65 Tannery Mississauga, Ontario

## 6.0 SUMMARY OF FINDINGS AND CONCLUSIONS

## 6.1 Geology

Detailed descriptions of the encountered subsurface conditions are presented on the borehole logs included in Appendix B. Boundaries of soil indicated on the log sheets are intended to reflect transition zones for the purpose of environmental assessment and should not be interpreted as exact planes of geological change.

The subsurface conditions in the boreholes are summarized in the following paragraphs:

### **Ground Cover:**

A layer of asphalt pavement was encountered in BH3, BH4, BH6, BH7, BH-E1, BH-E2, BH-E4, BH-E5 and BH-E8 to BH-E11. The thickness of asphalt was observed to vary between 75 mm to 150 mm. The layer was observed to be underlain by 75 mm to 180 mm of granular material.

Borehole 2, E3 and E7 were advanced through 100 mm to 180 mm-thick concrete slabs. The slab was found underlain by 100 mm of granular material at BH-2.

### **Topsoil/Fill Material:**

A layer of fill material was encountered in all boreholes, extending between 0.2 m to 4.6 m depth. The fill material was comprised of sand & gravel, clayey silt, construction debris and sandy silt with trace to some topsoil. Buried layers of topsoil were encountered locally in BH-E5 from 0.8 mbgs to 1.5mbgs, and BH-E15 from 2.3 mbgs to 3.0 mbgs.

### **Glacial Till Deposit:**

Except BH1, BH-E9 and BH-E10, a layer of glacial till deposit, comprising sandy silt to clayey silt, was encountered in all boreholes underlying the fill material.

### **Shale bedrock (Georgian Bay Formation):**

The presence of bedrock was inferred from auger/sampler refusal or confirmed by split spoon sampling in all boreholes at depths, generally varying between 4.0 m and 6.1 m. No bedrock was encountered in BH-E3, BH-E14 and BH-E15. An auger refusal was observed in BH-E7 at a depth of 2.4 m, which is much shallower than the other locations. This could be due to boulder obstruction and not necessarily a bedrock depth.

Detailed descriptions of the encountered subsurface conditions are presented on the borehole logs provided in Appendix B.

#### **Groundwater Elevations and Flow Direction** 6.2

A total of seventeen (17) monitoring wells (denoted BH/MW2, BH/MW6, BH/MW7, and BH/MW E1 to BH/MW E13) were installed at the Property for environmental monitoring and sampling.

Prior to groundwater sampling activities, the depth to groundwater was measured in the monitoring wells on June 12, 2018 and June 13, 2018. Details of the measured groundwater elevations are summarized in the table below.

| Monitoring<br>Well |      | Ground<br>Surface<br>Elevation | Screen<br>Length (m) | Water<br>elevation<br>(mASL) | Water level (mbgs) |
|--------------------|------|--------------------------------|----------------------|------------------------------|--------------------|
| BH/MW2             | 6.1  | 155.02                         | 3.05                 | 153.82                       | 1.98               |
| BH/MW4             | 6.2  | 154.14                         | 3.05                 | 154.58                       | 3.13               |
| BH/MW6             | 4.0  | 154.74                         | 3.05                 | 153.52                       | 1.22               |
| BH/MW7             | 6.1  | 154.76                         | 3.05                 | 152.96                       | 1.8                |
| BH/MW E1           | 5.64 | 154.63                         | 3.05                 | 151.72                       | 2.91               |
| BH/MW E2           | 5.49 | 154.01                         | 3.05                 | 152.453                      | 1.56               |
| BH/MW E3           | 3.7  | 154.73                         | 3.05                 | 152.568                      | 2.16               |
| BH/MW E4           | 5.49 | 154.31                         | 3.05                 | 152.807                      | 1.05               |
| BH/MW E5           | 5.8  | 155.30                         | 3.05                 | 152.853                      | 2.45               |
| BH/MW E6           | 4.9  | 154.47                         | 3.05                 | 151.683                      | 2.79               |
| BH/MW E7           | 2.44 | 154.78                         | 3.05                 | 153.4                        | 1.38               |
| BH/MW E8           | 5.18 | 155.23                         | 3.05                 | 152.142                      | 3.09               |
| BH/MW E9           | 4.27 | 155.66                         | 3.05                 | 152.731                      | 2.93               |
| BH/MW E10          | 4.72 | 155.72                         | 3.05                 | 152.686                      | 3.03               |
| BH/MW E11          | 5.79 | 155.26                         | 3.05                 | 152.409                      | 2.85               |
| BH/MW E12          | 5.33 | 157.59                         | 3.05                 | 155.194                      | 2.40               |
| BH/MW E13          | 5.03 | 157.04                         | 3.05                 | 154.552                      | 2.49               |

The water levels were measured using an interface probe (Solinst Interface Meter, Model 1220). Based on the groundwater elevations, the groundwater below the Property appeared to flow in an easterly direction. No odour, sheen or free-phase product was observed in any of the monitoring wells.

# **6.2.1** Additional Groundwater Sampling

As a part of delineation investigation, nine (9) additional monitoring wells (MW 201 to MW 210) were installed on the Site as a groundwater delineation program to determine the extents of contaminants identified during the first round of investigations.

As described in section 6.7, eleven (11) groundwater samples [including one (1) duplicate sample and one (1) trip blank sample] were collected from the Site during the delineation program and submitted to ALS for chemical analysis.

# 6.3 Groundwater Hydraulic Gradient

Based on the groundwater records collected, the horizontal hydraulic gradient was estimated for the aquifer water table. Based on the available information, the horizontal hydraulic gradient of the groundwater flow for the site is between 0.01287 and 0.02980 (average 0.021335) in an easterly direction.

#### 6.4 Soil Texture

No grain size analysis was performed as part of the Phase Two ESA. Therefore, the site condition standards for coarse textured soils were used in the assessment.

# 6.5 Soil Field Screening

Head space vapour screening was conducted for all retrieved soil samples using a combustible gas detector (RKI Eagle) in methane elimination mode, calibrated with hexane and having a minimum detection level of  $\pm$  5 %.

Soil vapour measurements ranging from non-detect to 5 ppm were recorded for the soil samples, indicating insignificant combustible gases in the soil samples retrieved from the boreholes.

### 6.6 Soil Quality

## 6.6.1 Soil Samples

Soil sampling was conducted on April 30, May 10 and June 5, 2018. Representative "worst case" soil samples from each environmental borehole were selected based on the soil vapour measurements and visual olfactory observations. Based on the field screening, a total of twenty-nine (29) soil samples, including duplicate samples, were submitted for chemical analysis of M&I, PHCs (F1-F4), OCPs, PCBs and VOCs. A summary of the soil samples and selected analyses is presented below.

| Sample ID | Date           | Sample Depth (mbgs) | Parameter Analysed (O. Reg. 153/04 as amended) |
|-----------|----------------|---------------------|------------------------------------------------|
| BH2-SS3   | April 30, 2018 | 1.5-2.1             | PHCs                                           |
| BH6-SS5   | M 1 2019       | 3.1-3.7             | PHCs                                           |
| BH5-SS1   | May 1, 2018    | 0-0.6               | M&I                                            |
| BHE5-SS2  |                | 0.8-1.4             | PCBs                                           |
| BHE15-SS3 |                | 1.5-2.1             | PCBs                                           |
| BHE4-SS2  |                | 0.8-1.4             | PCBs                                           |
| BHE14-SS3 |                | 1.5-2.1             | M&I                                            |
| BHE5-SS3  |                | 1.5-2.1             | M&I                                            |
| BHE4-SS4  |                | 2.3-2.9             | M&I                                            |
| BHE15-SS2 |                | 0.8-1.4             | M&I                                            |
| BHE15-SS5 |                | 3.1-3.7             | PHCs, VOCs                                     |
| BHE14-SS1 |                | 0-0.6               | OCPs                                           |
| DUP-S1    | May 10, 2018   | -                   | Metals                                         |
| DUP-S2    |                | -                   | PCBs                                           |
| BHE6-SS4  |                | 2.3-2.9             | PHCs, VOCs                                     |
| BHE11-SS2 |                | 0.8-1.4             | PHCs                                           |
| BHE1-SS4  |                | 2.3-2.9             | PHCs                                           |
| BHE8-SS5  |                | 3.1-3.7             | PHCs                                           |
| BHE2-SS4  |                | 2.3-2.9             | PHCs                                           |
| BHE10-SS5 |                | 3.1-3.7             | PHCs                                           |
| BHE4-SS2  |                | 0.8-1.4             | PHCs, VOCs                                     |
| BHE9-SS2  |                | 0.8-1.4             | PHCs                                           |

| Sample ID | Date         | Sample Depth (mbgs) | Parameter Analysed (O. Reg. 153/04 as amended) |
|-----------|--------------|---------------------|------------------------------------------------|
| BH13-SS1  |              | 0-0.6               | PHCs                                           |
| BHE12-SS2 |              | 0.8-1.4             | PHCs                                           |
| BHE5-SS4  |              | 0-0.6               | PHCs, VOCs                                     |
| BH3-SS5   |              | 3.1-3.7             | PHCs                                           |
| BH7-SS1   | June 5, 2019 | 0-0.6               | M&I                                            |
| BH7-SS3   | June 5, 2018 | 1.5-2.1             | PHCs                                           |
| DUP-S3    |              | -                   | PHCs                                           |

The analytical results of soil samples indicated elevated PHCs, BTEX, M&I, and VOCs in excess of the MECP Table 8 Standard, in the following soil samples:

| Sample ID        | Depth (mbgs) | Exceeding Parameters | Concentration | Unit | MECP Table 8<br>Standards |
|------------------|--------------|----------------------|---------------|------|---------------------------|
|                  |              | F2 (C10-C16)         | 235           | ug/g | 10                        |
| BH2-SS3          | 1.5-2.1      | F3 (C16-C34)         | 2750          | ug/g | 240                       |
|                  | 1.5-2.1      | F4 (C34-C50)         | 802           | ug/g | 120                       |
|                  |              | F4G-SG (GHH-Silica)  | 2230          | ug/g | 120                       |
| BH5-SS1          | 0006         | SAR                  | 31.4          |      | 5                         |
|                  | 0.0-0.6      | EC                   | 10.2          | mS/m | 0.7                       |
|                  |              | SAR                  | 8.62          |      | 5                         |
| BHE5-SS3 1.5-2.1 | EC 0.853 mS  |                      | mS/m          | 0.7  |                           |
|                  |              | Chromium, Hexavalent | 0.78          | ug/g | 0.66                      |
| BHE4-SS4         | 2.3-2.9      | SAR                  | 5.41          |      | 5                         |

| Sample ID | Depth (mbgs) | <b>Exceeding Parameters</b> | Concentration | Unit | MECP Table 8<br>Standards |
|-----------|--------------|-----------------------------|---------------|------|---------------------------|
|           |              | EC                          | 0.709         | mS/m | 0.7                       |
| BHE15-SS2 | 0.8-1.4      | Chromium, Hexavalent        | 0.94          | ug/g | 0.66                      |
|           |              | n-Hexane                    | 1.06          | ug/g | 0.05                      |
| DUE15 005 |              | Xylenes (Total)             | 0.676         | ug/g | 0.05                      |
| BHE15-SS5 | 3.1-3.7      | F1 (C6-C10)                 | 35            | ug/g | 25                        |
|           |              | F1-BTEX                     | 34.3          | ug/g | 25                        |
|           |              | F2 (C10-C16)                | 321           | ug/g | 10                        |
| BHE6-SS4  | 2.3-2.9      | Xylenes (Total)             | 0.102         | ug/g | 0.05                      |
|           |              | F2 (C10-C16)                | 26            | ug/g | 10                        |
| BHE11-SS2 | 0.8-1.4      | F3 (C16-C34)                | 648           | ug/g | 50                        |
|           | 0.0-1.4      | F4 (C34-C50)                | 528           | ug/g | 50                        |
|           |              | F4G-SG (GHH-Silica)         | 1670          | ug/g | 250                       |
| BHE10-SS5 | 3.1-3.7      | F2 (C10-C16)                | 69            | ug/g | 10                        |
| BHE9-SS4  | 2.3-2.9      | F2 (C10-C16)                | 108           | ug/g | 10                        |
| BHE2-SS2  | 0.8-1.4      | Chromium, Hexavalent        | 0.77          | ug/g | 0.66                      |

The concentrations of the tested parameters for the remaining samples were below the MECP Table 8 Standards during the Phase Two ESA.

## Soil pH

The pH of all six (6) tested soil samples, representative of surface and subsurface soil, were found in the range of 5 to 9, and 5 to 11, respectively. These pH values are within the limits for the use of the generic criteria of O. Reg. 153/04, as amended. Complete laboratory results are included in Appendix C.

# 6.7 Groundwater Quality

Eighteen (18) groundwater samples from monitoring wells were submitted to the laboratory for chemical analyses on Jane 12 and 13, 2018. The summary of the chemical analysis is as follow:

| Sample ID  | Parameter Analysed ( O.Reg.153/04 as amended) |  |
|------------|-----------------------------------------------|--|
| MWE3       | PHCs & BTEX                                   |  |
| MWE4       | M&I, PHCs (F1-F4), VOCs, and PCBs             |  |
| MWE5       | M&I, PHCs (F1-F4), VOCs, and PCBs             |  |
| MWE9       | PHCs & BTEX                                   |  |
| MWE10      | PHCs & BTEX                                   |  |
| MW6        | PHCs & BTEX                                   |  |
| MW7        | PHCs & BTEX                                   |  |
| Dup-W2     | PHCs & BTEX                                   |  |
| MWE1       | PHCs                                          |  |
| MWE2       | M&I, PHCs (F1-F4)                             |  |
| MWE6       | PHCs & VOCs                                   |  |
| MWE7       | M&I, PHCs (F1-F4)                             |  |
| MWE8       | PHCs                                          |  |
| MWE11      | PHCs                                          |  |
| MWE12      | PHCs                                          |  |
| MWE13      | PHCs                                          |  |
| DUP-W1     | M&I                                           |  |
| Trip Blank | VOCs                                          |  |

The analytical results of groundwater samples indicated elevated PHCs, BTEX, and M&I in excess of the MECP Table 8 Standard, in the following groundwater samples:

| Sample ID  | <b>Exceeding Parameters</b> | Concentration | Unit | MECP Table 8 Standards |
|------------|-----------------------------|---------------|------|------------------------|
| MW E4      | Chloride (Cl)               | 1500          | mg/L | 790                    |
|            | Sodium (Na)-Dissolved       | 768000        | ug/L | 490000                 |
| MW E10     | Benzene                     | 18.6          | ug/L | 5                      |
|            | F2 (C10-C16)                | 280           | ug/L | 150                    |
| DUP-W2     | Benzene                     | 18.7          | ug/L | 5                      |
|            | F2 (C10-C16)                | 280           | ug/L | 150                    |
| MW-E7      | Chloride (Cl)               | 1280          | mg/L | 790                    |
| MW-E11     | F1 (C6-C10)                 | 606           | ug/L | 420                    |
| 14144 1211 | F2 (C10-C16)                | 1650          | ug/L | 150                    |

The concentrations of the tested parameters for the remaining samples were below the MECP Table 8 Standards during the Phase Two ESA.

# 6.8 Sediment Quality

Sediment sampling was not carried out in this investigation.

#### 7.0 **DELINEATION PROGRAM**

Soil delineation program was conducted at the Site to determine the lateral and vertical extents of contaminants identified during the first round of investigations.

Additional eighteen (18) boreholes were drilled on August 22 to 24, 2018. Nine (9) of them were instrumented with groundwater monitoring wells. Twenty-one (21) soil samples including one (3) duplicate sample were collected from the Site during the delineation program and submitted to ALS for chemical analysis. The following samples had concentration of the tested parameters in excess of the Table 8 MECP standards:

| Sample ID         | Depth<br>(mbgs) | Exceeding Parameters | Concentration | Unit | MECP Table 8 Standards |
|-------------------|-----------------|----------------------|---------------|------|------------------------|
| BH214-SS2         | 0.8-1.4         | SAR                  | 5.13          | -    | 5                      |
| BH211-SS3         | 1.5-2.1         | SAR                  | 25.5          | -    | 5                      |
| BH211-353         | 1.3-2.1         | EC                   | 1.72          | mS/m | 0.7                    |
| DU212 GG2         | 1.5-2.1         | SAR                  | 13            | -    | 5                      |
| BH212-SS3 1.5-2.1 | 1.3-2.1         | EC                   | 1.59          | mS/m | 0.7                    |
| BH213-SS3         | 1.5-2.1         | SAR                  | 5.16          | -    | 5                      |
| DUP-S201          | -               | SAR                  | 5.11          | -    | 5                      |
|                   |                 | Benzene              | 2.26          | ug/g | 0.02                   |
|                   |                 | Ethylbenzene         | 1.77          | ug/g | 0.05                   |
| BH204-SS4         | 2.3-2.9         | n-Hexane             | 1.49          | ug/g | 0.05                   |
|                   | 2.3-2.7         | Toluene              | 1             | ug/g | 0.2                    |
|                   |                 | Xylenes (Total)      | 10            | ug/g | 0.05                   |
|                   |                 | F1 (C6-C10)          | 48            | ug/g | 25                     |

| Sample ID | Depth (mbgs) | Exceeding Parameters | Concentration | Unit | MECP Table 8 Standards |
|-----------|--------------|----------------------|---------------|------|------------------------|
|           |              | F1-BTEX              | 33            | ug/g | 25                     |
|           |              | F2 (C10-C16)         | 37            | ug/g | 10                     |
| BH205-SS3 |              | Benzene              | 0.04          | ug/g | 0.02                   |
|           |              | Ethylbenzene         | 0.943         | ug/g | 0.05                   |
|           |              | n-Hexane             | 0.054         | ug/g | 0.05                   |
|           | 1.5-2.1      | Xylenes (Total)      | 2.29          | ug/g | 0.05                   |
|           |              | F1 (C6-C10)          | 71            | ug/g | 25                     |
|           |              | F1-BTEX              | 68            | ug/g | 25                     |
|           |              | F2 (C10-C16)         | 331           | ug/g | 10                     |
| BH207-SS4 | 2.3-2.9      | Benzene              | 0.0786        | ug/g | 0.02                   |
|           | 2.3-2.9      | n-Hexane             | 0.072         | ug/g | 0.05                   |
| BH208-SS5 |              | Benzene              | 0.0708        | ug/g | 0.02                   |
|           |              | Bromodichloromethane | <0.15         | ug/g | 0.05                   |
|           |              | Ethylbenzene         | 0.06          | ug/g | 0.05                   |
|           | 3.1-3.7      | n-Hexane             | 0.21          | ug/g | 0.05                   |
|           | 3.1-3./      | Xylenes (Total)      | 0.075         | ug/g | 0.05                   |
|           |              | F1 (C6-C10)          | 47.8          | ug/g | 25                     |
|           |              | F1-BTEX              | 47.6          | ug/g | 25                     |
|           |              | F2 (C10-C16)         | 15            | ug/g | 10                     |

| Sample ID | Depth (mbgs) | Exceeding Parameters | Concentration | Unit | MECP Table 8 Standards |
|-----------|--------------|----------------------|---------------|------|------------------------|
| DUP-S202  |              | Benzene              | 0.0714        | ug/g | 0.02                   |
|           | -            | n-Hexane             | 0.076         | ug/g | 0.05                   |
|           |              | F2 (C10-C16)         | 13            | ug/g | 10                     |
| DUP-S203  | -            | F2 (C10-C16)         | 12            | ug/g | 10                     |
| BH209-SS7 |              | Benzene              | 0.0886        | ug/g | 0.02                   |
|           |              | Bromodichloromethane | 0.608         | ug/g | 0.05                   |
|           | 4.6-5.2      | Chloroform           | 0.626         | ug/g | 0.05                   |
|           |              | 1,2-Dibromoethane    | <0.24         | ug/g | 0.05                   |
|           |              | 1,2-Dichloroethane   | <0.070        | ug/g | 0.05                   |
|           |              | Ethylbenzene         | 0.086         | ug/g | 0.05                   |
|           |              | n-Hexane             | 8.18          | ug/g | 0.05                   |
|           |              | F1 (C6-C10)          | 208           | ug/g | 25                     |
|           |              | F1-BTEX              | 208           | ug/g | 25                     |
|           |              | F2 (C10-C16)         | 81            | ug/g | 10                     |
| BH210-SS5 |              | Benzene              | 0.0326        | ug/g | 0.02                   |
|           |              | Bromodichloromethane | 0.137         | ug/g | 0.05                   |
|           | 3.1-3.7      | Chloroform           | 0.065         | ug/g | 0.05                   |
|           |              | n-Hexane             | 0.207         | ug/g | 0.05                   |
|           |              | Xylenes (Total)      | 0.094         | ug/g | 0.05                   |

| Sample ID  | Depth (mbgs) | Exceeding Parameters | Concentration | Unit | MECP Table 8 Standards |
|------------|--------------|----------------------|---------------|------|------------------------|
|            |              | F2 (C10-C16)         | 24            | ug/g | 10                     |
|            |              | F3 (C16-C34)         | 340           | ug/g | 240                    |
|            |              | F4 (C34-C50)         | 890           | ug/g | 120                    |
|            |              | F4G-SG (GHH-Silica)  | 2430          | ug/g | 120                    |
| BH201-SS4  | 2.3-2.9      | F2 (C10-C16)         | 29            | ug/g | 10                     |
| D11202 CG5 | 3.1-3.7      | n-Hexane             | 0.208         | ug/g | 0.05                   |
| BH202-SS5  | 3.1-3.7      | F2 (C10-C16)         | 44            | ug/g | 10                     |

As presented in Figure 5 and 6, nine (9) additional monitoring wells (MW 201 to MW 210) were installed on the Site as a groundwater delineation program to determine the extents of contaminants identified during the first round of investigations.

Eleven (11) groundwater samples [including one (1) duplicate sample and one (1) trip blank sample] were collected from the Site during the delineation program and submitted to ALS for chemical analysis. The following samples had concentration of the tested parameters in excess of the Table 8 MECP standards:

| Sample ID | <b>Exceeding Parameters</b> | Concentration | Unit | MECP Table 8 Standards |
|-----------|-----------------------------|---------------|------|------------------------|
|           | F1 (C6-C10)                 | 486           | ug/L | 420                    |
| MW 202    | F1-BTEX                     | 483           | ug/L | 420                    |
|           | F2 (C10-C16)                | 400           | ug/L | 150                    |
| 1001 204  | Benzene                     | 3760          | ug/L | 5                      |
| MW 204    | 1,2-Dichloroethane          | 3.22          | ug/L | 1.6                    |
|           | Xylenes (Total)             | 2930          | ug/L | 300                    |

| Sample ID | Exceeding Parameters | Concentration | Unit | MECP Table 8 Standards |
|-----------|----------------------|---------------|------|------------------------|
|           | Ethylbenzene         | 696           | ug/L | 2.4                    |
|           | n-Hexane             | 71.6          | ug/L | 51                     |
|           | Toluene              | 518           | ug/L | 22                     |
|           | F1 (C6-C10)          | 10800         | ug/L | 420                    |
|           | F1-BTEX              | 2900          | ug/L | 420                    |
|           | F2 (C10-C16)         | 1610          | ug/L | 150                    |
|           | Benzene              | 299           | ug/L | 5                      |
|           | Ethylbenzene         | 90.5          | ug/L | 2.4                    |
| MW 207    | F1 (C6-C10)          | 4190          | ug/L | 420                    |
|           | F1-BTEX              | 3770          | ug/L | 420                    |
|           | F2 (C10-C16)         | 1400          | ug/L | 150                    |
|           | Benzene              | 32            | ug/L | 5                      |
|           | Ethylbenzene         | 5.97          | ug/L | 2.4                    |
| MW 210    | F1 (C6-C10)          | 1680          | ug/L | 420                    |
|           | F1-BTEX              | 1630          | ug/L | 420                    |
|           | F2 (C10-C16)         | 1810          | ug/L | 150                    |

# 7.1 Quality Assurance and Quality Control Results

The Phase Two ESA was carried out in accordance with the Sampling and Analysis Plan and in accordance with the Standard Operating Procedures. The sampling and decontamination procedures were conducted in accordance with the "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", May 1996, revised December 1996, as amended by the O. Reg. 511/09.

Laboratory analytical methods, protocols and procedures were carried out in accordance with the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act", dated March 9, 2004, amended as of July 1, 2011, in accordance with O. Reg. 511/09 and O. Reg. 269/11 (herein referred to as Analytical Protocol).

# 7.1.1 Field Quality Assurance / Quality Control Samples

As part of the QA/QC program for the Phase Two ESA, QC samples in the form of field duplicates were analysed. Field duplicates were obtained by collecting one sample and immediately collecting the second sample. Field duplicates represent the precision of the whole method with respect to site heterogeneity, field sampling and laboratory analysis. Field duplicate samples were collected in the field for M&I, PHCs (F1-F4), PCBs and VOCs analysis in soil and groundwater. Details of QC samples including their analysis results are presented below.

### **Field Duplicates:**

A total of three (3) field duplicate soil sample and two (2) field duplicate groundwater samples were collected and submitted for chemical analysis. Details of duplicate samples and analysis are presented in the table below:

| <b>Duplicate Sample ID</b> | Media       | Original Sample ID | <b>Test Conducted</b> |
|----------------------------|-------------|--------------------|-----------------------|
| DUP-S1                     |             | BH E14-SS3         | M&I                   |
| DUP-S2                     | Soil        | BH E15-SS2         | PCBs                  |
| DUP-S3                     |             | BH E3-SS5          | PHCs                  |
| DUP-W1                     | Groundwater | MW E2              | M&I                   |
| DUP-W2                     | Groundwater | MW E10             | PHC (F1-F4), BTEX     |

The result of the field duplicate samples is similar to the results for the original samples, and relative percent differences for the detectable tested parameters are within acceptable ranges. However, the relative percent differences could not be calculated between the original and duplicate samples in the situation where the original and/or duplicate samples were below the reported laboratory detection limits.

Phase Two ESA, 64,66 Thomas Street, 95 Joymar Drive, 65 Tannery Mississauga, Ontario

#### 7.1.2 Sample Handling in Accordance with the Analytical Protocol

The samples analyzed as part of the Phase Two ESA were handled in accordance with the analytical protocol with respect to holding time, preservation method, storage requirement and sample container type.

#### 7.1.3 **Certification of Results**

Based on the review of the QA/QC sample results for the soil and groundwater samples of this investigation, the Chain of Custody forms and the laboratory Certificate of Analysis, it is certified that:

- All Certificates of Analysis or Analytical Reports received pursuant to Section 47(2) of O. Reg. 153/04 as amended, comply with Section 47(3) of O. Reg. 153/04, as amended.
- A Certificate of Analysis or Analytical Report was received for each sample submitted for analysis. Copies of all Certificates of Analysis are included in Appendix C and D.

The samples analyzed as part of the Phase Two ESA were handled in accordance with the analytical protocol with respect to holding time, preservation method, storage requirement and sample container type.

#### 7.1.4 **Data Validation**

The Analytical Protocol established Acceptance Limits for use when assessing the reliability of data reported by analytical laboratories including maximum holding times for the storage of sample extracts between collection and analysis, analytical methods, field and/or laboratory quality assurance samples, recovery ranges for spiked samples and surrogates, Reporting Detection Limits (RDLs, mandatory maximum method detection limit) and precision required when analyzing laboratory replicate and spiked samples. The review of the data in the Certificate of Analysis indicates:

- All samples/sample extracts were analyzed within their applicable holding times using approved analytical methods.
- No tested parameters were detected in any laboratory blank samples.
- The Reported Detection Limits met for the tested parameters.
- The result of the laboratory duplicate samples is similar to the results for the original sample, and relative percent differences for the detectable tested parameters are within the acceptable range.

#### 7.1.5 **Data Quality Objectives**

The overall quality of field data did not affect decision making and the overall objectives of the investigation were met.

Phase Two ESA, 64,66 Thomas Street, 95 Joymar Drive, 65 Tannery Mississauga, Ontario

# 7.2 Phase Two Conceptual Site Model

The Phase Two Conceptual Site Model is prepared based on the findings of the Phase One ESA and this Phase Two ESA.

# 7.2.1 Description and Assessment

The Property is located at the northwest side of the intersection of Thomas Street and Joymar Drive, Mississauga, Ontario. The Property is an irregular shaped parcel of land that covers an area of approximately 2.744 hectares (approximately 6.782 acres).

The legal description of the Property and Property Identification Numbers (PINs) are summarized in the table below:

| Phase One Property                        | Information                                                                                                                            | Source                                                                                                           |                                             |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Legal Description                         | PT LT 4, CON 5 WEST OF<br>HURONTARIO ST<br>TORONTO TWP, AS IN<br>275328VS; S/T RO947021,<br>ST6612 MISSISSAUGA;<br>CITY OF MISSISSAUGA | PT LT 4, CON 5 WEST<br>OF HURONTARIO ST<br>TORONTO TWP, AS IN<br>320279VS; S/T ST6612;<br>CITY OF<br>MISSISSAUGA | Service Ontario<br>Land Registry Office #43 |
| Property Identification<br>Numbers (PINs) | 13123-0059 (LT)                                                                                                                        | 13123-0126 (LT)                                                                                                  | Service Ontario<br>Land Registry Office #43 |
| Municipal Address                         | 64 and 66 Thomas Street,<br>95 Joymar Drive, Mississauga 65 Tannery Street,<br>Mississauga                                             |                                                                                                                  | Mississauga Map                             |
| Zoning                                    | D, Development and G1, Greenbe                                                                                                         | elt                                                                                                              | Mississauga Zoning By-law                   |

# 7.2.1.1 Description and Assessment

The Phase One ESA identified the Potentially Contaminating Activities (PCAs) at the Property and within the Phase One Study Area that may contribute to Areas of Potential Environmental Concern (APECs) for the soil and groundwater condition at the Property, based on records reviews, interviews, and site reconnaissance.

The areas of PCAs along with the corresponding list in Table 2 Schedule D of O. Reg. 153/04 are summarized below:

| Number   | Location                                                    | Potentially Contaminating Activity                              | Details                                                                                                 |
|----------|-------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Phase On | e Property                                                  |                                                                 |                                                                                                         |
| PCA-1    | Northwest section of<br>the Property (65<br>Tannery Street) | #28: Gasoline and Associated<br>Products Storage in Fixed Tanks | One (1) waste oil tank is located in an auto shop (Aussie Auto Inc.)                                    |
| PCA-2    | Northwest section of<br>the Property (65<br>Tannery Street) | #28: Gasoline and Associated<br>Products Storage in Fixed Tanks | (2) diesel storage tanks are located in a storage yard, east of the building (65 Tannery Street).       |
| PCA-3    | Central section of the<br>Property (95 Joyman<br>Drive)     | #28: Gasoline and Associated<br>Products Storage in Fixed Tanks | One (1) waste oil tank is located in an auto shop (J. Saleman & Sons Auto Service Ltd.)                 |
| PCA-4    | Central section of the<br>Property (95 Joyman<br>Drive)     | #28: Gasoline and Associated<br>Products Storage in Fixed Tanks | One (1) waste oil tank is located in a landscaping shop (Turf Lawn Care & Maintenance Inc.)             |
| PCA-5    | Central section of the<br>Property (95 Joyman<br>Drive)     | #28: Gasoline and Associated<br>Products Storage in Fixed Tanks | One (1) waste oil tank is<br>located against the northeast<br>wall of the building (95<br>Joymar Drive) |
| PCA-6    | Central section of the<br>Property (95 Joyman<br>Drive)     | #28: Gasoline and Associated<br>Products Storage in Fixed Tanks | One (1) waste oil tank is<br>located in a landscaping shop<br>(Cedar Grounds Maintenance<br>Inc.)       |
| PCA-7    | South section of the<br>Property (66 Thomas<br>Street)      | #28: Gasoline and Associated<br>Products Storage in Fixed Tanks | One (1) waste oil tank is located in an auto shop (Richard's Auto Repair).                              |
| PCA-8    | South section of the                                        | #28: Gasoline and Associated                                    | One (1) waste oil tank is                                                                               |

| Number | Location                                                             | Potentially Contaminating Activity                                                         | Details                                                                                                                                                                                                |
|--------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | Property (66 Thomas Street)                                          | Products Storage in Fixed Tanks                                                            | located in an auto shop (Meadowvale Collision Centre Atlantic).                                                                                                                                        |
| PCA-9  | South section of the<br>Property (66 Thomas<br>Street)               | #10: Commercial Autobody<br>Shops                                                          | Meadowvale Collision Centre<br>Atlantic is registered as a<br>commercial autobody shop.                                                                                                                |
| PCA-10 | South section of the<br>Property (66 Thomas<br>Street)               | #28: Gasoline and Associated<br>Products Storage in Fixed Tanks                            | One (1) waste oil tank is located in an auto shop (L.A. Auto Repairs).                                                                                                                                 |
| PCA-11 | South section of the<br>Property (66 Thomas<br>Street)               | #10: Commercial Autobody<br>Shops                                                          | Fix Auto Collision is registered as a commercial autobody shop.                                                                                                                                        |
| PCA-12 | South section of the<br>Property (66 Thomas<br>Street)               | #28: Gasoline and Associated<br>Products Storage in Fixed Tanks                            | One (1) waste oil tank is located in an auto shop (Jorge's Auto Repair).                                                                                                                               |
| PCA-13 | Southeast section of the<br>Phase One Property (64<br>Thomas Street) | #28: Gasoline and Associated<br>Products Storage in Fixed Tanks                            | One (1) waste oil tank is located in an auto shop (Correct Automotive)                                                                                                                                 |
| PCA-14 | Southeast section of the<br>Phase One Property (64<br>Thomas Street) | #28: Gasoline and Associated<br>Products Storage in Fixed Tanks                            | One (1) waste oil tank is located in an auto shop (Streetsville Auto & Tire)                                                                                                                           |
| PCA-15 | Northeast section of the<br>Phase One Property (95<br>Joymar Drive)  | #40: Pesticides Manufacturing,<br>Processing, Bulk Storage and<br>Large-Scale Applications | Clitar Groundskeeping and<br>Cedar Grounds Maintenance<br>(95 Joymar Drive) were<br>registered as pesticide<br>operators. The northeast<br>section of the Property was<br>used as the storage area for |

| Number   | Location                                                            | Potentially Contaminating Activity                        | Details                                                                                                                                                                                                                                           |
|----------|---------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                                                                     |                                                           | the landscaping companies.                                                                                                                                                                                                                        |
| PCA-16   | Northeast section of the<br>Phase One Property (95<br>Joymar Drive) | # 55: Transformer<br>Manufacturing, Processing and<br>Use | Power line supplies and commercial electrical boxes were observed on the associated parking area of AL Power Lines Ltd located at 95 Joymar Drive.                                                                                                |
| PCA-17   | South section of the<br>Phase One Property                          | # 33: Metal Treatment, Coating,<br>Plating and Finishing  | Metal industrial shops including aluminum shops were located at 66 Thomas Street in the 1980s.                                                                                                                                                    |
| PCA-18   | Northwest section of<br>the Property (95<br>Joymar Drive)           | # 48: Salt Manufacturing, Processing and Bulk Storage     | Two (2) dome road salt shelters were observed in the northwest section of the Property.                                                                                                                                                           |
| PCA-19   | Phase One Property                                                  | Not listed, waste generators records                      | According to the ERIS report, waste generators records were located at the Phase One Property.                                                                                                                                                    |
| PCA-20   | Phase One Property                                                  | Not listed, use of de-icing salts                         | The use of de-icing salts on the parking area, driveways, and Thomas Street, Joymar Drive and Tannery Street may have impacted the subsurface soils of the Property in relation to electrical conductivity (EC) and sodium adsorption ratio (SAR) |
| Phase On | e Study Area                                                        |                                                           |                                                                                                                                                                                                                                                   |

| Number | Location         | Potentially Contaminating Activity                                | Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------|------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PCA-21 | 80 Thomas Street | Not listed, waste generators records                              | According to the ERIS report and city directory search, waste generators records were located at the industrial property (CTS Canada). CTS of Canada Limited was listed in Ontario Regulation 347 Waste Generators Summary for producing elect. Parts & component, acid waste — heavy metals, other specified inorganics, inorganic laboratory chemicals, aromatic solvents, aliphatic solvents, petroleum distillates, light fuels, waste oils & lubricants, emulsified oils, organic laboratory chemicals, halogenated solvents, and oil skimmings & sludges from 1989 to 2017. |
| PCA-22 | 56 Thomas Street | #28: Gasoline and Associated<br>Products Storage in Fixed Tanks   | According to the city directory search, the neighbouring property located adjoint to the east boundary of the Phase One Property (56 Thomas Street), was occupied by a gas station in the 1960s and 1970s.                                                                                                                                                                                                                                                                                                                                                                        |
| PCA-23 | 44 Thomas Street | #43: Plastics (including Fibreglass) Manufacturing and Processing | According to the city directory search, the neighbouring property located approximately 55 m northeast                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| Number | Location       | Potentially Contaminating Activity   | Details                                                                                                                                                                                                                                              |
|--------|----------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |                |                                      | of the Phase One Property (44<br>Thomas Street), was occupied<br>by a plastic manufacture.                                                                                                                                                           |
| PCA-24 | 100 Emby Drive | Not listed, waste generators records | According to ERIS report, Mississauga Engines Inc. was listed in Ontario Regulation 347 Waste Generators Summary for producing petroleum distillates, alkaline wastes – other metals, and aromatic solvents from 1992 to 1998 and from 1999 to 2001. |

# 7.2.1.2 Areas of Potential Environmental Concern

The Phase One ESA identified Areas of Potential Environmental Concern (APECs) at the Property that may have been resulted from the PCAs listed above. The identified APECs include:

| APEC   | Location of Potential Environmental Concern on Phase One Property | Potentially Contaminating Activity                                    | Location<br>of PCA<br>(#) | Contaminants<br>of Potential<br>Concern | Media Potentially Impacted (Groundwater, soil and/or sediment) |
|--------|-------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------|-----------------------------------------|----------------------------------------------------------------|
| APEC-1 | Northwest<br>section of the<br>Property (65<br>Tannery Street)    | #28: Gasoline and<br>Associated Products<br>Storage in Fixed<br>Tanks | On-Site<br>(PCA#1)        | PHCs/VOCs                               | Soil and<br>Groundwater                                        |
| APEC-2 | Northwest section of the Property (65                             | #28: Gasoline and<br>Associated Products<br>Storage in Fixed          | On-Site<br>(PCA #2)       | PHCs/VOCs                               | Soil and Groundwater                                           |

| APEC   | Location of Potential Environmental Concern on Phase One Property | Potentially Contaminating Activity                                    | Location<br>of PCA<br>(#) | Contaminants<br>of Potential<br>Concern | Media Potentially Impacted (Groundwater, soil and/or sediment) |
|--------|-------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------|-----------------------------------------|----------------------------------------------------------------|
|        | Tannery Street)                                                   | Tanks                                                                 |                           |                                         |                                                                |
| APEC-3 | Central section<br>of the Property<br>(95 Joymar<br>Drive))       | #28: Gasoline and<br>Associated Products<br>Storage in Fixed<br>Tanks | On-Site<br>(PCA#3)        | PHCs/VOCs                               | Soil and<br>Groundwater                                        |
| APEC4  | Central section<br>of the Property<br>(95 Joymar<br>Drive))       | #28: Gasoline and<br>Associated Products<br>Storage in Fixed<br>Tanks | On-Site<br>(PCA#4)        | PHCs/VOCs                               | Soil and<br>Groundwater                                        |
| APEC-5 | Central section<br>of the Property<br>(95 Joymar<br>Drive)        | #28: Gasoline and<br>Associated Products<br>Storage in Fixed<br>Tanks | On-Site<br>(PCA#5)        | PHCs/VOCs                               | Soil and<br>Groundwater                                        |
| APEC-6 | Central section<br>of the Property<br>(95 Joymar<br>Drive)        | #28: Gasoline and<br>Associated Products<br>Storage in Fixed<br>Tanks | On-Site<br>(PCA#6)        | PHCs/VOCs                               | Soil and<br>Groundwater                                        |
| APEC-7 | South section of<br>the Property (66<br>Thomas Street)            | #28: Gasoline and<br>Associated Products<br>Storage in Fixed<br>Tanks | On-Site<br>(PCA#7)        | PHCs/VOCs                               | Soil and<br>Groundwater                                        |
| APEC-8 | South section of<br>the Property (66<br>Thomas Street)            | #28: Gasoline and<br>Associated Products<br>Storage in Fixed<br>Tanks | On-Site<br>(PCA#8)        | PHCs, VOCs                              | Soil and<br>Groundwater                                        |

| APEC        | Location of Potential Environmental Concern on Phase One Property | Potentially Contaminating Activity                                    | Location<br>of PCA<br>(#) | Contaminants<br>of Potential<br>Concern | Media Potentially Impacted (Groundwater, soil and/or sediment) |
|-------------|-------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------|-----------------------------------------|----------------------------------------------------------------|
|             |                                                                   |                                                                       |                           |                                         |                                                                |
| APEC-9      | South section of<br>the Property (66<br>Thomas Street)            | #10: Commercial<br>Autobody Shops                                     | On-Site<br>(PCA#9)        | PHCs, VOCs                              | Soil and<br>Groundwater                                        |
| APEC-10     | South section of<br>the Property (66<br>Thomas Street)            | #28: Gasoline and<br>Associated Products<br>Storage in Fixed<br>Tanks | On-Site<br>(PCA#10)       | PHCs, VOCs                              | Soil and Groundwater                                           |
| APEC-       | South section of<br>the Property (66<br>Thomas Street)            | #10: Commercial<br>Autobody Shops                                     | On-Site<br>(PCA#11)       | PHCs, VOCs                              | Soil and Groundwater                                           |
| APEC-       | South section of<br>the Property (66<br>Thomas Street)            | #28: Gasoline and<br>Associated Products<br>Storage in Fixed<br>Tanks | On-Site<br>(PCA#12)       | PHCs, VOCs                              | Soil and<br>Groundwater                                        |
| APEC-       | Southeast section of the Phase One Property (64 Thomas Street)    | #28: Gasoline and<br>Associated Products<br>Storage in Fixed<br>Tanks | On-Site<br>(PCA#13)       | PHCs, VOCs                              | Soil and<br>Groundwater                                        |
| APEC-<br>14 | Southeast section of the Phase One Property (64                   | #28: Gasoline and<br>Associated Products<br>Storage in Fixed<br>Tanks | On-Site<br>(PCA#13)       | PHCs, VOCs                              | Soil and<br>Groundwater                                        |

| APEC        | Location of Potential Environmental Concern on Phase One Property         | Potentially Contaminating Activity                                                    | Location<br>of PCA<br>(#) | Contaminants<br>of Potential<br>Concern | Media Potentially Impacted (Groundwater, soil and/or sediment) |
|-------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------|-----------------------------------------|----------------------------------------------------------------|
|             | Thomas Street)                                                            |                                                                                       |                           |                                         |                                                                |
| APEC-<br>15 | Northeast<br>section of the<br>Phase One<br>Property (95<br>Joymar Drive) | #40: Pesticides Manufacturing, Processing, Bulk Storage and Large- Scale Applications | On-Site<br>(PCA#15)       | OCPs                                    | Soil                                                           |
| APEC-<br>16 | Northeast<br>section of the<br>Phase One<br>Property (95<br>Joymar Drive) | # 55: Transformer<br>Manufacturing,<br>Processing and Use                             | On-Site<br>(PCA#16)       | PHCs, VOCs,<br>M&I, PCBs                | Soil                                                           |
| APEC-       | South section of<br>the Phase One<br>Property                             | # 33: Metal Treatment,<br>Coating, Plating and<br>Finishing                           | On-Site<br>(PCA#17)       | PHCs, VOCs,<br>M&I                      | Soil and<br>Groundwater                                        |
| APEC-<br>18 | Northwest<br>section of the<br>Property (95<br>Joymar Drive)              | # 48: Salt Manufacturing, Processing and Bulk Storage                                 | On-Site<br>(PCA#18)       | M&I                                     | Soil and<br>Groundwater                                        |
| APEC-<br>19 | Phase One<br>Property                                                     | #58: Not listed, Waste generators records                                             | On-Site<br>(PCA#17)       | PHCs, VOCs,<br>M&I                      | Soil and Groundwater                                           |
| APEC-<br>20 | Phase One<br>Property                                                     | #58: Not listed, Waste generators records                                             | Off-Site<br>(PCA#20)      | PHCs, VOCs,<br>M&I, PCBs                | Soil and Groundwater                                           |
| APEC-<br>21 | South portion of Phase One                                                | Not listed, Use of de-<br>icing salts                                                 | On-Site<br>(PCA#21)       | M&I                                     | Soil                                                           |

| APEC        | Location of Potential Environmental Concern on Phase One Property | Potentially<br>Contaminating<br>Activity                              | Location<br>of PCA<br>(#) | Contaminants<br>of Potential<br>Concern | Media Potentially Impacted (Groundwater, soil and/or sediment) |
|-------------|-------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------|-----------------------------------------|----------------------------------------------------------------|
| APEC-<br>22 | East section of the Phase One Property                            | #28: Gasoline and<br>Associated Products<br>Storage in Fixed<br>Tanks | Off-Site<br>(PCA#22)      | PHCs                                    | Soil and<br>Groundwater                                        |
| APEC-<br>23 | East section of<br>the Phase One<br>Property                      | #43: Plastics (including Fibreglass) Manufacturing and Processing     | Off-Site<br>(PCA#23)      | PHCs, VOCs                              | Soil and<br>Groundwater                                        |
| APEC-<br>24 | East section of<br>the Phase One<br>Property                      | #58: Not listed, Waste generators records                             | Off-Site (PCA#24)         | PHCs, VOCs,<br>M&I, PCBs                | Soil and Groundwater                                           |

### 7.2.1.3 Subsurface Structures and Utilities

Prior to the commencement of the investigation, various utility agencies were contacted to identify buried services on public land in the vicinity of the Property. A private locator was retained to survey the proposed borehole locations for buried services. No conflicts between the proposed borehole locations and underground utilities were encountered.

# 7.2.2 Physical Setting

# 7.2.2.1 Stratigraphy

According to the geological map entitled "Quaternary Geology of Ontario-Southern Sheet" Map 2556, published by the Ministry of Northern Development and Mines, dated 1991, the overburden in the region of the Property consists of Halton Till. This material is generally characterized as silt to silty clay matrix, high in matrix carbonates content and clast poor. The bedrock in the area consists of Upper Ordovician facies. Beneath the overburden it lays the bedrock of the Queenston Formation, which consists of shale,

limestone, dolostone, siltstone. It should be noted that the subsurface soil, rock and groundwater conditions described above represent generalized conditions only and should not be considered site specific.

The field work for this investigation was consisted of drilling twenty-two (22) boreholes (denoted BH/MW2, BH3, BH5, BH/MW6, BH/MW7, BH/MW E1, BH/MW E2, BH/MW E4, BH/MW E5, BH/MW E6, and BH/MW E8 to BH/MW E15) and installation of monitoring wells in seventeen (17) boreholes (denoted BH/MW2, BH/MW6, BH/MW7, and BH/MW E1 to BH/MW E13), conducted on April 30, May1, May7, May8, 2018 and for BH/MW E3 and BH/MW E7 on June 5, 2018, to depths ranging from 2.4 to 6.3 mbgs.

The subsurface conditions in the boreholes are summarized in the following paragraphs:

#### **Ground Cover:**

A layer of asphalt pavement was encountered in BH3, BH4, BH6, BH7, BH-E1, BH-E2, BH-E4, BH-E5 and BH-E8 to BH-E11. The thickness of asphalt was observed to vary between 75 mm to 150 mm. The layer was observed to be underlain by 75 mm to 180 mm of granular material.

Borehole 2, E3 and E7 were advanced through 100 mm to 180 mm-thick concrete slabs. The slab was found underlain by 100 mm of granular material at BH-2.

### Topsoil/Fill Material:

A layer of fill material was encountered in all boreholes, extending between 0.2 m to 4.6 m depth. The fill material was comprised of sand & gravel, clayey silt, construction debris and sandy silt with trace to some topsoil. Buried layers of topsoil were encountered locally in BH-E5 from 0.8 mbgs to 1.5mbgs, and BH-E15 from 2.3 mbgs to 3.0 mbgs.

# **Glacial Till Deposit:**

Except BH1, BH-E9 and BH-E10, a layer of glacial till deposit, comprising sandy silt to clayey silt, was encountered in all boreholes underlying the fill material.

### **Shale bedrock (Georgian Bay Formation):**

The presence of bedrock was inferred from auger/sampler refusal or confirmed by split spoon sampling in all boreholes at depths, generally varying between 4.0 m and 6.1 m. No bedrock was encountered in BH-E3, BH-E14 and BH-E15. An auger refusal was observed in BH-E7 at a depth of 2.4 m, which is much shallower than the other locations. This could be due to boulder obstruction and not necessarily a bedrock depth.

Detailed descriptions of the encountered subsurface conditions are presented on the borehole logs provided in Appendix B.

#### 7.2.2.2 **Hydrogeological Characterization**

Based on the topographic information from the 1982 Ontario Base Map, the ground surface is at approximately 155 metres above sea level (mASL), approximately 81 m above the level of Lake Ontario.

According to the topographic map, which covers the Phase Two Property, the shallow groundwater flow is influenced by the topography profile, and as such it is expected to be in a eastly direction towards the Mullet Creek, which is flowing along the northeast section of the Property to the northeast. A watershed map provided by the Toronto Regional Conservation Authority (TRCA) shows the Property is situated in the Mary Fix Creek-Credit River Watershed.

Locally, near surface groundwater flow may be influenced by underground structures (e.g. service trenches, catch basins, and building foundations). Groundwater flow direction could be confirmed only with the direct observation of the groundwater elevations as measured in the monitoring wells installed at the Property. The shallow groundwater contour lines and interpreted groundwater flow direction are shown on Figure 7.

#### 7.2.2.3 **Additional Groundwater Sampling**

As a part of delineation investigation, nine (9) additional monitoring wells (MW 201 to MW 210) were installed on the Site as a groundwater delineation program to determine the extents of contaminants identified during the first round of investigations.

As described in section 6.7, an additional eleven (11) groundwater samples [including one (1) duplicate sample and one (1) trip blank sample] were collected from the Site during the delineation program and submitted to ALS for chemical analysis.

#### 7.2.2.4 **Approximate Depth to Bedrock**

The presence of bedrock was inferred from auger/sampler refusal or confirmed by split spoon sampling in all boreholes at depths, generally varying between 4.0 m and 6.1 m. No bedrock was encountered in BH-E3, BH-E14 and BH-E15. An auger refusal was observed in BH-E7 at a depth of 2.4 m, which is much shallower than the other locations. This could be due to boulder obstruction and not necessarily a bedrock depth.

Detailed descriptions of the encountered subsurface conditions are presented on the borehole logs provided in Appendix B.

#### 7.2.2.5 **Approximate Depth to Water Table**

Based on the groundwater records for this investigation, depth to the groundwater table at the Property ranges from 1.29 to 3.09 mbgs (153.52 to 152.142 mASL).

#### 7.2.2.6 Section 41 or 43.1 of the Regulation

The Property is not within or adjacent to an area of natural significance and the analytical testing indicated the pH of the tested soil samples is between 5 and 9, and 5 to 11 for surface and sub-surface soils, respectively. Therefore, Section 41 of the regulation (Site Condition Standards, Environmental Sensitive Areas) does not apply to the Property. The property is not a shallow soil property, as the bedrock was not encountered within 2.0 mbgs during the investigation.

#### 7.2.2.7 Soils Placed On, In or Under the Phase Two Property

The findings of our Phase One ESA indicated no fill material of unknown quality were used at the Property; however, the drilling investigation of the Phase Two ESA indicated fill material at all borehole locations. The quality of the fill material is unknown.

#### 7.2.2.8 **Proposed Building and Other Structures**

At the time of this report preparation, no redevelopment plan was provided to Sirati for review.

#### 7.2.2.9 **Contamination In or Under the Phase Two Property**

Based on the findings of the Phase One ESA, contaminants of potential concern in the soil and groundwater with respect to the identified Areas of Potential Environmental Concern (APECs) existed at the Property and were assessed during the Phase Two ESA. Based on the information obtained from the Phase One and Phase Two ESA, MECP Table 8: Generic Site Condition Standards for Use within 30m of a Water Body in a Potable Ground Water Condition as published in the "Soil, Ground Water and Sediment Standards for use under part XV.1 of the Environmental Protection Act" (EPA), April 15, 2011 (Table 8 Standards) was selected for assessing the soil and groundwater condition at the Property.

### 7.2.2.10 Area Where Contaminants are Present

Soil and groundwater samples were collected during the Phase Two ESA and submitted for chemical analysis of the following parameters: M&I, PHCs (F1-F4), OCPs, PCBs and VOCs.

Section 6.6 and 6.7 present the samples identified at the Property at concentration in excess of applicable site condition standards.

### 7.2.2.11 Distribution of Contaminants

The contaminants, at concentrations in excess of the MECP Table 8 Standards, consisted of M&I, VOC, PHC constituents as presented in section 6.6 and 6.7.

### 7.2.2.12 Contaminants Medium

Contaminants are identified in soil and groundwater at the Property at concentration in excess of applicable site condition standards.

# 7.2.2.13 Reason for Discharge

The identified exceedances in the soil and groundwater samples can be attributed to the historical potentially contaminated activities such as storage tanks, auto body shops, metal plating within the Site. Elevated EC and SAR in soil and sodium and chloride and sodium in groundwater samples are likely attributed to the application of de-icing compounds on site during the ice and snow condition on-site.

# 7.2.2.14 Migration of Contaminants

The identified contaminants are expected to migrate in a similar direction as the groundwater flow in the area. Based on the groundwater elevation data obtained from the latest monitoring event, the inferred groundwater flow direction is determined to be to the east.

# 7.2.2.15 Climatic or Meteorological Conditions Influencing Contaminant **Distribution of Migration**

The distribution of the contaminants can be influenced by climatic or meteorological conditions.

# 7.2.2.16 Soil Vapour Intrusion into Buildings

At the time of this report preparation no details of proposed redevelopment was provided for review; as such it cannot be determined whether vapours could enter into the buildings.

#### 7.2.3 **Potential Exposure Pathways and Receptors**

The contaminants identified are not expected to migrate into the atmosphere (air) as the impacted layers are below asphalt paved surfaces or compacted soil which prevent any migration onto the surface (air). Other contaminants present in soil and groundwater may be migrated by groundwater flow. In addition to the Mullet Creek adjacent to the north of the Site, which is flowing along the northeast section of the Property to the northeast, the catch basin manholes are present within the Site which could affect migration.

## 8.0 SUMMARY OF FINDINGS AND CONCLUSIONS

The purpose of the Phase Two ESA was to determine the soil and groundwater quality at the Property, as related to the following Areas of Potential Environmental Concerns (APECs) identified in the Phase One ESA:

| APEC   | Location of Potential Environmental Concern on Phase One Property | Potentially<br>Contaminating<br>Activity                              | Location<br>of PCA<br>(#) | Contaminants<br>of Potential<br>Concern | Media Potentially Impacted (Groundwater, soil and/or sediment) |
|--------|-------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------|-----------------------------------------|----------------------------------------------------------------|
| APEC-1 | Northwest section of the Property (65 Tannery Street)             | #28: Gasoline and<br>Associated Products<br>Storage in Fixed<br>Tanks | On-Site<br>(PCA#1)        | PHCs/VOCs                               | Soil and<br>Groundwater                                        |
| APEC-2 | Northwest section of the Property (65 Tannery Street)             | #28: Gasoline and<br>Associated Products<br>Storage in Fixed<br>Tanks | On-Site<br>(PCA #2)       | PHCs/VOCs                               | Soil and<br>Groundwater                                        |
| APEC-3 | Central section<br>of the Property<br>(95 Joymar<br>Drive))       | #28: Gasoline and<br>Associated Products<br>Storage in Fixed<br>Tanks | On-Site<br>(PCA#3)        | PHCs/VOCs                               | Soil and<br>Groundwater                                        |
| APEC4  | Central section<br>of the Property<br>(95 Joymar<br>Drive))       | #28: Gasoline and<br>Associated Products<br>Storage in Fixed<br>Tanks | On-Site<br>(PCA#4)        | PHCs/VOCs                               | Soil and<br>Groundwater                                        |
| APEC-5 | Central section<br>of the Property<br>(95 Joymar<br>Drive)        | #28: Gasoline and<br>Associated Products<br>Storage in Fixed<br>Tanks | On-Site<br>(PCA#5)        | PHCs/VOCs                               | Soil and<br>Groundwater                                        |
| APEC-6 | Central section                                                   | #28: Gasoline and                                                     | On-Site                   | PHCs/VOCs                               | Soil and                                                       |

| APEC        | Location of Potential Environmental Concern on Phase One Property | Potentially Contaminating Activity                                    | Location<br>of PCA<br>(#) | Contaminants<br>of Potential<br>Concern | Media Potentially<br>Impacted<br>(Groundwater,<br>soil and/or<br>sediment) |
|-------------|-------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------|-----------------------------------------|----------------------------------------------------------------------------|
|             | of the Property<br>(95 Joymar<br>Drive)                           | Associated Products Storage in Fixed Tanks                            | (PCA#6)                   |                                         | Groundwater                                                                |
| APEC-7      | South section of<br>the Property (66<br>Thomas Street)            | #28: Gasoline and<br>Associated Products<br>Storage in Fixed<br>Tanks | On-Site<br>(PCA#7)        | PHCs/VOCs                               | Soil and<br>Groundwater                                                    |
| APEC-8      | South section of<br>the Property (66<br>Thomas Street)            | #28: Gasoline and<br>Associated Products<br>Storage in Fixed<br>Tanks | On-Site<br>(PCA#8)        | PHCs, VOCs                              | Soil and<br>Groundwater                                                    |
| APEC-9      | South section of<br>the Property (66<br>Thomas Street)            | #10: Commercial<br>Autobody Shops                                     | On-Site<br>(PCA#9)        | PHCs, VOCs                              | Soil and Groundwater                                                       |
| APEC-<br>10 | South section of<br>the Property (66<br>Thomas Street)            | #28: Gasoline and<br>Associated Products<br>Storage in Fixed<br>Tanks | On-Site<br>(PCA#10)       | PHCs, VOCs                              | Soil and<br>Groundwater                                                    |
| APEC-       | South section of<br>the Property (66<br>Thomas Street)            | #10: Commercial<br>Autobody Shops                                     | On-Site<br>(PCA#11)       | PHCs, VOCs                              | Soil and Groundwater                                                       |
| APEC-<br>12 | South section of the Property (66                                 | #28: Gasoline and<br>Associated Products                              | On-Site<br>(PCA#12)       | PHCs, VOCs                              | Soil and<br>Groundwater                                                    |

| APEC        | Location of Potential Environmental Concern on Phase One Property         | Potentially Contaminating Activity                                                    | Location<br>of PCA<br>(#) | Contaminants<br>of Potential<br>Concern | Media Potentially<br>Impacted<br>(Groundwater,<br>soil and/or<br>sediment) |
|-------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------|-----------------------------------------|----------------------------------------------------------------------------|
|             | Thomas Street)                                                            | Storage in Fixed<br>Tanks                                                             |                           |                                         |                                                                            |
| APEC-       | Southeast section of the Phase One Property (64 Thomas Street)            | #28: Gasoline and<br>Associated Products<br>Storage in Fixed<br>Tanks                 | On-Site<br>(PCA#13)       | PHCs, VOCs                              | Soil and<br>Groundwater                                                    |
| APEC-<br>14 | Southeast section of the Phase One Property (64 Thomas Street)            | #28: Gasoline and<br>Associated Products<br>Storage in Fixed<br>Tanks                 | On-Site<br>(PCA#13)       | PHCs, VOCs                              | Soil and<br>Groundwater                                                    |
| APEC-<br>15 | Northeast<br>section of the<br>Phase One<br>Property (95<br>Joymar Drive) | #40: Pesticides Manufacturing, Processing, Bulk Storage and Large- Scale Applications | On-Site<br>(PCA#15)       | OCPs                                    | Soil                                                                       |
| APEC-<br>16 | Northeast<br>section of the<br>Phase One<br>Property (95<br>Joymar Drive) | # 55: Transformer<br>Manufacturing,<br>Processing and Use                             | On-Site<br>(PCA#16)       | PHCs, VOCs,<br>M&I, PCBs                | Soil                                                                       |
| APEC-       | South section of<br>the Phase One<br>Property                             | # 33: Metal Treatment,<br>Coating, Plating and<br>Finishing                           | On-Site<br>(PCA#17)       | PHCs, VOCs,<br>M&I                      | Soil and Groundwater                                                       |
| APEC-       | Northwest                                                                 | # 48: Salt                                                                            | On-Site                   | M&I                                     | Soil and                                                                   |

| APEC        | Location of Potential Environmental Concern on Phase One Property | Potentially Contaminating Activity                                    | Location<br>of PCA<br>(#) | Contaminants<br>of Potential<br>Concern | Media Potentially<br>Impacted<br>(Groundwater,<br>soil and/or<br>sediment) |
|-------------|-------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------|-----------------------------------------|----------------------------------------------------------------------------|
| 18          | section of the<br>Property (95<br>Joymar Drive)                   | Manufacturing, Processing and Bulk Storage                            | (PCA#18)                  |                                         | Groundwater                                                                |
| APEC-<br>19 | Phase One<br>Property                                             | #58: Not listed, Waste generators records                             | On-Site<br>(PCA#17)       | PHCs, VOCs,<br>M&I                      | Soil and<br>Groundwater                                                    |
| APEC-<br>20 | Phase One<br>Property                                             | #58: Not listed, Waste generators records                             | Off-Site (PCA#20)         | PHCs, VOCs,<br>M&I, PCBs                | Soil and<br>Groundwater                                                    |
| APEC-<br>21 | South portion of<br>Phase One<br>Property                         | Not listed, Use of de-<br>icing salts                                 | On-Site<br>(PCA#21)       | M&I                                     | Soil                                                                       |
| APEC-<br>22 | East section of<br>the Phase One<br>Property                      | #28: Gasoline and<br>Associated Products<br>Storage in Fixed<br>Tanks | Off-Site<br>(PCA#22)      | PHCs                                    | Soil and<br>Groundwater                                                    |
| APEC-<br>23 | East section of<br>the Phase One<br>Property                      | #43: Plastics (including Fibreglass) Manufacturing and Processing     | Off-Site<br>(PCA#23)      | PHCs, VOCs                              | Soil and<br>Groundwater                                                    |
| APEC-<br>24 | East section of<br>the Phase One<br>Property                      | #58: Not listed, Waste generators records                             | Off-Site<br>(PCA#24)      | PHCs, VOCs,<br>M&I, PCBs                | Soil and<br>Groundwater                                                    |

The findings of the field investigation and analytical results of the Phase Two ESA are summarized below:

- Phase Two ESA, 64,66 Thomas Street, 95 Joymar Drive, 65 Tannery Mississauga, Ontario
  - The field investigation for this Phase Two ESA consisted of drilling a total of twenty-two (22) boreholes to the maximum depths ranging from 7.9 of 11.6 mbgs. Seventeen (17) of the boreholes were completed as monitoring wells for groundwater observation, sampling and testing.
  - The subsoil condition at the borehole/monitoring wells indicates a layer of asphalt followed by fill material of sand, gravel, clayey silt to sandy silt, overlying native glacial till deposit of sandy silt to clayey silt, followed underneath by residual soil and/or weathered shale deposit consists of clayey silt with till-like texture and contains varying amounts of siltstone/limestone and shale fragments. Residual soil is derived from weathering of the underlying shale bedrock. An auger refusal was observed in BH-E7 at a depth of 2.4 m to 6.1 m
  - The soil samples retrieved from the boreholes were examined for visual and olfactory evidence of potential contamination. No evidence of potential contamination was observed in any of the retrieved soil samples.
  - Head space vapour screening was conducted for all retrieved soil samples using a combustible gas detector (RKI Eagle) in methane elimination mode. Soil vapour measurements ranged from non-detect to 5 ppm.
  - Based on the soil vapour measurements and visual and olfactory observations, representative "worst case" soil samples were selected from each borehole for chemical analyses of the following parameters: M&I, PHCs (F1-F4), PCBs, OCPs and VOCs.
  - Based on the field observation and groundwater monitoring records, shallow groundwater is present in the sandy silt till to clayey silt till layers. Water levels were recorded at depths ranging from 1.29 to 3.09 mbgs in the monitoring wells. Based on the groundwater monitoring records, the groundwater flow direction appears to be to the east.
  - Based on the available groundwater table elevations, the horizontal hydraulic gradient of the groundwater flow for the site is between 0.01287 and 0.02980 (average 0.021335) in an easterly direction.
  - No free product, sheen or odours were observed in the groundwater from monitoring wells installed at the subject Property. Groundwater samples collected from the monitoring wells were submitted for analysis of the following parameters: M&I, PHCs (F1-F4), PCBs and VOCs.
  - As part of the QA/QC program for the investigation, QC samples in the form of field duplicate samples were analysed. Field duplicate samples were collected in the field for M&I, PHCs (F1-F4), PCBs and VOCs in soil and in groundwater.
  - The analytical test results were evaluated against the MECP Table 8: Generic Site Condition Standards for Use within 30m of a Water Body in a Potable Ground Water Condition as published

- in the "Soil, Ground Water and Sediment Standards for use under part XV.1 of the Environmental Protection Act" (EPA), April 15, 2011 (MECP Table 8 Standards).
- Based on the lab results, some tested parameters in the soil and groundwater samples had concentration in excess of the applicable standards.
- To determine the lateral and vertical extent contaminants identified during the first round of investigations, delineation program consisted of supplementary soil and groundwater sampling from additional drilled boreholes and monitoring wells were conducted at the Site.

Soil samples with parameters in excess of the applicable site condition standards are summarized in the table below:

| Sample ID | Depth (mbgs) | Exceeding Parameters | Concentration | Unit | MECP Table 8<br>Standards |
|-----------|--------------|----------------------|---------------|------|---------------------------|
|           |              | F2 (C10-C16)         | 235           | ug/g | 10                        |
| BH2-SS3   | 1.5-2.1      | F3 (C16-C34)         | 2750          | ug/g | 240                       |
|           | 1.3-2.1      | F4 (C34-C50)         | 802           | ug/g | 120                       |
|           |              | F4G-SG (GHH-Silica)  | 2230          | ug/g | 120                       |
| BH5-SS1   | 0.0.0        | SAR                  | 31.4          |      | 5                         |
|           | 0.0-0.6      | EC                   | 10.2          | mS/m | 0.7                       |
|           |              | SAR                  | 8.62          |      | 5                         |
| BHE5-SS3  | 1.5-2.1      | EC                   | 0.853         | mS/m | 0.7                       |
|           |              | Chromium, Hexavalent | 0.78          | ug/g | 0.66                      |
| BHE4-SS4  | 2.3-2.9      | SAR                  | 5.41          |      | 5                         |
|           | 2.3-2.9      | EC                   | 0.709         | mS/m | 0.7                       |
| BHE15-SS2 | 0.8-1.4      | Chromium, Hexavalent | 0.94          | ug/g | 0.66                      |
| BHE15-SS5 | 3.1-3.7      | n-Hexane             | 1.06          | ug/g | 0.05                      |

| Sample ID | Depth (mbgs) | Exceeding Parameters | Concentration | Unit | MECP Table 8<br>Standards |  |  |  |
|-----------|--------------|----------------------|---------------|------|---------------------------|--|--|--|
|           |              | Xylenes (Total)      | 0.676         | ug/g | 0.05                      |  |  |  |
|           |              | F1 (C6-C10)          | 35            | ug/g | 25                        |  |  |  |
|           |              | F1-BTEX              | 34.3          | ug/g | 25                        |  |  |  |
|           |              | F2 (C10-C16)         | 321           | ug/g | 10                        |  |  |  |
| BHE6-SS4  | 2.3-2.9      | Xylenes (Total)      | 0.102         | ug/g | 0.05                      |  |  |  |
|           |              | F2 (C10-C16)         | 26            | ug/g | 10                        |  |  |  |
| BHE11-SS2 | 0.8-1.4      | F3 (C16-C34)         | 648           | ug/g | 50                        |  |  |  |
|           | 0.6-1.4      | F4 (C34-C50)         | 528           | ug/g | 50                        |  |  |  |
|           |              | F4G-SG (GHH-Silica)  | 1670          | ug/g | 250                       |  |  |  |
| BHE10-SS5 | 3.1-3.7      | F2 (C10-C16)         | 69            | ug/g | 10                        |  |  |  |
| BHE9-SS4  | 2.3-2.9      | F2 (C10-C16)         | 108           | ug/g | 10                        |  |  |  |
| BHE2-SS2  | 0.8-1.4      | Chromium, Hexavalent | 0.77          | ug/g | 0.66                      |  |  |  |

The following soil samples contained elevated parameters after completion of the delineation investigation:

| Sample ID | Depth (mbgs) | Exceeding Parameters | Concentration | Unit | MECP Table 8<br>Standards |  |  |  |
|-----------|--------------|----------------------|---------------|------|---------------------------|--|--|--|
| BH214-SS2 | 0.8-1.4      | SAR                  | 5.13          | -    | 5                         |  |  |  |
| BH211-SS3 | 1.5-2.1      | SAR                  | 25.5          | -    | 5                         |  |  |  |
| 1.3-2.1   |              | EC                   | 1.72          | mS/m | 0.7                       |  |  |  |
| BH212-SS3 | 1.5-2.1      | SAR                  | 13            | -    | 5                         |  |  |  |

| Sample ID | Depth (mbgs) | Exceeding Parameters | Concentration | Unit | MECP Table 8<br>Standards |
|-----------|--------------|----------------------|---------------|------|---------------------------|
|           |              | EC                   | 1.59          | mS/m | 0.7                       |
| BH213-SS3 | 1.5-2.1      | SAR                  | 5.16          | -    | 5                         |
| DUP-S201  | -            | SAR                  | 5.11          | -    | 5                         |
|           |              | Benzene              | 2.26          | ug/g | 0.02                      |
|           |              | Ethylbenzene         | 1.77          | ug/g | 0.05                      |
|           |              | n-Hexane             | 1.49          | ug/g | 0.05                      |
| BH204-SS4 | 2.3-2.9      | Toluene              | 1             | ug/g | 0.2                       |
| ВН204-554 | 2.3-2.7      | Xylenes (Total)      | 10            | ug/g | 0.05                      |
|           |              | F1 (C6-C10)          | 48            | ug/g | 25                        |
|           |              | F1-BTEX 33 u         |               | ug/g | 25                        |
|           |              | F2 (C10-C16)         | 6) 37 ug/g    |      | 10                        |
| BH205-SS3 |              | Benzene              | 0.04          | ug/g | 0.02                      |
|           |              | Ethylbenzene         | 0.943         | ug/g | 0.05                      |
|           |              | n-Hexane             | 0.054         | ug/g | 0.05                      |
|           | 1.5-2.1      | Xylenes (Total)      | 2.29          | ug/g | 0.05                      |
|           |              | F1 (C6-C10)          | 71            | ug/g | 25                        |
|           |              | F1-BTEX 68 ug/g      |               | 25   |                           |
|           |              | F2 (C10-C16)         | 331           | ug/g | 10                        |
| BH207-SS4 | 2.3-2.9      | Benzene              | 0.0786        | ug/g | 0.02                      |

| Sample ID | Depth (mbgs) | Exceeding Parameters | Concentration | Unit | MECP Table 8<br>Standards |
|-----------|--------------|----------------------|---------------|------|---------------------------|
|           |              | n-Hexane             | 0.072         | ug/g | 0.05                      |
| BH208-SS5 |              | Benzene              | 0.0708        | ug/g | 0.02                      |
|           |              | Bromodichloromethane | <0.15         | ug/g | 0.05                      |
|           |              | Ethylbenzene         | 0.06          | ug/g | 0.05                      |
|           | 3.1-3.7      | n-Hexane             | 0.21          | ug/g | 0.05                      |
|           | 3.1-3.7      | Xylenes (Total)      | 0.075         | ug/g | 0.05                      |
|           |              | F1 (C6-C10)          | 47.8          | ug/g | 25                        |
|           |              | F1-BTEX              | 47.6          | ug/g | 25                        |
|           |              | F2 (C10-C16)         | 15            | ug/g | 10                        |
| DUP-S202  |              | Benzene              | 0.0714        | ug/g | 0.02                      |
|           | -            | n-Hexane             | 0.076         | ug/g | 0.05                      |
|           |              | F2 (C10-C16)         | 13            | ug/g | 10                        |
| DUP-S203  | -            | F2 (C10-C16)         | 12            | ug/g | 10                        |
| BH209-SS7 |              | Benzene              | 0.0886        | ug/g | 0.02                      |
|           |              | Bromodichloromethane | 0.608         | ug/g | 0.05                      |
|           | 4650         | Chloroform           | 0.626         | ug/g | 0.05                      |
|           | 4.6-5.2      | 1,2-Dibromoethane    | <0.24         | ug/g | 0.05                      |
|           |              | 1,2-Dichloroethane   | <0.070        | ug/g | 0.05                      |
|           |              | Ethylbenzene         | 0.086         | ug/g | 0.05                      |

| Sample ID  | Depth (mbgs) | Exceeding Parameters | Concentration | Unit | MECP Table 8<br>Standards |  |  |  |  |
|------------|--------------|----------------------|---------------|------|---------------------------|--|--|--|--|
|            |              | n-Hexane             | 8.18          | ug/g | 0.05                      |  |  |  |  |
|            |              | F1 (C6-C10)          | 208           | ug/g | 25                        |  |  |  |  |
|            |              | F1-BTEX              | 208           | ug/g | 25                        |  |  |  |  |
|            |              | F2 (C10-C16)         | 81            | ug/g | 10                        |  |  |  |  |
| BH210-SS5  |              | Benzene              | 0.0326        | ug/g | 0.02                      |  |  |  |  |
|            | 3.1-3.7      | Bromodichloromethane | 0.05          |      |                           |  |  |  |  |
|            |              | Chloroform           | 0.065         | ug/g | 0.05                      |  |  |  |  |
|            |              | n-Hexane             | 0.207         | ug/g | 0.05                      |  |  |  |  |
|            |              | Xylenes (Total)      | 0.094         | ug/g | 0.05                      |  |  |  |  |
|            |              | F2 (C10-C16)         | 24            | ug/g | 10                        |  |  |  |  |
|            |              | F3 (C16-C34)         | 340           | ug/g | 240                       |  |  |  |  |
|            |              | F4 (C34-C50)         | 890           | ug/g | 120                       |  |  |  |  |
|            |              | F4G-SG (GHH-Silica)  | 2430          | ug/g | 120                       |  |  |  |  |
| BH201-SS4  | 2.3-2.9      | F2 (C10-C16)         | 29            | ug/g | 10                        |  |  |  |  |
| BH202-SS5  | 3.1-3.7      | n-Hexane             | 0.208         | ug/g | 0.05                      |  |  |  |  |
| D11202-333 | 3.1-3.7      | F2 (C10-C16)         | 44            | ug/g | 10                        |  |  |  |  |

Groundwater samples exceedances are as follows:

| Sample ID | <b>Exceeding Parameters</b> | Concentration | Unit | MECP Table 8 Standards |  |  |  |  |  |
|-----------|-----------------------------|---------------|------|------------------------|--|--|--|--|--|
| MW E4     | Chloride (Cl)               | 1500          | mg/L | 790                    |  |  |  |  |  |

| Sample ID     | <b>Exceeding Parameters</b> | Concentration | Unit | MECP Table 8 Standards |
|---------------|-----------------------------|---------------|------|------------------------|
|               | Sodium (Na)-Dissolved       | 768000        | ug/L | 490000                 |
| MW E10        | Benzene                     | 18.6          | ug/L | 5                      |
|               | F2 (C10-C16)                | 280           | ug/L | 150                    |
| DUP-W2        | Benzene                     | 18.7          | ug/L | 5                      |
|               | F2 (C10-C16)                | 280           | ug/L | 150                    |
| MW-E7         | Chloride (Cl)               | 1280          | mg/L | 790                    |
| MW-E11        | F1 (C6-C10)                 | 606           | ug/L | 420                    |
| 141 44 -121 1 | F2 (C10-C16)                | 1650          | ug/L | 150                    |

Groundwater samples exceedances from delineation investigation:

| Sample ID | <b>Exceeding Parameters</b> | Concentration | Unit | MECP Table 8 Standards |
|-----------|-----------------------------|---------------|------|------------------------|
|           | F1 (C6-C10)                 | 486           | ug/L | 420                    |
| MW 202    | F1-BTEX                     | 483           | ug/L | 420                    |
|           | F2 (C10-C16)                | 400           | ug/L | 150                    |
|           | Benzene                     | 3760          | ug/L | 5                      |
|           | 1,2-Dichloroethane          | 3.22          | ug/L | 1.6                    |
| MW 204    | Xylenes (Total)             | 2930          | ug/L | 300                    |
|           | Ethylbenzene                | 696           | ug/L | 2.4                    |
|           | n-Hexane                    | 71.6          | ug/L | 51                     |

| Sample ID | <b>Exceeding Parameters</b> | Concentration | Unit | MECP Table 8 Standards |
|-----------|-----------------------------|---------------|------|------------------------|
|           | Toluene                     | 518           | ug/L | 22                     |
|           | F1 (C6-C10)                 | 10800         | ug/L | 420                    |
|           | F1-BTEX                     | 2900          | ug/L | 420                    |
|           | F2 (C10-C16)                | 1610          | ug/L | 150                    |
|           | Benzene                     | 299           | ug/L | 5                      |
|           | Ethylbenzene                | 90.5          | ug/L | 2.4                    |
| MW 207    | F1 (C6-C10)                 | 4190          | ug/L | 420                    |
|           | F1-BTEX                     | 3770          | ug/L | 420                    |
|           | F2 (C10-C16)                | 1400          | ug/L | 150                    |
|           | Benzene                     | 32            | ug/L | 5                      |
|           | Ethylbenzene                | 5.97          | ug/L | 2.4                    |
| MW 210    | F1 (C6-C10)                 | 1680          | ug/L | 420                    |
|           | F1-BTEX                     | 1630          | ug/L | 420                    |
|           | F2 (C10-C16)                | 1810          | ug/L | 150                    |

Based on the information of the Phase Two ESA and delineation investigation, further subsurface investigation is required to delineate the vertical and horizontal extent of contamination in both soil and groundwater

# 8.1 Signatures

Project: SP18-306-20-02

This Phase Two ESA was completed under supervision of a Qualified Person (QP) who is no longer at Sirati at the time of this report preparation.

Should you have any questions regarding the information presented or limitation set in this report, please do not hesitate to contact our office.

Yours truly,

Sirati and Partners Consultants Ltd.

Smsbaheami

Moji Salimbahrami, EIT Environmental Technician

Alireza Maleki, P. Geo., QP<sub>ESA</sub> Manager, Environmental Services

J. Halell

#### 9.0 LIMITATIONS AND USE OF THE REPORT

This report was produced for the sole use of **Dezen Realty Company Ltd.**, 4890 Tomken Road, Mississauga, Ontario and may not be relied upon by any other person or entity without the written authorization of Sirati & Partners Consultants Ltd

This report was prepared based on a Phase Two ESA investigation undertaken at the property located located at 64 and 66 Thomas Street, 95 Joymar Drive, and 65 Tannery Street, in Mississauga, Ontario and is exclusively intended to provide an Environmental Site Assessment and conditions at the above noted Property.

This report was prepared by Sirati & Partners Consultants Ltd. for the sole purpose of identifying potential environmental constraints pertinent to the subject Property, including likelihood of environmental impacts on the soil and groundwater as a result of current and past uses of the Property. This report shall not be relied upon or transferred to any other party without the express written authorisation of SIRATI. It may contain material subject to copyright or obtained subject to license; unauthorised copying of this report will be in breach of copyright/license.

The findings and opinions provided in this document are given in good faith and are subject to the limitations imposed by employing assessment methods and techniques, appropriate to the time of derivation and within the limitations and constraints defined within this document. The findings and opinions are relevant to the dates when the report was written but should not necessarily be relied upon to be appropriate at a substantially later date. In particular, changes to model algorithms and input parameters as a result of more recent publication by the authorities such as MOECC, may affect the conceptual understanding upon which the Assessment Criteria (AC) were derived. The assessment should therefore not be considered as a comprehensive audit that would eliminate all environmental risks associated with the subject Property. The conclusions arrived at and assessment of subsurface conditions were based on information collected at the time of conducting the fieldwork at specific borehole/test-pit/ sampling points and/or monitoring well locations. The actual subsurface conditions may vary.

Factual information has largely been obtained from authoritative sources; however, where authoritative information is unavailable or is in draft format, modification to the input data maybe required as and when authoritative information is published. Where such information might impact upon stated opinions, SIRATI reserves the right to modify such opinions expressed herein.

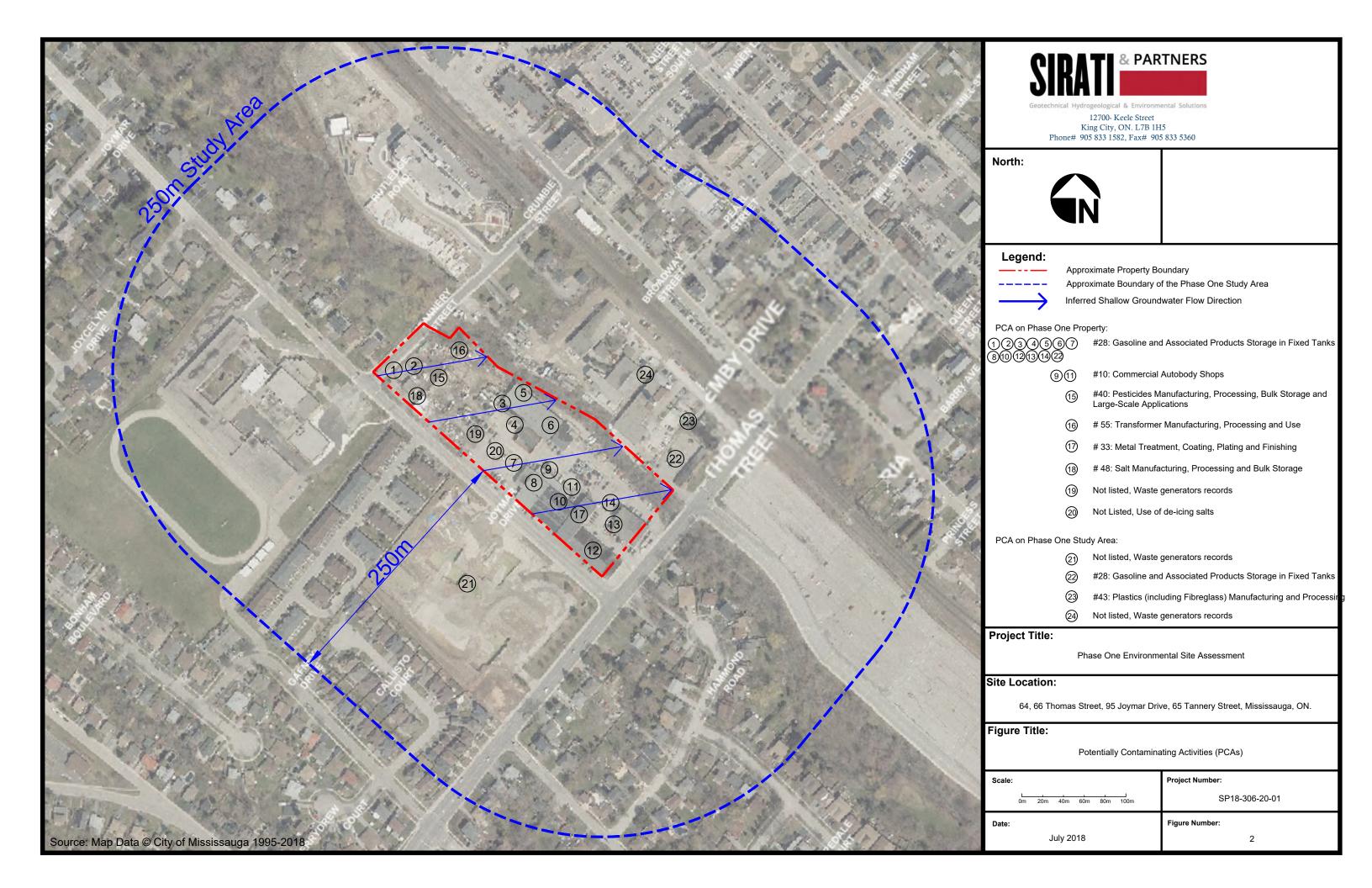
The findings and opinions conveyed, via this report, are based on information obtained from a variety of sources as detailed in this report, and which SIRATI assumes to be reliable but have not been independently confirmed. Therefore, SIRATI cannot and does not guarantee the authenticity or reliability of third-party information it has relied upon.

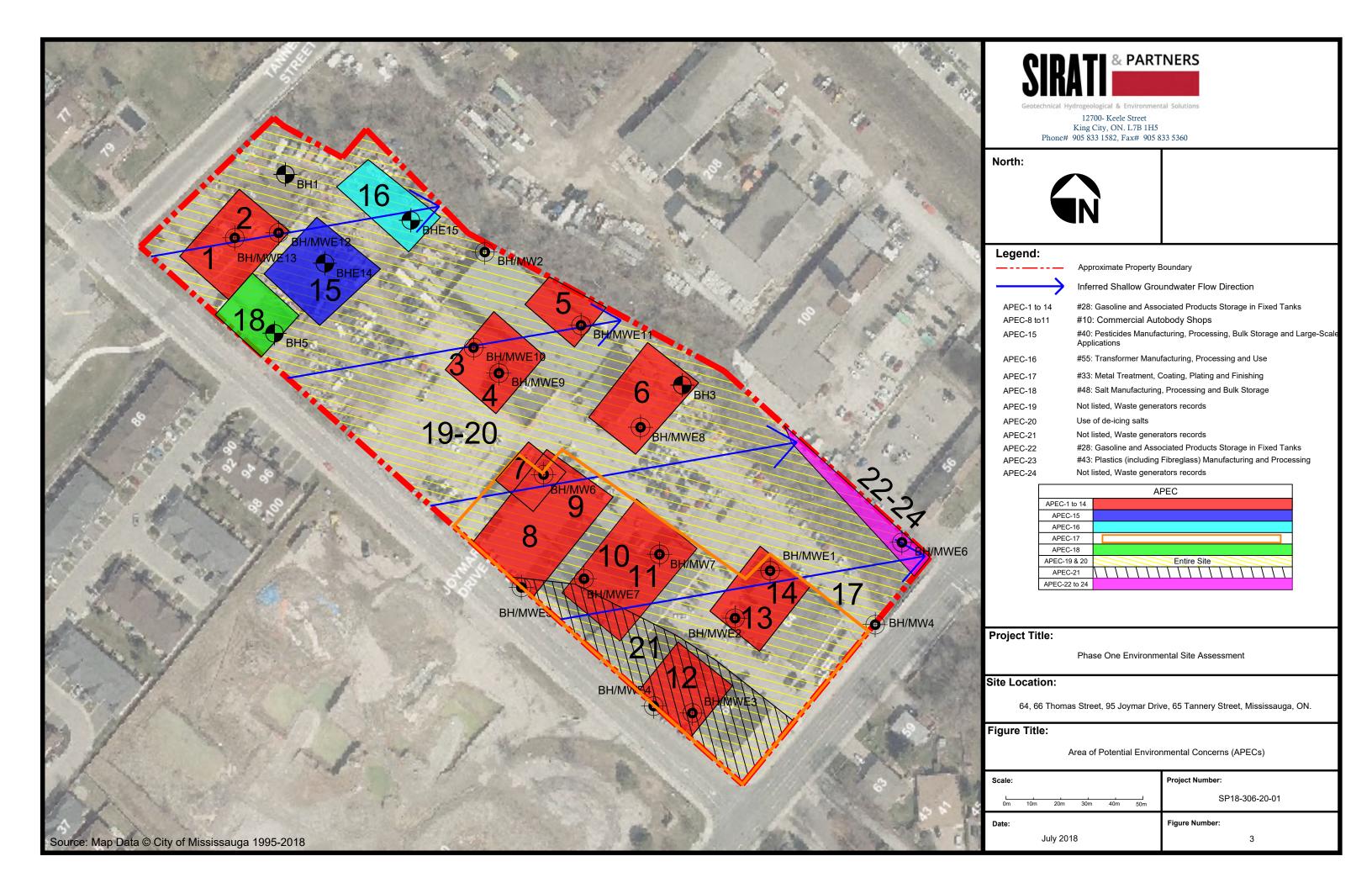
Where opinions expressed in this report are based on current available guidelines and legislation, no liability can be accepted by SIRATI for the effects of any future changes to such guidelines and legislation.

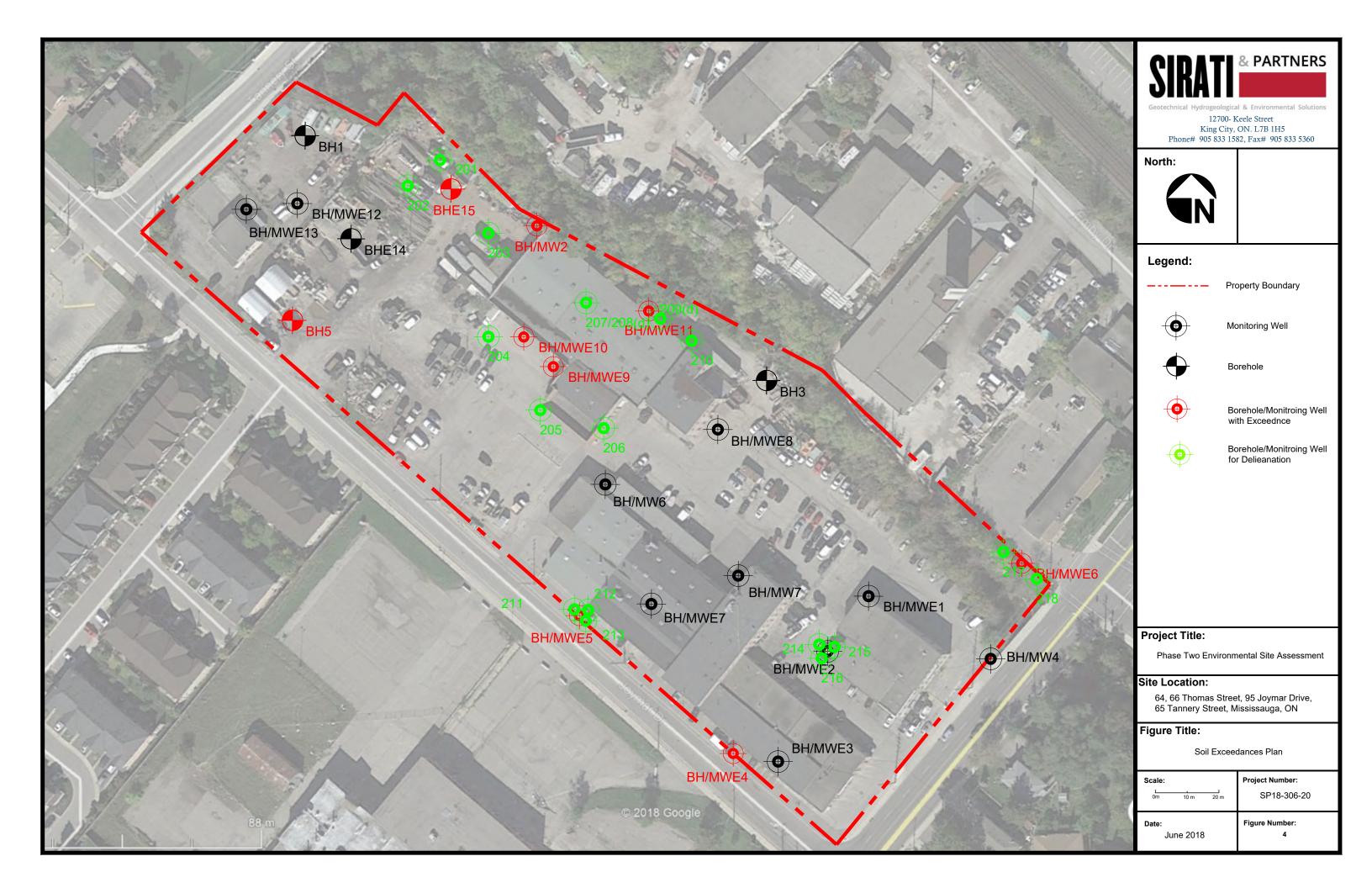
This information given herein should be read in conjunction with the contract documents. Any contradiction in sampling regime should be addressed by the project leader or contract manager.

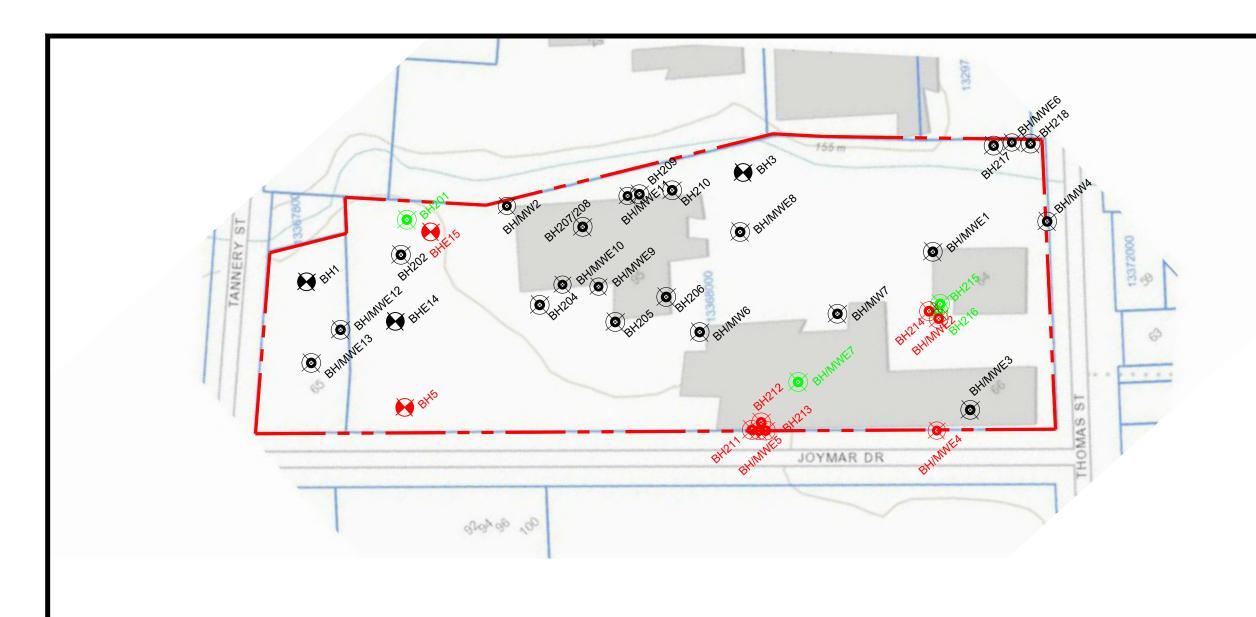
This document has been prepared for use by SIRATI in support of projects undertaken by SIRATI and should not be relied upon or used for any other party's project without an independent check being carried out as to its suitability and prior written authorisation being obtained from SIRATI.

SIRATI accepts no responsibility or liability for the consequences of the use of this document, wholly or in part, for any other purpose than that for which it was completed. Any persons so using or relying upon this document for such other purpose do so at their own risk.


# 10.0 REFERENCES


- Physiography of Southern Ontario; Ontario Ministry of Northern Development, Mines and Forestry; http://www.mndmf.gov.on.ca/mines/ogs\_earth\_e.asp , 2010
- Surficial Geology of Southern Ontario; Ontario Ministry of Northern Development, Mines and Forestry; <a href="http://www.mndmf.gov.on.ca/mines/ogs\_earth\_e.asp;">http://www.mndmf.gov.on.ca/mines/ogs\_earth\_e.asp;</a> 2010
- Bedrock Geology; Ontario Ministry of Northern Development, Mines and Forestry; <a href="http://www.mndmf.gov.on.ca/mines/ogs\_earth\_e.asp">http://www.mndmf.gov.on.ca/mines/ogs\_earth\_e.asp</a>; 2010
- Ministry of Environment and Climate Change, Ontario, Regulation 153/04 (as amended), Record of Site Condition, Part XV.1 of the Act, April 2011
- Ministry of Environment and Climate Change Technical Update, Environmentally Sensitive Areas: pH Levels, January 2007
- Ministry of Natural Resources and Forestry, <a href="http://www.Ontario.ca/environment-and-energy/make-natural-heritage-area-map">http://www.Ontario.ca/environment-and-energy/make-natural-heritage-area-map</a>.
- MOE. "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", May 1996, revised December 1996, as amended by O. Reg. 511/09
- MOE. "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act", dated March 9, 2004, amended as of July 1, 2011, in accordance with O. Reg. 511/09 and O. Reg. 269/11.
- "Phase One Environmental Site Assessment, Proposed New Development, 7771 Highway 50 & 6800 Highway 7, Vaughan, Ontario", dated September 27, 2017, prepared for Sherjang Singh Rana of: 2334504 Ontario Inc., by SIRATI.
- "Draft Phase I Environmental Site Assessment 7771 Highway 50 & 6800 Highway 7, Vaughan, Ontario", dated July 11, 2012, Prepared by Pinchin Environmental Ltd.
- "Phase II Environmental Site Assessment 7771 Highway 50 & 6800 Highway 7, Vaughan, Ontario", dated August 21, 2012, prepared by Pinchin Environmental Ltd.


# **FIGURES**
















12700- Keele Street King City, ON. L7B 1H5 Phone# 905 833 1582, Fax# 905 833 5360

North:



# Legend:

\_---

Property Boundary



Monitoring Well



Borehole



Borehole/Monitroing Well with Exceedance



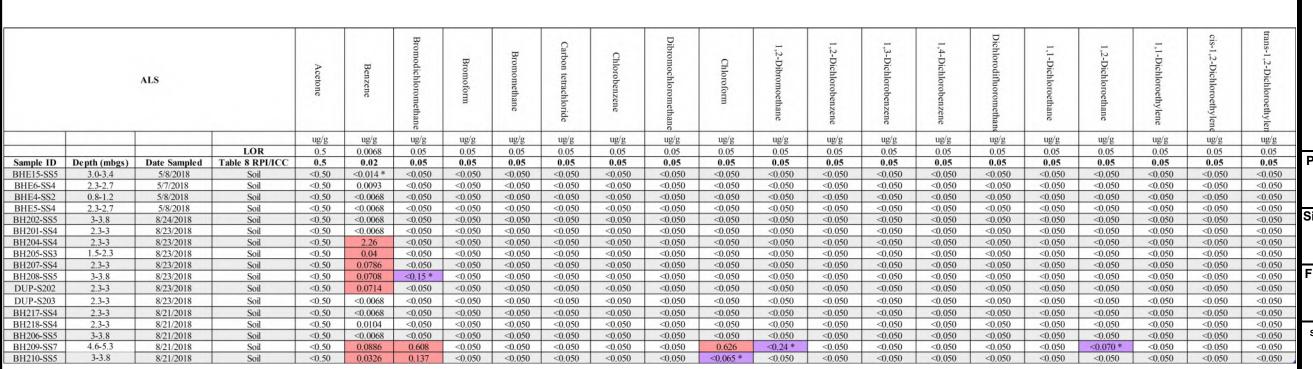
Borehole/Monitroing Well Meet Table 8

|                       |              | ALS          |                     | Conductivity | Syanide, Weak<br>Acid Diss | SAR    | Antimony (Sb) | Arsenic (As) | Barium (Ba) | Beryllium (Be) | Boron (B) | Soron (B), Hot<br>Water Ext.<br>Available | Cadmium (Cd) | Chromium (Cr) | Cobalt (Co) | Copper (Cu) | Lead (Pb) | Mercury (Hg) | Molybdenum<br>(Mo) | Nickel (Ni) | Selenium (Se) | Silver (Ag) | Thallium (TI) | Uranium (U) | Vanadium (V) | Zinc (Zn) | Chromium,<br>Hexavalent |
|-----------------------|--------------|--------------|---------------------|--------------|----------------------------|--------|---------------|--------------|-------------|----------------|-----------|-------------------------------------------|--------------|---------------|-------------|-------------|-----------|--------------|--------------------|-------------|---------------|-------------|---------------|-------------|--------------|-----------|-------------------------|
| 7                     |              |              | Units               | mS/cm        | ug/g                       | SAR    | ug/g          | ug/g         | ug/g        | ug/g           | ug/g      | ug/g                                      | ug/g         | ug/g          | ug/g        | ug/g        | ug/g      | ug/g         | ug/g               | ug/g        | ug/g          | ug/g        | ug/g          | ug/g        | ug/g         | ug/g      | ug/g                    |
| Sample ID             | Date Sampled | Depth (mbgs) | LOR Table 8 RPI/ICC | 0.004        | 0.05                       | 0.1    | 1 3           | 19           | 220         | 0.5<br>2.5     | 36        | 1.5                                       | 0.5          | 70            | 22          | 92          | 120       | 0.005        | 2                  | 82          | 1.53          | 0.2         | 0.5           | 2.54        | 86           | 290       | 0.2                     |
| BH5-SS1               | 4/18/2018    | 3.0-3.4      | Soil                | 10.2         | <0.050                     | 31.4   | <1.0          | 44           | 104         | 0.66           | 10.9      | 0.2                                       | < 0.50       | 18.5          | 10.2        | 21.1        | 8.1       | 0.0162       | <1.0               | 21.9        | <1.0          | <0.20       | <0.50         | <1.0        | 27.6         | 56.3      | 0.2                     |
| BHE14-SS3             | 5/8/2018     | 1.5-1.9      | Soil                | 0.391        | < 0.050                    | 0.2    | <1.0          | 6.2          | 88,6        | 0.74           | 11.7      | < 0.10                                    | <0.50        | 22.2          | 14          | 34.4        | 9         | 0.0145       | <1.0               | 28.4        | <1.0          | <0.20       | < 0.50        | <1.0        | 30.5         | 64.1      | 0.22                    |
| BHE5-SS3              | 5/8/2018     | 1.5-1.9      | Soil                | 0.853        | < 0.050                    | 8.62   | <1.0          | 4.4          | 74.9        | 0.57           | 7.9       | 0.32                                      | < 0.50       | 21            | 9.1         | 21.1        | 9.2       | 0.0269       | <1.0               | 19          | <1.0          | < 0.20      | < 0.50        | <1.0        | 33.5         | 48        | 0.78                    |
| BHE4-SS4              | 5/8/2018     | 2.3-2.7      | Soil                | 0.709        | < 0.050                    | 5.41   | <1.0          | 7            | 99          | 0.86           | 12.3      | 0.3                                       | < 0.50       | 22.8          | 16.7        | 45.8        | 9         | 0.0172       | <1.0               | 31.7        | <1.0          | < 0.20      | < 0.50        | <1.0        | 30.7         | 65.8      | 0.25                    |
| BHE15-SS2             | 5/8/2018     | 0.8-1.2      | Soil                | 0.598        | < 0.050                    | 2.46   | <1.0          | 4.6          | 87          | 0.73           | 11.9      | 0.21                                      | < 0.50       | 22.2          | 10.7        | 25.3        | 8.8       | 0.0165       | <1.0               | 24          | <1.0          | < 0.20      | < 0.50        | <1.0        | 32.2         | 58.1      | 0.94                    |
| DUP-S1                | 5/8/2018     | 1.5-1.9      | Soil                | 0.394        | < 0.050                    | 0.21   | <1.0          | 5.8          | 76.9        | 0.72           | 11.1      | < 0.10                                    | < 0.50       | 20.9          | 12.4        | 32.6        | 7.9       | 0.0145       | <1.0               | 25.4        | <1.0          | < 0.20      | < 0.50        | <1.0        | 28.4         | 60.2      | < 0.20                  |
| BHE2-SS2              | 5/16/2018    | 0.8-1.2      | Soil                | 0.367        | < 0.050                    | 3.14   | <1.0          | 8.6          | 141         | 0.95           | 11.9      | 1.14                                      | < 0.50       | 24.2          | 11.8        | 45          | 20.4      | 0.0554       | <1.0               | 25.4        | <1.0          | < 0.20      | < 0.50        | 1.1         | 38.6         | 290       | 0.77                    |
| BHE7-SS1              | 6/5/2018     | 0.0-0.6      | Soil                | 0.192        | < 0.050                    | 3.34   | <1.0          | 1.3          | 10.2        | < 0.50         | <5.0      | <0.10                                     | < 0.50       | 5,5           | 2.2         | 4.7         | 2.4       | < 0.0050     | <1.0               | 4.3         | <1.0          | < 0.20      | < 0.50        | <1.0        | 13.1         | 11.9      | <0.20                   |
| BH201-SS2             | 8/23/2018    | 0.8-1.5      | Soil                | 0.439        | < 0.050                    | 0.63   | <1.0          | 5.4          | 112         | 0.8            | 10.7      | 0.41                                      | < 0.50       | 24.9          | 12.1        | 28.2        | 10.8      | 0.024        | <1.0               | 26.3        | <1.0          | < 0.20      | < 0.50        | <1.0        | 36           | 64.3      | < 0.20                  |
| BH214-SS2             | 8/23/2018    | 0.8-1.5      | Soil                | 0,31         | <0.050                     | 5.13 * | <1.0          | 5.7          | 73.2        | 0.6            | 10        | 0.24                                      | < 0.50       | 20.1          | 9.2         | 24.8        | 20.9      | 0,0573       | <1.0               | 20,4        | <1.0          | < 0.20      | < 0.50        | <1.0        | 30.8         | 59.3      | <0.20                   |
| BH215-SS2             | 8/23/2018    | 0.8-1.5      | Soil                | 0.363        | < 0.050                    | 1.99   | <1.0          | 8.5          | 118         | 0.66           | 9.6       | 0.29                                      | < 0.50       | 23.6          | 10.5        | 30.1        | 20.7      | 0.0447       | <1.0               | 22.2        | <1.0          | < 0.20      | < 0.50        | <1.0        | 34           | 75        | 0.64                    |
| BH216-SS2             | 8/23/2018    | 0.8-1.5      | Soil                | 0,35         | <0.050                     | 2.29   | <1.0          | 5.7          | 79.3        | 0.6            | 7         | 0,56                                      | < 0.50       | 17            | 7.7         | 25.6        | 15.1      | 0.0346       | <1.0               | 16.1        | <1.0          | < 0.20      | < 0.50        | <1.0        | 27.6         | 98.6      | <0.20                   |
| BH211-SS3             | 8/23/2018    | 1.5-2.3      | Soil                | 1.72         | <0.050                     | 25.5   | <1.0          | 6.2          | 95,6        | 0.83           | 7.5       | 0.89                                      | 0.52         | 27.3          | 12.9        | 39.2        | 20.3      | 0.039        | <1.0               | 29.2        | <1.0          | < 0.20      | < 0.50        | <1.0        | 39.9         | 80.7      | <0.20                   |
| BH212-SS3             | 8/23/2018    | 1.5-2.3      | Soil                | 1.59         | <0.050                     | 13     | <1.0          | 4.9          | 61.4        | 0.59           | 5.2       | 0.3                                       | <0.50        | 21.2          | 10          | 22,4        | 8.8       | 0.0239       | <1.0               | 21,3        | <1.0          | <0.20       | <0.50         | <1.0        | 30.6         | 49.3      | 0.5                     |
| BH213-SS3<br>DUP-S201 | 8/23/2018    | 1.5-2.3      | Soil                | 0.672        | <0.050                     | 5.16   | <1.0          | 4.3          | 51.6        | 0.52           | 5.1       | 0.35                                      | <0.50        | 17.7          | 8.6         | 25.3        | 9         | 0.0255       | <1.0               | 19.8        | <1.0          | <0.20       | < 0.50        | <1.0        | 29.2         | 41.7      | <0.20                   |
| DUP-\$201 I           | 8/23/2018    | 0.8-1.5      | Soil                | 0.684        | < 0.050                    | 5 11   | <1.0          | 5.2          | 60.8        | 0.58           | 5.9       | 0.27                                      | < 0.50       | 21            | 10.2        | 27.4        | 9.1       | 0.0244       | <1.0               | 1 72.7      | <1.0          | < 0.20      | < 0.50        | <1.0        | 33.1         | 49 1      | <0.70                   |

## Project Title:

Phase Two Environmental Site Assessment

# Site Location:


64, 66 Thomas Street, 95 Joymar Drive, 65 Tannery Street, Mississauga, ON

# Figure Title:

Soil Exceedances Plan(M&I)

| Scale:                | Project Number:<br>SP18-306-20 |
|-----------------------|--------------------------------|
| Date:<br>October 2018 | Figure Number:<br>5-a          |







King City, ON. L7B 1H5 Phone# 905 833 1582, Fax# 905 833 5360

North:



## Legend:

\_---

Property Boundary



Monitoring Well



Borehole



Borehole/Monitroing Well with Exceedance



Borehole/Monitroing Well Meet Table 8

#### **Project Title:**

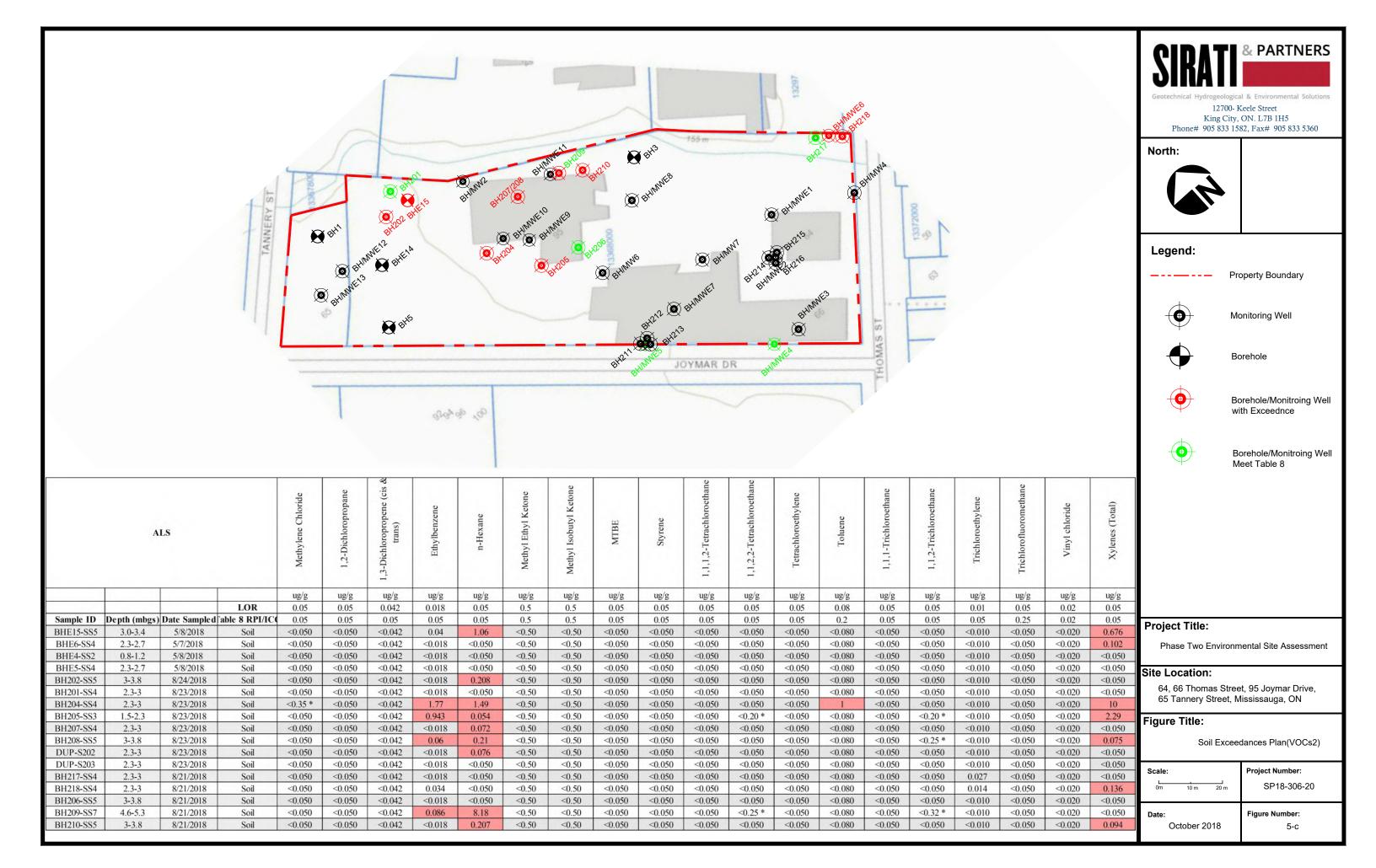
Phase Two Environmental Site Assessment

## Site Location:

64, 66 Thomas Street, 95 Joymar Drive,65 Tannery Street, Mississauga, ON

#### Figure Title:

Soil Exceedances Plan(VOCs1)


| Scale: |      |      | Project Number: |
|--------|------|------|-----------------|
| 0m     | 10 m | 20 m | SP18-306-20     |

Date:

October 2018

5-b

Figure Number:





|           | 7.4.9        |              | Analyte         | Total PCBs |
|-----------|--------------|--------------|-----------------|------------|
|           | ALS          | - 0 97       | Units           | ug/g       |
|           |              |              | LOR             | 0.02       |
| Sample ID | Depth (mbgs) | Date Sampled | Table 8 RPI/ICC | 0.3        |
| BHE5-SS2  | 0.8-1.2      | 5/8/2018     | Soil            | < 0.020    |
| BHE15-SS3 | 1.5-1.9      | 5/8/2018     | Soil            | < 0.020    |
| BHE4-SS2  | 0.8-1.2      | 5/8/2018     | Soil            | < 0.020    |
| DUP-S2    | 0.8-1.2      | 5/8/2018     | Soil            | < 0.020    |



North:



## Legend:

------

Property Boundary



Monitoring Well



Borehole



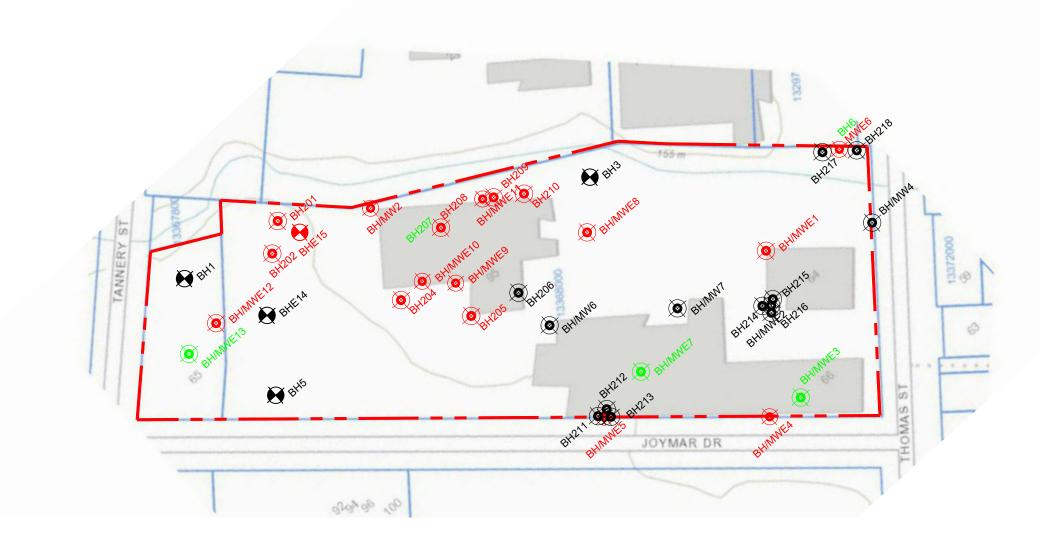
Borehole/Monitroing Well with Exceedance



Borehole/Monitroing Well Meet Table 8

## **Project Title:**

Phase Two Environmental Site Assessment


## Site Location:

64, 66 Thomas Street, 95 Joymar Drive, 65 Tannery Street, Mississauga, ON

# Figure Title:

Soil Exceedances Plan(PCBs)

| Scale:                           | Project Number:<br>SP18-306-20 |
|----------------------------------|--------------------------------|
| 0m 10 m 20 m  Date: October 2018 | Figure Number:                 |
| October 2010                     | 5-d                            |



|                    | ALS                |                        | Analyte         | F1 (C6-C10)  | F1-BTEX | F2 (C10-C16) | F3 (C16-C34) | F4 (C34-C50) | F4G-SG (GHH-Silica) |                  | ALS        |                      | Analyte         | F1 (C6-C10)  | F1-BTEX | F2 (C10-C16) | F3 (C16-C34) | F4 (C34-C50) | F4G-SG (GHH-Silica) |
|--------------------|--------------------|------------------------|-----------------|--------------|---------|--------------|--------------|--------------|---------------------|------------------|------------|----------------------|-----------------|--------------|---------|--------------|--------------|--------------|---------------------|
|                    |                    |                        | Units           | ug/g         | ug/g    | ug/g         | ug/g         | ug/g         | ug/g                |                  |            |                      | Units           | ug/g         | ug/g    | ug/g         | ug/g         | ug/g         | ug/g                |
| C. I. ID           | D. d. (.)          | D. t. C I. I           | LOR             | 5            | 5       | 10           | 50           | 50           | 250                 | 61               | D D d ( l  | ) D + C - 1 -1       | LOR             | 5            | 5       | 10           | 50           | 50           | 250                 |
| Sample ID          |                    |                        | Table 8 RPI/ICC | 25           | 25      | 10           | 240          | 120          | 120                 |                  | 1 0        | -                    | Table 8 RPI/ICC | 25           | 25      | 10           | 240          | 120          | 120                 |
| BH2-SS3<br>BH6-SS5 | 1.5-1.9            | 4/18/2018<br>4/18/2018 | Soil<br>Soil    | 19.1<br><5.0 | -       | 235<br><10   | 2750<br><50  | 802<br><50   | 2230                | BHE5-S           |            | 5/8/2018<br>6/5/2018 | Soil<br>Soil    | <5.0         | <5.0    | <10<br><10   | <50<br><50   | <50          | -                   |
| BH7-SS4            | 3.0-3.4<br>2.3-2.7 | 4/18/2018              | Soil            | <5.0         | -       | <10          | <50          | <50          | -                   | BHE3-S<br>BHE7-S |            | 6/5/2018             | Soil            | <5.0<br><5.0 | -       | <10          | 64           | <50<br><50   | -                   |
| BHE15-SS5          | 3.0-3.4            | 5/8/2018               | Soil            | 35           | 34.3    | 321          | 74           | <50          | -                   | DUP-S            |            | 6/5/2018             | Soil            | <5.0         | -       | <10          | <50          | <50          | -                   |
| BHE6-SS4           | 2.3-2.7            | 5/7/2018               | Soil            | <5.0         | <5.0    | <10          | <50          | <50          | -                   | BH202-S          |            | 8/24/2018            | Soil            | 18.5         | 18.5    | 44           | <50          | 54           | -                   |
| BHE11-SS2          | 0.8-1.4            | 5/7/2018               | Soil            | 13           | -5.0    | 26           | 648          | 528          | 1670                | BH201-S          |            | 8/23/2018            | Soil            | <5.0         | <5.0    | 29           | 116          | 64           | -                   |
| BHE1-SS4           | 2.3-2.7            | 5/7/2018               | Soil            | <5.0         |         | <10          | <50          | <50          | 1070                | BH204-S          |            | 8/23/2018            | Soil            | 48           | 33      | 37           | <50          | <50          | - 2                 |
| BHE8-SS5           | 3.0-3.4            | 5/7/2018               | Soil            | <5.0         | _       | <10          | <50          | <50          | _                   | BH205-S          |            | 8/23/2018            | Soil            | 71 *         | 68      | 331          | 218          | <50          | _                   |
| BHE2-SS4           | 2.3-2.7            | 5/7/2018               | Soil            | <5.0         | -       | <10          | <50          | <50          | -                   | BH207-S          |            | 8/23/2018            | Soil            | 13.2         | 13.1    | <10          | <50          | <50          | -                   |
| BHE10-SS5          | 3.0-3.4            | 5/7/2018               | Soil            | <5.0         | -       | 69           | 55           | <50          | -                   | BH208-5          |            | 8/23/2018            | Soil            | 47.8         | 47.6    | 15           | <50          | <50          | -                   |
| BHE4-SS2           | 0.8-1.4            | 5/8/2018               | Soil            | <5.0         | <5.0    | <10          | <50          | 50           | -                   | DUP-S2           |            | 8/23/2018            | Soil            | 16.4         | 16.3    | 13           | <50          | <50          | -                   |
| BHE9-SS4           | 2.3-2.7            | 5/7/2018               | Soil            | <5.0         | -       | 108          | 75           | <50          | -                   | DUP-S2           | 03 2.3-3   | 8/23/2018            | Soil            | <5.0         | <5.0    | 12           | 64           | <50          | -                   |
| BHE13-SS1          | 0-0.6              | 5/8/2018               | Soil            | <5.0         | -       | <10          | <50          | <50          | +                   | BH206-S          | S5 3-3.8   | 8/21/2018            | Soil            | < 5.0        | <5.0    | <10          | <50          | <50          | -                   |
| BHE12-SS2          | 0.8-1.4            | 5/8/2018               | Soil            | <5.0         | -       | <10          | <50          | <50          | -                   | BH209-S          | 87 4.6-5.3 | 8/21/2018            | Soil            | 208          | 208     | 81           | <50          | <50          | -                   |
| BHE5-SS4           | 2.3-2.7            | 5/8/2018               | Soil            | <5.0         | <5.0    | <10          | <50          | <50          | -                   | BH210-S          | S5 3-3.8   | 8/21/2018            | Soil            | 12.1         | 12      | 24 *         | 340 *        | 890 *        | 2430                |



12700- Keele Street King City, ON. L7B 1H5 Phone# 905 833 1582, Fax# 905 833 5360

North:



# Legend:

\_ - - - \_ - - - \_

Property Boundary



Monitoring Well



Borehole



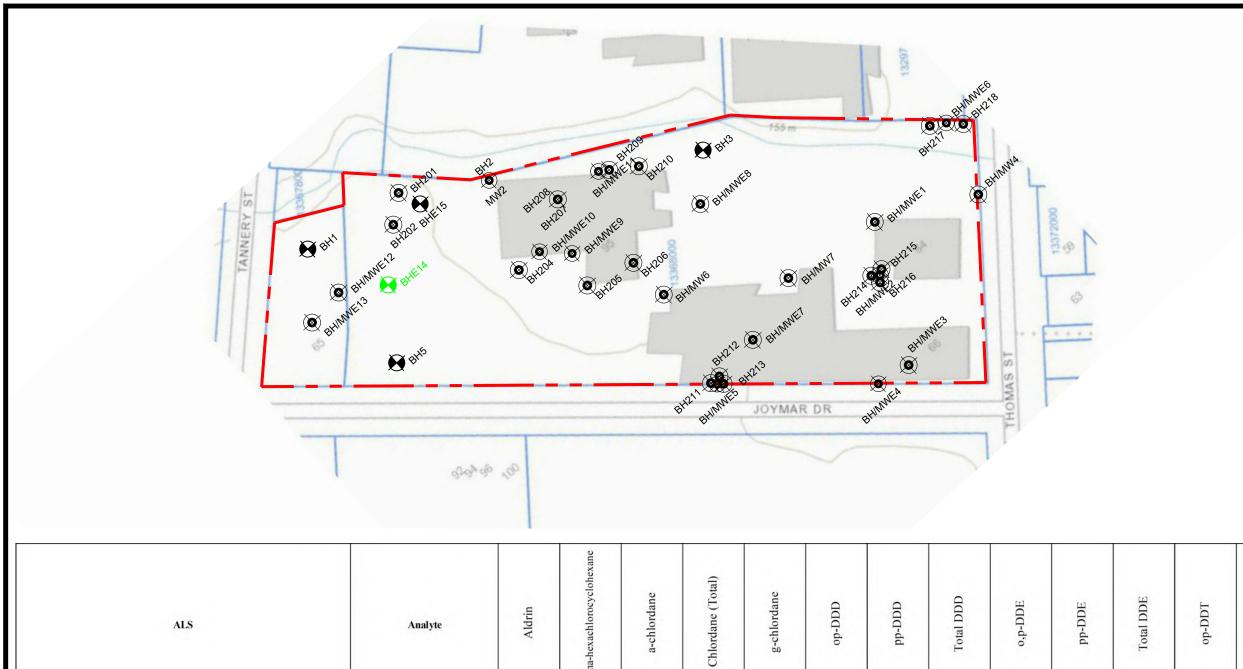
Borehole/Monitroing Well with Exceedance



Borehole/Monitroing Well Meet Table 8

# Project Title:

Phase Two Environmental Site Assessment


## Site Location:

64, 66 Thomas Street, 95 Joymar Drive, 65 Tannery Street, Mississauga, ON

# Figure Title:

Soil Exceedances Plan(PHCs)

| Scale:                | Project Number:       |
|-----------------------|-----------------------|
| 0m 10 m 20 m          | SP18-306-20           |
|                       |                       |
|                       |                       |
| Date:<br>October 2018 | Figure Number:<br>5-e |



|           |              | ALS         |              | Analyte         | Aldrin    | gamma-hexachlorocyclohexane | a-chlordane  | Chlordane (Total) | g-chlordane        | Op-DDD  | DDDD       | Total DDD          | o,p-DDE           | pp-DDE              | Total DDE        | op-DDT       | pp-DDT |   |
|-----------|--------------|-------------|--------------|-----------------|-----------|-----------------------------|--------------|-------------------|--------------------|---------|------------|--------------------|-------------------|---------------------|------------------|--------------|--------|---|
|           |              |             |              | Units           | ug/g      | ug/g                        | ug/g         | ug/g              | ug/g               | ug/g    | ug/g       | ug/g               | ug/g              | ug/g                | ug/g             | ug/g         | ug/g   |   |
|           |              |             |              | LOR             | 0.02      | 0.01                        | 0.02         | 0.028             | 0.02               | 0.02    | 0.02       | 0.028              | 0.02              | 0.02                | 0.028            | 0.02         | 0.02   |   |
| Sample ID | Depth (mbgs) | ALS ID      | Date Sampled | Table 8 RPI/ICC | 0.05      | 0.01                        | -            | 0.05              | -                  | -       | -          | 0.05               | -                 | -                   | 0.05             | -            | -      |   |
| BHE14-SS1 | 0-0.6        | L2092836-11 | 5/8/2018     | Soil            | < 0.020   | < 0.010                     | < 0.020      | <0.028            | <0.020             | <0.020  | <0.020     | < 0.028            | <0.020            | <0.020              | < 0.028          | <0.020       | <0.020 |   |
|           | A            | ALS         |              | Analyte         | Total DDT | Dieldrin                    | Endosulfan I | Endosulfan II     | Endosulfan (Total) | Endrin  | Heptachlor | Heptachlor Epoxide | Hexachlorobenzene | Hexachlorobutadiene | Hexachloroethane | Methoxychlor |        |   |
|           |              |             |              | Units           | ug/g      | ug/g                        | ug/g         | ug/g              | ug/g               | ug/g    | ug/g       | ug/g               | ug/g              | ug/g                | ug/g             | ug/g         |        |   |
|           |              |             |              | LOR             | 0.028     | 0.02                        | 0.02         | 0.02              | 0.028              | 0.02    | 0.02       | 0.02               | 0.01              | 0.01                | 0.01             | 0.02         |        | 1 |
| Sample ID | Depth (mbgs) | ALS ID      | Date Sampled | Table 8 RPI/ICC | 1.4       | 0.05                        | -            | -                 | 0.04               | 0.04    | 0.05       | 0.05               | 0.02              | 0.01                | 0.01             | 0.05         |        |   |
| BHE14-SS1 | 0-0.6        | L2092836-11 | 5/8/2018     | Soil            | < 0.028   | < 0.020                     | < 0.020      | < 0.020           | < 0.028            | < 0.020 | < 0.020    | < 0.020            | < 0.010           | < 0.010             | < 0.010          | < 0.020      |        |   |



King City, ON. L7B 1H5
Phone# 905 833 1582, Fax# 905 833 5360

North:



# Legend:

\_---

Property Boundary



Monitoring Well



Borehole



Borehole/Monitroing Well with Exceedance



Borehole/Monitroing Well Meet Table 8

## Project Title:

Phase Two Environmental Site Assessment


# Site Location:

64, 66 Thomas Street, 95 Joymar Drive, 65 Tannery Street, Mississauga, ON

## Figure Title:

Soil Exceedances Plan(OCPs)

| Scale:       | Project Number:<br>SP18-306-20 |
|--------------|--------------------------------|
| Date:        | Figure Number:                 |
| October 2018 | 5-f                            |





North:



## Legend:

------

Property Boundary



Monitoring Well



Borehole



Borehole/Monitroing Well with Exceedance

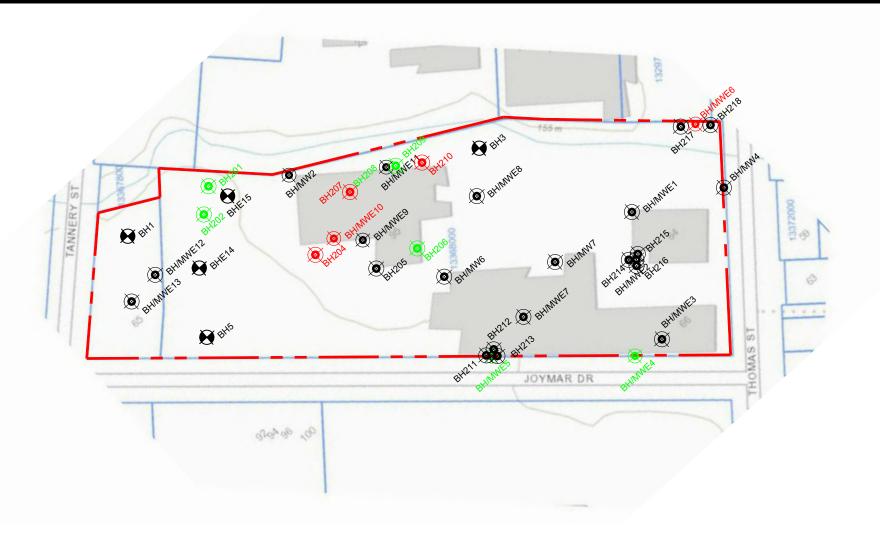


Borehole/Monitroing Well Meet Table 8

|           | ALS        |              | Analyte | Chloride (Cl) | Cyanide, Weak<br>Acid Diss | Antimony (Sb)-<br>Dissolved | Arsenic (As)-<br>Dissolved | Barium (Ba)-<br>Dissolved | Beryllium (Be)-<br>Dissolved | Boron (B)-<br>Dissolved | Cadmium (Cd)-<br>Dissolved | Chromium (Cr)-<br>Dissolved | Cobalt (Co)-<br>Dissolved | Copper (Cu)-<br>Dissolved | Lead (Pb)-<br>Dissolved | Mercury (Hg)-<br>Dissolved | Molybdenum (Mo)<br>Dissolved | Nickel (Ni)-<br>Dissolved | Selenium (Se)-<br>Dissolved | Silver (Ag)-<br>Dissolved | Sodium (Na)-<br>Dissolved | Thallium (TI)-<br>Dissolved | Uranium (U)-<br>Dissolved | Vanadium (V)-<br>Dissolved | Zinc (Zn)-Dissolve | Chromium,<br>Hexavalent |
|-----------|------------|--------------|---------|---------------|----------------------------|-----------------------------|----------------------------|---------------------------|------------------------------|-------------------------|----------------------------|-----------------------------|---------------------------|---------------------------|-------------------------|----------------------------|------------------------------|---------------------------|-----------------------------|---------------------------|---------------------------|-----------------------------|---------------------------|----------------------------|--------------------|-------------------------|
|           |            |              | Units   | mg/L          | ug/L                       | ug/L                        | ug/L                       | ug/L                      | ug/L                         | ug/L                    | ug/L                       | ug/L                        | ug/L                      | ug/L                      | ug/L                    | ug/L                       | ug/L                         | ug/L                      | ug/L                        | ug/L                      | ug/L                      | ug/L                        | ug/L                      | ug/L                       | ug/L               | ug/L                    |
|           |            |              | LOR     | 2.5           | 2                          | 0.1                         | 0.1                        | 0.1                       | 0.1                          | 10                      | 0.01                       | 0.5                         | 0.1                       | 0.2                       | 0.05                    | 0.01                       | 0.05                         | 0.5                       | 0.05                        | 0.05                      | 500                       | 0.01                        | 0.01                      | 0.5                        | 1                  | 0.5                     |
| Sample ID | Screen (m) | Date Sampled | Table 8 | 790           | 52                         | 6                           | 25                         | 1000                      | 4                            | 5000                    | 2.1                        | 50                          | 3.8                       | 69                        | 10                      | 0.29                       | 70                           | 100                       | 10                          | 1.2                       | 490000                    | 2                           | 20                        | 6.2                        | 890                | 25                      |
| MW E4     | 1.6-4.6    | 6/12/2018    | Water   | 1500 *        | <2.0                       | <1.0 *                      | <1.0 *                     | 157 *                     | <1.0 *                       | 210 *                   | <0.050 *                   | <5.0 *                      | 1.8 *                     | 3.2 *                     | <0.50 *                 | < 0.010                    | 0.99 *                       | <5.0 *                    | <0.50 *                     | <0.50 *                   | 768000 *                  | <0.10 *                     | 1.27 *                    | <5.0 *                     | 11 *               | < 0.50                  |
| MW E5     | 1.6-4.6    | 6/12/2018    | Water   | 473 *         | <2.0                       | 0.42                        | 1.23                       | 70.4                      | < 0.10                       | 608                     | 0.01                       | < 0.50                      | 0.68                      | 0.36                      | < 0.050                 | < 0.010                    | 3.98                         | 1                         | 0.125                       | < 0.050                   | 185000 *                  | 0.019                       | 1.92                      | 0.8                        | 1.2                | < 0.50                  |
| MW-E2     | 1.6-4.6    | 6/13/2018    | Water   | 342 *         | <2.0                       | <1.0 *                      | 3.8 *                      | 52.7 *                    | <1.0 *                       | 570 *                   | <0.050 *                   | <5.0 *                      | <1.0 *                    | <2.0 *                    | <0.50 *                 | < 0.010                    | 1.08 *                       | 11.9 *                    | <0.50 *                     | <0.50 *                   | 110000 *                  | <0.10 *                     | 0.61 *                    | <5.0 *                     | <10 *              | < 0.50                  |
| MW-E7     | 0.9-2.4    | 6/13/2018    | Water   | 1280 *        | <2.0                       | <1.0 *                      | 2.2 *                      | 246 *                     | <1.0 *                       | 430 *                   | 0.064 *                    | <5.0 *                      | 1.2 *                     | <2.0 *                    | 0.70 *                  | < 0.010                    | 3.22 *                       | <5.0 *                    | <0.50 *                     | <0.50 *                   | 411000 *                  | <0.10 *                     | 1.18 *                    | <5.0 *                     | <10 *              | <0.50 *                 |
| DUP-W1    | 1.6-4.6    | 6/13/2018    | Water   | 320 *         | <2.0                       | <1.0 *                      | 3.8 *                      | 51.2 *                    | <1.0 *                       | 570 *                   | <0.050 *                   | <5.0 *                      | <1.0 *                    | <2.0 *                    | <0.50 *                 | < 0.010                    | 1.03 *                       | 11.3 *                    | <0.50 *                     | <0.50 *                   | 106000 *                  | <0.10 *                     | 0.63 *                    | <5.0 *                     | <10 *              | < 0.50                  |

## Project Title:

Phase Two Environmental Site Assessment


# Site Location:

64, 66 Thomas Street, 95 Joymar Drive, 65 Tannery Street, Mississauga, ON

# Figure Title:

Groundwater Exceedances Plan(M&I)

| Scale:                | Project Number:       |
|-----------------------|-----------------------|
| 0m 10 m 20 m          | SP18-306-20           |
|                       |                       |
|                       |                       |
| Date:<br>October 2018 | Figure Number:<br>6-a |



|              | ALS        |              | Analyte        | Acetone    | Benzene | Bromodichloromethane | Вготобогт | Bromomethane | Carbon tetrachloride | Chlorobenzene | Dibromochloromethane | Chloroform | 1,2-Dibromoethane | 1,2-Dichlorobenzene | 1,3-Dichlorobenzene | 1,4-Dichlorobenzene | Dichlorodifluoromethane | 1,1-Dichloroethane | 1,2-Dichloroethane | 1,1-Dichloroethylene | cis-1,2-Dichloroethylene | Xylenes (Total) |
|--------------|------------|--------------|----------------|------------|---------|----------------------|-----------|--------------|----------------------|---------------|----------------------|------------|-------------------|---------------------|---------------------|---------------------|-------------------------|--------------------|--------------------|----------------------|--------------------------|-----------------|
|              |            |              | Units          | ug/L       | ug/L    | ug/L                 | ug/L      | ug/L         | ug/L                 | ug/L          | ug/L                 | ug/L       | ug/L              | ug/L                | ug/L                | ug/L                | ug/L                    | ug/L               | ug/L               | ug/L                 | ug/L                     | ug/L            |
| Sample ID    | Screen (m) | Date Sampled | LOR<br>Table 8 | 30<br>2700 | 0.5     | 2                    | 5         | 0.5          | 0.2                  | 0.5           | 2                    | 2.4        | 0.2               | 0.5                 | 0.5                 | 0.5                 | 2                       | 0.5                | 0.5                | 0.5                  | 0.5                      | 0.5<br>300      |
| MW E3        | 0.7-3.7    | 6/12/2018    | Water          |            | <0.50   | 16                   | 25        | 0.89         | 0.79                 | 30            | 25                   | 2.4        | 0.2               | 3                   | 59                  | 1                   | 590                     |                    | 1.6                | 1.6                  | 1.6                      | <0.50           |
| MW E4        | 1.6-4.6    | 6/12/2018    | Water          | <30        | <0.50   | <2.0                 | <5.0      | <0.50        | <0.20                | <0.50         | <2.0                 | <1.0       | <0.20             | <0.50               | <0.50               | <0.50               | <2.0                    | <0.50              | <0.50              | <0.50                | <0.50                    | <0.50           |
| MW E5        | 1.6-4.6    | 6/12/2018    | Water          | <30        | <0.50   | <2.0                 | <5.0      | <0.50        | <0.20                | <0.50         | <2.0                 | <1.0       | <0.20             | <0.50               | <0.50               | <0.50               | <2.0                    | <0.50              | <0.50              | <0.50                | <0.50                    | <0.50           |
| MW E9        | 1.2-4.2    | 6/12/2018    | Water          | -          | <0.50   |                      |           | -0.50        | -0.20                | -0.50         | -                    | -1.0       | -0.20             | -0.50               | -0.50               | -                   | -2.0                    | -                  | -                  | -                    | 40,50                    | <0.50           |
| MW E10       | 1.6-4.6    | 6/12/2018    | Water          | -          | 18.6    | -                    | -         | -            | -                    | -             |                      | -          | -                 | _                   | -                   | -                   |                         | -                  | -                  | -                    | -                        | <0.50           |
| MW E6        | 1.6-4.6    | 6/12/2018    | Water          | -          | < 0.50  | -                    | -         | -            |                      |               | -                    |            | -                 | -                   | -                   | -                   |                         | -                  | -                  | -                    |                          | < 0.50          |
| MW E7        | 0.9-2.4    | 6/12/2018    | Water          | -          | < 0.50  | -                    | -         | -            | -                    |               | -                    | 1-0        | -                 |                     |                     | -                   | -                       | -                  | -                  |                      | -                        | < 0.50          |
| DUP-W2       | 1.6-4.6    | 6/12/2018    | Water          | -          | 18.7    | -                    | -         | -            | -                    | -             | -                    |            | -                 | -                   | -                   | -                   | -                       | -                  | -                  | -                    | -                        | < 0.50          |
| MW-E6        | 1.6-4.6    | 6/13/2018    | Water          | <30        | < 0.50  | <2.0                 | <5.0      | < 0.50       | < 0.20               | < 0.50        | <2.0                 | <1.0       | < 0.20            | < 0.50              | < 0.50              | <0.50               | <2.0                    | < 0.50             | < 0.50             | < 0.50               | < 0.50                   | < 0.50          |
| TRIP BLANK 1 | -          | 6/13/2018    | Water          | <30        | < 0.50  | <2.0                 | <5.0      | < 0.50       | < 0.20               | < 0.50        | <2.0                 | <1.0       | < 0.20            | < 0.50              | < 0.50              | < 0.50              | <2.0                    | < 0.50             | < 0.50             | < 0.50               | < 0.50                   | <0.50           |
| MW201        | 1.6-4.6    | 9/14/2018    | Water          | <30        | < 0.50  | <2.0                 | <5.0      | < 0.50       | < 0.20               | < 0.50        | <2.0                 | <1.0       | < 0.20            | < 0.50              | < 0.50              | < 0.50              | <2.0                    | < 0.50             | < 0.50             | < 0.50               | < 0.50                   | < 0.50          |
| MW202        | 1.6-4.6    | 9/14/2018    | Water          | <30        | < 0.50  | <3.0 *               | <5.0      | < 0.50       | < 0.20               | < 0.50        | <2.0                 | <1.0       | < 0.20            | < 0.50              | < 0.50              | < 0.50              | <2.0                    | < 0.50             | < 0.50             | < 0.50               | < 0.50                   | 1.66            |
| MW204        | 1.6-4.6    | 9/14/2018    | Water          | <30        | 3760 *  | <3.2 *               | <5.0      | < 0.50       | < 0.20               | < 0.50        | <2.0                 | <1.0       | < 0.20            | < 0.50              | < 0.50              | <0.50               | <2.0                    | < 0.50             | 3.22               | < 0.50               | < 0.50                   | 2930            |
| MW206        | 1.6-4.6    | 9/14/2018    | Water          | <30        | < 0.50  | <2.0                 | <5.0      | < 0.50       | < 0.20               | < 0.50        | <2.0                 | <1.0       | < 0.20            | < 0.50              | < 0.50              | <0.50               | <2.0                    | < 0.50             | <0.50              | < 0.50               | < 0.50                   | < 0.50          |
| MW207        | 1.6-4.6    | 9/14/2018    | Water          | <30        | 299     | <6.0 *               | <5.0      | < 0.50       | < 0.20               | < 0.50        | <2.0                 | <1.0       | < 0.20            | < 0.50              | < 0.50              | < 0.50              | <2.0                    | < 0.50             | <0.70 *            | < 0.50               | < 0.50                   | 19.9            |
| MW208        | 4.6-7.6    | 9/14/2018    | Water          | <30        | 1.82    | <2.0                 | < 5.0     | < 0.50       | < 0.20               | < 0.50        | <2.0                 | <1.0       | < 0.20            | < 0.50              | < 0.50              | < 0.50              | <2.0                    | < 0.50             | <0.50              | < 0.50               | < 0.50                   | < 0.50          |
| MW209        | 4.6-7.6    | 9/14/2018    | Water          | <30        | 0.6     | <2.0                 | <5.0      | < 0.50       | < 0.20               | <0.50         | <2.0                 | <1.0       | <0.20             | <0.50               | <0,50               | <0.50               | <2.0                    | <0,50              | <0.50              | < 0.50               | < 0.50                   | <0.50           |
| MW210        | 1.6-4.6    | 9/14/2018    | Water          | <30        | 32      | <3.6*                | <5.0      | <0.50        | <0.20                | <0.50         | <2.0                 | <1.0       | <0.20             | <0.50               | <0.50               | <0.50               | <2.0                    | <0.50              | <0.50              | <0.50                | <0.50                    | 5.44            |
| DUP-W201     | 1.6-4.6    | 9/14/2018    | Water          | <30        | <0.50   | <2.0                 | <5.0      | <0.50        | <0.20                | <0.50         | <2.0                 | <1.0       | <0.20             | <0.50               | <0.50               | <0.50               | <2.0                    | <0.50              | <0.50              | <0.50                | <0.50                    | <0.50           |
| TRIP BLANK   | -          | 9/14/2018    | Water          | <30        | < 0.50  | <2.0                 | < 5.0     | < 0.50       | < 0.20               | < 0.50        | <2.0                 | <1.0       | < 0.20            | < 0.50              | < 0.50              | < 0.50              | <2.0                    | < 0.50             | < 0.50             | < 0.50               | < 0.50                   | < 0.50          |



12700- Keele Street King City, ON. L7B 1H5 Phone# 905 833 1582, Fax# 905 833 5360

North:



## Legend:

...\_\_\_

Property Boundary



Monitoring Well



Borehole



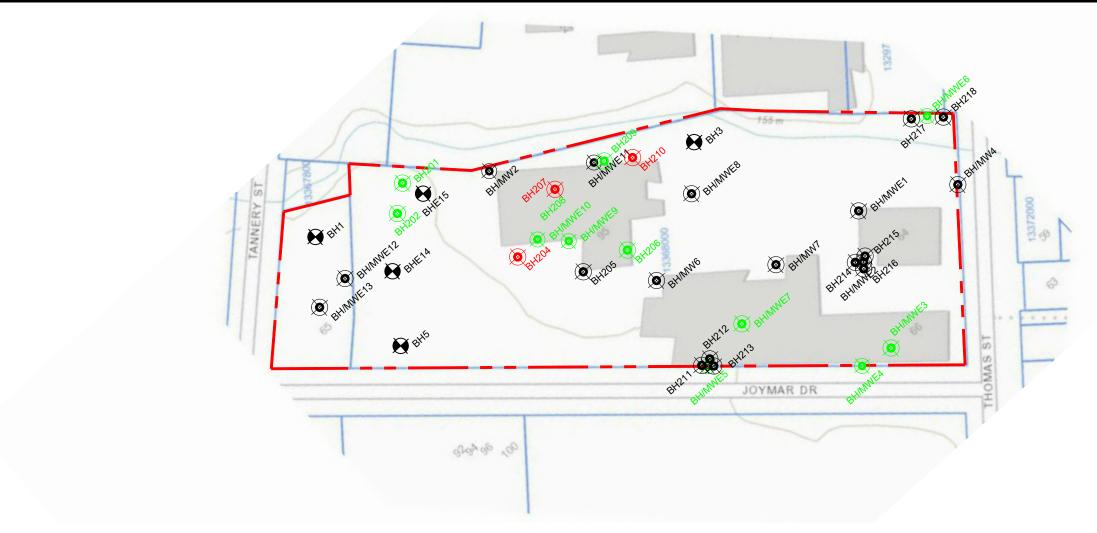
Borehole/Monitroing Well with Exceedance



Borehole/Monitroing Well Meet Table 8

## **Project Title:**

Phase Two Environmental Site Assessment


# Site Location:

64, 66 Thomas Street, 95 Joymar Drive, 65 Tannery Street, Mississauga, ON

## Figure Title:

Groundwater Exceedances Plan(VOCs1)

| Scale:                | Project Number:<br>SP18-306-20 |
|-----------------------|--------------------------------|
| Date:<br>October 2018 | Figure Number:<br>6-b          |



|                | ALS        |                        | Analyte | trans-1,2-Dichloroethylene | Methylene Chloride | 1,2-Dichloropropane | 1,3-Dichloropropene (cis & trans) | Ethylbenzene  | n-Hexane       | Methyl Ethyl Ketone | Methyl Isobutyl Ketone | MTBE         | Styrene        | 1,1,1,2-Tetrachloroethane | 1,1,2,2-Tetrachloroethane | Tetrachloroethylene | Toluene        | 1,1,1-Trichloroethane | 1,1,2-Trichloroethane | Trichloroethylene | Trichlorofluoromethane | Vinyl chloride |
|----------------|------------|------------------------|---------|----------------------------|--------------------|---------------------|-----------------------------------|---------------|----------------|---------------------|------------------------|--------------|----------------|---------------------------|---------------------------|---------------------|----------------|-----------------------|-----------------------|-------------------|------------------------|----------------|
|                |            |                        | Units   | ug/L                       | ug/L               | ug/L                | ug/L                              | ug/L          | ug/L           | ug/L                | ug/L                   | ug/L         | ug/L           | ug/L                      | ug/L                      | ug/L                | ug/L           | ug/L                  | ug/L                  | ug/L              | ug/L                   | ug/L           |
| a              |            |                        | LOR     | 0.5                        | 5                  | 0.5                 | 0.5                               | 0.5           | 0.5            | 20                  | 20                     | 2            | 0.5            | 0.5                       | 0.5                       | 0.5                 | 0.5            | 0.5                   | 0.5                   | 0.5               | 5                      | 0.5            |
| Sample ID      | Screen (m) | Date Sampled           | Table 8 | 1.6                        | 50                 | 5                   | 0.5                               | 2.4           | 51             | 1800                | 640                    | 15           | 5.4            | 1.1                       | 1                         | 1.6                 | 22             | 200                   | 4.7                   | 1.6               | 150                    | 0.5            |
| MW E3          | 0.7-3.7    | 6/12/2018              | Water   | -0.50                      |                    | -0.50               | -0.50                             | <0.50         | -0.50          | -20                 | -20                    | - 20         | -0.50          | -0.50                     | -0.50                     | -0.50               | <0.50          | -0.50                 | -0.50                 | -0.50             | - 0                    | -0.50          |
| MW E4          | 1.6-4.6    | 6/12/2018              | Water   | <0.50                      | <5.0               | <0.50               | <0.50                             | <0.50         | <0.50          | <20                 | <20                    | <2.0         | <0.50          | <0.50                     | <0.50                     | <0.50               | <0.50          | <0.50                 | <0.50                 | <0.50             | <5.0                   | <0.50          |
| MW E5          | 1.6-4.6    | 6/12/2018              | Water   | < 0.50                     | <5.0               | <0.50               | < 0.50                            | <0.50         | <0.50          | <20                 | <20                    | <2.0         | <0.50          | <0.50                     | <0.50                     | < 0.50              | <0.50          | < 0.50                | <0.50                 | <0.50             | <5.0                   | <0.50          |
| MW E9          | 1.2-4.2    | 6/12/2018              | Water   |                            | -                  | -                   | -                                 | <0.50         |                | -                   | -                      | -            | -              |                           |                           | -                   | <0.50          | -                     | -                     | *                 | -                      | -              |
| MW E10         | 1.6-4.6    | 6/12/2018              | Water   | -                          | -                  | -                   | -                                 | 1.64          | -              | -                   | -                      | -            | -              | -                         | -                         | -                   | <0.50          | -                     | -                     | -                 | -                      | -              |
| MW E6          | 1.6-4.6    | 6/12/2018              | Water   | -                          | -                  | -                   | -                                 | <0.50         | -              | -                   | -                      | -            | -              | -                         | -                         | -                   | <0.50          | -                     | -                     | -                 | -                      | -              |
| MW E7          | 0.9-2.4    | 6/12/2018              | Water   |                            |                    |                     | -                                 | < 0.50        | -              | -                   |                        | -            | -              |                           | -                         | -                   | <0.50          | -                     | -                     | -                 | -                      | -              |
| DUP-W2         | 1.6-4.6    | 6/12/2018              | Water   | -0.50                      | - 0                | -0.50               | -0.50                             | 1.71          | -0.50          | - 20                | -20                    |              | -0.50          | -0.50                     | -0.50                     | -0.50               | <0.50          | -0.50                 | -0.50                 | -0.50             |                        | -0.50          |
| MW-E6          | 1.6-4.6    | 6/13/2018              | Water   | <0.50                      | <5.0               | <0.50               | <0.50                             | <0.50         | <0.50          | <20                 | <20                    | <2.0         | <0.50          | <0.50                     | < 0.50                    | <0.50               | <0.50          | <0.50                 | <0.50                 | <0.50             | <5.0                   | <0.50          |
| TRIP BLANK 1   | 1646       | 6/13/2018              | Water   | <0.50                      | <5.0               | <0.50               | <0.50                             | <0.50         | <0.50          | <20                 | <20                    | <2.0         | <0.50          | <0.50                     | <0.50                     | <0.50               | <0.50          | <0.50                 | <0.50                 | <0.50             | <5.0                   | <0.50          |
| MW201<br>MW202 | 1.6-4.6    | 9/14/2018<br>9/14/2018 | Water   | <0.50<br><0.50             | <5.0<br><5.0       | <0.50<br><0.50      | <0.50<br><0.50                    | < 0.50        | <0.50          | <20                 | <20                    | <2.0         | <0.50          | <0.50<br><0.50            | <0.50<br><0.50            | <0.50<br><0.50      | <0.50          | <0.50<br><0.50        | <0.50                 | <0.50             | <5.0<br><5.0           | <0.50<br><0.50 |
| MW202<br>MW204 | 1.6-4.6    | 9/14/2018              | Water   |                            |                    |                     |                                   | 1.39          | 8.38<br>71.6   | <20                 | <20                    | <2.0         | <0.50          |                           |                           |                     | <0.50<br>518 * |                       |                       |                   |                        |                |
|                | 1.6-4.6    |                        | Water   | <0.50<br><0.50             | <9.0 *<br><5.0     | <0.50<br><0.50      | <0.50<br><0.50                    | 696 *         | <0.50          | <30 *               | <20                    | <2.0         | 1.13<br><0.50  | <0.50<br><0.50            | <0.50<br><0.50            | <0.50               | <0.50          | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50    | <5.0<br><5.0           | <0.50<br><0.50 |
| MW206          | 1.6-4.6    | 9/14/2018              | Water   |                            |                    |                     |                                   | <0.50         | 010.0          | <20                 | <20                    | <2.0         |                |                           |                           | <0.50               |                |                       |                       |                   |                        |                |
| MW207          | 1.6-4.6    | 9/14/2018              | Water   | <0.50                      | <5.0<br><5.0       | <0.50<br><0.50      | <0.50                             | 90.5<br><0.50 | 18.8           | <20                 | <20                    | <2.0         | <0.50          | <0.50                     | <0.80 *                   | <0.50               | 6.69           | <0.50                 | <2.3 *                | <0.50             | <5.0                   | <0.50          |
| MW208<br>MW209 | 4.6-7.6    | 9/14/2018              | Water   | <0.50                      |                    |                     | <0.50                             |               | <0.50<br><0.50 | <20                 | <20                    | <2.0         | <0.50          | <0.50<br><0.50            | <0.50<br><0.50            | <0.50               | <0.50          | <0.50<br><0.50        | <0.50<br><0.50        | 0.69              | <5.0                   | <0.50          |
| MW209<br>MW210 | 4.6-7.6    | 9/14/2018              | Water   | <0.50                      | <5.0               | <0.50               | < 0.50                            | < 0.50        |                | <20                 | <20                    |              |                |                           |                           | <0.50               |                |                       |                       |                   | <5.0                   | <0.50          |
| DUP-W201       | 1.6-4.6    | 9/14/2018<br>9/14/2018 | Water   | <0.50<br><0.50             | <5.0<br><5.0       | <0.50<br><0.50      | <0.50<br><0.50                    | 5.97<br><0.50 | 4.94<br><0.50  | <20                 | <20<br><20             | <2.0<br><2.0 | <0.50<br><0.50 | <0.50<br><0.50            | <0.50<br><0.50            | <0.50<br><0.50      | 2.17<br><0.50  | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50    | <5.0<br><5.0           | <0.50<br><0.50 |
| TRIP BLANK     | 1.0-4.0    | 9/14/2018              | Water   | <0.50                      | <5.0               | <0.50               | <0.50                             | <0.50         | <0.50          | <20                 | <20                    | <2.0         | <0.50          | <0.50                     | <0.50                     | <0.50               | <0.50          | <0.50                 | <0.50                 | <0.50             | <5.0                   | <0.50          |



King City, ON. L7B 1H5 Phone# 905 833 1582, Fax# 905 833 5360

North:



## Legend:

...\_\_\_

Property Boundary



Monitoring Well



Borehole



Borehole/Monitroing Well with Exceedance



Borehole/Monitroing Well Meet Table 8

## Project Title:

Phase Two Environmental Site Assessment

## Site Location:

64, 66 Thomas Street, 95 Joymar Drive, 65 Tannery Street, Mississauga, ON

## Figure Title:

Groundwater Exceedances Plan(VOCs2)

| Scale:                | Project Number:<br>SP18-306-20 |
|-----------------------|--------------------------------|
| Date:<br>October 2018 | Figure Number:<br>6-c          |



|           |            |              | × ×             | BHIMME      | <b>⊗</b> bho |              |              |              | SHOW BHOWS E    | © EHMM   |            |
|-----------|------------|--------------|-----------------|-------------|--------------|--------------|--------------|--------------|-----------------|----------|------------|
|           |            |              |                 |             |              |              |              |              | BH211 BHINNES & | JOYMA    | R DR       |
|           |            |              |                 |             |              |              |              |              |                 |          |            |
| 1         |            |              | Analyte         | F1 (C6-C10) | F1-BTEX      | F2 (C10-C16) | F3 (C16-C34) | F4 (C34-C50) |                 |          |            |
|           | ALS        |              | Units           | ug/L        | ug/L         | ug/L         | ug/L         | ug/L         | 1               |          | ALS        |
|           |            |              | LOR             | 25          | 25           | 100          | 250          | 250          |                 |          |            |
| Sample ID | Screen (m) | Date Sampled | ON511-T8-GW-All | 420         | 4202         | 150          | 500          | 5003         | s               | ample ID | Screen (m) |
| MW E3     | 0.7-3.7    | 6/12/2018    | Water           | <25         | <25          | <100         | <250         | <250         | N               | MW-E11   | 1.6-4.6    |
| MW E4     | 1.6-4.6    | 6/12/2018    | Water           | <25         | <25          | <100         | <250         | <250         | N               | MW-E12   | 2.3-5.3    |
| MW E5     | 1.6-4.6    | 6/12/2018    | Water           | <25         | <25          | <100         | <250         | <250         | N               | MW-E13   | 2.0-5.0    |
| MW E9     | 1.2-4.2    | 6/12/2018    | Water           | <25         | <25          | <100         | <250         | <250         |                 | MW201    | 1.6-4.6    |
|           |            |              |                 |             |              |              |              | 2000         | _               |          |            |

MW E10

MW E6

MW E7

DUP-W2

MW-E1

MW-E2

MW-E6

MW-E8

1.6-4.6

1.6-4.6

0.9-2.4

1.6-4.6

2.6-5.6

1.6-4.6

1.6-4.6

0.9-2.4

1.9-4.9

6/12/2018

6/12/2018

6/12/2018

6/12/2018

6/13/2018

6/13/2018

6/13/2018

6/13/2018

6/13/2018

Water

Water

Water

Water

Water

Water

Water

Water

Water

62

<25

<25

67

<25

<25

<25

<25

<25

41

<25

<25

47

<25

280

<100

<100

280

<100

<100

<100

<100

<100

280

<250

<250

<250

<250

<250

<250

<250

<250

<250

<250

<250

<250

<250

<250

<250

<250

<250

|           |            |              | Analyte         | F1 (C6-C10) | F1-BTEX | F2 (C10-C16) | F3 (C16-C34) | F4 (C34-C50) |
|-----------|------------|--------------|-----------------|-------------|---------|--------------|--------------|--------------|
| ALS       |            |              | Units           | ug/L        | ug/L    | ug/L         | ug/L         | ug/L         |
|           |            |              | LOR             | 25          | 25      | 100          | 250          | 250          |
| Sample ID | Screen (m) | Date Sampled | ON511-T8-GW-All | 420         | 4202    | 150          | 500          | 5003         |
| MW-E11    | 1.6-4.6    | 6/13/2018    | Water           | 606         | -       | 1650         | <250         | <250         |
| MW-E12    | 2.3-5.3    | 6/13/2018    | Water           | <25         | -       | <100         | <250         | <250         |
| MW-E13    | 2.0-5.0    | 6/13/2018    | Water           | <25         |         | <100         | <250         | <250         |
| MW201     | 1.6-4.6    | 9/14/2018    | Water           | <25         | <25     | <100         | <250         | <250         |
| MW202     | 1.6-4.6    | 9/14/2018    | Water           | 486         | 483     | 400          | <250         | <250         |
| MW204     | 1.6-4.6    | 9/14/2018    | Water           | 10800 *     | 2900    | 1610         | <250         | <250         |
| MW206     | 1.6-4.6    | 9/14/2018    | Water           | <25         | <25     | <100         | <250         | <250         |
| MW207     | 1.6-4.6    | 9/14/2018    | Water           | 4190        | 3770    | 1400 *       | <250 *       | <250 *       |
| MW208     | 4.6-7.6    | 9/14/2018    | Water           | 34          | 33      | <100         | <250         | <250         |
| MW209     | 4.6-7.6    | 9/14/2018    | Water           | <25         | <25     | <100         | <250         | <250         |
| MW210     | 1.6-4.6    | 9/14/2018    | Water           | 1680        | 1630    | 1810 *       | <250 *       | <250 *       |
| DUP-W201  | 1.6-4.6    | 9/14/2018    | Water           | <25         | <25     | <100         | <250         | <250         |



King City, ON. L7B 1H5 Phone# 905 833 1582, Fax# 905 833 5360

North:



## Legend:

\_---

Property Boundary



Monitoring Well



Borehole



Borehole/Monitroing Well with Exceedance



Borehole/Monitroing Well Meet Table 8

## Project Title:

Phase Two Environmental Site Assessment


## Site Location:

64, 66 Thomas Street, 95 Joymar Drive,65 Tannery Street, Mississauga, ON

## Figure Title:

Groundwater Exceedances Plan(PHCs)

| Scale:                | Project Number: |
|-----------------------|-----------------|
| 0m 10 m 20 m          | SP18-306-20     |
|                       |                 |
|                       |                 |
| Date:<br>October 2018 | Figure Number:  |



|           |            |              | Analyte         | Total PCBs |
|-----------|------------|--------------|-----------------|------------|
|           | ALS        |              |                 | ug/L       |
|           |            |              | LOR             | 0.04       |
| Sample ID | Screen (m) | Date Sampled | ON511-T8-GW-All | 0.2        |
| MW E4     | 1.6-4.6    | 6/12/2018    | Water           | < 0.040    |
| MW E5     | 1.6-4.6    | 6/12/2018    | Water           | < 0.040    |



North:



## Legend:

\_---

Property Boundary



Monitoring Well



Borehole



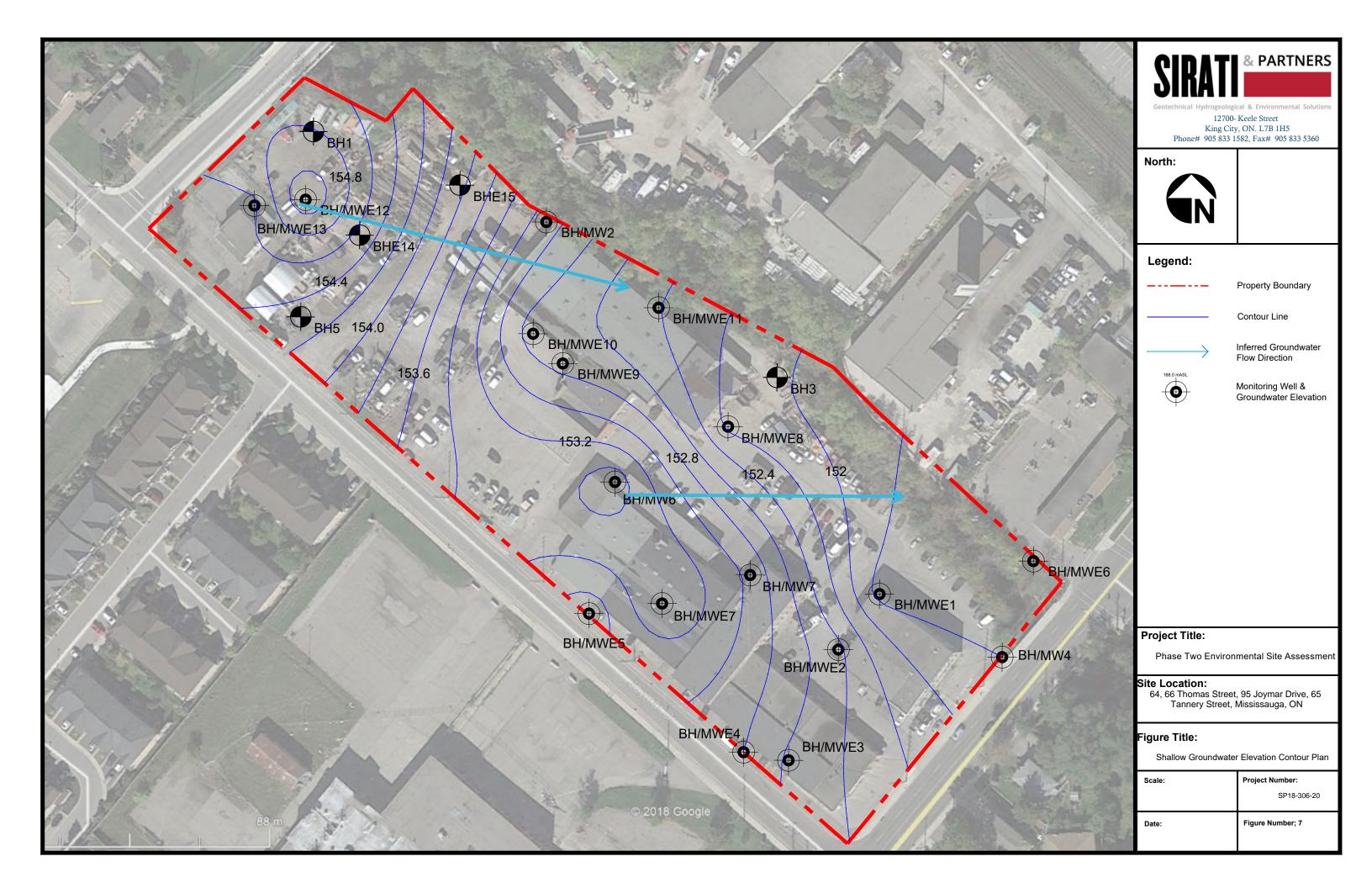
Borehole/Monitroing Well with Exceedance



Borehole/Monitroing Well Meet Table 8

## **Project Title:**

Phase Two Environmental Site Assessment


## Site Location:

64, 66 Thomas Street, 95 Joymar Drive, 65 Tannery Street, Mississauga, ON

## Figure Title:

Groundwater Exceedances Plan(PCBs)

| Scale:                | Project Number:       |
|-----------------------|-----------------------|
| 0m 10 m 20 m          | SP18-306-20           |
| Date:<br>October 2018 | Figure Number:<br>6-e |



# **APPENDICES**



# APPENDIX A



#### SAMPLING AND ANALYSIS PLAN

This Sampling and Analysis Plan is prepared for a Phase Two Environmental Site Assessment (Phase Two ESA) of the property located on the northwest side of Thomas Street, northeast side of Joymar Drive, and southeast side of Tannery Street in the City of Mississauga, Ontario as defined by Ontario Regulation (O. Reg.) 153/04, as amended. The Property has an area of approximately 2.74 ha (6.77 acres) and historically has been used for commercial purposes. It is understood that the Client is considering the future redevelopment of the Property. The site features and the location of the Phase Two Property are shown in Figure 1.

The Sampling and Analysis Plan is prepared based on the findings of our Phase One Environmental Site Assessment Update report:

"Phase One Environmental Site Assessment Proposed Redevelopment 64 And 66 Thomas Street, 9
Joymar Drive, And 65 Tannery Street, Mississauga, Ontario", Dated July 27, 2018, Prepared for Dezen
Realty Company Ltd. By SIRATI and Partners.

#### 1) OBJECTIVE

The purpose of the Phase Two ESA was to determine the soil and groundwater quality at the Property, as related to the following Areas of Potential Environmental Concerns (APECs) identified in the Phase One ESA:

| APEC   | Location of Potential Environmental Concern on Phase One Property | Potentially Contaminating<br>Activity                              | Location of<br>PCA (#) | Contaminants<br>of Potential<br>Concern | Media Potentially<br>Impacted<br>(Groundwater, soil<br>and/or sediment) |
|--------|-------------------------------------------------------------------|--------------------------------------------------------------------|------------------------|-----------------------------------------|-------------------------------------------------------------------------|
| APEC-1 | Northwest section<br>of the Property (65<br>Tannery Street)       | #28: Gasoline and<br>Associated Products Storage<br>in Fixed Tanks | On-Site<br>(PCA#1)     | PHCs/VOCs                               | Soil and Groundwater                                                    |
| APEC-2 | Northwest section<br>of the Property (65<br>Tannery Street)       | #28: Gasoline and<br>Associated Products Storage<br>in Fixed Tanks | On-Site<br>(PCA #2)    | PHCs/VOCs                               | Soil and Groundwater                                                    |
| APEC-3 | Central section of<br>the Property (95<br>Joymar Drive))          | #28: Gasoline and<br>Associated Products Storage<br>in Fixed Tanks | On-Site<br>(PCA#3)     | PHCs/VOCs                               | Soil and Groundwater                                                    |

| APEC    | Location of<br>Potential<br>Environmental<br>Concern on Phase<br>One Property | Potentially Contaminating<br>Activity                                                 | Location of<br>PCA (#) | Contaminants<br>of Potential<br>Concern | Media Potentially<br>Impacted<br>(Groundwater, soil<br>and/or sediment) |
|---------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------|-----------------------------------------|-------------------------------------------------------------------------|
| APEC-12 | South section of the<br>Property (66<br>Thomas Street)                        | #28: Gasoline and<br>Associated Products Storage<br>in Fixed Tanks                    | On-Site<br>(PCA#12)    | PHCs, VOCs                              | Soil and Groundwater                                                    |
| APEC-13 | Southeast section of<br>the Phase One<br>Property (64<br>Thomas Street)       | #28: Gasoline and<br>Associated Products Storage<br>in Fixed Tanks                    | On-Site<br>(PCA#13)    | PHCs, VOCs                              | Soil and Groundwater                                                    |
| APEC-14 | Southeast section of<br>the Phase One<br>Property (64<br>Thomas Street)       | #28: Gasoline and<br>Associated Products Storage<br>in Fixed Tanks                    | On-Site<br>(PCA#13)    | PHCs, VOCs                              | Soil and Groundwater                                                    |
| APEC-15 | Northeast section of<br>the Phase One<br>Property (95<br>Joymar Drive)        | #40: Pesticides Manufacturing, Processing, Bulk Storage and Large- Scale Applications | On-Site<br>(PCA#15)    | OCPs                                    | Soil                                                                    |
| APEC-16 | Northeast section of<br>the Phase One<br>Property (95<br>Joymar Drive)        | # 55: Transformer<br>Manufacturing, Processing<br>and Use                             | On-Site<br>(PCA#16)    | PHCs, VOCs,<br>M&I, PCBs                | Soil                                                                    |
| APEC-17 | South section of the<br>Phase One Property                                    | # 33: Metal Treatment,<br>Coating, Plating and<br>Finishing                           | On-Site<br>(PCA#17)    | PHCs, VOCs,<br>M&I                      | Soil and Groundwater                                                    |
| APEC-18 | Northwest section<br>of the Property (95<br>Joymar Drive)                     | # 48: Salt Manufacturing,<br>Processing and Bulk Storage                              | On-Site<br>(PCA#18)    | M&I                                     | Soil and Groundwater                                                    |
| APEC-19 | Phase One Property                                                            | #58: Not listed, Waste generators records                                             | On-Site<br>(PCA#17)    | PHCs, VOCs,<br>M&I                      | Soil and Groundwater                                                    |

| APEC    | Location of<br>Potential<br>Environmental<br>Concern on Phase<br>One Property | Potentially Contaminating<br>Activity                                   | Location of<br>PCA (#) | Contaminants<br>of Potential<br>Concern | Media Potentially<br>Impacted<br>(Groundwater, soil<br>and/or sediment) |
|---------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------|-----------------------------------------|-------------------------------------------------------------------------|
| APEC-20 | South section of the<br>Phase One Property                                    | #58: Not listed, Waste generators records                               | Off-Site<br>(PCA#20)   | PHCs, VOCs,<br>M&I, PCBs                | Soil and Groundwater                                                    |
| APEC-21 | Phase One Property                                                            | Not listed, Use of de-icing salts                                       | On-Site<br>(PCA#21)    | M&I                                     | Soil                                                                    |
| APEC-22 | East section of the<br>Phase One Property                                     | #28: Gasoline and<br>Associated Products Storage<br>in Fixed Tanks      | Off-Site<br>(PCA#22)   | PHCs                                    | Soil and Groundwater                                                    |
| APEC-23 | East section of the<br>Phase One Property                                     | #43: Plastics (including<br>Fibreglass) Manufacturing<br>and Processing | Off-Site (PCA#23)      | PHCs, VOCs                              | Soil and Groundwater                                                    |
| APEC-24 | East section of the<br>Phase One Property                                     | #58: Not listed, Waste generators records                               | Off-Site<br>(PCA#24)   | PHCs, VOCs,<br>M&I, PCBs                | Soil and Groundwater                                                    |

#### 2) SCOPE OF WORK

The scope of work for this Phase Two ESA included, but was not limited to the following tasks:

- Utility Locates: Prior to the advancement of the boreholes, arranged for the location of underground and overhead utilities including electrical (hydro), natural gas, water supply, sanitary and storm sewer, telephone, cable and communication. Underground utilities were marked by local utility locates company representatives, and a private locator was retained to clear the borehole locations prior to drilling of the boreholes;
- Drilled twenty-two (22) boreholes (denoted BH/MW2, BH3, BH5, BH/MW6, BH/MW7, BH/MW E1, BH/MW E2, BH/MW E4, BH/MW E5, BH/MW E6, and BH/MW E8 to BH/MW E15. Seventeen (17) of the boreholes [BH/MW2, BH/MW6, BH/MW7, and BH/MW E1 to BH/MW E13] were instrumented with monitoring wells. logged and field screened the soil samples through visual inspection and field measurement of total

organic vapours (TOV) of the soil samples, and the selection of soil samples for laboratory analysis;

- Collected 29 soil samples and 18 groundwater samples including duplicate and trip blank samples from boreholes/monitoring wells and submit the samples for chemical analysis.
- Three (3) duplicate samples from soil samples submitted for M&I, PCBs and PHCs analysis and from groundwater two (2) duplicate and one (1) trip blank sample, were submitted to the laboratory for PHCs, M7I and VOCs analysis.
- Submitted soil and groundwater samples under the Chain of Custody protocol to the accredited laboratories to carry out chemical analyses for contaminants of potential concern (COCs) in accordance with the O. Reg. 153/04 "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the MOE and dated March 9, 2004, as amended by the O. Reg. 511/09, s. 22 ("Analytical Protocol");
- Reviewed and interpreted laboratory results of chemical analysis data and observations made during the site investigations;
- Completed an evaluation of the information from the above and prepared a Phase Two
  Conceptual Site Model (CSM) to identify locations and concentrations of contaminants
  (if any) above the applicable Site Condition Standards at the Site; and
- Prepared a Phase Two ESA report of the investigation findings, conclusions and recommendations.

#### 3) RATIONALE OF BOREHOLE, TEST PIT AND MONITORING WELL LOCATIONS

The rationale for the selection of the borehole, and monitoring well locations is presented in the Table below:

| Area of Pot | tential Environmental Concern                                   | <b>Location on Site</b>                               | Borehole/MW ID             |
|-------------|-----------------------------------------------------------------|-------------------------------------------------------|----------------------------|
| APEC-1      | #28: Gasoline and Associated<br>Products Storage in Fixed Tanks | Northwest section of the Property (65 Tannery Street) | BH1, BH/MWE12,<br>BH/MWE13 |
| APEC-2      | #28: Gasoline and Associated<br>Products Storage in Fixed Tanks | Northwest section of the Property (65 Tannery Street) | BH1, BH/MWE12,<br>BH/MWE13 |
| APEC-3      | #28: Gasoline and Associated<br>Products Storage in Fixed Tanks | Central section of the Property (95 Joymar Drive))    | BH/MWE9,<br>BH/MWE10       |
| APEC4       | #28: Gasoline and Associated<br>Products Storage in Fixed Tanks | Central section of the Property (95 Joymar Drive))    | BH/MWE9,<br>BH/MWE10       |

| Area of Pot | tential Environmental Concern                                                              | Location on Site                                                  | Borehole/MW ID                    |
|-------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------|
| APEC-5      | #28: Gasoline and Associated<br>Products Storage in Fixed Tanks                            | Central section of the Property (95 Joymar Drive)                 | BH/MWE11                          |
| APEC-6      | #28: Gasoline and Associated<br>Products Storage in Fixed Tanks                            | Central section of the Property (95 Joymar Drive)                 | BH/MW E8, BH3                     |
| APEC-7      | #28: Gasoline and Associated<br>Products Storage in Fixed Tanks                            | South section of the Property (66<br>Thomas Street)               | BH/MW 6                           |
| APEC-8      | #28: Gasoline and Associated Products Storage in Fixed Tanks                               | South section of the Property (66<br>Thomas Street)               | BH/MW 6                           |
| APEC-9      | #10: Commercial Autobody<br>Shops                                                          | South section of the Property (66<br>Thomas Street)               | BH/MW 6                           |
| APEC-10     | #28: Gasoline and Associated Products Storage in Fixed Tanks                               | South section of the Property (66<br>Thomas Street)               | BH/MW E7,<br>BH/MW7               |
| APEC-11     | #10: Commercial Autobody<br>Shops                                                          | South section of the Property (66<br>Thomas Street)               | BH/MW E7,<br>BH/MW7               |
| APEC-12     | #28: Gasoline and Associated<br>Products Storage in Fixed Tanks                            | South section of the Property (66<br>Thomas Street)               | BH/MW E3,<br>BH/MW E4             |
| APEC-13     | #28: Gasoline and Associated<br>Products Storage in Fixed Tanks                            | Southeast section of the Phase One<br>Property (64 Thomas Street) | BH/MWE1,<br>BH/MWE2               |
| APEC-14     | #28: Gasoline and Associated<br>Products Storage in Fixed Tanks                            | Southeast section of the Phase One<br>Property (64 Thomas Street) | BH/MWE1,<br>BH/MWE2               |
| APEC-15     | #40: Pesticides Manufacturing,<br>Processing, Bulk Storage and<br>Large-Scale Applications | Northeast section of the Phase One<br>Property (95 Joymar Drive)  | BH/MWE12,<br>BH/MWE13<br>BH/MWE14 |
| APEC-16     | # 55: Transformer<br>Manufacturing, Processing and<br>Use                                  | Northeast section of the Phase One<br>Property (95 Joymar Drive)  | BH/MWE15                          |
| APEC-17     | # 33: Metal Treatment, Coating,<br>Plating and Finishing                                   | South section of the Phase One Property                           | BH/MWE1 to<br>BH/MWE7             |
| APEC-18     | # 48: Salt Manufacturing,<br>Processing and Bulk Storage                                   | Northwest section of the Property (95 Joymar Drive)               | BH/MW5                            |
| APEC-19     | #58: Not listed, Waste generators records                                                  | Phase One Property                                                | All the BH/MWs                    |
| APEC-20     | #58: Not listed, Waste generators records                                                  | Phase One Property                                                | All the BH/MWs                    |
| APEC-21     | Not listed, Use of de-icing salts                                                          | South portion of Phase One<br>Property                            | BH/MWE3,<br>BH/MWE4,<br>BH/MWE5   |
| APEC-22     | #28: Gasoline and Associated<br>Products Storage in Fixed Tanks                            | East section of the Phase One Property                            | BH/MWE6                           |

| Area of Pot | tential Environmental Concern                                           | <b>Location on Site</b>                   | Borehole/MW ID |
|-------------|-------------------------------------------------------------------------|-------------------------------------------|----------------|
| APEC-23     | #43: Plastics (including<br>Fibreglass) Manufacturing and<br>Processing | East section of the Phase One<br>Property | BH/MWE6        |
| APEC-24     | #58: Not listed, Waste generators records                               | East section of the Phase One<br>Property | BH/MWE6        |

# 4) SAMPLES (INCLUDING QA/QC SAMPLES) ANALYTICAL SCHEDULE

A summary of soil and groundwater samples (including QA/QC samples) submitted for chemical analysis is presented in the Table below:

Soil Samples and Chemical Analysis Performed

| <u> </u>  | Chemical Analysis | Sample Depth | Parameter Analysed (O. Reg. 153/04 |
|-----------|-------------------|--------------|------------------------------------|
| Sample ID | Date              | (mbgs)       | as amended)                        |
| BH2-SS3   | April 30, 2018    | 1.5-2.1      | PHCs                               |
| BH6-SS5   | 1 2010            | 3.1-3.7      | PHCs                               |
| BH5-SS1   | May 1, 2018       | 0-0.6        | M&I                                |
| BHE5-SS2  |                   | 0.8-1.4      | PCBs                               |
| BHE15-SS3 |                   | 1.5-2.1      | PCBs                               |
| BHE4-SS2  |                   | 0.8-1.4      | PCBs                               |
| BHE14-SS3 |                   | 1.5-2.1      | M&I                                |
| BHE5-SS3  |                   | 1.5-2.1      | M&I                                |
| BHE4-SS4  |                   | 2.3-2.9      | M&I                                |
| BHE15-SS2 | ]                 | 0.8-1.4      | M&I                                |
| BHE15-SS5 | ]                 | 3.1-3.7      | PHCs, VOCs                         |
| BHE14-SS1 | ]                 | 0-0.6        | OCPs                               |
| DUP-S1    | ]                 | -            | Metals                             |
| DUP-S2    | May10, 2018       | -            | PCBs                               |
| BHE6-SS4  |                   | 2.3-2.9      | PHCs, VOCs                         |
| BHE11-SS2 | ]                 | 0.8-1.4      | PHCs                               |
| BHE1-SS4  | ]                 | 2.3-2.9      | PHCs                               |
| BHE8-SS5  |                   | 3.1-3.7      | PHCs                               |
| BHE2-SS4  |                   | 2.3-2.9      | PHCs                               |
| BHE10-SS5 |                   | 3.1-3.7      | PHCs                               |
| BHE4-SS2  |                   | 0.8-1.4      | PHCs, VOCs                         |
| BHE9-SS2  |                   | 0.8-1.4      | PHCs                               |
| BH13-SS1  |                   | 0-0.6        | PHCs                               |
| BHE12-SS2 |                   | 0.8-1.4      | PHCs                               |
| BHE5-SS4  |                   | 0-0.6        | PHCs, VOCs                         |
| BH3-SS5   |                   | 3.1-3.7      | PHCs                               |
| BH7-SS1   | June 5, 2018      | 0-0.6        | M&I                                |
| BH7-SS3   | June 3, 2010      | 1.5-2.1      | PHCs                               |
| DUP-S3    |                   | -            | PHCs                               |

# **Groundwater Samples and Chemical Analysis Performed**

| Sample ID  | Parameter Analysed (O.Reg.153/04 as amended) |
|------------|----------------------------------------------|
| MWE3       | PHCs & BTEX                                  |
| MWE4       | M&I, PHCs (F1-F4), VOCs, and PCBs            |
| MWE5       | M&I, PHCs (F1-F4), VOCs, and PCBs            |
| MWE9       | PHCs & BTEX                                  |
| MWE10      | PHCs & BTEX                                  |
| MW6        | PHCs & BTEX                                  |
| MW7        | PHCs & BTEX                                  |
| Dup-W2     | PHCs & BTEX                                  |
| MWE1       | PHCs                                         |
| MWE2       | M&I, PHCs (F1-F4)                            |
| MWE6       | PHCs & VOCs                                  |
| MWE7       | M&I, PHCs (F1-F4)                            |
| MWE8       | PHCs                                         |
| MWE11      | PHCs                                         |
| MWE12      | PHCs                                         |
| MWE13      | PHCs                                         |
| DUP-W1     | M&I                                          |
| Trip Blank | VOCs                                         |

# 5) SOIL SAMPLING PROCEDURES

SIRATI's Standard Operation Procedures (SOPs) will be followed throughout the field investigation (sampling, decontamination of equipment, observation and documentation) including field QA/QC program. SPCL's Standard Operating Procedure is presented in section 7 of this sampling and analysis plan.

#### 6) DATA OUALITY OBJECTIVES

Sampling and decontamination procedures including QA/QC program should be carried out in accordance with:

- SIRATI's Standard Operating Procedures, as presented in the section 7 below Sampling and Analysis Plan.
- The "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", May 1996, revised December 1996, as amended by O. Reg. 511/09.

Laboratory analytical methods, protocols and procedures should be carried out in accordance with the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act", dated March 9, 2004, amended as of July 1, 2011, in accordance with O.Reg. 1531/04 and O. Reg. 269/11.

#### **Standard Operating Procedure**

This Sampling and Analysis Plan is prepared for a Phase Two Environmental Site Assessment (Phase Two) as defined by Ontario Regulation (O. Reg.) 153/04, as amended.

# STANDARD OPERATING PROCEDURES (SOPs)

# 1. Drilling and Test Pit Excavation

#### 1.1 Underground Utilities

Prior to drilling or test pit excavation, the public utility service (One Call) and private utility services are contacted. The underground utility services are located and marked out in the field.

#### 1.2 Test Pit and Trenches

Test pits and trenches are the simplest methods of observing subsurface soils. They consist of excavations performed by hand, backhoe, or dozer. Hand excavations are often performed with posthole diggers or shovels. They offer the advantages of speed and ready access for sampling. They are severely hampered by limitations of depth; and they cannot be used in soft or loose soils, boulders or below the water table.

Upon completion, the excavated test pit should be backfilled with the excavated material or other suitable soil material. The backfilled material should be compacted to avoid excessive future settlements. Tampers or rolling equipment may be used to facilitate compaction of the backfill. Excavations within existing roadways should be backfilled with granular material and compacted in lifts to restore subgrade support and the pavement should be properly patched.

Any test pit or excavated area located near planned structure footings or pavement must be surveyed to determine the precise location of the excavation. This information must be presented in Construction Plans and Special Provisions to ensure the area will be re-excavated and properly compacted to the extent required. In the case of test pits excavated through existing pavements, the pavement should be properly patched. The backfilled material should be compacted to avoid excessive future settlements. Tampers or rolling equipment may be used to facilitate compaction of the backfill. Excavations within existing roadways should be backfilled with granular material and compacted in lifts to restore subgrade support.

Where pits are located in agricultural areas or other areas used to support plant growth, the backhoe operator should be instructed to keep the topsoil (or at least the finer upper-layer of the profile) and overburden separate from any gravel encountered in the pit. Upon completion of the pit, the operator should backfill in a sequence (generally with the coarsest material in the bottom of the pit) such that the backfilled pit area is re-established to support vegetation.

# 1.3 Drilling Methods

# Solid Flight Auger Borings

Auger borings are advanced into the ground by rotating the auger while simultaneously applying a downward force using either hydraulic or mechanical pressure. The auger is advanced to the desired depth and then withdrawn. Samples of cuttings can be removed from the auger; however, the depth of the sample can only be approximated. These samples are disturbed and should be used only for material identification.

This method is generally used to establish shallow soil strata and water table elevations, or to advance to the desired stratum before Standard Penetration Testing (SPT) or undisturbed sampling is performed. However, it cannot be used effectively in soft or loose soils below the water table. In addition, this method has limited capabilities in dense, rocky material where it may encounter refusal. See ASTMD 1452 (AASHTO T 203).

A solid stem auger consists of a pipe with spiral flanges welded to the pipe. Each section of auger is referred to as a flight. Flights are typically 1.5 m long, but may be longer depending on the manufacturer. A pin is placed at the junction of each auger flight connecting one to the next.

Solid stem augers capable of drilling a hole as large as 1m in diameter are available; however, these larger sizes are not common.

The first auger flight is equipped with a bit with cutters or teeth for cutting through hard, usually consolidated formations. The cutter head is usually slightly larger than the flights.

The auger flights are turned by means of a rotary drive head mounted on a hydraulic feed system that pushes down or pulls back on the flight. The cuttings are brought to the surface by the flights which act as a screw conveyor. As the hole is advanced, more auger flights are added until the hole reaches the desired depth.

To obtain split-spoon samples from solid stem auger borings. The augers must be completely withdrawn at each sampling depth.

Solid stem augers are usually used to advance a hole in stable formations. This method is not effective in unconsolidated material or below the water table because the borehole will collapse when the flights are removed. Solid stem augers are generally not used for installation of monitoring wells and the PM must be consulted if solid stem auger must be used for well installation.

# Hollow- Stem Auger Borings

A hollow-stem auger consists of a continuous flight auger surrounding a hollow drill stem. A central "plug", or "butterfly" bit, at the end of a drill rod is used to prevent soil from entering the hollow stem as the hole is advanced between samples. The hollow-stem auger is advanced in a manner similar to Solid Flight Auger; however, removal of the hollow-stem auger is not necessary for sampling. The "plug", or "butterfly" bit, is removed and samples are obtained through the hollow drill stem, which acts like a casing to hold the hole open. This increases usage of hollow-stem augers in soft and loose soil. Usually no drilling mud is required, which could otherwise interfere with accurate groundwater level readings. In addition, this method of drilling is extremely fast, cost effective, and requires little to no water.

Below the water table, removal of the center "plug", or "butterfly" bit, can disturb sand and affect the validity of the SPT. When this condition develops in leading to questionable SPT results, you may add water or drill mud to the inside of the stem to create a reverse head of water and prevent heaving. Water should also be added to the borehole while auguring clayey soils to help prevent "baking" of the material due to the heat generated during rapid advancement of the augers. This "baking" of clay soils can adversely affect the permeability of the subsurface material. Another disadvantage of this method is that refusal may prematurely be encountered in boulders or dense rocky soils. See ASTM D 6151 (AASHTO T 251).

The flights of a hollow stem auger are welded onto a larger diameter pipe which allows drill rods to pass through the centre of the flight. The flights are typically 1.5 m long. A centre plug, or pilot assembly, is inserted in the hollow centre to prevent soil from coming up into the auger during drilling. The centre plug can have a bit attached that helps to advance the auger.

The first auger flight is equipped with a bit with cutters or teeth for cutting through hard formations. The cutter teeth are usually significantly larger than the flights. The centre plug and drill rods can connect through the auger flights to the top-head drive in order to assure that the drill rods and plug rotate with the flights. If using a split-spoon sampler as a centre plug, the sampler must be removed and cleaned prior to sampling. Hollow stem auger flights are advanced in the same manner as are solid stem augers. Hollow stem augers are available with O.D. diameters ranging approximately 15 cm to 55cm.

Hollow stem augers are more versatile than solid stem augers because: they can act as temporary casing to prevent caving and sloughing of the borehole wall; they allow soil samples to be obtained more easily and accurately; small diameter monitoring wells can be installed and sand/gravel packed without the use of casing or drilling fluids; they can be used to drill through unconsolidated formations and below the water table.

# Wash Borings

In this method, the boring is advanced by a combination of the chopping action of a light "Fishtail" bit and the jetting action of water flowing through the bit. This method is used only when precise soil information is not required between sample intervals in loose, fine granular material. Generally, casing is required to stabilize the walls of the borehole. Large quantities of water are required for this method of drilling. Generally, there are better, more efficient methods available to drill a borehole.

# Mud Rotary Drilling

This method consists of using a rotary drill with rotating thick-walled, hollow, drill rods usually attached to a tri-cone bit. Drilling-mud is circulated from a mud tub, and then through the drilling rods as the drill rod is advanced. The drilling mud lifts the drilling cuttings out of the borehole while maintaining hole stability. The drill cuttings are screened and separated from the drilling mud, which is then recirculated. To collect a sample, the drill rods and bit are pulled out of the hole and are replaced with drill rods and the required sampling device. This method is fast, and provides excellent sampling and in situ testing data due to minimal disturbance to the soils at the bottom of the borehole prior to sampling. It is effective in all soil types except for very gravelly material with cobbles and boulders. No information can be reliably obtained about groundwater levels during the drilling operation, and the soil material between sampling intervals is difficult to observe from the drilling mud return.

#### Air Drilling

This type of drilling uses compressed air to remove cuttings from the borehole as the drill bit is advanced. Both rotary or percussion techniques can be utilized and either open hole (rotary reverse circulation) or under-reamed casing advancement (ODEX) can be used in the drilling process. SPT samples can be obtained; however, the materials between samples are highly disturbed. This type of drilling is generally

fast, but expensive, and is most useful when drilling deep holes in dense gravels and boulders where traditional Hollow Stem Auger and Mud Rotary techniques cannot drill or sample.

#### Direct Push

Direct push is a drilling and sampling technique where the tools are driven into the ground. No rotation is involved so all the samples are uncontaminated and there is no drilling debris on the surface. The main application for this method is for drilling various soils, clays and sands both consolidated and unconsolidated. It allows the driller to take a core sample sealed inside a plastic tube so that no handling of the sample takes place. Clean disposal samples tubes must be used for every sample and never reused. Installation of monitoring wells in direct push drilling boreholes where casing is used is acceptable. This method does have limitation when drilling at depth and in hard/stiff formations. Generally, SPT is not completed using a direct push drilling rig and as such is generally not used for geotechnical investigations.

# Drilling Techniques for Heaving /Flowing Sand

The drilling techniques used to advance the auger column within heaving sands may vary greatly from those techniques used when drilling in unsaturated materials. Problems may occur when a borehole is advanced to a desired depth without the use of drilling fluids for the purpose of either sampling the formation or installing a monitoring well. As the pilot assembly, or centre plug, is retracted, the hydrostatic pressure within the saturated sand forces water and loose sediments to rise inside the hollow centre of the auger column. These sediments can rise several metres inside the lower auger sections. The resulting "plug" of sediment inside the hollow auger column can interfere with the collection of formation samples, the installation of the monitoring well or even additional drilling.

The difficulties with heaving sands may be overcome by maintaining a positive pressure head within the auger column. A positive pressure head can be created by adding a sufficient amount of clean water or other drilling fluid inside the hollow stem. Clean 'potable' water (e.g., water that does not contain analytes of concern to a monitoring program) is usually preferred as the drilling fluid in order to minimize potential interference with samples collected from the completed well.

The head of clean water inside the auger column must exceed the hydrostatic pressure within the sand formation to limit the rise of loose sediments inside the hollow-stem. Where the saturated sand formation is unconfined, the water level inside the auger column is maintained above the elevation of the water table. Where the saturated sand formation is confined, the water level inside the auger column is maintained above the potentiometric surface of the formation. If the potentiometric surface of the formation rises above the ground elevation, however, the heaving sand problem may be very difficult to counteract and may represent a limitation to the use of the drilling method.

# 1.4 Occupational Health and Safety

Prior to drilling, the site is inspected to ensure that no potentially hazardous material is present near/around the drilling area. Safety procedures are reviewed and a safety check of the equipment is conducted including locating the emergency stop button on the drill rig, checking personal protective equipment (hard hats,

safety shoes, eye/ear protection), locating the first aid kit and confirming the location of the nearest hospital, and verifying the standard procedure in case of injury.

# 1.5 Drilling Spoils

Excess soil generated during sampling and drilling procedure is stored at the site in metal barrels. If the analytical results indicate the soil is contaminated, a licensed disposal company is notified to collect the barrels of soil for proper disposal

#### 1.6 Borehole Abandonment

After drilling, logging and/or sampling, boreholes will be backfilled by the method described below:

- Bentonite is thoroughly mixed into the grout within the specified percentage range. The tremie grout is usually placed into the hole; however, for selected boreholes (e.g., shallow borings well above the water table) at certain sites, the grout may be allowed to free fall, taking care to ensure the grout does not bridge and form gaps or voids in the grout column.
- The volume of the borehole is calculated and compared to the grout volume used during grouting to aid in verifying that bridging did not occur.
- When using a tremie to place grout in the borehole, the bottom of the tremie is submerged into the grout column and withdrawn slowly as the hole fills with grout. If allowing the grout to free fall (and not using a tremie), the grout is poured slowly into the boring. The rise of the grout column is visually monitored or sounded with a weighted tape.
- If the method used to drill the boring utilized a drive casing, the casing is slowly extracted during grouting such that the bottom of the casing does not come above the top of the grout column.
- During the grouting process, no contaminating material (oil, grease, or fuels from gloves, pumps, hoses, et. al) is permitted to enter the grout mix and personnel wear personal protective equipment as specified in the Project Health and Safety Plan.
- Following grouting, barriers are placed over grouted boreholes as the grout is likely to settle in time, creating a physical hazard. Grouted boreholes typically require at least a second visit to 'top off' the hole.
- The surface hole condition should match the pre-drilling condition (asphalt, concrete, or smoothed flush with native surface), unless otherwise specified in the project work plans.

# 1.7 Subsurface Obstruction

Where refusal to drilling occurs due to rock, foundation or underground services, and the borehole is relocated within 2.0 m downstream from the original borehole location.

# 2. Soil Sampling

#### 2.1 Introduction

Soil sampling is conducted in accordance with the "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario, May 1996" as revised December 1996 (MOE Guidance Manual) and as amended by O. Reg. 366/05, 66/08, 511/09, 245/10, 179/11, 269/11 and 333/13. The sampling procedures are described herein.

# 2.2 Drilling Rig Decontamination

#### Geoprobe

One-time use Shelby tube (thin-walled) samples are recovered from the boreholes in clear disposable PVC liners to prevent cross-contamination.

#### ➤ CME 55

Drilling equipment such as drill rigs, augers, drill pipes, drilling rods and split-spoons are decontaminated prior to initial use, between borehole locations and at the completion of drilling activities. The drilling equipment is manually scrubbed with a brush using a phosphate-free solution and thoroughly steam cleaned and/or power washed to remove any foreign material and potential contaminants. In addition, the split-spoon sampler and any sub-sampling equipment are decontaminated prior to each usage. Various solutions are used for sampling equipment decontamination as described below:

- Phosphate-free soap solution (i.e., Alconox), tap water and distilled water are used for suspected petroleum hydrocarbon soil sampling.
- A reagent-grade methanol solution and distilled water are used for suspected VOCs soil sampling.
   The reinstate waste is collected.
- Reagent-grade 10% nitric acid solution and distilled water are used for suspected metals soil sampling. The reinstate waste will be collected.

#### 2.3 Sample Logging and Field Screening

Samples are typically collected at 1.5 m intervals in the overburden. Tactile examination of the samples is made to classify the soil, and a log is recorded for each borehole detailing the physical characteristics of the soil including colour, soil type, structure, and any observed staining or odour. The organic vapour readings, the moisture content of the samples as determined in the laboratory, the groundwater and cave-in levels measured at the time of investigation, and the groundwater monitoring well construction details are given on the borehole logs.

#### 2.4 Field Screening and Calibration Procedures

The soil samples are classified based on physical characteristics including colour, soil type, moisture, and visible observation of staining and/or odour. In addition, the organic vapour reading for each soil sample is determined using a gas detector. Based on the overall soil physical characteristics, representative soil sample are selected for chemical analysis.

The organic vapour readings are measured using a portable RKI Eagle gas detector, TYPE 101 set to include all gases, and having a minimum detection of 2 ppm. Prior to Sampling and Analysis Plan measurement, the detector is calibrated using a Hexane 40% LEL gas. The allowable range of calibration is 38% to 42%.

# 2.5 Soil Sampling

The soil from the disposable sampler liner is handled using new disposable gloves in order to avoid the risk of cross-contamination between the samples. Sufficient amounts of the soil samples are placed into clean glass jars with Teflon lined lids for analyses of polychlorinated biphenyls, polyaromatic hydrocarbons, moisture content, medium to heavy PHCs, and metals and inorganics.

Small amounts of the soil samples are collected using a disposable 'T'-shaped Terracore sampler and stored in methanol or sodium bisulfate vials for light PHCs (CCME F1) and VOCs analysis, respectively; the remainder of the samples is placed into a sealable bag for vapour measurement and soil classification. The samples are stored in an insulated container with ice after sampling and during shipment to the laboratory.

The minimum requirements for the number, type and frequency of field quality control are given below:

- Field Blanks: Field blank samples for VOCs analysis are prepared to confirm that no contamination takes place during the soil sampling procedure.
- Field Duplicates: At least 1 field duplicate sample is collected and submitted for laboratory analysis for every 10 soil samples that are collected to ensure the soil sampling technique is accurate.

# 3. Well Installation and Groundwater Sampling

#### 3.1 Introduction

Well installations will be conducted by a licensed well driller, in accordance to O.Reg. 903. The well installation procedures are described herein.

# 3.2 Screen and Riser Pipe

Monitoring wells are constructed from individually wrapped 38 or 50 mm inside diameter (ID) schedule 40 polyvinyl chloride (PVC) flush threaded casing equipped with O-rings. The screen consists of casing material which is factory slotted (slot width = 0.25 mm) to permit the entry of water into the well. The bottom of the screens is equipped with threaded end caps. The appropriate number of risers is coupled with the screen section(s) via threaded joints to construct the well. The top of the wells are tightly capped using a locking well cap, which prevents the infiltration of surface water and foreign material into the well and also provides security. A watertight, traffic-rated protective casing is installed over each monitoring well within a concrete pad extending approximately 0.5 mbgs. No PVC cements or other solvent based cements are used in the construction of the monitoring wells.

#### 3.3 Well Materials Decontamination

Dedicated sampling equipment, such as submersible pumps, are decontaminated prior to installation inside monitoring wells. Where factory-cleaned, hermetically sealed materials are used, no decontamination is conducted.

#### Setting Screen, Riser Casings and Filter Materials

At total depth, the soil cuttings are removed through circulation or rapidly spinning the augers prior to constructing the well. The drill pipe and bit or centre bit boring is removed. The well construction materials are then installed inside the open borehole or through the centre of the drive casing or augers.

After the monitoring well assembly is lowered to the bottom of the borehole, the filter pack is added until its height is approximately two feet above the top of the screen, and placement is verified. The filter pack is then surged using a surge block or swab in order to settle the pack material and reduce the possibility of bridging.

# Setting Seals and Grouting

Once the top of the filter pack is verified to be in the correct position, a bentonite seal is placed above the filter pack. The seal is allowed to hydrate for at least one hour before proceeding with the grouting operation.

After hydration of the bentonite seal, grout is then pumped through a tremie pipe and filled from the top of the bentonite seal upward. The bottom of the tremie pipe should be maintained below the top of the grout to prevent free fall and bridging. When using drive casing or hollow-stem auger techniques, the drive casing/augers should be raised in incremental intervals, keeping the bottom of the drive casing/augers below the top of the grout. Grouting will cease when the grout level has risen to within approximately one to two feet of the ground surface, depending on the surface completion type (flush-mount versus above-ground). Grout levels are monitored to assure that grout taken into the formation is replaced by additional grout.

# Capping the Wells

For above-ground completions, the protective steel casing will be centered on the well casing and inserted into the grouted annulus. Prior to installation, a 2-inch deep temporary spacer may be placed between the PVC well cap and the bottom of the protective casing cover to keep the protective casing from settling onto the well cap. A minimum of 24 hours after grouting should elapse before installation of the concrete pad and steel guard posts for aboveground completions, or street boxes or vaults for flush mount completions. For above-ground completions, a concrete pad, usually 3-foot by 3-foot by 4-inch thick, is constructed at ground surface around the protective steel casing. The concrete is sloped away from the protective casing to promote surface drainage from the well.

For flush-mount (or subgrade) completions, a street box or vault is set and cemented in position. The top of the street box or vault will be raised slightly above grade and the cement sloped to grade to promote surface drainage away from the well.

# **Documentation of Monitoring Well Configuration**

The following information is recorded:

- Length of well screen
- Total depth of well boring

- Depth from ground surface to top of grout or bentonite plug in bottom of borehole (if present)
- Depth to base of well string
- Depth to top and bottom of well screen

# APPENDIX B





PROJECT: Proposed Slope Stability & Erosion Assessment Study

CLIENT: DE SEN REALTY COMPANY LTD.

Method: Solid Stem Augers

PROJECT LOCATION: 66 Thomas Street, Mississauga, ON Diameter: 150 mm REF. NO.: SP18-306-10

DATUM: Geodetic Date: Apr/30/2018 ENCL NO.: 2

|               | M: Geodetic                                                         |             |        |                |                |                            |                 |          |         | 0/2018         |            |         |      |                         |       | ΕN        | NCL N                   | J.: 2                     |                            |                        |
|---------------|---------------------------------------------------------------------|-------------|--------|----------------|----------------|----------------------------|-----------------|----------|---------|----------------|------------|---------|------|-------------------------|-------|-----------|-------------------------|---------------------------|----------------------------|------------------------|
| BH LO         | CATION: See Drawing 1                                               |             | 1      |                |                | 1                          |                 | Drillin  | g Con   | tractor:       | :<br>JETP^ | MOIT    |      | 1                       |       |           |                         |                           |                            |                        |
|               | SOIL PROFILE                                                        |             | S      | AMPL           | .ES            | e.                         |                 | RESIS    | TANCE   | NE PEN<br>PLOT | $\geq$     | -       |      | PLASTI<br>LIMIT         | C NAT | URAL      | LIQUID<br>LIMIT         |                           | W                          | CHEMICA<br>ANALYSI     |
| (m)           |                                                                     | ٥<br>ا      |        |                | (0)            | /ATE                       | _               |          |         | 0 6            |            | 1       | 00   | LIMIT<br>W <sub>P</sub> | CON   | TENT<br>W | LIMIT<br>W <sub>L</sub> | Pa)                       | UNIT (°                    | AND                    |
| ELEV<br>DEPTH | DESCRIPTION                                                         | STRATA PLOT | <br>   |                | BLOWS<br>0.3 m | GROUND WATER<br>CONDITIONS | ELEVATION       |          | AR STI  | RENG           |            | FIÉLD \ | /ANE | ₩P                      |       | <br>o——   | I                       | POCKET PEN.<br>(Cu) (kPa) | NATURAL UNIT WT<br>(KN/m³) | GRAIN SIZ<br>DISTRIBUT |
| DEPTH         |                                                                     | RAT         | NUMBER | TYPE           |                | SOUN                       | EVA             | • Q      | UICK TE | RIAXIAL        | . ×        | LAB V   | ANE  |                         |       | ONTEN     | T (%)                   | <u>a</u> .                | MAT                        | (%)                    |
| 156.7         | FILL cond and manual to the cond                                    | ST          | Įź     |                | ž              | 5 G                        | =               | 2        | 20 4    | 0 6            | 0          | 80 1    | 00   | 1 1                     | 0 2   | 20 3      | 30                      |                           |                            | GR SA SI               |
| 0.0           | FILL: sand and gravel to clayey silt, trace construction debris and |             |        |                |                |                            |                 | -        |         |                |            |         |      |                         |       |           |                         |                           |                            |                        |
|               | topsoil, dark brown, moist                                          |             | 1      | SS             | 22             |                            |                 | -        |         |                |            |         |      |                         | 0     |           |                         |                           |                            |                        |
|               |                                                                     | $\bowtie$   |        |                |                |                            |                 | ļ        |         |                |            |         |      |                         |       |           |                         |                           |                            |                        |
|               |                                                                     | $\otimes$   |        |                |                |                            | 156             |          |         |                |            |         |      |                         |       |           |                         |                           |                            |                        |
|               | becoming clayey silt , some sand,                                   |             |        |                |                | 1                          | 100             | _        |         |                |            |         |      |                         |       |           |                         |                           |                            |                        |
|               | trace gravel, trace topsoil, dark brown                             |             | 2      | SS             | 12             |                            |                 | ŀ        |         |                |            |         |      |                         | 0     |           |                         |                           |                            |                        |
|               |                                                                     | $\bowtie$   |        |                |                |                            |                 | -        |         |                |            |         |      |                         |       |           |                         |                           |                            |                        |
|               |                                                                     | $\otimes$   |        |                |                |                            |                 | -        |         |                |            |         |      |                         |       |           |                         |                           |                            |                        |
|               |                                                                     | $\otimes$   |        |                |                |                            |                 | -        |         |                |            |         |      |                         |       |           |                         |                           |                            |                        |
|               |                                                                     |             | 3      | SS             | 5              |                            | 155             |          |         |                |            |         |      |                         | ,     |           |                         |                           |                            |                        |
|               |                                                                     | $\times$    |        |                |                | 1                          |                 | -        |         |                |            |         |      |                         |       |           |                         |                           |                            |                        |
|               |                                                                     | $\bowtie$   |        |                |                |                            |                 | -        |         |                |            |         |      |                         |       |           |                         |                           |                            |                        |
|               |                                                                     | $\otimes$   |        |                |                |                            |                 | -        |         |                |            |         |      |                         |       |           |                         |                           |                            |                        |
|               |                                                                     | $\otimes$   | 4      | SS             | 4              |                            |                 | -        |         |                |            |         |      |                         |       | •         |                         |                           |                            |                        |
|               |                                                                     |             |        |                |                |                            | 154             |          |         |                |            |         |      |                         |       |           |                         |                           |                            |                        |
|               |                                                                     | $\bowtie$   |        |                |                |                            |                 |          |         |                |            |         |      |                         |       |           |                         |                           |                            |                        |
|               |                                                                     | $\otimes$   |        |                |                |                            |                 | ŀ        |         |                |            |         |      |                         |       |           |                         |                           |                            |                        |
|               |                                                                     | $\otimes$   | 5      | SS             | 5              |                            |                 | -        |         |                |            |         |      | c                       |       |           |                         |                           |                            |                        |
|               |                                                                     | $\otimes$   |        |                |                |                            |                 | -        |         |                |            |         |      |                         |       |           |                         |                           |                            |                        |
|               |                                                                     | $\bowtie$   |        |                |                |                            |                 | -        |         |                |            |         |      |                         |       |           |                         |                           |                            |                        |
|               | at 2.0 m. avinding naise                                            | $\otimes$   |        |                |                |                            | 153             |          |         |                |            |         |      |                         |       |           |                         | 1                         |                            |                        |
|               | at 3.8 m, grinding noise                                            | $\otimes$   |        |                |                |                            |                 |          |         |                |            |         |      |                         |       |           |                         |                           |                            |                        |
|               |                                                                     | $\otimes$   |        |                |                |                            |                 | ŀ        |         |                |            |         |      |                         |       |           |                         |                           |                            |                        |
|               |                                                                     | $\otimes$   |        |                |                |                            |                 | -        |         |                |            |         |      |                         |       |           |                         |                           |                            |                        |
| 52.1          |                                                                     | $\otimes$   |        |                |                |                            |                 | -        |         |                |            |         |      |                         |       |           |                         |                           |                            |                        |
| 4.6           | RESIDUAL SOIL/WEATHERED SHALE BEDROCK: grey, moist                  |             | _      | 00             | 96/            |                            | 152             |          |         |                |            |         |      |                         |       |           |                         |                           |                            |                        |
|               | OHALL BEBROOK, grey, moist                                          |             | 6      | SS             | 228<br>mm      |                            |                 | -        |         |                |            |         |      |                         |       | 0         |                         |                           |                            |                        |
|               |                                                                     |             |        |                |                |                            |                 | -        |         |                |            |         |      |                         |       |           |                         |                           |                            |                        |
|               |                                                                     |             |        |                |                |                            |                 | -        |         |                |            |         |      |                         |       |           |                         |                           |                            |                        |
|               |                                                                     |             |        |                |                |                            |                 | -        |         |                |            |         |      |                         |       |           |                         |                           |                            |                        |
|               |                                                                     |             |        |                |                |                            |                 | -        |         |                |            |         |      |                         |       |           |                         |                           |                            |                        |
|               |                                                                     |             |        |                |                | $\nabla$                   | 151             | 150.0    | _       |                |            |         |      |                         |       |           |                         |                           |                            |                        |
| 50.6          |                                                                     |             |        |                |                |                            | W. L.<br>Apr 30 |          |         |                |            |         |      |                         |       |           |                         |                           |                            |                        |
| 6.1           | WIFERRED BEDROCK Shale,<br>Georgian Bay Formation, grey             | /           | $\Box$ | \ <u>S</u> S_/ | 50/<br>25      |                            |                 |          |         |                |            |         |      | 1                       |       |           |                         |                           |                            |                        |
| 0.1           | END OF BOREHOLE:                                                    |             |        |                | mm             |                            |                 |          |         |                |            |         |      |                         |       |           |                         |                           |                            |                        |
|               | Notes:                                                              |             |        |                |                |                            |                 |          |         |                |            |         |      |                         |       |           |                         |                           |                            |                        |
|               | Borehole open upon completion of drilling.                          |             |        |                |                |                            |                 |          |         |                |            |         |      |                         |       |           |                         |                           |                            |                        |
|               | 2. Auger refusal at 6.13 m Depth.                                   |             |        |                |                |                            |                 |          |         |                |            |         |      |                         |       |           |                         |                           |                            |                        |
|               | Water encountered at 5.84 m upon completion of drilling.            |             |        |                |                |                            |                 |          |         |                |            |         |      |                         |       |           |                         |                           |                            |                        |
|               | ·                                                                   |             |        |                |                |                            |                 |          |         |                |            |         |      |                         |       |           |                         |                           |                            |                        |
|               |                                                                     |             |        |                |                |                            |                 |          |         |                |            |         |      |                         |       |           |                         |                           |                            |                        |
|               |                                                                     |             |        |                |                |                            |                 |          |         |                |            |         |      |                         |       |           |                         |                           |                            |                        |
|               |                                                                     |             |        |                |                |                            |                 |          |         |                |            |         |      |                         |       |           |                         |                           |                            |                        |
|               |                                                                     |             |        | <u> </u>       |                | GRAPH                      |                 | <u> </u> | Number  |                | <u> </u>   | R=3%    |      | 1                       |       |           |                         |                           |                            |                        |



PROJECT: Proposed Slope Stability & Erosion Assessment Study **DRILLING DATA** CLIENT: DE SEN REALTY COMPANY LTD. Method: Solid Stem Augers PROJECT LOCATION: 66 Thomas Street, Mississauga, ON Diameter: 150 mm REF. NO.: SP18-306-10 DATUM: Geodetic Date: Apr/30/2018 ENCL NO.: 3 BH LOCATION: See Drawing 1 Drilling Contractor: DYNAMIC CONE PENETRATION RESISTANCE PLOT SOIL PROFILE SAMPLES CHEMICAL PLASTIC NATURAL MOISTURE CONTENT GROUND WATER CONDITIONS ANALYSIS LIMIT 40 100 60 Ę AND (m) STRATA PLOT BLOWS 0.3 m GRAIN SIZE NATURAL U SHEAR STRENGTH (kPa)

O UNCONFINED + FIELD VANE
Sensitivity
UICK TRIAXIAL X LAB VANE ELEVATION ELEV DEPTH **DESCRIPTION** NUMBER DISTRIBUTION WATER CONTENT (%) (%) TYPE 60 80 10 20 GR SA SI CL CONCRETE SLAB: 100 mm 150.0 GRANULAR: 80 mm SS 17 FILL: gravel mixed with sandy silt O till, brown, moist becoming sandy silt, brown, moist 2 SS 6 154 ashpalt debris SS 4 W. L. 153.0 m Jun 01, 2018 becoming clayey silt, some sand, trace gravel, greyish brown, moist 152.5 4 SS 19 SANDY SILT TILL: trace shale fragments, trace cobbles, trace gravel, grey, moist, very dense 152 SS 54 7 21 45 27 5 151 150.4 RESIDUAL SOIL/WEATHERED SHALE BEDROCK: grey, moist 6 SS 50/ 50 mm 150 W. L. 140.L. MApr 30, 2018 W. L. 149.2 m 148.9 NFERRED BEDROCK Shale Georgian Bay Formation, grey END OF BOREHOLE: Notes: 1. Borehole open upon completion of drilling. 2. Auger refusal at 6.1 m depth. 3. Water encounetered at 5.79 m upon completion of drilling.

4. Monitoring well was installed in the borehole upon completion of drilling. 5. Groundwater level was observed at 1.98 m on June 01, 2018.



6/15/18

SPCL.GDT

SOIL LOG SP18-306-10 - COPY.GPJ



PROJECT: Proposed Slope Stability & Erosion Assessment Study **DRILLING DATA** CLIENT: DE SEN REALTY COMPANY LTD. Method: Solid Stem Augers PROJECT LOCATION: 66 Thomas Street, Mississauga, ON Diameter: 150 mm REF. NO.: SP18-306-10 DATUM: Geodetic Date: Apr/30/2018 ENCL NO.: 4 BH LOCATION: See Drawing 1 Drilling Contractor: DYNAMIC CONE PENETRATION RESISTANCE PLOT SOIL PROFILE SAMPLES CHEMICAL PLASTIC NATURAL MOISTURE CONTENT GROUND WATER CONDITIONS ANALYSIS LIMIT 40 60 100 NATURAL UNIT AND (m) STRATA PLOT BLOWS 0.3 m GRAIN SIZE SHEAR STRENGTH (kPa)

O UNCONFINED + FIELD VANE
Sensitivity
QUICK TRIAXIAL X LAB VANE ELEV DEPTH **DESCRIPTION** NUMBER DISTRIBUTION WATER CONTENT (%) TYPE (%) 60 80 10 20 GR SA SI CL 155.0 ASPHALT: 130 mm 154.9 154.7 GRANULAR: 130 mm 7 SS FILL: topsoil mixed with sand and 0.3 gravel to sandy silt, moist 154.2 FILL: clayey silt, trace topsoil, 8.0 brown, moist 154 2 SS 9 seam of sandy silt wet SS 11 0 153 becoming very moist 4 SS 5 0  $\bar{\Delta}$ W. L. 152.2 m 152 trace shale fragments, trace gravel, grey, wet SS 151 150.4 SANDY SILT TILL: trace shale, 44-50 6 SS 0 125 greyish brown, wet, very dense mm 150 SPCL.GDT 6/15/18 149 <u>148.9</u> END OF BOREHOLE: SOIL LOG SP18-306-10 - COPY.GPJ Notes: 1. Borehole open upon completion of drilling.
2. Auger refusal at 6.1 m depth.
3. Water Encountered at 2.74 mbgs upon completion of drilling.



PROJECT: Proposed Slope Stability & Erosion Assessment Study **DRILLING DATA** CLIENT: DE SEN REALTY COMPANY LTD. Method: Solid Stem Augers PROJECT LOCATION: 66 Thomas Street, Mississauga, ON Diameter: 150 mm REF. NO.: SP18-306-10 DATUM: Geodetic Date: Apr/30/2018 ENCL NO.: 5 BH LOCATION: See Drawing 1 **Drilling Contractor:** DYNAMIC CONE PENETRATION RESISTANCE PLOT SOIL PROFILE SAMPLES CHEMICAL PLASTIC NATURAL MOISTURE CONTENT GROUND WATER CONDITIONS ANALYSIS LIMIT 40 100 60 IN AND (m) STRATA PLOT BLOWS 0.3 m GRAIN SIZE NATURAL U SHEAR STRENGTH (kPa)

O UNCONFINED + FIELD VANE
Sensitivity
UICK TRIAXIAL X LAB VANE ELEVATION ELEV DEPTH **DESCRIPTION** DISTRIBUTION NUMBER WATER CONTENT (%) TYPE (%) 60 80 20 30 154.2 GR SA SI CL ASPHALT: 150 mm 154:0 159.9 GRANULAR: 125 mm SS 12 0 1 FILL: clayey silt mixed with topsoil, trace gravel, reddish brown, moist 10 2 SS 153 trace sand, trace topsoil, trace rootlets SS 9 152 4 SS 6 0 151 SS 6 5 W. L. 151.0 m May 28, 2018 150 149.6 SANDY SILT TILL: trace shale 96/ fragments, trace gravel, grey, moist, 6 SS 228 very dense mm 149 <u>148.1</u> 50/ 148.0 **INFERRED BEDROCK Shale** 6.2 Georgian Bay Formation, grey 100 END OF BOREHOLE: mm Notes: 1. Borehole open and dry upon completion of drilling. 2. Auger Refusal at 6.2 m depth. 3. Monitoring Well was Installed in teh borehole upon completion of drilling. 4. Groundwater level was obsereved at 3.13 m in the well on May 28, 2018.

6/15/18

SPCL.GDT

SOIL LOG SP18-306-10 - COPY.GPJ



PROJECT: Proposed Slope Stability & Erosion Assessment Study

CLIENT: DE SEN REALTY COMPANY LTD.

PROJECT LOCATION: 66 Thomas Street, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Augers

REF. NO.: SP18-306-10 Diameter: 150 mm

Date: May/01/2018 ENCL NO.: 6

| Drilling Co | ntractor: |
|-------------|-----------|
|-------------|-----------|

| BH LC                   | DCATION: See Drawing 1                                           |             | _        |      |                  |                            |           | Drillin      | g Con            | tractor         | :<br>NETD^ | TION     |     |                         |       |           |                         |                           |                            |                      |
|-------------------------|------------------------------------------------------------------|-------------|----------|------|------------------|----------------------------|-----------|--------------|------------------|-----------------|------------|----------|-----|-------------------------|-------|-----------|-------------------------|---------------------------|----------------------------|----------------------|
|                         | SOIL PROFILE                                                     |             | S        | AMPL | ES.              | <u>~</u>                   |           | RESIS        | MIC CO<br>TANCE  | PLOT            |            | I ION    |     | PLASTI<br>LIMIT         | C NAT | URAL      | LIQUID                  |                           | ₩                          | CHEMICAL<br>ANALYSIS |
| (m)                     |                                                                  | 2LOT        |          |      | SIE              | WATE                       | N.        |              | AR ST            |                 | TH (k      | ⊥<br>Pa) | 100 | LIMIT<br>W <sub>P</sub> | CON   | TENT<br>W | LIMIT<br>W <sub>L</sub> | POCKET PEN.<br>(Cu) (kPa) | AL UNIT                    | AND<br>GRAIN SIZE    |
| ELEV<br>DEPTH           | DESCRIPTION                                                      | STRATA PLOT | NUMBER   | TYPE | " BLOWS<br>0.3 m | GROUND WATER<br>CONDITIONS | ELEVATION | O UI<br>● QI | NCONF<br>UICK TE | ined<br>Riaxial | +<br>- ×   | & Sensi  | ANE |                         |       | O         |                         | POC.)                     | NATURAL UNIT WT<br>(kN/m³) | DISTRIBUTION (%)     |
| 157.0<br>_ 0.0          | FILL:clayey silt, trace sand and                                 | NX<br>S     | ž        | ۲    | ż                | 9 9                        | ᆸ         | - 2          | 20 4             | 0 6             | 50 8       | 30 1     | 100 | 1                       | 0 2   | 20 3      | 30                      |                           |                            | GR SA SI C           |
| 156.7                   | gravel, brown, moist                                             | $\otimes$   | 1        | SS   | 15               |                            |           | -            |                  |                 |            |          |     |                         | 0     |           |                         |                           |                            |                      |
| 0.3                     | CLAYEY SILT TILL: some sand, trace cobbles, trace gravel, brown, |             | '        | 33   | 13               |                            |           | -            |                  |                 |            |          |     |                         |       |           |                         |                           |                            |                      |
| -                       | moist, firm to hard                                              |             | $\vdash$ |      |                  |                            |           | -            |                  |                 |            |          |     |                         |       |           |                         |                           |                            |                      |
| -                       |                                                                  |             | $\vdash$ |      |                  | -                          |           | -            |                  |                 |            |          |     |                         |       |           |                         |                           |                            |                      |
| <u>1</u>                |                                                                  |             | 2        | SS   | 26               |                            | 156       | -            |                  |                 |            |          |     |                         | 0     |           |                         |                           |                            |                      |
| -                       |                                                                  |             | $\vdash$ |      |                  |                            |           |              |                  |                 |            |          |     |                         |       |           |                         |                           |                            |                      |
| -                       |                                                                  |             | $\vdash$ |      |                  | -                          |           | -            |                  |                 |            |          |     |                         |       |           |                         |                           |                            |                      |
| -                       |                                                                  |             | 3        | SS   | 36               |                            |           | -            |                  |                 |            |          |     |                         | 0     |           |                         |                           |                            |                      |
| 2                       |                                                                  |             | $\vdash$ |      |                  |                            | 155       | -            |                  |                 |            |          |     |                         |       |           |                         |                           |                            |                      |
| -                       |                                                                  |             |          |      |                  |                            |           |              |                  |                 |            |          |     |                         |       |           |                         |                           |                            |                      |
| -                       |                                                                  |             |          |      |                  |                            |           | -            |                  |                 |            |          |     |                         |       |           |                         |                           |                            |                      |
|                         | at 2.6 m, becoming grey                                          |             | 4        | SS   | 39               |                            |           | -            |                  |                 |            |          |     |                         |       |           |                         |                           |                            |                      |
| ₃154.0                  |                                                                  |             |          |      |                  |                            |           | -            |                  |                 |            |          |     |                         |       |           |                         |                           |                            |                      |
| 3.0                     | SANDY SILT TILL: some sand, trace cobbles, trace gravel, brown,  |             |          |      |                  | 1                          | 154       | -            |                  |                 |            |          |     |                         |       |           |                         |                           |                            |                      |
| -                       | moist, compact to very dense                                     |             | 5        | SS   | 69               |                            |           | [            |                  |                 |            |          |     | 0                       |       |           |                         |                           |                            |                      |
| -                       |                                                                  |             |          |      |                  | 1                          |           | -            |                  |                 |            |          |     |                         |       |           |                         |                           |                            |                      |
| -                       |                                                                  |             |          |      |                  |                            |           | -            |                  |                 |            |          |     |                         |       |           |                         |                           |                            |                      |
| 4                       |                                                                  |             |          |      |                  |                            | 153       | _            |                  |                 |            |          |     |                         |       |           |                         |                           |                            |                      |
| -                       |                                                                  |             |          |      |                  |                            |           | -            |                  |                 |            |          |     |                         |       |           |                         |                           |                            |                      |
| -                       |                                                                  |             |          |      |                  |                            |           | -            |                  |                 |            |          |     |                         |       |           |                         |                           |                            |                      |
| -                       | trace shale fragments                                            |             |          |      |                  |                            |           | -            |                  |                 |            |          |     |                         |       |           |                         |                           |                            |                      |
| -                       |                                                                  |             | 6        | SS   | 82               |                            | 152       | -            |                  |                 |            |          |     | ٥                       | •     |           |                         |                           |                            |                      |
| -                       |                                                                  |             |          |      |                  |                            | 132       | -            |                  |                 |            |          |     |                         |       |           |                         |                           |                            |                      |
| -                       |                                                                  |             |          |      |                  |                            |           | -            |                  |                 |            |          |     |                         |       |           |                         |                           |                            |                      |
| -                       |                                                                  |             |          |      |                  |                            |           | -            |                  |                 |            |          |     |                         |       |           |                         |                           |                            |                      |
| -                       |                                                                  |             |          |      |                  |                            |           | [            |                  |                 |            |          |     |                         |       |           |                         |                           |                            |                      |
| 150.9                   |                                                                  |             |          |      |                  |                            | 151       | <u> </u>     |                  |                 |            |          |     |                         |       |           |                         |                           |                            |                      |
| 150.7                   | INFERRED BEDROCK Shale, Coorgian Bay Formation, grey             |             | 7        | SS   | 24-50<br>25      |                            |           | <u> </u>     |                  |                 |            |          |     | 0                       |       |           |                         |                           |                            |                      |
| 6.3                     | END OF BOREHOLE:                                                 |             |          |      | mm               |                            |           |              |                  |                 |            |          |     |                         |       |           |                         |                           |                            |                      |
|                         | Notes: 1. Borehole open and dry upon                             |             |          |      |                  |                            |           |              |                  |                 |            |          |     |                         |       |           |                         |                           |                            |                      |
|                         | completion of drilling.                                          |             |          |      |                  |                            |           |              |                  |                 |            |          |     |                         |       |           |                         |                           |                            |                      |
|                         |                                                                  |             |          |      |                  |                            |           |              |                  |                 |            |          |     |                         |       |           |                         |                           |                            |                      |
|                         |                                                                  |             |          |      |                  |                            |           |              |                  |                 |            |          |     |                         |       |           |                         |                           |                            |                      |
| 150.9<br>- 158.7<br>6.3 |                                                                  |             |          |      |                  |                            |           |              |                  |                 |            |          |     |                         |       |           |                         |                           |                            |                      |
|                         |                                                                  |             |          |      |                  |                            |           |              |                  |                 |            |          |     |                         |       |           |                         |                           |                            |                      |
|                         |                                                                  | 1           | <u> </u> |      |                  |                            |           | <u> </u>     |                  |                 |            |          |     |                         |       |           |                         |                           |                            |                      |





PROJECT: Proposed Slope Stability & Erosion Assessment Study **DRILLING DATA** Method: Solid Stem Augers CLIENT: DE SEN REALTY COMPANY LTD. PROJECT LOCATION: 66 Thomas Street, Mississauga, ON Diameter: 150 mm REF. NO.: SP18-306-10 DATUM: Geodetic Date: May/01/2018 ENCL NO.: 7 BH LOCATION: See Drawing 1 **Drilling Contractor:** DYNAMIC CONE PENETRATION RESISTANCE PLOT SOIL PROFILE SAMPLES CHEMICAL PLASTIC NATURAL MOISTURE CONTENT GROUND WATER CONDITIONS ANALYSIS LIMIT 40 60 100 IN AND (m) STRATA PLOT BLOWS 0.3 m NATURAL U (KN/m³ GRAIN SIZE SHEAR STRENGTH (kPa)

O UNCONFINED + FIELD VANE

O UNCONFINED + & Sensitivity

O ULICK TRIAXIAL X LAB VANE ELEVATION ELEV DEPTH **DESCRIPTION** NUMBER DISTRIBUTION WATER CONTENT (%) (%) 60 80 10 20 30 154.6 GR SA SI CL ASPHALT: 100 mm 150.0 1 SS 154.3 GRANULAR: 180 mm mm SAND AND GRAVEL: brown, 0.3 moist 154 153.8 **CLAYEY SILT TILL:** trace gravel, light brown, moist, stiff to hard 8.0 SS 2 16 0 W. L. 153.7 m May 28, 2018 153 SS 35 ∘ **⊢** 7 26 44 23 trace cobbles 4 SS 60 152 ₃151.6 SANDY SILT TILL: trace gravel, trace clay, trace cobbles, grey, SS 53 0 5 moist, very dense 151 150.6 END OF BOREHOLE: Notes: Borehole open and dry upon completion of drilling. 2. Auger Refusal at 3.96 m depth. 3. Groundwater level was observed at 0.93 m in the well on May 28, 2018.



SOIL LOG SP18-306-10 - COPY.GPJ SPCL.GDT 6/15/18



PROJECT: Proposed Slope Stability & Erosion Assessment Study **DRILLING DATA** CLIENT: DE SEN REALTY COMPANY LTD. Method: Solid Stem Augers PROJECT LOCATION: 66 Thomas Street, Mississauga, ON Diameter: 150 mm REF. NO.: SP18-306-10 DATUM: Geodetic Date: May/01/2018 ENCL NO.: 8 BH LOCATION: See Drawing 1 Drilling Contractor: DYNAMIC CONE PENETRATION RESISTANCE PLOT SOIL PROFILE SAMPLES CHEMICAL PLASTIC NATURAL MOISTURE CONTENT GROUND WATER CONDITIONS ANALYSIS LIMIT 40 100 60 LINO AND (m) STRATA PLOT BLOWS 0.3 m GRAIN SIZE NATURAL U SHEAR STRENGTH (kPa)

O UNCONFINED + FIELD VANE
Sensitivity
UICK TRIAXIAL X LAB VANE ELEVATION ELEV DEPTH **DESCRIPTION** NUMBER DISTRIBUTION WATER CONTENT (%) TYPE (%) 60 80 20 30 154.7 GR SA SI CL ASPHALT: 150 mm 154:9 154.4 GRANULAR: 125 mm SS 8 0 0.3 FILL: silty sand mixed with construction debris, brown, moist 154 becoming clayey silt, trace gravel,trace sand, reddish brown 2 SS 31 0 becoming sandy silt, trace topsoil, greyish brown, moist 3 SS 36 W. L. 153.0 m May 28, 2018 W. L. 152.4 m CLAYEY SILT TILL: trace sand, trace cobbles, brown, moist May 01, 2018 4 SS 53 0 152 ₃151.7 SANDY SILT TILL trace gravel, trace clay, grey, very moist, dense SS 38 0 5 to very dense 151 150.1 RESIDUAL SOIL/WEATHERED SHALE BEDROCK: grey, moist 50/ 150 6 SS 150 mm 149 148.6 NFERRED BEDROCK Shale Georgian Bay Formation, Grey END OF BOREHOLE: Notes: 1. Borehole open upon completion of drilling. 2. Water encountered at 2.29 mbgs upon completion of drilling.
3. Monitoring well was Installed in the Borehole upon Completion of Drilling. 4. Groundwater level was observed at 1.67 m in the well on May 28,

6/15/18

SPCL.GDT

SOIL LOG SP18-306-10 - COPY.GPJ





PROJECT: Proposed Slope Stability & Erosion Assessment Study **DRILLING DATA** CLIENT: DE SEN REALTY COMPANY LTD. Method: Solid Stem Augers PROJECT LOCATION: 66 Thomas Street, Mississauga, ON Diameter: 150 mm REF. NO.: SP18-306-20 DATUM: Geodetic Date: May/07/2018 ENCL NO.: 2 BH LOCATION: Drilling Contractor: DYNAMIC CONE PENETRATION RESISTANCE PLOT SOIL PROFILE SAMPLES CHEMICAL PLASTIC NATURAL MOISTURE CONTENT GROUND WATER CONDITIONS LIQUID ANALYSIS LIMIT 40 100 60 LINO AND (m) STRATA PLOT BLOWS 0.3 m GRAIN SIZE NATURAL U SHEAR STRENGTH (kPa)

O UNCONFINED + FIELD VANE
Sensitivity
UICK TRIAXIAL X LAB VANE ELEVATION ELEV DEPTH **DESCRIPTION** NUMBER DISTRIBUTION WATER CONTENT (%) (%) 60 80 10 20 30 40 154.6 GR SA SI CL ASPHALT:115 mm 150.6 154:3 GRANULAR: 150 mm 8 SS FILL:clayey silt mixed with construction debris, trace cobbles, trace gravel, trace topsoil, brown, 154 clayey silt, trace sand, becoming reddish brown 2 SS 7 153 3 SS 6 0 silty sand, brown, very moist SS 11 152.0 152 CLAYEY SILT TILL:some sand, trace gravel, trace rootlets, yellowish grey, moist, stiff to hard 5 SS 50/ O 3 20 44 33 W. L. 151.6 m 125 May 28, 2018 mm 151 150 RESIDUAL SOIL/WEATHERED 74/ 6 SS SHALE BEDROCK: grey, moist 203 0 149.6 mm 5.0 W. L. 149.0 m May 07, 2018 **END OF BOREHOLE:** Notes: 1. Borehole Open upon Completion of Drilling.

2. Auger Refusal at 5.64 m Depth. 3. Water Encountered at 5.59 m upon Completion of Drilling. 4. Monitoring Well was Installed in the Borehole upon Completion of Drilling. 5. Groundwater Level was Observed at 2.96 m in the Well on May 28, 2018.

6/15/18



PROJECT: Proposed Slope Stability & Erosion Assessment Study **DRILLING DATA** Method: Solid Stem Augers CLIENT: DE SEN REALTY COMPANY LTD. PROJECT LOCATION: 66 Thomas Street, Mississauga, ON Diameter: 150 mm REF. NO.: SP18-306-20 DATUM: Geodetic Date: May/07/2018 ENCL NO.: 3 BH LOCATION: Drilling Contractor: DYNAMIC CONE PENETRATION RESISTANCE PLOT SOIL PROFILE SAMPLES CHEMICAL PLASTIC NATURAL MOISTURE CONTENT GROUND WATER CONDITIONS LIQUID ANALYSIS LIMIT 40 100 60 LINO AND (m) STRATA PLOT BLOWS 0.3 m GRAIN SIZE NATURAL U SHEAR STRENGTH (kPa)

O UNCONFINED + FIELD VANE
Sensitivity
UICK TRIAXIAL X LAB VANE ELEVATION ELEV DEPTH **DESCRIPTION** DISTRIBUTION NUMBER WATER CONTENT (%) (%) 40 60 80 10 20 30 154.0 GR SA SI CL ASPHALT: 150 mm 159.9 15**0.2** GRANULAR: 125 mm 6 1 SS FILL: clayey silt mixed with topsoil, some sand, trace gravel, brown, trace sand, trace topsoil, becoming dark brown 2 SS 5 153 3 SS 17 0 W. L. 152.4 m May 28, 2018 152 CLAYEY SILT TILL: some sand, 2.3 trace gravel, light brown, moist, hard SS 38 151 SANDY SILT TILL: trace shale fragments, trace gravel, grey, moist, 5 SS 41 150 0 6 SS 50/ INFERRED BEDROCK Shale, 50 Georgian Bay Formation, grey mm END OF BOREHOLE: 1. Borehole Open and Dry upon Completion of Drilling.

2. Auger Refusal at 5.49 m Depth. Monitoring Well was Installed in the Borehole upon Completion of Drilling. Groundwater Level was Observed at 1.56 m in the Well on May 28, 2018.



6/15/18



PROJECT: Proposed Slope Stability & Erosion Assessment Study **DRILLING DATA** CLIENT: DE SEN REALTY COMPANY LTD. Method: Pionjar PROJECT LOCATION: 66 Thomas Street, Mississauga, ON Diameter: REF. NO.: SP18-306-20 DATUM: Geodetic Date: Jun/05/2018 ENCL NO.: 4 BH LOCATION: **Drilling Contractor:** DYNAMIC CONE PENETRATION RESISTANCE PLOT SOIL PROFILE SAMPLES CHEMICAL PLASTIC NATURAL MOISTURE CONTENT GROUND WATER CONDITIONS ANALYSIS LIMIT 40 100 60 IN AND (m) STRATA PLOT BLOWS 0.3 m NATURAL U GRAIN SIZE SHEAR STRENGTH (kPa)

O UNCONFINED + FIELD VANE
Sensitivity
UICK TRIAXIAL X LAB VANE ELEV DEPTH **DESCRIPTION** NUMBER DISTRIBUTION WATER CONTENT (%) TYPE (%) 60 80 10 20 30 154.7 GR SA SI CL CONCRETE: 180 mm 154:8 FILL: silty sand to clayey silt, trace 0.2 DO cobbles, trace gravel, brown, moist trace construction debris 154 DO 2 0 trace topsoil, brown to grey 3 DO 153 becoming brown <sup>-</sup>152.6 SANDY SILT TILL: brown, wet, DO 0 4 very moist W. L. 152.5 m Jun 07, 2018 152.3 CLAYEY SILT TILL: clayey silt till to native sandy silt till, brown, wet to 152 very moist 5 DO at 3.04 m, layers of wet sand DO 6 0 151.0 END OF BOREHOLE: 3.7 Notes: 1. Monitoring Well was Installed in the Borehole upon Completion of 2. Groundwater Level was Observed at 2.16 m in the Well on June 7, 2018.





PROJECT: Proposed Slope Stability & Erosion Assessment Study **DRILLING DATA** CLIENT: DE SEN REALTY COMPANY LTD. Method: Solid Stem Augers PROJECT LOCATION: 66 Thomas Street, Mississauga, ON Diameter: 150 mm REF. NO.: SP18-306-20 DATUM: Geodetic Date: May/08/2018 ENCL NO.: 5 BH LOCATION: Drilling Contractor: DYNAMIC CONE PENETRATION RESISTANCE PLOT SOIL PROFILE SAMPLES CHEMICAL PLASTIC NATURAL MOISTURE CONTENT GROUND WATER CONDITIONS LIQUID ANALYSIS LIMIT 40 100 60 Ę AND (m) STRATA PLOT BLOWS 0.3 m GRAIN SIZE NATURAL U SHEAR STRENGTH (kPa)

O UNCONFINED + FIELD VANE
Sensitivity
UICK TRIAXIAL X LAB VANE ELEVATION ELEV DEPTH **DESCRIPTION** NUMBER DISTRIBUTION WATER CONTENT (%) (%) 60 80 10 20 30 154.3 GR SA SI CL 15**0.0** 15**9**.1 0.2 ASPHALT: 90 mm GRANULAR: 125 mm SS 10 154 FILL: sand to clayey silt, reddish mixed with topsoil 2 SS 5 153 clayey silt, some sand, trace gravel, reddish brown, very moist to wet 3 SS 9 W. L. 152.6 m May 28, 2018 152.0 152 CLAYEY SILT TILL: trace gravel, 2.3 light brown, moist, hard SS 30 SANDY SILT TILL: trace shale fragments, trace gravel, grey, very 5 SS 48 151 moist, dense 150 RESIDUAL SOIL/WEATHERED 1111 6 SS 50/ SHALE BEDROCK: grey, moist 100 mm 149 END OF BOREHOLE: 1. Borehole Open upon Completion of Drilling. 2. Water Encountered at 1.83 m upon Completion of Drilling. 3. Auger Refusal at 5.49 m. Monitoring Well was Installed in the Borehole upon completion of Drilling. 5. Groundwater Level was Observed at 1.67 m in the Well on May 28, 2018.



6/15/18

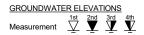


PROJECT: Proposed Slope Stability & Erosion Assessment Study **DRILLING DATA** Method: Solid Stem Augers CLIENT: DE SEN REALTY COMPANY LTD. PROJECT LOCATION: 66 Thomas Street, Mississauga, ON Diameter: 150 mm REF. NO.: SP18-306-20 DATUM: Geodetic Date: May/08/2018 ENCL NO.: 6 BH LOCATION: Drilling Contractor: DYNAMIC CONE PENETRATION RESISTANCE PLOT SOIL PROFILE SAMPLES CHEMICAL PLASTIC NATURAL MOISTURE CONTENT GROUND WATER CONDITIONS LIQUID ANALYSIS LIMIT 40 100 60 AND E (m) STRATA PLOT BLOWS 0.3 m GRAIN SIZE NATURAL U SHEAR STRENGTH (kPa)

O UNCONFINED + FIELD VANE
Sensitivity
UICK TRIAXIAL X LAB VANE ELEVATION ELEV DEPTH **DESCRIPTION** NUMBER DISTRIBUTION WATER CONTENT (%) (%) 60 80 20 30 155.3 GR SA SI CL ASPHALT: 75 mm **GRANULAR**: 75 mm 6 1 SS 155 FILL: clayey silt mixed with topsoil, 154.5 BURRIED TOPSOIL: 740 mm 0.8 2 SS 6 154 153.8 FILL: clayey silt, some sand, trace gravel, light brown, very moist 3 SS 5 153.0 153 CLAYEY SILT TILL: some sand, 2.3 trace gravel, light brown, very moist, SS 36 W. L. 152.9 m May 28, 2018 5 SS 38 0 152 151 150.7 6 SS 50/ SANDY SILT TILL: trace shale 0 fragments, trace gravel, grey, moist 100 very dense mm 150 6/15/18 149.5 V. L. 149.5 m NFERRED BEDROCK Shale, 49.8 Georgian Bay Formation, grey 25 May 08, 2018 5.8 mm END OF BOREHOLE: SOIL LOG SP18-306-20-WITHOUT GAS READINGS.GPJ Notes: 1. Borehole Open upon Completion of Drilling.

2. Water Encountered at 5.77 m upon Completion of Drilling. 3. Monitoring Well was Installed in the Borehole upon Completion of 4. Groundwater Level was Observed at 2.41 m in the Well on May 28, 2018.




GDT

SPCL



PROJECT: Proposed Slope Stability & Erosion Assessment Study **DRILLING DATA** Method: Solid Stem Augers CLIENT: DE SEN REALTY COMPANY LTD. PROJECT LOCATION: 66 Thomas Street, Mississauga, ON Diameter: 150 mm REF. NO.: SP18-306-20 DATUM: Geodetic Date: May/07/2018 ENCL NO.: 7 BH LOCATION: Drilling Contractor: DYNAMIC CONE PENETRATION RESISTANCE PLOT SOIL PROFILE SAMPLES CHEMICAL PLASTIC NATURAL MOISTURE CONTENT GROUND WATER CONDITIONS ANALYSIS LIMIT 40 60 100 IN AND (m) STRATA PLOT BLOWS 0.3 m NATURAL U GRAIN SIZE SHEAR STRENGTH (kPa)

O UNCONFINED + FIELD VANE
Sensitivity
UICK TRIAXIAL X LAB VANE ELEVATION ELEV DEPTH **DESCRIPTION** DISTRIBUTION NUMBER WATER CONTENT (%) (%) 40 60 80 10 20 30 154.5 GR SA SI CL FILL: CONSTRUCTION DEBRIS 0.0 1 SS 13 0 MIXED WITH TOPSOIL 154.0 FILL: Sandy silt mixed with 154 0.5 topsoil, moist 153.6 FILL: clayey silt, reddish brown, 2 SS 14 moist 153 3 SS 12 0 mixed with topsoil 152 SS 6 W. L. 151.7 m CLAYEY SILT TILL: some sand, Jun 07, 2018 trace shale fragments, trace 5 SS 22 O cobbles, trace gravel, grey, moist, very stiff to hard 151 150 SS 50/ trace shale 6 149.8 125 END OF BOREHOLE: 1. Borehole Open and Dry upon Completion of Drilling. Auger Refusal at 4.9 m Depth.
 Monitoring Well was Installed in the Borehole upon completion of Drilling.
4.Groundwater Level was Observed at 2.79 m in the well on June 7,





PROJECT: Proposed Slope Stability & Erosion Assessment Study **DRILLING DATA** CLIENT: DE SEN REALTY COMPANY LTD. Method: Pionjar PROJECT LOCATION: 66 Thomas Street, Mississauga, ON Diameter: REF. NO.: SP18-306-20 DATUM: Geodetic Date: Jun/05/2018 ENCL NO.: 8 BH LOCATION: Drilling Contractor: DYNAMIC CONE PENETRATION RESISTANCE PLOT SOIL PROFILE SAMPLES CHEMICAL PLASTIC NATURAL MOISTURE CONTENT GROUND WATER CONDITIONS LIQUID ANALYSIS LIMIT 40 60 80 100 IN AND (m) STRATA PLOT BLOWS 0.3 m NATURAL U (KN/m³ GRAIN SIZE SHEAR STRENGTH (kPa)

O UNCONFINED + FIELD VANE
Sensitivity
UICK TRIAXIAL X LAB VANE ELEVATION ELEV DEPTH **DESCRIPTION** NUMBER DISTRIBUTION WATER CONTENT (%) TYPE (%) 40 60 80 10 20 30 154.8 GR SA SI CL CONCRETE: 130 mm 154.0 FILL: silty sand to clayey silt, trace DO 0 gravel, brown, very moist 154 DO 2 0 153.6 **CLAYEY SILT TILL:** brown, moist 1.2 ¥ 3 DO 0 W. L. 153.4 m Jun 07, 2018 153.0 153 SANDY SILT TILL:trace shale, brown, moist 4 DO 0 END OF BOREHOLE: Notes: 1. Auger refusal at 2.44 m depth. 2. Monitoring Well was Installed in the Borehole upon Completion of Drilling. 3. Groundwater Level was Observed at 1.38 m in the Well on June 7, 2018.





PROJECT: Proposed Slope Stability & Erosion Assessment Study **DRILLING DATA** Method: Solid Stem Augers CLIENT: DE SEN REALTY COMPANY LTD. PROJECT LOCATION: 66 Thomas Street, Mississauga, ON Diameter: 150 mm REF. NO.: SP18-306-20 DATUM: Geodetic Date: May/07/2018 ENCL NO.: 9 BH LOCATION: Drilling Contractor: DYNAMIC CONE PENETRATION RESISTANCE PLOT SOIL PROFILE SAMPLES CHEMICAL PLASTIC NATURAL MOISTURE CONTENT GROUND WATER CONDITIONS LIQUID ANALYSIS LIMIT 40 100 60 LINO AND (m) STRATA PLOT BLOWS 0.3 m GRAIN SIZE NATURAL U SHEAR STRENGTH (kPa)

O UNCONFINED + FIELD VANE
Sensitivity
UICK TRIAXIAL X LAB VANE ELEVATION ELEV DEPTH **DESCRIPTION** NUMBER DISTRIBUTION WATER CONTENT (%) (%) 60 80 10 20 30 GR SA SI CL ASPHALT: 115 mm IBL in ppm 150.0 155 GRANULAR: 75 mm 6 SS 0 FILL: topsoil mixed with clayey silt, clayey silt, some sand, trace gravel, construction debris 2 SS 21 129 154 construction debris, wet topsoil 3 SS 14 0 55 153 mixed with topsoil SS 7 126 152L\_\_\_\_ W. L. 152.1 m 5 SS 13 Jun 07, 2018 119 151 W. L. 150.8 m 150.6 May 07, 2018 SANDY SILT TILL: trace shale 15-50 SS 6 0 fragments, grey, very moist, very 125 150.3  $\mathsf{mm}$ 22 END OF BOREHOLE: Notes: 1. Borehole Open upon Completion of Drilling.
2. Water was Encountered at 4.42 m upon Completion of Drilling.
3. Auger Refusal at 5.18 m Depth. 4. Monitoring Well was Installed in the Borehole upon completion of 5. Groundwater Level was Observed at 3.09 m in the well on June 7, 2018.





PROJECT: Proposed Slope Stability & Erosion Assessment Study **DRILLING DATA** CLIENT: DE SEN REALTY COMPANY LTD. Method: Solid Stem Augers PROJECT LOCATION: 66 Thomas Street, Mississauga, ON Diameter: 150 mm REF. NO.: SP18-306-20 DATUM: Geodetic Date: May/07/2018 ENCL NO.: 10 BH LOCATION: **Drilling Contractor:** DYNAMIC CONE PENETRATION RESISTANCE PLOT SOIL PROFILE SAMPLES CHEMICAL PLASTIC NATURAL MOISTURE CONTENT GROUND WATER CONDITIONS LIQUID ANALYSIS LIMIT 40 60 100 IN AND (m) STRATA PLOT BLOWS 0.3 m NATURAL U (KN/m³ GRAIN SIZE SHEAR STRENGTH (kPa)

O UNCONFINED + FIELD VANE
Sensitivity
UICK TRIAXIAL X LAB VANE ELEVATION ELEV DEPTH **DESCRIPTION** NUMBER DISTRIBUTION WATER CONTENT (%) TYPE (%) 40 60 80 10 20 30 155.7 GR SA SI CL ASPHALT: 75 mm GRANULAR: 125 mm SS 10 0 FILL: sandy silt mixed with construction debris, trace topsoil, 155 154.9 FILL: clayey silt mixed with topsoil, 8.0 trace gravel, trace sand, greyish 2 SS 6 brown, very moist 154 3 SS 5 trace gravel SS 8 153 POSSIBLE FILL silty sand, grey, W. L. 152.8 m Jun 07, 2018 3.0 22 5 SS 0 152.2 152 **END OF BOREHOLE:** Notes: Borehole Open and Dry upon Completion of Drilling. 2. Auger Refusal at 4.27 m Depth.
3. Monitoring Well was Installed in the Borehole upon completion of Drilling. 4. Groundwater Level was Observed at 2.91 m on June 7, 2018.





PROJECT: Proposed Slope Stability & Erosion Assessment Study **DRILLING DATA** Method: Solid Stem Augers CLIENT: DE SEN REALTY COMPANY LTD. PROJECT LOCATION: 66 Thomas Street, Mississauga, ON Diameter: 150 mm REF. NO.: SP18-306-20 DATUM: Geodetic Date: May/07/2018 ENCL NO.: 11 BH LOCATION: Drilling Contractor: DYNAMIC CONE PENETRATION RESISTANCE PLOT SOIL PROFILE SAMPLES CHEMICAL PLASTIC NATURAL MOISTURE CONTENT GROUND WATER CONDITIONS LIQUID ANALYSIS LIMIT 40 100 60 IN AND (m) STRATA PLOT BLOWS 0.3 m GRAIN SIZE NATURAL U SHEAR STRENGTH (kPa)

O UNCONFINED + FIELD VANE
Sensitivity
UICK TRIAXIAL X LAB VANE ELEVATION ELEV DEPTH **DESCRIPTION** NUMBER DISTRIBUTION WATER CONTENT (%) TYPE (%) 40 60 80 10 20 30 155.7 GR SA SI CL 15**8.6** 15**9.5** 0.2 ASPHALT: 100 mm GRANULAR: 115 mm 8 1 SS FILL: sandy silt, trace cobbles, 154.9 155 FILL: clayey silt, some sand, trace 0.8 gravel, trace topsoil, brown, moist 2 SS 10 0 154 3 SS 3 SS 6 0 153 POSSIBLE FILL: sandy silt, 3.0 W. L. 152.8 m brown, moist Jun 07, 2018 5 SS 8 5 26 49 20 W. L. 152.0 m May 07, 2018 151.1 6 NR 50/ END OF BOREHOLE: Notes: 1. Borehole Open upon Completion of Drilling.
2. Water Encountered at 3.66 m upon Completion of Drilling.

2. Auger Refusal at 4.72 m Depth. 3. Monitoring Well was Installed in the Borehole upon completion of 5. Groundwater Level was Observed at 2.9 m on June 7, 2018.





PROJECT: Proposed Slope Stability & Erosion Assessment Study **DRILLING DATA** CLIENT: DE SEN REALTY COMPANY LTD. Method: Solid Stem Augers PROJECT LOCATION: 66 Thomas Street, Mississauga, ON Diameter: 150 mm REF. NO.: SP18-306-20 DATUM: Geodetic Date: May/07/2018 ENCL NO.: 12 BH LOCATION: Drilling Contractor: DYNAMIC CONE PENETRATION RESISTANCE PLOT SOIL PROFILE SAMPLES CHEMICAL PLASTIC NATURAL MOISTURE CONTENT GROUND WATER CONDITIONS LIQUID ANALYSIS LIMIT 40 100 60 LINO AND (m) STRATA PLOT BLOWS 0.3 m GRAIN SIZE NATURAL U SHEAR STRENGTH (kPa)

O UNCONFINED + FIELD VANE
Sensitivity
UICK TRIAXIAL X LAB VANE ELEVATION ELEV DEPTH **DESCRIPTION** NUMBER DISTRIBUTION WATER CONTENT (%) TYPE (%) 40 60 80 10 20 30 155.3 GR SA SI CL ASPHALT: 90 mm 15**8.2** 158:1 0.2 GRANULAR: 100 mm 9 1 SS 155 FILL: sandy silt mixed with topsoil, some sand, trace gravel, trace construction debris, brown, very 154.5 0.8 FILL: clayey silt mixed with topsoil, brown, very moist 2 SS 2 154 3 SS 3 0 153.0 153 FILL: sandy silt, trace topsoil, 2.3 brown, moist SS 7 W. L. 152.6 m Mav 07. 2018 W. L. 152.5 m Jun 07, 2018 5 SS 25 0 152 151 6 SS 150.6 SANDY SILT TILL: trace shale 50/ 0 fragments, grey, very moist, very 100 mm 150 END OF BOREHOLE: Notes: 1. Borehole Open upon Completion of Drilling. 2. Water Encountered at 2.7 mbgs upon Completion of Drilling.
3. Auger Refusal at 5.79 m Depth.
4. Monitoring Well was Installed in the Borehole upon completion of drilling. 5. Groundwater Level was Observed at 2.85 m on June 7,



6/15/18

GDT

SPCL

SOIL LOG SP18-306-20-WITHOUT GAS READINGS.GPJ



PROJECT: Proposed Slope Stability & Erosion Assessment Study **DRILLING DATA** Method: Solid Stem Augers CLIENT: DE SEN REALTY COMPANY LTD. PROJECT LOCATION: 66 Thomas Street, Mississauga, ON Diameter: 150 mm REF. NO.: SP18-306-20 DATUM: Geodetic Date: May/08/2018 ENCL NO.: 13 BH LOCATION: Drilling Contractor: DYNAMIC CONE PENETRATION RESISTANCE PLOT SOIL PROFILE SAMPLES CHEMICAL PLASTIC NATURAL MOISTURE CONTENT GROUND WATER CONDITIONS LIQUID ANALYSIS LIMIT 40 60 100 IN AND (m) STRATA PLOT BLOWS 0.3 m GRAIN SIZE NATURAL U SHEAR STRENGTH (kPa)

O UNCONFINED + FIELD VANE
Sensitivity
UICK TRIAXIAL X LAB VANE ELEVATION ELEV DEPTH **DESCRIPTION** NUMBER DISTRIBUTION WATER CONTENT (%) (%) 40 60 80 10 20 30 157.6 GR SA SI CL SAND AND GRAVEL MIXED 0.0 WITH CONSTRUCTION DEBRIS: 6 SS 0 157 156.8 CLAYEY SILT TILL: some sand, 0.8 trace gravel, brown, moist, very stiff 2 SS 21 0 to hard trace shale fragments 156 3 SS 40 7 20 43 30 becoming grey SS 43 155 SANDY SILT TILL: trace shale fragments, trace gravel, grey, moist, 5 SS 28 O compact to very dense 154 153 becoming very moist 6 SS 76 <u>5</u>152.5 END OF BOREHOLE: Notes: SOIL LOG SP18-306-20-WITHOUT GAS READINGS.GPJ SPCL.GDT Borehole Open and Dry upon Completion of Drilling.

2. Auger Refusal at 5.33 m Depth. 3. Monitoring Well was Installed in the Borehole Upon Completion of Drilling.



6/15/18



**DRILLING DATA** PROJECT: Proposed Slope Stability & Erosion Assessment Study Method: Solid Stem Augers CLIENT: DE SEN REALTY COMPANY LTD. PROJECT LOCATION: 66 Thomas Street, Mississauga, ON Diameter: 150 mm REF. NO.: SP18-306-20 DATUM: Geodetic Date: May/08/2018 ENCL NO.: 14 BH LOCATION: Drilling Contractor: DYNAMIC CONE PENETRATION RESISTANCE PLOT SOIL PROFILE SAMPLES CHEMICAL PLASTIC NATURAL MOISTURE CONTENT GROUND WATER CONDITIONS LIQUID ANALYSIS LIMIT 40 100 60 LINO AND (m) STRATA PLOT BLOWS 0.3 m GRAIN SIZE NATURAL U SHEAR STRENGTH (kPa)

O UNCONFINED + FIELD VANE
Sensitivity
UICK TRIAXIAL X LAB VANE ELEVATION ELEV DEPTH **DESCRIPTION** NUMBER DISTRIBUTION WATER CONTENT (%) (%) 40 60 80 10 20 30 157.0 GR SA SI CL SAND AND GRAVEL MIXED 15<u>6</u>.8 WITH CONSTRUCTION DEBRIS: SS 19 0 200 mm CLAYEY SILT TILL: some sand, trace gravel, light brown, moist, very 156 2 SS 19 becoming hard 3 SS 42 0 155 trace cobbles, becoming grey and very stiff W. L. 154.7 m Jun 07, 2018 SS 28 154 becoming hard 5 SS 35 153 RESIDUAL SOIL/WEATHERED 46-50 SS 6 0 SHALE BEDROCK: grey, moist 125mı 152.1 4.9 END OF BOREHOLE: Notes: 1. Borehole Open and Dry upon Completion of Drilling.
2. Auger Refusal at 5.03 m Depth.
3. Monitoring Well was Installed in the Borehole Upon Completion of Drilling. 4. Groundwater Level was Observed at 2.33 m in the Well on June 7, 2018.





PROJECT: Proposed Slope Stability & Erosion Assessment Study

CLIENT: DE SEN REALTY COMPANY LTD.

Method: Solid Stem Augers

PROJECT LOCATION: 66 Thomas Street, Mississauga, ON Diameter: 150 mm REF. NO.: SP18-306-20

| 1100111              | M: Geodetic                                                                 |             | Ŭ                                      | a, ON |                  |                            |           |      |                         | 50 mm                 |               |      |   | REF. NO.: SP18-306-20 |                             |                |                                   |                           |                            |                                      |  |  |
|----------------------|-----------------------------------------------------------------------------|-------------|----------------------------------------|-------|------------------|----------------------------|-----------|------|-------------------------|-----------------------|---------------|------|---|-----------------------|-----------------------------|----------------|-----------------------------------|---------------------------|----------------------------|--------------------------------------|--|--|
|                      | CATION:                                                                     |             | Date: May/08/2018 Drilling Contractor: |       |                  |                            |           |      |                         | ENCL NO.: 15          |               |      |   |                       |                             |                |                                   |                           |                            |                                      |  |  |
| DITLO                | SOIL PROFILE                                                                |             | 5                                      | SAMPL | FS               |                            |           | DYNA | AMIC CC<br>STANCE       | NE PEN                | NETRA         | TION |   |                       |                             |                |                                   |                           |                            | CHEMICA                              |  |  |
| (m)<br>ELEV<br>DEPTH | DESCRIPTION                                                                 | STRATA PLOT | NUMBER                                 |       | BLOWS<br>0.3 m   | GROUND WATER<br>CONDITIONS | ELEVATION | SHE  | 20 Z<br>AR ST<br>INCONF | 10 6<br>RENG<br>FINED | 0 8<br>TH /kl | 30 1 | 1 | W <sub>P</sub>        |                             | TENT<br>W<br>D | LIQUID<br>LIMIT<br>W <sub>L</sub> | POCKET PEN.<br>(Cu) (kPa) | NATURAL UNIT WT<br>(kN/m³) | ANALYSI AND GRAIN SIZ DISTRIBUTI (%) |  |  |
| 157.6                |                                                                             | STR         | N                                      | TYPE  | ž                | GRC                        | ELEV      |      |                         |                       |               |      |   |                       | TER CONTENT (%)<br>10 20 30 |                |                                   |                           | z                          | GR SA SI                             |  |  |
| 0.0                  | SAND AND GRAVEL MIXED WITH CONSTRUCTION DEBRIS:                             |             | 1                                      | SS    | 33               |                            |           | -    |                         |                       |               |      |   |                       | 0                           |                |                                   |                           |                            |                                      |  |  |
| 0.8                  | CLAYEY SILT TILL: some sand, trace gravel, brown, moist, very stiff to hard |             | 2                                      | ss    | 22               |                            | 157       | -    |                         |                       |               |      |   |                       | 0                           |                |                                   | -                         |                            |                                      |  |  |
|                      |                                                                             |             | 3                                      | SS    | 64/<br>253<br>mm |                            | 156       | -    |                         |                       |               |      |   |                       | 0                           |                |                                   | -                         |                            |                                      |  |  |
| 155.3                | SANDY SILT TILL: trace shale fragments, trace gravel, moist, grey,          | •           |                                        |       |                  |                            |           |      |                         |                       |               |      |   |                       |                             |                |                                   |                           |                            |                                      |  |  |
|                      | dense                                                                       | . •         | 4                                      | SS    | 38               |                            | 155       | -    |                         |                       |               |      |   | C                     |                             |                |                                   | -                         |                            |                                      |  |  |
|                      |                                                                             |             | 5                                      | SS    | 43               |                            |           |      |                         |                       |               |      |   | c                     |                             |                |                                   |                           |                            |                                      |  |  |
| 154.1<br>3.5         | END OF BOREHOLE:                                                            | 111         | 1                                      |       |                  | -                          |           | -    | +                       |                       |               |      |   | -                     |                             |                |                                   |                           | $\vdash$                   |                                      |  |  |
|                      | Notes:  1. Borehole Open and Dry upon Completion of Drilling.               |             |                                        |       |                  |                            |           |      |                         |                       |               |      |   |                       |                             |                |                                   |                           |                            |                                      |  |  |





**LOG OF BOREHOLE BH-E15** 1 OF 1 PROJECT: Proposed Slope Stability & Erosion Assessment Study **DRILLING DATA** CLIENT: DE SEN REALTY COMPANY LTD. Method: Solid Stem Augers PROJECT LOCATION: 66 Thomas Street, Mississauga, ON Diameter: 150 mm REF. NO.: SP18-306-20 DATUM: Geodetic Date: May/08/2018 ENCL NO.: 16 BH LOCATION: **Drilling Contractor:** DYNAMIC CONE PENETRATION RESISTANCE PLOT SOIL PROFILE SAMPLES CHEMICAL PLASTIC NATURAL MOISTURE CONTENT GROUND WATER CONDITIONS LIQUID ANALYSIS LIMIT 40 60 100 AND (m) STRATA PLOT BLOWS 0.3 m GRAIN SIZE NATURAL U SHEAR STRENGTH (kPa)

O UNCONFINED + FIELD VANE
Sensitivity
UICK TRIAXIAL X LAB VANE ELEV DEPTH **DESCRIPTION** NUMBER DISTRIBUTION WATER CONTENT (%) (%) ż 60 80 10 20 30 GR SA SI CL 155.7 SAND AND GRAVEL MIXED 0.0 WITH CONSTRUCTION DEBRIS: SS 61 0 154.9 155 0.8 FILL: clayey silt, some sand, trace gravel, trace topsoil, brown, moist SS 10 154 3 SS 5 BURRIED TOPSOIL: 750 mm 2.3 SS 0 153 POSSIBLE FILL: sand and gravel, 3.0 5 SS 14 152 SANDY SILT TILL: trace gravel, 67/ 151 grey, moist, very dense SS 6 278 0 <u>5</u>150.7 mm END OF BOREHOLE: SOIL LOG SP18-306-20-WITHOUT GAS READINGS.GPJ SPCL.GDT 6/15/18 1. Borehole Open and Dry upon Completion of Drilling.



PROJECT: Proposed Slope Stability & Erosion Assessment Study **DRILLING DATA** CLIENT: The Biglieri Group Method: Direct Push REF. NO.: SP18-306-20 PROJECT LOCATION: 66 Thomas Street, Mississauga, ON Diameter: DATUM: Geodetic Date: Aug/23/2018 ENCL NO.: 18 BH LOCATION: SOIL PROFILE SAMPLES Head Space Combustible PLASTIC NATURAL MOISTURE CONTENT REMARKS GROUND WATER CONDITIONS LIQUID LIMIT Vapor Reading AND NATURAL UNIT (m) STRATA PLOT (ppm) GRAIN SIZE BLOWS 0.3 m ELEVATION ELEV DEPTH DISTRIBUTION **DESCRIPTION** NUMBER (%) WATER CONTENT (%) 200 300 400 500 20 30 GR SA SI CL CLAYEY SILT TILL: possibly till, IBL in ppm brown, moist TO CLAYEY SILT TILL: greyish brown, moist trace gravel 2 TO 3 TO CLAYEY SILT: brown to dark grey, PHCs/VOCs (DUP-S203) 19 4 TO trace gravel TO 5 15 6 ТО Augered to 4.6 mbgs **AUGRÉ** END OF BOREHOLE: 4.6 Monitoring well was installed in the borehole upon completion of drilling.



SOIL LOG /W VOC 0~600 PPM SP18-306-20 - (17.OCT.2018).GPJ SPCL.GDT 10/25/18

PROJECT: Proposed Slope Stability & Erosion Assessment Study DRILLING DATA CLIENT: The Biglieri Group Method: Direct Push REF. NO.: SP18-306-20 PROJECT LOCATION: 66 Thomas Street, Mississauga, ON Diameter: DATUM: Geodetic Date: Aug/24/2018 ENCL NO.: 17 BH LOCATION: SOIL PROFILE SAMPLES Head Space Combustible PLASTIC NATURAL MOISTURE CONTENT REMARKS GROUND WATER CONDITIONS LIQUID LIMIT Vapor Reading AND NATURAL UNIT (m) STRATA PLOT (ppm) GRAIN SIZE BLOWS 0.3 m ELEVATION ELEV DEPTH DISTRIBUTION **DESCRIPTION** NUMBER (%) WATER CONTENT (%) 200 300 400 500 20 30 GR SA SI CL SANDY SILT: trace gravel mixed IBL in ppm with asphalt, grey, moist TO CLAYEY SILT: trace gravel, grey, moist 2 TO grey to dark grey 3 TO 4 TO SS5 -PHCs/VOCs 3.0 SILT: some gravel, dark grey, very moist TO 5 220 **CLAYEY SILT:** grey, moist TO 6 16 END OF BOREHOLE: Monitoring well was installed in the borehole upon completion of drilling.



PROJECT: Proposed Slope Stability & Erosion Assessment Study **DRILLING DATA** CLIENT: The Biglieri Group Method: Direct Push REF. NO.: SP18-306-20 PROJECT LOCATION: 66 Thomas Street, Mississauga, ON Diameter: DATUM: Geodetic Date: Aug/23/2018 ENCL NO.: 19 BH LOCATION: SOIL PROFILE SAMPLES Head Space Combustible PLASTIC NATURAL MOISTURE CONTENT REMARKS GROUND WATER CONDITIONS LIQUID LIMIT Vapor Reading AND NATURAL UNIT (m) STRATA PLOT (ppm) GRAIN SIZE BLOWS 0.3 m ELEVATION ELEV DEPTH DISTRIBUTION **DESCRIPTION** NUMBER (%) WATER CONTENT (%) 200 300 400 500 20 30 GR SA SI CL No Recovery IBL in ppm NR 1 SILTY SAND: black (possible asphalt), moist 2 TO CLAYEY SILT TILL: grey, moist 3 TO SS4 -PHCs/VOCs CLAYEY SILT: trace gravel, grey, 4 TO 357 240 TO Augered to 4.6 mbgs END OF BOREHOLE: Notes: 1. Tube refusal at 3.4 mbgs depth. Monitoring well was installed in the borehole upon completion of drilling. AUGER



PROJECT: Proposed Slope Stability & Erosion Assessment Study **DRILLING DATA** CLIENT: The Biglieri Group Method: Direct Push REF. NO.: SP18-306-20 PROJECT LOCATION: 66 Thomas Street, Mississauga, ON Diameter: DATUM: Geodetic Date: Aug/23/2018 ENCL NO.: 20 BH LOCATION: SOIL PROFILE SAMPLES Head Space Combustible PLASTIC NATURAL MOISTURE CONTENT REMARKS GROUND WATER CONDITIONS LIQUID LIMIT Vapor Reading AND NATURAL UNIT (m) STRATA PLOT (ppm) GRAIN SIZE BLOWS 0.3 m ELEVATION ELEV DEPTH DISTRIBUTION **DESCRIPTION** NUMBER (%) WATER CONTENT (%) 200 300 400 500 20 30 GR SA SI CL CLAYEY SILT TILL: trace gravel, IBL in ppm brown to grey, moist TO SS3 -PHCs/VOCs 2 TO 102 3 TO 138 Augered to 2.3 mbgs END OF BOREHOLE: Notes: 1. Tube refusal at 2.1 mbgs depth. 2. Monitoring well was installed in the borehole upon completion of drilling. AUGRE



PROJECT: Proposed Slope Stability & Erosion Assessment Study **DRILLING DATA** CLIENT: The Biglieri Group Method: Direct Push REF. NO.: SP18-306-20 PROJECT LOCATION: 66 Thomas Street, Mississauga, ON Diameter: DATUM: Geodetic Date: Aug/22/2018 ENCL NO.: 21 BH LOCATION: SOIL PROFILE SAMPLES Head Space Combustible PLASTIC NATURAL MOISTURE CONTENT REMARKS GROUND WATER CONDITIONS LIQUID LIMIT Vapor Reading AND NATURAL UNIT (m) STRATA PLOT (ppm) GRAIN SIZE BLOWS 0.3 m ELEVATION ELEV DEPTH DISTRIBUTION **DESCRIPTION** NUMBER (%) WATER CONTENT (%) 200 300 400 500 20 30 GR SA SI CL SILTY CLAY TILL: trace gravel, IBL in ppm brown, moist TO 2 TO grey 3 TO trace broken rocks TO 4 SS5 -PHCs/VOCs SILTY CLAY: grey, moist TO 5 TO 6 END OF BOREHOLE: Notes: 1. Monitoring well was installed in the borehole upon completion of drilling.



PROJECT: Proposed Slope Stability & Erosion Assessment Study **DRILLING DATA** CLIENT: The Biglieri Group Method: Direct Push REF. NO.: SP18-306-20 PROJECT LOCATION: 66 Thomas Street, Mississauga, ON Diameter: DATUM: Geodetic Date: Aug/23/2018 ENCL NO.: 22 BH LOCATION: SOIL PROFILE SAMPLES Head Space Combustible PLASTIC NATURAL MOISTURE CONTENT REMARKS GROUND WATER CONDITIONS LIQUID LIMIT Vapor Reading AND NATURAL UNIT (m) STRATA PLOT (ppm) GRAIN SIZE BLOWS 0.3 m ELEVATION ELEV DEPTH DISTRIBUTION **DESCRIPTION** NUMBER (%) WATER CONTENT (%) 200 300 400 500 20 30 GR SA SI CL CONCRETE: IBL in ppm 0.2 SILTY SAND: grey, moist TO SANDY SILT: grey, moist 2 TO 3 TO 13 CLAYEY SILT: trace sand, dark grey, moist TO 4 PHCs/VOCs (DUP - S202) 68 SILTY SAND AND SAND AND 3.0 **GRAVEL:** grey, moist 5 TO 6 TO 4.0 END OF BOREHOLE: Notes: 1. Monitoring well was installed in the borehole upon completion of



CLIENT: The Biglieri Group

PROJECT LOCATION: 66 Thomas Street, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Direct Push

Diameter: REF. NO.: SP18-306-20

Date: Aug/23/2018 ENCL NO.: 23

|                      | SOIL PROFILE                                                                                                                               |             | 5      | SAMPL         | .ES                |                            |           | Н        | ead S | pace   | Com          | bustik | ole | <br>_ NAT | URAI           |                                            |                           | _                          | REMARKS                               |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------|---------------|--------------------|----------------------------|-----------|----------|-------|--------|--------------|--------|-----|-----------|----------------|--------------------------------------------|---------------------------|----------------------------|---------------------------------------|
| (m)<br>ELEV<br>DEPTH | DESCRIPTION                                                                                                                                | STRATA PLOT | NUMBER | ТҮРЕ          | "N" BLOWS<br>0.3 m | GROUND WATER<br>CONDITIONS | ELEVATION | 10       | V     | apor F | Readi<br>om) | ng     | 00  | TER CO    | O<br>O<br>NTEN | LIQUID<br>LIMIT<br>W <sub>L</sub><br>T (%) | POCKET PEN.<br>(Cu) (kPa) | NATURAL UNIT WT<br>(kN/m³) | AND GRAIN SIZ DISTRIBUTI (%) GR SA SI |
| 0.0                  | CONCRETE:                                                                                                                                  | P 4         |        |               |                    |                            |           |          |       |        |              |        |     |           |                |                                            |                           |                            | IBL in ppm                            |
| 0.2                  | SILTY SAND: trace gravel, grey, moist                                                                                                      |             | 1      | то            |                    |                            | 1         | *        |       |        |              |        |     |           |                |                                            |                           |                            | 5                                     |
| 0.8                  | SANDY SILT: trace gravel, grey to dark grey, moist                                                                                         |             | 2      | то            |                    |                            | 1         | *        |       |        |              |        |     |           |                |                                            |                           |                            | 9                                     |
| 2                    |                                                                                                                                            |             | 3      | то            |                    |                            | j         | <u> </u> |       |        |              |        |     |           |                |                                            |                           |                            | 15                                    |
| 2.3                  | CLAYEY SILT: dark grey, moist                                                                                                              |             | 4      | то            |                    |                            |           | <u>*</u> |       |        |              |        |     |           |                |                                            |                           |                            | 50                                    |
| 3.0                  | SANDY SILT: some gravel, dark grey, moist                                                                                                  |             | 5      | то            |                    |                            |           | \        | I     |        |              |        |     |           |                |                                            |                           |                            | SS5 -<br>PHCs/VO                      |
| <u>.</u>             |                                                                                                                                            |             | ,      | <b>\U</b> GRI | ₹                  |                            |           |          |       |        |              |        |     |           |                |                                            |                           |                            |                                       |
| 7.6                  | END OF BOREHOLE:  Notes:  1. Monitoring well was installed in the borehole upon completion of drilling. 2. Tube refusal at 3.7 mbgs depth. |             |        |               |                    |                            |           |          |       |        |              |        |     |           |                |                                            |                           |                            |                                       |



CLIENT: The Biglieri Group

PROJECT LOCATION: 66 Thomas Street, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Direct Push

Diameter: REF. NO.: SP18-306-20

Date: Aug/22/2018 ENCL NO.: 24

|                      | SOIL PROFILE                                                                          |             | 5      | SAMPL | .ES                | · ~                        |           | Н        | ead | Spac | e C               | ombu             | stible | PLAST                     | IC NAT | URAL            | FIOUID                                      |                           | Δ                         | REMARK                                                    |
|----------------------|---------------------------------------------------------------------------------------|-------------|--------|-------|--------------------|----------------------------|-----------|----------|-----|------|-------------------|------------------|--------|---------------------------|--------|-----------------|---------------------------------------------|---------------------------|---------------------------|-----------------------------------------------------------|
| (m)<br>ELEV<br>DEPTH | DESCRIPTION                                                                           | STRATA PLOT | NUMBER | ТУРЕ  | "N" BLOWS<br>0.3 m | GROUND WATER<br>CONDITIONS | ELEVATION |          |     |      | r Repprr<br>■ 300 | າ)<br>⊸ <b>≖</b> |        | W <sub>P</sub><br>⊢<br>WA | TER C  | w<br>O<br>ONTEN | LIQUID<br>LIMIT<br>W <sub>L</sub><br>IT (%) | POCKET PEN.<br>(Cu) (kPa) | NATURAL UNIT V<br>(kN/m³) | AND<br>GRAIN S<br>DISTRIBU <sup>*</sup><br>(%)<br>GR SA S |
| 0.0                  | CLAYEY SILT: trace gravel, grey, moist                                                |             | 1      | то    |                    |                            |           | ×        |     |      |                   |                  |        |                           |        |                 |                                             |                           |                           | IBL in ppn                                                |
| L                    |                                                                                       |             | 2      | то    |                    |                            |           | <b>X</b> |     |      |                   |                  |        |                           |        |                 |                                             |                           |                           | 7                                                         |
| 2                    |                                                                                       |             | 3      | то    |                    |                            |           | *        |     |      |                   |                  |        |                           |        |                 |                                             |                           |                           | 31                                                        |
| 3                    | becoming dark grey                                                                    |             | 4      | то    |                    |                            |           |          |     |      |                   |                  |        |                           |        |                 |                                             |                           |                           | 40<br>140                                                 |
|                      | 2000 ming dark groy                                                                   |             | 5      | то    |                    |                            |           |          |     |      |                   |                  |        |                           |        |                 |                                             |                           |                           | 45                                                        |
| <u> </u>             |                                                                                       |             | 6      | то    |                    |                            |           |          |     |      |                   |                  |        |                           |        |                 |                                             |                           |                           | 177                                                       |
|                      | becoming very moist                                                                   |             | 7      | то    |                    |                            |           | 7        |     |      |                   |                  |        |                           |        |                 |                                             |                           |                           | SS7 -<br>PHCs/VO                                          |
| 7.6                  | Augered to 7.6 mbgs                                                                   |             |        |       |                    |                            |           |          |     |      |                   |                  |        |                           |        |                 |                                             |                           |                           |                                                           |
| 7.6                  | END OF BOREHOLE:                                                                      |             |        |       |                    |                            |           | $\vdash$ |     |      |                   |                  |        | +                         |        |                 |                                             |                           |                           |                                                           |
|                      | Notes:  1. Monitoring well was installed in the borehole upon completion of drilling. |             |        |       |                    |                            |           |          |     |      |                   |                  |        |                           |        |                 |                                             |                           |                           |                                                           |

GRAPH NOTES

 $+3, \times 3$ : Numbers refer to Sensitivity

 $\bigcirc$  8=3% Strain at Failure

PROJECT LOCATION: 66 Thomas Street, Mississauga, ON

CLIENT: The Biglieri Group

DRILLING DATA Method: Direct Push

Diameter: REF. NO.: SP18-306-20

DATUM: Geodetic

Date: Aug/22/2018 ENCL NO.: 24

| ВН                                                                               | LOCATION | SOIL PROFILE |             | S      | AMPL | ES             |                            |           | 114 | C   | `~~~                   | Com | huat | ible |                                   |   |        |                                   |                           | 1                       |                                               |      |
|----------------------------------------------------------------------------------|----------|--------------|-------------|--------|------|----------------|----------------------------|-----------|-----|-----|------------------------|-----|------|------|-----------------------------------|---|--------|-----------------------------------|---------------------------|-------------------------|-----------------------------------------------|------|
| (m)                                                                              |          | DESCRIPTION  | STRATA PLOT | NUMBER |      | BLOWS<br>0.3 m | GROUND WATER<br>CONDITIONS | ELEVATION | П   |     | Space<br>apor I<br>(pr |     | ng   | ible | PLASTI<br>LIMIT<br>W <sub>P</sub> | , | w<br>0 | LIQUID<br>LIMIT<br>W <sub>L</sub> | POCKET PEN.<br>(Cu) (kPa) | NATURAL UNIT WT (KN/m³) | REMARI<br>AND<br>GRAIN SI<br>DISTRIBUT<br>(%) | IZE  |
|                                                                                  |          |              | STR/        | NOM    | TYPE | Ž.             | GRO                        | ELEV      | 10  | 0 2 | 00 3                   |     | 00   | 500  |                                   |   |        | 30                                |                           | Ž                       | GR SA SI                                      | I CL |
| SPCL SOIL LOG MV VOC 0~600 PPM SP18-306-20 - (17.OCT.2018).GPJ SPCL.GDT 10/25/18 |          |              |             |        |      |                | SPARI.                     |           |     |     |                        |     |      |      |                                   |   |        |                                   |                           |                         |                                               |      |



PROJECT: Proposed Slope Stability & Erosion Assessment Study **DRILLING DATA** CLIENT: The Biglieri Group Method: Direct Push REF. NO.: SP18-306-20 PROJECT LOCATION: 66 Thomas Street, Mississauga, ON Diameter: DATUM: Geodetic Date: Aug/22/2018 ENCL NO.: 25 BH LOCATION: SOIL PROFILE SAMPLES Head Space Combustible PLASTIC NATURAL MOISTURE CONTENT REMARKS GROUND WATER CONDITIONS LIQUID LIMIT Vapor Reading AND NATURAL UNIT (m) STRATA PLOT (ppm) GRAIN SIZE BLOWS 0.3 m ELEVATION ELEV DEPTH DISTRIBUTION **DESCRIPTION** NUMBER (%) WATER CONTENT (%) 200 300 400 500 20 30 GR SA SI CL CLAYEY SILT: trace gravel, red to IBL in ppm brown, moist TO becoming grey 2 TO 3 TO becoming dark grey 4 TO SS5 -PHCs/VOCs TO 5 40 trace sand and gravel TO 6 12 END OF BOREHOLE: Notes: 1. Monitoring well was installed in the borehole upon completion of drilling.



DRILLING DATA

PROJECT: Proposed Slope Stability & Erosion Assessment Study

CLIENT: The Biglieri Group

Method: Direct Push

PROJECT LOCATION: 66 Thomas Street, Mississauga, ON

REF. NO.: SP18-306-20 Diameter:

|               | M: Geodetic<br>CATION:                 |             |        |       |                    |                            |           | Date: Aug/  | 22/2018        | 3              |         |              |         | ΕN                     | NCL N                   | O.: 26                    | 6                          |                              |
|---------------|----------------------------------------|-------------|--------|-------|--------------------|----------------------------|-----------|-------------|----------------|----------------|---------|--------------|---------|------------------------|-------------------------|---------------------------|----------------------------|------------------------------|
| (m)           | SOIL PROFILE                           | 75          | S      | SAMPL |                    | ATER                       |           | Head S<br>V | pace<br>apor R | Comb<br>leadin | ustible | PLAS<br>LIMI | TIC NAT | URAL<br>STURE<br>ITENT | LIQUID<br>LIMIT         | PEN.                      | JNIT WT                    | REMARKS<br>AND<br>GRAIN SIZI |
| ELEV<br>DEPTH | DESCRIPTION                            | STRATA PLOT | NUMBER | TYPE  | "N" BLOWS<br>0.3 m | GROUND WATER<br>CONDITIONS | ELEVATION | 1           | 00 30          | <b>-</b>       |         |              | ATER C  |                        | W <sub>L</sub><br>T (%) | POCKET PEN.<br>(Cu) (kPa) | NATURAL UNIT WT<br>(kN/m³) | DISTRIBUTI (%)  GR SA SI     |
| 0.0           | CLAYEY SILT: trace gravel, grey, moist |             | 1      | то    |                    |                            | ۵         | 1           |                |                |         |              |         |                        |                         |                           |                            | IBL in ppm                   |
|               |                                        |             | 2      | то    |                    | -                          |           | 1           |                |                |         |              |         |                        |                         |                           |                            | 0                            |
|               | trace sand, grey to black              |             | 3      | то    |                    |                            | <u> </u>  | 1           |                |                |         |              |         |                        |                         |                           |                            | SS3 - M&I<br>0               |
|               | END OF BOREHOLE:                       |             | 4      | то    |                    | -                          | <u> </u>  | 1           |                |                |         |              |         |                        |                         |                           |                            | 0                            |
|               |                                        |             |        |       |                    |                            |           |             |                |                |         |              |         |                        |                         |                           |                            |                              |



DRILLING DATA

Method: Direct Push

PROJECT: Proposed Slope Stability & Erosion Assessment Study CLIENT: The Biglieri Group PROJECT LOCATION: 66 Thomas Street, Mississauga, ON

|                    | /I: Geodetic<br>CATION:                       |             |        |       |                    |                            |           | Date:    | , tug/2     | I    | 5                     |        |    |                           |                       | Εľ           | ICL N                                    | J Z                      | ,                       |                                |
|--------------------|-----------------------------------------------|-------------|--------|-------|--------------------|----------------------------|-----------|----------|-------------|------|-----------------------|--------|----|---------------------------|-----------------------|--------------|------------------------------------------|--------------------------|-------------------------|--------------------------------|
| JII LOC            | SOIL PROFILE                                  |             | S      | SAMPL | ES                 | - K                        |           | Н        | ead S<br>Va | pace | Coml<br>Readii<br>om) | bustib | le | PLASTI                    | C NATI<br>MOIS<br>CON | URAL<br>TURE | LIQUID                                   | ż                        | TW.                     | REMARKS<br>AND                 |
| (m)<br>LEV<br>EPTH | DESCRIPTION                                   | STRATA PLOT | NUMBER | TYPE  | "N" BLOWS<br>0.3 m | GROUND WATER<br>CONDITIONS | ELEVATION | 10       | 1           | (pr  | <b>-</b>              |        |    | W <sub>P</sub><br>⊢<br>WA | TER CC                |              | LIQUID<br>LIMIT<br>W <sub>L</sub><br>——I | POCKET PEN<br>(Cu) (kPa) | NATURAL UNIT WT (kN/m³) | GRAIN SIZ<br>DISTRIBUTI<br>(%) |
| 0.0                | CLAYEY SILT: trace sand and gravel, grey, wet |             | 1      | то    |                    |                            | 1         | <b>1</b> |             |      |                       |        |    |                           |                       |              |                                          |                          |                         | IBL in ppm                     |
|                    | becoming very dark grey, moist                |             | 2      | то    |                    |                            | 1         | <b>1</b> |             |      |                       |        |    |                           |                       |              |                                          |                          |                         | 0                              |
|                    |                                               |             | 3      | то    |                    | -                          | 1         | SS3      | - M&I       |      |                       |        |    |                           |                       |              |                                          |                          |                         | 0                              |
|                    | becoming grey                                 |             | 4      | то    |                    | _                          | 1         | <b>1</b> |             |      |                       |        |    |                           |                       |              |                                          |                          |                         | 0                              |
| 3.0                | END OF BOREHOLE:                              | 11/1        |        |       |                    |                            |           |          |             |      |                       |        |    |                           |                       |              |                                          |                          |                         |                                |
|                    |                                               |             |        |       |                    |                            |           |          |             |      |                       |        |    |                           |                       |              |                                          |                          |                         |                                |



**LOG OF BOREHOLE 213** 1 OF 1 PROJECT: Proposed Slope Stability & Erosion Assessment Study **DRILLING DATA** CLIENT: The Biglieri Group Method: Direct Push PROJECT LOCATION: 66 Thomas Street, Mississauga, ON REF. NO.: SP18-306-20 Diameter: DATUM: Geodetic Date: Aug/22/2018 ENCL NO.: 11 BH LOCATION: SOIL PROFILE SAMPLES Head Space Combustible PLASTIC NATURAL MOISTURE CONTENT REMARKS GROUND WATER CONDITIONS LIQUID LIMIT Vapor Reading AND NATURAL UNIT (m) STRATA PLOT (ppm) GRAIN SIZE BLOWS 0.3 m ELEVATION ELEV DEPTH DISTRIBUTION **DESCRIPTION** NUMBER (%) WATER CONTENT (%) 200 300 400 500 20 GR SA SI CL CLAYEY SILT: dark grey, moist TO 2 TO SS3 - M&I (DUP - S201) trace sand, very moist 3 TO SILTY CLAY TILL: brown, moist 4 то END OF BOREHOLE: 2.7 Notes: 1.Tube refusal at 2.7 mbgs depth. SPCL SOIL LOG /W VOC 0~600 PPM SP18-306-20 - (17.0CT.2018).GPJ SPCL.GDT 10/25/18



PROJECT: Proposed Slope Stability & Erosion Assessment Study **DRILLING DATA** CLIENT: The Biglieri Group Method: Direct Push PROJECT LOCATION: 66 Thomas Street, Mississauga, ON Diameter: REF. NO.: SP18-306-20 DATUM: Geodetic Date: Aug/23/2018 ENCL NO.: 12 BH LOCATION: SOIL PROFILE SAMPLES Head Space Combustible PLASTIC NATURAL MOISTURE CONTENT REMARKS GROUND WATER CONDITIONS LIQUID LIMIT Vapor Reading AND NATURAL UNIT (m) STRATA PLOT (ppm) GRAIN SIZE BLOWS 0.3 m ELEVATION ELEV DEPTH DISTRIBUTION **DESCRIPTION** NUMBER (%) WATER CONTENT (%) 200 300 400 500 20 30 GR SA SI CL **CLAYEY SILT:** brown, moist IBL in ppm TO SS2 - M&I ТО END OF BOREHOLE: Notes: 1. Tube refusal at 0.8 mbgs depth.



PROJECT: Proposed Slope Stability & Erosion Assessment Study **DRILLING DATA** CLIENT: The Biglieri Group Method: Direct Push PROJECT LOCATION: 66 Thomas Street, Mississauga, ON Diameter: REF. NO.: SP18-306-20 DATUM: Geodetic Date: Aug/23/2018 ENCL NO.: 13 BH LOCATION: SOIL PROFILE SAMPLES Head Space Combustible PLASTIC NATURAL MOISTURE CONTENT REMARKS GROUND WATER CONDITIONS LIQUID LIMIT Vapor Reading AND NATURAL UNIT (m) STRATA PLOT (ppm) GRAIN SIZE BLOWS 0.3 m ELEVATION ELEV DEPTH DISTRIBUTION **DESCRIPTION** NUMBER (%) WATER CONTENT (%) 200 300 400 500 20 GR SA SI CL **CLAYEY SILT:** brown, moist IBL in ppm TO 1 SS2 - M&I trace gravel, becoming grey 2 TO CLAYEY SILT TILL: grey, moist 3 TO END OF BOREHOLE: Notes: 1. Tube refusal at 2.1 mbgs depth.



**LOG OF BOREHOLE 216** 1 OF 1 PROJECT: Proposed Slope Stability & Erosion Assessment Study **DRILLING DATA** CLIENT: The Biglieri Group Method: Direct Push PROJECT LOCATION: 66 Thomas Street, Mississauga, ON Diameter: REF. NO.: SP18-306-20 DATUM: Geodetic Date: Aug/23/2018 ENCL NO.: 14 BH LOCATION: SOIL PROFILE SAMPLES Head Space Combustible PLASTIC NATURAL MOISTURE CONTENT REMARKS GROUND WATER CONDITIONS LIQUID LIMIT Vapor Reading AND NATURAL UNIT (m) STRATA PLOT (ppm) GRAIN SIZE BLOWS 0.3 m ELEVATION ELEV DEPTH DISTRIBUTION **DESCRIPTION** NUMBER (%) WATER CONTENT (%) 200 300 400 500 20 GR SA SI CL CLAYEY SILT: some sand, brown, IBL in ppm TO SS2 - M&I trace gravel, brown to grey 2 TO 3 TO END OF BOREHOLE: SPCL SOIL LOG /W VOC 0~600 PPM SP18-306-20 - (17.0CT.2018).GPJ SPCL.GDT 10/25/18



**LOG OF BOREHOLE 217** 1 OF 1 PROJECT: Proposed Slope Stability & Erosion Assessment Study **DRILLING DATA** CLIENT: The Biglieri Group Method: Direct Push PROJECT LOCATION: 66 Thomas Street, Mississauga, ON Diameter: REF. NO.: SP18-306-20 DATUM: Geodetic Date: Aug/22/2018 ENCL NO.: 15 BH LOCATION: SOIL PROFILE SAMPLES Head Space Combustible PLASTIC NATURAL MOISTURE CONTENT REMARKS GROUND WATER CONDITIONS LIQUID LIMIT Vapor Reading AND NATURAL UNIT (m) STRATA PLOT (ppm) GRAIN SIZE BLOWS 0.3 m ELEVATION ELEV DEPTH DISTRIBUTION **DESCRIPTION** (%) WATER CONTENT (%) 200 300 400 500 20 30 GR SA SI CL TOPSOIL MIXED WITH SILT AND IBL in ppm TO CLAYEY SILT: red, moist 2 TO 3 TO SS4 - VOCs TO 4 END OF BOREHOLE: SPCL SOIL LOG /W VOC 0~600 PPM SP18-306-20 - (17.0CT.2018).GPJ SPCL.GDT 10/25/18



**LOG OF BOREHOLE 218** 1 OF 1 PROJECT: Proposed Slope Stability & Erosion Assessment Study **DRILLING DATA** CLIENT: The Biglieri Group Method: Direct Push PROJECT LOCATION: 66 Thomas Street, Mississauga, ON Diameter: REF. NO.: SP18-306-20 DATUM: Geodetic Date: Aug/22/2018 ENCL NO.: 16 BH LOCATION: SOIL PROFILE SAMPLES Head Space Combustible PLASTIC NATURAL MOISTURE CONTENT REMARKS GROUND WATER CONDITIONS LIQUID LIMIT Vapor Reading AND NATURAL UNIT (m) STRATA PLOT (ppm) GRAIN SIZE BLOWS 0.3 m ELEVATION ELEV DEPTH DISTRIBUTION **DESCRIPTION** NUMBER (%) WATER CONTENT (%) 200 300 400 500 20 30 GR SA SI CL CLAYEY SILT: red, damp IBL in ppm mixed with topsoil TO 2 TO becoming moist 3 TO trace sand, red to black SS4 - VOCs 4 TO END OF BOREHOLE: SPCL SOIL LOG /W VOC 0~600 PPM SP18-306-20 - (17.0CT.2018).GPJ SPCL.GDT 10/25/18



**LOG OF BOREHOLE BH E1** 1 OF 1 PROJECT: Proposed Slope Stability & Erosion Assessment Study **DRILLING DATA** Method: Solid Stem Augers CLIENT: The Biglieri Group PROJECT LOCATION: 66 Thomas Street, Mississauga, ON Diameter: 150 mm REF. NO.: SP18-306-20 DATUM: Geodetic Date: May/07/2018 ENCL NO.: 2 BH LOCATION: SOIL PROFILE SAMPLES **Head Space Combustible** PLASTIC NATURAL MOISTURE CONTENT REMARKS GROUND WATER CONDITIONS LIQUID Vapor Reading AND LIMIT (m) STRATA PLOT (ppm) GRAIN SIZE BLOWS 0.3 m NATURAL U ELEVATION ELEV DEPTH DISTRIBUTION **DESCRIPTION** NUMBER (%) WATER CONTENT (%) 200 300 400 500 10 20 30 GR SA SI CL 154.6 ASPHALT:114 mm IBL in ppm 150.6 154:3 GRAVEL:150 mm SS 8 0.3 FILL:clayey silt mixed with 26 construction debris, trace cobbles, trace gravel, trace topsoil, brown, clayey silt, trace sand, becoming reddish brown 2 SS 7 162 153 3 SS 6 0 1050 silty sand, brown, very moist SS4 - PHCs SS 11 152.0 152 CLAYEY SILT TILL:some sand, 2000 trace gravel, trace rootlets, yellowish grey, moist, stiff to hard W. L. 151.6 m 5 SS 50/ O 3 20 44 33 May 28, 2018 125 mm 1342 151

150

W. L. 149.0 m May 07, 2018

74/

203

mm

**AUGR**E

6 SS

..GDT SPCL 149.0 5.6 **END OF BOREHOLE:** 

150.0

149.6

5.0

10/25/18

SOIL LOG /W VOC 0~600 PPM SP18-306-20 - (17.OCT.2018).GPJ

Notes: 1. Borehole Open upon Completion of Drilling.

2. Auger Refusal at 5.64 m Depth.

RESIDUAL SOIL/WEATHERED

SHALE BEDROCK: grey, moist

Augered to 5.64 mbgs

- 3. Water Encountered at 5.59 m upon Completion of Drilling.
- 4. Monitoring Well was Installed in the Borehole upon Completion of Drilling.
- 5. Groundwater Level was Observed at 2.96 m in the Well on May 28, 2018.



0

CLIENT: The Biglieri Group

PROJECT LOCATION: 66 Thomas Street, Mississauga, ON

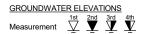
DATUM: Geodetic

DRILLING DATA

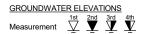
Method: Solid Stem Augers

Diameter: 150 mm REF. NO.: SP18-306-20

Date: May/07/2018 ENCL NO.: 3


|                               | SOIL PROFILE                                                                                                                                                                                                                                              |              | s         | AMPL  | ES                 | <u>ر</u>                   |                | Н                                         | lead ( | Space | Com | busti | ble | PLASTI | C NATI | URAL       | LIQUID                  |                           | ¥                       | REMARKS                                           |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|-------|--------------------|----------------------------|----------------|-------------------------------------------|--------|-------|-----|-------|-----|--------|--------|------------|-------------------------|---------------------------|-------------------------|---------------------------------------------------|
| (m)<br>ELEV<br>DEPTH          | DESCRIPTION                                                                                                                                                                                                                                               | STRATA PLOT  | NUMBER    | TYPE  | "N" BLOWS<br>0.3 m | GROUND WATER<br>CONDITIONS | ELEVATION      | 1                                         |        |       | pm) |       | 500 |        | TER CC | w<br>DNTEN | LIMIT<br>W <sub>L</sub> | POCKET PEN.<br>(Cu) (kPa) | NATURAL UNIT WT (KN/m³) | AND<br>GRAIN SIZ<br>DISTRIBUTI<br>(%)<br>GR SA SI |
| 159.9                         | ASPHALT: 150 mm                                                                                                                                                                                                                                           |              |           | · · · | -                  |                            |                |                                           | 1      | +     |     |       |     |        |        |            |                         |                           |                         | IBL in ppm                                        |
| 15 <b>0.2</b><br>0.3          |                                                                                                                                                                                                                                                           |              | 1         | SS    | 6                  |                            |                | -<br>-<br>-<br>-<br>-                     |        |       |     |       |     |        | 0      |            |                         |                           |                         | 0                                                 |
|                               | trace sand, trace topsoil, becoming dark brown                                                                                                                                                                                                            | $\bigotimes$ | 2         | SS    | 5                  |                            | 153            | -<br>-<br>-                               |        |       |     |       |     |        |        | 0          |                         | -                         |                         | SS2 - M&I<br>256                                  |
|                               |                                                                                                                                                                                                                                                           | $\bigotimes$ | 3         | SS    | 17                 |                            | W. L.<br>May 2 | 152.4<br>3, 201                           | m<br>8 |       |     |       |     |        | 0      |            |                         |                           |                         | 204                                               |
| 151.7                         | CLAYEY SILT TILL: some sand,                                                                                                                                                                                                                              |              |           |       |                    |                            | 152            | -                                         |        |       |     |       |     |        |        |            |                         | -                         |                         | 204<br>SS4 - PHC                                  |
| 151.0                         | trace gravel, light brown, moist, hard                                                                                                                                                                                                                    |              | 4         | SS    | 38                 |                            | : 1            | <u>1</u><br>-<br>-                        |        |       |     |       |     |        | o      |            |                         |                           |                         | 474                                               |
| 3.0                           | SANDY SILT TILL:trace shale fragments, trace gravel, grey, moist, dense                                                                                                                                                                                   | 0            | 5         | SS    | 41                 |                            | 151            | -<br>1<br>-<br>-<br>-                     |        |       |     |       |     | ,      | •      |            |                         |                           |                         | 152                                               |
|                               |                                                                                                                                                                                                                                                           | 0            |           |       |                    |                            | 150            | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |        |       |     |       |     |        |        |            |                         | -                         |                         |                                                   |
| 149.4<br>14 <b>9.6</b><br>4.7 | NFERRED BEDROCK Shale,<br>Georgian Bay Formation, grey<br>Augered to 5.49                                                                                                                                                                                 |              | _6_/<br>/ | SS    | 50/<br>50<br>mm    |                            | 149            | -                                         |        |       |     |       |     | 0      |        |            |                         | -                         |                         | 50                                                |
| 148.5<br>5.5                  | END OF BOREHOLE:                                                                                                                                                                                                                                          |              |           |       |                    |                            |                | -                                         |        |       |     |       |     |        |        |            |                         |                           |                         |                                                   |
|                               | Notes:  1. Borehole Open and Dry upon Completion of Drilling.  2. Auger Refusal at 5.49 m Depth.  3. Monitoring Well was Installed in the Borehole upon Completion of Drilling.  4. Groundwater Level was Observed at 1.56 m in the Well on May 28, 2018. |              |           |       |                    |                            |                |                                           |        |       |     |       |     |        |        |            |                         |                           |                         |                                                   |




PROJECT: Proposed Slope Stability & Erosion Assessment Study **DRILLING DATA** Method: Pionjar CLIENT: The Biglieri Group PROJECT LOCATION: 66 Thomas Street, Mississauga, ON Diameter: REF. NO.: SP18-306-20 DATUM: Geodetic Date: Jun/05/2018 ENCL NO.: 4 BH LOCATION: SOIL PROFILE SAMPLES **Head Space Combustible** PLASTIC NATURAL MOISTURE CONTENT REMARKS GROUND WATER CONDITIONS Vapor Reading AND LIMIT NATURAL UNIT (m) STRATA PLOT (ppm) GRAIN SIZE BLOWS 0.3 m ELEVATION ELEV DEPTH DISTRIBUTION **DESCRIPTION** NUMBER (%) WATER CONTENT (%) 200 300 400 500 10 20 30 GR SA SI CL 154.7 CONCRETE: 180 mm 154:8 FILL: silty sand to clayey silt, trace 0.2 DO cobbles, trace gravel, brown, moist trace construction debris 154 DO 2 trace topsoil, brown to grey 3 DO 153 becoming brown <sup>-</sup>152.6 4 DO 0 SANDY SILT TILL: brown, wet, W. L. 152.5 m very moist Jun 07, 2018 152.3 CLAYEY SILT TILL: clayey silt till SS5 - PHCs to native sandy silt till, brown, wet to (DUP - S3) 152 very moist 5 DO at 3.04 m, layers of wet sand DO 6 0 151.0 END OF BOREHOLE: 3.7 Notes: 1. Monitoring Well was Installed in the Borehole upon Completion of 2. Groundwater Level was Observed at 2.16 m in the Well on June 7, 2018.



PROJECT: Proposed Slope Stability & Erosion Assessment Study **DRILLING DATA** Method: Solid Stem Augers CLIENT: The Biglieri Group PROJECT LOCATION: 66 Thomas Street, Mississauga, ON Diameter: 150 mm REF. NO.: SP18-306-20 DATUM: Geodetic Date: May/08/2018 ENCL NO.: 5 BH LOCATION: SOIL PROFILE SAMPLES **Head Space Combustible** PLASTIC NATURAL MOISTURE CONTENT REMARKS GROUND WATER CONDITIONS LIQUID Vapor Reading AND LIMIT (m) STRATA PLOT (ppm) GRAIN SIZE BLOWS 0.3 m NATURAL U ELEVATION ELEV DEPTH DISTRIBUTION **DESCRIPTION** NUMBER (%) WATER CONTENT (%) 200 300 400 500 10 20 30 GR SA SI CL 154.3 15**0.0** 15**9**.1 0.2 ASPHALT: 89 mm IBL in ppm GRAVEL: 125 mm SS 10 154 FILL: sand to clayey silt, reddish 180 brown, moist mixed with topsoil SS2 -PHCs/VOCs/PCBs 2 SS 5 346 153 clayey silt, some sand, trace gravel, reddish brown, very moist to wet 3 SS 9 W. L. 152.6 m W. L. 152.5 m 219 May 08, 2018 152.0 152 CLAYEY SILT TILL: trace gravel, SS4 - M&I 2.3 light brown, moist, hard SS 30 89 SANDY SILT TILL: trace shale fragments, trace gravel, grey, very 5 SS 48 151 moist, dense 38 150 RESIDUAL SOIL/WEATHERED 50/ 149.6 6 SS 4.7 SHALE BEDROCK: grey, moist 100 mm 10/25/18 Augered to 5.49 mbgs 44 NUGRE 149 ..GDT END OF BOREHOLE: SPCL SOIL LOG /W VOC 0~600 PPM SP18-306-20 - (17.0CT.2018).GPJ 1. Borehole Open upon Completion of Drilling. 2. Water Encountered at 1.83 m upon Completion of Drilling. 3. Auger Refusal at 5.49 m. Monitoring Well was Installed in the Borehole upon completion of Drilling. 5. Groundwater Level was Observed at 1.67 m in the Well on May 28, 2018.



PROJECT: Proposed Slope Stability & Erosion Assessment Study **DRILLING DATA** Method: Solid Stem Augers CLIENT: The Biglieri Group PROJECT LOCATION: 66 Thomas Street, Mississauga, ON Diameter: 150 mm REF. NO.: SP18-306-20 DATUM: Geodetic Date: May/08/2018 ENCL NO.: 6 BH LOCATION: SOIL PROFILE SAMPLES Head Space Combustible PLASTIC NATURAL MOISTURE CONTENT REMARKS GROUND WATER CONDITIONS Vapor Reading AND LIMIT (m) STRATA PLOT (ppm) GRAIN SIZE BLOWS 0.3 m NATURAL U ELEVATION ELEV DEPTH DISTRIBUTION **DESCRIPTION** NUMBER (%) WATER CONTENT (%) 200 300 400 500 20 30 GR SA SI CL 155.3 ASPHALT: 75 mm IBL in ppm GRAVEL: 75 mm 6 1 SS 155 FILL: clayey silt mixed with topsoil, 157 154.5 BURRIED TOPSOIL: 740 mm 0.8 SS2 - PCBs (DUP - S2) 2 SS 6 296 154 153.8 FILL: clayey silt, some sand, trace SS3 - M&I gravel, light brown, very moist 3 SS 5 237 153.0 153 CLAYEY SILT TILL: some sand, 2.3 W. L. 152.9 m trace gravel, light brown, very moist, PHCs/VOCs SS 36 May 28, 2018 355 5 SS 38 0 152 78 151 150.7 6 SS 50/ SANDY SILT TILL: trace shale 0 fragments, trace gravel, grey, moist 100 very dense mm 66 150 149.5 N. L. 149.5 m INFERRED BEDROCK Shale, 49.8 7 ∧ SS Georgian Bay Formation, grey 25 May 08, 2018 5.8 END OF BOREHOLE: mm 1. Borehole Open upon Completion of Drilling. Water Encountered at 5.77 m upon Completion of Drilling.
 Monitoring Well was Installed in the Borehole upon Completion of Drilling. 4 Groundwater Level was Observed at 2.41 m in the Well on May 28, 2018.



10/25/18

SPCL.GDT

SOIL LOG /W VOC 0~600 PPM SP18-306-20 - (17.OCT.2018).GPJ

CLIENT: The Biglieri Group

PROJECT LOCATION: 66 Thomas Street, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Augers

Diameter: 150 mm REF. NO.: SP18-306-20

Date: May/07/2018 ENCL NO.: 7

|                          | SOIL PROFILE                                                                                                                                                                                                                                             |              | S        | SAMPL | ES.                | <u>س</u>                   |           | Н            | ead S | Space           | Com      | busti | ble | PLAST                     | IC NAT | URAL   | LIQUID                  |                           | TW                        | REMARK                             |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|-------|--------------------|----------------------------|-----------|--------------|-------|-----------------|----------|-------|-----|---------------------------|--------|--------|-------------------------|---------------------------|---------------------------|------------------------------------|
| (m)<br>LEV<br>EPTH       | DESCRIPTION                                                                                                                                                                                                                                              | STRATA PLOT  | NUMBER   | ТҮРЕ  | "N" BLOWS<br>0.3 m | GROUND WATER<br>CONDITIONS | ELEVATION | 1            | I     | (p <sub>l</sub> | Readipm) |       | 500 | W <sub>P</sub><br>⊢<br>WA | TER CO | DNTEN: | LIMIT<br>W <sub>L</sub> | POCKET PEN.<br>(Cu) (kPa) | NATURAL UNIT v<br>(kN/m³) | AND<br>GRAIN S<br>DISTRIBU'<br>(%) |
| 54.5<br>0.0              | TOPSOIL MIXED WITH                                                                                                                                                                                                                                       | 2/1/2        | 1        | SS    | 13                 |                            |           | *            |       |                 |          |       |     |                           | 0      |        |                         |                           |                           | IBL in ppr                         |
| 54.0                     | CONSTRUCTION DEBRIS: 460 mm                                                                                                                                                                                                                              | √ 7          | ŀ        |       |                    | <b>1</b> 20 25             | đ         | Ē            |       |                 |          |       |     |                           |        |        |                         |                           |                           | 1                                  |
| 0.5                      | FILL: sandy silt mixed with topsoil, moist                                                                                                                                                                                                               |              |          |       |                    |                            | 154       |              |       |                 |          |       |     |                           |        |        |                         |                           |                           |                                    |
| 53.6                     | moist                                                                                                                                                                                                                                                    | $\bigotimes$ | <u> </u> |       |                    |                            |           | Ė            |       |                 |          |       |     |                           |        |        |                         |                           |                           |                                    |
| 1.0                      | FILL: clayey silt, reddish brown, moist                                                                                                                                                                                                                  |              | 2        | SS    | 14                 |                            | ] 1       |              |       |                 |          |       |     |                           | 0      |        |                         |                           |                           | 0                                  |
|                          |                                                                                                                                                                                                                                                          | $\bowtie$    | $\vdash$ |       |                    |                            |           |              |       |                 |          |       |     |                           |        |        |                         |                           |                           | O                                  |
|                          |                                                                                                                                                                                                                                                          | $\bigotimes$ |          |       |                    |                            | 153       | -            |       |                 |          |       |     |                           |        |        |                         |                           |                           |                                    |
|                          |                                                                                                                                                                                                                                                          | $\bigotimes$ | 3        | SS    | 12                 |                            |           | <b>X</b>     |       |                 |          |       |     | 0                         |        |        |                         |                           |                           | 1                                  |
|                          |                                                                                                                                                                                                                                                          | $\bigotimes$ |          |       |                    |                            |           | ŀ            |       |                 |          |       |     |                           |        |        |                         |                           |                           |                                    |
|                          | mixed with topsoil                                                                                                                                                                                                                                       | $\bigotimes$ | $\vdash$ |       |                    |                            |           | -            |       |                 |          |       |     |                           |        |        |                         |                           |                           | SS4 -                              |
|                          |                                                                                                                                                                                                                                                          | $\bigotimes$ | 4        | SS    | 6                  |                            | 152       | •            |       |                 |          |       |     |                           |        | 0      |                         |                           |                           | PHCs/VC<br>2                       |
| 51.5                     |                                                                                                                                                                                                                                                          |              |          |       |                    |                            | W. L.     |              |       |                 |          |       |     |                           |        |        |                         |                           |                           |                                    |
| 3.0                      | CLAYEY SILT TILL: some sand, trace shale fragments, trace                                                                                                                                                                                                |              | 5        | SS    | 22                 |                            | Jun 07    | ', ∠018<br>} |       |                 |          |       |     |                           |        |        |                         |                           |                           |                                    |
|                          | cobbles, trace gravel, grey, moist, very stiff to hard                                                                                                                                                                                                   |              | Ľ        | 33    | 22                 |                            |           | Ē            |       |                 |          |       |     |                           |        |        |                         |                           |                           | 1                                  |
|                          | •                                                                                                                                                                                                                                                        |              |          |       |                    |                            | 151       | -            |       |                 |          |       |     |                           |        |        |                         |                           |                           | <u>'</u>                           |
|                          |                                                                                                                                                                                                                                                          |              |          |       |                    |                            |           | -            |       |                 |          |       |     |                           |        |        |                         |                           |                           |                                    |
|                          |                                                                                                                                                                                                                                                          |              |          |       |                    |                            |           | -            |       |                 |          |       |     |                           |        |        |                         |                           |                           |                                    |
|                          |                                                                                                                                                                                                                                                          |              |          |       |                    |                            | 150       | -            |       |                 |          |       |     |                           |        |        |                         |                           |                           |                                    |
| 49.8                     | trace shale                                                                                                                                                                                                                                              |              | 6        | SS    | 50/                |                            | . 130     | •            |       |                 |          |       |     |                           | 0      |        |                         |                           |                           |                                    |
| 4 <del>9</del> :6<br>4.9 | Augered to 4.9 mbgs END OF BOREHOLE:                                                                                                                                                                                                                     |              | <i>,</i> | AUGR  | 125<br>mm          |                            | 1         |              |       |                 |          |       |     | $\vdash$                  |        |        |                         |                           |                           | 1                                  |
|                          | Notes:  1. Borehole Open and Dry upon Completion of Drilling.  2. Auger Refusal at 4.9 m Depth.  3. Monitoring Well was Installed in the Borehole upon completion of Drilling.  4. Groundwater Level was Observed at 2.79 m in the well on June 7, 2018. |              |          |       |                    |                            |           |              |       |                 |          |       |     |                           |        |        |                         |                           |                           |                                    |

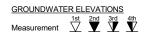


PROJECT: Proposed Slope Stability & Erosion Assessment Study **DRILLING DATA** CLIENT: The Biglieri Group Method: Pionjar PROJECT LOCATION: 66 Thomas Street, Mississauga, ON Diameter: REF. NO.: SP18-306-20 DATUM: Geodetic Date: Jun/05/2018 ENCL NO.: 8 BH LOCATION: SOIL PROFILE SAMPLES **Head Space Combustible** PLASTIC NATURAL MOISTURE CONTENT REMARKS GROUND WATER CONDITIONS LIQUID Vapor Reading AND LIMIT NATURAL UNIT (m) STRATA PLOT (ppm) GRAIN SIZE BLOWS 0.3 m ELEVATION ELEV DEPTH DISTRIBUTION **DESCRIPTION** NUMBER (%) WATER CONTENT (%) TYPE 100 200 300 400 500 20 30 GR SA SI CL 154.8 CONCRETE: 130 mm SS1 - M&I 154.0 FILL: silty sand to clayey silt, trace DO 0 gravel, brown, very moist 154 DO 2 **CLAYEY SILT TILL:** brown, moist SS3 - PHCs 1.2 ¥ W. L. 153.4 m 3 DO Jun 07, 2018 153.0 153 SANDY SILT TILL:trace shale, brown, moist 4 DO 0 END OF BOREHOLE: Notes: 1. Auger refusal at 2.44 m depth. 2. Monitoring Well was Installed in the Borehole upon Completion of Drilling. 3. Groundwater Level was Observed at 1.38 m in the Well on June 7, 2018.



**LOG OF BOREHOLE BH E8** 1 OF 1 PROJECT: Proposed Slope Stability & Erosion Assessment Study **DRILLING DATA** Method: Solid Stem Augers CLIENT: The Biglieri Group PROJECT LOCATION: 66 Thomas Street, Mississauga, ON Diameter: 150 mm REF. NO.: SP18-306-20 DATUM: Geodetic Date: May/07/2018 ENCL NO.: 9 BH LOCATION: SOIL PROFILE SAMPLES **Head Space Combustible** PLASTIC NATURAL MOISTURE CONTENT REMARKS GROUND WATER CONDITIONS LIQUID Vapor Reading AND LIMIT (m) STRATA PLOT (ppm) **GRAIN SIZE** BLOWS 0.3 m NATURAL U ELEVATION ELEV DEPTH DISTRIBUTION **DESCRIPTION** NUMBER (%) WATER CONTENT (%) 200 300 400 500 10 20 30 GR SA SI CL ASPHALT: 114 mm IBL in ppm 150.0 155 GRAVEL: 75 mm 6 SS 0 FILL: topsoil mixed with clayey silt,

clayey silt, some sand, trace gravel, construction debris 2 SS 21 129 154 construction debris, wet topsoil 3 SS 14 0 55 153 mixed with topsoil SS 7 126 SS5 - PHCs W. L. 152.1 m. 5 SS 13 Jun 07, 2018 119 151 W. L. 150.8 m 150.6 May 07, 2018 15-50 SANDY SILT TILL: trace shale 6 SS 0 fragments, grey, very moist, very 125 150.3  $\mathsf{mm}$ 10/25/18 4.9 22 UGRE Augered to 5.18 mbgs 150.0 END OF BOREHOLE: SPCL.GDT Notes: 1. Borehole Open upon Completion of Drilling.
2. Water was Encountered at 4.42 m upon Completion of Drilling.
3. Auger Refusal at 5.18 m Depth. SOIL LOG M VOC 0~600 PPM SP18-306-20 - (17.OCT.2018).GPJ 4. Monitoring Well was Installed in the Borehole upon completion of 5. Groundwater Level was Observed at 3.09 m in the well on June 7, 2018.


**LOG OF BOREHOLE BH E9** 1 OF 1 PROJECT: Proposed Slope Stability & Erosion Assessment Study **DRILLING DATA** CLIENT: The Biglieri Group Method: Solid Stem Augers PROJECT LOCATION: 66 Thomas Street, Mississauga, ON Diameter: 150 mm REF. NO.: SP18-306-20 DATUM: Geodetic Date: May/07/2018 ENCL NO.: 10 BH LOCATION: SOIL PROFILE SAMPLES **Head Space Combustible** PLASTIC NATURAL MOISTURE CONTENT REMARKS GROUND WATER CONDITIONS Vapor Reading AND LIMIT (m) STRATA PLOT (ppm) GRAIN SIZE BLOWS 0.3 m NATURAL U ELEVATION ELEV DEPTH DISTRIBUTION **DESCRIPTION** NUMBER (%) WATER CONTENT (%) 200 300 400 500 10 20 30 GR SA SI CL 155.7 ASPHALT: 75 mm IBL in ppm GRAVEL: 125 mm SS 10 0 FILL: sandy silt mixed with 26 construction debris, trace topsoil, 155 154.9 FILL: clayey silt mixed with topsoil, 0.8 trace gravel, trace sand, greyish 2 SS 6 brown, very moist 162 154r 3 SS 5 1050 SS4 - PHCs trace gravel SS 8 2000 153 W. L. 152.8 m SILTY SAND: grey, wet 3.0 Jun 07, 2018 22 5 SS 0 152.2 1342 Augered to 4.27 mbgs 152 **END OF BOREHOLE:** Notes: Borehole Open and Dry upon Completion of Drilling.
 Monitoring Well was Installed in SOIL LOG /W VOC 0~600 PPM SP18-306-20 - (17.OCT.2018).GPJ SPCL.GDT 10/25/18 the Borehole upon completion of 3. Auger Refusal at 4.27 m Depth.4. Groundwater Level was Observed at 2.91 m in the well on June 7, 2018.





**LOG OF BOREHOLE BH E10** 1 OF 1 PROJECT: Proposed Slope Stability & Erosion Assessment Study **DRILLING DATA** CLIENT: The Biglieri Group Method: Solid Stem Augers PROJECT LOCATION: 66 Thomas Street, Mississauga, ON Diameter: 150 mm REF. NO.: SP18-306-20 DATUM: Geodetic Date: May/07/2018 ENCL NO.: 11 BH LOCATION: SOIL PROFILE SAMPLES **Head Space Combustible** PLASTIC NATURAL MOISTURE CONTENT REMARKS GROUND WATER CONDITIONS LIQUID Vapor Reading AND LIMIT (m) STRATA PLOT (ppm) GRAIN SIZE BLOWS 0.3 m NATURAL U ELEVATION ELEV DEPTH DISTRIBUTION **DESCRIPTION** NUMBER (%) WATER CONTENT (%) 200 300 400 500 10 20 30 GR SA SI CL 155.7 15**8.6** 15**8.5** 0.2 ASPHALT: 100 mm IBL in ppm GRAVEL: 114 mm 8 SS FILL: sandy silt, trace cobbles, 26 154.9 155 0.8 FILL: clayey silt, some sand, trace gravel, trace topsoil, brown, moist SS 10 0 36 154 3 SS 3 SS 6 0 114 153 W. L. 152.8 m Jun 07, 2018 SANDY SILT: brown, moist, loose SS5 - PHCs 8 5 26 49 20 5 SS 152.2 357 No Recovery W. L. 152.0 m May 07, 2018 151.1 6 NR 50/ END OF BOREHOLE: 10/25/18 Notes: Borehole Open upon Completion of Drilling.
2. Water Encountered at 3.66 m SOIL LOG /W VOC 0~600 PPM SP18-306-20 - (17.0CT.2018).GPJ SPCL.GDT upon Completion of Drilling.

2. Auger Refusal at 4.72 m Depth. 3. Monitoring Well was Installed in the Borehole upon completion of 5. Groundwater Level was Observed at 2.9 m on June 7, 2018.



**LOG OF BOREHOLE BH E11** 1 OF 1 PROJECT: Proposed Slope Stability & Erosion Assessment Study **DRILLING DATA** Method: Solid Stem Augers CLIENT: The Biglieri Group PROJECT LOCATION: 66 Thomas Street, Mississauga, ON Diameter: 150 mm REF. NO.: SP18-306-20 DATUM: Geodetic Date: May/07/2018 ENCL NO.: 12 BH LOCATION: SOIL PROFILE SAMPLES **Head Space Combustible** PLASTIC NATURAL MOISTURE CONTENT REMARKS GROUND WATER CONDITIONS LIQUID Vapor Reading AND LIMIT (m) STRATA PLOT (ppm) **GRAIN SIZE** BLOWS 0.3 m NATURAL U ELEVATION ELEV DEPTH DISTRIBUTION **DESCRIPTION** NUMBER (%) WATER CONTENT (%) 200 300 400 500 10 20 30 GR SA SI CL 155.3 ASPHALT: 90 mm IBL in ppm 15**8.2** 158:1 0.2 GRAVEL: 100 mm 9 1 SS 155 FILL: sandy silt mixed with topsoil, 118 some sand, trace gravel, trace construction debris, brown, very 154.5 0.8 FILL: clayey silt mixed with topsoil, SS2 - PHCs brown, very moist 2 SS 2 0 319 154 3 SS 3 0 278 153.0 153 FILL: sandy silt, trace topsoil, 2.3 brown, moist SS 7 249 W. L. 152.6 m May 07, 20181 Jun 07, 2018 5 SS 25 0 152 39 151 6 SS 150.6 SANDY SILT TILL: trace shale 50/ 0 4.7 ragments, grey, very moist, very 100 10/25/18 mm 55

150

## END OF BOREHOLE:

## Notes:

SPCL.GDT

SOIL LOG /W VOC 0~600 PPM SP18-306-20 - (17.OCT.2018).GPJ

- 1. Borehole Open upon Completion
- 2. Water Encountered at 2.7 mbgs
- upon Completion of Drilling.
  3. Auger Refusal at 5.79 m Depth.
  4. Monitoring Well was Installed in
- the Borehole upon completion of drilling.
- 5. Groundwater Level was Observed at 2.85 m on June 7,











CLIENT: The Biglieri Group

PROJECT LOCATION: 66 Thomas Street, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Augers

Diameter: 150 mm REF. NO.: SP18-306-20

Date: May/08/2018 ENCL NO.: 13

| BH LOCATION: |
|--------------|
|--------------|

|                      | SOIL PROFILE                                                                                                                                                                    |             | S      | AMPL  | ES.                | <u>~</u>                   |                 | Hea | d Sp           | oace | Comb<br>Readir | ustib | le | PLASTI<br>LIMIT           | C NAT      | URAL       | LIQUID                  |                           | ₩                       | REMARKS                                   |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------|-------|--------------------|----------------------------|-----------------|-----|----------------|------|----------------|-------|----|---------------------------|------------|------------|-------------------------|---------------------------|-------------------------|-------------------------------------------|
| (m)<br>ELEV<br>DEPTH | DESCRIPTION                                                                                                                                                                     | STRATA PLOT | NUMBER | TYPE  | "N" BLOWS<br>0.3 m | GROUND WATER<br>CONDITIONS | ELEVATION       | 100 | va<br>■<br>200 | (pp  | (eadir<br>om)  |       | 00 | W <sub>P</sub><br>⊢<br>WA | TER CO     | w<br>DNTEN | LIMIT<br>W <sub>L</sub> | POCKET PEN.<br>(Cu) (kPa) | NATURAL UNIT WT (kN/m³) | AND GRAIN SIZE DISTRIBUTIO (%) GR SA SI ( |
| 0.0                  | SAND AND GRAVEL MIXED WITH CONSTRUCTION DEBRIS:                                                                                                                                 |             | 1      | SS    | 6                  |                            | 157             |     |                |      |                |       |    |                           | 0          |            |                         |                           |                         | IBL in ppm                                |
| 0.8                  | CLAYEY SILT TILL: some sand, trace gravel, brown, moist, very stiff to hard                                                                                                     |             | 2      | SS    | 21                 |                            | <br>            |     |                |      |                |       |    |                           | 0          |            |                         |                           |                         | SS2 - PHC:<br>319                         |
| <u>.</u>             | trace shale fragments                                                                                                                                                           |             | 3      | SS    | 40                 |                            | 156<br><b>X</b> |     |                |      |                |       |    |                           | ∘ <b>⊢</b> |            |                         | -                         |                         | 7 20 43<br>278                            |
|                      | becoming grey                                                                                                                                                                   |             | 4      | SS    | 43                 |                            | 155             |     |                |      |                |       |    |                           | 0          |            |                         | _                         |                         | 249                                       |
| 3.0                  | SANDY SILT TILL: trace shale fragments, trace gravel, grey, moist, compact to very dense                                                                                        | 0           | 5      | SS    | 28                 |                            | 154             |     |                |      |                |       |    |                           | 0          |            |                         | -                         |                         | 39                                        |
| 152.5<br>5.1         | becoming very moist  Augered to 5.33 mbgs                                                                                                                                       | 0           | . 6    | ss    | 76                 |                            | 153             |     |                |      |                |       |    |                           | o          |            |                         | -                         |                         | 55                                        |
| 152.3<br>5.3         | END OF BOREHOLE:                                                                                                                                                                |             |        |       |                    |                            |                 |     |                |      |                |       |    |                           |            |            |                         |                           |                         |                                           |
|                      | Notes:  1. Borehole Open and Dry upon Completion of Drilling.  2. Auger Refusal at 5.33 m Depth.  3. Monitoring Well was Installed in the Borehole Upon Completion of Drilling. |             |        | AUGRI | Ĭ<br>I             |                            |                 |     |                |      |                |       |    |                           |            |            |                         |                           |                         |                                           |

Continued Next Page



CLIENT: The Biglieri Group

PROJECT LOCATION: 66 Thomas Street, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Augers

Diameter: 150 mm REF. NO.: SP18-306-20

Date: May/08/2018 ENCL NO.: 13

|                      | SOIL PROFILE |             | 5      | SAMPL | ES.                | <u>~</u>                   |           | He | ead S | pace | Com                 | busti | ble | PLASTI | C NAT  | JRAL                            | רוטו ווח                                   |                           | Ļ                         | REMAR                             |      |
|----------------------|--------------|-------------|--------|-------|--------------------|----------------------------|-----------|----|-------|------|---------------------|-------|-----|--------|--------|---------------------------------|--------------------------------------------|---------------------------|---------------------------|-----------------------------------|------|
| (m)<br>ELEV<br>DEPTH | DESCRIPTION  | STRATA PLOT | NUMBER | TYPE  | "N" BLOWS<br>0.3 m | GROUND WATER<br>CONDITIONS | ELEVATION | 10 |       |      | Com<br>Readi<br>pm) |       | 500 |        | TER CC | TURE TENT  V  D  D  NTEN  0 (1) | LIQUID<br>LIMIT<br>W <sub>L</sub><br>T (%) | POCKET PEN.<br>(Cu) (kPa) | NATURAL UNIT V<br>(kN/m³) | AND<br>GRAIN S<br>DISTRIBU<br>(%) | SIZE |
|                      |              |             |        |       |                    |                            |           |    |       |      |                     |       |     |        |        |                                 |                                            |                           |                           | GR SA S                           | SI   |



CLIENT: The Biglieri Group

PROJECT LOCATION: 66 Thomas Street, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Augers

Diameter: 150 mm REF. NO.: SP18-306-20

Date: May/08/2018 ENCL NO.: 14

|                                      | JM: Geodetic                                                                                                                                                                                                                                                                |             |        |              |                    |                            |                 | Date:                                                                                       | May/       | 08/201 | 18  |       |     |       |         | Е               | NCL N                   | 0.: 1                     | 4                       |                                |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------|--------------|--------------------|----------------------------|-----------------|---------------------------------------------------------------------------------------------|------------|--------|-----|-------|-----|-------|---------|-----------------|-------------------------|---------------------------|-------------------------|--------------------------------|
| BH LO                                | OCATION: SOIL PROFILE                                                                                                                                                                                                                                                       |             | S      | SAMPL        | .ES                | m                          |                 | Н                                                                                           | ead S      | Space  | Com | busti | ble | PLAST | IC .NAT | TURAL           | LIQUID                  |                           | Þ                       | REMARK                         |
| (m)<br><u>:LEV</u><br>EPTH<br>57.0   | DESCRIPTION                                                                                                                                                                                                                                                                 | STRATA PLOT | NUMBER | TYPE         | "N" BLOWS<br>0.3 m | GROUND WATER<br>CONDITIONS | ELEVATION       | 1                                                                                           |            |        | om) |       | 500 |       | TER C   | w<br>O<br>ONTEN | LIMIT<br>W <sub>L</sub> | POCKET PEN.<br>(Cu) (kPa) | NATURAL UNIT WT (kN/m³) | GR SA SI                       |
| 0.0<br>56.8<br>0.2                   | SAND AND GRAVEL MIXED WITH CONSTRUCTION DEBRIS: 200 mm CLAYEY SILT TILL: some sand, trace gravel, light brown, moist, very stiff                                                                                                                                            |             | 1      | SS           | 19                 |                            |                 | -<br>-<br><b>X</b><br>-<br>-<br>-                                                           |            |        |     |       |     | 0     |         |                 |                         |                           |                         | IBL in ppn<br>SS1 - PH0<br>441 |
|                                      | Sui                                                                                                                                                                                                                                                                         |             | 2      | SS           | 19                 |                            | 156             | -<br>-<br><b>X</b><br>-<br>-                                                                |            |        |     |       |     |       | 0       |                 |                         |                           |                         | 343                            |
|                                      | becoming hard                                                                                                                                                                                                                                                               |             | 3      | SS           | 42                 |                            | 155             | -<br> -<br>  <b>X</b>  <br> -                                                               |            |        |     |       |     |       | 0       |                 |                         |                           |                         | 319                            |
|                                      | trace cobbles, becoming grey and very stiff                                                                                                                                                                                                                                 |             | 4      | SS           | 28                 |                            | W. L.<br>Jun 07 | 154.7<br>7, 2018                                                                            | <br>m<br>3 |        |     |       |     |       | 0       |                 |                         |                           |                         | 306                            |
|                                      | becoming hard                                                                                                                                                                                                                                                               |             | 5      | SS           | 35                 |                            | 154             | <b>X</b>                                                                                    |            |        |     |       |     |       | Φ       |                 |                         | -                         |                         | 283                            |
| 52.4<br>4.6<br>52.1<br>5 <b>2</b> :9 | RESIDUAL SOIL/WEATHERED SHALE BEDROCK: grey, moist Augered to 5.03 mbgs                                                                                                                                                                                                     |             | 6      | SS           | 46-50<br>125mr     |                            | 153             | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |            |        |     |       |     | 0     |         |                 |                         | -                         |                         | 111                            |
| 5.0                                  | END OF BOREHOLE:  Notes:  1. Borehole Open and Dry upon Completion of Drilling.  2. Auger Refusal at 5.03 m Depth.  3. Monitoring Well was Installed in the Borehole Upon Completion of Drilling.  4. Groundwater Level was Observed at 2.33 m in the Well on June 7, 2018. |             | A      | <b>AUGRI</b> | =                  |                            | 152             |                                                                                             |            |        |     |       |     |       |         |                 |                         |                           |                         |                                |

GRAPH + 3

+  $^3$  , imes  $^3$  : Numbers refer to Sensitivity

 $\bigcirc$  8=3% Strain at Failure

CLIENT: The Biglieri Group

PROJECT LOCATION: 66 Thomas Street, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Augers

Diameter: 150 mm REF. NO.: SP18-306-20

Date: May/08/2018 ENCL NO.: 14

| BH LOCATION:           |       |        |      |                    |                            | ·         |    |       |      |          |              |    |                  |              |                 | ICL NO                                          |                          |                            |                                 |                    |
|------------------------|-------|--------|------|--------------------|----------------------------|-----------|----|-------|------|----------|--------------|----|------------------|--------------|-----------------|-------------------------------------------------|--------------------------|----------------------------|---------------------------------|--------------------|
| SOIL PRO               | FILE  | s      | AMPL | ES                 | e.                         |           | Не | ead S | pace | Comb     | oustib<br>ng | le | PLASTIC<br>LIMIT | NATU<br>MOIS | JRAL<br>TURF    | LIQUID<br>LIMIT                                 |                          | WT                         | REMAI                           |                    |
| (m) ELEV DEPTH DESCRIF | NOITG | NUMBER | TYPE | "N" BLOWS<br>0.3 m | GROUND WATER<br>CONDITIONS | ELEVATION | 10 |       | _    | <b>-</b> |              |    | W <sub>P</sub>   | ER CO        | V<br>><br>NTENT | LIMIT<br>W <sub>L</sub><br>—— 1<br>- (%)<br>- 0 | POCKET PEN<br>(Cu) (kPa) | NATURAL UNIT WT<br>(kN/m³) | ANI<br>GRAIN<br>DISTRIBI<br>(%) | SIZE<br>UTION<br>) |
|                        |       |        |      |                    |                            |           |    |       |      |          |              |    |                  |              |                 |                                                 |                          |                            |                                 |                    |



CLIENT: The Biglieri Group

PROJECT LOCATION: 66 Thomas Street, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Augers

Diameter: 150 mm REF. NO.: SP18-306-20

Date: May/08/2018 ENCL NO.: 15

|                | SOIL PROFILE                                                                      | s           | AMPL   | ES.  | E.                 |                            | Hea       | stible | PLASTIC NATURAL LIQUIE<br>LIMIT CONTENT LIMIT |   |     | LIQUID            | ,      | WT              | REMARKS                       |                           |                         |                                                   |
|----------------|-----------------------------------------------------------------------------------|-------------|--------|------|--------------------|----------------------------|-----------|--------|-----------------------------------------------|---|-----|-------------------|--------|-----------------|-------------------------------|---------------------------|-------------------------|---------------------------------------------------|
| (m) ELEV DEPTH | DESCRIPTION                                                                       | STRATA PLOT | NUMBER | TYPE | "N" BLOWS<br>0.3 m | GROUND WATER<br>CONDITIONS | ELEVATION | 100    | or Rea<br>(ppm)                               | 1 | 500 | W <sub>P</sub> WA | TER CO | w<br>O<br>ONTEN | LIMIT<br>w <sub>L</sub> Τ (%) | POCKET PEN.<br>(Cu) (kPa) | NATURAL UNIT WT (kN/m³) | AND<br>GRAIN SIZ<br>DISTRIBUTI<br>(%)<br>GR SA SI |
| 0.0            | SAND AND GRAVEL MIXED WITH CONSTRUCTION DEBRIS:                                   |             |        | SS   | 33                 |                            | 157       | -      |                                               |   |     |                   | 0      |                 |                               |                           |                         | IBL in ppm<br>SS1 - OCP<br>416                    |
| 0.8            | CLAYEY SILT TILL: some sand,<br>trace gravel, brown, moist, very stiff<br>to hard |             | 2      | SS   | 22                 |                            | <b> </b>  | -      |                                               |   |     |                   | 0      |                 |                               |                           |                         | 420                                               |
|                |                                                                                   |             | 3      | SS   | 64/<br>253<br>mm   |                            | 156       |        |                                               |   |     |                   | 0      |                 |                               | -                         |                         | SS3 - M&I<br>(DUP-S1)<br>360                      |
| 55.3           | SANDY SILT TILL: trace shale fragments, trace gravel, moist, grey, dense          |             | 4      | SS   | 38                 |                            | 155       | -      |                                               |   |     | c                 |        |                 |                               | -                         |                         | 157                                               |
| 154.1          |                                                                                   | 0           | 5      | SS   | 43                 |                            |           | -      |                                               |   |     |                   |        |                 |                               |                           |                         |                                                   |
|                | Notes:  1. Borehole Open and Dry upon Completion of Drilling.                     |             |        |      |                    |                            |           |        |                                               |   |     |                   |        |                 |                               |                           |                         |                                                   |



CLIENT: The Biglieri Group

PROJECT LOCATION: 66 Thomas Street, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Augers

Diameter: 150 mm REF. NO.: SP18-306-20

Date: May/08/2018 ENCL NO.: 16

| BH LO               | CATION: SOIL PROFILE                                                     |                 |        | SAMPL | ES               | 1                          |           |                                                  | - 10 |       | 0 1            | 411. 1   | . 1 |                                                                              |   |                        |  |                        |                            |                                           |
|---------------------|--------------------------------------------------------------------------|-----------------|--------|-------|------------------|----------------------------|-----------|--------------------------------------------------|------|-------|----------------|----------|-----|------------------------------------------------------------------------------|---|------------------------|--|------------------------|----------------------------|-------------------------------------------|
| (m)                 | DESCRIPTION                                                              | LO LO           |        |       | BLOWS<br>0.3 m   | GROUND WATER<br>CONDITIONS | NOIL      | Head Space Combustible<br>Vapor Reading<br>(ppm) |      |       |                |          | le  | PLASTIC MOISTURE LIQUID LIMIT CONTENT LIMIT  W <sub>P</sub> W W <sub>L</sub> |   |                        |  | POCKET PEN. (Cu) (kPa) | NATURAL UNIT WT<br>(kN/m³) | REMARKS<br>AND<br>GRAIN SIZ<br>DISTRIBUTI |
| EPTH<br>155.7       |                                                                          |                 | NUMBER | TYPE  |                  | GROUN                      | ELEVATION | 100                                              | ) 20 | 00 30 | <b>■</b> 00 40 | 00 50    | 0   |                                                                              |   | R CONTENT (%)<br>20 30 |  |                        |                            | (%)<br>GR SA SI                           |
| 0.0                 | SAND AND GRAVEL MIXED<br>WITH CONSTRUCTION DEBRIS:<br>700 mm             |                 |        | SS    | 61               |                            | <b>X</b>  | -                                                |      |       |                |          |     | 0                                                                            |   |                        |  |                        |                            | IBL in ppm<br>249                         |
| 0.8                 | FILL: clayey silt, some sand, trace gravel, trace topsoil, brown, moist  |                 | 2      | SS    | 10               |                            | 155       |                                                  |      |       |                |          |     |                                                                              | 0 |                        |  |                        |                            | SS2 - M&I<br>416                          |
|                     |                                                                          |                 | 3      | SS    | 5                |                            | 154       |                                                  |      |       |                |          |     |                                                                              | 0 |                        |  |                        |                            | SS3 - PCE<br>237                          |
| 2.3                 | BURRIED TOPSOIL: 750 mm                                                  | \(\frac{1}{2}\) | 4      | SS    | 8                | -                          |           |                                                  |      |       |                |          |     |                                                                              |   | 0                      |  |                        |                            |                                           |
| 152.7<br>3.0        | POSSIBLE FILL: sand and gravel, wet                                      | \(\frac{1}{2}\) |        |       |                  |                            | 153       |                                                  |      | _     |                |          |     |                                                                              |   |                        |  |                        |                            | 957<br>SS5 - PHO<br>VOCs                  |
|                     | wet                                                                      |                 | 5      | SS    | 14               | -                          | 152       |                                                  |      |       |                | <b>X</b> |     |                                                                              |   | •                      |  |                        |                            | 2000                                      |
|                     |                                                                          |                 |        |       |                  |                            | -         |                                                  |      |       |                |          |     |                                                                              |   |                        |  |                        |                            |                                           |
| 4.6<br>150.7<br>5.0 | SANDY SILT TILL: trace gravel, grey, moist, very dense  END OF BOREHOLE: |                 | 6      | SS    | 67/<br>278<br>mm |                            | 151       |                                                  |      |       |                |          |     |                                                                              | 0 |                        |  |                        |                            |                                           |
| 3.0                 | Notes: 1. Borehole Open and Dry upon Completion of Drilling.             |                 |        |       |                  |                            |           |                                                  |      |       |                |          |     |                                                                              |   |                        |  |                        |                            |                                           |
|                     |                                                                          |                 |        |       |                  |                            |           |                                                  |      |       |                |          |     |                                                                              |   |                        |  |                        |                            |                                           |
|                     |                                                                          |                 |        |       |                  |                            |           |                                                  |      |       |                |          |     |                                                                              |   |                        |  |                        |                            |                                           |
|                     |                                                                          |                 |        |       |                  |                            |           |                                                  |      |       |                |          |     |                                                                              |   |                        |  |                        |                            |                                           |



# APPENDIX C



Sirati & Partners Consultants Ltd.

(Concord)

ATTN: CHAORAN LI 750 Millway Ave.

Unit #8

Vaughan ON L4K 3T7

Date Received: 03-MAY-18

Report Date: 28-JUN-18 10:01 (MT)

Version: FINAL REV. 2

Client Phone: 905-669-4477

# Certificate of Analysis

Lab Work Order #: L2088977

Project P.O. #: SP18-306-20 Job Reference: SP18-306-20

C of C Numbers: Legal Site Desc:

Comments:

28-JUN-2018 ID revision for sample 3

Rick Hawthorne Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 5730 Coopers Avenue, Unit #26 , Mississauga, ON L4Z 2E9 Canada | Phone: +1 905 507 6910 | Fax: +1 905 507 6927 ALS CANADA LTD Part of the ALS Group An ALS Limited Company





L2088977 CONT'D....

Job Reference: SP18-306-20

PAGE 2 of 11

28-JUN-18 10:01 (MT)

# **Summary of Guideline Exceedances**

| Guideline   |                            |                                         |                                |        |                 |       |
|-------------|----------------------------|-----------------------------------------|--------------------------------|--------|-----------------|-------|
| ALS ID      | Client ID                  | Grouping                                | Analyte                        | Result | Guideline Limit | Unit  |
| Ontario Reg | julation 153/04 - April 15 | i, 2011 Standards - T1-Soil-Res/Park/Ir | nst/Ind/Com/Commu Property Use |        |                 |       |
| _2088977-1  | BH2-SS3                    | Hydrocarbons                            | F2 (C10-C16)                   | 235    | 10              | ug/g  |
|             |                            |                                         | F3 (C16-C34)                   | 2750   | 240             | ug/g  |
|             |                            | F4 (C34-C50)                            | 802                            | 120    | ug/g            |       |
|             |                            | F4G-SG (GHH-Silica)                     | 2230                           | 120    | ug/g            |       |
| 2088977-3   | BH5-SS1                    | Physical Tests                          | Conductivity                   | 10.2   | 0.57            | mS/cm |
|             |                            | Saturated Paste Extractables            | SAR                            | 31.4   | 2.4             | SAR   |
| ntario Reg  | julation 153/04 - April 15 | i, 2011 Standards - T2-Soil-Res/Park/Ir | nst. Property Use (Coarse)     |        |                 |       |
| 2088977-1   | BH2-SS3                    | Hydrocarbons                            | F2 (C10-C16)                   | 235    | 98              | ug/g  |
|             |                            |                                         | F3 (C16-C34)                   | 2750   | 300             | ug/g  |
| 2088977-3   | BH5-SS1                    | Physical Tests                          | Conductivity                   | 10.2   | 0.7             | mS/cm |
|             |                            | Saturated Paste Extractables            | SAR                            | 31.4   | 5               | SAR   |



L2088977 CONT'D....

Job Reference: SP18-306-20

PAGE 3 of 11

28-JUN-18 10:01 (MT)

## **Physical Tests - SOIL**

| ,            |          |             |              |            |            |            |            |
|--------------|----------|-------------|--------------|------------|------------|------------|------------|
|              |          | L           | Lab ID       | L2088977-1 | L2088977-2 | L2088977-3 | L2088977-4 |
|              | (        | Sample      | e Date       | 18-APR-18  | 18-APR-18  | 18-APR-18  | 18-APR-18  |
|              |          | Sam         | ple ID       | BH2-SS3    | BH6-SS5    | BH5-SS1    | BH7-SS4    |
| Analyte      | Unit     | Guide<br>#1 | Limits<br>#2 |            |            |            |            |
| Conductivity | mS/cm    | 0.57        | 0.7          |            |            | 10.2       |            |
| % Moisture   | %        | -           | -            | 14.9       | 5.64       | 11.4       | 16.0       |
| pH           | pH units | -           | -            |            |            | 7.77       |            |
|              |          |             |              |            |            |            |            |

Guide Limit #1: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use Guide Limit #2: T2-Soil-Res/Park/Inst. Property Use (Coarse)



L2088977 CONT'D....

Job Reference: SP18-306-20

PAGE 4 of 11

28-JUN-18 10:01 (MT)

## Cyanides - SOIL

| <u> </u>                |      |             |              |            |
|-------------------------|------|-------------|--------------|------------|
|                         |      | l           | _ab ID       | L2088977-3 |
|                         |      | Sample      | e Date       | 18-APR-18  |
|                         |      | Sam         | ple ID       | BH5-SS1    |
| Analyte                 | Unit | Guide<br>#1 | Limits<br>#2 |            |
|                         |      |             |              |            |
| Cyanide, Weak Acid Diss | ug/g | 0.051       | 0.051        | 0.050      |
|                         | ug/g | 0.031       | 0.031        | <0.050     |

Guide Limit #1: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use Guide Limit #2: T2-Soil-Res/Park/Inst. Property Use (Coarse)



L2088977 CONT'D....

Job Reference: SP18-306-20

PAGE 5 of 11

28-JUN-18 10:01 (MT)

## **Saturated Paste Extractables - SOIL**

| Cararatea : acre =xiraci |      |             |              |            |
|--------------------------|------|-------------|--------------|------------|
|                          |      |             | Lab ID       | L2088977-3 |
|                          |      | Sampl       | e Date       | 18-APR-18  |
|                          |      | Sam         | ple ID       | BH5-SS1    |
| Analyte                  | Unit | Guide<br>#1 | Limits<br>#2 |            |
| Analyte                  |      |             |              |            |
| SAR                      | SAR  | 2.4         | 5            | 31.4       |
| Calcium (Ca)             | mg/L | -           | -            | 185        |
| Magnesium (Mg)           | mg/L | -           | -            | 37.3       |
| Sodium (Na)              | mg/L | -           | -            | 1790       |
|                          |      |             |              |            |

Guide Limit #1: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use Guide Limit #2: T2-Soil-Res/Park/Inst. Property Use (Coarse)



L2088977 CONT'D....

Job Reference: SP18-306-20

PAGE 6 of 11

28-JUN-18 10:01 (MT)

## Metals - SOIL

|                           | Sample | Lab ID<br>e Date<br>ple ID | L2088977-3<br>18-APR-18<br>BH5-SS1 |        |
|---------------------------|--------|----------------------------|------------------------------------|--------|
| Analyte                   | Unit   | Guide<br>#1                | Limits<br>#2                       |        |
| Antimony (Sb)             | ug/g   | 1.3                        | 7.5                                | <1.0   |
| Arsenic (As)              | ug/g   | 18                         | 18                                 | 4.4    |
| Barium (Ba)               | ug/g   | 220                        | 390                                | 104    |
| Beryllium (Be)            | ug/g   | 2.5                        | 4                                  | 0.66   |
| Boron (B)                 | ug/g   | 36                         | 120                                | 10.9   |
| Boron (B), Hot Water Ext. | ug/g   | 36                         | 1.5                                | 0.20   |
| Cadmium (Cd)              | ug/g   | 1.2                        | 1.2                                | <0.50  |
| Chromium (Cr)             | ug/g   | 70                         | 160                                | 18.5   |
| Cobalt (Co)               | ug/g   | 21                         | 22                                 | 10.2   |
| Copper (Cu)               | ug/g   | 92                         | 140                                | 21.1   |
| Lead (Pb)                 | ug/g   | 120                        | 120                                | 8.1    |
| Mercury (Hg)              | ug/g   | 0.27                       | 0.27                               | 0.0162 |
| Molybdenum (Mo)           | ug/g   | 2                          | 6.9                                | <1.0   |
| Nickel (Ni)               | ug/g   | 82                         | 100                                | 21.9   |
| Selenium (Se)             | ug/g   | 1.5                        | 2.4                                | <1.0   |
| Silver (Ag)               | ug/g   | 0.5                        | 20                                 | <0.20  |
| Thallium (TI)             | ug/g   | 1                          | 1                                  | <0.50  |
| Uranium (U)               | ug/g   | 2.5                        | 23                                 | <1.0   |
| Vanadium (V)              | ug/g   | 86                         | 86                                 | 27.6   |
| Zinc (Zn)                 | ug/g   | 290                        | 340                                | 56.3   |
|                           |        |                            |                                    |        |

Guide Limit #1: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use Guide Limit #2: T2-Soil-Res/Park/Inst. Property Use (Coarse)



L2088977 CONT'D....

Job Reference: SP18-306-20

PAGE 7 of 11

28-JUN-18 10:01 (MT)

## **Speciated Metals - SOIL**

|                      |      | Sample | Lab ID<br>e Date<br>iple ID | L2088977-3<br>18-APR-18<br>BH5-SS1 |
|----------------------|------|--------|-----------------------------|------------------------------------|
|                      |      |        | Limits                      |                                    |
| Analyte              | Unit | #1     | #2                          |                                    |
| Chromium, Hexavalent | ug/g | 0.66   | 8                           | 0.20                               |

Guide Limit #1: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use Guide Limit #2: T2-Soil-Res/Park/Inst. Property Use (Coarse)



L2088977 CONT'D....

Job Reference: SP18-306-20

PAGE 8 of 11

28-JUN-18 10:01 (MT)

## **Hydrocarbons - SOIL**

|                                    |      |             | Lab ID       | L2088977-1 | L2088977-2 | L2088977-4 |  |
|------------------------------------|------|-------------|--------------|------------|------------|------------|--|
|                                    |      | Sample      | e Date       | 18-APR-18  | 18-APR-18  | 18-APR-18  |  |
|                                    |      | Sample ID   |              | BH2-SS3    | BH6-SS5    | BH7-SS4    |  |
| Analyte                            | Unit | Guide<br>#1 | Limits<br>#2 |            |            |            |  |
| F1 (C6-C10)                        | ug/g | 25          | 55           | 19.1       | <5.0       | <5.0       |  |
| F2 (C10-C16)                       | ug/g | 10          | 98           | 235        | <10        | <10        |  |
| F3 (C16-C34)                       | ug/g | 240         | 300          | 2750       | <50        | <50        |  |
| F4 (C34-C50)                       | ug/g | 120         | 2800         | 802        | <50        | <50        |  |
| F4G-SG (GHH-Silica)                | ug/g | 120         | 2800         | 2230       |            |            |  |
| Total Hydrocarbons (C6-C50)        | ug/g | -           | -            | 3800       | <72        | <72        |  |
| Chrom. to baseline at nC50         |      | -           | -            | NO         | YES        | YES        |  |
| Surrogate: 2-Bromobenzotrifluoride | %    | -           | -            | 93.2       | 90.5       | 98.1       |  |
| Surrogate: 3,4-Dichlorotoluene     | %    | -           | -            | 92.4       | 92.7       | 96.2       |  |

Guide Limit #1: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use Guide Limit #2: T2-Soil-Res/Park/Inst. Property Use (Coarse)

## **Reference Information**

L2088977 CONT'D.... Job Reference: SP18-306-20 PAGE 9 of 11 28-JUN-18 10:01 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference\*\*

B-HWS-R511-WT Soil Boron-HWE-O.Reg 153/04 (July 2011) HW EXTR, EPA 6010B

A dried solid sample is extracted with calcium chloride, the sample undergoes a heating process. After cooling the sample is filtered and analyzed by ICP/OES.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

CN-WAD-R511-WT Soil Cyanide (WAD)-O.Reg 153/04 (July MOE 3015/APHA 4500CN I-WAD

The sample is extracted with a strong base for 16 hours, and then filtered. The filtrate is then distilled where the cyanide is converted to cyanogen chloride by reacting with chloramine-T, the cyanogen chloride then reacts with a combination of barbituric acid and isonicotinic acid to form a highly colored complex.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

CR-CR6-IC-WT Soil Hexavalent Chromium in Soil SW846 3060A/7199

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Method 7199, published by the United States Environmental Protection Agency (EPA). The procedure involves analysis for chromium (VI) by ion chromatography using diphenylcarbazide in a sulphuric acid solution.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

EC-WT Soil Conductivity (EC) MOEE E3138

A representative subsample is tumbled with de-ionized (DI) water. The ratio of water to soil is 2:1 v/w. After tumbling the sample is then analyzed by a conductivity meter.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

F1-F4-511-CALC-WT Soil F1-F4 Hydrocarbon Calculated CCME CWS-PHC, Pub #1310, Dec 2001-S

Parameters

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

Hydrocarbon results are expressed on a dry weight basis.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.
- 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
- 4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

## **Reference Information**

L2088977 CONT'D.... Job Reference: SP18-306-20 PAGE 10 of 11 28-JUN-18 10:01 (MT)

Methods Listed (if applicable):

 ALS Test Code
 Matrix
 Test Description
 Method Reference\*\*

 F1-HS-511-WT
 Soil
 F1-O.Reg 153/04 (July 2011)
 E3398/CCME TIER 1-HS

Fraction F1 is determined by extracting a soil or sediment sample as received with methanol, then analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F2-F4-511-WT

Soil

F2-F4-O.Rea 153/04 (July 2011)

CCME Tier 1

Petroleum Hydrocarbons (F2-F4 fractions) are extracted from soil with 1:1 hexane:acetone using a rotary extractor. Extracts are treated with silica gel to remove polar organic interferences. F2, F3, & F4 are analyzed by GC-FID. F4G-sq is analyzed gravimetrically.

#### Notes:

- 1. F2 (C10-C16): Sum of all hydrocarbons that elute between nC10 and nC16.
- 2. F3 (C16-C34): Sum of all hydrocarbons that elute between nC16 and nC34.
- 3. F4 (C34-C50): Sum of all hydrocarbons that elute between nC34 and nC50.
- 4. F4G: Gravimetric Heavy Hydrocarbons
- 5. F4G-sg: Gravimetric Heavy Hydrocarbons (F4G) after silica gel treatment.
- 6. Where both F4 (C34-C50) and F4G-sq are reported for a sample, the larger of the two values is used for comparison against the relevant CCME guideline for F4.
- 7. F4G-sg cannot be added to the C6 to C50 hydrocarbon results to obtain an estimate of total extractable hydrocarbons.
- 8. This method is validated for use.
- 9. Data from analysis of validation and quality control samples is available upon request.
- 10. Reported results are expressed as milligrams per dry kilogram, unless otherwise indicated.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F4G-ADD-511-WT

Soil

F4G SG-O.Reg 153/04 (July 2011)

MOE DECPH-E3398/CCME TIER 1

F4G, gravimetric analysis, is determined if the chromatogram does not return to baseline at or before C50. A soil sample is extracted with a solvent mix, the solvent is evaporated and the weight of the residue is determined.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

HG-200.2-CVAA-WT

Soil

Mercury in Soil by CVAAS

EPA 200.2/1631E (mod)

Soil samples are digested with nitric and hydrochloric acids, followed by analysis by CVAAS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

MET-200.2-CCMS-WT

Soil

Metals in Soil by CRC ICPMS

EPA 200.2/6020A (mod)

This method uses a heated strong acid digestion with HNO3 and HCl and is intended to liberate metals that may be environmentally available. Silicate minerals are not solubilized. Dependent on sample matrix, some metals may be only partially recovered, including Al, Ba, Be, Cr, Sr, Ti, Tl, V, W, and Zr. Volatile forms of sulfur (including sulfide) may not be captured, as they may be lost during sampling, storage, or digestion. Analysis is by Collision/Reaction Cell ICPMS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

MOISTURE-WT

Soil

% Moisture

pΗ

Gravimetric: Oven Dried

PH-WT

Soil

MOEE E3137A

A minimum 10g portion of the sample is extracted with 20mL of 0.01M calcium chloride solution by shaking for at least 30 minutes. The aqueous layer is separated from the soil and then analyzed using a pH meter and electrode.

## **Reference Information**

L2088977 CONT'D.... Job Reference: SP18-306-20 PAGE 11 of 11 28-JUN-18 10:01 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference\*\*

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

SAR-R511-WT

Soil

SAR-O.Reg 153/04 (July 2011)

SW846 6010C

A dried, disaggregated solid sample is extracted with deionized water, the aqueous extract is separated from the solid, acidified and then analyzed using a ICP/OES. The concentrations of Na, Ca and Mg are reported as per CALA requirements for calculated parameters. These individual parameters are not for comparison to any guideline.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

\*\*ALS test methods may incorporate modifications from specified reference methods to improve performance.

Chain of Custody Numbers:

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code

Laboratory Location

WT

ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

#### **GLOSSARY OF REPORT TERMS**

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information.



Contact:

WG2766643-1

Conductivity

F1-HS-511-WT

MB

Soil

# **Quality Control Report**

Workorder: L2088977

Report Date: 28-JUN-18

Page 1 of 9

Client: Sirati & Partners Consultants Ltd. (Concord)

750 Millway Ave. Unit #8 Vaughan ON L4K 3T7

Vaughan ON L4K 3
CHAORAN LI

| Test                                       | Matrix | Reference                 | Result | Qualifier | Units | RPD  | Limit  | Analyzed       |
|--------------------------------------------|--------|---------------------------|--------|-----------|-------|------|--------|----------------|
| B-HWS-R511-WT                              | Soil   |                           | _      |           |       |      |        |                |
| Batch R4039945                             |        |                           |        |           |       |      |        |                |
| WG2766599-4 DUP                            |        | L2089035-1                |        |           | ,     |      |        |                |
| Boron (B), Hot Water Ex                    | ct.    | 0.41                      | 0.39   |           | ug/g  | 3.7  | 30     | 09-MAY-18      |
| WG2766599-2 IRM                            |        | HOTB-SAL_SC               |        |           | 0/    |      |        |                |
| Boron (B), Hot Water Ex                    | ct.    |                           | 112.3  |           | %     |      | 70-130 | 09-MAY-18      |
| WG2766599-3 LCS<br>Boron (B), Hot Water Ex | ĸt.    |                           | 122.1  |           | %     |      | 70-130 | 09-MAY-18      |
| WG2766599-1 MB                             |        |                           |        |           |       |      |        |                |
| Boron (B), Hot Water Ex                    | ct.    |                           | <0.10  |           | ug/g  |      | 0.1    | 09-MAY-18      |
| CN-WAD-R511-WT                             | Soil   |                           |        |           |       |      |        |                |
| Batch R4039855                             |        |                           |        |           |       |      |        |                |
| WG2766818-3 DUP                            |        | L2088839-2                | -0.050 | DDD NA    | ua/a  | N1/A | 05     | 00 1411/ 40    |
| Cyanide, Weak Acid Dis                     | 55     | <0.050                    | <0.050 | RPD-NA    | ug/g  | N/A  | 35     | 09-MAY-18      |
| WG2766818-2 LCS                            |        |                           | 93.5   |           | %     |      | 00.400 | 00 MAY 40      |
| Cyanide, Weak Acid Dis                     | 55     |                           | 93.5   |           | 70    |      | 80-120 | 09-MAY-18      |
| WG2766818-1 MB<br>Cyanide, Weak Acid Dis   | **     |                           | <0.050 |           | ug/g  |      | 0.05   | 09-MAY-18      |
| •                                          | 55     |                           | <0.030 |           | ug/g  |      | 0.03   | U9-IVIA 1 - 10 |
| WG2766818-4 MS<br>Cyanide, Weak Acid Dis   | :9     | L2088839-2                | 106.0  |           | %     |      | 70-130 | 09-MAY-18      |
| Cydriad, Woak Mola Die                     |        |                           | 100.0  |           | 70    |      | 70-130 | 09-IVIA 1 - 10 |
| CR-CR6-IC-WT                               | Soil   |                           |        |           |       |      |        |                |
| Batch R4038717                             |        |                           |        |           |       |      |        |                |
| WG2766819-3 CRM                            |        | WT-SQC012                 | 00.0   |           | 0/    |      |        |                |
| Chromium, Hexavalent                       |        |                           | 88.0   |           | %     |      | 70-130 | 09-MAY-18      |
| WG2766819-4 DUP<br>Chromium, Hexavalent    |        | <b>L2088977-3</b><br>0.20 | -0.20  | DDD NA    | ua/a  | NI/A | 25     | 00 MAY 40      |
|                                            |        | 0.20                      | <0.20  | RPD-NA    | ug/g  | N/A  | 35     | 09-MAY-18      |
| WG2766819-2 LCS<br>Chromium, Hexavalent    |        |                           | 102.0  |           | %     |      | 00.400 | 00 MAY 40      |
| ·                                          |        |                           | 102.0  |           | /0    |      | 80-120 | 09-MAY-18      |
| WG2766819-1 MB<br>Chromium, Hexavalent     |        |                           | <0.20  |           | ug/g  |      | 0.2    | 09-MAY-18      |
| EC-WT                                      | Soil   |                           |        |           |       |      |        |                |
| Batch R4038043                             |        |                           |        |           |       |      |        |                |
| WG2766643-4 DUP                            |        | WG2766643-3               |        |           |       |      |        |                |
| Conductivity                               |        | 0.248                     | 0.258  |           | mS/cm | 4.0  | 20     | 08-MAY-18      |
| WG2766903-1 LCS                            |        |                           |        |           |       |      |        |                |
| Conductivity                               |        |                           | 105.9  |           | %     |      | 90-110 | 08-MAY-18      |

< 0.0040

mS/cm

0.004

08-MAY-18



Qualifier

Workorder: L2088977 Report Date: 28-JUN-18 Page 2 of 9

RPD

Limit

Analyzed

Units

Client: Sirati & Partners Consultants Ltd. (Concord)

Matrix

Reference

Result

750 Millway Ave. Unit #8 Vaughan ON L4K 3T7

Contact: CHAORAN LI

Test

| 1621                               | IVIALITX            | Reference               | Result | Qualifier | Units  | KPD | LIIIII | Anaryzeu     |
|------------------------------------|---------------------|-------------------------|--------|-----------|--------|-----|--------|--------------|
| F1-HS-511-WT                       | Soil                |                         |        |           |        |     |        |              |
| Batch R4                           | 036987              |                         |        |           |        |     |        |              |
| <b>WG2764660-4</b><br>F1 (C6-C10)  | DUP                 | <b>WG2764660-3</b> <5.0 | <5.0   | RPD-NA    | ug/g   | N/A | 30     | 08-MAY-18    |
| <b>WG2764660-2</b> F1 (C6-C10)     | LCS                 |                         | 97.9   |           | %      |     | 80-120 | 08-MAY-18    |
| <b>WG2764660-1</b><br>F1 (C6-C10)  | МВ                  |                         | <5.0   |           | ug/g   |     | 5      | 08-MAY-18    |
| Surrogate: 3,4-                    | Dichlorotoluene     |                         | 91.5   |           | %      |     | 60-140 | 08-MAY-18    |
| <b>WG2764660-6</b><br>F1 (C6-C10)  | MS                  | L2088944-20             | 98.7   |           | %      |     | 60-140 | 08-MAY-18    |
| , ,                                | 10204.46            |                         |        |           |        |     | 00 110 | 00 11/1/1 10 |
| Batch R4<br>WG2766840-4            | 1039146<br>DUP      | WG2766840-3             |        |           |        |     |        |              |
| F1 (C6-C10)                        | -                   | <5.0                    | <5.0   | RPD-NA    | ug/g   | N/A | 30     | 09-MAY-18    |
| <b>WG2766840-2</b><br>F1 (C6-C10)  | LCS                 |                         | 100.2  |           | %      |     | 80-120 | 09-MAY-18    |
| <b>WG2766840-1</b><br>F1 (C6-C10)  | МВ                  |                         | <5.0   |           | ug/g   |     | 5      | 09-MAY-18    |
| Surrogate: 3,4-                    | Dichlorotoluene     |                         | 93.4   |           | %      |     | 60-140 | 09-MAY-18    |
| <b>WG2766840-6</b><br>F1 (C6-C10)  | MS                  | L2090219-2              | 107.2  |           | %      |     | 60-140 | 09-MAY-18    |
| F2-F4-511-WT                       | Soil                |                         |        |           |        |     |        |              |
| Batch R4                           | 035647              |                         |        |           |        |     |        |              |
| <b>WG2764875-4</b> F2 (C10-C16)    | DUP                 | <b>WG2764875-3</b> <10  | 11     | RPD-NA    | ug/g   | N/A | 30     | 07-MAY-18    |
| F3 (C16-C34)                       |                     | <50                     | 59     | RPD-NA    | ug/g   | N/A | 30     | 07-MAY-18    |
| F4 (C34-C50)                       |                     | <50                     | <50    | RPD-NA    | ug/g   | N/A | 30     | 07-MAY-18    |
| <b>WG2764875-2</b><br>F2 (C10-C16) | LCS                 |                         | 104.5  |           | %      |     | 80-120 | 07-MAY-18    |
| F3 (C16-C34)                       |                     |                         | 105.6  |           | %      |     | 80-120 | 07-MAY-18    |
| F4 (C34-C50)                       |                     |                         | 110.9  |           | %      |     | 80-120 | 07-MAY-18    |
| <b>WG2764875-1</b><br>F2 (C10-C16) | МВ                  |                         | <10    |           | ug/g   |     | 10     | 07-MAY-18    |
| F3 (C16-C34)                       |                     |                         | <50    |           | ug/g   |     | 50     | 07-MAY-18    |
| F4 (C34-C50)                       |                     |                         | <50    |           | ug/g   |     | 50     | 07-MAY-18    |
| , ,                                | omobenzotrifluoride |                         | 88.4   |           | w<br>% |     | 60-140 | 07-MAY-18    |
| WG2764875-5                        | MS                  | WG2764875-3             |        |           |        |     |        |              |
| F2 (C10-C16)                       |                     |                         | 113.2  |           | %      |     | 60-140 | 07-MAY-18    |
| F3 (C16-C34)                       |                     |                         | 112.7  |           | %      |     | 60-140 | 07-MAY-18    |



Page 3 of 9

Workorder: L2088977 Report Date: 28-JUN-18

Client: Sirati & Partners Consultants Ltd. (Concord)

750 Millway Ave. Unit #8 Vaughan ON L4K 3T7

| Test                                         | Matrix            | Reference                 | Result             | Qualifier | Units | RPD | Limit  | Analyzed   |
|----------------------------------------------|-------------------|---------------------------|--------------------|-----------|-------|-----|--------|------------|
| F2-F4-511-WT                                 | Soil              |                           |                    |           |       |     |        |            |
| Batch R4035<br>WG2764875-5 M<br>F4 (C34-C50) | 5647<br>IS        | WG2764875-3               | 114.3              |           | %     |     | 60-140 | 07-MAY-18  |
| Batch R4039<br>WG2766846-4 D                 | 9589<br>OUP       | WG2766846-3               |                    |           |       |     |        |            |
| F2 (C10-C16)                                 | JUP               | <10                       | <10                | RPD-NA    | ug/g  | N/A | 30     | 09-MAY-18  |
| F3 (C16-C34)                                 |                   | <50                       | <50                | RPD-NA    | ug/g  | N/A | 30     | 09-MAY-18  |
| F4 (C34-C50)                                 |                   | <50                       | <50                | RPD-NA    | ug/g  | N/A | 30     | 09-MAY-18  |
| <b>WG2766846-2</b> Left F2 (C10-C16)         | cs                |                           | 122.6              | LCS-H     | %     |     | 80-120 | 09-MAY-18  |
| F3 (C16-C34)                                 |                   |                           | 124.0              | LCS-H     | %     |     | 80-120 | 09-MAY-18  |
| F4 (C34-C50)                                 |                   |                           | 128.4              | LCS-H     | %     |     | 80-120 | 09-MAY-18  |
| ,                                            | IB                |                           | <10                |           | ug/g  |     | 10     | 09-MAY-18  |
| F3 (C16-C34)                                 |                   |                           | <50                |           | ug/g  |     | 50     | 09-MAY-18  |
| F4 (C34-C50)                                 |                   |                           | <50                |           | ug/g  |     | 50     | 09-MAY-18  |
| Surrogate: 2-Bromo                           | obenzotrifluoride |                           | 94.0               |           | %     |     | 60-140 | 09-MAY-18  |
| -                                            | ıs                | WG2766846-3               |                    |           |       |     |        | 00 1111 10 |
| F2 (C10-C16)                                 |                   |                           | 124.7              |           | %     |     | 60-140 | 09-MAY-18  |
| F3 (C16-C34)                                 |                   |                           | 134.2              |           | %     |     | 60-140 | 09-MAY-18  |
| F4 (C34-C50)                                 |                   |                           | 133.4              |           | %     |     | 60-140 | 09-MAY-18  |
| F4G-ADD-511-WT                               | Soil              |                           |                    |           |       |     |        |            |
| Batch R4037                                  | 7873              |                           |                    |           |       |     |        |            |
| <b>WG2767259-2</b> Lo<br>F4G-SG (GHH-Silio   | <b>CS</b><br>ca)  |                           | 76.6               |           | %     |     | 60-140 | 06-MAY-18  |
| WG2767259-1 M<br>F4G-SG (GHH-Silio           | <b>IB</b><br>ca)  |                           | <250               |           | ug/g  |     | 250    | 06-MAY-18  |
| HG-200.2-CVAA-WT                             | Soil              |                           |                    |           |       |     |        |            |
| Batch R4037                                  | 7944              |                           |                    |           |       |     |        |            |
| WG2766532-2 C<br>Mercury (Hg)                | RM                | WT-CANMET-                | <b>TILL1</b> 112.2 |           | %     |     | 70-130 | 08-MAY-18  |
| <b>WG2766532-6 D</b> Mercury (Hg)            | UP                | <b>WG2766532-5</b> 0.0156 | 0.0160             |           | ug/g  | 3.0 | 40     | 08-MAY-18  |
| <b>WG2766532-3</b> Lower (Hg)                | cs                |                           | 108.5              |           | %     |     | 80-120 | 08-MAY-18  |
| <b>WG2766532-1 M</b> Mercury (Hg)            | IB                |                           | <0.0050            |           | mg/kg |     | 0.005  | 08-MAY-18  |



Workorder: L2088977 Report Date: 28-JUN-18 Page 4 of 9

Client: Sirati & Partners Consultants Ltd. (Concord)

750 Millway Ave. Unit #8 Vaughan ON L4K 3T7

| Test                             | Matrix | Reference               | Result           | Qualifier | Units | RPD | Limit      | Analyzed  |
|----------------------------------|--------|-------------------------|------------------|-----------|-------|-----|------------|-----------|
| MET-200.2-CCMS-WT                | Soil   |                         |                  |           |       |     |            |           |
| Batch R4039764                   |        |                         |                  |           |       |     |            |           |
| WG2766532-2 CRM                  |        | WT-CANMET-              |                  |           |       |     |            |           |
| Antimony (Sb)                    |        |                         | 101.9            |           | %     |     | 70-130     | 08-MAY-18 |
| Arsenic (As)                     |        |                         | 100.3            |           | %     |     | 70-130     | 08-MAY-18 |
| Barium (Ba)                      |        |                         | 101.1            |           | %     |     | 70-130     | 08-MAY-18 |
| Beryllium (Be)                   |        |                         | 110.7            |           | %     |     | 70-130     | 08-MAY-18 |
| Boron (B)                        |        |                         | 3.5              |           | mg/kg |     | 0-8.2      | 08-MAY-18 |
| Cadmium (Cd)                     |        |                         | 96.9             |           | %     |     | 70-130     | 08-MAY-18 |
| Chromium (Cr)                    |        |                         | 97.5             |           | %     |     | 70-130     | 08-MAY-18 |
| Cobalt (Co)                      |        |                         | 97.0             |           | %     |     | 70-130     | 08-MAY-18 |
| Copper (Cu)                      |        |                         | 100.0            |           | %     |     | 70-130     | 08-MAY-18 |
| Lead (Pb)                        |        |                         | 101.3            |           | %     |     | 70-130     | 08-MAY-18 |
| Molybdenum (Mo)                  |        |                         | 99.6             |           | %     |     | 70-130     | 08-MAY-18 |
| Nickel (Ni)                      |        |                         | 97.5             |           | %     |     | 70-130     | 08-MAY-18 |
| Selenium (Se)                    |        |                         | 0.31             |           | mg/kg |     | 0.11-0.51  | 08-MAY-18 |
| Silver (Ag)                      |        |                         | 0.24             |           | mg/kg |     | 0.13-0.33  | 08-MAY-18 |
| Thallium (TI)                    |        |                         | 0.122            |           | mg/kg |     | 0.077-0.18 | 08-MAY-18 |
| Uranium (U)                      |        |                         | 100.5            |           | %     |     | 70-130     | 08-MAY-18 |
| Vanadium (V)                     |        |                         | 102.1            |           | %     |     | 70-130     | 08-MAY-18 |
| Zinc (Zn)                        |        |                         | 101.0            |           | %     |     | 70-130     | 08-MAY-18 |
| WG2766532-6 DUP<br>Antimony (Sb) |        | <b>WG2766532-5</b> 0.11 | <b>i</b><br>0.12 |           | ug/g  | 2.8 | 30         | 08-MAY-18 |
| Arsenic (As)                     |        | 5.28                    | 5.29             |           | ug/g  | 0.2 | 30         | 08-MAY-18 |
| Barium (Ba)                      |        | 114                     | 112              |           |       |     | 40         |           |
| Beryllium (Be)                   |        | 1.13                    | 1.18             |           | ug/g  | 1.3 |            | 08-MAY-18 |
|                                  |        |                         |                  |           | ug/g  | 3.9 | 30         | 08-MAY-18 |
| Boron (B)                        |        | 19.9                    | 21.9             |           | ug/g  | 9.2 | 30         | 08-MAY-18 |
| Cadmium (Cd)                     |        | 0.086                   | 0.083            |           | ug/g  | 3.7 | 30         | 08-MAY-18 |
| Chromium (Cr)                    |        | 30.3                    | 30.7             |           | ug/g  | 1.1 | 30         | 08-MAY-18 |
| Cobalt (Co)                      |        | 14.7                    | 14.5             |           | ug/g  | 1.1 | 30         | 08-MAY-18 |
| Copper (Cu)                      |        | 23.8                    | 23.8             |           | ug/g  | 0.2 | 30         | 08-MAY-18 |
| Lead (Pb)                        |        | 12.8                    | 12.2             |           | ug/g  | 5.0 | 40         | 08-MAY-18 |
| Molybdenum (Mo)                  |        | 0.54                    | 0.57             |           | ug/g  | 6.5 | 40         | 08-MAY-18 |
| Nickel (Ni)                      |        | 32.9                    | 32.3             |           | ug/g  | 1.8 | 30         | 08-MAY-18 |
| Selenium (Se)                    |        | <0.20                   | <0.20            | RPD-NA    | ug/g  | N/A | 30         | 08-MAY-18 |
| Silver (Ag)                      |        | <0.10                   | <0.10            | RPD-NA    | ug/g  | N/A | 40         | 08-MAY-18 |



Workorder: L2088977 Report Date: 28-JUN-18 Page 5 of 9

Client: Sirati & Partners Consultants Ltd. (Concord)

750 Millway Ave. Unit #8 Vaughan ON L4K 3T7

| Test                             | Matrix I | Reference                | Result | Qualifier | Units | RPD | Limit  | Analyzed  |
|----------------------------------|----------|--------------------------|--------|-----------|-------|-----|--------|-----------|
| MET-200.2-CCMS-WT                | Soil     |                          |        |           |       |     |        |           |
| Batch R4039764                   |          |                          |        |           |       |     |        |           |
| WG2766532-6 DUP<br>Thallium (TI) |          | <b>WG2766532-5</b> 0.156 | 0.146  |           | ug/g  | 6.9 | 30     | 08-MAY-18 |
| Uranium (U)                      |          | 0.884                    | 0.861  |           | ug/g  | 2.6 | 30     | 08-MAY-18 |
| Vanadium (V)                     |          | 43.0                     | 43.8   |           | ug/g  | 1.8 | 30     | 08-MAY-18 |
| Zinc (Zn)                        |          | 72.8                     | 72.4   |           | ug/g  | 0.6 | 30     | 08-MAY-18 |
| WG2766532-4 LCS<br>Antimony (Sb) |          |                          | 96.8   |           | %     |     | 80-120 | 08-MAY-18 |
| Arsenic (As)                     |          |                          | 94.5   |           | %     |     | 80-120 | 08-MAY-18 |
| Barium (Ba)                      |          |                          | 90.5   |           | %     |     | 80-120 | 08-MAY-18 |
| Beryllium (Be)                   |          |                          | 108.0  |           | %     |     | 80-120 | 08-MAY-18 |
| Boron (B)                        |          |                          | 111.7  |           | %     |     | 80-120 | 08-MAY-18 |
| Cadmium (Cd)                     |          |                          | 90.5   |           | %     |     | 80-120 | 08-MAY-18 |
| Chromium (Cr)                    |          |                          | 92.8   |           | %     |     | 80-120 | 08-MAY-18 |
| Cobalt (Co)                      |          |                          | 89.3   |           | %     |     | 80-120 | 08-MAY-18 |
| Copper (Cu)                      |          |                          | 91.8   |           | %     |     | 80-120 | 08-MAY-18 |
| Lead (Pb)                        |          |                          | 100.5  |           | %     |     | 80-120 | 08-MAY-18 |
| Molybdenum (Mo)                  |          |                          | 100.4  |           | %     |     | 80-120 | 08-MAY-18 |
| Nickel (Ni)                      |          |                          | 90.9   |           | %     |     | 80-120 | 08-MAY-18 |
| Selenium (Se)                    |          |                          | 88.3   |           | %     |     | 80-120 | 08-MAY-18 |
| Silver (Ag)                      |          |                          | 90.7   |           | %     |     | 80-120 | 08-MAY-18 |
| Thallium (TI)                    |          |                          | 92.2   |           | %     |     | 80-120 | 08-MAY-18 |
| Uranium (U)                      |          |                          | 97.0   |           | %     |     | 80-120 | 08-MAY-18 |
| Vanadium (V)                     |          |                          | 97.0   |           | %     |     | 80-120 | 08-MAY-18 |
| Zinc (Zn)                        |          |                          | 88.7   |           | %     |     | 80-120 | 08-MAY-18 |
| WG2766532-1 MB<br>Antimony (Sb)  |          |                          | <0.10  |           | mg/kg |     | 0.1    | 08-MAY-18 |
| Arsenic (As)                     |          |                          | <0.10  |           | mg/kg |     | 0.1    | 08-MAY-18 |
| Barium (Ba)                      |          |                          | <0.50  |           | mg/kg |     | 0.5    | 08-MAY-18 |
| Beryllium (Be)                   |          |                          | <0.10  |           | mg/kg |     | 0.1    | 08-MAY-18 |
| Boron (B)                        |          |                          | <5.0   |           | mg/kg |     | 5      | 08-MAY-18 |
| Cadmium (Cd)                     |          |                          | <0.020 |           | mg/kg |     | 0.02   | 08-MAY-18 |
| Chromium (Cr)                    |          |                          | <0.50  |           | mg/kg |     | 0.5    | 08-MAY-18 |
| Cobalt (Co)                      |          |                          | <0.10  |           | mg/kg |     | 0.1    | 08-MAY-18 |
| Copper (Cu)                      |          |                          | <0.50  |           | mg/kg |     | 0.5    | 08-MAY-18 |
| Lead (Pb)                        |          |                          | <0.50  |           | mg/kg |     | 0.5    | 08-MAY-18 |



Workorder: L2088977

Report Date: 28-JUN-18

Page 6 of 9

Client: Sirati & Partners Consultants Ltd. (Concord)

750 Millway Ave. Unit #8 Vaughan ON L4K 3T7

| Test                                 | Matrix | Reference                 | Result | Qualifier | Units    | RPD  | Limit   | Analyzed   |
|--------------------------------------|--------|---------------------------|--------|-----------|----------|------|---------|------------|
| MET-200.2-CCMS-WT                    | Soil   |                           |        |           |          |      |         |            |
| Batch R4039764                       |        |                           |        |           |          |      |         |            |
| WG2766532-1 MB<br>Molybdenum (Mo)    |        |                           | <0.10  |           | mg/kg    |      | 0.1     | 08-MAY-18  |
| Nickel (Ni)                          |        |                           | <0.50  |           | mg/kg    |      | 0.5     | 08-MAY-18  |
| Selenium (Se)                        |        |                           | <0.20  |           | mg/kg    |      | 0.2     | 08-MAY-18  |
| Silver (Ag)                          |        |                           | <0.10  |           | mg/kg    |      | 0.1     | 08-MAY-18  |
| Thallium (TI)                        |        |                           | <0.050 |           | mg/kg    |      | 0.05    | 08-MAY-18  |
| Uranium (U)                          |        |                           | <0.050 |           | mg/kg    |      | 0.05    | 08-MAY-18  |
| Vanadium (V)                         |        |                           | <0.20  |           | mg/kg    |      | 0.2     | 08-MAY-18  |
| Zinc (Zn)                            |        |                           | <2.0   |           | mg/kg    |      | 2       | 08-MAY-18  |
| MOISTURE-WT                          | Soil   |                           |        |           |          |      |         |            |
| Batch R4036727                       |        |                           |        |           |          |      |         |            |
| <b>WG2766237-3 DUP</b><br>% Moisture |        | <b>L2088839-2</b> 14.4    | 13.9   |           | %        | 3.4  | 20      | 07-MAY-18  |
| WG2766237-2 LCS<br>% Moisture        |        |                           | 99.6   |           | %        |      | 90-110  | 07-MAY-18  |
| <b>WG2766237-1 MB</b><br>% Moisture  |        |                           | <0.10  |           | %        |      | 0.1     | 07-MAY-18  |
| Batch R4037931                       |        |                           |        |           |          |      |         |            |
| WG2766842-3 DUP<br>% Moisture        |        | <b>L2088840-3</b><br>17.8 | 17.2   |           | %        | 4.0  | 20      | 08-MAY-18  |
| WG2766842-2 LCS                      |        |                           |        |           | ,-       | 4.0  | 20      | 00 1417 10 |
| % Moisture                           |        |                           | 100.0  |           | %        |      | 90-110  | 08-MAY-18  |
| <b>WG2766842-1 MB</b><br>% Moisture  |        |                           | <0.10  |           | %        |      | 0.1     | 08-MAY-18  |
| PH-WT                                | Soil   |                           |        |           |          |      |         |            |
| Batch R4038185                       |        |                           |        |           |          |      |         |            |
| <b>WG2765971-1 DUP</b><br>pH         |        | <b>L2088067-1</b><br>6.96 | 6.99   | J         | pH units | 0.03 | 0.3     | 08-MAY-18  |
| <b>WG2766913-1 LCS</b><br>pH         |        |                           | 6.90   |           | pH units |      | 6.9-7.1 | 08-MAY-18  |
| SAR-R511-WT                          | Soil   |                           |        |           |          |      |         |            |
| Batch R4039910                       |        |                           |        |           |          |      |         |            |
| WG2766643-4 DUP<br>Calcium (Ca)      |        | <b>WG2766643-3</b> 17.1   | 16.6   |           | mg/L     | 3.4  | 30      | 09-MAY-18  |
| Sodium (Na)                          |        | 11.5                      | 11.8   |           | mg/L     | 2.4  | 30      | 09-MAY-18  |
| Magnesium (Mg)                       |        | 11.6                      | 12.5   |           | mg/L     | 6.9  | 30      | 09-MAY-18  |
|                                      |        |                           |        |           |          |      |         |            |



Workorder: L2088977

Report Date: 28-JUN-18

Page 7 of 9

Client:

Sirati & Partners Consultants Ltd. (Concord)

750 Millway Ave. Unit #8

Vaughan ON L4K 3T7

| Test                                              | Matrix | Reference | Result       | Qualifier | Units        | RPD | Limit  | Analyzed               |
|---------------------------------------------------|--------|-----------|--------------|-----------|--------------|-----|--------|------------------------|
| SAR-R511-WT                                       | Soil   |           |              |           |              |     |        |                        |
| Batch R4039910<br>WG2766643-2 IRM<br>Calcium (Ca) |        | WT SAR2   | 112.1        |           | %            |     | 70-130 | 09-MAY-18              |
| Sodium (Na)                                       |        |           | 118.9        |           | %            |     | 70-130 | 09-MAY-18              |
| Magnesium (Mg) WG2766643-1 MB                     |        |           | 124.5        |           | %            |     | 70-130 | 09-MAY-18              |
| Calcium (Ca) Sodium (Na)                          |        |           | <1.0<br><1.0 |           | mg/L<br>mg/L |     | 1<br>1 | 09-MAY-18<br>09-MAY-18 |
| Magnesium (Mg)                                    |        |           | <1.0         |           | mg/L         |     | 1      | 09-MAY-18              |

Workorder: L2088977 Report Date: 28-JUN-18

Sirati & Partners Consultants Ltd. (Concord) Client: Page 8 of 9

750 Millway Ave. Unit #8

Vaughan ON L4K 3T7

Contact: CHAORAN LI

## Legend:

| Limit | ALS Control Limit (Data Quality Objectives) |
|-------|---------------------------------------------|
| DUP   | Duplicate                                   |
| RPD   | Relative Percent Difference                 |
| N/A   | Not Available                               |
| LCS   | Laboratory Control Sample                   |
| SRM   | Standard Reference Material                 |
| MS    | Matrix Spike                                |
| MSD   | Matrix Spike Duplicate                      |
| ADE   | Average Desorption Efficiency               |
| MB    | Method Blank                                |
| IRM   | Internal Reference Material                 |
| CRM   | Certified Reference Material                |
| CCV   | Continuing Calibration Verification         |
| CVS   | Calibration Verification Standard           |
| LCSD  | Laboratory Control Sample Duplicate         |

## **Sample Parameter Qualifier Definitions:**

| Qualifier | Description                                                                                                                                          |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| J         | Duplicate results and limits are expressed in terms of absolute difference.                                                                          |
| LCS-H     | Lab Control Sample recovery was above ALS DQO. Non-detected sample results are considered reliable. Other results, if reported, have been qualified. |
| RPD-NA    | Relative Percent Difference Not Available due to result(s) being less than detection limit.                                                          |

Workorder: L2088977 Report Date: 28-JUN-18

Client: Sirati & Partners Consultants Ltd. (Concord)

750 Millway Ave. Unit #8 Vaughan ON L4K 3T7

Contact: CHAORAN LI

Page 9 of 9

#### **Hold Time Exceedances:**

|                               | Sample         |                 |                 |         |           |       |           |
|-------------------------------|----------------|-----------------|-----------------|---------|-----------|-------|-----------|
| ALS Product Description       | ID             | Sampling Date   | Date Processed  | Rec. HT | Actual HT | Units | Qualifier |
| Physical Tests                |                |                 |                 |         |           |       |           |
| % Moisture                    |                |                 |                 |         |           |       |           |
|                               | 1              | 18-APR-18 17:00 | 07-MAY-18 15:23 | 14      | 19        | days  | EHTR      |
|                               | 2              | 18-APR-18 17:00 | 07-MAY-18 15:24 | 14      | 19        | days  | EHTR      |
|                               | 3              | 18-APR-18 17:00 | 07-MAY-18 15:25 | 14      | 19        | days  | EHTR      |
|                               | 4              | 18-APR-18 17:00 | 08-MAY-18 09:28 | 14      | 20        | days  | EHTR      |
| Cyanides                      |                |                 |                 |         |           |       |           |
| Cyanide (WAD)-O.Reg 153       | 3/04 (July 201 | 1)              |                 |         |           |       |           |
|                               | 3              | 18-APR-18 17:00 | 08-MAY-18 07:00 | 14      | 20        | days  | EHTR      |
| Hydrocarbons                  |                |                 |                 |         |           |       |           |
| F1-O.Reg 153/04 (July 201     | 1)             |                 |                 |         |           |       |           |
|                               | 1              | 18-APR-18 17:00 | 04-MAY-18 07:39 | 14      | 16        | days  | EHTR      |
|                               | 2              | 18-APR-18 17:00 | 04-MAY-18 07:40 | 14      | 16        | days  | EHTR      |
|                               | 4              | 18-APR-18 17:00 | 08-MAY-18 08:07 | 14      | 20        | days  | EHTR      |
| F2-F4-O.Reg 153/04 (July      | 2011)          |                 |                 |         |           |       |           |
|                               | 1              | 18-APR-18 17:00 | 04-MAY-18 12:00 | 14      | 16        | days  | EHTR      |
|                               | 2              | 18-APR-18 17:00 | 04-MAY-18 12:00 | 14      | 16        | days  | EHTR      |
|                               | 4              | 18-APR-18 17:00 | 08-MAY-18 08:00 | 14      | 20        | days  | EHTR      |
| Legend & Qualifier Definition | ne:            |                 |                 |         |           |       |           |

Legend & Qualifier Definitions:

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.

EHTR: Exceeded ALS recommended hold time prior to sample receipt.

EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.

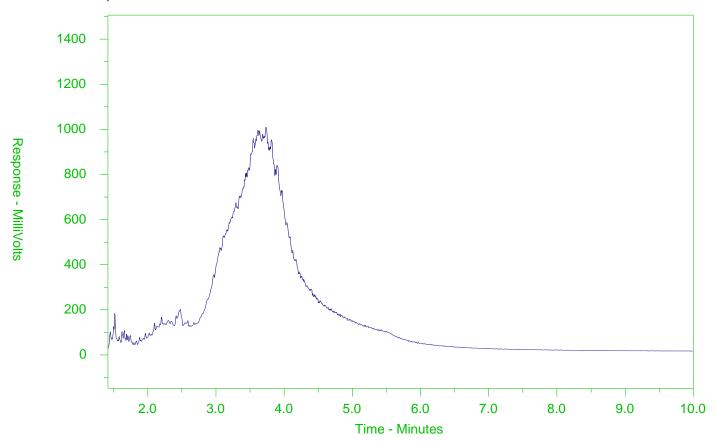
EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

#### Notes\*

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L2088977 were received on 03-MAY-18 17:15.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.


The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

## CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT



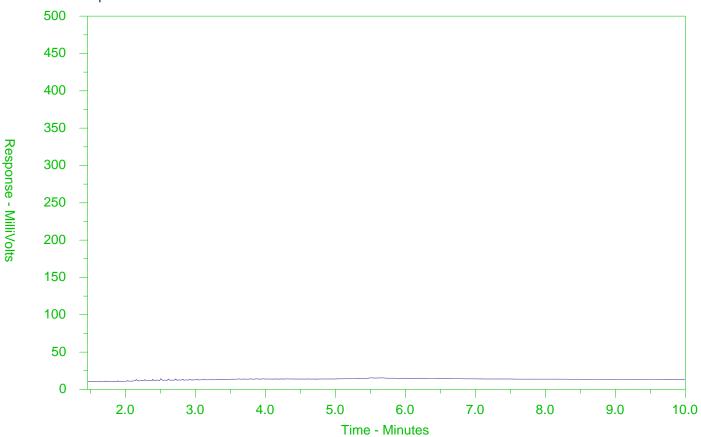
ALS Sample ID: L2088977-1 Client Sample ID: BH2-SS3



| <b>←</b> -F2- | →-         | —F3—→←—F4— | <b>&gt;</b>               |
|---------------|------------|------------|---------------------------|
| nC10          | nC16       | nC34       | nC50                      |
| 174°C         | 287°C      | 481°C      | 575°C                     |
| 346°F         | 549°F      | 898°F      | 1067⁰F                    |
| Gasolin       | e <b>→</b> | ← Mot      | or Oils/Lube Oils/Grease- |
| <b>←</b>      | -Diesel/Je | et Fuels→  |                           |

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at <a href="https://www.alsglobal.com">www.alsglobal.com</a>.

## CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT



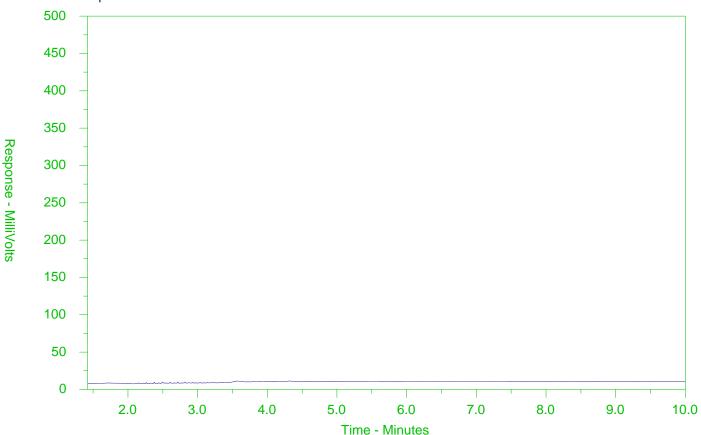
ALS Sample ID: L2088977-2 Client Sample ID: BH6-SS5



| <b>←</b> -F2- | →←          | _F3 <b>→</b> F4- | <b>→</b>                  |   |
|---------------|-------------|------------------|---------------------------|---|
| nC10          | nC16        | nC34             | nC50                      |   |
| 174°C         | 287°C       | 481°C            | 575°C                     |   |
| 346°F         | 549°F       | 898°F            | 1067°F                    |   |
| Gasolin       | ie →        | <b>←</b> Mo      | tor Oils/Lube Oils/Grease | - |
| •             | -Diesel/Jet | Fuels→           |                           |   |

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at <a href="https://www.alsglobal.com">www.alsglobal.com</a>.

## CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT



ALS Sample ID: L2088977-4 Client Sample ID: BH7-SS4



| <b>←</b> -F2- | → ←        | —F3—→ <b>←</b> F4— | <b>&gt;</b>              |
|---------------|------------|--------------------|--------------------------|
| nC10          | nC16       | nC34               | nC50                     |
| 174°C         | 287°C      | 481°C              | 575°C                    |
| 346°F         | 549°F      | 898°F              | 1067⁰F                   |
| Gasolin       | e <b>→</b> | ← Mot              | or Oils/Lube Oils/Grease |
| •             | -Diesel/J  | et Fuels→          |                          |

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at <a href="https://www.alsglobal.com">www.alsglobal.com</a>.

# ALS Environmental

# Chain of Custody (COC) / Analytical Request Form

Canada Toll Free: 1 800 668 9878

L2088977-COFC

| ٩ |     |         |    |   |
|---|-----|---------|----|---|
| ţ | COC | Number: | 15 | _ |

. .

iae 1 nf

1

|                  | www.alsglobal.com                  |                                         | ···                  |                 |                      |                                                                                                                                           |                                                  |                   |                                                  |                | 1         |            |           |            |          |             |             |          |            |               |                      |
|------------------|------------------------------------|-----------------------------------------|----------------------|-----------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------|--------------------------------------------------|----------------|-----------|------------|-----------|------------|----------|-------------|-------------|----------|------------|---------------|----------------------|
| Report To        | Contact and compan                 | y name below will app                   | ear on the final rep | ort             |                      | Report Format                                                                                                                             | / Distribution                                   |                   | Select                                           | OBLAICE F      |           | <u></u> -  | confirm   | all E&P    | TATs wi  | th your A   | M - surc    | harges v | vill apply | ,             |                      |
| Company:         | SP Consultants (Sirati a           | nd Partners) Ltd                        |                      | •               | Select Report Fo     | ormat: 🗹 PDF                                                                                                                              | ☑ EXCEL □ ED                                     | D (DIGITAL)       |                                                  | Re             | gular     | R] 🗵 :     | Standard  | TAT if     | receive  | d by 3 p    | m - busi    | ness da  | ys - no :  | surcharg      | es apply             |
| Contact:         | Chaoran Li                         | · · ·                                   |                      |                 | Quality Control (    | QC) Report with Re                                                                                                                        | eport 🗹 YES                                      | □ NO              | 2 8                                              | 4              | day [P    | 4] [       |           | 2          | į        | 1 Buş       | iness       | day [E   | <u>=1j</u> |               |                      |
| Phone:           | 905-669-4477                       |                                         | ···                  |                 | ☑ Compare Results    | to Criteria on Report -                                                                                                                   | provide details belo                             | w if box checked  | PRIORIT<br>(Business (                           | 3              | day [P    | 3] [       | ]         | 9          |          | Sam         | e Day,      | Week     | end o      | r             |                      |
|                  | Company address below v            | will appear on the final                | report               |                 | Select Distribution: |                                                                                                                                           |                                                  |                   |                                                  | 2              | day [P    | 2] [       | ]         | 1 2        |          | Stat        | utory       | holida   | ıy (E0)    |               |                      |
| Street:          | 750 Millway Ave, Unit 8            | •                                       |                      |                 | Email 1 or Fax       | chaoranli@spcons                                                                                                                          | ultantsitd.ca                                    |                   |                                                  | Date ar        | d Time    | Required   | for all E | &P TA      | Ts:      | 1           |             | dd in    | dadir sy   | nli ot        |                      |
| City/Province:   | Province: Vaughan, ON              |                                         |                      |                 |                      | Email 2 ggarofalo@spconsultantsitd.ca For tests that can not be performed according to the service level selected, you will be contacted. |                                                  |                   |                                                  |                |           |            |           |            |          | ted.        |             |          |            |               |                      |
| Postal Code:     | L46 3T7                            |                                         |                      |                 | Email 3              |                                                                                                                                           |                                                  |                   | Analysis Request                                 |                |           |            |           |            |          |             |             |          |            |               |                      |
| Invoice To       | Same as Report To                  | ☑ YES [                                 | □ NO                 |                 |                      | Invoice Dis                                                                                                                               | stribution                                       |                   |                                                  | Indi           | cate Filt | red (F), P | reserve   | d (P) or l | Filtered | and Pre     | served (    | (F/P) be | elow       |               |                      |
|                  | Copy of Invoice with Rep           | port 🗹 YES [                            | □ NO                 |                 | Select Invoice D     | istribution: 🗵 EMA                                                                                                                        | AIL   MAIL                                       | FAX               | Р                                                |                |           |            |           |            |          |             |             |          |            |               |                      |
| Company:         |                                    |                                         |                      |                 | Email 1 or Fax       | chaoranli@spcons                                                                                                                          | ultantsitd.ca                                    |                   |                                                  |                |           |            |           | $\neg$     | 1        | $\top$      |             |          |            | $\neg$        |                      |
| Contact:         |                                    |                                         |                      |                 | Email 2              | account@spconsu                                                                                                                           | ıltantsitd.ca                                    |                   | 1                                                | '              |           |            |           | - 1        |          | ĺ           |             | .        |            |               | δ                    |
|                  | Project le                         | nformation                              |                      |                 | Oil                  | and Gas Require                                                                                                                           | d Fields (client                                 | use)              | 1                                                |                |           |            |           |            |          |             |             | . 1      |            |               | Ē                    |
| ALS Account#     | / Quote #: (                       | Q63375                                  |                      |                 | AFE/Cost Center:     |                                                                                                                                           | PO#                                              |                   | 1                                                |                |           |            |           | -          |          |             |             |          |            |               | 뚩                    |
| Job #:           |                                    |                                         |                      |                 | Major/Minor Code:    |                                                                                                                                           | Routing Code:                                    | -                 | 1                                                |                |           |            |           | 1          |          |             |             |          |            |               | õ                    |
| PO / AFE:        | SP18-306-20                        |                                         |                      |                 | Requisitioner:       |                                                                                                                                           |                                                  |                   | 1                                                |                |           |            | •         |            |          |             |             |          |            |               | e.                   |
| LSD:             | ***                                |                                         |                      | •               | Location:            |                                                                                                                                           |                                                  |                   | 1                                                |                |           |            |           |            |          |             |             |          |            |               | Number of Containers |
| ALS Lab Wor      | rk Order# (lab use only            | " L208                                  | 8977                 |                 | ALS Contact:         | RICK H                                                                                                                                    | Sampler:                                         | Chaoran Li        | 1                                                |                |           |            |           |            |          |             |             |          |            |               | ž                    |
| ALS Sample #     | San                                | nple Identification                     | n and/or Coord       | inates          |                      | Date                                                                                                                                      | Time                                             | 1                 | 1                                                | _ <u></u>      |           |            |           |            |          |             |             |          |            |               |                      |
| (lab use only)   | . (Th                              | is description will                     | appear on the r      | eport)          |                      | (dd-mmm-yy)                                                                                                                               | (hh:mm)                                          | Sample Type       | 88                                               |                |           |            |           |            |          | - 1         |             |          |            |               |                      |
|                  | BH2-SS3                            |                                         | -· ·                 |                 |                      | 18-Apr-30                                                                                                                                 | 17:00                                            | Soil              |                                                  | R              |           |            |           |            |          |             |             |          |            |               | 3                    |
|                  | BH6-SS5                            | •                                       |                      |                 |                      | 18-May-01                                                                                                                                 | 17:00                                            | Soil              | 1                                                | R              |           |            |           |            |          | $\top$      | 1           |          | - +        |               | 3                    |
|                  | BH5-SS1                            |                                         |                      |                 | ·                    | 18-May-01                                                                                                                                 | 17:00                                            | Soil              | R                                                |                |           |            |           |            | -        | +           | 1           |          |            |               | 1                    |
|                  |                                    |                                         |                      |                 |                      |                                                                                                                                           |                                                  |                   | <del>                                     </del> | ┢┈             | <u> </u>  |            | $\dashv$  | -          | $\dashv$ | +           |             | $\vdash$ |            | -+            | •                    |
|                  |                                    |                                         | <del> </del>         |                 |                      |                                                                                                                                           | <u> </u>                                         | _                 | ┼                                                | <del> </del> - |           |            |           |            | —        |             |             | $\vdash$ |            | $\rightarrow$ |                      |
|                  |                                    |                                         |                      |                 |                      |                                                                                                                                           |                                                  |                   | <b>↓</b> _                                       | <u> </u>       |           |            | _         |            | _        | —           | $\vdash$    |          |            | $\rightarrow$ | <del> </del>         |
|                  |                                    |                                         |                      |                 |                      |                                                                                                                                           |                                                  |                   | <u> </u>                                         |                |           |            |           |            |          |             |             |          |            |               |                      |
|                  |                                    |                                         |                      |                 |                      |                                                                                                                                           |                                                  |                   |                                                  |                |           |            |           |            |          |             |             |          |            |               |                      |
|                  |                                    |                                         |                      |                 |                      |                                                                                                                                           |                                                  |                   |                                                  |                |           |            |           |            |          |             |             |          |            |               |                      |
|                  |                                    |                                         |                      |                 |                      |                                                                                                                                           |                                                  |                   | $\vdash$                                         |                |           |            |           |            |          |             |             | H        |            | $\neg$        |                      |
|                  |                                    |                                         |                      |                 |                      |                                                                                                                                           | <del>                                     </del> |                   | +-                                               | 1              |           |            | +         |            |          | +           | $\vdash$    |          |            | $\dashv$      | <u> </u>             |
|                  |                                    |                                         |                      |                 |                      |                                                                                                                                           |                                                  |                   | ┼──                                              | ├              |           |            |           |            | +        | +-          | $\vdash$    |          |            | $\dashv$      |                      |
|                  | ļ <u>.</u>                         |                                         |                      |                 | <del></del>          |                                                                                                                                           |                                                  |                   | <del> </del>                                     | _              | <u> </u>  |            | -         |            |          | —           |             | <b>├</b> |            | $\rightarrow$ | <u> </u>             |
|                  | <u> </u>                           |                                         |                      |                 |                      | ļ                                                                                                                                         | <u> </u>                                         | <u></u>           | <del> </del>                                     | ]              |           |            |           |            |          |             |             |          |            |               |                      |
| Drinking         | Water (DW) Samples <sup>1</sup>    | (client use)                            | Special Instruc      | ctions / Sp     |                      | add on report by clic                                                                                                                     | cking on the dro                                 | p-down list below | -                                                |                |           | SAMPL      | E CON     |            |          |             | · · · · · · | _        |            |               |                      |
| Ara camples tak  | en from a Regulated DW :           | Superam?                                | <del> </del>         |                 | (8190                | tronic COC only)                                                                                                                          |                                                  | <del></del>       | Froze                                            |                |           |            | [         |            |          | ervatio     | _           | Yes      | 님          | No            |                      |
| •                | en nom a Regulateo D¥¥ :<br>S ☑ NO | System                                  | Onto de Bondo        | -t 459 <i>#</i> | 04 Amil 15 201       | 1 Standarda                                                                                                                               |                                                  |                   |                                                  | acks           |           | Ice Cut    | es [      |            | ustody   | seal in     | ntact       | Yes      |            | No            |                      |
| _ :              | _                                  | -0                                      | · -                  |                 | 04 - April 15, 201   | i Standards                                                                                                                               |                                                  |                   | COOL                                             | ing Initi      |           | LER TEM    | DEDAT     | UDEC 1     |          | <del></del> | CINIAI      | 000      | CO TEX     | ADEDAT        | UDEC 10              |
|                  | human drinking water us            | i <del>u</del> r                        | Table 2 and Ta       | ible 2 KPI      |                      |                                                                                                                                           |                                                  |                   | <b></b>                                          | 0.801          | IAL COL   | ZER TEM    | FERAL     | יי לפאיני  | <u></u>  | 1           | -FINAL      | 7        | CK IE      | T             | URES °C              |
| L! YES           | S NO                               | FACE (all                               | <u> </u>             |                 | r                    | INITIAL CLUDASCA                                                                                                                          | IT DECEMBE:                                      | 1 / las           | 1                                                |                | _         |            |           |            |          |             | ( .0        | <u> </u> |            | افعيد         |                      |
| Released by: C   |                                    | LEASE (client use<br>Date: April 24, 20 | <u> </u>             | Time:           | Received by:         | INITIAL SHIPMEN                                                                                                                           | Date:                                            | (lap use only)    | Time                                             |                | Pace      | ived by:   | FINA      | L SHI      | MEN      | TREC        |             |          |            | niy)<br>T-    | Tioner -             |
| r released by: C | ποψίατι Ει                         | Date. April 24, 20                      | 10                   | i iiie.         | received by:         |                                                                                                                                           | Jake.                                            |                   | [""                                              |                | LVECE     | теч ру,    |           | ,          | ΧĽ       |             | x:-S        | -1       | X          |               | T7:15                |
| REFER TO BACK    | L<br>K PAGE FOR ALS LOCATI         | ONS AND SAMPLII                         | NG INFORMATIO        | N C             | <u> </u>             | WH                                                                                                                                        | ITE - LABORATO                                   | RY COPY YEL       | LOW -                                            | - CLIEN        | T ÇOF     | Υ -        |           |            | 4        |             |             |          |            |               | OCTOBER 2016 FRON    |



Sirati & Partners Consultants Ltd.

(Concord)

ATTN: Chaoran Li 750 Millway Ave

Unit 8

Vaughan ON L4K3T7

Date Received: 10-MAY-18

Report Date: 17-MAY-18 15:19 (MT)

Version: FINAL

Client Phone: 905-669-4477

# Certificate of Analysis

Lab Work Order #: L2092836
Project P.O. #: SP18-306-20
Job Reference: SP18-306-20

C of C Numbers: Legal Site Desc:

Rick Hawthorne Account Manager

 $[This\ report\ shall\ not\ be\ reproduced\ except\ in\ full\ without\ the\ written\ authority\ of\ the\ Laboratory.]$ 

ADDRESS: 5730 Coopers Avenue, Unit #26 , Mississauga, ON L4Z 2E9 Canada | Phone: +1 905 507 6910 | Fax: +1 905 507 6927 ALS CANADA LTD Part of the ALS Group An ALS Limited Company





L2092836 CONT'D....

Job Reference: SP18-306-20

PAGE 2 of 19

17-MAY-18 15:19 (MT)

## **Summary of Guideline Exceedances**

| Buideline   |                           |                                         |                                |        |                 |       |
|-------------|---------------------------|-----------------------------------------|--------------------------------|--------|-----------------|-------|
| ALS ID      | Client ID                 | Grouping                                | Analyte                        | Result | Guideline Limit | Unit  |
| )ntario Reg | gulation 153/04 - April 1 | 5, 2011 Standards - T1-Soil-Res/Park/Ir | nst/Ind/Com/Commu Property Use |        |                 |       |
| 2092836-5   | BHE5-SS3                  | Physical Tests                          | Conductivity                   | 0.853  | 0.57            | mS/cm |
|             |                           | Saturated Paste Extractables            | SAR                            | 8.62   | 2.4             | SAR   |
|             |                           | Speciated Metals                        | Chromium, Hexavalent           | 0.78   | 0.66            | ug/g  |
| 2092836-6   | BHE4-SS4                  | Physical Tests                          | Conductivity                   | 0.709  | 0.57            | mS/cm |
|             |                           | Saturated Paste Extractables            | SAR                            | 5.41   | 2.4             | SAR   |
| .2092836-7  | BHE15-SS2                 | Physical Tests                          | Conductivity                   | 0.598  | 0.57            | mS/cm |
|             |                           | Saturated Paste Extractables            | SAR                            | 2.46   | 2.4             | SAR   |
|             |                           | Speciated Metals                        | Chromium, Hexavalent           | 0.94   | 0.66            | ug/g  |
| 2092836-8   | BHE15-SS5                 | Volatile Organic Compounds              | n-Hexane                       | 1.06   | 0.05            | ug/g  |
|             |                           |                                         | Xylenes (Total)                | 0.676  | 0.05            | ug/g  |
|             |                           | Hydrocarbons                            | F1 (C6-C10)                    | 35.0   | 25              | ug/g  |
|             |                           |                                         | F1-BTEX                        | 34.3   | 25              | ug/g  |
|             |                           |                                         | F2 (C10-C16)                   | 321    | 10              | ug/g  |
| .2092836-12 |                           | Volatile Organic Compounds              | Xylenes (Total)                | 0.102  | 0.05            | ug/g  |
| .2092836-13 | BHE11-SS2                 | Hydrocarbons                            | F2 (C10-C16)                   | 26     | 10              | ug/g  |
|             |                           |                                         | F3 (C16-C34)                   | 648    | 240             | ug/g  |
|             |                           |                                         | F4 (C34-C50)                   | 528    | 120             | ug/g  |
|             |                           |                                         | F4G-SG (GHH-Silica)            | 1670   | 120             | ug/g  |
|             | BHE10-SS5                 | Hydrocarbons                            | F2 (C10-C16)                   | 69     | 10              | ug/g  |
| 2092836-19  | BHE9-SS4                  | Hydrocarbons                            | F2 (C10-C16)                   | 108    | 10              | ug/g  |
| ntario Reg  | gulation 153/04 - April 1 | 5, 2011 Standards - T2-Soil-Res/Park/Ir | nst. Property Use (Coarse)     |        |                 |       |
| 2092836-5   | BHE5-SS3                  | Physical Tests                          | Conductivity                   | 0.853  | 0.7             | mS/cm |
|             |                           | Saturated Paste Extractables            | SAR                            | 8.62   | 5               | SAR   |
| .2092836-6  | BHE4-SS4                  | Physical Tests                          | Conductivity                   | 0.709  | 0.7             | mS/cm |
|             |                           | Saturated Paste Extractables            | SAR                            | 5.41   | 5               | SAR   |
| .2092836-8  | BHE15-SS5                 | Hydrocarbons                            | F2 (C10-C16)                   | 321    | 98              | ug/g  |
| .2092836-13 | BHE11-SS2                 | Hydrocarbons                            | F3 (C16-C34)                   | 648    | 300             | ug/g  |
| 2092836-19  | BHE9-SS4                  | Hydrocarbons                            | F2 (C10-C16)                   | 108    | 98              | ug/g  |

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2092836 CONT'D....

Job Reference: SP18-306-20

PAGE 3 of 19

17-MAY-18 15:19 (MT)

**Physical Tests - SOIL** 

| · · · <b>,</b> · · · · · · · · · · · · · · · · · · · |          |             |             |            |            |            |            |            |            |            |            |
|------------------------------------------------------|----------|-------------|-------------|------------|------------|------------|------------|------------|------------|------------|------------|
|                                                      |          | Lab II      | L2092836-1  | L2092836-2 | L2092836-3 | L2092836-4 | L2092836-5 | L2092836-6 | L2092836-7 | L2092836-8 | L2092836-9 |
|                                                      | ;        | Sample Dat  | e 08-MAY-18 | 08-MAY-18  | 08-MAY-18  | 08-MAY-18  | 08-MAY-18  | 08-MAY-18  | 08-MAY-18  | 08-MAY-18  | 08-MAY-18  |
|                                                      |          | Sample II   | BHE5-SS2    | BHE15-SS3  | BHE4-SS2   | BHE14-SS3  | BHE5-SS3   | BHE4-SS4   | BHE15-SS2  | BHE15-SS5  | DUP-S1     |
|                                                      |          |             |             |            |            |            |            |            |            |            |            |
|                                                      |          | Guide Limit | s           |            |            |            |            |            |            |            |            |
| Analyte                                              | Unit     | #1 #2       |             |            |            |            |            |            |            |            |            |
| Conductivity                                         | mS/cm    | 0.57 0.7    |             |            |            | 0.391      | 0.853      | 0.709      | 0.598      |            | 0.394      |
| % Moisture                                           | %        |             | 24.3        | 14.0       | 13.1       | 11.6       | 16.1       | 11.8       | 13.4       | 18.3       | 11.2       |
| рН                                                   | pH units |             |             |            |            | 7.65       | 7.20       | 7.67       | 7.45       |            | 7.66       |
|                                                      |          |             |             |            |            |            |            |            |            |            |            |

Guide Limit #1: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use Guide Limit #2: T2-Soil-Res/Park/Inst. Property Use (Coarse)

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2092836 CONT'D....

Job Reference: SP18-306-20

PAGE 4 of 19

17-MAY-18 15:19 (MT)

**Physical Tests - SOIL** 

| i ilyolodi reoto eele |          |                       |             |             |             |             |             |             |             |             |             |
|-----------------------|----------|-----------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                       |          | Lab ID                | L2092836-10 | L2092836-11 | L2092836-12 | L2092836-13 | L2092836-14 | L2092836-15 | L2092836-16 | L2092836-17 | L2092836-18 |
|                       | (        | Sample Date           | 08-MAY-18   | 08-MAY-18   | 07-MAY-18   | 07-MAY-18   | 07-MAY-18   | 07-MAY-18   | 07-MAY-18   | 07-MAY-18   | 08-MAY-18   |
|                       |          | Sample ID             | DUP-S2      | BHE14-SS1   | BHE6-SS4    | BHE11-SS2   | BHE1-SS4    | BHE8-SS5    | BHE2-SS4    | BHE10-SS5   | BHE4-SS2    |
| Analyte               | Unit     | Guide Limits<br>#1 #2 | 5           |             |             |             |             |             |             |             |             |
| Conductivity          | mS/cm    | 0.57 0.7              |             |             |             |             |             |             |             |             |             |
| % Moisture            | %        |                       | 15.5        | 13.1        | 20.6        | 12.3        | 19.7        | 24.6        | 9.07        | 21.3        | 15.8        |
| pH                    | pH units |                       |             |             |             |             |             |             |             |             |             |
|                       |          |                       |             |             |             |             |             |             |             |             |             |

Guide Limit #1: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use Guide Limit #2: T2-Soil-Res/Park/Inst. Property Use (Coarse)

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2092836 CONT'D....

Job Reference: SP18-306-20

PAGE 5 of 19

17-MAY-18 15:19 (MT)

**Physical Tests - SOIL** 

|              | •        | Sample      | Lab ID<br>e Date<br>ple ID | L2092836-19<br>07-MAY-18<br>BHE9-SS4 | L2092836-20<br>08-MAY-18<br>BH13-SS1 | L2092836-21<br>08-MAY-18<br>BHE12-SS2 | L2092836-22<br>08-MAY-18<br>BHE5-SS4 |
|--------------|----------|-------------|----------------------------|--------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|
| Analyte      | Unit     | Guide<br>#1 | Limits<br>#2               |                                      |                                      |                                       |                                      |
| Conductivity | mS/cm    | 0.57        | 0.7                        |                                      |                                      |                                       |                                      |
| % Moisture   | %        | -           | -                          | 23.2                                 | 14.2                                 | 14.1                                  | 14.9                                 |
| рН           | pH units | -           | -                          |                                      |                                      |                                       |                                      |

Guide Limit #1: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use Guide Limit #2: T2-Soil-Res/Park/Inst. Property Use (Coarse)

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2092836 CONT'D....

Job Reference: SP18-306-20

PAGE 6 of 19

17-MAY-18 15:19 (MT)

## Cyanides - SOIL

| - January |      | Sample |        | L2092836-4<br>08-MAY-18 | L2092836-5<br>08-MAY-18 | L2092836-6<br>08-MAY-18 | L2092836-7<br>08-MAY-18 | L2092836-9<br>08-MAY-18 |
|-----------|------|--------|--------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
|           |      | Sam    | ple ID | BHE14-SS3               | BHE5-SS3                | BHE4-SS4                | BHE15-SS2               | DUP-S1                  |
|           |      | Guide  | Limits |                         |                         |                         |                         |                         |
| Analyte   | Unit | #1     | #2     |                         |                         |                         |                         |                         |
|           |      |        |        |                         |                         |                         |                         |                         |

Guide Limit #1: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use Guide Limit #2: T2-Soil-Res/Park/Inst. Property Use (Coarse)

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2092836 CONT'D....

Job Reference: SP18-306-20

PAGE 7 of 19

17-MAY-18 15:19 (MT)

## **Saturated Paste Extractables - SOIL**

|                |      |       | Lab ID | L2092836-4 | L2092836-5 | L2092836-6 | L2092836-7 | L2092836-9 |
|----------------|------|-------|--------|------------|------------|------------|------------|------------|
|                |      | Sampl | e Date | 08-MAY-18  | 08-MAY-18  | 08-MAY-18  | 08-MAY-18  | 08-MAY-18  |
|                |      | Sam   | ple ID | BHE14-SS3  | BHE5-SS3   | BHE4-SS4   | BHE15-SS2  | DUP-S1     |
|                |      | Guide | Limits |            |            |            |            |            |
| Analyte        | Unit | #1    | #2     |            |            |            |            |            |
| SAR            | SAR  | 2.4   | 5      | 0.20       | 8.62       | 5.41       | 2.46       | 0.21       |
| Calcium (Ca)   | mg/L | -     | -      | 23.7       | 12.2       | 11.3       | 22.1       | 23.0       |
| Magnesium (Mg) | mg/L | -     | -      | 7.7        | 1.2        | 4.1        | 3.0        | 7.5        |
| Sodium (Na)    | mg/L | -     | -      | 4.3        | 118        | 83.5       | 46.5       | 4.6        |
|                |      |       |        |            |            |            |            |            |

Guide Limit #1: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use Guide Limit #2: T2-Soil-Res/Park/Inst. Property Use (Coarse)

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2092836 CONT'D....

Job Reference: SP18-306-20

PAGE 8 of 19

17-MAY-18 15:19 (MT)

### Metals - SOIL

|                           |      |             | Lab ID       | L2092836-4 | L2092836-5 | L2092836-6 | L2092836-7 | L2092836-9 |  |
|---------------------------|------|-------------|--------------|------------|------------|------------|------------|------------|--|
|                           |      | Sample      |              | 08-MAY-18  | 08-MAY-18  | 08-MAY-18  | 08-MAY-18  | 08-MAY-18  |  |
|                           |      | Sample ID   |              | BHE14-SS3  | BHE5-SS3   | BHE4-SS4   | BHE15-SS2  | DUP-S1     |  |
| Analyte                   | Unit | Guide<br>#1 | Limits<br>#2 |            |            |            |            |            |  |
| Antimony (Sb)             | ug/g | 1.3         | 7.5          | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       |  |
| Arsenic (As)              | ug/g | 18          | 18           | 6.2        | 4.4        | 7.0        | 4.6        | 5.8        |  |
| Barium (Ba)               | ug/g | 220         | 390          | 88.6       | 74.9       | 99.0       | 87.0       | 76.9       |  |
| Beryllium (Be)            | ug/g | 2.5         | 4            | 0.74       | 0.57       | 0.86       | 0.73       | 0.72       |  |
| Boron (B)                 | ug/g | 36          | 120          | 11.7       | 7.9        | 12.3       | 11.9       | 11.1       |  |
| Boron (B), Hot Water Ext. | ug/g | 36          | 1.5          | <0.10      | 0.32       | 0.30       | 0.21       | <0.10      |  |
| Cadmium (Cd)              | ug/g | 1.2         | 1.2          | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      |  |
| Chromium (Cr)             | ug/g | 70          | 160          | 22.2       | 21.0       | 22.8       | 22.2       | 20.9       |  |
| Cobalt (Co)               | ug/g | 21          | 22           | 14.0       | 9.1        | 16.7       | 10.7       | 12.4       |  |
| Copper (Cu)               | ug/g | 92          | 140          | 34.4       | 21.1       | 45.8       | 25.3       | 32.6       |  |
| Lead (Pb)                 | ug/g | 120         | 120          | 9.0        | 9.2        | 9.0        | 8.8        | 7.9        |  |
| Mercury (Hg)              | ug/g | 0.27        | 0.27         | 0.0145     | 0.0269     | 0.0172     | 0.0165     | 0.0145     |  |
| Molybdenum (Mo)           | ug/g | 2           | 6.9          | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       |  |
| Nickel (Ni)               | ug/g | 82          | 100          | 28.4       | 19.0       | 31.7       | 24.0       | 25.4       |  |
| Selenium (Se)             | ug/g | 1.5         | 2.4          | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       |  |
| Silver (Ag)               | ug/g | 0.5         | 20           | <0.20      | <0.20      | <0.20      | <0.20      | <0.20      |  |
| Thallium (TI)             | ug/g | 1           | 1            | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      |  |
| Uranium (U)               | ug/g | 2.5         | 23           | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       |  |
| Vanadium (V)              | ug/g | 86          | 86           | 30.5       | 33.5       | 30.7       | 32.2       | 28.4       |  |
| Zinc (Zn)                 | ug/g | 290         | 340          | 64.1       | 48.0       | 65.8       | 58.1       | 60.2       |  |

Guide Limit #1: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use Guide Limit #2: T2-Soil-Res/Park/Inst. Property Use (Coarse)

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2092836 CONT'D....

Job Reference: SP18-306-20

PAGE 9 of 19

17-MAY-18 15:19 (MT)

## **Speciated Metals - SOIL**

|                      |      | I      | Lab ID | L2092836-4 | L2092836-5 | L2092836-6 | L2092836-7 | L2092836-9 |
|----------------------|------|--------|--------|------------|------------|------------|------------|------------|
|                      |      | Sample | e Date | 08-MAY-18  | 08-MAY-18  | 08-MAY-18  | 08-MAY-18  | 08-MAY-18  |
|                      |      | Sam    | ple ID | BHE14-SS3  | BHE5-SS3   | BHE4-SS4   | BHE15-SS2  | DUP-S1     |
|                      |      |        |        |            |            |            |            |            |
|                      |      | Guide  | Limits |            |            |            |            |            |
| Analyte              | Unit | #1     | #2     |            |            |            |            |            |
| Chromium, Hexavalent | ua/a | 0.66   | 8      | 0.22       | 0.78       | 0.25       | 0.94       | <0.20      |
|                      | ug/g | 0.00   | O      | 0.22       | 0.76       | 0.25       | 0.94       | <0.20      |

Guide Limit #1: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use Guide Limit #2: T2-Soil-Res/Park/Inst. Property Use (Coarse)

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2092836 CONT'D....

Job Reference: SP18-306-20

PAGE 10 of 19

17-MAY-18 15:19 (MT)

## **Volatile Organic Compounds - SOIL**

|                                   |      | Lab ID<br>Sample Date<br>Sample ID |              | L2092836-8<br>08-MAY-18<br>BHE15-SS5 | L2092836-12<br>07-MAY-18<br>BHE6-SS4 | L2092836-18<br>08-MAY-18<br>BHE4-SS2 | L2092836-22<br>08-MAY-18<br>BHE5-SS4 |
|-----------------------------------|------|------------------------------------|--------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Analyte                           | Unit | Guide<br>#1                        | Limits<br>#2 |                                      |                                      |                                      |                                      |
| Acetone                           | ug/g | 0.5                                | 16           | <0.50                                | <0.50                                | <0.50                                | <0.50                                |
| Benzene                           | ug/g | 0.02                               | 0.21         | < 0.014 DLQ                          | 0.0093                               | <0.0068                              | <0.0068                              |
| Bromodichloromethane              | ug/g | 0.05                               | 1.5          | <0.050                               | < 0.050                              | <0.050                               | <0.050                               |
| Bromoform                         | ug/g | 0.05                               | 0.27         | <0.050                               | < 0.050                              | <0.050                               | <0.050                               |
| Bromomethane                      | ug/g | 0.05                               | 0.05         | <0.050                               | < 0.050                              | <0.050                               | <0.050                               |
| Carbon tetrachloride              | ug/g | 0.05                               | 0.05         | <0.050                               | <0.050                               | < 0.050                              | <0.050                               |
| Chlorobenzene                     | ug/g | 0.05                               | 2.4          | <0.050                               | <0.050                               | < 0.050                              | <0.050                               |
| Dibromochloromethane              | ug/g | 0.05                               | 2.3          | <0.050                               | <0.050                               | < 0.050                              | <0.050                               |
| Chloroform                        | ug/g | 0.05                               | 0.05         | <0.050                               | <0.050                               | < 0.050                              | <0.050                               |
| 1,2-Dibromoethane                 | ug/g | 0.05                               | 0.05         | <0.050                               | <0.050                               | < 0.050                              | <0.050                               |
| 1,2-Dichlorobenzene               | ug/g | 0.05                               | 1.2          | <0.050                               | <0.050                               | < 0.050                              | <0.050                               |
| 1,3-Dichlorobenzene               | ug/g | 0.05                               | 4.8          | <0.050                               | <0.050                               | <0.050                               | <0.050                               |
| 1,4-Dichlorobenzene               | ug/g | 0.05                               | 0.083        | <0.050                               | <0.050                               | < 0.050                              | <0.050                               |
| Dichlorodifluoromethane           | ug/g | 0.05                               | 16           | <0.050                               | <0.050                               | <0.050                               | <0.050                               |
| 1,1-Dichloroethane                | ug/g | 0.05                               | 0.47         | <0.050                               | <0.050                               | < 0.050                              | <0.050                               |
| 1,2-Dichloroethane                | ug/g | 0.05                               | 0.05         | <0.050                               | <0.050                               | <0.050                               | <0.050                               |
| 1,1-Dichloroethylene              | ug/g | 0.05                               | 0.05         | <0.050                               | < 0.050                              | < 0.050                              | <0.050                               |
| cis-1,2-Dichloroethylene          | ug/g | 0.05                               | 1.9          | <0.050                               | <0.050                               | <0.050                               | <0.050                               |
| trans-1,2-Dichloroethylene        | ug/g | 0.05                               | 0.084        | <0.050                               | <0.050                               | < 0.050                              | <0.050                               |
| Methylene Chloride                | ug/g | 0.05                               | 0.1          | <0.050                               | <0.050                               | <0.050                               | <0.050                               |
| 1,2-Dichloropropane               | ug/g | 0.05                               | 0.05         | <0.050                               | <0.050                               | < 0.050                              | <0.050                               |
| cis-1,3-Dichloropropene           | ug/g | -                                  | -            | <0.030                               | <0.030                               | < 0.030                              | <0.030                               |
| trans-1,3-Dichloropropene         | ug/g | -                                  | -            | <0.030                               | <0.030                               | < 0.030                              | <0.030                               |
| 1,3-Dichloropropene (cis & trans) | ug/g | 0.05                               | 0.05         | <0.042                               | <0.042                               | <0.042                               | <0.042                               |
| Ethylbenzene                      | ug/g | 0.05                               | 1.1          | 0.040                                | <0.018                               | <0.018                               | <0.018                               |
| n-Hexane                          | ug/g | 0.05                               | 2.8          | 1.06                                 | <0.050                               | <0.050                               | <0.050                               |
| Methyl Ethyl Ketone               | ug/g | 0.5                                | 16           | <0.50                                | <0.50                                | <0.50                                | <0.50                                |
| Methyl Isobutyl Ketone            | ug/g | 0.5                                | 1.7          | <0.50                                | <0.50                                | <0.50                                | <0.50                                |
| MTBE                              | ug/g | 0.05                               | 0.75         | <0.050                               | <0.050                               | <0.050                               | <0.050                               |
| Styrene                           | ug/g | 0.05                               | 0.7          | < 0.050                              | < 0.050                              | < 0.050                              | <0.050                               |

Guide Limit #1: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use Guide Limit #2: T2-Soil-Res/Park/Inst. Property Use (Coarse)

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2092836 CONT'D....

Job Reference: SP18-306-20

PAGE 11 of 19

17-MAY-18 15:19 (MT)

**Volatile Organic Compounds - SOIL** 

|                                 |      | I           | _ab ID       | L2092836-8 | L2092836-12 | L2092836-18 | L2092836-22 |
|---------------------------------|------|-------------|--------------|------------|-------------|-------------|-------------|
|                                 |      | Sample      | e Date       | 08-MAY-18  | 07-MAY-18   | 08-MAY-18   | 08-MAY-18   |
|                                 |      | Sam         | ple ID       | BHE15-SS5  | BHE6-SS4    | BHE4-SS2    | BHE5-SS4    |
| Analyte                         | Unit | Guide<br>#1 | Limits<br>#2 |            |             |             |             |
| 1,1,1,2-Tetrachloroethane       | ug/g | 0.05        | 0.058        | <0.050     | <0.050      | <0.050      | <0.050      |
| 1,1,2,2-Tetrachloroethane       | ug/g | 0.05        | 0.05         | <0.050     | <0.050      | <0.050      | <0.050      |
| Tetrachloroethylene             | ug/g | 0.05        | 0.28         | <0.050     | <0.050      | < 0.050     | < 0.050     |
| Toluene                         | ug/g | 0.2         | 2.3          | <0.080     | <0.080      | <0.080      | <0.080      |
| 1,1,1-Trichloroethane           | ug/g | 0.05        | 0.38         | <0.050     | <0.050      | <0.050      | < 0.050     |
| 1,1,2-Trichloroethane           | ug/g | 0.05        | 0.05         | <0.050     | <0.050      | <0.050      | < 0.050     |
| Trichloroethylene               | ug/g | 0.05        | 0.061        | <0.010     | <0.010      | <0.010      | <0.010      |
| Trichlorofluoromethane          | ug/g | 0.25        | 4            | < 0.050    | <0.050      | <0.050      | < 0.050     |
| Vinyl chloride                  | ug/g | 0.02        | 0.02         | <0.020     | <0.020      | <0.020      | < 0.020     |
| o-Xylene                        | ug/g | -           | -            | <0.020     | <0.020      | <0.020      | <0.020      |
| m+p-Xylenes                     | ug/g | -           | -            | 0.676      | 0.102       | < 0.030     | <0.030      |
| Xylenes (Total)                 | ug/g | 0.05        | 3.1          | 0.676      | 0.102       | <0.050      | <0.050      |
| Surrogate: 4-Bromofluorobenzene | %    | -           | -            | 101.2      | 99.7        | 97.2        | 103.6       |
| Surrogate: 1,4-Difluorobenzene  | %    | -           | -            | 102.8      | 105.6       | 103.1       | 109.3       |

Guide Limit #1: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use Guide Limit #2: T2-Soil-Res/Park/Inst. Property Use (Coarse)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2092836 CONT'D.... Job Reference: SP18-306-20 PAGE 12 of 19 17-MAY-18 15:19 (MT)

**Hvdrocarbons - SOIL** 

| TIYOTOGAT DOTTO                    |      |        |        |            |             |             |             |             |             |             |             |             |
|------------------------------------|------|--------|--------|------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                                    |      | l      | Lab ID | L2092836-8 | L2092836-12 | L2092836-13 | L2092836-14 | L2092836-15 | L2092836-16 | L2092836-17 | L2092836-18 | L2092836-19 |
|                                    |      | Sample | e Date | 08-MAY-18  | 07-MAY-18   | 07-MAY-18   | 07-MAY-18   | 07-MAY-18   | 07-MAY-18   | 07-MAY-18   | 08-MAY-18   | 07-MAY-18   |
|                                    |      | Sam    | ple ID | BHE15-SS5  | BHE6-SS4    | BHE11-SS2   | BHE1-SS4    | BHE8-SS5    | BHE2-SS4    | BHE10-SS5   | BHE4-SS2    | BHE9-SS4    |
|                                    |      | Guide  | Limits |            |             |             |             |             |             |             |             |             |
| Analyte                            | Unit | #1     | #2     |            |             |             |             |             |             |             |             |             |
| F1 (C6-C10)                        | ug/g | 25     | 55     | 35.0       | <5.0        | 13.0        | <5.0        | <5.0        | <5.0        | <5.0        | <5.0        | <5.0        |
| F1-BTEX                            | ug/g | 25     | 55     | 34.3       | <5.0        |             |             |             |             |             | <5.0        |             |
| F2 (C10-C16)                       | ug/g | 10     | 98     | 321        | <10         | 26          | <10         | <10         | <10         | 69          | <10         | 108         |
| F3 (C16-C34)                       | ug/g | 240    | 300    | 74         | <50         | 648         | <50         | <50         | <50         | 55          | <50         | 75          |
| F4 (C34-C50)                       | ug/g | 120    | 2800   | <50        | <50         | 528         | <50         | <50         | <50         | <50         | 50          | <50         |
| F4G-SG (GHH-Silica)                | ug/g | 120    | 2800   |            |             | 1670        |             |             |             |             |             |             |
| Total Hydrocarbons (C6-C50)        | ug/g | -      | -      | 431        | <72         | 1220        | <72         | <72         | <72         | 124         | <72         | 183         |
| Chrom. to baseline at nC50         |      | -      | -      | YES        | YES         | NO          | YES         | YES         | YES         | YES         | YES         | YES         |
| Surrogate: 2-Bromobenzotrifluoride | %    | -      | -      | 103.2      | 90.0        | 80.4        | 95.3        | 92.4        | 88.5        | 90.0        | 88.7        | 90.1        |
| Surrogate: 3,4-Dichlorotoluene     | %    | -      | -      | 95.4       | 101.5       | 81.1        | 90.9        | 81.5        | 86.0        | 84.3        | 100.7       | 92.6        |

Guide Limit #1: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use Guide Limit #2: T2-Soil-Res/Park/Inst. Property Use (Coarse)

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2092836 CONT'D.... Job Reference: SP18-306-20 PAGE 13 of 19 17-MAY-18 15:19 (MT)

Hydrocarbons - SOII

|                                    |      |             | Lab ID       | L2092836-20 | L2092836-21 | L2092836-22 |
|------------------------------------|------|-------------|--------------|-------------|-------------|-------------|
|                                    |      | Sample      | e Date       | 08-MAY-18   | 08-MAY-18   | 08-MAY-18   |
|                                    |      | Sam         | ple ID       | BH13-SS1    | BHE12-SS2   | BHE5-SS4    |
| Analyte                            | Unit | Guide<br>#1 | Limits<br>#2 |             |             |             |
| F1 (C6-C10)                        | ug/g | 25          | 55           | <5.0        | <5.0        | <5.0        |
| F1-BTEX                            | ug/g | 25          | 55           |             |             | <5.0        |
| F2 (C10-C16)                       | ug/g | 10          | 98           | <10         | <10         | <10         |
| F3 (C16-C34)                       | ug/g | 240         | 300          | <50         | <50         | <50         |
| F4 (C34-C50)                       | ug/g | 120         | 2800         | <50         | <50         | <50         |
| F4G-SG (GHH-Silica)                | ug/g | 120         | 2800         |             |             |             |
| Total Hydrocarbons (C6-C50)        | ug/g | -           | -            | <72         | <72         | <72         |
| Chrom. to baseline at nC50         |      | -           | -            | YES         | YES         | YES         |
| Surrogate: 2-Bromobenzotrifluoride | %    | -           | -            | 88.2        | 89.1        | 92.0        |
| Surrogate: 3,4-Dichlorotoluene     | %    | -           | -            | 90.5        | 99.6        | 99.1        |

Guide Limit #1: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use Guide Limit #2: T2-Soil-Res/Park/Inst. Property Use (Coarse)

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



## **ANALYTICAL REPORT**

L2092836 CONT'D.... Job Reference: SP18-306-20 PAGE 14 of 19 17-MAY-18 15:19 (MT)

Polychlorinated Biphenyls - SOIL

|                          |      |             | Lab ID       | L2092836-1 | L2092836-2 | L2092836-3 | L2092836-10 |
|--------------------------|------|-------------|--------------|------------|------------|------------|-------------|
|                          |      | Sampl       | e Date       | 08-MAY-18  | 08-MAY-18  | 08-MAY-18  | 08-MAY-18   |
|                          |      | San         | nple ID      | BHE5-SS2   | BHE15-SS3  | BHE4-SS2   | DUP-S2      |
| Analyte                  | Unit | Guide<br>#1 | Limits<br>#2 |            |            |            |             |
| Aroclor 1242             | ug/g | -           | -            | <0.010     | <0.010     | <0.010     | <0.010      |
| Aroclor 1248             | ug/g | -           | -            | <0.010     | <0.010     | <0.010     | <0.010      |
| Aroclor 1254             | ug/g | -           | -            | <0.010     | <0.010     | <0.010     | <0.010      |
| Aroclor 1260             | ug/g | -           | -            | <0.010     | <0.010     | <0.010     | <0.010      |
| Total PCBs               | ug/g | 0.3         | 0.35         | <0.020     | <0.020     | <0.020     | <0.020      |
| Surrogate: d14-Terphenyl | %    | -           | -            | 106.8      | 101.4      | 103.8      | 108.9       |
|                          |      |             |              |            |            |            |             |

Guide Limit #1: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use

Guide Limit #2: T2-Soil-Res/Park/Inst. Property Use (Coarse)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



## **ANALYTICAL REPORT**

L2092836 CONT'D....
Job Reference: SP18-306-20
PAGE 15 of 19
17-MAY-18 15:19 (MT)

**Organochlorine Pesticides - SOIL** 

| Lab ID      | L2092836-11 |
|-------------|-------------|
| Sample Date | 08-MAY-18   |
| Sample ID   | BHE14-SS1   |

|                             |      | Guide |       |        |
|-----------------------------|------|-------|-------|--------|
| Analyte                     | Unit | #1    | #2    |        |
| Aldrin                      | ug/g | 0.05  | 0.05  | <0.020 |
| gamma-hexachlorocyclohexane | ug/g | 0.01  | 0.056 | <0.010 |
| a-chlordane                 | ug/g | -     | -     | <0.020 |
| Chlordane (Total)           | ug/g | 0.05  | 0.05  | <0.028 |
| g-chlordane                 | ug/g | -     | -     | <0.020 |
| op-DDD                      | ug/g | -     | -     | <0.020 |
| pp-DDD                      | ug/g | -     | -     | <0.020 |
| Total DDD                   | ug/g | 0.05  | 3.3   | <0.028 |
| o,p-DDE                     | ug/g | -     | -     | <0.020 |
| pp-DDE                      | ug/g | -     | -     | <0.020 |
| Total DDE                   | ug/g | 0.05  | 0.26  | <0.028 |
| op-DDT                      | ug/g | -     | -     | <0.020 |
| pp-DDT                      | ug/g | -     | -     | <0.020 |
| Total DDT                   | ug/g | 1.4   | 1.4   | <0.028 |
| Dieldrin                    | ug/g | 0.05  | 0.05  | <0.020 |
| Endosulfan I                | ug/g | -     | -     | <0.020 |
| Endosulfan II               | ug/g | -     | -     | <0.020 |
| Endosulfan (Total)          | ug/g | 0.04  | 0.04  | <0.028 |
| Endrin                      | ug/g | 0.04  | 0.04  | <0.020 |
| Heptachlor                  | ug/g | 0.05  | 0.15  | <0.020 |
| Heptachlor Epoxide          | ug/g | 0.05  | 0.05  | <0.020 |
| Hexachlorobenzene           | ug/g | 0.01  | 0.52  | <0.010 |
| Hexachlorobutadiene         | ug/g | 0.01  | 0.012 | <0.010 |
| Hexachloroethane            | ug/g | 0.01  | 0.089 | <0.010 |
| Methoxychlor                | ug/g | 0.05  | 0.13  | <0.020 |
| Surrogate: 2-Fluorobiphenyl | %    | -     | -     | 87.1   |
| Surrogate: d14-Terphenyl    | %    | -     | -     | 63.6   |

Guide Limit #1: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use Guide Limit #2: T2-Soil-Res/Park/Inst. Property Use (Coarse)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2092836 CONT'D.... Job Reference: SP18-306-20 PAGE 16 of 19 17-MAY-18 15:19 (MT)

**Qualifiers for Individual Parameters Listed:** 

Qualifier Description

DLQ Detection Limit raised due to co-eluting interference. GCMS qualifier ion ratio did not meet acceptance criteria.

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference\*\*

B-HWS-R511-WT Soil Boron-HWE-O.Reg 153/04 (July 2011) HW EXTR, EPA 6010B

A dried solid sample is extracted with calcium chloride, the sample undergoes a heating process. After cooling the sample is filtered and analyzed by ICP/OES.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

CHLORDANE-T-CALC-WT Soil Chlordane Total sums CALCULATION

Aqueous sample is extracted by liquid/liquid extraction with a solvent mix. After extraction, a number of clean up techniques may be applied, depending on the sample matrix and analyzed by GC/MS.

CN-WAD-R511-WT Soil Cyanide (WAD)-O.Reg 153/04 (July MOE 3015/APHA 4500CN I-WAD

2011)

The sample is extracted with a strong base for 16 hours, and then filtered. The filtrate is then distilled where the cyanide is converted to cyanogen chloride by reacting with chloramine-T, the cyanogen chloride then reacts with a combination of barbituric acid and isonicotinic acid to form a highly colored complex.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

**CR-CR6-IC-WT** Soil Hexavalent Chromium in Soil SW846 3060A/7199

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Method 7199, published by the United States Environmental Protection Agency (EPA). The procedure involves analysis for chromium (VI) by ion chromatography using diphenylcarbazide in a sulphuric acid solution.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

DDD-DDE-DDT-CALC-WT Soil DDD, DDE, DDT sums CALCULATION

Aqueous sample is extracted by liquid/liquid extraction with a solvent mix. After extraction, a number of clean up techniques may be applied, depending on the sample matrix and analyzed by GC/MS.

EC-WT Soil Conductivity (EC) MOEE E3138

A representative subsample is tumbled with de-ionized (DI) water. The ratio of water to soil is 2:1 v/w. After tumbling the sample is then analyzed by a conductivity meter.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

ENDOSULFAN-T-CALC- Soil Endosulfan Total sums CALCULATION WT

Aqueous sample is extracted by liquid/liquid extraction with a solvent mix. After extraction, a number of clean up techniques may be applied, depending on the sample matrix and analyzed by GC/MS.

F1-F4-F11-CALC-WT Soil F1-F4 Hydrocarbon Calculated CCME CWS-PHC, Pub #1310, Dec 2001-S

Parameters

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

Hydrocarbon results are expressed on a dry weight basis.

L2092836 CONT'D.... Job Reference: SP18-306-20 PAGE 17 of 19 17-MAY-18 15:19 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference\*\*

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.
- 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
- 4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

**F1-HS-511-WT** Soil F1-O.Reg 153/04 (July 2011) E3398/CCME TIER 1-HS

Fraction F1 is determined by extracting a soil or sediment sample as received with methanol, then analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

**F2-F4-511-WT** Soil F2-F4-O.Reg 153/04 (July 2011) CCME Tier 1

Petroleum Hydrocarbons (F2-F4 fractions) are extracted from soil with 1:1 hexane:acetone using a rotary extractor. Extracts are treated with silica gel to remove polar organic interferences. F2, F3, & F4 are analyzed by GC-FID. F4G-sq is analyzed gravimetrically.

### Notes:

- 1. F2 (C10-C16): Sum of all hydrocarbons that elute between nC10 and nC16.
- 2. F3 (C16-C34): Sum of all hydrocarbons that elute between nC16 and nC34.
- 3. F4 (C34-C50): Sum of all hydrocarbons that elute between nC34 and nC50.
- 4. F4G: Gravimetric Heavy Hydrocarbons
- 5. F4G-sq: Gravimetric Heavy Hydrocarbons (F4G) after silica gel treatment.
- 6. Where both F4 (C34-C50) and F4G-sq are reported for a sample, the larger of the two values is used for comparison against the relevant CCME guideline for F4.
- 7. F4G-sq cannot be added to the C6 to C50 hydrocarbon results to obtain an estimate of total extractable hydrocarbons.
- 8. This method is validated for use.
- 9. Data from analysis of validation and quality control samples is available upon request.
- 10. Reported results are expressed as milligrams per dry kilogram, unless otherwise indicated.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

**F4G-ADD-511-WT** Soil F4G SG-O.Reg 153/04 (July 2011) MOE DECPH-E3398/CCME TIER 1

F4G, gravimetric analysis, is determined if the chromatogram does not return to baseline at or before C50. A soil sample is extracted with a solvent mix, the solvent is evaporated and the weight of the residue is determined.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

HG-200.2-CVAA-WT Soil Mercury in Soil by CVAAS EPA 200.2/1631E (mod)

Soil samples are digested with nitric and hydrochloric acids, followed by analysis by CVAAS.

L2092836 CONT'D.... Job Reference: SP18-306-20 PAGE 18 of 19 17-MAY-18 15:19 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference\*\*

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

MET-200.2-CCMS-WT Soil Metals in Soil by CRC ICPMS EPA 200.2/6020A (mod)

This method uses a heated strong acid digestion with HNO3 and HCl and is intended to liberate metals that may be environmentally available. Silicate minerals are not solubilized. Dependent on sample matrix, some metals may be only partially recovered, including Al, Ba, Be, Cr, Sr, Ti, Tl, V, W, and Zr. Volatile forms of sulfur (including sulfide) may not be captured, as they may be lost during sampling, storage, or digestion. Analysis is by Collision/Reaction Cell ICPMS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

MOISTURE-WT Soil % Moisture Gravimetric: Oven Dried

**PCB-511-WT** Soil PCB-O.Reg 153/04 (July 2011) SW846 3510/8082

An aliquot of a solid sample is extracted with a solvent, extract is cleaned up and analyzed on the GC/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

**PEST-OC-511-WT** Soil OC Pesticides-O.Reg 153/04 (July SW846 8270 (511)

2011

Soil sample is extracted in a solvent, after extraction a number of clean up techniques may be applied, depending on the sample matrix and analyzed by GC/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

PH-WT Soil pH MOEE E3137A

A minimum 10g portion of the sample is extracted with 20mL of 0.01M calcium chloride solution by shaking for at least 30 minutes. The aqueous layer is separated from the soil and then analyzed using a pH meter and electrode.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

**SAR-R511-WT** Soil SAR-O.Reg 153/04 (July 2011) SW846 6010C

A dried, disaggregated solid sample is extracted with deionized water, the aqueous extract is separated from the solid, acidified and then analyzed using a ICP/OES. The concentrations of Na, Ca and Mg are reported as per CALA requirements for calculated parameters. These individual parameters are not for comparison to any guideline.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

VOC-1,3-DCP-CALC-WT Soil Regulation 153 VOCs SW8260B/SW8270C

VOC-511-HS-WT Soil VOC-O.Reg 153/04 (July 2011) SW846 8260 (511)

Soil and sediment samples are extracted in methanol and analyzed by headspace-GC/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

XYLENES-SUM-CALC-WT Soil Sum of Xylene Isomer Concentrations CALCULATION

Total xylenes represents the sum of o-xylene and m&p-xylene.

L2092836 CONT'D.... Job Reference: SP18-306-20 PAGE 19 of 19 17-MAY-18 15:19 (MT)

| Methods Listed (if applicab    | le):         |                                  |                                                                           |  |
|--------------------------------|--------------|----------------------------------|---------------------------------------------------------------------------|--|
| ALS Test Code                  | Matrix       | Test Description                 | Method Reference**                                                        |  |
| **ALS test methods may inco    | porate modi  | fications from specified refere  | ence methods to improve performance.                                      |  |
| Chain of Custody Numbers:      |              |                                  |                                                                           |  |
| The last two letters of the al | ove test cod | le(s) indicate the laboratory th | nat performed analytical analysis for that test. Refer to the list below: |  |
| Laboratory Definition Code     | Laborat      | tory Location                    |                                                                           |  |
| WT                             | ALS EN       | VIRONMENTAL - WATERLO            | OO, ONTARIO, CANADA                                                       |  |

### **GLOSSARY OF REPORT TERMS**

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information.



Report Date: 17-MAY-18 Workorder: L2092836 Page 1 of 16

Sirati & Partners Consultants Ltd. (Concord) Client:

750 Millway Ave Unit 8

Vaughan ON L4K3T7

| Test                                            | Matrix | Reference                  | Result               | Qualifier | Units | RPD | Limit  | Analyzed   |
|-------------------------------------------------|--------|----------------------------|----------------------|-----------|-------|-----|--------|------------|
| B-HWS-R511-WT  Batch R4046732                   | Soil   |                            |                      |           |       |     |        |            |
| WG2773094-4 DUP<br>Boron (B), Hot Water Ex      | ĸt.    | <b>L2093136-1</b> 0.15     | 0.14                 |           | ug/g  | 4.9 | 30     | 16-MAY-18  |
| WG2773094-2 IRM<br>Boron (B), Hot Water Ex      | ĸt.    | HOTB-SAL_S                 | <b>DIL5</b><br>106.1 |           | %     |     | 70-130 | 16-MAY-18  |
| WG2773094-3 LCS<br>Boron (B), Hot Water Ex      | ĸt.    |                            | 110.1                |           | %     |     | 70-130 | 16-MAY-18  |
| WG2773094-1 MB<br>Boron (B), Hot Water Ex       | ĸt.    |                            | <0.10                |           | ug/g  |     | 0.1    | 16-MAY-18  |
| CN-WAD-R511-WT                                  | Soil   |                            |                      |           |       |     |        |            |
| Batch R4046681                                  |        |                            |                      |           |       |     |        |            |
| WG2772278-9 DUP<br>Cyanide, Weak Acid Dis       | SS     | <b>L2092460-1</b> <0.050   | <0.050               | RPD-NA    | ug/g  | N/A | 35     | 16-MAY-18  |
| WG2772278-7 LCS<br>Cyanide, Weak Acid Dis       | ss     |                            | 93.8                 |           | %     |     | 80-120 | 16-MAY-18  |
| WG2772278-6 MB<br>Cyanide, Weak Acid Dis        | ss     |                            | <0.050               |           | ug/g  |     | 0.05   | 16-MAY-18  |
| WG2772278-10 MS<br>Cyanide, Weak Acid Dis       | SS     | L2092460-1                 | 98.2                 |           | %     |     | 70-130 | 16-MAY-18  |
| Batch R4046686                                  |        |                            |                      |           |       |     |        |            |
| WG2773101-3 DUP<br>Cyanide, Weak Acid Dis       | ss     | <b>L2093136-18</b> < 0.050 | <0.050               | RPD-NA    | ug/g  | N/A | 35     | 16-MAY-18  |
| WG2773101-2 LCS<br>Cyanide, Weak Acid Dis       | ss     |                            | 93.4                 |           | %     |     | 80-120 | 16-MAY-18  |
| <b>WG2773101-1 MB</b><br>Cyanide, Weak Acid Dis | ss     |                            | <0.050               |           | ug/g  |     | 0.05   | 16-MAY-18  |
| WG2773101-4 MS<br>Cyanide, Weak Acid Dis        |        | L2093136-18                | 102.1                |           | %     |     | 70.400 | 40.1417/40 |
| CR-CR6-IC-WT                                    | Soil   |                            | 103.1                |           | 70    |     | 70-130 | 16-MAY-18  |
| Batch R4045154                                  | -3     |                            |                      |           |       |     |        |            |
| WG2772455-3 CRM<br>Chromium, Hexavalent         |        | WT-SQC012                  | 85.4                 |           | %     |     | 70-130 | 16-MAY-18  |
| WG2772455-2 LCS<br>Chromium, Hexavalent         |        |                            | 99.3                 |           | %     |     | 80-120 | 16-MAY-18  |
| WG2772455-1 MB<br>Chromium, Hexavalent          |        |                            | <0.20                |           | ug/g  |     | 0.2    | 16-MAY-18  |
| EC-WT                                           | Soil   |                            |                      |           |       |     |        |            |



Workorder: L2092836 Report Date: 17-MAY-18 Page 2 of 16

Sirati & Partners Consultants Ltd. (Concord) Client:

750 Millway Ave Unit 8 Vaughan ON L4K3T7

Chaoran Li

Contact:

| Test                              |            | Matrix | Reference                 | Result  | Qualifier | Units | RPD | Limit  | Analyzed        |
|-----------------------------------|------------|--------|---------------------------|---------|-----------|-------|-----|--------|-----------------|
| EC-WT                             |            | Soil   |                           |         |           |       |     |        |                 |
| Batch R4                          | 045912     |        |                           |         |           |       |     |        |                 |
| WG2773118-4<br>Conductivity       | DUP        |        | <b>WG2773118-3</b> 0.0927 | 0.0945  |           | mS/cm | 1.9 | 20     | 16-MAY-18       |
| WG2773382-1<br>Conductivity       | LCS        |        |                           | 93.7    |           | %     |     | 90-110 | 16-MAY-18       |
| WG2773118-1<br>Conductivity       | MB         |        |                           | <0.0040 |           | mS/cm |     | 0.004  | 16-MAY-18       |
| F1-HS-511-WT                      |            | Soil   |                           |         |           |       |     |        |                 |
| Batch R4                          | 043835     |        |                           |         |           |       |     |        |                 |
| <b>WG2770451-4</b> F1 (C6-C10)    | DUP        |        | <b>WG2770451-3</b> <5.0   | <5.0    | RPD-NA    | ug/g  | N/A | 30     | 15-MAY-18       |
| <b>WG2770451-2</b> F1 (C6-C10)    | LCS        |        |                           | 85.5    |           | %     |     | 80-120 | 15-MAY-18       |
| WG2770451-1                       | МВ         |        |                           |         |           |       |     |        |                 |
| F1 (C6-C10)                       |            |        |                           | <5.0    |           | ug/g  |     | 5      | 15-MAY-18       |
| Surrogate: 3,4-                   | Dichlorote | oluene |                           | 100.1   |           | %     |     | 60-140 | 15-MAY-18       |
| <b>WG2770451-6</b> F1 (C6-C10)    | MS         |        | L2093153-2                | 91.5    |           | %     |     | 60-140 | 15-MAY-18       |
| Batch R4                          | 044751     |        |                           |         |           |       |     |        |                 |
| <b>WG2769972-4</b> F1 (C6-C10)    | DUP        |        | <b>WG2769972-3</b> <5.0   | <5.0    | RPD-NA    | ug/g  | N/A | 30     | 14-MAY-18       |
| <b>WG2769972-2</b> F1 (C6-C10)    | LCS        |        |                           | 95.9    |           | %     |     | 80-120 | 14-MAY-18       |
| <b>WG2769972-1</b><br>F1 (C6-C10) | МВ         |        |                           | <5.0    |           | ug/g  |     | 5      | 14-MAY-18       |
| Surrogate: 3,4-                   | Dichlorote | oluene |                           | 88.4    |           | %     |     | 60-140 | 14-MAY-18       |
| WG2769972-6                       | MS         | Sidono | L2092798-2                | 00.1    |           | 70    |     | 00 110 | 14-WA1-10       |
| F1 (C6-C10)                       |            |        |                           | 88.2    |           | %     |     | 60-140 | 14-MAY-18       |
| Batch R4                          | 045430     |        |                           |         |           |       |     |        |                 |
| <b>WG2770148-4</b> F1 (C6-C10)    | DUP        |        | <b>WG2770148-3</b> <5.0   | <5.0    | RPD-NA    | ug/g  | N/A | 30     | 16-MAY-18       |
| <b>WG2770148-2</b> F1 (C6-C10)    | LCS        |        |                           | 92.5    |           | %     |     | 80-120 | 16-MAY-18       |
| <b>WG2770148-1</b><br>F1 (C6-C10) | МВ         |        |                           | <5.0    |           | ug/g  |     | 5      | 16-MAY-18       |
| Surrogate: 3,4-                   | Dichlorote | oluene |                           | 97.9    |           | %     |     | 60-140 | 16-MAY-18       |
| <b>WG2770148-6</b> F1 (C6-C10)    | MS         |        | L2092849-1                | 96.0    |           | %     |     | 60-140 | 16-MAY-18       |
| 1 1 (30-010)                      |            |        |                           | 50.0    |           | 70    |     | 00-140 | 10-101/4 1 - 10 |



Workorder: L2092836 Report Date: 17-MAY-18 Page 3 of 16

Sirati & Partners Consultants Ltd. (Concord) Client:

750 Millway Ave Unit 8

Vaughan ON L4K3T7

| Test                               | Matrix             | Reference                  | Result       | Qualifier | Units | RPD | Limit  | Analyzed       |
|------------------------------------|--------------------|----------------------------|--------------|-----------|-------|-----|--------|----------------|
| F2-F4-511-WT                       | Soil               |                            |              |           |       |     |        |                |
| Batch R4                           | 1044230            |                            |              |           |       |     |        |                |
| WG2771496-3                        | DUP                | WG2771496-5                | 5            |           |       |     |        |                |
| F2 (C10-C16)                       |                    | <10                        | <10          | RPD-NA    | ug/g  | N/A | 30     | 16-MAY-18      |
| F3 (C16-C34)                       |                    | <50                        | <50          | RPD-NA    | ug/g  | N/A | 30     | 16-MAY-18      |
| F4 (C34-C50)                       |                    | <50                        | <50          | RPD-NA    | ug/g  | N/A | 30     | 16-MAY-18      |
| <b>WG2771496-2</b> F2 (C10-C16)    | LCS                |                            | 100.4        |           | %     |     | 80-120 | 15-MAY-18      |
| F3 (C16-C34)                       |                    |                            | 96.4         |           | %     |     | 80-120 | 15-MAY-18      |
| F4 (C34-C50)                       |                    |                            | 91.3         |           | %     |     | 80-120 | 15-MAY-18      |
| <b>WG2771496-1</b><br>F2 (C10-C16) | МВ                 |                            | <10          |           | ug/g  |     | 10     | 15-MAY-18      |
| F3 (C16-C34)                       |                    |                            | <50          |           | ug/g  |     | 50     | 15-MAY-18      |
| F4 (C34-C50)                       |                    |                            | <50          |           | ug/g  |     | 50     | 15-MAY-18      |
| ,                                  | omobenzotrifluorid | e                          | 89.1         |           | %     |     | 60-140 | 15-MAY-18      |
| WG2771496-4                        | MS                 | WG2771496-5                | 5            |           |       |     |        |                |
| F2 (C10-C16)                       |                    |                            | 100.7        |           | %     |     | 60-140 | 16-MAY-18      |
| F3 (C16-C34)                       |                    |                            | 100.1        |           | %     |     | 60-140 | 16-MAY-18      |
| F4 (C34-C50)                       |                    |                            | 94.1         |           | %     |     | 60-140 | 16-MAY-18      |
| Batch R4                           | 1045155            |                            |              |           |       |     |        |                |
| <b>WG2771493-3</b> F2 (C10-C16)    | DUP                | <b>WG2771493-</b> 5<br><10 | <b>5</b> <10 | RPD-NA    | ug/g  | N/A | 30     | 15-MAY-18      |
| F3 (C16-C34)                       |                    | <50                        | <50          | RPD-NA    | ug/g  | N/A | 30     | 15-MAY-18      |
| F4 (C34-C50)                       |                    | <50                        | <50          | RPD-NA    | ug/g  | N/A | 30     | 15-MAY-18      |
| <b>WG2771493-2</b> F2 (C10-C16)    | LCS                |                            | 100.9        |           | %     |     | 80-120 | 15-MAY-18      |
| F3 (C16-C34)                       |                    |                            | 95.7         |           | %     |     | 80-120 | 15-MAY-18      |
| F4 (C34-C50)                       |                    |                            | 85.4         |           | %     |     | 80-120 | 15-MAY-18      |
| WG2771493-1                        | MB                 |                            |              |           | , -   |     | 00120  | 10-181A 1 - 10 |
| F2 (C10-C16)                       | 1410               |                            | <10          |           | ug/g  |     | 10     | 15-MAY-18      |
| F3 (C16-C34)                       |                    |                            | <50          |           | ug/g  |     | 50     | 15-MAY-18      |
| F4 (C34-C50)                       |                    |                            | <50          |           | ug/g  |     | 50     | 15-MAY-18      |
| Surrogate: 2-Br                    | omobenzotrifluorid | e                          | 88.8         |           | %     |     | 60-140 | 15-MAY-18      |
| <b>WG2771493-4</b> F2 (C10-C16)    | MS                 | WG2771493-                 | 5<br>101.1   |           | %     |     | 60-140 | 15-MAY-18      |
| F3 (C16-C34)                       |                    |                            | 93.3         |           | %     |     | 60-140 | 15-MAY-18      |
| F4 (C34-C50)                       |                    |                            | 90.6         |           | %     |     | 60-140 | 15-MAY-18      |
| F4G-ADD-511-WT                     | Soil               |                            | 55.0         |           | 70    |     | 00-140 | 13-1VIA 1-10   |



Workorder: L2092836

Report Date: 17-MAY-18

Page 4 of 16

Client: Sirati & Partners Consultants Ltd. (Concord)

750 Millway Ave Unit 8

Vaughan ON L4K3T7

| Test                                         | Matrix | Reference   | Result               | Qualifier | Units | RPD | Limit      | Analyzed  |
|----------------------------------------------|--------|-------------|----------------------|-----------|-------|-----|------------|-----------|
| F4G-ADD-511-WT                               | Soil   |             |                      |           |       |     |            |           |
| Batch R4045787                               |        |             |                      |           |       |     |            |           |
| WG2773769-2 LCS<br>F4G-SG (GHH-Silica)       |        |             | 88.3                 |           | %     |     | 60-140     | 14-MAY-18 |
| <b>WG2773769-1 MB</b><br>F4G-SG (GHH-Silica) |        |             | <250                 |           | ug/g  |     | 250        | 14-MAY-18 |
| HG-200.2-CVAA-WT                             | Soil   |             |                      |           |       |     |            |           |
| Batch R4045435                               |        |             |                      |           |       |     |            |           |
| WG2773016-2 CRM<br>Mercury (Hg)              |        | WT-CANMET-  | <b>TILL1</b><br>98.3 |           | %     |     | 70-130     | 16-MAY-18 |
| WG2773016-6 DUP                              |        | WG2773016-5 |                      |           |       |     |            |           |
| Mercury (Hg)                                 |        | 0.0266      | 0.0265               |           | ug/g  | 0.6 | 40         | 16-MAY-18 |
| WG2773016-3 LCS<br>Mercury (Hg)              |        |             | 106.0                |           | %     |     | 80-120     | 16-MAY-18 |
| <b>WG2773016-1 MB</b><br>Mercury (Hg)        |        |             | <0.0050              |           | mg/kg |     | 0.005      | 16-MAY-18 |
| MET-200.2-CCMS-WT                            | Soil   |             |                      |           | 3 0   |     |            | 10 1011   |
| Batch R4046912                               |        |             |                      |           |       |     |            |           |
| WG2773016-2 CRM                              |        | WT-CANMET-  | TILL1                |           |       |     |            |           |
| Antimony (Sb)                                |        |             | 103.5                |           | %     |     | 70-130     | 16-MAY-18 |
| Arsenic (As)                                 |        |             | 97.4                 |           | %     |     | 70-130     | 16-MAY-18 |
| Barium (Ba)                                  |        |             | 102.5                |           | %     |     | 70-130     | 16-MAY-18 |
| Beryllium (Be)                               |        |             | 96.6                 |           | %     |     | 70-130     | 16-MAY-18 |
| Boron (B)                                    |        |             | 2.7                  |           | mg/kg |     | 0-8.2      | 16-MAY-18 |
| Cadmium (Cd)                                 |        |             | 101.6                |           | %     |     | 70-130     | 16-MAY-18 |
| Chromium (Cr)                                |        |             | 96.6                 |           | %     |     | 70-130     | 16-MAY-18 |
| Cobalt (Co)                                  |        |             | 97.2                 |           | %     |     | 70-130     | 16-MAY-18 |
| Copper (Cu)                                  |        |             | 98.4                 |           | %     |     | 70-130     | 16-MAY-18 |
| Lead (Pb)                                    |        |             | 93.8                 |           | %     |     | 70-130     | 16-MAY-18 |
| Molybdenum (Mo)                              |        |             | 96.5                 |           | %     |     | 70-130     | 16-MAY-18 |
| Nickel (Ni)                                  |        |             | 97.3                 |           | %     |     | 70-130     | 16-MAY-18 |
| Selenium (Se)                                |        |             | 0.30                 |           | mg/kg |     | 0.11-0.51  | 16-MAY-18 |
| Silver (Ag)                                  |        |             | 0.23                 |           | mg/kg |     | 0.13-0.33  | 16-MAY-18 |
| Thallium (TI)                                |        |             | 0.121                |           | mg/kg |     | 0.077-0.18 | 16-MAY-18 |
| Uranium (U)                                  |        |             | 96.0                 |           | %     |     | 70-130     | 16-MAY-18 |
| Vanadium (V)                                 |        |             | 96.7                 |           | %     |     | 70-130     | 16-MAY-18 |
| Zinc (Zn)                                    |        |             | 96.2                 |           | %     |     | 70-130     | 16-MAY-18 |
| WG2773016-6 DUP                              |        | WG2773016-5 |                      |           |       |     |            |           |



Report Date: 17-MAY-18 Workorder: L2092836 Page 5 of 16

Sirati & Partners Consultants Ltd. (Concord) Client:

750 Millway Ave Unit 8 Vaughan ON L4K3T7

Contact: Chaoran Li

| Test              | Matrix | Reference   | Result | Qualifier | Units     | RPD | Limit  | Analyzed  |
|-------------------|--------|-------------|--------|-----------|-----------|-----|--------|-----------|
| MET-200.2-CCMS-WT | Soil   |             |        |           |           |     |        |           |
| Batch R4046912    |        |             |        |           |           |     |        |           |
| WG2773016-6 DUP   |        | WG2773016-5 |        |           | ,         |     |        |           |
| Antimony (Sb)     |        | 0.27        | 0.32   |           | ug/g<br>, | 15  | 30     | 16-MAY-18 |
| Arsenic (As)      |        | 10.4        | 12.2   |           | ug/g      | 16  | 30     | 16-MAY-18 |
| Barium (Ba)       |        | 80.8        | 101    |           | ug/g      | 22  | 40     | 16-MAY-18 |
| Beryllium (Be)    |        | 0.78        | 0.90   |           | ug/g      | 14  | 30     | 16-MAY-18 |
| Boron (B)         |        | 9.6         | 11.4   |           | ug/g      | 18  | 30     | 16-MAY-18 |
| Cadmium (Cd)      |        | 0.261       | 0.314  |           | ug/g      | 18  | 30     | 16-MAY-18 |
| Chromium (Cr)     |        | 25.3        | 30.7   |           | ug/g      | 19  | 30     | 16-MAY-18 |
| Cobalt (Co)       |        | 11.4        | 13.3   |           | ug/g      | 16  | 30     | 16-MAY-18 |
| Copper (Cu)       |        | 17.9        | 21.1   |           | ug/g      | 17  | 30     | 16-MAY-18 |
| Lead (Pb)         |        | 10.0        | 11.4   |           | ug/g      | 13  | 40     | 16-MAY-18 |
| Molybdenum (Mo)   |        | 1.94        | 2.21   |           | ug/g      | 13  | 40     | 16-MAY-18 |
| Nickel (Ni)       |        | 31.5        | 37.4   |           | ug/g      | 17  | 30     | 16-MAY-18 |
| Selenium (Se)     |        | <0.20       | <0.20  | RPD-NA    | ug/g      | N/A | 30     | 16-MAY-18 |
| Silver (Ag)       |        | <0.10       | <0.10  | RPD-NA    | ug/g      | N/A | 40     | 16-MAY-18 |
| Thallium (TI)     |        | 0.280       | 0.332  |           | ug/g      | 17  | 30     | 16-MAY-18 |
| Uranium (U)       |        | 0.661       | 0.785  |           | ug/g      | 17  | 30     | 16-MAY-18 |
| Vanadium (V)      |        | 39.5        | 47.3   |           | ug/g      | 18  | 30     | 16-MAY-18 |
| Zinc (Zn)         |        | 65.6        | 78.5   |           | ug/g      | 18  | 30     | 16-MAY-18 |
| WG2773016-4 LCS   |        |             |        |           |           |     |        |           |
| Antimony (Sb)     |        |             | 101.8  |           | %         |     | 80-120 | 16-MAY-18 |
| Arsenic (As)      |        |             | 95.5   |           | %         |     | 80-120 | 16-MAY-18 |
| Barium (Ba)       |        |             | 98.5   |           | %         |     | 80-120 | 16-MAY-18 |
| Beryllium (Be)    |        |             | 93.5   |           | %         |     | 80-120 | 16-MAY-18 |
| Boron (B)         |        |             | 88.5   |           | %         |     | 80-120 | 16-MAY-18 |
| Cadmium (Cd)      |        |             | 102.9  |           | %         |     | 80-120 | 16-MAY-18 |
| Chromium (Cr)     |        |             | 97.3   |           | %         |     | 80-120 | 16-MAY-18 |
| Cobalt (Co)       |        |             | 96.2   |           | %         |     | 80-120 | 16-MAY-18 |
| Copper (Cu)       |        |             | 96.7   |           | %         |     | 80-120 | 16-MAY-18 |
| Lead (Pb)         |        |             | 90.0   |           | %         |     | 80-120 | 16-MAY-18 |
| Molybdenum (Mo)   |        |             | 94.0   |           | %         |     | 80-120 | 16-MAY-18 |
| Nickel (Ni)       |        |             | 96.2   |           | %         |     | 80-120 | 16-MAY-18 |
| Selenium (Se)     |        |             | 94.2   |           | %         |     | 80-120 | 16-MAY-18 |
| Silver (Ag)       |        |             | 91.8   |           | %         |     | 80-120 | 16-MAY-18 |



Report Date: 17-MAY-18 Workorder: L2092836 Page 6 of 16

Sirati & Partners Consultants Ltd. (Concord) Client:

750 Millway Ave Unit 8 Vaughan ON L4K3T7

| Test                              | Matrix | Reference                  | Result  | Qualifier | Units | RPD | Limit  | Analyzed  |
|-----------------------------------|--------|----------------------------|---------|-----------|-------|-----|--------|-----------|
| MET-200.2-CCMS-WT                 | Soil   |                            |         |           |       |     |        |           |
| Batch R4046912                    |        |                            |         |           |       |     |        |           |
| WG2773016-4 LCS<br>Thallium (TI)  |        |                            | 90.7    |           | %     |     | 80-120 | 16-MAY-18 |
| Uranium (U)                       |        |                            | 95.6    |           | %     |     | 80-120 | 16-MAY-18 |
| Vanadium (V)                      |        |                            | 99.1    |           | %     |     | 80-120 | 16-MAY-18 |
| Zinc (Zn)                         |        |                            | 90.3    |           | %     |     | 80-120 | 16-MAY-18 |
| WG2773016-1 MB<br>Antimony (Sb)   |        |                            | <0.10   |           | mg/kg |     | 0.1    | 16-MAY-18 |
| Arsenic (As)                      |        |                            | <0.10   |           | mg/kg |     | 0.1    | 16-MAY-18 |
| Barium (Ba)                       |        |                            | <0.50   |           | mg/kg |     | 0.5    | 16-MAY-18 |
| Beryllium (Be)                    |        |                            | <0.10   |           | mg/kg |     | 0.1    | 16-MAY-18 |
| Boron (B)                         |        |                            | <5.0    |           | mg/kg |     | 5      | 16-MAY-18 |
| Cadmium (Cd)                      |        |                            | <0.020  |           | mg/kg |     | 0.02   | 16-MAY-18 |
| Chromium (Cr)                     |        |                            | <0.50   |           | mg/kg |     | 0.5    | 16-MAY-18 |
| Cobalt (Co)                       |        |                            | <0.10   |           | mg/kg |     | 0.1    | 16-MAY-18 |
| Copper (Cu)                       |        |                            | <0.50   |           | mg/kg |     | 0.5    | 16-MAY-18 |
| Lead (Pb)                         |        |                            | <0.50   |           | mg/kg |     | 0.5    | 16-MAY-18 |
| Molybdenum (Mo)                   |        |                            | <0.10   |           | mg/kg |     | 0.1    | 16-MAY-18 |
| Nickel (Ni)                       |        |                            | <0.50   |           | mg/kg |     | 0.5    | 16-MAY-18 |
| Selenium (Se)                     |        |                            | <0.20   |           | mg/kg |     | 0.2    | 16-MAY-18 |
| Silver (Ag)                       |        |                            | <0.10   |           | mg/kg |     | 0.1    | 16-MAY-18 |
| Thallium (TI)                     |        |                            | < 0.050 |           | mg/kg |     | 0.05   | 16-MAY-18 |
| Uranium (U)                       |        |                            | <0.050  |           | mg/kg |     | 0.05   | 16-MAY-18 |
| Vanadium (V)                      |        |                            | <0.20   |           | mg/kg |     | 0.2    | 16-MAY-18 |
| Zinc (Zn)                         |        |                            | <2.0    |           | mg/kg |     | 2      | 16-MAY-18 |
| MOISTURE-WT                       | Soil   |                            |         |           |       |     |        |           |
| Batch R4044628                    | }      |                            |         |           |       |     |        |           |
| WG2772394-3 DUP                   |        | L2092836-1                 |         |           |       |     |        |           |
| % Moisture                        |        | 24.3                       | 23.5    |           | %     | 3.3 | 20     | 16-MAY-18 |
| <b>WG2772394-2 LCS</b> % Moisture |        |                            | 100.1   |           | %     |     | 90-110 | 16-MAY-18 |
| <b>WG2772394-1 MB</b> % Moisture  |        |                            | <0.10   |           | %     |     | 0.1    | 16-MAY-18 |
| Batch R4044631                    |        |                            |         |           |       |     |        |           |
| <b>WG2772526-3 DUP</b> % Moisture |        | <b>L2092836-21</b><br>14.1 | 14.6    |           | %     | 3.3 | 20     | 16-MAY-18 |
| WG2772526-2 LCS                   |        |                            |         |           |       |     |        |           |



Report Date: 17-MAY-18 Workorder: L2092836 Page 7 of 16

Sirati & Partners Consultants Ltd. (Concord) Client:

750 Millway Ave Unit 8

Vaughan ON L4K3T7

| Test                               | N         | Matrix | Reference                  | Result        | Qualifier        | Units        | RPD        | Limit    | Analyzed               |
|------------------------------------|-----------|--------|----------------------------|---------------|------------------|--------------|------------|----------|------------------------|
| MOISTURE-WT                        |           | Soil   |                            |               |                  |              |            |          |                        |
| Batch R4                           | 044631    |        |                            |               |                  |              |            |          |                        |
| WG2772526-2                        | LCS       |        |                            |               |                  |              |            |          |                        |
| % Moisture                         |           |        |                            | 100.9         |                  | %            |            | 90-110   | 16-MAY-18              |
| <b>WG2772526-1</b><br>% Moisture   | MB        |        |                            | <0.10         |                  | %            |            | 0.1      | 16-MAY-18              |
| PCB-511-WT                         | :         | Soil   |                            |               |                  |              |            |          |                        |
|                                    | 046589    |        |                            |               |                  |              |            |          |                        |
| <b>WG2771410-3</b><br>Aroclor 1242 | DUP       |        | <b>WG2771410-5</b> < 0.010 | <0.010        | RPD-NA           | ug/g         | NI/A       | 40       | 47 MAY 40              |
| Aroclor 1248                       |           |        | <0.010                     | <0.010        |                  | ug/g         | N/A        | 40       | 17-MAY-18              |
| Aroclor 1254                       |           |        | <0.010                     | <0.010        | RPD-NA<br>RPD-NA | ug/g<br>ug/g | N/A<br>N/A | 40<br>40 | 17-MAY-18<br>17-MAY-18 |
| Aroclor 1260                       |           |        | <0.010                     | <0.010        | RPD-NA           | ug/g         | N/A        | 40       | 17-MAY-18<br>17-MAY-18 |
| WG2771410-2                        | LCS       |        | <b>VO.010</b>              | <b>\0.010</b> | RED-NA           | ug/g         | IN/A       | 40       | 17-IVIA 1-10           |
| Aroclor 1242                       | LOG       |        |                            | 96.1          |                  | %            |            | 60-140   | 17-MAY-18              |
| Aroclor 1248                       |           |        |                            | 88.8          |                  | %            |            | 60-140   | 17-MAY-18              |
| Aroclor 1254                       |           |        |                            | 99.6          |                  | %            |            | 60-140   | 17-MAY-18              |
| Aroclor 1260                       |           |        |                            | 110.2         |                  | %            |            | 60-140   | 17-MAY-18              |
| <b>WG2771410-1</b><br>Aroclor 1242 | MB        |        |                            | <0.010        |                  | ug/g         |            | 0.01     | 17-MAY-18              |
| Aroclor 1248                       |           |        |                            | <0.010        |                  | ug/g         |            | 0.01     | 17-MAY-18              |
| Aroclor 1254                       |           |        |                            | <0.010        |                  | ug/g         |            | 0.01     | 17-MAY-18              |
| Aroclor 1260                       |           |        |                            | <0.010        |                  | ug/g         |            | 0.01     | 17-MAY-18              |
| Surrogate: d14-                    | Terphenyl |        |                            | 107.8         |                  | %            |            | 60-140   | 17-MAY-18              |
| WG2771410-4                        | MS        |        | WG2771410-5                |               |                  |              |            |          |                        |
| Aroclor 1242                       |           |        |                            | 89.1          |                  | %            |            | 60-140   | 17-MAY-18              |
| Aroclor 1254                       |           |        |                            | 94.5          |                  | %            |            | 60-140   | 17-MAY-18              |
| Aroclor 1260                       |           |        |                            | 103.4         |                  | %            |            | 60-140   | 17-MAY-18              |
| PEST-OC-511-WT                     | •         | Soil   |                            |               |                  |              |            |          |                        |
|                                    | 044768    |        |                            |               |                  |              |            |          |                        |
| <b>WG2770234-3</b><br>Aldrin       | DUP       |        | <b>WG2770234-5</b> <0.020  | <0.020        | RPD-NA           | ug/g         | N/A        | 40       | 15-MAY-18              |
| a-chlordane                        |           |        | <0.020                     | <0.020        | RPD-NA           | ug/g         | N/A        | 40       | 15-MAY-18              |
| g-chlordane                        |           |        | <0.020                     | <0.020        | RPD-NA           | ug/g         | N/A        | 40       | 15-MAY-18              |
| op-DDD                             |           |        | <0.020                     | <0.020        | RPD-NA           | ug/g         | N/A        | 40       | 15-MAY-18              |
| pp-DDD                             |           |        | <0.020                     | <0.020        | RPD-NA           | ug/g         | N/A        | 40       | 15-MAY-18              |
| o,p-DDE                            |           |        | <0.020                     | <0.020        | RPD-NA           | ug/g         | N/A        | 40       | 15-MAY-18              |
|                                    |           |        |                            |               |                  | -            |            |          | -                      |



Workorder: L2092836 Report Date: 17-MAY-18 Page 8 of 16

Client: Sirati & Partners Consultants Ltd. (Concord)

750 Millway Ave Unit 8 Vaughan ON L4K3T7

| Test Matri                 | ix Reference | Result | Qualifier | Units | RPD | Limit  | Analyzed  |
|----------------------------|--------------|--------|-----------|-------|-----|--------|-----------|
| PEST-OC-511-WT Soil        |              |        |           |       |     |        |           |
| Batch R4044768             |              |        |           |       |     |        |           |
| WG2770234-3 DUP            | WG2770234-   |        |           |       |     |        |           |
| pp-DDE                     | <0.020       | <0.020 | RPD-NA    | ug/g  | N/A | 40     | 15-MAY-18 |
| op-DDT                     | <0.020       | <0.020 | RPD-NA    | ug/g  | N/A | 40     | 15-MAY-18 |
| pp-DDT                     | <0.020       | <0.020 | RPD-NA    | ug/g  | N/A | 40     | 15-MAY-18 |
| Dieldrin                   | <0.020       | <0.020 | RPD-NA    | ug/g  | N/A | 40     | 15-MAY-18 |
| Endosulfan I               | <0.020       | <0.020 | RPD-NA    | ug/g  | N/A | 40     | 15-MAY-18 |
| Endosulfan II              | <0.020       | <0.020 | RPD-NA    | ug/g  | N/A | 40     | 15-MAY-18 |
| Endrin                     | <0.020       | <0.020 | RPD-NA    | ug/g  | N/A | 40     | 15-MAY-18 |
| gamma-hexachlorocyclohexan | e <0.010     | <0.010 | RPD-NA    | ug/g  | N/A | 40     | 15-MAY-18 |
| Heptachlor                 | <0.020       | <0.020 | RPD-NA    | ug/g  | N/A | 40     | 15-MAY-18 |
| Heptachlor Epoxide         | <0.020       | <0.020 | RPD-NA    | ug/g  | N/A | 40     | 15-MAY-18 |
| Hexachlorobenzene          | <0.010       | <0.010 | RPD-NA    | ug/g  | N/A | 40     | 15-MAY-18 |
| Hexachlorobutadiene        | <0.010       | <0.010 | RPD-NA    | ug/g  | N/A | 40     | 15-MAY-18 |
| Hexachloroethane           | <0.010       | <0.010 | RPD-NA    | ug/g  | N/A | 40     | 15-MAY-18 |
| Methoxychlor               | <0.020       | <0.020 | RPD-NA    | ug/g  | N/A | 40     | 15-MAY-18 |
| WG2770234-2 LCS            |              |        |           |       |     |        |           |
| Aldrin                     |              | 84.8   |           | %     |     | 50-140 | 15-MAY-18 |
| a-chlordane                |              | 81.2   |           | %     |     | 50-140 | 15-MAY-18 |
| g-chlordane                |              | 75.3   |           | %     |     | 50-140 | 15-MAY-18 |
| op-DDD                     |              | 83.2   |           | %     |     | 50-140 | 15-MAY-18 |
| pp-DDD                     |              | 80.4   |           | %     |     | 50-140 | 15-MAY-18 |
| o,p-DDE                    |              | 87.7   |           | %     |     | 50-140 | 15-MAY-18 |
| pp-DDE                     |              | 88.2   |           | %     |     | 50-140 | 15-MAY-18 |
| op-DDT                     |              | 102.0  |           | %     |     | 50-140 | 15-MAY-18 |
| pp-DDT                     |              | 90.8   |           | %     |     | 50-140 | 15-MAY-18 |
| Dieldrin                   |              | 85.6   |           | %     |     | 50-140 | 15-MAY-18 |
| Endosulfan I               |              | 86.8   |           | %     |     | 50-140 | 15-MAY-18 |
| Endosulfan II              |              | 80.8   |           | %     |     | 50-140 | 15-MAY-18 |
| Endrin                     |              | 79.9   |           | %     |     | 50-140 | 15-MAY-18 |
| gamma-hexachlorocyclohexan | е            | 84.3   |           | %     |     | 50-140 | 15-MAY-18 |
| Heptachlor                 |              | 80.3   |           | %     |     | 50-140 | 15-MAY-18 |
| Heptachlor Epoxide         |              | 84.1   |           | %     |     | 50-140 | 15-MAY-18 |
| Hexachlorobenzene          |              | 95.9   |           | %     |     | 50-140 | 15-MAY-18 |
| Hexachlorobutadiene        |              | 97.8   |           | %     |     | 50-140 | 15-MAY-18 |



Report Date: 17-MAY-18 Workorder: L2092836 Page 9 of 16

Sirati & Partners Consultants Ltd. (Concord) Client:

750 Millway Ave Unit 8 Vaughan ON L4K3T7

| Test M                            | latrix | Reference  | Result | Qualifier | Units | RPD | Limit  | Analyzed  |
|-----------------------------------|--------|------------|--------|-----------|-------|-----|--------|-----------|
| PEST-OC-511-WT S                  | Soil   |            |        |           |       |     |        |           |
| Batch R4044768<br>WG2770234-2 LCS |        |            |        |           |       |     |        |           |
| Hexachloroethane                  |        |            | 100.7  |           | %     |     | 50-140 | 15-MAY-18 |
| Methoxychlor                      |        |            | 97.0   |           | %     |     | 50-140 | 15-MAY-18 |
| WG2770234-1 MB                    |        |            |        |           |       |     |        |           |
| Aldrin                            |        |            | <0.020 |           | ug/g  |     | 0.02   | 15-MAY-18 |
| a-chlordane                       |        |            | <0.020 |           | ug/g  |     | 0.02   | 15-MAY-18 |
| g-chlordane                       |        |            | <0.020 |           | ug/g  |     | 0.02   | 15-MAY-18 |
| op-DDD                            |        |            | <0.020 |           | ug/g  |     | 0.02   | 15-MAY-18 |
| pp-DDD                            |        |            | <0.020 |           | ug/g  |     | 0.02   | 15-MAY-18 |
| o,p-DDE                           |        |            | <0.020 |           | ug/g  |     | 0.02   | 15-MAY-18 |
| pp-DDE                            |        |            | <0.020 |           | ug/g  |     | 0.02   | 15-MAY-18 |
| op-DDT                            |        |            | <0.020 |           | ug/g  |     | 0.02   | 15-MAY-18 |
| pp-DDT                            |        |            | <0.020 |           | ug/g  |     | 0.02   | 15-MAY-18 |
| Dieldrin                          |        |            | <0.020 |           | ug/g  |     | 0.02   | 15-MAY-18 |
| Endosulfan I                      |        |            | <0.020 |           | ug/g  |     | 0.02   | 15-MAY-18 |
| Endosulfan II                     |        |            | <0.020 |           | ug/g  |     | 0.02   | 15-MAY-18 |
| Endrin                            |        |            | <0.020 |           | ug/g  |     | 0.02   | 15-MAY-18 |
| gamma-hexachlorocyclohe           | xane   |            | <0.010 |           | ug/g  |     | 0.01   | 15-MAY-18 |
| Heptachlor                        |        |            | <0.020 |           | ug/g  |     | 0.02   | 15-MAY-18 |
| Heptachlor Epoxide                |        |            | <0.020 |           | ug/g  |     | 0.02   | 15-MAY-18 |
| Hexachlorobenzene                 |        |            | <0.010 |           | ug/g  |     | 0.01   | 15-MAY-18 |
| Hexachlorobutadiene               |        |            | <0.010 |           | ug/g  |     | 0.01   | 15-MAY-18 |
| Hexachloroethane                  |        |            | <0.010 |           | ug/g  |     | 0.01   | 15-MAY-18 |
| Methoxychlor                      |        |            | <0.020 |           | ug/g  |     | 0.02   | 15-MAY-18 |
| Surrogate: 2-Fluorobipheny        | ⁄I     |            | 93.8   |           | %     |     | 50-140 | 15-MAY-18 |
| Surrogate: d14-Terphenyl          |        |            | 89.3   |           | %     |     | 50-140 | 15-MAY-18 |
| WG2770234-4 MS                    |        | WG2770234- | 5      |           |       |     |        |           |
| Aldrin                            |        |            | 85.5   |           | %     |     | 50-140 | 15-MAY-18 |
| a-chlordane                       |        |            | 71.3   |           | %     |     | 50-140 | 15-MAY-18 |
| g-chlordane                       |        |            | 75.6   |           | %     |     | 50-140 | 15-MAY-18 |
| op-DDD                            |        |            | 68.9   |           | %     |     | 50-140 | 15-MAY-18 |
| pp-DDD                            |        |            | 68.2   |           | %     |     | 50-140 | 15-MAY-18 |
| o,p-DDE                           |        |            | 86.3   |           | %     |     | 50-140 | 15-MAY-18 |
| pp-DDE                            |        |            | 81.9   |           | %     |     | 50-140 | 15-MAY-18 |
| op-DDT                            |        |            | 74.4   |           | %     |     | 50-140 | 15-MAY-18 |
|                                   |        |            |        |           |       |     |        |           |



Qualifier

Workorder: L2092836

Result

Reference

Report Date: 17-MAY-18

RPD

Limit

Units

Page 10 of 16

Analyzed

Sirati & Partners Consultants Ltd. (Concord) Client:

Matrix

750 Millway Ave Unit 8

Vaughan ON L4K3T7

Contact: Chaoran Li

Test

| PEST-OC-511-WT                      | Soil     |                         |              |   |          |      |                  |                        |
|-------------------------------------|----------|-------------------------|--------------|---|----------|------|------------------|------------------------|
| Batch R4044768                      |          |                         |              |   |          |      |                  |                        |
| <b>WG2770234-4 MS</b><br>pp-DDT     |          | WG2770234-5             | 73.3         |   | %        |      | 50-140           | 15-MAY-18              |
| Dieldrin                            |          |                         | 73.3<br>79.2 |   | %        |      | 50-140           | 15-MAY-18<br>15-MAY-18 |
| Endosulfan I                        |          |                         | 83.9         |   | %        |      | 50-140           | 15-MAY-18              |
| Endosulfan II                       |          |                         | 71.8         |   | %        |      | 50-140           | 15-MAY-18              |
| Endrin                              |          |                         | 78.6         |   | %        |      | 50-140           | 15-MAY-18              |
| gamma-hexachlorocyclo               | hevane   |                         | 78.3         |   | %        |      | 50-140           | 15-MAY-18              |
| Heptachlor                          | nickanic |                         | 71.6         |   | %        |      |                  |                        |
| Heptachlor Epoxide                  |          |                         | 82.9         |   | %        |      | 50-140<br>50-140 | 15-MAY-18<br>15-MAY-18 |
| Hexachlorobenzene                   |          |                         | 94.3         |   | %        |      |                  |                        |
| Hexachlorobutadiene                 |          |                         | 99.3         |   | %        |      | 50-140<br>50-140 | 15-MAY-18<br>15-MAY-18 |
| Hexachloroethane                    |          |                         | 97.8         |   | %        |      |                  |                        |
| Methoxychlor                        |          |                         | 97.6<br>86.8 |   | %        |      | 50-140           | 15-MAY-18              |
| Methoxychiol                        |          |                         | 00.0         |   | 70       |      | 50-140           | 15-MAY-18              |
| PH-WT                               | Soil     |                         |              |   |          |      |                  |                        |
| Batch R4046203                      |          |                         |              |   |          |      |                  |                        |
| <b>WG2771779-1 DUP</b><br>pH        |          | <b>L2092819-10</b> 7.39 | 7.45         | J | pH units | 0.06 | 0.3              | 16-MAY-18              |
| <b>WG2773378-1 LCS</b><br>pH        |          |                         | 6.91         |   | pH units |      | 6.9-7.1          | 16-MAY-18              |
| SAR-R511-WT                         | Soil     |                         |              |   |          |      |                  |                        |
| Batch R4046747                      |          |                         |              |   |          |      |                  |                        |
| <b>WG2773118-4 DUP</b> Calcium (Ca) |          | <b>WG2773118-3</b> 3.9  | 3.8          |   | mg/L     | 4.0  | 20               | 40 MAN/ 40             |
|                                     |          | 2.0                     |              |   | _        | 4.3  | 30               | 16-MAY-18              |
| Sodium (Na)                         |          | -                       | 2.0          |   | mg/L     | 2.8  | 30               | 16-MAY-18              |
| Magnesium (Mg)                      |          | 1.5                     | 1.4          |   | mg/L     | 3.0  | 30               | 16-MAY-18              |
| WG2773118-2 IRM<br>Calcium (Ca)     |          | WT SAR2                 | 78.1         |   | %        |      | 70-130           | 16-MAY-18              |
| Sodium (Na)                         |          |                         | 85.8         |   | %        |      | 70-130           | 16-MAY-18              |
| Magnesium (Mg)                      |          |                         | 74.9         |   | %        |      | 70-130           | 16-MAY-18              |
| WG2773118-1 MB                      |          |                         |              |   |          |      |                  |                        |
| Calcium (Ca)                        |          |                         | <1.0         |   | mg/L     |      | 1                | 16-MAY-18              |
| Sodium (Na)                         |          |                         | <1.0         |   | mg/L     |      | 1                | 16-MAY-18              |
| Magnesium (Mg)                      |          |                         | <1.0         |   | mg/L     |      | 1                | 16-MAY-18              |
| VOC-511-HS-WT                       | Soil     |                         |              |   |          |      |                  |                        |



Qualifier

Workorder: L2092836 Report Date: 17-MAY-18 Page 11 of 16

RPD

Limit

Analyzed

Units

Client: Sirati & Partners Consultants Ltd. (Concord)

Matrix

Reference

Result

750 Millway Ave Unit 8 Vaughan ON L4K3T7

Contact: Chaoran Li

Test

|                        | matrix | 11010101100 | rtoount | - Cuaiiiioi | OC   |     |    | , analyzou |
|------------------------|--------|-------------|---------|-------------|------|-----|----|------------|
| VOC-511-HS-WT          | Soil   |             |         |             |      |     |    |            |
| Batch R40454           | 30     |             |         |             |      |     |    |            |
| WG2770148-4 DUI        |        | WG2770148-3 |         |             |      |     |    |            |
| 1,1,1,2-Tetrachloroet  |        | <0.050      | <0.050  | RPD-NA      | ug/g | N/A | 40 | 16-MAY-18  |
| 1,1,2,2-Tetrachloroet  |        | <0.050      | <0.050  | RPD-NA      | ug/g | N/A | 40 | 16-MAY-18  |
| 1,1,1-Trichloroethane  |        | <0.050      | <0.050  | RPD-NA      | ug/g | N/A | 40 | 16-MAY-18  |
| 1,1,2-Trichloroethane  | 9      | <0.050      | <0.050  | RPD-NA      | ug/g | N/A | 40 | 16-MAY-18  |
| 1,1-Dichloroethane     |        | <0.050      | <0.050  | RPD-NA      | ug/g | N/A | 40 | 16-MAY-18  |
| 1,1-Dichloroethylene   |        | <0.050      | <0.050  | RPD-NA      | ug/g | N/A | 40 | 16-MAY-18  |
| 1,2-Dibromoethane      |        | <0.050      | <0.050  | RPD-NA      | ug/g | N/A | 40 | 16-MAY-18  |
| 1,2-Dichlorobenzene    |        | <0.050      | <0.050  | RPD-NA      | ug/g | N/A | 40 | 16-MAY-18  |
| 1,2-Dichloroethane     |        | <0.050      | <0.050  | RPD-NA      | ug/g | N/A | 40 | 16-MAY-18  |
| 1,2-Dichloropropane    |        | <0.050      | < 0.050 | RPD-NA      | ug/g | N/A | 40 | 16-MAY-18  |
| 1,3-Dichlorobenzene    |        | <0.050      | <0.050  | RPD-NA      | ug/g | N/A | 40 | 16-MAY-18  |
| 1,4-Dichlorobenzene    |        | < 0.050     | < 0.050 | RPD-NA      | ug/g | N/A | 40 | 16-MAY-18  |
| Acetone                |        | <0.50       | <0.50   | RPD-NA      | ug/g | N/A | 40 | 16-MAY-18  |
| Benzene                |        | <0.0068     | <0.0068 | RPD-NA      | ug/g | N/A | 40 | 16-MAY-18  |
| Bromodichlorometha     | ne     | < 0.050     | < 0.050 | RPD-NA      | ug/g | N/A | 40 | 16-MAY-18  |
| Bromoform              |        | < 0.050     | < 0.050 | RPD-NA      | ug/g | N/A | 40 | 16-MAY-18  |
| Bromomethane           |        | < 0.050     | < 0.050 | RPD-NA      | ug/g | N/A | 40 | 16-MAY-18  |
| Carbon tetrachloride   |        | < 0.050     | <0.050  | RPD-NA      | ug/g | N/A | 40 | 16-MAY-18  |
| Chlorobenzene          |        | <0.050      | <0.050  | RPD-NA      | ug/g | N/A | 40 | 16-MAY-18  |
| Chloroform             |        | <0.050      | <0.050  | RPD-NA      | ug/g | N/A | 40 | 16-MAY-18  |
| cis-1,2-Dichloroethyle | ene    | <0.050      | < 0.050 | RPD-NA      | ug/g | N/A | 40 | 16-MAY-18  |
| cis-1,3-Dichloroprope  | ene    | <0.030      | <0.030  | RPD-NA      | ug/g | N/A | 40 | 16-MAY-18  |
| Dibromochlorometha     | ne     | <0.050      | < 0.050 | RPD-NA      | ug/g | N/A | 40 | 16-MAY-18  |
| Dichlorodifluorometha  | ane    | <0.050      | < 0.050 | RPD-NA      | ug/g | N/A | 40 | 16-MAY-18  |
| Ethylbenzene           |        | <0.018      | <0.018  | RPD-NA      | ug/g | N/A | 40 | 16-MAY-18  |
| n-Hexane               |        | < 0.050     | <0.050  | RPD-NA      | ug/g | N/A | 40 | 16-MAY-18  |
| Methylene Chloride     |        | < 0.050     | <0.050  | RPD-NA      | ug/g | N/A | 40 | 16-MAY-18  |
| MTBE                   |        | < 0.050     | <0.050  | RPD-NA      | ug/g | N/A | 40 | 16-MAY-18  |
| m+p-Xylenes            |        | <0.030      | <0.030  | RPD-NA      | ug/g | N/A | 40 | 16-MAY-18  |
| Methyl Ethyl Ketone    |        | <0.50       | <0.50   | RPD-NA      | ug/g | N/A | 40 | 16-MAY-18  |
| Methyl Isobutyl Keton  | ne     | <0.50       | <0.50   | RPD-NA      | ug/g | N/A | 40 | 16-MAY-18  |
| o-Xylene               |        | <0.020      | <0.020  | RPD-NA      | ug/g | N/A | 40 | 16-MAY-18  |
| Styrene                |        | <0.050      | < 0.050 |             | ug/g |     | -  | 16-MAY-18  |
| •                      |        |             |         |             | 5 5  |     |    |            |



Workorder: L2092836 Report Date: 17-MAY-18 Page 12 of 16

Client: Sirati & Partners Consultants Ltd. (Concord)

750 Millway Ave Unit 8 Vaughan ON L4K3T7

| No.   Solid   Red   Red   Solid   Red   Red | Test                  | Matrix | Reference | Result  | Qualifier | Units | RPD | Limit  | Analyzed  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------|-----------|---------|-----------|-------|-----|--------|-----------|
| WG2770148-4 DUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VOC-511-HS-WT         | Soil   |           |         |           |       |     |        |           |
| Styrene         < 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Batch R40454          | 30     |           |         |           |       |     |        |           |
| Tetrachloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       | P      |           | -       |           |       |     |        |           |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                     |        |           |         |           |       |     |        |           |
| trans-1,2-Dichloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                     |        |           |         | RPD-NA    |       |     |        | 16-MAY-18 |
| trans-1,3-Dichloropropene         <0.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |        |           |         | RPD-NA    | ug/g  | N/A | 40     | 16-MAY-18 |
| Trichloroethylene         <0.010         <0.010         RPD-NA         ug/g         N/A         40         16-MAY-18           Trichlorofluoromethane         <0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                     | •      | <0.050    | <0.050  | RPD-NA    | ug/g  | N/A | 40     | 16-MAY-18 |
| Trichlorofluoromethane         <0.050         <0.050         RPD-NA         ug/g         N/A         40         16-MAY-18           Vinyl chloride         <0.020         <0.020         RPD-NA         ug/g         N/A         40         16-MAY-18           WG2770148-2 LCS           60-130         16-MAY-18           1,1,2-Tetrachloroethane         95.2         %         60-130         16-MAY-18           1,1,2-Trichloroethane         94.4         %         60-130         16-MAY-18           1,1,2-Trichloroethane         96.2         %         60-130         16-MAY-18           1,1-Dichloroethane         96.9         %         60-130         16-MAY-18           1,1-Dichloroethylene         85.7         %         60-130         16-MAY-18           1,2-Dichloroethylene         85.7         %         60-130         16-MAY-18           1,2-Dichloroethane         99.0         %         70-130         16-MAY-18           1,2-Dichloroethane         99.0         %         70-130         16-MAY-18           1,2-Dichloroethane         97.0         %         70-130         16-MAY-18           1,2-Dichloroethane         97.0         %         70-130         16-MAY-18 </td <td>trans-1,3-Dichloropro</td> <td>ppene</td> <td>&lt;0.030</td> <td>&lt;0.030</td> <td>RPD-NA</td> <td>ug/g</td> <td>N/A</td> <td>40</td> <td>16-MAY-18</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | trans-1,3-Dichloropro | ppene  | <0.030    | <0.030  | RPD-NA    | ug/g  | N/A | 40     | 16-MAY-18 |
| Vinyl chloride         <0.020         <0.020         RPD-NA         ug/g         N/A         40         16-MAY-18           WG2770148-2 LCS         1.1.1,2-Tetrachloroethane         95.2         %         60-130         16-MAY-18           1.1,2,2-Tetrachloroethane         94.4         %         60-130         16-MAY-18           1.1,1-Trichloroethane         97.4         %         60-130         16-MAY-18           1.1,1-Dichloroethane         96.2         %         60-130         16-MAY-18           1,1-Dichloroethane         96.9         %         60-130         16-MAY-18           1,1-Dichloroethylene         85.7         %         60-130         16-MAY-18           1,2-Dibrloroethane         99.0         %         70-130         16-MAY-18           1,2-Dichlorobenzene         94.3         %         60-130         16-MAY-18           1,2-Dichloroptopane         97.0         %         70-130         16-MAY-18           1,2-Dichloroptopane         97.0         %         70-130         16-MAY-18           1,3-Dichlorobenzene         97.0         %         70-130         16-MAY-18           Acetone         115.9         %         60-140         16-MAY-18 <t< td=""><td>Trichloroethylene</td><td></td><td>&lt;0.010</td><td>&lt;0.010</td><td>RPD-NA</td><td>ug/g</td><td>N/A</td><td>40</td><td>16-MAY-18</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Trichloroethylene     |        | <0.010    | <0.010  | RPD-NA    | ug/g  | N/A | 40     | 16-MAY-18 |
| WG2770148-2 LCS           1,1,1,2-Tetrachloroethane         95.2         %         60-130         16-MAY-18           1,1,2-Tetrachloroethane         94.4         %         60-130         16-MAY-18           1,1,1-Trichloroethane         97.4         %         60-130         16-MAY-18           1,1,2-Trichloroethane         96.2         %         60-130         16-MAY-18           1,1-Dichloroethane         96.9         %         60-130         16-MAY-18           1,1-Dichloroethylene         85.7         %         60-130         16-MAY-18           1,2-Dibromoethane         99.0         %         70-130         16-MAY-18           1,2-Dichlorobenzene         94.3         %         70-130         16-MAY-18           1,2-Dichloroethane         102.2         %         60-130         16-MAY-18           1,2-Dichloroptane         97.0         %         70-130         16-MAY-18           1,2-Dichloroptane         97.0         %         70-130         16-MAY-18           1,3-Dichlorobenzene         97.0         %         70-130         16-MAY-18           Acetone         115.9         %         60-140         16-MAY-18           Benzene         97.2         % </td <td>Trichlorofluorometha</td> <td>ine</td> <td>&lt;0.050</td> <td>&lt; 0.050</td> <td>RPD-NA</td> <td>ug/g</td> <td>N/A</td> <td>40</td> <td>16-MAY-18</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Trichlorofluorometha  | ine    | <0.050    | < 0.050 | RPD-NA    | ug/g  | N/A | 40     | 16-MAY-18 |
| 1,1,1,2-Tetrachloroethane       95.2       %       60-130       16-MAY-18         1,1,2,2-Tetrachloroethane       94.4       %       60-130       16-MAY-18         1,1,1-Trichloroethane       97.4       %       60-130       16-MAY-18         1,1,2-Trichloroethane       96.2       %       60-130       16-MAY-18         1,1-Dichloroethane       96.9       %       60-130       16-MAY-18         1,1-Dichloroethylene       85.7       %       60-130       16-MAY-18         1,2-Dibromoethane       99.0       %       70-130       16-MAY-18         1,2-Dichlorobenzene       94.3       %       70-130       16-MAY-18         1,2-Dichloroethane       102.2       %       60-130       16-MAY-18         1,2-Dichloropropane       97.0       %       70-130       16-MAY-18         1,2-Dichloropropane       97.0       %       70-130       16-MAY-18         1,3-Dichlorobenzene       90.7       %       70-130       16-MAY-18         1,4-Dichlorobenzene       92.9       %       70-130       16-MAY-18         Berzene       97.2       %       60-140       16-MAY-18         Bromodichloromethane       97.2       %       50-140 </td <td>Vinyl chloride</td> <td></td> <td>&lt;0.020</td> <td>&lt;0.020</td> <td>RPD-NA</td> <td>ug/g</td> <td>N/A</td> <td>40</td> <td>16-MAY-18</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Vinyl chloride        |        | <0.020    | <0.020  | RPD-NA    | ug/g  | N/A | 40     | 16-MAY-18 |
| 1.1,2,2-Tetrachloroethane       94.4       %       60-130       16-MAY-18         1.1,1-Trichloroethane       97.4       %       60-130       16-MAY-18         1.1,2-Trichloroethane       96.2       %       60-130       16-MAY-18         1,1-Dichloroethane       96.9       %       60-130       16-MAY-18         1,1-Dichloroethylene       85.7       %       60-130       16-MAY-18         1,2-Dibromoethane       99.0       %       70-130       16-MAY-18         1,2-Dichlorobenzene       94.3       %       70-130       16-MAY-18         1,2-Dichloroethane       102.2       %       60-130       16-MAY-18         1,2-Dichloropenzene       97.0       %       70-130       16-MAY-18         1,2-Dichloropenzene       97.0       %       70-130       16-MAY-18         1,3-Dichlorobenzene       97.0       %       70-130       16-MAY-18         1,4-Dichlorobenzene       92.9       %       70-130       16-MAY-18         Actone       115.9       %       60-140       16-MAY-18         Benzene       97.2       %       70-130       16-MAY-18         Bromodichloromethane       97.2       %       70-130       16-M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | -      |           | 05.2    |           | 0/.   |     | 00.400 | 40 MAY 40 |
| 1,1,1-Trichloroethane       97.4       %       60-130       16-MAY-18         1,1,2-Trichloroethane       96.2       %       60-130       16-MAY-18         1,1-Dichloroethane       96.9       %       60-130       16-MAY-18         1,1-Dichloroethylene       85.7       %       60-130       16-MAY-18         1,2-Dichloroethane       99.0       %       70-130       16-MAY-18         1,2-Dichloroethane       94.3       %       70-130       16-MAY-18         1,2-Dichloroethane       102.2       %       60-130       16-MAY-18         1,2-Dichloropropane       97.0       %       70-130       16-MAY-18         1,2-Dichlorobenzene       90.7       %       70-130       16-MAY-18         1,3-Dichlorobenzene       90.7       %       70-130       16-MAY-18         1,4-Dichlorobenzene       92.9       %       70-130       16-MAY-18         Acetone       115.9       %       60-140       16-MAY-18         Benzene       97.2       %       70-130       16-MAY-18         Bromodichloromethane       97.2       %       50-140       16-MAY-18         Bromomethane       100.1       %       50-140       16-MAY-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |        |           |         |           |       |     |        |           |
| 1,1,2-Trichloroethane       96.2       %       60-130       16-MAY-18         1,1-Dichloroethane       96.9       %       60-130       16-MAY-18         1,1-Dichloroethylene       85.7       %       60-130       16-MAY-18         1,2-Dibromoethane       99.0       %       70-130       16-MAY-18         1,2-Dichlorobenzene       94.3       %       70-130       16-MAY-18         1,2-Dichloroethane       102.2       %       60-130       16-MAY-18         1,2-Dichloropropane       97.0       %       70-130       16-MAY-18         1,3-Dichlorobenzene       90.7       %       70-130       16-MAY-18         1,4-Dichlorobenzene       92.9       %       70-130       16-MAY-18         1,4-Dichlorobenzene       92.9       %       70-130       16-MAY-18         Acetone       115.9       %       60-140       16-MAY-18         Benzene       97.2       %       70-130       16-MAY-18         Bromodichloromethane       97.2       %       70-130       16-MAY-18         Bromomethane       100.1       %       50-140       16-MAY-18         Carbon tetrachloride       96.9       %       70-130       16-MAY-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |        |           |         |           |       |     |        |           |
| 1,1-Dichloroethane       96.9       %       60-130       16-MAY-18         1,1-Dichloroethylene       85.7       %       60-130       16-MAY-18         1,2-Dibromoethane       99.0       %       70-130       16-MAY-18         1,2-Dichlorobenzene       94.3       %       70-130       16-MAY-18         1,2-Dichloroethane       102.2       %       60-130       16-MAY-18         1,2-Dichloropropane       97.0       %       70-130       16-MAY-18         1,3-Dichlorobenzene       90.7       %       70-130       16-MAY-18         1,4-Dichlorobenzene       92.9       %       70-130       16-MAY-18         Acetone       115.9       %       60-140       16-MAY-18         Benzene       97.2       %       70-130       16-MAY-18         Bromodichloromethane       97.2       %       70-130       16-MAY-18         Bromoform       94.3       %       70-130       16-MAY-18         Bromomethane       100.1       %       50-140       16-MAY-18         Carbon tetrachloride       96.9       %       70-130       16-MAY-18         Chloroform       99.2       %       70-130       16-MAY-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • •                   |        |           |         |           |       |     |        |           |
| 1,1-Dichloroethylene       85.7       %       60-130       16-MAY-18         1,2-Dibromoethane       99.0       %       70-130       16-MAY-18         1,2-Dichlorobenzene       94.3       %       70-130       16-MAY-18         1,2-Dichloroethane       102.2       %       60-130       16-MAY-18         1,2-Dichloropropane       97.0       %       70-130       16-MAY-18         1,3-Dichlorobenzene       90.7       %       70-130       16-MAY-18         1,4-Dichlorobenzene       92.9       %       70-130       16-MAY-18         Acetone       115.9       %       60-140       16-MAY-18         Benzene       97.2       %       70-130       16-MAY-18         Bromodichloromethane       97.2       %       50-140       16-MAY-18         Bromoform       94.3       %       70-130       16-MAY-18         Bromomethane       100.1       %       50-140       16-MAY-18         Carbon tetrachloride       96.9       %       70-130       16-MAY-18         Chlorobenzene       94.7       %       70-130       16-MAY-18         Chloroform       99.2       %       70-130       16-MAY-18 <t< td=""><td></td><td>Đ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       | Đ      |           |         |           |       |     |        |           |
| 1,2-Dibromoethane       99.0       %       70-130       16-MAY-18         1,2-Dichlorobenzene       94.3       %       70-130       16-MAY-18         1,2-Dichloroethane       102.2       %       60-130       16-MAY-18         1,2-Dichloropropane       97.0       %       70-130       16-MAY-18         1,3-Dichlorobenzene       90.7       %       70-130       16-MAY-18         1,4-Dichlorobenzene       92.9       %       70-130       16-MAY-18         Acetone       115.9       %       60-140       16-MAY-18         Benzene       97.2       %       70-130       16-MAY-18         Bromodichloromethane       97.2       %       50-140       16-MAY-18         Bromomethane       100.1       %       50-140       16-MAY-18         Carbon tetrachloride       96.9       %       70-130       16-MAY-18         Chlorobenzene       94.7       %       70-130       16-MAY-18         Chloroform       99.2       %       70-130       16-MAY-18         cis-1,2-Dichloroethylene       99.1       %       70-130       16-MAY-18         cis-1,3-Dichloropropene       97.6       %       70-130       16-MAY-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ·                     |        |           |         |           |       |     |        |           |
| 1,2-Dichlorobenzene       94.3       %       70-130       16-MAY-18         1,2-Dichloroethane       102.2       %       60-130       16-MAY-18         1,2-Dichloropropane       97.0       %       70-130       16-MAY-18         1,3-Dichlorobenzene       90.7       %       70-130       16-MAY-18         1,4-Dichlorobenzene       92.9       %       70-130       16-MAY-18         Acetone       115.9       %       60-140       16-MAY-18         Benzene       97.2       %       70-130       16-MAY-18         Bromodichloromethane       97.2       %       50-140       16-MAY-18         Bromoform       94.3       %       70-130       16-MAY-18         Carbon tetrachloride       96.9       %       70-130       16-MAY-18         Chlorobenzene       94.7       %       70-130       16-MAY-18         Chloroform       99.2       %       70-130       16-MAY-18         cis-1,2-Dichloroethylene       99.1       %       70-130       16-MAY-18         cis-1,3-Dichloropropene       97.6       %       70-130       16-MAY-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                     |        |           |         |           |       |     |        |           |
| 1,2-Dichloroethane       102.2       %       60-130       16-MAY-18         1,2-Dichloropropane       97.0       %       70-130       16-MAY-18         1,3-Dichlorobenzene       90.7       %       70-130       16-MAY-18         1,4-Dichlorobenzene       92.9       %       70-130       16-MAY-18         Acetone       115.9       %       60-140       16-MAY-18         Benzene       97.2       %       70-130       16-MAY-18         Bromodichloromethane       97.2       %       50-140       16-MAY-18         Bromoform       94.3       %       70-130       16-MAY-18         Bromomethane       100.1       %       50-140       16-MAY-18         Carbon tetrachloride       96.9       %       70-130       16-MAY-18         Chlorobenzene       94.7       %       70-130       16-MAY-18         Chloroform       99.2       %       70-130       16-MAY-18         cis-1,2-Dichloroethylene       99.1       %       70-130       16-MAY-18         cis-1,3-Dichloropropene       97.6       %       70-130       16-MAY-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                     |        |           |         |           |       |     |        |           |
| 1,2-Dichloropropane       97.0       %       70-130       16-MAY-18         1,3-Dichlorobenzene       90.7       %       70-130       16-MAY-18         1,4-Dichlorobenzene       92.9       %       70-130       16-MAY-18         Acetone       115.9       %       60-140       16-MAY-18         Benzene       97.2       %       70-130       16-MAY-18         Bromodichloromethane       97.2       %       50-140       16-MAY-18         Bromoform       94.3       %       70-130       16-MAY-18         Bromomethane       100.1       %       50-140       16-MAY-18         Carbon tetrachloride       96.9       %       70-130       16-MAY-18         Chlorobenzene       94.7       %       70-130       16-MAY-18         Chloroform       99.2       %       70-130       16-MAY-18         cis-1,2-Dichloroethylene       99.1       %       70-130       16-MAY-18         cis-1,3-Dichloropropene       97.6       %       70-130       16-MAY-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ·                     |        |           |         |           |       |     |        |           |
| 1,3-Dichlorobenzene       90.7       %       70-130       16-MAY-18         1,4-Dichlorobenzene       92.9       %       70-130       16-MAY-18         Acetone       115.9       %       60-140       16-MAY-18         Benzene       97.2       %       70-130       16-MAY-18         Bromodichloromethane       97.2       %       50-140       16-MAY-18         Bromoform       94.3       %       70-130       16-MAY-18         Bromomethane       100.1       %       50-140       16-MAY-18         Carbon tetrachloride       96.9       %       70-130       16-MAY-18         Chlorobenzene       94.7       %       70-130       16-MAY-18         Chloroform       99.2       %       70-130       16-MAY-18         cis-1,2-Dichloroethylene       99.1       %       70-130       16-MAY-18         cis-1,3-Dichloropropene       97.6       %       70-130       16-MAY-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                     |        |           |         |           |       |     |        |           |
| 1,4-Dichlorobenzene       92.9       %       70-130       16-MAY-18         Acetone       115.9       %       60-140       16-MAY-18         Benzene       97.2       %       70-130       16-MAY-18         Bromodichloromethane       97.2       %       50-140       16-MAY-18         Bromoform       94.3       %       70-130       16-MAY-18         Bromomethane       100.1       %       50-140       16-MAY-18         Carbon tetrachloride       96.9       %       70-130       16-MAY-18         Chlorobenzene       94.7       %       70-130       16-MAY-18         Chloroform       99.2       %       70-130       16-MAY-18         cis-1,2-Dichloroethylene       99.1       %       70-130       16-MAY-18         cis-1,3-Dichloropropene       97.6       %       70-130       16-MAY-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | • •                   |        |           |         |           |       |     |        |           |
| Acetone       115.9       %       60-140       16-MAY-18         Benzene       97.2       %       70-130       16-MAY-18         Bromodichloromethane       97.2       %       50-140       16-MAY-18         Bromoform       94.3       %       70-130       16-MAY-18         Bromomethane       100.1       %       50-140       16-MAY-18         Carbon tetrachloride       96.9       %       70-130       16-MAY-18         Chlorobenzene       94.7       %       70-130       16-MAY-18         Chloroform       99.2       %       70-130       16-MAY-18         cis-1,2-Dichloroethylene       99.1       %       70-130       16-MAY-18         cis-1,3-Dichloropropene       97.6       %       70-130       16-MAY-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                     |        |           |         |           |       |     |        |           |
| Benzene       97.2       %       70-130       16-MAY-18         Bromodichloromethane       97.2       %       50-140       16-MAY-18         Bromoform       94.3       %       70-130       16-MAY-18         Bromomethane       100.1       %       50-140       16-MAY-18         Carbon tetrachloride       96.9       %       70-130       16-MAY-18         Chlorobenzene       94.7       %       70-130       16-MAY-18         Chloroform       99.2       %       70-130       16-MAY-18         cis-1,2-Dichloroethylene       99.1       %       70-130       16-MAY-18         cis-1,3-Dichloropropene       97.6       %       70-130       16-MAY-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |        |           |         |           |       |     |        |           |
| Bromodichloromethane       97.2       %       50-140       16-MAY-18         Bromoform       94.3       %       70-130       16-MAY-18         Bromomethane       100.1       %       50-140       16-MAY-18         Carbon tetrachloride       96.9       %       70-130       16-MAY-18         Chlorobenzene       94.7       %       70-130       16-MAY-18         Chloroform       99.2       %       70-130       16-MAY-18         cis-1,2-Dichloroethylene       99.1       %       70-130       16-MAY-18         cis-1,3-Dichloropropene       97.6       %       70-130       16-MAY-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |        |           |         |           |       |     |        |           |
| Bromoform       94.3       %       70-130       16-MAY-18         Bromomethane       100.1       %       50-140       16-MAY-18         Carbon tetrachloride       96.9       %       70-130       16-MAY-18         Chlorobenzene       94.7       %       70-130       16-MAY-18         Chloroform       99.2       %       70-130       16-MAY-18         cis-1,2-Dichloroethylene       99.1       %       70-130       16-MAY-18         cis-1,3-Dichloropropene       97.6       %       70-130       16-MAY-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |        |           |         |           |       |     |        |           |
| Bromomethane       100.1       %       50-140       16-MAY-18         Carbon tetrachloride       96.9       %       70-130       16-MAY-18         Chlorobenzene       94.7       %       70-130       16-MAY-18         Chloroform       99.2       %       70-130       16-MAY-18         cis-1,2-Dichloroethylene       99.1       %       70-130       16-MAY-18         cis-1,3-Dichloropropene       97.6       %       70-130       16-MAY-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | ine    |           |         |           |       |     |        |           |
| Carbon tetrachloride       96.9       %       70-130       16-MAY-18         Chlorobenzene       94.7       %       70-130       16-MAY-18         Chloroform       99.2       %       70-130       16-MAY-18         cis-1,2-Dichloroethylene       99.1       %       70-130       16-MAY-18         cis-1,3-Dichloropropene       97.6       %       70-130       16-MAY-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |        |           |         |           |       |     |        |           |
| Chlorobenzene       94.7       %       70-130       16-MAY-18         Chloroform       99.2       %       70-130       16-MAY-18         cis-1,2-Dichloroethylene       99.1       %       70-130       16-MAY-18         cis-1,3-Dichloropropene       97.6       %       70-130       16-MAY-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |        |           |         |           |       |     |        |           |
| Chloroform         99.2         %         70-130         16-MAY-18           cis-1,2-Dichloroethylene         99.1         %         70-130         16-MAY-18           cis-1,3-Dichloropropene         97.6         %         70-130         16-MAY-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |        |           |         |           |       |     |        |           |
| cis-1,2-Dichloroethylene       99.1       %       70-130       16-MAY-18         cis-1,3-Dichloropropene       97.6       %       70-130       16-MAY-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |        |           |         |           |       |     |        |           |
| cis-1,3-Dichloropropene 97.6 % 70-130 16-MAY-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |        |           |         |           |       |     |        |           |
| 10.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                     |        |           |         |           |       |     |        |           |
| Dibromochloromethane 100.8 % 60-130 16-MAY-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |        |           |         |           |       |     |        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |        |           |         |           |       |     | 60-130 | 16-MAY-18 |
| Dichlorodifluoromethane 93.7 % 50-140 16-MAY-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dichlorodifluorometh  | ane    |           | 93.7    |           | %     |     | 50-140 | 16-MAY-18 |



Workorder: L2092836 Report Date: 17-MAY-18 Page 13 of 16

Client: Sirati & Partners Consultants Ltd. (Concord)

750 Millway Ave Unit 8 Vaughan ON L4K3T7

| Test                                       | Matrix | Reference | Result        | Qualifier | Units  | RPD | Limit  | Analyzed   |
|--------------------------------------------|--------|-----------|---------------|-----------|--------|-----|--------|------------|
| VOC-511-HS-WT                              | Soil   |           |               |           |        |     |        |            |
| Batch R4045430                             |        |           |               |           |        |     |        |            |
| WG2770148-2 LCS                            |        |           | 84.1          |           | %      |     | 70.400 | 40.1417/40 |
| Ethylbenzene<br>n-Hexane                   |        |           | 96.4          |           | %      |     | 70-130 | 16-MAY-18  |
| Methylene Chloride                         |        |           | 102.4         |           | %      |     | 70-130 | 16-MAY-18  |
| MTBE                                       |        |           | 97.7          |           | %      |     | 70-130 | 16-MAY-18  |
|                                            |        |           | 84.5          |           | %<br>% |     | 70-130 | 16-MAY-18  |
| m+p-Xylenes                                |        |           | 84.5<br>112.7 |           | %      |     | 70-130 | 16-MAY-18  |
| Methyl leabytyl Ketone                     |        |           |               |           |        |     | 60-140 | 16-MAY-18  |
| Methyl Isobutyl Ketone                     |        |           | 97.2          |           | %      |     | 60-140 | 16-MAY-18  |
| o-Xylene                                   |        |           | 85.5          |           | %      |     | 70-130 | 16-MAY-18  |
| Styrene                                    |        |           | 86.1          |           | %      |     | 70-130 | 16-MAY-18  |
| Tetrachloroethylene                        |        |           | 90.2          |           | %      |     | 60-130 | 16-MAY-18  |
| Toluene                                    | _      |           | 86.6          |           | %      |     | 70-130 | 16-MAY-18  |
| trans-1,2-Dichloroethylen                  |        |           | 94.6          |           | %      |     | 60-130 | 16-MAY-18  |
| trans-1,3-Dichloropropen                   | е      |           | 89.6          |           | %      |     | 70-130 | 16-MAY-18  |
| Trichloroethylene                          |        |           | 100.2         |           | %      |     | 60-130 | 16-MAY-18  |
| Trichlorofluoromethane                     |        |           | 100.3         |           | %      |     | 50-140 | 16-MAY-18  |
| Vinyl chloride                             |        |           | 91.0          |           | %      |     | 60-140 | 16-MAY-18  |
| WG2770148-1 MB<br>1,1,1,2-Tetrachloroethan | e      |           | <0.050        |           | ug/g   |     | 0.05   | 16-MAY-18  |
| 1,1,2,2-Tetrachloroethan                   |        |           | <0.050        |           | ug/g   |     | 0.05   | 16-MAY-18  |
| 1,1,1-Trichloroethane                      |        |           | <0.050        |           | ug/g   |     | 0.05   | 16-MAY-18  |
| 1,1,2-Trichloroethane                      |        |           | <0.050        |           | ug/g   |     | 0.05   | 16-MAY-18  |
| 1,1-Dichloroethane                         |        |           | <0.050        |           | ug/g   |     | 0.05   | 16-MAY-18  |
| 1,1-Dichloroethylene                       |        |           | <0.050        |           | ug/g   |     | 0.05   | 16-MAY-18  |
| 1,2-Dibromoethane                          |        |           | <0.050        |           | ug/g   |     | 0.05   | 16-MAY-18  |
| 1,2-Dichlorobenzene                        |        |           | <0.050        |           | ug/g   |     | 0.05   | 16-MAY-18  |
| 1,2-Dichloroethane                         |        |           | <0.050        |           | ug/g   |     | 0.05   | 16-MAY-18  |
| 1,2-Dichloropropane                        |        |           | <0.050        |           | ug/g   |     | 0.05   | 16-MAY-18  |
| 1,3-Dichlorobenzene                        |        |           | <0.050        |           | ug/g   |     | 0.05   | 16-MAY-18  |
| 1,4-Dichlorobenzene                        |        |           | <0.050        |           | ug/g   |     | 0.05   | 16-MAY-18  |
| Acetone                                    |        |           | <0.50         |           | ug/g   |     | 0.5    | 16-MAY-18  |
| Benzene                                    |        |           | <0.0068       |           | ug/g   |     | 0.0068 | 16-MAY-18  |
| Bromodichloromethane                       |        |           | <0.050        |           | ug/g   |     | 0.05   | 16-MAY-18  |
| Bromoform                                  |        |           | <0.050        |           | ug/g   |     | 0.05   | 16-MAY-18  |
| Bromomethane                               |        |           | <0.050        |           | ug/g   |     | 0.05   | 16-MAY-18  |
|                                            |        |           |               |           |        |     |        | - · · ·    |



Workorder: L2092836 Report Date: 17-MAY-18 Page 14 of 16

Client: Sirati & Partners Consultants Ltd. (Concord)

750 Millway Ave Unit 8 Vaughan ON L4K3T7

| Test                     | Matrix    | Reference   | Result | Qualifier | Units     | RPD | Limit  | Analyzed  |
|--------------------------|-----------|-------------|--------|-----------|-----------|-----|--------|-----------|
| VOC-511-HS-WT            | Soil      |             |        |           |           |     |        |           |
| Batch R4045430           |           |             |        |           |           |     |        |           |
| WG2770148-1 MB           |           |             | 0.050  |           |           |     | 0.05   |           |
| Carbon tetrachloride     |           |             | <0.050 |           | ug/g      |     | 0.05   | 16-MAY-18 |
| Chlorobenzene            |           |             | <0.050 |           | ug/g      |     | 0.05   | 16-MAY-18 |
| Chloroform               | _         |             | <0.050 |           | ug/g      |     | 0.05   | 16-MAY-18 |
| cis-1,2-Dichloroethylene |           |             | <0.050 |           | ug/g      |     | 0.05   | 16-MAY-18 |
| cis-1,3-Dichloropropene  |           |             | <0.030 |           | ug/g      |     | 0.03   | 16-MAY-18 |
| Dibromochloromethane     |           |             | <0.050 |           | ug/g      |     | 0.05   | 16-MAY-18 |
| Dichlorodifluoromethan   | е         |             | <0.050 |           | ug/g<br>, |     | 0.05   | 16-MAY-18 |
| Ethylbenzene             |           |             | <0.018 |           | ug/g<br>, |     | 0.018  | 16-MAY-18 |
| n-Hexane                 |           |             | <0.050 |           | ug/g<br>, |     | 0.05   | 16-MAY-18 |
| Methylene Chloride       |           |             | <0.050 |           | ug/g<br>, |     | 0.05   | 16-MAY-18 |
| MTBE                     |           |             | <0.050 |           | ug/g<br>, |     | 0.05   | 16-MAY-18 |
| m+p-Xylenes              |           |             | <0.030 |           | ug/g<br>, |     | 0.03   | 16-MAY-18 |
| Methyl Ethyl Ketone      |           |             | <0.50  |           | ug/g      |     | 0.5    | 16-MAY-18 |
| Methyl Isobutyl Ketone   |           |             | <0.50  |           | ug/g      |     | 0.5    | 16-MAY-18 |
| o-Xylene                 |           |             | <0.020 |           | ug/g      |     | 0.02   | 16-MAY-18 |
| Styrene                  |           |             | <0.050 |           | ug/g      |     | 0.05   | 16-MAY-18 |
| Tetrachloroethylene      |           |             | <0.050 |           | ug/g      |     | 0.05   | 16-MAY-18 |
| Toluene                  |           |             | <0.080 |           | ug/g      |     | 0.08   | 16-MAY-18 |
| trans-1,2-Dichloroethyle |           |             | <0.050 |           | ug/g      |     | 0.05   | 16-MAY-18 |
| trans-1,3-Dichloroprope  | ene       |             | <0.030 |           | ug/g      |     | 0.03   | 16-MAY-18 |
| Trichloroethylene        |           |             | <0.010 |           | ug/g      |     | 0.01   | 16-MAY-18 |
| Trichlorofluoromethane   |           |             | <0.050 |           | ug/g      |     | 0.05   | 16-MAY-18 |
| Vinyl chloride           |           |             | <0.020 |           | ug/g      |     | 0.02   | 16-MAY-18 |
| Surrogate: 1,4-Difluorob | oenzene   |             | 98.3   |           | %         |     | 50-140 | 16-MAY-18 |
| Surrogate: 4-Bromofluo   | robenzene |             | 92.7   |           | %         |     | 50-140 | 16-MAY-18 |
| WG2770148-5 MS           |           | L2092836-18 | 400.4  |           | 0/        |     |        |           |
| 1,1,1,2-Tetrachloroetha  |           |             | 106.1  |           | %         |     | 50-140 | 16-MAY-18 |
| 1,1,2,2-Tetrachloroetha  | ne        |             | 105.3  |           | %         |     | 50-140 | 16-MAY-18 |
| 1,1,1-Trichloroethane    |           |             | 107.4  |           | %         |     | 50-140 | 16-MAY-18 |
| 1,1,2-Trichloroethane    |           |             | 105.9  |           | %         |     | 50-140 | 16-MAY-18 |
| 1,1-Dichloroethane       |           |             | 106.9  |           | %         |     | 50-140 | 16-MAY-18 |
| 1,1-Dichloroethylene     |           |             | 94.3   |           | %         |     | 50-140 | 16-MAY-18 |
| 1,2-Dibromoethane        |           |             | 108.3  |           | %         |     | 50-140 | 16-MAY-18 |
| 1,2-Dichlorobenzene      |           |             | 103.8  |           | %         |     | 50-140 | 16-MAY-18 |



Report Date: 17-MAY-18 Workorder: L2092836 Page 15 of 16

Sirati & Partners Consultants Ltd. (Concord) Client:

750 Millway Ave Unit 8 Vaughan ON L4K3T7

| Test                     | Matrix | Reference   | Result | Qualifier | Units | RPD | Limit  | Analyzed  |
|--------------------------|--------|-------------|--------|-----------|-------|-----|--------|-----------|
| VOC-511-HS-WT            | Soil   |             |        |           |       |     |        |           |
| Batch R4045430           |        |             |        |           |       |     |        |           |
| WG2770148-5 MS           |        | L2092836-18 |        |           | 0/    |     |        |           |
| 1,2-Dichloroethane       |        |             | 110.4  |           | %     |     | 50-140 | 16-MAY-18 |
| 1,2-Dichloropropane      |        |             | 106.1  |           | %     |     | 50-140 | 16-MAY-18 |
| 1,3-Dichlorobenzene      |        |             | 99.5   |           | %     |     | 50-140 | 16-MAY-18 |
| 1,4-Dichlorobenzene      |        |             | 102.5  |           | %     |     | 50-140 | 16-MAY-18 |
| Acetone                  |        |             | 123.0  |           | %     |     | 50-140 | 16-MAY-18 |
| Benzene                  |        |             | 107.2  |           | %     |     | 50-140 | 16-MAY-18 |
| Bromodichloromethane     |        |             | 106.8  |           | %     |     | 50-140 | 16-MAY-18 |
| Bromoform                |        |             | 104.1  |           | %     |     | 50-140 | 16-MAY-18 |
| Bromomethane             |        |             | 105.8  |           | %     |     | 50-140 | 16-MAY-18 |
| Carbon tetrachloride     |        |             | 107.3  |           | %     |     | 50-140 | 16-MAY-18 |
| Chlorobenzene            |        |             | 105.0  |           | %     |     | 50-140 | 16-MAY-18 |
| Chloroform               |        |             | 109.5  |           | %     |     | 50-140 | 16-MAY-18 |
| cis-1,2-Dichloroethylene | 9      |             | 108.6  |           | %     |     | 50-140 | 16-MAY-18 |
| cis-1,3-Dichloropropene  | )      |             | 104.5  |           | %     |     | 50-140 | 16-MAY-18 |
| Dibromochloromethane     |        |             | 111.5  |           | %     |     | 50-140 | 16-MAY-18 |
| Dichlorodifluoromethan   | е      |             | 88.0   |           | %     |     | 50-140 | 16-MAY-18 |
| Ethylbenzene             |        |             | 93.9   |           | %     |     | 50-140 | 16-MAY-18 |
| n-Hexane                 |        |             | 104.9  |           | %     |     | 50-140 | 16-MAY-18 |
| Methylene Chloride       |        |             | 111.0  |           | %     |     | 50-140 | 16-MAY-18 |
| MTBE                     |        |             | 108.1  |           | %     |     | 50-140 | 16-MAY-18 |
| m+p-Xylenes              |        |             | 94.3   |           | %     |     | 50-140 | 16-MAY-18 |
| Methyl Ethyl Ketone      |        |             | 118.7  |           | %     |     | 50-140 | 16-MAY-18 |
| Methyl Isobutyl Ketone   |        |             | 105.0  |           | %     |     | 50-140 | 16-MAY-18 |
| o-Xylene                 |        |             | 95.0   |           | %     |     | 50-140 | 16-MAY-18 |
| Styrene                  |        |             | 86.2   |           | %     |     | 50-140 | 16-MAY-18 |
| Tetrachloroethylene      |        |             | 100.9  |           | %     |     | 50-140 | 16-MAY-18 |
| Toluene                  |        |             | 96.6   |           | %     |     | 50-140 | 16-MAY-18 |
| trans-1,2-Dichloroethyle | ene    |             | 103.6  |           | %     |     | 50-140 | 16-MAY-18 |
| trans-1,3-Dichloroprope  | ene    |             | 93.8   |           | %     |     | 50-140 | 16-MAY-18 |
| Trichloroethylene        |        |             | 110.8  |           | %     |     | 50-140 | 16-MAY-18 |
| Trichlorofluoromethane   |        |             | 109.2  |           | %     |     | 50-140 | 16-MAY-18 |
| Vinyl chloride           |        |             | 97.6   |           | %     |     | 50-140 | 16-MAY-18 |
|                          |        |             |        |           |       |     |        |           |

Workorder: L2092836 Report Date: 17-MAY-18

Sirati & Partners Consultants Ltd. (Concord) Client:

> 750 Millway Ave Unit 8 Vaughan ON L4K3T7

Contact: Chaoran Li

### Legend:

Limit ALS Control Limit (Data Quality Objectives) DUP

Duplicate

RPD Relative Percent Difference

N/A Not Available

LCS Laboratory Control Sample SRM Standard Reference Material

MS Matrix Spike

**MSD** Matrix Spike Duplicate

Average Desorption Efficiency ADE

Method Blank MB

IRM Internal Reference Material CRM Certified Reference Material CCV Continuing Calibration Verification CVS Calibration Verification Standard LCSD Laboratory Control Sample Duplicate

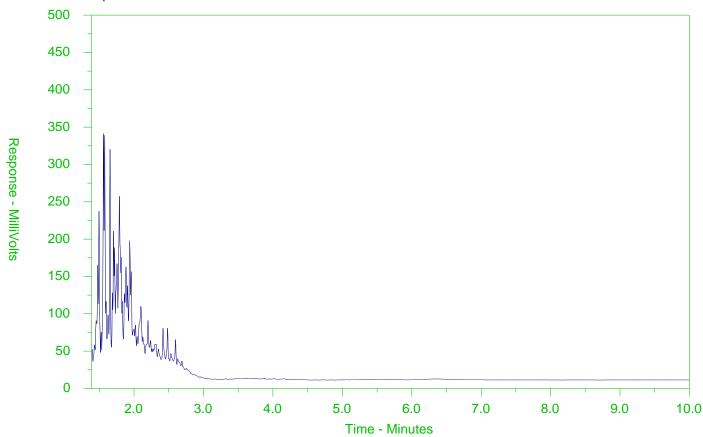
### **Sample Parameter Qualifier Definitions:**

| Qualifier | Description                                                                                 |
|-----------|---------------------------------------------------------------------------------------------|
| J         | Duplicate results and limits are expressed in terms of absolute difference.                 |
| RPD-NA    | Relative Percent Difference Not Available due to result(s) being less than detection limit. |

### **Hold Time Exceedances:**

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.


The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

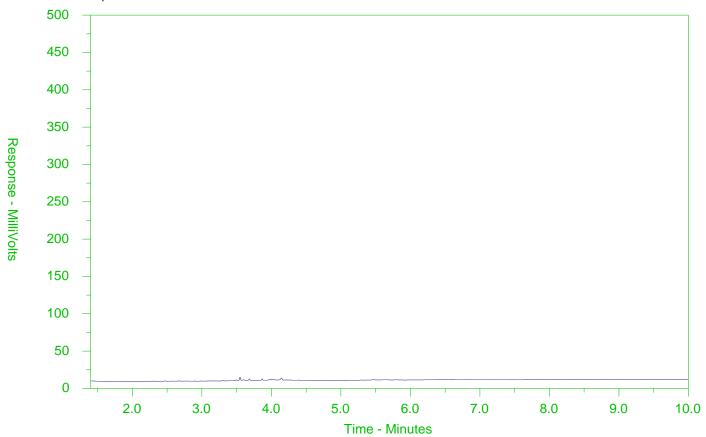
Page 16 of 16



ALS Sample ID: L2092836-8 Client Sample ID: BHE15-SS5



| <b>←</b> -F2- | → ←                  | —F3—→ <b>←</b> —F4— | <b>→</b> |  |  |  |
|---------------|----------------------|---------------------|----------|--|--|--|
| nC10          | nC16                 | nC34                | nC50     |  |  |  |
| 174°C         | 287°C                | 481°C               | 575°C    |  |  |  |
| 346°F         | 549°F                | 898°F               | 1067°F   |  |  |  |
| Gasolin       | Gasoline →           |                     |          |  |  |  |
| <b>←</b>      | ← Diesel/Jet Fuels → |                     |          |  |  |  |


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

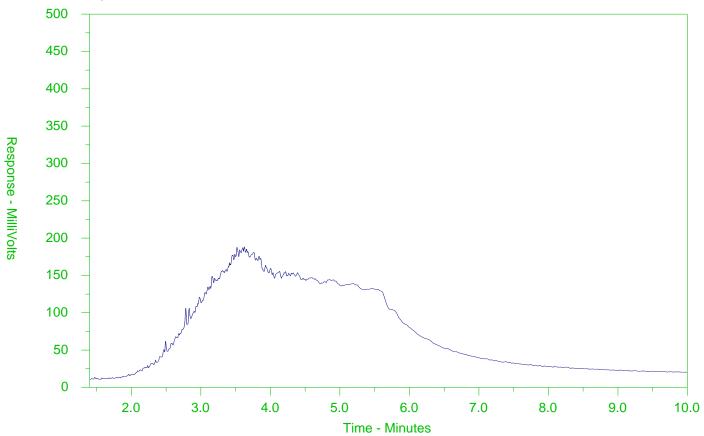
Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.



ALS Sample ID: L2092836-12 Client Sample ID: BHE6-SS4



| <b>←</b> -F2- | → ←                                      | —F3—→ <b>←</b> F4— | <b>&gt;</b> |  |  |  |
|---------------|------------------------------------------|--------------------|-------------|--|--|--|
| nC10          | nC16                                     | nC34               | nC50        |  |  |  |
| 174°C         | 287°C                                    | 481°C              | 575°C       |  |  |  |
| 346°F         | 549°F                                    | 898°F              | 1067⁰F      |  |  |  |
| Gasolin       | Gasoline → Motor Oils/Lube Oils/Grease → |                    |             |  |  |  |
| <b>←</b>      | ← Diesel/Jet Fuels →                     |                    |             |  |  |  |


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

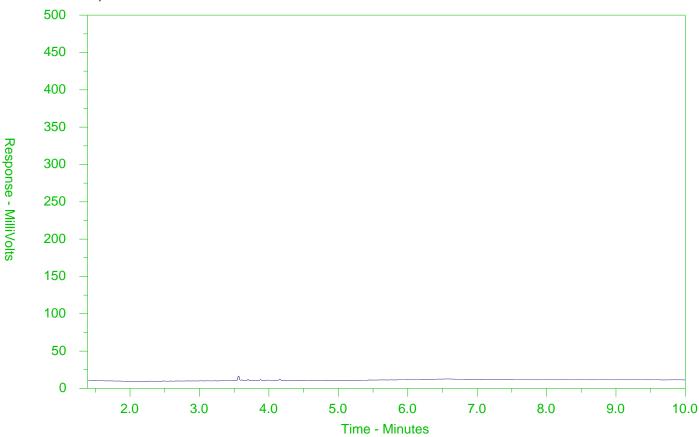
Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.



ALS Sample ID: L2092836-13 Client Sample ID: BHE11-SS2



| <b>←</b> -F2- | →-                                       | —F3—→←—F4— | <b>&gt;</b> |  |  |  |
|---------------|------------------------------------------|------------|-------------|--|--|--|
| nC10          | nC16                                     | nC34       | nC50        |  |  |  |
| 174°C         | 287°C                                    | 481°C      | 575°C       |  |  |  |
| 346°F         | 549°F                                    | 898°F      | 1067⁰F      |  |  |  |
| Gasolin       | Gasoline → Motor Oils/Lube Oils/Grease → |            |             |  |  |  |
| <b>←</b>      | ← Diesel/Jet Fuels →                     |            |             |  |  |  |


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

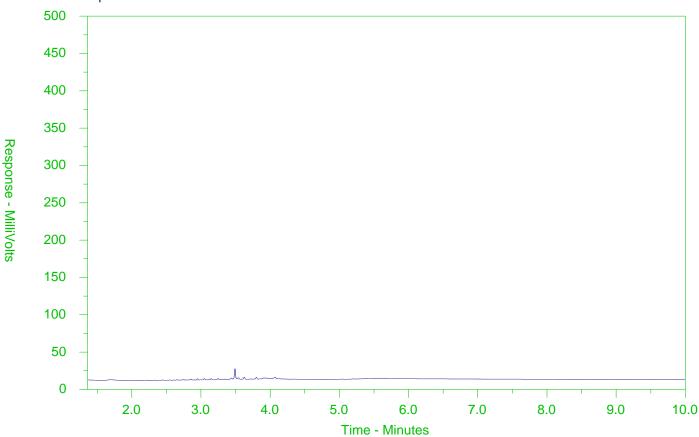
Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.



ALS Sample ID: L2092836-14 Client Sample ID: BHE1-SS4



| <b>←</b> -F2- | → ←                                      | —F3—→ <b>←</b> F4— | <b>&gt;</b> |  |  |  |
|---------------|------------------------------------------|--------------------|-------------|--|--|--|
| nC10          | nC16                                     | nC34               | nC50        |  |  |  |
| 174°C         | 287°C                                    | 481°C              | 575°C       |  |  |  |
| 346°F         | 549°F                                    | 898°F              | 1067⁰F      |  |  |  |
| Gasolin       | Gasoline → Motor Oils/Lube Oils/Grease → |                    |             |  |  |  |
| <b>←</b>      | ← Diesel/Jet Fuels →                     |                    |             |  |  |  |


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

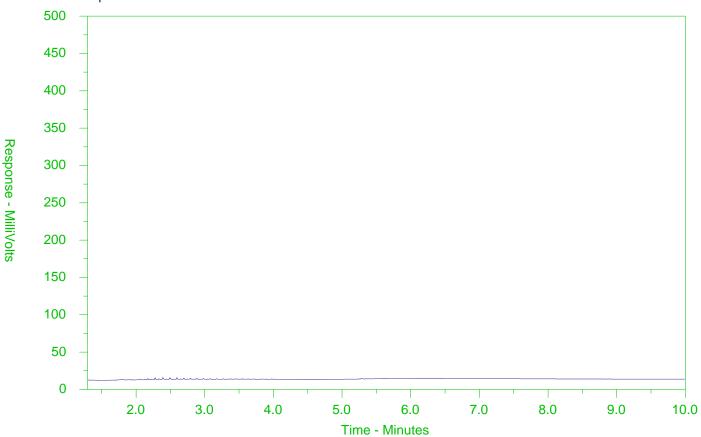
Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.



ALS Sample ID: L2092836-15 Client Sample ID: BHE8-SS5



| <b>←</b> -F2-    | →←                   | _F3F4- | <b>→</b>                     |   |  |  |  |  |  |
|------------------|----------------------|--------|------------------------------|---|--|--|--|--|--|
| nC10             | nC16                 | nC34   | nC50                         |   |  |  |  |  |  |
| 174°C            | 287°C                | 481°C  | 575°C                        |   |  |  |  |  |  |
| 346°F            | 549°F                | 898°F  | 1067°F                       |   |  |  |  |  |  |
| Gasoline → ← Mot |                      |        | tor Oils/Lube Oils/Grease——— | - |  |  |  |  |  |
| <b>←</b>         | ← Diesel/Jet Fuels → |        |                              |   |  |  |  |  |  |


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

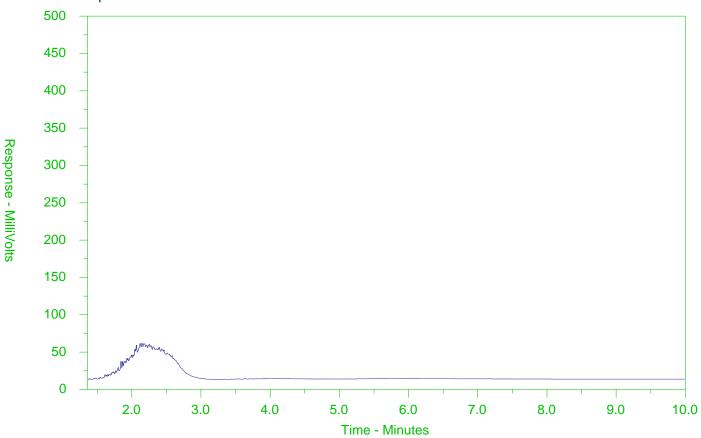
Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.



ALS Sample ID: L2092836-16 Client Sample ID: BHE2-SS4



| <b>←</b> -F2-       | → ←        | —F3——◆4—F4- | <b>→</b>                    |   |  |  |  |  |
|---------------------|------------|-------------|-----------------------------|---|--|--|--|--|
| nC10                | nC16       | nC34        | nC50                        |   |  |  |  |  |
| 174°C               | 287°C      | 481°C       | 575°C                       |   |  |  |  |  |
| 346°F               | 549°F      | 898°F       | 1067°F                      |   |  |  |  |  |
| Gasolin             | e <b>→</b> | <b>←</b> M  | otor Oils/Lube Oils/Grease— | - |  |  |  |  |
| ← Diesel/Jet Fuels→ |            |             |                             |   |  |  |  |  |


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

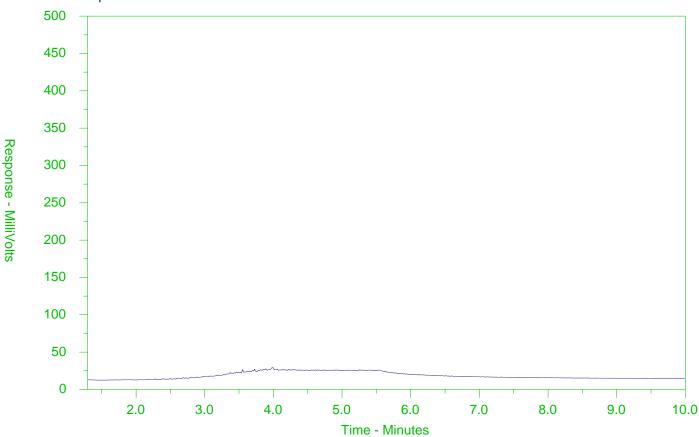
Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.



ALS Sample ID: L2092836-17 Client Sample ID: BHE10-SS5



| <b>←</b> -F2-    | →←                   | _F3F4- | <b>→</b>                     |   |  |  |  |  |  |
|------------------|----------------------|--------|------------------------------|---|--|--|--|--|--|
| nC10             | nC16                 | nC34   | nC50                         |   |  |  |  |  |  |
| 174°C            | 287°C                | 481°C  | 575°C                        |   |  |  |  |  |  |
| 346°F            | 549°F                | 898°F  | 1067°F                       |   |  |  |  |  |  |
| Gasoline → ← Mot |                      |        | tor Oils/Lube Oils/Grease——— | - |  |  |  |  |  |
| <b>←</b>         | ← Diesel/Jet Fuels → |        |                              |   |  |  |  |  |  |


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

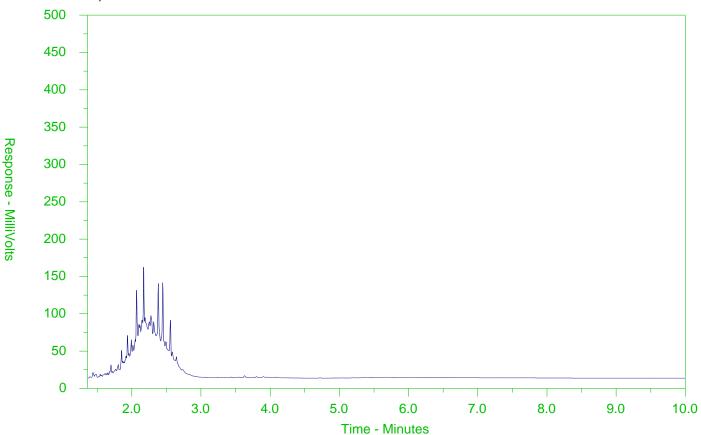
Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.



ALS Sample ID: L2092836-18
Client Sample ID: BHE4-SS2



| <b>←</b> -F2-    | →←                   | _F3F4- | <b>→</b>                     |   |  |  |  |  |  |
|------------------|----------------------|--------|------------------------------|---|--|--|--|--|--|
| nC10             | nC16                 | nC34   | nC50                         |   |  |  |  |  |  |
| 174°C            | 287°C                | 481°C  | 575°C                        |   |  |  |  |  |  |
| 346°F            | 549°F                | 898°F  | 1067°F                       |   |  |  |  |  |  |
| Gasoline → ← Mot |                      |        | tor Oils/Lube Oils/Grease——— | - |  |  |  |  |  |
| <b>←</b>         | ← Diesel/Jet Fuels → |        |                              |   |  |  |  |  |  |


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

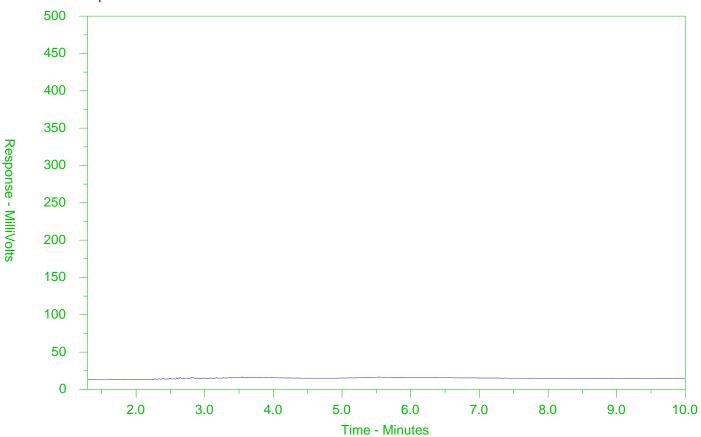
Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.



ALS Sample ID: L2092836-19 Client Sample ID: BHE9-SS4



| <b>←</b> -F2-    | →←                   | _F3F4- | <b>→</b>                     |   |  |  |  |  |  |
|------------------|----------------------|--------|------------------------------|---|--|--|--|--|--|
| nC10             | nC16                 | nC34   | nC50                         |   |  |  |  |  |  |
| 174°C            | 287°C                | 481°C  | 575°C                        |   |  |  |  |  |  |
| 346°F            | 549°F                | 898°F  | 1067°F                       |   |  |  |  |  |  |
| Gasoline → ← Mot |                      |        | tor Oils/Lube Oils/Grease——— | - |  |  |  |  |  |
| <b>←</b>         | ← Diesel/Jet Fuels → |        |                              |   |  |  |  |  |  |


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

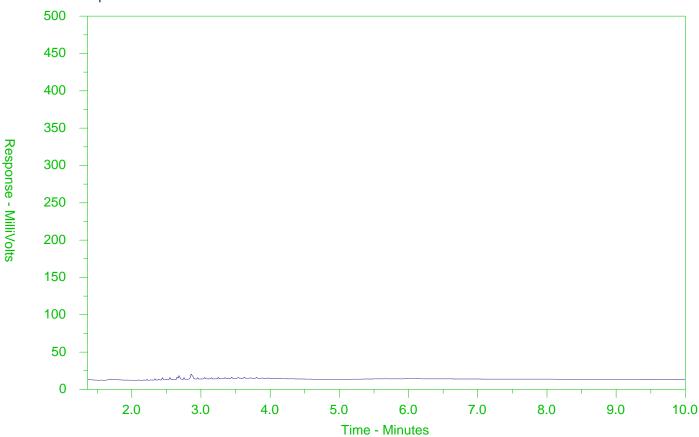
Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.



ALS Sample ID: L2092836-20 Client Sample ID: BH13-SS1



| <b>←</b> -F2-    | →←                   | _F3F4- | <b>→</b>                     |   |  |  |  |  |  |
|------------------|----------------------|--------|------------------------------|---|--|--|--|--|--|
| nC10             | nC16                 | nC34   | nC50                         |   |  |  |  |  |  |
| 174°C            | 287°C                | 481°C  | 575°C                        |   |  |  |  |  |  |
| 346°F            | 549°F                | 898°F  | 1067°F                       |   |  |  |  |  |  |
| Gasoline → ← Mot |                      |        | tor Oils/Lube Oils/Grease——— | - |  |  |  |  |  |
| <b>←</b>         | ← Diesel/Jet Fuels → |        |                              |   |  |  |  |  |  |


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

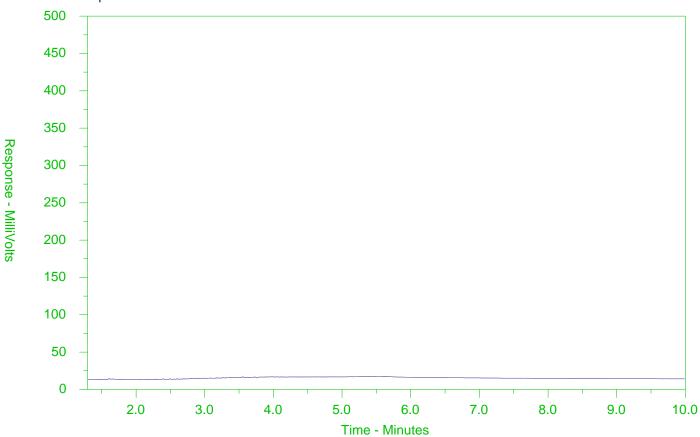
Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.



ALS Sample ID: L2092836-21 Client Sample ID: BHE12-SS2



| <b>←</b> -F2-    | →←                   | _F3F4- | <b>→</b>                     |   |  |  |  |  |  |
|------------------|----------------------|--------|------------------------------|---|--|--|--|--|--|
| nC10             | nC16                 | nC34   | nC50                         |   |  |  |  |  |  |
| 174°C            | 287°C                | 481°C  | 575°C                        |   |  |  |  |  |  |
| 346°F            | 549°F                | 898°F  | 1067°F                       |   |  |  |  |  |  |
| Gasoline → ← Mot |                      |        | tor Oils/Lube Oils/Grease——— | - |  |  |  |  |  |
| <b>←</b>         | ← Diesel/Jet Fuels → |        |                              |   |  |  |  |  |  |


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.



ALS Sample ID: L2092836-22 Client Sample ID: BHE5-SS4



| <b>←</b> -F2-    | →←                   | _F3F4- | <b>→</b>                     |   |  |  |  |  |  |
|------------------|----------------------|--------|------------------------------|---|--|--|--|--|--|
| nC10             | nC16                 | nC34   | nC50                         |   |  |  |  |  |  |
| 174°C            | 287°C                | 481°C  | 575°C                        |   |  |  |  |  |  |
| 346°F            | 549°F                | 898°F  | 1067°F                       |   |  |  |  |  |  |
| Gasoline → ← Mot |                      |        | tor Oils/Lube Oils/Grease——— | - |  |  |  |  |  |
| <b>←</b>         | ← Diesel/Jet Fuels → |        |                              |   |  |  |  |  |  |

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.



### Chain of Custody (COC) / Analytical **Request Form**

# Affix ALS barcode label here

(lab use only)

COC Number: 15 -

#### Canada Toll Free: 1 800 668 9878 www.sisglobal.com Report Format / Distribution Contact and company name below will appear on the final report Report To Select Service Level Below - Please confirm all E&P TATs with your AM - surcharges will apply SP Consultants (Sirati and Partners) Ltd Select Report Format: PDF FEXCEL DEDD (DIGITAL) Standard TAT if received by 3 pm - business days - no surcharges apply Regular [R] Company: Quality Control (QC) Report with Report YES No Chaoran Li 4 day [P4] 1 Business day (E1) Contact: Compare Results to Criteria on Report - provide details below if box checked 905-669-4477 3 day [P3] Phone: Same Day, Weekend or Select Distribution: EMAIL ☐ MAIL ☐ FAX Company address below will appear on the final report 2 day [P2] Statutory holiday [E0] 750 Millway Ave, Unit 8 Email 1 or Fax chaoranli@spconsultantsltd.ca Date and Time Required for all E&P TATs: Street: Vaughan, ON Email 2 ggarofalo@spconsultantsltd.ca For tests that can not be performed according to the service level selected, you will be contacted. City/Province: L46 3T7 Email 3 tberhane@spconsultantsitd.ca Postal Code: **Analysis Request** VES □ NO **Invoice Distribution** Indicate Filtered (F), Preserved (IP) or Filtered and Preserved (F/P) below Same as Report To Invoice To ✓ YES □ NO Copy of Invoice with Report □ FAX Email 1 or Fax chaoranli@spconsultantsltd.ca Company: GGarofalo@spconsultantsitd.ca Email 2 Contact: Number of Containers **Project Information** Oil and Gas Required Fields (client use) Q63375 ALS Account # / Quote # AFE/Cost Center: PO# Routing Code: Job #: Major/Minor Code: SP18-306-20 PO / AFE: Requisitioner: SD: Location: ALS Lab Work Order # (lab use only) ALS Contact: RICK H Sampler: Chaoran Li PHCs/VOCs Sample Identification and/or Coordinates Date # Time ALS Sample # PCBS Sample Type M8 (lab use only) (This description will appear on the report) (dd-mmm-yy) (hn:mm) BHE5-SS2 May-10-2018 AM Soil R 1 **BHE15-SS3** AM R 2 May-10-2018 Soil 1 BHE4-SS2 3 May-10-2018 AM. Sail R 1 BHE14-SS3 May-10-2018 AM Soil R ď 1 5 BHE5-SS3 May-10-2018 AM: Soil R 1 BHE4-SS4 R AM May-10-2018 Soil 1 3 BHE15-SS2 May-10-2018 AM Soil R 1 Ç BHE15-SS5 May-10-2018 AM R Soil 3 ٩ DUP-S1 May-10-2018 AM R Soil 1 DUP-S2 10 AM May-10-2018 Soil R 1 11 BHE14-SS1 May-10-2018 Soil R 1 SAMPLE CONDITION AS RECEIVED (lab use only) Special Instructions / Specify Criteria to add on report by clicking on the drop-down list below Drinking Water (DW) Samples<sup>1</sup> (client use) (electronic COC only) Frozen SIF Observations П No Are samples taken from a Regulated DW System? Ice Packs П YES INO Ontario Regulation 153/04 - April 15, 2011 Standards Cooling Initiated Are samples for human drinking water use? INITIAL COOLER TEMPERATURES °C FINAL COOLER TEMPERATURES °C Table 1 and Table 2 RPI 8.6 ☐ YES ☑ NO SHIPMENT RELEASE (client use) INITIAL SHIPMENT RECEPTION (lab use only) FINAL SHIPMENT RECEPTION (lab use only) Released by: Chaoran Li Date: May 10, 2018 Time: Date: Time: Received by: Received by:

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION

WHITE - LABORATORY COPY

YELLOW - CLIENT COPY





## Chain of Custody (COC) / Analytical Request Form

L2092836-COFC

OC Number: 15 -

|                                                                    | www.alsglobal.com                                         |                                                  | anada T            | oll Free: 1 800                       | 668 9878                                     |                   | L209            |                           |                                    | 0                        |             |               |               |                                                                             |                        | Page                                   | 3                  | of          | 7                    | _      |
|--------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------|--------------------|---------------------------------------|----------------------------------------------|-------------------|-----------------|---------------------------|------------------------------------|--------------------------|-------------|---------------|---------------|-----------------------------------------------------------------------------|------------------------|----------------------------------------|--------------------|-------------|----------------------|--------|
| Report To                                                          | Contact and company name below will                       | appear on the final                              | eport              |                                       | Report Forma                                 | at / Distribution |                 | Salar                     | d Service                          | l aval E                 | olem Blo    |               |               |                                                                             |                        |                                        |                    |             |                      |        |
| Company:                                                           | SP Consultants (Sirati and Partners) L                    | .td                                              |                    | Select Report                         | Format: PDF                                  |                   | DD (DIGITAL)    | Jelec                     |                                    |                          | elow - Plea | Chance        | m all E       | SP TATS                                                                     | with you               | Ir AM - SI                             | ırcharge           | s will appl | у                    |        |
| Contact:                                                           | Chaoran Li                                                |                                                  |                    | Quality Contro                        | I (QC) Report with                           | Report  YES       | □ NO            | 1                         |                                    |                          |             |               |               |                                                                             |                        | eived by 3 pm - business days - no sur |                    |             |                      |        |
| Phone:                                                             | 905-669-4477                                              |                                                  |                    |                                       | lts to Criter!a on Report                    |                   |                 | FET SE                    |                                    | 3 day [P3]<br>2 day [P2] |             |               |               | ENCY                                                                        | 1 Business day [E1]    |                                        |                    |             |                      |        |
|                                                                    | Company address below will appear on the f                | final report                                     |                    | Select Distribu                       |                                              | ☐ MAIL ☐          |                 | PRIORITY<br>(Business Day |                                    |                          |             |               | - 1           | MERG                                                                        | Same Day, Weekend or   |                                        | or                 |             |                      |        |
| Street:                                                            | 750 Millway Ave, Unit 8                                   |                                                  |                    | Email 1 or Fax                        | Email 1 or Fax chaoranli@spconsultantsltd.ca |                   |                 |                           | Date and Time Required for all E&P |                          |             |               |               |                                                                             | Statutory holiday [E0] |                                        |                    |             |                      |        |
| City/Province:                                                     | Vaughan, ON                                               |                                                  |                    | Email 2 ggarofalo@spconsultantsitd.ca |                                              |                   |                 | For tw                    |                                    |                          |             |               |               |                                                                             |                        |                                        |                    |             |                      |        |
| Postal Code:                                                       | L46 3T7                                                   |                                                  |                    | Email 3                               | tberhane@spcor                               |                   |                 | 107 18                    | ists triat                         | Call flot                | e perform   | ed accord     |               | _                                                                           |                        |                                        | you will           | be contac   | ted.                 |        |
| Invoice To                                                         | Same as Report To                                         | □ NO                                             |                    |                                       | Invoice Distribution                         |                   |                 |                           | Inc                                | dicate F                 | Itered (F), | Dresen        |               | nalysi                                                                      |                        |                                        |                    |             |                      |        |
|                                                                    | Copy of Invoice with Report                               | □ NO                                             |                    | Select Invoice                        | Select Invoice Distribution:                 |                   |                 |                           | T                                  |                          | 1 1         | - I do selv   | eu (P)        | or Finere                                                                   | d and F                | reserve                                | d (F/P) I          | relow       |                      |        |
| Company:                                                           |                                                           |                                                  |                    |                                       | chaoranli@spcor                              |                   |                 | -                         | -                                  | +                        | $\vdash$    |               |               | -                                                                           | +                      | <del></del>                            |                    | $\perp$     |                      |        |
| Contact:                                                           |                                                           |                                                  |                    | Email 2                               | GGarofalo@spcc                               |                   |                 | 1                         |                                    | 1                        |             | İ             |               |                                                                             | ŀ                      |                                        |                    |             |                      |        |
|                                                                    | Project Information                                       |                                                  |                    | Oi                                    | and Gas Require                              |                   | use)            | -                         | Ì                                  |                          | 1 1         |               |               |                                                                             |                        |                                        | 1                  | 1 1         |                      | ē      |
| ALS Account #                                                      | ALS Account # / Quote #: Q63375                           |                                                  |                    | AFE/Cost Center:                      |                                              | PO#               |                 | -                         |                                    |                          |             |               | - 1           |                                                                             |                        |                                        |                    | 1 1         | ļ                    | ai a   |
| Job#:                                                              |                                                           |                                                  | Major/Minor Code:  |                                       | Routing Code:                                |                   | 1               |                           |                                    |                          |             |               |               |                                                                             |                        |                                        |                    |             | o T                  |        |
| PO / AFE: SP18-306-20                                              |                                                           |                                                  |                    | Requisitioner:                        |                                              |                   |                 | 1                         |                                    |                          |             |               |               |                                                                             |                        | -                                      |                    |             |                      | o de   |
| LSD:                                                               |                                                           |                                                  |                    | Location:                             |                                              |                   |                 |                           |                                    | 1                        |             |               |               | ı                                                                           |                        |                                        |                    |             |                      | per    |
| ALS Lab Work Order # (lab use only) L2092836                       |                                                           |                                                  | ALS Contact:       | RICK H                                | Sampler:                                     | Chaoran Li        | ا ا             |                           |                                    |                          |             |               |               |                                                                             |                        |                                        |                    |             | Number of Containers |        |
| ALS Sample #                                                       |                                                           |                                                  |                    |                                       | Date                                         |                   |                 | Įξ                        |                                    |                          |             | - 1           |               |                                                                             |                        |                                        |                    | 1           | - 1                  |        |
| (lab use only)                                                     | (This description will appear on the report)              |                                                  |                    |                                       | (dd-mmm-yy)                                  | Time<br>(hh:mm)   | Sample Type     | PHCs/VOCs                 | PHCS                               | M&I                      | PCB         | - 1           | - 1           | - 1                                                                         |                        |                                        | 1                  | 1 1         |                      |        |
| 12                                                                 | BHE6-SS4                                                  |                                                  |                    |                                       | May-10-2018                                  | AM                | Soil            | R                         | -                                  | ≥                        |             | $\rightarrow$ | -+            | +                                                                           | +                      | +                                      | <del> </del>       | $\vdash$    | <b></b>              |        |
| 13                                                                 | BHE11-SS2                                                 |                                                  |                    |                                       | May-10-2018                                  | AM                | Soil            | <del>  ``</del>           | R                                  | -                        | -+          |               | $\dashv$      |                                                                             | +                      | -                                      | <del>       </del> |             |                      | 3      |
| [4                                                                 | BHE1-SS4                                                  |                                                  |                    |                                       | May-10-2018                                  | AM                | Soil            | -                         | R                                  |                          | -           | -             | $\rightarrow$ | -+-                                                                         | +                      | +                                      | <del> </del>       | $\sqcup$    |                      | 3      |
| 15                                                                 | BHE8-SS5                                                  |                                                  |                    |                                       | May-10-2018                                  | AM                | Soil            | -                         | R                                  | -                        | -+          | -             |               |                                                                             | +                      | +-                                     | <u> </u>           |             |                      | 3      |
| 1/2                                                                | BHE2-SS4                                                  |                                                  |                    |                                       | May-10-2018                                  | AM                |                 |                           | -                                  |                          |             | _             |               |                                                                             |                        | 4                                      |                    |             | [                    | 3      |
| 17                                                                 | BHE10-SS5                                                 |                                                  |                    |                                       | May-10-2018                                  |                   | Soil            |                           | R                                  | <u> </u>                 |             |               |               | $-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | 4_                     |                                        |                    | $\Box$      |                      | 3      |
|                                                                    | BHE4-SS2                                                  |                                                  |                    |                                       |                                              | AM                | Soil            | <u> </u>                  | R                                  |                          |             | _             |               |                                                                             |                        |                                        |                    | iΙ          |                      | 3      |
|                                                                    | BHE9-SS2                                                  |                                                  |                    |                                       | May-10-2018                                  | AM                | Soil            | R                         |                                    |                          |             |               |               |                                                                             |                        |                                        |                    |             | $\neg$               | 3      |
|                                                                    | BH13-SS1                                                  |                                                  |                    |                                       | May-10-2018                                  | AM                | Soil            |                           | R                                  |                          |             | $\bot$        |               |                                                                             |                        |                                        |                    |             |                      | 3      |
|                                                                    | BHE12-SS2                                                 |                                                  |                    |                                       | May-10-2018                                  | AM                | Soil            |                           | R                                  |                          |             |               |               |                                                                             |                        | T                                      |                    |             | 一                    | 3      |
|                                                                    | BHE5-SS4                                                  |                                                  |                    |                                       | May-10-2018                                  | AM                | Soil            |                           | R                                  |                          |             |               |               |                                                                             | $\top$                 |                                        | $\Box$             |             | $\neg$               | 3      |
| LU                                                                 | 31123-004                                                 |                                                  |                    |                                       | May-10-2018                                  | AM                | Soil            | R                         |                                    |                          |             |               |               |                                                                             |                        |                                        |                    |             | 一十                   | 3      |
|                                                                    |                                                           |                                                  |                    |                                       |                                              |                   |                 |                           |                                    |                          |             |               | T             |                                                                             |                        | $\top$                                 |                    | _           | $\neg$               |        |
| Drinking \                                                         | Water (DW) Samples <sup>1</sup> (client use)              | Special Instru                                   | ctions / S         | pecify Criteria to a                  | dd on report by clic                         | king on the drop- | down list below |                           |                                    |                          | SAMPL       | E COI         | IDITIO        | ON AS                                                                       | RECE                   | IVED                                   | (lab us            | se only     | ,                    | - 72-7 |
| re samples taker                                                   | from a Regulated DW System?                               | <del>                                     </del> |                    | (eleci                                | ronie COC only)                              |                   |                 | Froze                     |                                    | _                        |             |               | S             | IF Obs                                                                      | servati                | ons                                    | Yes                |             | No                   |        |
| ☐ YES ☑ NO Ontario Regulation 153/04 -                             |                                                           |                                                  | /04 - April 15 201 | 1 Ctondordo                           |                                              |                   | Ice Pa          |                           |                                    | Ice Cu                   | bes         | _ c           | ustody        | / sea! i                                                                    | intact                 | Yes                                    |                    | No          |                      |        |
| are samples for human drinking water use?  Table 1 and Table 2 RPI |                                                           |                                                  |                    |                                       | i Standards                                  |                   |                 | Coolii                    | ng Initi                           |                          |             |               |               |                                                                             |                        |                                        |                    |             |                      |        |
| ☐ YES ☑ NO                                                         |                                                           |                                                  |                    |                                       |                                              |                   |                 | INIT                      | AL COC                             | LER TEN                  | PERAT       | URES º        | С             |                                                                             |                        | r coor                                 | ER TEM             | ERATI       | JRES °C              |        |
|                                                                    | SHIPMENT RELEASE (client use                              | e)                                               |                    |                                       | INITIAL SHIPMEN                              | T DECEDION A      | lah una enta    |                           |                                    |                          |             |               |               |                                                                             |                        | 8.6                                    |                    |             |                      |        |
| Released by: Ch                                                    | aoran Li Date: May 10, 20                                 |                                                  | Time:              | Received by:                          | INTIAL SHIFINEN                              | Date:             | ab use only)    | Time:                     |                                    | Reco                     | ved by:     | FINA          | LSHI          | PMEN                                                                        |                        |                                        | )N (lab            | use or      | ly)                  |        |
| EEED TO DANGE                                                      | 140F F07 AL 81                                            |                                                  | 1                  | 1                                     |                                              |                   |                 | i ii lie.                 |                                    | 11608                    | veu by:     |               | 1             | SU                                                                          | Dat                    |                                        | 1.18               | ,           | Ti                   | ime:   |
| ELEK TO BACK E                                                     | R TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION |                                                  |                    |                                       |                                              |                   |                 |                           | 1                                  |                          |             |               |               | M                                                                           | 11137                  | 10-MAY-18                              |                    |             |                      | 1829   |

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy. 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.



Sirati & Partners Consultants Ltd.

(Concord)

ATTN: CHAORAN LI 12700 Keele St

King City ON L7B 1H5

Date Received: 06-JUN-18

Report Date: 14-JUN-18 14:14 (MT)

Version: FINAL

Client Phone: 905-833-1582

# Certificate of Analysis

Lab Work Order #: L2107448

Project P.O. #: SP18-306-20

Job Reference: SP18-306-20

C of C Numbers: Legal Site Desc:

Rick Hawthorne Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 5730 Coopers Avenue, Unit #26 , Mississauga, ON L4Z 2E9 Canada | Phone: +1 905 507 6910 | Fax: +1 905 507 6927 ALS CANADA LTD Part of the ALS Group An ALS Limited Company





L2107448 CONT'D....

Job Reference: SP18-306-20

PAGE 2 of 11

14-JUN-18 14:14 (MT)

## **Summary of Guideline Exceedances**

| Guideline   |                           |                                          |                                  |        |                        |      |
|-------------|---------------------------|------------------------------------------|----------------------------------|--------|------------------------|------|
| ALS ID      | Client ID                 | Grouping                                 | Analyte                          | Result | <b>Guideline Limit</b> | Unit |
| Ontario Reg | gulation 153/04 - April   | I5, 2011 Standards - T1-Soil-Res/Park/I  | nst/Ind/Com/Commu Property U     | se     |                        |      |
| L2107448-2  | BH7-SS1                   | Saturated Paste Extractables             | SAR                              | 3.34   | 2.4                    | SAR  |
| Ontario Reg | gulation 153/04 - April 1 | 15, 2011 Standards - T2-Soil-Agricultura | al or Other Property Use (Coarse | e)     |                        |      |

(No parameter exceedances)



L2107448 CONT'D....

Job Reference: SP18-306-20

PAGE 3 of 11

14-JUN-18 14:14 (MT)

#### **Physical Tests - SOIL**

|              |       | L           | ₋ab ID       | L2107448-1 | L2107448-2 | L2107448-3 | L2107448-4 |
|--------------|-------|-------------|--------------|------------|------------|------------|------------|
|              | \$    | Sample      | e Date       | 05-JUN-18  | 05-JUN-18  | 05-JUN-18  | 05-JUN-18  |
|              |       | Sam         | ple ID       | BH3-SS5    | BH7-SS1    | BH7-SS3    | DUP-S3     |
| Analyte      | Unit  | Guide<br>#1 | Limits<br>#2 |            |            |            |            |
| Conductivity | mS/cm | 0.57        | 0.7          |            | 0.192      |            |            |
| % Moisture   | %     | -           | -            | 19.2       | 3.76       | 17.3       | 15.6       |
| pH           |       |             |              |            |            |            |            |

Guide Limit #1: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use Guide Limit #2: T2-Soil-Agricultural or Other Property Use (Coarse)



L2107448 CONT'D....

Job Reference: SP18-306-20

PAGE 4 of 11

14-JUN-18 14:14 (MT)

Cyanides - SOIL

| Oyumuco COIL            |      |        |        |            |
|-------------------------|------|--------|--------|------------|
|                         |      |        | Lab ID | L2107448-2 |
|                         |      | Sample | e Date | 05-JUN-18  |
|                         |      | Sam    | ple ID | BH7-SS1    |
|                         |      |        |        |            |
|                         |      | Guide  | Limits |            |
| Analyte                 | Unit | #1     | #2     |            |
| Cyanide, Weak Acid Diss | ug/g | 0.051  | 0.051  | <0.050     |
|                         |      |        |        |            |

Guide Limit #1: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use Guide Limit #2: T2-Soil-Agricultural or Other Property Use (Coarse)



L2107448 CONT'D....

Job Reference: SP18-306-20

PAGE 5 of 11

14-JUN-18 14:14 (MT)

#### **Saturated Paste Extractables - SOIL**

|                |      | Sampl       | Lab ID<br>e Date<br>iple ID | L2107448-2<br>05-JUN-18<br>BH7-SS1 |
|----------------|------|-------------|-----------------------------|------------------------------------|
| Analyte        | Unit | Guide<br>#1 | Limits<br>#2                |                                    |
| SAR            | SAR  | 2.4         | 5                           | 3.34                               |
| Calcium (Ca)   | mg/L | -           | -                           | 3.3                                |
| Magnesium (Mg) | mg/L | -           | -                           | 2.0                                |
| Sodium (Na)    | mg/L | -           | -                           | 31.2                               |

Guide Limit #1: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use Guide Limit #2: T2-Soil-Agricultural or Other Property Use (Coarse)



L2107448 CONT'D....

Job Reference: SP18-306-20

PAGE 6 of 11

14-JUN-18 14:14 (MT)

#### Metals - SOIL

| Metals - SOIL             |      |        |        |            |
|---------------------------|------|--------|--------|------------|
|                           |      |        | Lab ID | L2107448-2 |
|                           |      | Sample |        | 05-JUN-18  |
|                           |      | Sam    | ple ID | BH7-SS1    |
|                           |      |        |        |            |
|                           |      | Guide  | Limits |            |
| Analyte                   | Unit | #1     | #2     |            |
|                           | /a   | 1.2    | 7.5    |            |
| Antimony (Sb)             | ug/g | 1.3    | 7.5    | <1.0       |
| Arsenic (As)              | ug/g | 18     | 11     | 1.3        |
| Barium (Ba)               | ug/g | 220    | 390    | 10.2       |
| Beryllium (Be)            | ug/g | 2.5    | 4      | <0.50      |
| Boron (B)                 | ug/g | 36     | 120    | <5.0       |
| Boron (B), Hot Water Ext. | ug/g | 36     | 1.5    | <0.10      |
| Cadmium (Cd)              | ug/g | 1.2    | 1      | <0.50      |
| Chromium (Cr)             | ug/g | 70     | 160    | 5.5        |
| Cobalt (Co)               | ug/g | 21     | 22     | 2.2        |
| Copper (Cu)               | ug/g | 92     | 140    | 4.7        |
| Lead (Pb)                 | ug/g | 120    | 45     | 2.4        |
| Mercury (Hg)              | ug/g | 0.27   | 0.25   | <0.0050    |
| Molybdenum (Mo)           | ug/g | 2      | 6.9    | <1.0       |
| Nickel (Ni)               | ug/g | 82     | 100    | 4.3        |
| Selenium (Se)             | ug/g | 1.5    | 2.4    | <1.0       |
| Silver (Ag)               | ug/g | 0.5    | 20     | <0.20      |
| Thallium (TI)             | ug/g | 1      | 1      | <0.50      |
| Uranium (U)               | ug/g | 2.5    | 23     | <1.0       |
| Vanadium (V)              | ug/g | 86     | 86     | 13.1       |
| Zinc (Zn)                 | ug/g | 290    | 340    | 11.9       |

Guide Limit #1: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use Guide Limit #2: T2-Soil-Agricultural or Other Property Use (Coarse)



L2107448 CONT'D....

Job Reference: SP18-306-20

PAGE 7 of 11

14-JUN-18 14:14 (MT)

#### **Speciated Metals - SOIL**

|                      |      | Sample      | Lab ID<br>e Date<br>ple ID | L2107448-2<br>05-JUN-18<br>BH7-SS1 |
|----------------------|------|-------------|----------------------------|------------------------------------|
| Analyte              | Unit | Guide<br>#1 | Limits<br>#2               |                                    |
| Chromium, Hexavalent | ug/g | 0.66        | 8                          | <0.20                              |

Guide Limit #1: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use Guide Limit #2: T2-Soil-Agricultural or Other Property Use (Coarse)



L2107448 CONT'D....

Job Reference: SP18-306-20

PAGE 8 of 11

14-JUN-18 14:14 (MT)

#### **Hydrocarbons - SOIL**

| nyurocarbons - SOIL                |      |        |        |            |            |            |
|------------------------------------|------|--------|--------|------------|------------|------------|
|                                    |      | ļ      | Lab ID | L2107448-1 | L2107448-3 | L2107448-4 |
|                                    |      | Sample | e Date | 05-JUN-18  | 05-JUN-18  | 05-JUN-18  |
|                                    |      | Sam    | ple ID | BH3-SS5    | BH7-SS3    | DUP-S3     |
|                                    |      | Cuida  | Limits |            |            |            |
| Analyte                            | Unit | #1     | #2     |            |            |            |
| F1 (C6-C10)                        | ug/g | 25     | 55     | <5.0       | <5.0       | <5.0       |
| F2 (C10-C16)                       | ug/g | 10     | 98     | <10        | <10        | <10        |
| F3 (C16-C34)                       | ug/g | 240    | 300    | <50        | 64         | <50        |
| F4 (C34-C50)                       | ug/g | 120    | 2800   | <50        | <50        | <50        |
| Total Hydrocarbons (C6-C50)        | ug/g | -      | -      | <72        | <72        | <72        |
| Chrom. to baseline at nC50         |      | -      | -      | YES        | YES        | YES        |
| Surrogate: 2-Bromobenzotrifluoride | %    | -      | -      | 87.4       | 87.4       | 89.4       |
| Surrogate: 3,4-Dichlorotoluene     | %    | -      | -      | 96.7       | 109.3      | 104.5      |

Guide Limit #1: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use Guide Limit #2: T2-Soil-Agricultural or Other Property Use (Coarse)

L2107448 CONT'D.... Job Reference: SP18-306-20 PAGE 9 of 11 14-JUN-18 14:14 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference\*\*

B-HWS-R511-WT Soil Boron-HWE-O.Reg 153/04 (July 2011) HW EXTR, EPA 6010B

A dried solid sample is extracted with calcium chloride, the sample undergoes a heating process. After cooling the sample is filtered and analyzed by ICP/OES.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

**CN-WAD-R511-WT** Soil Cyanide (WAD)-O.Reg 153/04 (July MOE 3015/APHA 4500CN I-WAD

The sample is extracted with a strong base for 16 hours, and then filtrate is then distilled where the cyanide is converted to cyanogen chloride by reacting with chloramine-T, the cyanogen chloride then reacts with a combination of barbituric acid and isonicotinic acid to form a highly colored complex.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

CR-CR6-IC-WT Soil Hexavalent Chromium in Soil SW846 3060A/7199

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Method 7199, published by the United States Environmental Protection Agency (EPA). The procedure involves analysis for chromium (VI) by ion chromatography using diphenylcarbazide in a sulphuric acid solution.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

EC-WT Soil Conductivity (EC) MOEE E3138

A representative subsample is tumbled with de-ionized (DI) water. The ratio of water to soil is 2:1 v/w. After tumbling the sample is then analyzed by a conductivity meter.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

F1-F4-Hydrocarbon Calculated CCME CWS-PHC, Pub #1310, Dec 2001-S

Parameters

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

Hydrocarbon results are expressed on a dry weight basis.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.
- 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
- 4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

L2107448 CONT'D.... Job Reference: SP18-306-20 PAGE 10 of 11 14-JUN-18 14:14 (MT)

Methods Listed (if applicable):

 ALS Test Code
 Matrix
 Test Description
 Method Reference\*\*

 F1-HS-511-WT
 Soil
 F1-O.Reg 153/04 (July 2011)
 E3398/CCME TIER 1-HS

Fraction F1 is determined by extracting a soil or sediment sample as received with methanol, then analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

**CCME Tier 1** 

**F2-F4-511-WT** Soil F2-F4-O.Reg 153/04 (July 2011)

Petroleum Hydrocarbons (F2-F4 fractions) are extracted from soil with 1:1 hexane:acetone using a rotary extractor. Extracts are treated with silica gel to remove polar organic interferences. F2, F3, & F4 are analyzed by GC-FID. F4G-sq is analyzed gravimetrically.

#### Notes:

- 1. F2 (C10-C16): Sum of all hydrocarbons that elute between nC10 and nC16.
- 2. F3 (C16-C34): Sum of all hydrocarbons that elute between nC16 and nC34.
- 3. F4 (C34-C50): Sum of all hydrocarbons that elute between nC34 and nC50.
- 4. F4G: Gravimetric Heavy Hydrocarbons
- 5. F4G-sg: Gravimetric Heavy Hydrocarbons (F4G) after silica gel treatment.
- 6. Where both F4 (C34-C50) and F4G-sq are reported for a sample, the larger of the two values is used for comparison against the relevant CCME guideline for F4.
- 7. F4G-sq cannot be added to the C6 to C50 hydrocarbon results to obtain an estimate of total extractable hydrocarbons.
- 8. This method is validated for use.
- 9. Data from analysis of validation and quality control samples is available upon request.
- 10. Reported results are expressed as milligrams per dry kilogram, unless otherwise indicated.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

HG-200.2-CVAA-WT Soil Mercury in Soil by CVAAS EPA 200.2/1631E (mod)

Soil samples are digested with nitric and hydrochloric acids, followed by analysis by CVAAS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

MET-200.2-CCMS-WT Soil Metals in Soil by CRC ICPMS EPA 200.2/6020A (mod)

This method uses a heated strong acid digestion with HNO3 and HCl and is intended to liberate metals that may be environmentally available. Silicate minerals are not solubilized. Dependent on sample matrix, some metals may be only partially recovered, including Al, Ba, Be, Cr, Sr, Ti, Tl, V, W, and Zr. Volatile forms of sulfur (including sulfide) may not be captured, as they may be lost during sampling, storage, or digestion. Analysis is by Collision/Reaction Cell ICPMS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

MOISTURE-WT Soil % Moisture Gravimetric: Oven Dried

PH-WT Soil pH MOEE E3137A

A minimum 10g portion of the sample is extracted with 20mL of 0.01M calcium chloride solution by shaking for at least 30 minutes. The aqueous layer is separated from the soil and then analyzed using a pH meter and electrode.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

**SAR-R511-WT** Soil SAR-O.Reg 153/04 (July 2011) SW846 6010C

A dried, disaggregated solid sample is extracted with deionized water, the agueous extract is separated from the solid, acidified and then analyzed using a ICP/OES. The concentrations of Na, Ca

L2107448 CONT'D.... Job Reference: SP18-306-20 PAGE 11 of 11 14-JUN-18 14:14 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference\*\*

and Mg are reported as per CALA requirements for calculated parameters. These individual parameters are not for comparison to any guideline.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

\*\*ALS test methods may incorporate modifications from specified reference methods to improve performance.

Chain of Custody Numbers:

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code

Laboratory Location

WT

ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

#### **GLOSSARY OF REPORT TERMS**

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information.



Page 1 of 7

Workorder: L2107448 Report Date: 14-JUN-18

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                                     | Matrix | Reference   | Result  | Qualifier | Units | RPD | Limit  | Analyzed    |
|------------------------------------------|--------|-------------|---------|-----------|-------|-----|--------|-------------|
|                                          | Soil   |             |         |           |       |     |        |             |
| B-HWS-R511-WT<br>Batch R4081218          |        |             |         |           |       |     |        |             |
| WG2794483-4 DUP                          |        | L2106742-1  |         |           |       |     |        |             |
| Boron (B), Hot Water E                   | xt.    | 0.13        | 0.12    |           | ug/g  | 5.5 | 30     | 12-JUN-18   |
| WG2794483-2 IRM                          |        | HOTB-SAL_SC | DIL5    |           |       |     |        |             |
| Boron (B), Hot Water E                   | xt.    |             | 101.5   |           | %     |     | 70-130 | 12-JUN-18   |
| WG2794483-3 LCS                          | \d     |             | 112.6   |           | %     |     | 70.400 | 40 1111 40  |
| Boron (B), Hot Water E                   | XI.    |             | 112.0   |           | 70    |     | 70-130 | 12-JUN-18   |
| WG2794483-1 MB<br>Boron (B), Hot Water E | xt.    |             | <0.10   |           | ug/g  |     | 0.1    | 12-JUN-18   |
| CN-WAD-R511-WT                           | Soil   |             |         |           | 3 0   |     |        |             |
| Batch R4080788                           |        |             |         |           |       |     |        |             |
| WG2793561-3 DUP                          |        | L2107448-2  |         |           |       |     |        |             |
| Cyanide, Weak Acid Dis                   | ss     | <0.050      | <0.050  | RPD-NA    | ug/g  | N/A | 35     | 12-JUN-18   |
| WG2793561-2 LCS                          |        |             |         |           |       |     |        |             |
| Cyanide, Weak Acid Dis                   | SS     |             | 90.8    |           | %     |     | 80-120 | 12-JUN-18   |
| WG2793561-1 MB<br>Cyanide, Weak Acid Dis | 00     |             | <0.050  |           | ug/g  |     | 0.05   | 40 11111 40 |
| WG2793561-4 MS                           | 55     | L2107448-2  | <0.030  |           | ug/g  |     | 0.03   | 12-JUN-18   |
| Cyanide, Weak Acid Dis                   | ss     | L2107446-2  | 97.4    |           | %     |     | 70-130 | 12-JUN-18   |
| CR-CR6-IC-WT                             | Soil   |             |         |           |       |     |        |             |
| Batch R4081216                           |        |             |         |           |       |     |        |             |
| WG2793728-4 CRM                          |        | WT-SQC012   |         |           |       |     |        |             |
| Chromium, Hexavalent                     |        |             | 90.7    |           | %     |     | 70-130 | 12-JUN-18   |
| WG2793728-3 DUP                          |        | L2107448-2  |         |           |       |     |        |             |
| Chromium, Hexavalent                     |        | <0.20       | 0.24    | RPD-NA    | ug/g  | N/A | 35     | 12-JUN-18   |
| WG2793728-2 LCS<br>Chromium, Hexavalent  |        |             | 98.4    |           | %     |     | 80-120 | 40 ILIN 40  |
| WG2793728-1 MB                           |        |             | 90.4    |           | 70    |     | 00-120 | 12-JUN-18   |
| Chromium, Hexavalent                     |        |             | <0.20   |           | ug/g  |     | 0.2    | 12-JUN-18   |
| EC-WT                                    | Soil   |             |         |           |       |     |        |             |
| Batch R4081137                           |        |             |         |           |       |     |        |             |
| WG2794470-4 DUP                          |        | WG2794470-3 |         |           |       |     |        |             |
| Conductivity                             |        | 0.547       | 0.570   |           | mS/cm | 4.1 | 20     | 12-JUN-18   |
| WG2794658-1 LCS                          |        |             | 20.5    |           | 0/    |     |        |             |
| Conductivity                             |        |             | 96.5    |           | %     |     | 90-110 | 12-JUN-18   |
| WG2794470-1 MB Conductivity              |        |             | <0.0040 |           | mS/cm |     | 0.004  | 12-JUN-18   |
| -                                        | Call   |             | 10.0010 |           |       |     | 3.00 1 | 12-3011-10  |
| F1-HS-511-WT                             | Soil   |             |         |           |       |     |        |             |



Workorder: L2107448 Report Date: 14-JUN-18 Page 2 of 7

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                                 | Matrix         | Reference                 | Result               | Qualifier | Units | RPD  | Limit  | Analyzed  |
|--------------------------------------|----------------|---------------------------|----------------------|-----------|-------|------|--------|-----------|
| F1-HS-511-WT                         | Soil           |                           |                      |           |       |      |        |           |
| Batch R4076088                       | 3              |                           |                      |           |       |      |        |           |
| WG2790831-4 DUP                      |                | WG2790831-3               |                      |           | ,     |      |        |           |
| F1 (C6-C10)                          |                | <5.0                      | <5.0                 | RPD-NA    | ug/g  | N/A  | 30     | 08-JUN-18 |
| <b>WG2790831-2 LCS</b> F1 (C6-C10)   |                |                           | 102.7                |           | %     |      | 80-120 | 08-JUN-18 |
| <b>WG2790831-1 MB</b><br>F1 (C6-C10) |                |                           | <5.0                 |           | ug/g  |      | 5      | 08-JUN-18 |
| Surrogate: 3,4-Dichloro              | otoluene       |                           | 102.9                |           | %     |      | 60-140 | 08-JUN-18 |
| <b>WG2790831-6 MS</b><br>F1 (C6-C10) |                | L2107454-8                | 100.2                |           | %     |      | 60-140 | 08-JUN-18 |
| F2-F4-511-WT                         | Soil           |                           |                      |           |       |      |        |           |
| Batch R4080535                       | i              |                           |                      |           |       |      |        |           |
| <b>WG2792090-3 DUP</b> F2 (C10-C16)  |                | <b>WG2792090-5</b> <10    | <10                  |           | ua/a  | NI/A | 20     | 40 IUN 40 |
|                                      |                | <10<br><50                | < 10<br>< 50         | RPD-NA    | ug/g  | N/A  | 30     | 12-JUN-18 |
| F3 (C16-C34)<br>F4 (C34-C50)         |                | <50<br><50                | <50<br><50           | RPD-NA    | ug/g  | N/A  | 30     | 12-JUN-18 |
| ,                                    |                | <50                       | <50                  | RPD-NA    | ug/g  | N/A  | 30     | 12-JUN-18 |
| <b>WG2792090-2 LCS</b> F2 (C10-C16)  |                |                           | 103.9                |           | %     |      | 80-120 | 12-JUN-18 |
| F3 (C16-C34)                         |                |                           | 101.6                |           | %     |      | 80-120 | 12-JUN-18 |
| F4 (C34-C50)                         |                |                           | 94.8                 |           | %     |      | 80-120 | 12-JUN-18 |
| <b>WG2792090-1 MB</b> F2 (C10-C16)   |                |                           | <10                  |           | ug/g  |      | 10     | 12-JUN-18 |
| F3 (C16-C34)                         |                |                           | <50                  |           | ug/g  |      | 50     | 12-JUN-18 |
| F4 (C34-C50)                         |                |                           | <50                  |           | ug/g  |      | 50     | 12-JUN-18 |
| Surrogate: 2-Bromober                | nzotrifluoride |                           | 90.7                 |           | %     |      | 60-140 | 12-JUN-18 |
| WG2792090-4 MS                       |                | WG2792090-5               | 101.1                |           | 0/    |      |        |           |
| F2 (C10-C16)                         |                |                           | 101.1                |           | %     |      | 60-140 | 12-JUN-18 |
| F3 (C16-C34)                         |                |                           | 99.0                 |           | %     |      | 60-140 | 12-JUN-18 |
| F4 (C34-C50)                         |                |                           | 89.5                 |           | %     |      | 60-140 | 12-JUN-18 |
| HG-200.2-CVAA-WT                     | Soil           |                           |                      |           |       |      |        |           |
| Batch R4080950                       | )              |                           |                      |           |       |      |        |           |
| WG2794447-2 CRM<br>Mercury (Hg)      |                | WT-CANMET-                | <b>FILL1</b><br>94.0 |           | %     |      | 70-130 | 12-JUN-18 |
| WG2794447-6 DUP<br>Mercury (Hg)      |                | <b>WG2794447-5</b> 0.0162 | 0.0167               |           | ug/g  | 3.5  | 40     | 12-JUN-18 |
| WG2794447-3 LCS<br>Mercury (Hg)      |                |                           | 109.0                |           | %     |      | 80-120 | 12-JUN-18 |
| WG2794447-1 MB                       |                |                           |                      |           |       |      |        | 2 220     |



Workorder: L2107448 Report Date: 14-JUN-18 Page 3 of 7

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                                             | Matrix | Reference   | Result  | Qualifier | Units | RPD | Limit      | Analyzed  |
|--------------------------------------------------|--------|-------------|---------|-----------|-------|-----|------------|-----------|
| HG-200.2-CVAA-WT                                 | Soil   |             |         |           |       |     |            |           |
| Batch R4080950<br>WG2794447-1 MB<br>Mercury (Hg) |        |             | <0.0050 |           | mg/kg |     | 0.005      | 12-JUN-18 |
| MET-200.2-CCMS-WT                                | Soil   |             |         |           |       |     |            |           |
| Batch R4083103                                   |        |             |         |           |       |     |            |           |
| WG2796492-2 CRM<br>Antimony (Sb)                 |        | WT-CANMET-1 | 103.6   |           | %     |     | 70-130     | 14-JUN-18 |
| Arsenic (As)                                     |        |             | 104.9   |           | %     |     | 70-130     | 14-JUN-18 |
| Barium (Ba)                                      |        |             | 122.0   |           | %     |     | 70-130     | 14-JUN-18 |
| Beryllium (Be)                                   |        |             | 96.7    |           | %     |     | 70-130     | 14-JUN-18 |
| Boron (B)                                        |        |             | 4.1     |           | mg/kg |     | 0-8.2      | 14-JUN-18 |
| Cadmium (Cd)                                     |        |             | 100.6   |           | %     |     | 70-130     | 14-JUN-18 |
| Chromium (Cr)                                    |        |             | 100.7   |           | %     |     | 70-130     | 14-JUN-18 |
| Cobalt (Co)                                      |        |             | 94.2    |           | %     |     | 70-130     | 14-JUN-18 |
| Copper (Cu)                                      |        |             | 100.8   |           | %     |     | 70-130     | 14-JUN-18 |
| Lead (Pb)                                        |        |             | 97.8    |           | %     |     | 70-130     | 14-JUN-18 |
| Molybdenum (Mo)                                  |        |             | 105.3   |           | %     |     | 70-130     | 14-JUN-18 |
| Nickel (Ni)                                      |        |             | 100.2   |           | %     |     | 70-130     | 14-JUN-18 |
| Selenium (Se)                                    |        |             | 0.30    |           | mg/kg |     | 0.11-0.51  | 14-JUN-18 |
| Silver (Ag)                                      |        |             | 0.22    |           | mg/kg |     | 0.13-0.33  | 14-JUN-18 |
| Thallium (TI)                                    |        |             | 0.115   |           | mg/kg |     | 0.077-0.18 | 14-JUN-18 |
| Uranium (U)                                      |        |             | 100.7   |           | %     |     | 70-130     | 14-JUN-18 |
| Vanadium (V)                                     |        |             | 102.7   |           | %     |     | 70-130     | 14-JUN-18 |
| Zinc (Zn)                                        |        |             | 97.0    |           | %     |     | 70-130     | 14-JUN-18 |
| WG2796492-6 DUP                                  |        | L2107454-1  |         |           | ,     |     |            |           |
| Antimony (Sb)                                    |        | <1.0        | <1.0    | RPD-NA    | ug/g  | N/A | 30         | 14-JUN-18 |
| Arsenic (As)                                     |        | 2.6         | 2.6     |           | ug/g  | 0.6 | 30         | 14-JUN-18 |
| Barium (Ba)                                      |        | 49.0        | 55.2    |           | ug/g  | 12  | 40         | 14-JUN-18 |
| Beryllium (Be)                                   |        | <0.50       | <0.50   | RPD-NA    | ug/g  | N/A | 30         | 14-JUN-18 |
| Boron (B)                                        |        | 5.6         | 5.5     |           | ug/g  | 8.0 | 30         | 14-JUN-18 |
| Cadmium (Cd)                                     |        | <0.50       | <0.50   | RPD-NA    | ug/g  | N/A | 30         | 14-JUN-18 |
| Chromium (Cr)                                    |        | 15.0        | 14.9    |           | ug/g  | 0.7 | 30         | 14-JUN-18 |
| Cobalt (Co)                                      |        | 5.5         | 5.5     |           | ug/g  | 0.7 | 30         | 14-JUN-18 |
| Copper (Cu)                                      |        | 11.3        | 11.6    |           | ug/g  | 2.9 | 30         | 14-JUN-18 |
| Lead (Pb)                                        |        | 16.5        | 16.8    |           | ug/g  | 2.2 | 40         | 14-JUN-18 |



Workorder: L2107448 Report Date: 14-JUN-18 Page 4 of 7

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                             | Matrix | Reference  | Result | Qualifier | Units | RPD | Limit  | Analyzed  |
|----------------------------------|--------|------------|--------|-----------|-------|-----|--------|-----------|
| MET-200.2-CCMS-WT                | Soil   |            |        |           |       |     |        |           |
| Batch R4083103                   |        |            |        |           |       |     |        |           |
| WG2796492-6 DUP                  |        | L2107454-1 |        |           | ,     |     |        |           |
| Molybdenum (Mo)                  |        | <1.0       | <1.0   | RPD-NA    | ug/g  | N/A | 40     | 14-JUN-18 |
| Nickel (Ni)                      |        | 12.5       | 13.1   |           | ug/g  | 5.1 | 30     | 14-JUN-18 |
| Selenium (Se)                    |        | <1.0       | <1.0   | RPD-NA    | ug/g  | N/A | 30     | 14-JUN-18 |
| Silver (Ag)                      |        | <0.20      | <0.20  | RPD-NA    | ug/g  | N/A | 40     | 14-JUN-18 |
| Thallium (TI)                    |        | <0.50      | <0.50  | RPD-NA    | ug/g  | N/A | 30     | 14-JUN-18 |
| Uranium (U)                      |        | <1.0       | <1.0   | RPD-NA    | ug/g  | N/A | 30     | 14-JUN-18 |
| Vanadium (V)                     |        | 25.8       | 26.8   |           | ug/g  | 3.7 | 30     | 14-JUN-18 |
| Zinc (Zn)                        |        | 40.0       | 40.7   |           | ug/g  | 1.8 | 30     | 14-JUN-18 |
| WG2796492-4 LCS<br>Antimony (Sb) |        |            | 106.7  |           | %     |     | 80-120 | 14-JUN-18 |
| Arsenic (As)                     |        |            | 106.1  |           | %     |     | 80-120 | 14-JUN-18 |
| Barium (Ba)                      |        |            | 115.8  |           | %     |     | 80-120 | 14-JUN-18 |
| Beryllium (Be)                   |        |            | 92.5   |           | %     |     | 80-120 | 14-JUN-18 |
| Boron (B)                        |        |            | 95.5   |           | %     |     | 80-120 | 14-JUN-18 |
| Cadmium (Cd)                     |        |            | 103.9  |           | %     |     | 80-120 | 14-JUN-18 |
| Chromium (Cr)                    |        |            | 107.3  |           | %     |     | 80-120 | 14-JUN-18 |
| Cobalt (Co)                      |        |            | 97.7   |           | %     |     | 80-120 | 14-JUN-18 |
| Copper (Cu)                      |        |            | 102.0  |           | %     |     | 80-120 | 14-JUN-18 |
| Lead (Pb)                        |        |            | 105.0  |           | %     |     | 80-120 | 14-JUN-18 |
| Molybdenum (Mo)                  |        |            | 106.3  |           | %     |     | 80-120 | 14-JUN-18 |
| Nickel (Ni)                      |        |            | 105.8  |           | %     |     | 80-120 | 14-JUN-18 |
| Selenium (Se)                    |        |            | 101.5  |           | %     |     | 80-120 | 14-JUN-18 |
| Silver (Ag)                      |        |            | 95.6   |           | %     |     | 80-120 | 14-JUN-18 |
| Thallium (TI)                    |        |            | 104.1  |           | %     |     | 80-120 | 14-JUN-18 |
| Uranium (U)                      |        |            | 104.0  |           | %     |     | 80-120 | 14-JUN-18 |
| Vanadium (V)                     |        |            | 109.4  |           | %     |     | 80-120 | 14-JUN-18 |
| Zinc (Zn)                        |        |            | 97.0   |           | %     |     | 80-120 | 14-JUN-18 |
| WG2796492-1 MB                   |        |            |        |           |       |     |        |           |
| Antimony (Sb)                    |        |            | <0.10  |           | mg/kg |     | 0.1    | 14-JUN-18 |
| Arsenic (As)                     |        |            | <0.10  |           | mg/kg |     | 0.1    | 14-JUN-18 |
| Barium (Ba)                      |        |            | <0.50  |           | mg/kg |     | 0.5    | 14-JUN-18 |
| Beryllium (Be)                   |        |            | <0.10  |           | mg/kg |     | 0.1    | 14-JUN-18 |
| Boron (B)                        |        |            | <5.0   |           | mg/kg |     | 5      | 14-JUN-18 |
| Cadmium (Cd)                     |        |            | <0.020 |           | mg/kg |     | 0.02   | 14-JUN-18 |



Workorder: L2107448 Report Date: 14-JUN-18 Page 5 of 7

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                                | Matrix | Reference                 | Result | Qualifier | Units    | RPD  | Limit   | Analyzed   |
|-------------------------------------|--------|---------------------------|--------|-----------|----------|------|---------|------------|
| MET-200.2-CCMS-WT                   | Soil   |                           |        |           |          |      |         |            |
| Batch R4083103<br>WG2796492-1 MB    |        |                           |        |           |          |      |         |            |
| Chromium (Cr)                       |        |                           | <0.50  |           | mg/kg    |      | 0.5     | 14-JUN-18  |
| Cobalt (Co)                         |        |                           | <0.10  |           | mg/kg    |      | 0.1     | 14-JUN-18  |
| Copper (Cu)                         |        |                           | <0.50  |           | mg/kg    |      | 0.5     | 14-JUN-18  |
| Lead (Pb)                           |        |                           | <0.50  |           | mg/kg    |      | 0.5     | 14-JUN-18  |
| Molybdenum (Mo)                     |        |                           | <0.10  |           | mg/kg    |      | 0.1     | 14-JUN-18  |
| Nickel (Ni)                         |        |                           | <0.50  |           | mg/kg    |      | 0.5     | 14-JUN-18  |
| Selenium (Se)                       |        |                           | <0.20  |           | mg/kg    |      | 0.2     | 14-JUN-18  |
| Silver (Ag)                         |        |                           | <0.10  |           | mg/kg    |      | 0.1     | 14-JUN-18  |
| Thallium (TI)                       |        |                           | <0.050 |           | mg/kg    |      | 0.05    | 14-JUN-18  |
| Uranium (U)                         |        |                           | <0.050 |           | mg/kg    |      | 0.05    | 14-JUN-18  |
| Vanadium (V)                        |        |                           | <0.20  |           | mg/kg    |      | 0.2     | 14-JUN-18  |
| Zinc (Zn)                           |        |                           | <2.0   |           | mg/kg    |      | 2       | 14-JUN-18  |
| MOISTURE-WT                         | Soil   |                           |        |           |          |      |         |            |
| Batch R4080211                      |        |                           |        |           |          |      |         |            |
| <b>WG2793907-3 DUP</b> % Moisture   |        | <b>L2107448-2</b><br>3.76 | 3.52   |           | %        | 6.5  | 20      | 12-JUN-18  |
| WG2793907-2 LCS<br>% Moisture       |        |                           | 99.9   |           | %        |      | 90-110  | 12-JUN-18  |
| <b>WG2793907-1 MB</b><br>% Moisture |        |                           | <0.10  |           | %        |      | 0.1     | 12-JUN-18  |
| PH-WT                               | Soil   |                           |        |           |          |      |         |            |
| Batch R4079067                      |        |                           |        |           |          |      |         |            |
| WG2792547-3 DUP                     |        | L2107447-1                |        |           |          |      |         |            |
| рН                                  |        | 7.14                      | 7.21   | J         | pH units | 0.07 | 0.3     | 11-JUN-18  |
| <b>WG2793601-1 LCS</b><br>pH        |        |                           | 6.97   |           | pH units |      | 6.9-7.1 | 11-JUN-18  |
| SAR-R511-WT                         | Soil   |                           |        |           |          |      |         |            |
| Batch R4081823                      |        |                           |        |           |          |      |         |            |
| WG2794470-4 DUP                     |        | WG2794470-3               |        |           |          |      |         |            |
| Calcium (Ca)                        |        | 9.4                       | 9.2    |           | mg/L     | 1.8  | 30      | 12-JUN-18  |
| Sodium (Na)                         |        | 81.7                      | 81.5   |           | mg/L     | 0.2  | 30      | 12-JUN-18  |
| Magnesium (Mg)                      |        | <1.0                      | <1.0   | RPD-NA    | mg/L     | N/A  | 30      | 12-JUN-18  |
| WG2794470-2 IRM<br>Calcium (Ca)     |        | WT SAR2                   | 102.9  |           | %        |      | 70 120  | 42 ILIN 49 |
| Sodium (Na)                         |        |                           | 102.9  |           | %        |      | 70-130  | 12-JUN-18  |
| Joulum (Na)                         |        |                           | 102.3  |           | 70       |      | 70-130  | 12-JUN-18  |



Workorder: L2107448

Report Date: 14-JUN-18

Page 6 of 7

Client:

Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                                                | Matrix | Reference | Result | Qualifier | Units | RPD | Limit  | Analyzed  |
|-----------------------------------------------------|--------|-----------|--------|-----------|-------|-----|--------|-----------|
| SAR-R511-WT                                         | Soil   |           |        |           |       |     |        |           |
| Batch R4081823<br>WG2794470-2 IRM<br>Magnesium (Mg) |        | WT SAR2   | 97.0   |           | %     |     | 70-130 | 12-JUN-18 |
| <b>WG2794470-1 MB</b> Calcium (Ca)                  |        |           | <1.0   |           | mg/L  |     | 1      | 12-JUN-18 |
| Sodium (Na)                                         |        |           | <1.0   |           | mg/L  |     | 1      | 12-JUN-18 |
| Magnesium (Mg)                                      |        |           | <1.0   |           | mg/L  |     | 1      | 12-JUN-18 |

Workorder: L2107448 Report Date: 14-JUN-18

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

Contact: CHAORAN LI

Legend:

Limit ALS Control Limit (Data Quality Objectives)

DUP Duplicate

RPD Relative Percent Difference

N/A Not Available

LCS Laboratory Control Sample SRM Standard Reference Material

MS Matrix Spike

MSD Matrix Spike Duplicate

ADE Average Desorption Efficiency

MB Method Blank

IRM Internal Reference Material
CRM Certified Reference Material
CCV Continuing Calibration Verification
CVS Calibration Verification Standard
LCSD Laboratory Control Sample Duplicate

#### **Sample Parameter Qualifier Definitions:**

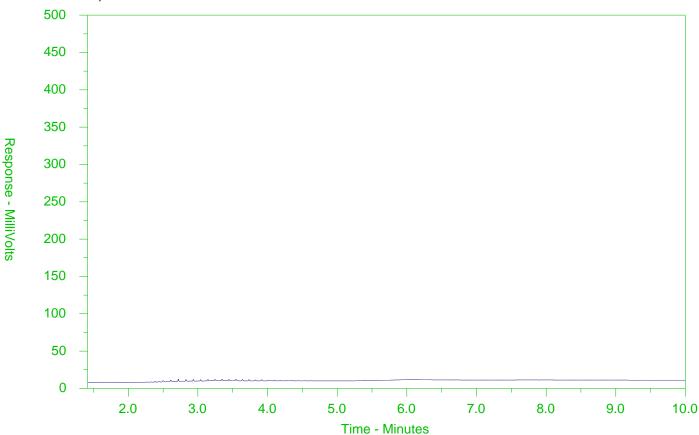
|   | Qualifier | Description                                                                                 |
|---|-----------|---------------------------------------------------------------------------------------------|
|   | J         | Duplicate results and limits are expressed in terms of absolute difference.                 |
| F | RPD-NA    | Relative Percent Difference Not Available due to result(s) being less than detection limit. |

#### **Hold Time Exceedances:**

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.


Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Page 7 of 7

#### CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT



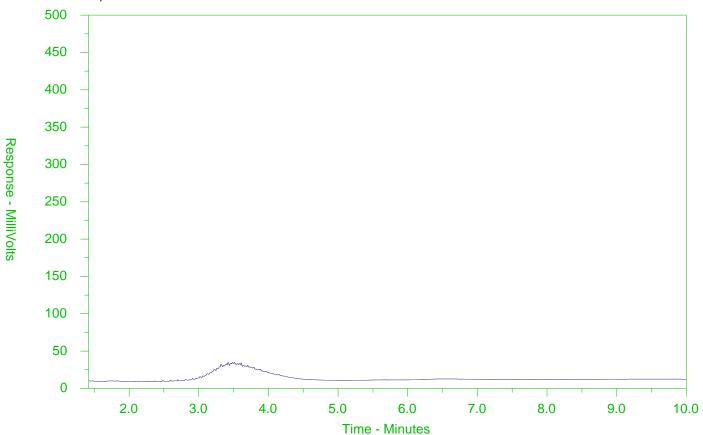
ALS Sample ID: L2107448-1 Client Sample ID: BH3-SS5



| <b>←</b> -F2- | →←                                       | _F3 <b>→</b> F4- | <b>→</b> |  |  |  |  |  |
|---------------|------------------------------------------|------------------|----------|--|--|--|--|--|
| nC10          | nC16                                     | nC34             | nC50     |  |  |  |  |  |
| 174°C         | 287°C                                    | 481°C            | 575°C    |  |  |  |  |  |
| 346°F         | 549°F                                    | 898°F            | 1067°F   |  |  |  |  |  |
| Gasolin       | Gasoline → Motor Oils/Lube Oils/Grease → |                  |          |  |  |  |  |  |
| •             | -Diesel/Jet                              | Fuels→           |          |  |  |  |  |  |

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at <a href="https://www.alsglobal.com">www.alsglobal.com</a>.

#### CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT



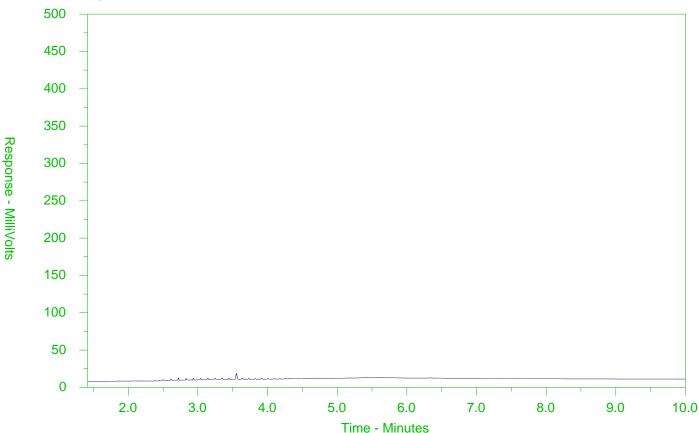
ALS Sample ID: L2107448-3 Client Sample ID: BH7-SS3



| <b>←</b> -F2- | →←          | _F3 <del></del> F4_          | <b>→</b> |  |
|---------------|-------------|------------------------------|----------|--|
| nC10          | nC16        | nC34                         | nC50     |  |
| 174°C         | 287°C       | 481°C                        | 575°C    |  |
| 346°F         | 549°F       | 898°F                        | 1067°F   |  |
| Gasolin       | ie →        | otor Oils/Lube Oils/Grease—— | -        |  |
| <b>←</b>      | -Diesel/Jet | Fuels→                       |          |  |

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at <a href="https://www.alsglobal.com">www.alsglobal.com</a>.

#### CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT



ALS Sample ID: L2107448-4 Client Sample ID: DUP-S3



| <b>←</b> -F2- | →←                                       | _F3 <b>→</b> F4- | <b>→</b> |  |  |  |  |  |
|---------------|------------------------------------------|------------------|----------|--|--|--|--|--|
| nC10          | nC16                                     | nC34             | nC50     |  |  |  |  |  |
| 174°C         | 287°C                                    | 481°C            | 575°C    |  |  |  |  |  |
| 346°F         | 549°F                                    | 898°F            | 1067°F   |  |  |  |  |  |
| Gasolin       | Gasoline → Motor Oils/Lube Oils/Grease → |                  |          |  |  |  |  |  |
| •             | -Diesel/Jet                              | Fuels→           |          |  |  |  |  |  |

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at <a href="https://www.alsglobal.com">www.alsglobal.com</a>.

# ALS Environmental

#### Chain of Custody (COC) / Analytical Request Form

12107448-COFC

COC Number: 15 -

je 1 of

4

Canada Toll Free: 1 800 668 9878 www.aisglobal.com Select Service Level Below - Please confirm all E&P TATs with your AM - surcharges will apply Report To Contact and company name below will appear on the final report Report Format / Distribution ☑ Standard TAT if received by 3 pm - business days - no surcharges apply Company: SP Consultants (Sirati and Partners) Ltd Select Report Format: PDF FEXCEL DEDD (DIGITAL) Regular (R) Chaoran Li 4 day [P4] 1 Business day [E1] Contact: 905-669-4477 3 day [P3] Phone: ☑ Compare Results to Criteria on Report - provide details below if box checked Same Day, Weekend or Select Distribution: ☑ EMAIL ☐ MAIL ☐ FAX Statutory holiday [E0] Company address below will appear on the final report 2 day [P2] Date and Time Required for all E&P TATs: 12700 Keele Street Email 1 or Fax chaoranli@spconsultantsltd.ca Street: City/Province: King City, Ontario Email 2 ggarofalo@spconsultantsitd.ca For tests that can not be performed according to the service level selected, you will be contacted. L7B 1H5 Postal Code Email 3 **Analysis Request** Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below Same as Report To ☑ YES □ NO. Invoice Distribution Invoice To ☑ YES □ NO Select Invoice Distribution: 

EMAIL 

MAIL ☐ FAX Copy of Invoice with Report Email 1 or Fax chaoranti@spconsultantsltd.ca Company: GGarofalo@spconsultantsitd.ca Contact: Email 2 of Containers Project Information Oil and Gas Required Fields (client use) ALS Account #1 Quote #: Q63375 AFE/Cost Center: PO# Job# Major/Minor Code: Routing Code: PO / AFE: SP18-306-20 Requisitioner: LSD: Location: L210744 8 ALS Lab Work Order # (lab use only) ALS Contact: Chaoran Li RICK H Sampler: 06C Sample Identification and/or Coordinates Date Time ALS Sample # Sample Type 쫗 (lab use only) (This description will appear on the report) (dd-mmm-yy) (hh:mm) внз-ss5 ` 05-06-2018 10:00 Soil R 3 05-06-2018 10:00 Soil R 1 BH7-SS1 BH7-SS3 05-06-2018 12:00 Soil R 3 DUP-S3 05-06-2018 Soil R 3 SAMPLE CONDITION AS RECEIVED (lab use only) Special Instructions / Specify Criteria to add on report by clicking on the drop-down list below Drinking Water (DW) Samples1 (client use) (electronic COC only) SIF Observations No Frozen  $\Box$ Are samples taken from a Regulated DW System? П Yes Ice Packs ☐ YES 
☑ NO Ontario Regulation 153/04 - April 15, 2011 Standards Cooling Initiated INITIAL COOLER TEMPERATURES °C FINAL COOLER TEMPERATURES °C Are samples for human drinking water use? Table 1 and Table 2 RPI ☐ YES Î ☑ NO INITIAL SHIPMENT RECEPTION (lab use only) FINAL SHIPMENT RECEPTION (lab use only) SHIPMENT RELEASE (client use) Received by Time: Date: June 5, 2018 Date: Received by: Released by: Chaoran Li Time:



12700 Keele St

Sirati & Partners Consultants Ltd. Date Received: 24-AUG-18

(Concord) Report Date: 30-AUG-18 10:06 (MT)

ATTN: CHAORAN LI Version: FINAL

King City ON L7B 1H5

Client Phone: 905-833-1582

# Certificate of Analysis

Lab Work Order #: L2152974

Project P.O. #: SP18-306-20

Job Reference: SP18-306-20

C of C Numbers: 17-727586

Legal Site Desc:

Rick Hawthorne Account Manager

 $[This\ report\ shall\ not\ be\ reproduced\ except\ in\ full\ without\ the\ written\ authority\ of\ the\ Laboratory.]$ 

ADDRESS: 5730 Coopers Avenue, Unit #26 , Mississauga, ON L4Z 2E9 Canada | Phone: +1 905 507 6910 | Fax: +1 905 507 6927 ALS CANADA LTD Part of the ALS Group An ALS Limited Company





L2152974 CONT'D....

Job Reference: SP18-306-20

PAGE 2 of 17

30-AUG-18 10:06 (MT)

## **Summary of Guideline Exceedances**

| Guideline            |                            |                                         |                                |        |                 |              |
|----------------------|----------------------------|-----------------------------------------|--------------------------------|--------|-----------------|--------------|
| ALS ID               | Client ID                  | Grouping                                | Analyte                        | Result | Guideline Limit | Unit         |
| ntario Reç           | gulation 153/04 - April 15 | 5, 2011 Standards - T1-Soil-Res/Park/Iı | nst/Ind/Com/Commu Property Use |        |                 |              |
| 2152974-2            | BH202-SS5                  | Volatile Organic Compounds              | n-Hexane                       | 0.208  | 0.05            | ug/g         |
|                      |                            | Hydrocarbons                            | F2 (C10-C16)                   | 44     | 10              | ug/g         |
| 2152974-3            | BH214-SS2                  | Saturated Paste Extractables            | SAR                            | 5.13   | 2.4             | SAR          |
| 2152974-6            | BH201-SS4                  | Hydrocarbons                            | F2 (C10-C16)                   | 29     | 10              | ug/g         |
| 2152974-7            | BH204-SS4                  | Volatile Organic Compounds              | Benzene                        | 2.26   | 0.02            |              |
|                      |                            | 2 . дание 2                             | Methylene Chloride             | <0.35  | 0.02            | ug/g<br>ug/g |
|                      |                            |                                         | Ethylbenzene                   | 1.77   | 0.05            | ug/g         |
|                      |                            |                                         | n-Hexane                       | 1.49   | 0.05            | ug/g         |
|                      |                            |                                         | Toluene                        | 1.00   | 0.2             | ug/g         |
|                      |                            | Xylenes (Total)                         | 10.0                           | 0.05   | ug/g            |              |
|                      |                            | Hydrocarbons                            | F1 (C6-C10)                    | 48.0   | 25              | ug/g         |
|                      |                            |                                         | F1-BTEX                        | 33.0   | 25              | ug/g         |
|                      |                            |                                         | F2 (C10-C16)                   | 37     | 10              | ug/g         |
| .2152974-8 BH205-SS3 | Volatile Organic Compounds | Benzene                                 | 0.0400                         | 0.02   | ug/g            |              |
|                      |                            | Ethylbenzene                            | 0.943                          | 0.05   | ug/g            |              |
|                      |                            |                                         | n-Hexane                       | 0.054  | 0.05            | ug/g         |
|                      |                            |                                         | 1,1,2,2-Tetrachloroethane      | <0.20  | 0.05            | ug/g         |
|                      |                            |                                         | 1,1,2-Trichloroethane          | <0.20  | 0.05            | ug/g         |
|                      |                            |                                         | Xylenes (Total)                | 2.29   | 0.05            | ug/g         |
|                      |                            | Hydrocarbons                            | F1 (C6-C10)                    | 71     | 25              | ug/g         |
|                      |                            |                                         | F1-BTEX                        | 68     | 25              | ug/g         |
|                      |                            |                                         | F2 (C10-C16)                   | 331    | 10              | ug/g         |
| 2152974-9            | BH207-SS4                  | Volatile Organic Compounds              | Benzene                        | 0.0786 | 0.02            | ug/g         |
|                      |                            |                                         | n-Hexane                       | 0.072  | 0.05            | ug/g         |
| 2152974-10           | BH208-SS5                  | Volatile Organic Compounds              | Benzene                        | 0.0708 | 0.02            | ug/g         |
|                      |                            |                                         | Bromodichloromethane           | <0.15  | 0.05            | ug/g         |
|                      |                            |                                         | Ethylbenzene                   | 0.060  | 0.05            | ug/g         |
|                      |                            |                                         | n-Hexane                       | 0.210  | 0.05            | ug/g         |
|                      |                            |                                         | 1,1,2-Trichloroethane          | <0.25  | 0.05            | ug/g         |
|                      |                            |                                         | Xylenes (Total)                | 0.075  | 0.05            | ug/g         |
|                      |                            | Hydrocarbons                            | F1 (C6-C10)                    | 47.8   | 25              | ug/g         |
|                      |                            |                                         | F1-BTEX                        | 47.6   | 25              | ug/g         |
|                      |                            |                                         | F2 (C10-C16)                   | 15     | 10              | ug/g         |
| 2152974-11           | DUP-S202                   | Volatile Organic Compounds              | Benzene                        | 0.0714 | 0.02            | ug/g         |

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2152974 CONT'D....

Job Reference: SP18-306-20

PAGE 3 of 17

30-AUG-18 10:06 (MT)

## **Summary of Guideline Exceedances**

| Guideline<br>ALS ID  | Client ID                  | Grouping                                 | Analyte                   | Result    | Guideline Limit | Unit     |
|----------------------|----------------------------|------------------------------------------|---------------------------|-----------|-----------------|----------|
|                      |                            | 15, 2011 Standards - T1-Soil-Res/Park/li |                           | - Troount |                 | <u> </u> |
| _2152974-11          | ·                          | Volatile Organic Compounds               | n-Hexane                  | 0.076     | 0.05            | ug/g     |
|                      |                            | Hydrocarbons                             | F2 (C10-C16)              | 13        | 10              | ug/g     |
| 2152974-12           | DUP-S203                   | Hydrocarbons                             | F2 (C10-C16)              | 12        | 10              | ug/g     |
| Ontario Reg          | julation 153/04 - April 1  | 5, 2011 Standards - T2-Soil-Res/Park/Ii  | ,                         |           |                 | 33       |
| 2152974-3            | BH214-SS2                  | Saturated Paste Extractables             | SAR                       | 5.13      | 5               | SAR      |
| .2152974-7 BH204-SS4 | Volatile Organic Compounds | Benzene                                  | 2.26                      | 0.21      | ug/g            |          |
|                      |                            |                                          | Methylene Chloride        | <0.35     | 0.1             | ug/g     |
|                      |                            |                                          | Ethylbenzene              | 1.77      | 1.1             | ug/g     |
|                      |                            |                                          | Xylenes (Total)           | 10.0      | 3.1             | ug/g     |
| 2152974-8            | BH205-SS3                  | Volatile Organic Compounds               | 1,1,2,2-Tetrachloroethane | <0.20     | 0.05            | ug/g     |
|                      |                            |                                          | 1,1,2-Trichloroethane     | <0.20     | 0.05            | ug/g     |
|                      |                            | Hydrocarbons                             | F1 (C6-C10)               | 71        | 55              | ug/g     |
|                      |                            |                                          | F1-BTEX                   | 68        | 55              | ug/g     |
|                      |                            |                                          | F2 (C10-C16)              | 331       | 98              | ug/g     |
| .2152974-10          | BH208-SS5                  | Volatile Organic Compounds               | 1,1,2-Trichloroethane     | <0.25     | 0.05            | ug/g     |

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2152974 CONT'D....

Job Reference: SP18-306-20

PAGE 4 of 17

30-AUG-18 10:06 (MT)

**Physical Tests - SOIL** 

| i ilysicai i csts Goil |          |                |            |            |            |            |            |            |            |            |            |            |
|------------------------|----------|----------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|                        |          | La             | ıb ID      | L2152974-1 | L2152974-2 | L2152974-3 | L2152974-4 | L2152974-5 | L2152974-6 | L2152974-7 | L2152974-8 | L2152974-9 |
|                        | ;        | Sample         | Date       | 23-AUG-18  | 24-AUG-18  | 23-AUG-18  |
|                        |          | Samp           | le ID      | BH201-SS2  | BH202-SS5  | BH214-SS2  | BH215-SS2  | BH216-SS2  | BH201-SS4  | BH204-SS4  | BH205-SS3  | BH207-SS4  |
|                        |          |                |            |            |            |            |            |            |            |            |            |            |
|                        |          | Cd. 1 :        | !!4        |            |            |            |            |            |            |            |            |            |
| Amalista               | Unit     | Guide Li<br>#1 | #2         |            |            |            |            |            |            |            |            |            |
| Analyte                | Oilit    | πι             | # <b>Z</b> |            |            |            |            |            |            |            |            |            |
| Conductivity           | mS/cm    | 0.57           | 0.7        | 0.439      |            | 0.310      | 0.363      | 0.350      |            |            |            |            |
| % Moisture             | %        | -              | -          | 13.6       | 17.5       | 12.3       | 19.3       | 21.7       | 15.7       | 12.4       | 12.5       | 17.5       |
| pH                     | pH units | -              | -          | 7.40       |            | 7.69       | 7.61       | 6.91       |            |            |            |            |
|                        |          |                |            |            |            |            |            |            |            |            |            |            |

Guide Limit #1: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use Guide Limit #2: T2-Soil-Res/Park/Inst. Property Use (Coarse)

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2152974 CONT'D....

Job Reference: SP18-306-20

PAGE 5 of 17

30-AUG-18 10:06 (MT)

#### **Physical Tests - SOIL**

| i ilyoloai rooto ooli |          |             |              |             |             |             |
|-----------------------|----------|-------------|--------------|-------------|-------------|-------------|
|                       |          | L           | _ab ID       | L2152974-10 | L2152974-11 | L2152974-12 |
|                       | \$       | Sample      | e Date       | 23-AUG-18   | 23-AUG-18   | 23-AUG-18   |
|                       |          | Sam         | ple ID       | BH208-SS5   | DUP-S202    | DUP-S203    |
| Analyte               | Unit     | Guide<br>#1 | Limits<br>#2 |             |             |             |
|                       |          |             |              |             |             |             |
| Conductivity          | mS/cm    | 0.57        | 0.7          |             |             |             |
| % Moisture            | %        | -           | -            | 14.7        | 17.1        | 15.8        |
| pH                    | pH units | -           | -            |             |             |             |
|                       |          |             |              |             |             |             |

Guide Limit #1: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use Guide Limit #2: T2-Soil-Res/Park/Inst. Property Use (Coarse)

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2152974 CONT'D....

Job Reference: SP18-306-20

PAGE 6 of 17

30-AUG-18 10:06 (MT)

#### Cyanides - SOIL

| Cyanide, Weak Acid Diss | ug/g | 0.051  | 0.051  | <0.050     | <0.050     | <0.050     | <0.050     |
|-------------------------|------|--------|--------|------------|------------|------------|------------|
| Analyte                 | Unit | #1     | #2     |            |            |            |            |
|                         |      | Guide  | Limits |            |            |            |            |
|                         |      | Sam    | ple ID | BH201-SS2  | BH214-SS2  | BH215-SS2  | BH216-SS2  |
|                         |      | Sample |        | 23-AUG-18  | 23-AUG-18  | 23-AUG-18  | 23-AUG-18  |
|                         |      | -      | Lab ID | L2152974-1 | L2152974-3 | L2152974-4 | L2152974-5 |

Guide Limit #1: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use Guide Limit #2: T2-Soil-Res/Park/Inst. Property Use (Coarse)

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2152974 CONT'D....

Job Reference: SP18-306-20

PAGE 7 of 17

30-AUG-18 10:06 (MT)

#### **Saturated Paste Extractables - SOIL**

|                |      |       | Lab ID | L2152974-1 | L2152974-3 | L2152974-4 | L2152974-5 |
|----------------|------|-------|--------|------------|------------|------------|------------|
|                |      | Sampl | e Date | 23-AUG-18  | 23-AUG-18  | 23-AUG-18  | 23-AUG-18  |
|                |      | Sam   | ple ID | BH201-SS2  | BH214-SS2  | BH215-SS2  | BH216-SS2  |
|                |      | Guide | Limits |            |            |            |            |
| Analyte        | Unit | #1    | #2     |            |            |            |            |
| SAR            | SAR  | 2.4   | 5      | 0.63       | 5.13 SAR:M | 1.99       | 2.29       |
| Calcium (Ca)   | mg/L | -     | -      | 28.7       | 4.4        | 10.8       | 10.8       |
| Magnesium (Mg) | mg/L | -     | -      | 2.4        | <1.0       | 1.5        | 1.0        |
| Sodium (Na)    | mg/L | -     | -      | 13.2       | 38.9       | 26.4       | 29.4       |
|                |      |       |        |            |            |            |            |

Guide Limit #1: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use Guide Limit #2: T2-Soil-Res/Park/Inst. Property Use (Coarse)

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2152974 CONT'D....

Job Reference: SP18-306-20

PAGE 8 of 17

30-AUG-18 10:06 (MT)

#### **Metals - SOIL**

|                           |      | ı                             | Lab ID | L2152974-1 | L2152974-3 | L2152974-4 | L2152974-5 |  |
|---------------------------|------|-------------------------------|--------|------------|------------|------------|------------|--|
|                           |      | Sample                        | e Date | 23-AUG-18  | 23-AUG-18  | 23-AUG-18  | 23-AUG-18  |  |
|                           |      | Sample ID  Guide Limits #1 #2 |        | BH201-SS2  | BH214-SS2  | BH215-SS2  | BH216-SS2  |  |
| Analyte                   | Unit |                               |        |            |            |            |            |  |
| Antimony (Sb)             | ug/g | 1.3                           | 7.5    | <1.0       | <1.0       | <1.0       | <1.0       |  |
| Arsenic (As)              | ug/g | 18                            | 18     | 5.4        | 5.7        | 8.5        | 5.7        |  |
| Barium (Ba)               | ug/g | 220                           | 390    | 112        | 73.2       | 118        | 79.3       |  |
| Beryllium (Be)            | ug/g | 2.5                           | 4      | 0.80       | 0.60       | 0.66       | 0.60       |  |
| Boron (B)                 | ug/g | 36                            | 120    | 10.7       | 10.0       | 9.6        | 7.0        |  |
| Boron (B), Hot Water Ext. | ug/g | 36                            | 1.5    | 0.41       | 0.24       | 0.29       | 0.56       |  |
| Cadmium (Cd)              | ug/g | 1.2                           | 1.2    | <0.50      | <0.50      | <0.50      | <0.50      |  |
| Chromium (Cr)             | ug/g | 70                            | 160    | 24.9       | 20.1       | 23.6       | 17.0       |  |
| Cobalt (Co)               | ug/g | 21                            | 22     | 12.1       | 9.2        | 10.5       | 7.7        |  |
| Copper (Cu)               | ug/g | 92                            | 140    | 28.2       | 24.8       | 30.1       | 25.6       |  |
| Lead (Pb)                 | ug/g | 120                           | 120    | 10.8       | 20.9       | 20.7       | 15.1       |  |
| Mercury (Hg)              | ug/g | 0.27                          | 0.27   | 0.0240     | 0.0573     | 0.0447     | 0.0346     |  |
| Molybdenum (Mo)           | ug/g | 2                             | 6.9    | <1.0       | <1.0       | <1.0       | <1.0       |  |
| Nickel (Ni)               | ug/g | 82                            | 100    | 26.3       | 20.4       | 22.2       | 16.1       |  |
| Selenium (Se)             | ug/g | 1.5                           | 2.4    | <1.0       | <1.0       | <1.0       | <1.0       |  |
| Silver (Ag)               | ug/g | 0.5                           | 20     | <0.20      | <0.20      | <0.20      | <0.20      |  |
| Thallium (TI)             | ug/g | 1                             | 1      | <0.50      | <0.50      | <0.50      | <0.50      |  |
| Uranium (U)               | ug/g | 2.5                           | 23     | <1.0       | <1.0       | <1.0       | <1.0       |  |
| Vanadium (V)              | ug/g | 86                            | 86     | 36.0       | 30.8       | 34.0       | 27.6       |  |
| Zinc (Zn)                 | ug/g | 290                           | 340    | 64.3       | 59.3       | 75.0       | 98.6       |  |
|                           |      |                               |        |            |            |            |            |  |

Guide Limit #1: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use Guide Limit #2: T2-Soil-Res/Park/Inst. Property Use (Coarse)

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2152974 CONT'D....

Job Reference: SP18-306-20

PAGE 9 of 17

30-AUG-18 10:06 (MT)

#### **Speciated Metals - SOIL**

| Chromium, Hexavalent | ug/g | 0.66   | 8      | <0.20      | <0.20      | 0.64       | <0.20      |
|----------------------|------|--------|--------|------------|------------|------------|------------|
| Analyte              | Unit | #1     | #2     |            |            |            |            |
|                      |      | Guide  | Limits |            |            |            |            |
|                      |      |        | -      |            |            |            |            |
|                      |      | Sam    | ple ID | BH201-SS2  | BH214-SS2  | BH215-SS2  | BH216-SS2  |
|                      |      | Sample | e Date | 23-AUG-18  | 23-AUG-18  | 23-AUG-18  | 23-AUG-18  |
|                      |      |        | Lab ID | L2152974-1 | L2152974-3 | L2152974-4 | L2152974-5 |

Guide Limit #1: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use Guide Limit #2: T2-Soil-Res/Park/Inst. Property Use (Coarse)

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2152974 CONT'D.... Job Reference: SP18-306-20 PAGE 10 of 17 30-AUG-18 10:06 (MT)

|                                   |      | Lab ID<br>Sample Date<br>Sample ID |              | L2152974-2<br>24-AUG-18<br>BH202-SS5 | L2152974-6<br>23-AUG-18<br>BH201-SS4 | L2152974-7<br>23-AUG-18<br>BH204-SS4 | L2152974-8<br>23-AUG-18<br>BH205-SS3 | L2152974-9<br>23-AUG-18<br>BH207-SS4 | L2152974-10<br>23-AUG-18<br>BH208-SS5 | L2152974-11<br>23-AUG-18<br>DUP-S202 | L2152974-12<br>23-AUG-18<br>DUP-S203 |
|-----------------------------------|------|------------------------------------|--------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|
| Analyte                           | Unit | Guide<br>#1                        | Limits<br>#2 |                                      |                                      |                                      |                                      |                                      |                                       |                                      |                                      |
| Acetone                           | ug/g | 0.5                                | 16           | <0.50                                | <0.50                                | <0.50                                | <0.50                                | <0.50                                | <0.50                                 | <0.50                                | <0.50                                |
| Benzene                           | ug/g | 0.02                               | 0.21         | <0.0068                              | <0.0068                              | 2.26                                 | 0.0400                               | 0.0786                               | 0.0708                                | 0.0714                               | <0.0068                              |
| Bromodichloromethane              | ug/g | 0.05                               | 1.5          | <0.050                               | <0.050                               | <0.050                               | < 0.050                              | <0.050                               | <0.15 DLVH                            | <0.050                               | < 0.050                              |
| Bromoform                         | ug/g | 0.05                               | 0.27         | <0.050                               | <0.050                               | <0.050                               | <0.050                               | <0.050                               | <0.050                                | <0.050                               | <0.050                               |
| Bromomethane                      | ug/g | 0.05                               | 0.05         | <0.050                               | < 0.050                              | < 0.050                              | <0.050                               | < 0.050                              | <0.050                                | <0.050                               | <0.050                               |
| Carbon tetrachloride              | ug/g | 0.05                               | 0.05         | <0.050                               | < 0.050                              | < 0.050                              | <0.050                               | <0.050                               | <0.050                                | <0.050                               | <0.050                               |
| Chlorobenzene                     | ug/g | 0.05                               | 2.4          | <0.050                               | < 0.050                              | < 0.050                              | <0.050                               | < 0.050                              | <0.050                                | <0.050                               | <0.050                               |
| Dibromochloromethane              | ug/g | 0.05                               | 2.3          | <0.050                               | < 0.050                              | < 0.050                              | <0.050                               | <0.050                               | <0.050                                | <0.050                               | <0.050                               |
| Chloroform                        | ug/g | 0.05                               | 0.05         | <0.050                               | < 0.050                              | < 0.050                              | <0.050                               | < 0.050                              | <0.050                                | <0.050                               | <0.050                               |
| 1,2-Dibromoethane                 | ug/g | 0.05                               | 0.05         | <0.050                               | < 0.050                              | < 0.050                              | <0.050                               | <0.050                               | <0.050                                | <0.050                               | <0.050                               |
| 1,2-Dichlorobenzene               | ug/g | 0.05                               | 1.2          | <0.050                               | < 0.050                              | < 0.050                              | <0.050                               | < 0.050                              | <0.050                                | <0.050                               | <0.050                               |
| 1,3-Dichlorobenzene               | ug/g | 0.05                               | 4.8          | <0.050                               | < 0.050                              | < 0.050                              | <0.050                               | <0.050                               | <0.050                                | <0.050                               | <0.050                               |
| 1,4-Dichlorobenzene               | ug/g | 0.05                               | 0.083        | <0.050                               | < 0.050                              | < 0.050                              | <0.050                               | <0.050                               | <0.050                                | <0.050                               | <0.050                               |
| Dichlorodifluoromethane           | ug/g | 0.05                               | 16           | <0.050                               | < 0.050                              | < 0.050                              | <0.050                               | <0.050                               | <0.050                                | <0.050                               | <0.050                               |
| 1,1-Dichloroethane                | ug/g | 0.05                               | 0.47         | <0.050                               | < 0.050                              | < 0.050                              | <0.050                               | < 0.050                              | <0.050                                | <0.050                               | <0.050                               |
| 1,2-Dichloroethane                | ug/g | 0.05                               | 0.05         | <0.050                               | < 0.050                              | < 0.050                              | <0.050                               | <0.050                               | <0.050                                | <0.050                               | <0.050                               |
| 1,1-Dichloroethylene              | ug/g | 0.05                               | 0.05         | <0.050                               | < 0.050                              | < 0.050                              | <0.050                               | < 0.050                              | <0.050                                | <0.050                               | <0.050                               |
| cis-1,2-Dichloroethylene          | ug/g | 0.05                               | 1.9          | <0.050                               | < 0.050                              | < 0.050                              | <0.050                               | <0.050                               | <0.050                                | <0.050                               | <0.050                               |
| trans-1,2-Dichloroethylene        | ug/g | 0.05                               | 0.084        | <0.050                               | < 0.050                              | < 0.050                              | <0.050                               | <0.050                               | < 0.050                               | <0.050                               | <0.050                               |
| Methylene Chloride                | ug/g | 0.05                               | 0.1          | <0.050                               | < 0.050                              | <0.35 DLVH                           | <0.050                               | <0.050                               | <0.050                                | <0.050                               | <0.050                               |
| 1,2-Dichloropropane               | ug/g | 0.05                               | 0.05         | <0.050                               | < 0.050                              | <0.050                               | <0.050                               | < 0.050                              | <0.050                                | <0.050                               | <0.050                               |
| cis-1,3-Dichloropropene           | ug/g | -                                  | -            | <0.030                               | < 0.030                              | < 0.030                              | <0.030                               | <0.030                               | <0.030                                | <0.030                               | <0.030                               |
| trans-1,3-Dichloropropene         | ug/g | -                                  | -            | < 0.030                              | < 0.030                              | < 0.030                              | <0.030                               | < 0.030                              | <0.030                                | <0.030                               | < 0.030                              |
| 1,3-Dichloropropene (cis & trans) | ug/g | 0.05                               | 0.05         | <0.042                               | <0.042                               | <0.042                               | <0.042                               | <0.042                               | <0.042                                | <0.042                               | <0.042                               |
| Ethylbenzene                      | ug/g | 0.05                               | 1.1          | <0.018                               | <0.018                               | 1.77                                 | 0.943                                | <0.018                               | 0.060                                 | <0.018                               | <0.018                               |
| n-Hexane                          | ug/g | 0.05                               | 2.8          | 0.208                                | <0.050                               | 1.49                                 | 0.054                                | 0.072                                | 0.210                                 | 0.076                                | <0.050                               |
| Methyl Ethyl Ketone               | ug/g | 0.5                                | 16           | <0.50                                | <0.50                                | <0.50                                | <0.50                                | <0.50                                | <0.50                                 | <0.50                                | <0.50                                |
| Methyl Isobutyl Ketone            | ug/g | 0.5                                | 1.7          | <0.50                                | <0.50                                | <0.50                                | <0.50                                | <0.50                                | <0.50                                 | <0.50                                | <0.50                                |
| MTBE                              | ug/g | 0.05                               | 0.75         | <0.050                               | <0.050                               | <0.050                               | <0.050                               | <0.050                               | <0.050                                | <0.050                               | <0.050                               |
| Styrene                           | ug/g | 0.05                               | 0.7          | <0.050                               | <0.050                               | <0.050                               | <0.050                               | <0.050                               | <0.050                                | <0.050                               | <0.050                               |

Guide Limit #1: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use Guide Limit #2: T2-Soil-Res/Park/Inst. Property Use (Coarse)

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2152974 CONT'D.... Job Reference: SP18-306-20 PAGE 11 of 17 30-AUG-18 10:06 (MT)

Volatile Organic Compounds - SOIL

|                                 |      |             | _ab ID       | L2152974-2 | L2152974-6 | L2152974-7 | L2152974-8 | L2152974-9 | L2152974-10 | L2152974-11 | L2152974-12 |
|---------------------------------|------|-------------|--------------|------------|------------|------------|------------|------------|-------------|-------------|-------------|
|                                 |      | Sample      |              | 24-AUG-18  | 23-AUG-18  | 23-AUG-18  | 23-AUG-18  | 23-AUG-18  | 23-AUG-18   | 23-AUG-18   | 23-AUG-18   |
|                                 |      | •           | ple ID       | BH202-SS5  | BH201-SS4  | BH204-SS4  | BH205-SS3  | BH207-SS4  | BH208-SS5   | DUP-S202    | DUP-S203    |
| Analyte                         | Unit | Guide<br>#1 | Limits<br>#2 |            |            |            |            |            |             |             |             |
| 1,1,1,2-Tetrachloroethane       | ug/g | 0.05        | 0.058        | <0.050     | <0.050     | <0.050     | <0.050     | <0.050     | <0.050      | <0.050      | <0.050      |
| 1,1,2,2-Tetrachloroethane       | ug/g | 0.05        | 0.05         | <0.050     | <0.050     | <0.050     | <0.20 DLVH | <0.050     | <0.050      | <0.050      | <0.050      |
| Tetrachloroethylene             | ug/g | 0.05        | 0.28         | <0.050     | <0.050     | <0.050     | <0.050     | <0.050     | < 0.050     | <0.050      | < 0.050     |
| Toluene                         | ug/g | 0.2         | 2.3          | <0.080     | <0.080     | 1.00       | <0.080     | <0.080     | <0.080      | <0.080      | <0.080      |
| 1,1,1-Trichloroethane           | ug/g | 0.05        | 0.38         | <0.050     | <0.050     | <0.050     | <0.050     | <0.050     | < 0.050     | <0.050      | < 0.050     |
| 1,1,2-Trichloroethane           | ug/g | 0.05        | 0.05         | <0.050     | <0.050     | <0.050     | <0.20 DLVH | <0.050     | <0.25 DLVH  | <0.050      | <0.050      |
| Trichloroethylene               | ug/g | 0.05        | 0.061        | <0.010     | <0.010     | <0.010     | <0.010     | <0.010     | <0.010      | <0.010      | <0.010      |
| Trichlorofluoromethane          | ug/g | 0.25        | 4            | <0.050     | <0.050     | <0.050     | <0.050     | <0.050     | <0.050      | <0.050      | <0.050      |
| Vinyl chloride                  | ug/g | 0.02        | 0.02         | <0.020     | <0.020     | <0.020     | <0.020     | <0.020     | <0.020      | <0.020      | <0.020      |
| o-Xylene                        | ug/g | -           | -            | <0.020     | <0.020     | 2.73       | 0.443      | <0.020     | <0.020      | <0.020      | <0.020      |
| m+p-Xylenes                     | ug/g | -           | -            | <0.030     | <0.030     | 7.29       | 1.85       | <0.030     | 0.075       | <0.030      | < 0.030     |
| Xylenes (Total)                 | ug/g | 0.05        | 3.1          | <0.050     | <0.050     | 10.0       | 2.29       | <0.050     | 0.075       | <0.050      | <0.050      |
| Surrogate: 4-Bromofluorobenzene | %    | -           | -            | 104.5      | 107.7      | 102.6      | 99.6       | 95.6       | 104.2       | 104.4       | 99.0        |
| Surrogate: 1,4-Difluorobenzene  | %    | -           | -            | 106.7      | 113.4      | 99.8       | 107.5      | 97.6       | 101.8       | 105.1       | 104.9       |

Guide Limit #1: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use Guide Limit #2: T2-Soil-Res/Park/Inst. Property Use (Coarse)

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2152974 CONT'D....

Job Reference: SP18-306-20

PAGE 12 of 17

30-AUG-18 10:06 (MT)

**Hydrocarbons - SOIL** 

| nyarocarbons - SOIL                |      |             |              |            |            |            |            |            |             |             |             |
|------------------------------------|------|-------------|--------------|------------|------------|------------|------------|------------|-------------|-------------|-------------|
|                                    |      | ļ           | Lab ID       | L2152974-2 | L2152974-6 | L2152974-7 | L2152974-8 | L2152974-9 | L2152974-10 | L2152974-11 | L2152974-12 |
|                                    |      | Sample      | e Date       | 24-AUG-18  | 23-AUG-18  | 23-AUG-18  | 23-AUG-18  | 23-AUG-18  | 23-AUG-18   | 23-AUG-18   | 23-AUG-18   |
|                                    |      | Sam         | ple ID       | BH202-SS5  | BH201-SS4  | BH204-SS4  | BH205-SS3  | BH207-SS4  | BH208-SS5   | DUP-S202    | DUP-S203    |
| Analyte                            | Unit | Guide<br>#1 | Limits<br>#2 |            |            |            |            |            |             |             |             |
| F1 (C6-C10)                        | ug/g | 25          | 55           | 18.5       | <5.0       | 48.0       | 71 DLHC    | 13.2       | 47.8        | 16.4        | <5.0        |
| F1-BTEX                            | ug/g | 25          | 55           | 18.5       | <5.0       | 33.0       | 68         | 13.1       | 47.6        | 16.3        | <5.0        |
| F2 (C10-C16)                       | ug/g | 10          | 98           | 44         | 29         | 37         | 331        | <10        | 15          | 13          | 12          |
| F3 (C16-C34)                       | ug/g | 240         | 300          | <50        | 116        | <50        | 218        | <50        | <50         | <50         | 64          |
| F4 (C34-C50)                       | ug/g | 120         | 2800         | 54         | 64         | <50        | <50        | <50        | <50         | <50         | <50         |
| Total Hydrocarbons (C6-C50)        | ug/g | -           | -            | 117        | 209        | 85         | 619        | <72        | <72         | <72         | 76          |
| Chrom. to baseline at nC50         |      | -           | -            | YES        | YES        | YES        | YES        | YES        | YES         | YES         | YES         |
| Surrogate: 2-Bromobenzotrifluoride | %    | -           | -            | 82.1       | 89.2       | 92.9       | 94.5       | 92.1       | 93.2        | 95.3        | 92.4        |
| Surrogate: 3,4-Dichlorotoluene     | %    | -           | -            | 85.6       | 85.7       | 87.7       | 128.9      | 81.9       | 85.7        | 91.3        | 86.5        |

Guide Limit #1: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use Guide Limit #2: T2-Soil-Res/Park/Inst. Property Use (Coarse)

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2152974 CONT'D....
Job Reference: SP18-306-20
PAGE 13 of 17
30-AUG-18 10:06 (MT)

#### Qualifiers for Individual Parameters Listed:

| Qualifier | Description                                                                                                                                                                      |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DLVH      | Detection Limit raised due to interference from Volatile Hydrocarbons on VOC method. Chromatographic elution of interfering peaks in the same region as test analytes prevents a |

L2152974 CONT'D....
Job Reference: SP18-306-20
PAGE 14 of 17
30-AUG-18 10:06 (MT)

determination of whether VOC analyte is present or absent (above/below regular detection limits).

SAR:M Reported SAR represents a maximum value. Actual SAR may be lower if both Ca and Mg were detectable.

DLHC Detection Limit Raised: Dilution required due to high concentration of test analyte(s).

Methods Listed (if applicable):

| ALS Test Code | Matrix | Test Description       | Method Reference**               |  |
|---------------|--------|------------------------|----------------------------------|--|
| B-HWS-R511-WT | Soil   | Boron-HWE-O.Reg 153/04 | 4 (July 2011) HW EXTR, EPA 6010B |  |

A dried solid sample is extracted with calcium chloride, the sample undergoes a heating process. After cooling the sample is filtered and analyzed by ICP/OES.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

CN-WAD-R511-WT Soil Cyanide (WAD)-O.Reg 153/04 (July MOE 3015/APHA 4500CN I-WAD 2011)

The sample is extracted with a strong base for 16 hours, and then filtered. The filtrate is then distilled where the cyanide is converted to cyanogen chloride by reacting with chloramine-T, the cyanogen chloride then reacts with a combination of barbituric acid and isonicotinic acid to form a highly colored complex.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

CR-CR6-IC-WT Soil Hexavalent Chromium in Soil SW846 3060A/7199

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Method 7199, published by the United States Environmental Protection Agency (EPA). The procedure involves analysis for chromium (VI) by ion chromatography using diphenylcarbazide in a sulphuric acid solution.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

EC-WT Soil Conductivity (EC) MOEE E3138

A representative subsample is tumbled with de-ionized (DI) water. The ratio of water to soil is 2:1 v/w. After tumbling the sample is then analyzed by a conductivity meter.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

F1-F4-511-CALC-WT Soil F1-F4 Hydrocarbon Calculated CCME CWS-PHC, Pub #1310, Dec 2001-S Parameters

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

Hydrocarbon results are expressed on a dry weight basis.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

1. All extraction and analysis holding times were met.

L2152974 CONT'D.... Job Reference: SP18-306-20 PAGE 15 of 17 30-AUG-18 10:06 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference\*\*

2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.

3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.
- 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
- 4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

F1-HS-511-WT

Soil

F1-O.Reg 153/04 (July 2011)

E3398/CCME TIER 1-HS

Fraction F1 is determined by extracting a soil or sediment sample as received with methanol, then analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F2-F4-511-WT

Soil

F2-F4-O.Rea 153/04 (July 2011)

**CCME Tier 1** 

Petroleum Hydrocarbons (F2-F4 fractions) are extracted from soil with 1:1 hexane:acetone using a rotary extractor. Extracts are treated with silica gel to remove polar organic interferences. F2, F3, & F4 are analyzed by GC-FID. F4G-sg is analyzed gravimetrically.

#### Notes:

- 1. F2 (C10-C16): Sum of all hydrocarbons that elute between nC10 and nC16.
- 2. F3 (C16-C34): Sum of all hydrocarbons that elute between nC16 and nC34.
- 3. F4 (C34-C50): Sum of all hydrocarbons that elute between nC34 and nC50.
- 4. F4G: Gravimetric Heavy Hydrocarbons
- 5. F4G-sq: Gravimetric Heavy Hydrocarbons (F4G) after silica gel treatment.
- 6. Where both F4 (C34-C50) and F4G-sq are reported for a sample, the larger of the two values is used for comparison against the relevant CCME guideline for F4.
- 7. F4G-sq cannot be added to the C6 to C50 hydrocarbon results to obtain an estimate of total extractable hydrocarbons.
- 8. This method is validated for use.
- 9. Data from analysis of validation and quality control samples is available upon request.
- 10. Reported results are expressed as milligrams per dry kilogram, unless otherwise indicated.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

HG-200.2-CVAA-WT

Soil

Mercury in Soil by CVAAS

EPA 200.2/1631E (mod)

Soil samples are digested with nitric and hydrochloric acids, followed by analysis by CVAAS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

MET-200.2-CCMS-WT

Soil

Metals in Soil by CRC ICPMS

EPA 200.2/6020A (mod)

This method uses a heated strong acid digestion with HNO3 and HCl and is intended to liberate metals that may be environmentally available. Silicate minerals are not solubilized. Dependent on sample matrix, some metals may be only partially recovered, including Al, Ba, Be, Cr, Sr, Ti, Tl, V, W, and Zr. Volatile forms of sulfur (including sulfide) may not be captured, as they may be lost during sampling, storage, or digestion. Analysis is by Collision/Reaction Cell ICPMS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

MOISTURE-WT

Soil

% Moisture

pΗ

Gravimetric: Oven Dried

PH-WT

Soil

MOEE E3137A

L2152974 CONT'D.... Job Reference: SP18-306-20 PAGE 16 of 17 30-AUG-18 10:06 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix **Test Description** Method Reference\*\*

A minimum 10g portion of the sample is extracted with 20mL of 0.01M calcium chloride solution by shaking for at least 30 minutes. The aqueous layer is separated from the soil and then analyzed using a pH meter and electrode.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

SAR-R511-WT

Soil

SAR-O.Reg 153/04 (July 2011)

SW846 6010C

A dried, disaggregated solid sample is extracted with deionized water, the aqueous extract is separated from the solid, acidified and then analyzed using a ICP/OES. The concentrations of Na, Ca and Mg are reported as per CALA requirements for calculated parameters. These individual parameters are not for comparison to any guideline.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

VOC-1,3-DCP-CALC-WT

Soil Regulation 153 VOCs SW8260B/SW8270C

VOC-511-HS-WT

Soil

VOC-O.Reg 153/04 (July 2011)

SW846 8260 (511)

Soil and sediment samples are extracted in methanol and analyzed by headspace-GC/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

XYLENES-SUM-CALC-WT Soil

Sum of Xylene Isomer Concentrations CALCULATION

Total xylenes represents the sum of o-xylene and m&p-xylene.

\*\*ALS test methods may incorporate modifications from specified reference methods to improve performance.

Chain of Custody Numbers:

17-727586

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code

Laboratory Location

WT

ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

L2152974 CONT'D....
Job Reference: SP18-306-20
PAGE 17 of 17
30-AUG-18 10:06 (MT)

#### **GLOSSARY OF REPORT TERMS**

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.



Workorder: L2152974 Report Date: 30-AUG-18 Page 1 of 12

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                                                         | Matrix | Reference                | Result              | Qualifier | Units | RPD | Limit  | Analyzed  |
|--------------------------------------------------------------|--------|--------------------------|---------------------|-----------|-------|-----|--------|-----------|
| B-HWS-R511-WT                                                | Soil   |                          |                     |           |       |     |        |           |
| Batch R4188118<br>WG2861375-4 DUP<br>Boron (B), Hot Water E: |        | <b>L2152974-5</b> 0.56   | 0.63                |           | ug/g  | 11  | 30     | 28-AUG-18 |
| WG2861375-2 IRM<br>Boron (B), Hot Water Ex                   | xt.    | HOTB-SAL_S               | <b>DIL5</b><br>79.8 |           | %     |     | 70-130 | 28-AUG-18 |
| WG2861375-3 LCS<br>Boron (B), Hot Water Ex                   | xt.    |                          | 113.9               |           | %     |     | 70-130 | 28-AUG-18 |
| WG2861375-1 MB<br>Boron (B), Hot Water Ex                    | xt.    |                          | <0.10               |           | ug/g  |     | 0.1    | 28-AUG-18 |
| CN-WAD-R511-WT                                               | Soil   |                          |                     |           |       |     |        |           |
| Batch R4191347<br>WG2859341-3 DUP<br>Cyanide, Weak Acid Dis  |        | <b>L2147619-5</b> <0.050 | <0.050              | RPD-NA    | ug/g  | N/A | 35     | 28-AUG-18 |
| WG2859341-2 LCS<br>Cyanide, Weak Acid Dis                    | ss     |                          | 96.1                |           | %     |     | 80-120 | 28-AUG-18 |
| WG2859341-1 MB<br>Cyanide, Weak Acid Dis                     | SS     |                          | <0.050              |           | ug/g  |     | 0.05   | 28-AUG-18 |
| WG2859341-4 MS<br>Cyanide, Weak Acid Dis                     | ss     | L2147619-5               | 99.9                |           | %     |     | 70-130 | 28-AUG-18 |
| CR-CR6-IC-WT                                                 | Soil   |                          |                     |           |       |     |        |           |
| Batch R4191887<br>WG2859539-3 CRM<br>Chromium, Hexavalent    |        | WT-SQC012                | 90.9                |           | %     |     | 70-130 | 28-AUG-18 |
| WG2859539-4 DUP<br>Chromium, Hexavalent                      |        | <b>L2147619-5</b> <0.20  | <0.20               | RPD-NA    | ug/g  | N/A | 35     | 28-AUG-18 |
| WG2859539-2 LCS<br>Chromium, Hexavalent                      |        |                          | 99.8                |           | %     |     | 80-120 | 28-AUG-18 |
| WG2859539-1 MB<br>Chromium, Hexavalent                       |        |                          | <0.20               |           | ug/g  |     | 0.2    | 28-AUG-18 |
| EC-WT                                                        | Soil   |                          |                     |           |       |     |        |           |
| Batch R4188415<br>WG2861362-4 DUP<br>Conductivity            |        | <b>WG2861362-3</b> 0.339 | 0.374               |           | mS/cm | 9.8 | 20     | 28-AUG-18 |
| WG2861362-2 IRM<br>Conductivity                              |        | WT SAR2                  | 111.1               |           | %     |     | 70-130 | 28-AUG-18 |
| WG2861656-1 LCS<br>Conductivity                              |        |                          | 102.7               |           | %     |     | 90-110 | 28-AUG-18 |
| WG2861362-1 MB                                               |        |                          |                     |           |       |     |        |           |



Workorder: L2152974 Report Date: 30-AUG-18 Page 2 of 12

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                                             | Matrix        | Reference               | Result  | Qualifier | Units | RPD | Limit  | Analyzed  |
|--------------------------------------------------|---------------|-------------------------|---------|-----------|-------|-----|--------|-----------|
| EC-WT                                            | Soil          |                         |         |           |       |     |        |           |
| Batch R4188415<br>WG2861362-1 MB<br>Conductivity |               |                         | <0.0040 |           | mS/cm |     | 0.004  | 28-AUG-18 |
| F1-HS-511-WT                                     | Soil          |                         |         |           |       |     |        |           |
| Batch R4185147                                   |               |                         |         |           |       |     |        |           |
| <b>WG2859480-4 DUP</b> F1 (C6-C10)               |               | <b>WG2859480-3</b> <5.0 | <5.0    | RPD-NA    | ug/g  | N/A | 30     | 27-AUG-18 |
| <b>WG2859480-2 LCS</b><br>F1 (C6-C10)            |               |                         | 97.2    |           | %     |     | 80-120 | 27-AUG-18 |
| WG2859480-1 MB                                   |               |                         |         |           |       |     |        |           |
| F1 (C6-C10)                                      |               |                         | <5.0    |           | ug/g  |     | 5      | 27-AUG-18 |
| Surrogate: 3,4-Dichlorot                         | oluene        |                         | 95.1    |           | %     |     | 60-140 | 27-AUG-18 |
| <b>WG2859480-6 MS</b><br>F1 (C6-C10)             |               | L2152963-8              | 83.9    |           | %     |     | 60-140 | 27-AUG-18 |
| F2-F4-511-WT                                     | Soil          |                         |         |           |       |     |        |           |
| Batch R4188881                                   |               |                         |         |           |       |     |        |           |
| WG2859246-3 DUP                                  |               | L2152550-4              | 40      | 555       |       |     |        |           |
| F2 (C10-C16)                                     |               | <10                     | <10     | RPD-NA    | ug/g  | N/A | 30     | 27-AUG-18 |
| F3 (C16-C34)                                     |               | <50                     | <50     | RPD-NA    | ug/g  | N/A | 30     | 27-AUG-18 |
| F4 (C34-C50)                                     |               | <50                     | <50     | RPD-NA    | ug/g  | N/A | 30     | 27-AUG-18 |
| <b>WG2859246-2 LCS</b> F2 (C10-C16)              |               |                         | 110.1   |           | %     |     | 80-120 | 27-AUG-18 |
| F3 (C16-C34)                                     |               |                         | 109.9   |           | %     |     | 80-120 | 27-AUG-18 |
| F4 (C34-C50)                                     |               |                         | 106.6   |           | %     |     | 80-120 | 27-AUG-18 |
| <b>WG2859246-1 MB</b><br>F2 (C10-C16)            |               |                         | <10     |           | ug/g  |     | 10     | 27-AUG-18 |
| F3 (C16-C34)                                     |               |                         | <50     |           | ug/g  |     | 50     | 27-AUG-18 |
| F4 (C34-C50)                                     |               |                         | <50     |           | ug/g  |     | 50     | 27-AUG-18 |
| Surrogate: 2-Bromobenz                           | zotrifluoride |                         | 85.8    |           | %     |     | 60-140 | 27-AUG-18 |
| WG2859246-4 MS                                   |               | L2152550-4              |         |           |       |     |        |           |
| F2 (C10-C16)                                     |               |                         | 90.3    |           | %     |     | 60-140 | 27-AUG-18 |
| F3 (C16-C34)                                     |               |                         | 89.5    |           | %     |     | 60-140 | 27-AUG-18 |
| F4 (C34-C50)                                     |               |                         | 90.9    |           | %     |     | 60-140 | 27-AUG-18 |
| Batch R4190833                                   |               |                         |         |           |       |     |        |           |
| <b>WG2860932-3 DUP</b> F2 (C10-C16)              |               | <b>WG2860932-5</b> <10  | <10     | RPD-NA    | ug/g  | N/A | 30     | 29-AUG-18 |



Workorder: L2152974 Report Date: 30-AUG-18 Page 3 of 12

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Test           |          | Matrix        | Reference   | Result  | Qualifier | Units | RPD | Limit   | Analyzed  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------|---------------|-------------|---------|-----------|-------|-----|---------|-----------|
| NG2860932-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F2-F4-511-WT   |          | Soil          |             |         |           |       |     |         |           |
| F3 (C16-C34)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Batch F        | R4190833 |               |             |         |           |       |     |         |           |
| F2 (C10-C16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |          |               |             | <50     | RPD-NA    | ug/g  | N/A | 30      | 29-AUG-18 |
| F2 (C10-C16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F4 (C34-C50)   | ı        |               | <50         | <50     | RPD-NA    | ug/g  | N/A | 30      | 29-AUG-18 |
| F3 (C16-C34)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |          |               |             | 105.5   |           | %     |     |         | 29-AUG-18 |
| MG2860932-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F3 (C16-C34)   |          |               |             | 102.3   |           | %     |     | 80-120  |           |
| MG2860932-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F4 (C34-C50)   |          |               |             | 110.1   |           | %     |     | 80-120  | 29-AUG-18 |
| F3 (C16-C3-4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |          |               |             | <10     |           | ug/g  |     | 10      |           |
| F4 (C34-C50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |          |               |             |         |           |       |     |         |           |
| Surrogate: 2-Brown-bent/strifluoride         94.6         %         60-140         29-AUG-18           WG2860932-4 PG (C10-C16)         MS         WG2860932-5 PG (C10-C16)         MG2860932-5 PG (C10-C16)         MG2860932-7 PG (C10 |                |          |               |             |         |           |       |     |         |           |
| WG2860932-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |          | zotrifluoride |             |         |           |       |     |         |           |
| F2 (C10-C16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ·              |          |               | WG2860932-5 | 0 1.0   |           | ,•    |     | 22 1 10 | 23-A00-10 |
| F4 (C34-C55)         60-140         29-AUG-18           HG-200.2-CVA→ ▼         Soil           Batch R418098         WG2861345-2 CRM WT-CANMET-TILL1 106.1         % CRM WG2861345-3 PMErcury (Hg)         Soil           MET-200.2-CCM ▼         Soil           Batch R419141         WG2861345-1 PMERCURY (Hg)         WT-CANMET-TILL1           Antimony (Sb)         CRM         WT-CANMET-TILL1           Ansenic (As)         CRM         WT-CANMET-TILL1           Arsenic (As)         WT-CANMET-TILL1         No.0050         MG2.00         MG2.00 <td></td> <td></td> <td></td> <td>WG2000932-3</td> <td>103.9</td> <td></td> <td>%</td> <td></td> <td>60-140</td> <td>29-AUG-18</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |          |               | WG2000932-3 | 103.9   |           | %     |     | 60-140  | 29-AUG-18 |
| MG-200.2-CVAA-WT   Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F3 (C16-C34)   |          |               |             | 99.3    |           | %     |     | 60-140  | 29-AUG-18 |
| Batch R418098           WG2861345-2 (CRM Mercury (Hg)         WT-CANMET-TILL1 106.1         %         70-130 28-AUG-18           WG2861345-6 Mercury (Hg)         DUP MG2861345-5 0.0374         ug/g         8.0         40         28-AUG-18           WG2861345-3 Mercury (Hg)         LCS MERCURY (Hg)         109.0         %         80-120 28-AUG-18           WG2861345-1 MG-120.2-CCMS-TT         Soil         Soil           Batch R419141 MG2861345-2 CRM Antimony (Sb)         WT-CANMET-TILL1 MG2861345-1 MG2.0         %         70-130 28-AUG-18           Arsenic (As)         109.9         %         70-130 28-AUG-18           Barium (Ba)         126.4         %         70-130 28-AUG-18           Beryllium (Be)         102.0         %         70-130 28-AUG-18           Beryllium (Cd)         2.9         mg/kg         0-8.2         28-AUG-18           Cadmium (Cd)         109.4         %         70-130 28-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F4 (C34-C50)   |          |               |             | 106.8   |           | %     |     | 60-140  | 29-AUG-18 |
| WG2861345-2 RM recury (Hg)         CRM         WT-CANMET-TILL1 106.1         %         70-130 28-AUG-18           WG2861345-6 Mercury (Hg)         DUP WG2861345-5 0.0346 0.0374         ug/g         8.0         40         28-AUG-18           WG2861345-3 Mercury (Hg)         NB         109.0         %         80-120 28-AUG-18           MET-200.2-CCMS-VT         Soil           Batch R4191441         WT-CANMET-TILL1           MG2861345-2 CRM         WT-CANMET-TILL1           Arsenic (As)         YM-CANMET-TILL1           Arsenic (As)         YM-CANMET-TILL1           Arsenic (As)         YM-CANMET-TILL1           Barium (Ba)         109.9         %         70-130         28-AUG-18           Beryllium (Be)         126.4         %         70-130         28-AUG-18           Beryllium (Be)         109.4         9%         70-130         28-AUG-18           Beryllium (Be)         109.4 <th< td=""><td>HG-200.2-CVAA-</td><td>WT</td><td>Soil</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HG-200.2-CVAA- | WT       | Soil          |             |         |           |       |     |         |           |
| Mercury (Hg)         WG2861345-6 Mercury (Hg)         WG2861345-5 Mercury (Hg)         WG2861345-5 Mercury (Hg)         WG2861345-3 Mercury (Hg)         LCS         MB Mercury (Hg)         MB         N0050         Mg/kg         S0.0050         mg/kg         0.005         28-AUG-18           MET-200.2-CCMS-VT         Soil           Batch R4191441         WT-CANMET-TILL1           Antimony (Sb)         92.9         %         70-130         28-AUG-18           Arsenic (As)         109.9         %         70-130         28-AUG-18           Barium (Ba)         126.4         %         70-130         28-AUG-18           Beryllium (Be)         102.0         %         70-130         28-AUG-18           Boron (B)         2.9         mg/kg         - 70-130         28-AUG-18           Boron (B)         - 109.4         9.9         9.8         - 70-130         28-AUG-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Batch F        | R4188098 |               |             |         |           |       |     |         |           |
| Mercury (Hg)         0.0346         0.0374         ug/g         8.0         40         28-AUG-18           WG2861345-3 Mercury (Hg)         LCS         109.0         %         80-120         28-AUG-18           WG2861345-1 Mercury (Hg)         MB         < 0.0050         mg/kg         0.005         28-AUG-18           MET-200.2-CCMS-WT         Soil         Soil         VT-CANMET-TILL1         VERTICATION (Sb)         VERTICATION (Sb)         VERTICATION (Sb)         VERTICATION (Sb)         %         70-130         28-AUG-18           Arsenic (As)         109.9         %         70-130         28-AUG-18           Barium (Ba)         126.4         %         70-130         28-AUG-18           Beryllium (Be)         102.0         %         70-130         28-AUG-18           Boron (B)         2.9         mg/kg         0-8.2         28-AUG-18           Cadmium (Cd)         109.4         %         70-130         28-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | CRM      |               | WT-CANMET-  |         |           | %     |     | 70-130  | 28-AUG-18 |
| Mercury (Hg)         MB         28-AUG-18           WG2861345-1 MB Mercury (Hg)         MB         <0.0050         mg/kg         0.005         28-AUG-18           MET-200.2-CCMS-WT         Soil           Batch R4191441         WT-CANMET-TILL1           Aritimony (Sb)         628         70-130         28-AUG-18           Arsenic (As)         109.9         %         70-130         28-AUG-18           Barium (Ba)         126.4         %         70-130         28-AUG-18           Beryllium (Be)         102.0         %         70-130         28-AUG-18           Boron (B)         2.9         mg/kg         0-8.2         28-AUG-18           Cadmium (Cd)         109.4         %         70-130         28-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | DUP      |               |             | 0.0374  |           | ug/g  | 8.0 | 40      | 28-AUG-18 |
| Mercury (Hg)         <0.0050         mg/kg         0.005         28-AUG-18           MET-200.2-CCMS-WT Soil           Batch R4191441           WG2861345-2 CRM Antimony (Sb)         WT-CANMET-TILL1         VMT-CANMET-TILL1                                                                                                                                    |                | LCS      |               |             | 109.0   |           | %     |     | 80-120  | 28-AUG-18 |
| Batch R4191441         WG2861345-2 CRM       WT-CANMET-TILL1         Antimony (Sb)       92.9       %       70-130       28-AUG-18         Arsenic (As)       109.9       %       70-130       28-AUG-18         Barium (Ba)       126.4       %       70-130       28-AUG-18         Beryllium (Be)       102.0       %       70-130       28-AUG-18         Boron (B)       2.9       mg/kg       0-8.2       28-AUG-18         Cadmium (Cd)       109.4       %       70-130       28-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | МВ       |               |             | <0.0050 |           | mg/kg |     | 0.005   | 28-AUG-18 |
| Batch R4191441         WG2861345-2 CRM       WT-CANMET-TILL1         Antimony (Sb)       92.9       %       70-130       28-AUG-18         Arsenic (As)       109.9       %       70-130       28-AUG-18         Barium (Ba)       126.4       %       70-130       28-AUG-18         Beryllium (Be)       102.0       %       70-130       28-AUG-18         Boron (B)       2.9       mg/kg       0-8.2       28-AUG-18         Cadmium (Cd)       109.4       %       70-130       28-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MET-200 2-CCMS | S-WT     | Soil          |             |         |           |       |     |         |           |
| WG2861345-2         CRM         WT-CANMET-TILL1           Antimony (Sb)         92.9         %         70-130         28-AUG-18           Arsenic (As)         109.9         %         70-130         28-AUG-18           Barium (Ba)         126.4         %         70-130         28-AUG-18           Beryllium (Be)         102.0         %         70-130         28-AUG-18           Boron (B)         2.9         mg/kg         0-8.2         28-AUG-18           Cadmium (Cd)         109.4         %         70-130         28-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |          | 50            |             |         |           |       |     |         |           |
| Arsenic (As)       109.9       %       70-130       28-AUG-18         Barium (Ba)       126.4       %       70-130       28-AUG-18         Beryllium (Be)       102.0       %       70-130       28-AUG-18         Boron (B)       2.9       mg/kg       0-8.2       28-AUG-18         Cadmium (Cd)       109.4       %       70-130       28-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |          |               | WT-CANMET-  | TILL1   |           |       |     |         |           |
| Barium (Ba)       126.4       %       70-130       28-AUG-18         Beryllium (Be)       102.0       %       70-130       28-AUG-18         Boron (B)       2.9       mg/kg       0-8.2       28-AUG-18         Cadmium (Cd)       109.4       %       70-130       28-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | )        |               |             | 92.9    |           |       |     | 70-130  | 28-AUG-18 |
| Beryllium (Be)       102.0       %       70-130       28-AUG-18         Boron (B)       2.9       mg/kg       0-8.2       28-AUG-18         Cadmium (Cd)       109.4       %       70-130       28-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Arsenic (As)   |          |               |             | 109.9   |           |       |     | 70-130  | 28-AUG-18 |
| Boron (B)       2.9       mg/kg       0-8.2       28-AUG-18         Cadmium (Cd)       109.4       %       70-130       28-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Barium (Ba)    |          |               |             | 126.4   |           | %     |     | 70-130  | 28-AUG-18 |
| Cadmium (Cd) 109.4 % 70-130 28-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Beryllium (Be) | )        |               |             | 102.0   |           | %     |     | 70-130  | 28-AUG-18 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Boron (B)      |          |               |             | 2.9     |           | mg/kg |     | 0-8.2   | 28-AUG-18 |
| Chromium (Cr) 107.2 % 70-130 28-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cadmium (Cd    | l)       |               |             | 109.4   |           | %     |     | 70-130  | 28-AUG-18 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Chromium (C    | r)       |               |             | 107.2   |           | %     |     | 70-130  | 28-AUG-18 |



Workorder: L2152974 Report Date: 30-AUG-18 Page 4 of 12

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                             | Matrix | Reference                  | Result             | Qualifier | Units | RPD | Limit      | Analyzed     |
|----------------------------------|--------|----------------------------|--------------------|-----------|-------|-----|------------|--------------|
| MET-200.2-CCMS-WT                | Soil   |                            |                    |           |       |     |            |              |
| Batch R419144                    | 1      |                            |                    |           |       |     |            |              |
| WG2861345-2 CRN                  | 1      | WT-CANMET                  |                    |           |       |     |            |              |
| Cobalt (Co)                      |        |                            | 105.3              |           | %     |     | 70-130     | 28-AUG-18    |
| Copper (Cu)                      |        |                            | 106.4              |           | %     |     | 70-130     | 28-AUG-18    |
| Lead (Pb)                        |        |                            | 111.5              |           | %     |     | 70-130     | 28-AUG-18    |
| Molybdenum (Mo)                  |        |                            | 100.8              |           | %     |     | 70-130     | 28-AUG-18    |
| Nickel (Ni)                      |        |                            | 105.5              |           | %     |     | 70-130     | 28-AUG-18    |
| Selenium (Se)                    |        |                            | 0.35               |           | mg/kg |     | 0.11-0.51  | 28-AUG-18    |
| Silver (Ag)                      |        |                            | 0.26               |           | mg/kg |     | 0.13-0.33  | 28-AUG-18    |
| Thallium (TI)                    |        |                            | 0.118              |           | mg/kg |     | 0.077-0.18 | 28-AUG-18    |
| Uranium (U)                      |        |                            | 101.4              |           | %     |     | 70-130     | 28-AUG-18    |
| Vanadium (V)                     |        |                            | 105.4              |           | %     |     | 70-130     | 28-AUG-18    |
| Zinc (Zn)                        |        |                            | 101.5              |           | %     |     | 70-130     | 28-AUG-18    |
| WG2861345-6 DUP<br>Antimony (Sb) |        | <b>WG2861345</b> -<br>0.24 | . <b>5</b><br>0.25 |           | ug/g  | 3.6 | 30         | 28-AUG-18    |
| Arsenic (As)                     |        | 5.69                       | 5.95               |           | ug/g  | 4.5 | 30         | 28-AUG-18    |
| Barium (Ba)                      |        | 79.3                       | 88.7               |           | ug/g  | 11  | 40         | 28-AUG-18    |
| Beryllium (Be)                   |        | 0.60                       | 0.63               |           | ug/g  | 5.7 | 30         | 28-AUG-18    |
| Boron (B)                        |        | 7.0                        | 7.2                |           | ug/g  | 2.8 | 30         | 28-AUG-18    |
| Cadmium (Cd)                     |        | 0.240                      | 0.258              |           | ug/g  | 6.9 | 30         | 28-AUG-18    |
| Chromium (Cr)                    |        | 17.0                       | 17.5               |           | ug/g  | 2.7 | 30         | 28-AUG-18    |
| Cobalt (Co)                      |        | 7.73                       | 8.33               |           | ug/g  | 7.5 | 30         | 28-AUG-18    |
| Copper (Cu)                      |        | 25.6                       | 28.3               |           | ug/g  | 10  | 30         | 28-AUG-18    |
| Lead (Pb)                        |        | 15.1                       | 16.5               |           | ug/g  | 9.0 | 40         | 28-AUG-18    |
| Molybdenum (Mo)                  |        | 0.50                       | 0.49               |           | ug/g  | 2.5 | 40         | 28-AUG-18    |
| Nickel (Ni)                      |        | 16.1                       | 17.4               |           | ug/g  | 8.1 | 30         | 28-AUG-18    |
| Selenium (Se)                    |        | 0.45                       | 0.52               |           | ug/g  | 15  | 30         | 28-AUG-18    |
| Silver (Ag)                      |        | <0.10                      | <0.10              | RPD-NA    | ug/g  | N/A | 40         | 28-AUG-18    |
| Thallium (TI)                    |        | 0.092                      | 0.101              | =         | ug/g  | 9.4 | 30         | 28-AUG-18    |
| Uranium (U)                      |        | 0.703                      | 0.816              |           | ug/g  | 15  | 30         | 28-AUG-18    |
| Vanadium (V)                     |        | 27.6                       | 28.8               |           | ug/g  | 4.3 | 30         | 28-AUG-18    |
| Zinc (Zn)                        |        | 98.6                       | 102                |           | ug/g  | 3.8 | 30         | 28-AUG-18    |
| WG2861345-4 LCS                  |        | <del>-</del>               |                    |           | 0.0   | 0.0 | ••         | _3 / (0 0 10 |
| Antimony (Sb)                    |        |                            | 87.4               |           | %     |     | 80-120     | 28-AUG-18    |
| Arsenic (As)                     |        |                            | 94.9               |           | %     |     | 80-120     | 28-AUG-18    |
|                                  |        |                            |                    |           |       |     |            |              |



Workorder: L2152974 Report Date: 30-AUG-18 Page 5 of 12

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test              | Matrix | Reference | Result  | Qualifier | Units | RPD | Limit  | Analyzed  |
|-------------------|--------|-----------|---------|-----------|-------|-----|--------|-----------|
| MET-200.2-CCMS-WT | Soil   |           |         |           |       |     |        |           |
| Batch R4191441    | I      |           |         |           |       |     |        |           |
| WG2861345-4 LCS   |        |           |         |           | 0/    |     |        |           |
| Barium (Ba)       |        |           | 109.7   |           | %     |     | 80-120 | 28-AUG-18 |
| Beryllium (Be)    |        |           | 100.6   |           | %     |     | 80-120 | 28-AUG-18 |
| Boron (B)         |        |           | 86.4    |           | %     |     | 80-120 | 28-AUG-18 |
| Cadmium (Cd)      |        |           | 101.6   |           | %     |     | 80-120 | 28-AUG-18 |
| Chromium (Cr)     |        |           | 100.8   |           | %     |     | 80-120 | 28-AUG-18 |
| Cobalt (Co)       |        |           | 99.1    |           | %     |     | 80-120 | 28-AUG-18 |
| Copper (Cu)       |        |           | 97.6    |           | %     |     | 80-120 | 28-AUG-18 |
| Lead (Pb)         |        |           | 102.8   |           | %     |     | 80-120 | 28-AUG-18 |
| Molybdenum (Mo)   |        |           | 93.1    |           | %     |     | 80-120 | 28-AUG-18 |
| Nickel (Ni)       |        |           | 98.9    |           | %     |     | 80-120 | 28-AUG-18 |
| Selenium (Se)     |        |           | 92.4    |           | %     |     | 80-120 | 28-AUG-18 |
| Silver (Ag)       |        |           | 105.8   |           | %     |     | 80-120 | 28-AUG-18 |
| Thallium (TI)     |        |           | 93.1    |           | %     |     | 80-120 | 28-AUG-18 |
| Uranium (U)       |        |           | 98.6    |           | %     |     | 80-120 | 28-AUG-18 |
| Vanadium (V)      |        |           | 103.9   |           | %     |     | 80-120 | 28-AUG-18 |
| Zinc (Zn)         |        |           | 94.7    |           | %     |     | 80-120 | 28-AUG-18 |
| WG2861345-1 MB    |        |           |         |           |       |     |        |           |
| Antimony (Sb)     |        |           | <0.10   |           | mg/kg |     | 0.1    | 28-AUG-18 |
| Arsenic (As)      |        |           | <0.10   |           | mg/kg |     | 0.1    | 28-AUG-18 |
| Barium (Ba)       |        |           | <0.50   |           | mg/kg |     | 0.5    | 28-AUG-18 |
| Beryllium (Be)    |        |           | <0.10   |           | mg/kg |     | 0.1    | 28-AUG-18 |
| Boron (B)         |        |           | <5.0    |           | mg/kg |     | 5      | 28-AUG-18 |
| Cadmium (Cd)      |        |           | <0.020  |           | mg/kg |     | 0.02   | 28-AUG-18 |
| Chromium (Cr)     |        |           | <0.50   |           | mg/kg |     | 0.5    | 28-AUG-18 |
| Cobalt (Co)       |        |           | <0.10   |           | mg/kg |     | 0.1    | 28-AUG-18 |
| Copper (Cu)       |        |           | <0.50   |           | mg/kg |     | 0.5    | 28-AUG-18 |
| Lead (Pb)         |        |           | <0.50   |           | mg/kg |     | 0.5    | 28-AUG-18 |
| Molybdenum (Mo)   |        |           | <0.10   |           | mg/kg |     | 0.1    | 28-AUG-18 |
| Nickel (Ni)       |        |           | <0.50   |           | mg/kg |     | 0.5    | 28-AUG-18 |
| Selenium (Se)     |        |           | <0.20   |           | mg/kg |     | 0.2    | 28-AUG-18 |
| Silver (Ag)       |        |           | <0.10   |           | mg/kg |     | 0.1    | 28-AUG-18 |
| Thallium (TI)     |        |           | <0.050  |           | mg/kg |     | 0.05   | 28-AUG-18 |
| Uranium (U)       |        |           | < 0.050 |           | mg/kg |     | 0.05   | 28-AUG-18 |
| Vanadium (V)      |        |           | <0.20   |           | mg/kg |     | 0.2    | 28-AUG-18 |
|                   |        |           |         |           |       |     |        |           |



Workorder: L2152974 Report Date: 30-AUG-18 Page 6 of 12

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                                            | Matrix | Reference                  | Result | Qualifier | Units    | RPD  | Limit   | Analyzed  |
|-------------------------------------------------|--------|----------------------------|--------|-----------|----------|------|---------|-----------|
| MET-200.2-CCMS-WT                               | Soil   |                            |        |           |          |      |         |           |
| Batch R4191441<br>WG2861345-1 MB<br>Zinc (Zn)   |        |                            | <2.0   |           | mg/kg    |      | 2       | 28-AUG-18 |
| MOISTURE-WT                                     | Soil   |                            |        |           |          |      |         |           |
| Batch R4182921<br>WG2859445-3 DUP<br>% Moisture |        | <b>L2152963-11</b><br>9.26 | 9.78   |           | %        | 5.4  | 20      | 25-AUG-18 |
| <b>WG2859445-2 LCS</b> % Moisture               |        |                            | 98.9   |           | %        |      | 90-110  | 25-AUG-18 |
| <b>WG2859445-1 MB</b><br>% Moisture             |        |                            | <0.10  |           | %        |      | 0.1     | 25-AUG-18 |
| PH-WT                                           | Soil   |                            |        |           |          |      |         |           |
| Batch R4185088<br>WG2859490-1 DUP<br>pH         |        | <b>L2147619-5</b><br>7.96  | 8.00   | J         | pH units | 0.04 | 0.3     | 27-AUG-18 |
| WG2860744-1 LCS                                 |        | 7.50                       | 0.00   | J         | pri anic | 0.04 | 0.5     | 21-A0G-16 |
| рН                                              |        |                            | 6.96   |           | pH units |      | 6.9-7.1 | 27-AUG-18 |
| SAR-R511-WT                                     | Soil   |                            |        |           |          |      |         |           |
| Batch R4190318                                  |        |                            |        |           |          |      |         |           |
| <b>WG2861362-4 DUP</b> Calcium (Ca)             |        | <b>WG2861362-3</b> 11.8    | 10.6   |           | mg/L     | 11   | 30      | 28-AUG-18 |
| Sodium (Na)                                     |        | 68.2                       | 64.6   |           | mg/L     | 5.5  | 30      | 28-AUG-18 |
| Magnesium (Mg)                                  |        | 5.6                        | 4.6    |           | mg/L     | 18   | 30      | 28-AUG-18 |
| WG2861362-2 IRM                                 |        | WT SAR2                    |        |           |          |      |         |           |
| Calcium (Ca)                                    |        |                            | 110.0  |           | %        |      | 70-130  | 28-AUG-18 |
| Sodium (Na)                                     |        |                            | 106.2  |           | %        |      | 70-130  | 28-AUG-18 |
| Magnesium (Mg)                                  |        |                            | 102.7  |           | %        |      | 70-130  | 28-AUG-18 |
| <b>WG2861362-1 MB</b> Calcium (Ca)              |        |                            | <1.0   |           | mg/L     |      | 1       | 28-AUG-18 |
| Sodium (Na)                                     |        |                            | <1.0   |           | mg/L     |      | 1       | 28-AUG-18 |
| Magnesium (Mg)                                  |        |                            | <1.0   |           | mg/L     |      | 1       | 28-AUG-18 |
| VOC-511-HS-WT                                   | Soil   |                            |        |           |          |      |         |           |
| Batch R4185147                                  |        |                            |        |           |          |      |         |           |
| WG2859480-4 DUP                                 |        | WG2859480-3                |        |           |          |      |         |           |
| 1,1,1,2-Tetrachloroethar                        |        | <0.050                     | <0.050 | RPD-NA    | ug/g     | N/A  | 40      | 27-AUG-18 |
| 1,1,2,2-Tetrachloroethar                        | ne     | <0.050                     | <0.050 | RPD-NA    | ug/g     | N/A  | 40      | 27-AUG-18 |



Workorder: L2152974 Report Date: 30-AUG-18 Page 7 of 12

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                     | Matrix | Reference  | Result  | Qualifier | Units | RPD | Limit | Analyzed  |
|--------------------------|--------|------------|---------|-----------|-------|-----|-------|-----------|
| VOC-511-HS-WT            | Soil   |            |         |           |       |     |       |           |
| Batch R4185147           |        |            |         |           |       |     |       |           |
| WG2859480-4 DUP          |        | WG2859480- |         |           |       |     |       |           |
| 1,1,1-Trichloroethane    |        | <0.050     | <0.050  | RPD-NA    | ug/g  | N/A | 40    | 27-AUG-18 |
| 1,1,2-Trichloroethane    |        | <0.050     | <0.050  | RPD-NA    | ug/g  | N/A | 40    | 27-AUG-18 |
| 1,1-Dichloroethane       |        | <0.050     | <0.050  | RPD-NA    | ug/g  | N/A | 40    | 27-AUG-18 |
| 1,1-Dichloroethylene     |        | <0.050     | <0.050  | RPD-NA    | ug/g  | N/A | 40    | 27-AUG-18 |
| 1,2-Dibromoethane        |        | <0.050     | <0.050  | RPD-NA    | ug/g  | N/A | 40    | 27-AUG-18 |
| 1,2-Dichlorobenzene      |        | <0.050     | <0.050  | RPD-NA    | ug/g  | N/A | 40    | 27-AUG-18 |
| 1,2-Dichloroethane       |        | <0.050     | <0.050  | RPD-NA    | ug/g  | N/A | 40    | 27-AUG-18 |
| 1,2-Dichloropropane      |        | <0.050     | <0.050  | RPD-NA    | ug/g  | N/A | 40    | 27-AUG-18 |
| 1,3-Dichlorobenzene      |        | <0.050     | <0.050  | RPD-NA    | ug/g  | N/A | 40    | 27-AUG-18 |
| 1,4-Dichlorobenzene      |        | <0.050     | <0.050  | RPD-NA    | ug/g  | N/A | 40    | 27-AUG-18 |
| Acetone                  |        | <0.50      | <0.50   | RPD-NA    | ug/g  | N/A | 40    | 27-AUG-18 |
| Benzene                  |        | <0.0068    | <0.0068 | RPD-NA    | ug/g  | N/A | 40    | 27-AUG-18 |
| Bromodichloromethane     |        | <0.050     | < 0.050 | RPD-NA    | ug/g  | N/A | 40    | 27-AUG-18 |
| Bromoform                |        | <0.050     | <0.050  | RPD-NA    | ug/g  | N/A | 40    | 27-AUG-18 |
| Bromomethane             |        | <0.050     | <0.050  | RPD-NA    | ug/g  | N/A | 40    | 27-AUG-18 |
| Carbon tetrachloride     |        | <0.050     | < 0.050 | RPD-NA    | ug/g  | N/A | 40    | 27-AUG-18 |
| Chlorobenzene            |        | <0.050     | < 0.050 | RPD-NA    | ug/g  | N/A | 40    | 27-AUG-18 |
| Chloroform               |        | <0.050     | < 0.050 | RPD-NA    | ug/g  | N/A | 40    | 27-AUG-18 |
| cis-1,2-Dichloroethylene | )      | <0.050     | <0.050  | RPD-NA    | ug/g  | N/A | 40    | 27-AUG-18 |
| cis-1,3-Dichloropropene  | •      | <0.030     | <0.030  | RPD-NA    | ug/g  | N/A | 40    | 27-AUG-18 |
| Dibromochloromethane     |        | <0.050     | < 0.050 | RPD-NA    | ug/g  | N/A | 40    | 27-AUG-18 |
| Dichlorodifluoromethane  | Э      | <0.050     | <0.050  | RPD-NA    | ug/g  | N/A | 40    | 27-AUG-18 |
| Ethylbenzene             |        | <0.018     | <0.018  | RPD-NA    | ug/g  | N/A | 40    | 27-AUG-18 |
| n-Hexane                 |        | <0.050     | <0.050  | RPD-NA    | ug/g  | N/A | 40    | 27-AUG-18 |
| Methylene Chloride       |        | <0.050     | <0.050  | RPD-NA    | ug/g  | N/A | 40    | 27-AUG-18 |
| MTBE                     |        | <0.050     | <0.050  | RPD-NA    | ug/g  | N/A | 40    | 27-AUG-18 |
| m+p-Xylenes              |        | <0.030     | < 0.030 | RPD-NA    | ug/g  | N/A | 40    | 27-AUG-18 |
| Methyl Ethyl Ketone      |        | <0.50      | <0.50   | RPD-NA    | ug/g  | N/A | 40    | 27-AUG-18 |
| Methyl Isobutyl Ketone   |        | <0.50      | <0.50   | RPD-NA    | ug/g  | N/A | 40    | 27-AUG-18 |
| o-Xylene                 |        | <0.020     | <0.020  | RPD-NA    | ug/g  | N/A | 40    | 27-AUG-18 |
| Styrene                  |        | <0.050     | <0.050  | RPD-NA    | ug/g  | N/A | 40    | 27-AUG-18 |
| Tetrachloroethylene      |        | <0.050     | <0.050  | RPD-NA    | ug/g  | N/A | 40    | 27-AUG-18 |
| Toluene                  |        | <0.080     | <0.080  |           | ug/g  |     |       | 27-AUG-18 |
|                          |        |            |         |           | •     |     |       | -         |



Workorder: L2152974 Report Date: 30-AUG-18 Page 8 of 12

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                                       | Matrix | Reference  | Result  | Qualifier | Units | RPD | Limit            | Analyzed               |
|--------------------------------------------|--------|------------|---------|-----------|-------|-----|------------------|------------------------|
| VOC-511-HS-WT                              | Soil   |            |         |           |       |     |                  |                        |
| Batch R4185147                             | 7      |            |         |           |       |     |                  |                        |
| WG2859480-4 DUP                            |        | WG2859480- | _       |           |       |     |                  |                        |
| Toluene                                    |        | <0.080     | <0.080  | RPD-NA    | ug/g  | N/A | 40               | 27-AUG-18              |
| trans-1,2-Dichloroethyl                    | ene    | <0.050     | <0.050  | RPD-NA    | ug/g  | N/A | 40               | 27-AUG-18              |
| trans-1,3-Dichloroprop                     | ene    | <0.030     | <0.030  | RPD-NA    | ug/g  | N/A | 40               | 27-AUG-18              |
| Trichloroethylene                          |        | <0.010     | <0.010  | RPD-NA    | ug/g  | N/A | 40               | 27-AUG-18              |
| Trichlorofluoromethane                     | Э      | <0.050     | < 0.050 | RPD-NA    | ug/g  | N/A | 40               | 27-AUG-18              |
| Vinyl chloride                             |        | <0.020     | <0.020  | RPD-NA    | ug/g  | N/A | 40               | 27-AUG-18              |
| WG2859480-2 LCS<br>1,1,1,2-Tetrachloroetha | ane    |            | 101.5   |           | %     |     | 60-130           | 27-AUG-18              |
| 1,1,2,2-Tetrachloroetha                    |        |            | 101.5   |           | %     |     | 60-130           | 27-AUG-18<br>27-AUG-18 |
| 1,1,1-Trichloroethane                      | aric   |            | 103.0   |           | %     |     |                  |                        |
| 1,1,2-Trichloroethane                      |        |            | 104.6   |           | %     |     | 60-130<br>60-130 | 27-AUG-18<br>27-AUG-18 |
| 1,1-Dichloroethane                         |        |            | 178.3   | LCS-H     | %     |     | 60-130           | 27-AUG-18<br>27-AUG-18 |
| 1,1-Dichloroethylene                       |        |            | 95.7    | 103-11    | %     |     | 60-130           | 27-AUG-18<br>27-AUG-18 |
| 1,2-Dibromoethane                          |        |            | 103.5   |           | %     |     | 70-130           | 27-AUG-18<br>27-AUG-18 |
| 1,2-Dichlorobenzene                        |        |            | 107.4   |           | %     |     | 70-130           | 27-AUG-18<br>27-AUG-18 |
| 1,2-Dichloroethane                         |        |            | 108.0   |           | %     |     | 60-130           | 27-AUG-18              |
| 1,2-Dichloropropane                        |        |            | 104.8   |           | %     |     | 70-130           | 27-AUG-18              |
| 1,3-Dichlorobenzene                        |        |            | 107.1   |           | %     |     | 70-130           | 27-AUG-18              |
| 1,4-Dichlorobenzene                        |        |            | 106.9   |           | %     |     | 70-130           | 27-AUG-18              |
| Acetone                                    |        |            | 115.8   |           | %     |     | 60-140           | 27-AUG-18              |
| Benzene                                    |        |            | 105.3   |           | %     |     | 70-130           | 27-AUG-18              |
| Bromodichloromethane                       | Э      |            | 108.7   |           | %     |     | 50-140           | 27-AUG-18              |
| Bromoform                                  |        |            | 105.2   |           | %     |     | 70-130           | 27-AUG-18              |
| Bromomethane                               |        |            | 79.9    |           | %     |     | 50-140           | 27-AUG-18              |
| Carbon tetrachloride                       |        |            | 103.9   |           | %     |     | 70-130           | 27-AUG-18              |
| Chlorobenzene                              |        |            | 106.0   |           | %     |     | 70-130           | 27-AUG-18              |
| Chloroform                                 |        |            | 107.3   |           | %     |     | 70-130           | 27-AUG-18              |
| cis-1,2-Dichloroethylen                    | ie     |            | 105.8   |           | %     |     | 70-130           | 27-AUG-18              |
| cis-1,3-Dichloropropen                     |        |            | 108.4   |           | %     |     | 70-130           | 27-AUG-18              |
| Dibromochloromethane                       | е      |            | 105.5   |           | %     |     | 60-130           | 27-AUG-18              |
| Dichlorodifluoromethar                     | ne     |            | 84.0    |           | %     |     | 50-140           | 27-AUG-18              |
| Ethylbenzene                               |        |            | 101.5   |           | %     |     | 70-130           | 27-AUG-18              |
| n-Hexane                                   |        |            | 116.8   |           | %     |     | 70-130           | 27-AUG-18              |
|                                            |        |            |         |           |       |     |                  | · <del>-</del>         |



Workorder: L2152974 Report Date: 30-AUG-18 Page 9 of 12

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                                  | Matrix | Reference | Result  | Qualifier | Units | RPD | Limit            | Analyzed               |
|---------------------------------------|--------|-----------|---------|-----------|-------|-----|------------------|------------------------|
| VOC-511-HS-WT                         | Soil   |           |         |           |       |     |                  |                        |
| Batch R4185147                        |        |           |         |           |       |     |                  |                        |
| WG2859480-2 LCS<br>Methylene Chloride |        |           | 105.1   |           | %     |     | 70.400           | 07 1110 10             |
| MTBE                                  |        |           | 106.3   |           | %     |     | 70-130<br>70-130 | 27-AUG-18<br>27-AUG-18 |
| m+p-Xylenes                           |        |           | 100.5   |           | %     |     |                  |                        |
| Methyl Ethyl Ketone                   |        |           | 145.8   | MES       | %     |     | 70-130<br>60-140 | 27-AUG-18<br>27-AUG-18 |
| Methyl Isobutyl Ketone                |        |           | 102.0   | IVIES     | %     |     |                  |                        |
| o-Xylene                              |        |           | 102.0   |           | %     |     | 60-140<br>70-130 | 27-AUG-18              |
| Styrene                               |        |           | 101.3   |           | %     |     |                  | 27-AUG-18              |
| Tetrachloroethylene                   |        |           | 104.2   |           | %     |     | 70-130<br>60-130 | 27-AUG-18<br>27-AUG-18 |
| Toluene                               |        |           | 103.1   |           | %     |     | 70-130           | 27-AUG-18<br>27-AUG-18 |
| trans-1,2-Dichloroethyler             | 10     |           | 102.1   |           | %     |     | 60-130           | 27-AUG-18              |
| trans-1,3-Dichloropropen              |        |           | 103.2   |           | %     |     | 70-130           | 27-AUG-18              |
| Trichloroethylene                     |        |           | 108.5   |           | %     |     | 60-130           | 27-AUG-18<br>27-AUG-18 |
| Trichlorofluoromethane                |        |           | 107.0   |           | %     |     | 50-140           | 27-AUG-18<br>27-AUG-18 |
| Vinyl chloride                        |        |           | 90.8    |           | %     |     | 60-140           | 27-AUG-18              |
| WG2859480-1 MB                        |        |           | 00.0    |           | ,0    |     | 00-140           | 21-400-10              |
| 1,1,1,2-Tetrachloroethan              | е      |           | < 0.050 |           | ug/g  |     | 0.05             | 27-AUG-18              |
| 1,1,2,2-Tetrachloroethan              | е      |           | < 0.050 |           | ug/g  |     | 0.05             | 27-AUG-18              |
| 1,1,1-Trichloroethane                 |        |           | < 0.050 |           | ug/g  |     | 0.05             | 27-AUG-18              |
| 1,1,2-Trichloroethane                 |        |           | < 0.050 |           | ug/g  |     | 0.05             | 27-AUG-18              |
| 1,1-Dichloroethane                    |        |           | < 0.050 |           | ug/g  |     | 0.05             | 27-AUG-18              |
| 1,1-Dichloroethylene                  |        |           | < 0.050 |           | ug/g  |     | 0.05             | 27-AUG-18              |
| 1,2-Dibromoethane                     |        |           | < 0.050 |           | ug/g  |     | 0.05             | 27-AUG-18              |
| 1,2-Dichlorobenzene                   |        |           | < 0.050 |           | ug/g  |     | 0.05             | 27-AUG-18              |
| 1,2-Dichloroethane                    |        |           | < 0.050 |           | ug/g  |     | 0.05             | 27-AUG-18              |
| 1,2-Dichloropropane                   |        |           | < 0.050 |           | ug/g  |     | 0.05             | 27-AUG-18              |
| 1,3-Dichlorobenzene                   |        |           | < 0.050 |           | ug/g  |     | 0.05             | 27-AUG-18              |
| 1,4-Dichlorobenzene                   |        |           | < 0.050 |           | ug/g  |     | 0.05             | 27-AUG-18              |
| Acetone                               |        |           | <0.50   |           | ug/g  |     | 0.5              | 27-AUG-18              |
| Benzene                               |        |           | <0.0068 |           | ug/g  |     | 0.0068           | 27-AUG-18              |
| Bromodichloromethane                  |        |           | < 0.050 |           | ug/g  |     | 0.05             | 27-AUG-18              |
| Bromoform                             |        |           | < 0.050 |           | ug/g  |     | 0.05             | 27-AUG-18              |
| Bromomethane                          |        |           | < 0.050 |           | ug/g  |     | 0.05             | 27-AUG-18              |
| Carbon tetrachloride                  |        |           | < 0.050 |           | ug/g  |     | 0.05             | 27-AUG-18              |
| Chlorobenzene                         |        |           | <0.050  |           | ug/g  |     | 0.05             | 27-AUG-18              |
|                                       |        |           |         |           |       |     |                  |                        |



Workorder: L2152974 Report Date: 30-AUG-18 Page 10 of 12

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                     | Matrix     | Reference  | Result           | Qualifier | Units | RPD | Limit        | Analyzed  |
|--------------------------|------------|------------|------------------|-----------|-------|-----|--------------|-----------|
| VOC-511-HS-WT            | Soil       |            |                  |           |       |     |              |           |
| Batch R4185147           | ,          |            |                  |           |       |     |              |           |
| WG2859480-1 MB           |            |            | .0.050           |           | /     |     | 0.05         |           |
| Chloroform               | •          |            | <0.050<br><0.050 |           | ug/g  |     | 0.05<br>0.05 | 27-AUG-18 |
| cis-1,2-Dichloroethylen  |            |            |                  |           | ug/g  |     |              | 27-AUG-18 |
| cis-1,3-Dichloropropend  |            |            | <0.030           |           | ug/g  |     | 0.03         | 27-AUG-18 |
|                          |            |            | <0.050           |           | ug/g  |     | 0.05         | 27-AUG-18 |
| Dichlorodifluoromethan   | ie         |            | <0.050           |           | ug/g  |     | 0.05         | 27-AUG-18 |
| Ethylbenzene             |            |            | <0.018           |           | ug/g  |     | 0.018        | 27-AUG-18 |
| n-Hexane                 |            |            | <0.050           |           | ug/g  |     | 0.05         | 27-AUG-18 |
| Methylene Chloride       |            |            | <0.050           |           | ug/g  |     | 0.05         | 27-AUG-18 |
| MTBE                     |            |            | <0.050           |           | ug/g  |     | 0.05         | 27-AUG-18 |
| m+p-Xylenes              |            |            | <0.030           |           | ug/g  |     | 0.03         | 27-AUG-18 |
| Methyl Ethyl Ketone      |            |            | <0.50            |           | ug/g  |     | 0.5          | 27-AUG-18 |
| Methyl Isobutyl Ketone   |            |            | <0.50            |           | ug/g  |     | 0.5          | 27-AUG-18 |
| o-Xylene                 |            |            | <0.020           |           | ug/g  |     | 0.02         | 27-AUG-18 |
| Styrene                  |            |            | < 0.050          |           | ug/g  |     | 0.05         | 27-AUG-18 |
| Tetrachloroethylene      |            |            | < 0.050          |           | ug/g  |     | 0.05         | 27-AUG-18 |
| Toluene                  |            |            | <0.080           |           | ug/g  |     | 0.08         | 27-AUG-18 |
| trans-1,2-Dichloroethyle | ene        |            | < 0.050          |           | ug/g  |     | 0.05         | 27-AUG-18 |
| trans-1,3-Dichloroprope  | ene        |            | < 0.030          |           | ug/g  |     | 0.03         | 27-AUG-18 |
| Trichloroethylene        |            |            | <0.010           |           | ug/g  |     | 0.01         | 27-AUG-18 |
| Trichlorofluoromethane   | )          |            | < 0.050          |           | ug/g  |     | 0.05         | 27-AUG-18 |
| Vinyl chloride           |            |            | <0.020           |           | ug/g  |     | 0.02         | 27-AUG-18 |
| Surrogate: 1,4-Difluorol | benzene    |            | 105.9            |           | %     |     | 50-140       | 27-AUG-18 |
| Surrogate: 4-Bromofluc   | orobenzene |            | 100.7            |           | %     |     | 50-140       | 27-AUG-18 |
| WG2859480-5 MS           |            | L2152963-7 |                  |           |       |     |              |           |
| 1,1,1,2-Tetrachloroetha  | ane        |            | 103.3            |           | %     |     | 50-140       | 27-AUG-18 |
| 1,1,2,2-Tetrachloroetha  | ane        |            | 105.3            |           | %     |     | 50-140       | 27-AUG-18 |
| 1,1,1-Trichloroethane    |            |            | 107.2            |           | %     |     | 50-140       | 27-AUG-18 |
| 1,1,2-Trichloroethane    |            |            | 105.8            |           | %     |     | 50-140       | 27-AUG-18 |
| 1,1-Dichloroethane       |            |            | 187.0            | RRQC      | %     |     | 50-140       | 27-AUG-18 |
| 1,1-Dichloroethylene     |            |            | 99.0             |           | %     |     | 50-140       | 27-AUG-18 |
| 1,2-Dibromoethane        |            |            | 103.6            |           | %     |     | 50-140       | 27-AUG-18 |
| 1,2-Dichlorobenzene      |            |            | 108.5            |           | %     |     | 50-140       | 27-AUG-18 |
| 1,2-Dichloroethane       |            |            | 108.1            |           | %     |     | 50-140       | 27-AUG-18 |
| 1,2-Dichloropropane      |            |            | 106.3            |           | %     |     | 50-140       | 27-AUG-18 |
|                          |            |            |                  |           |       |     |              |           |



Workorder: L2152974 Report Date: 30-AUG-18 Page 11 of 12

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

Contact: CHAORAN LI

| Test                     | Matrix | Reference  | Result | Qualifier | Units | RPD | Limit  | Analyzed  |
|--------------------------|--------|------------|--------|-----------|-------|-----|--------|-----------|
| VOC-511-HS-WT            | Soil   |            |        |           |       |     |        |           |
| Batch R4185147           |        |            |        |           |       |     |        |           |
| WG2859480-5 MS           |        | L2152963-7 |        |           |       |     |        |           |
| 1,3-Dichlorobenzene      |        |            | 107.4  |           | %     |     | 50-140 | 27-AUG-18 |
| 1,4-Dichlorobenzene      |        |            | 107.8  |           | %     |     | 50-140 | 27-AUG-18 |
| Acetone                  |        |            | 114.9  |           | %     |     | 50-140 | 27-AUG-18 |
| Benzene                  |        |            | 107.5  |           | %     |     | 50-140 | 27-AUG-18 |
| Bromodichloromethane     |        |            | 110.2  |           | %     |     | 50-140 | 27-AUG-18 |
| Bromoform                |        |            | 105.0  |           | %     |     | 50-140 | 27-AUG-18 |
| Bromomethane             |        |            | 81.5   |           | %     |     | 50-140 | 27-AUG-18 |
| Carbon tetrachloride     |        |            | 107.4  |           | %     |     | 50-140 | 27-AUG-18 |
| Chlorobenzene            |        |            | 107.8  |           | %     |     | 50-140 | 27-AUG-18 |
| Chloroform               |        |            | 109.9  |           | %     |     | 50-140 | 27-AUG-18 |
| cis-1,2-Dichloroethylene |        |            | 107.6  |           | %     |     | 50-140 | 27-AUG-18 |
| cis-1,3-Dichloropropene  |        |            | 109.0  |           | %     |     | 50-140 | 27-AUG-18 |
| Dibromochloromethane     |        |            | 107.0  |           | %     |     | 50-140 | 27-AUG-18 |
| Dichlorodifluoromethane  | •      |            | 86.8   |           | %     |     | 50-140 | 27-AUG-18 |
| Ethylbenzene             |        |            | 103.6  |           | %     |     | 50-140 | 27-AUG-18 |
| n-Hexane                 |        |            | 120.6  |           | %     |     | 50-140 | 27-AUG-18 |
| Methylene Chloride       |        |            | 106.5  |           | %     |     | 50-140 | 27-AUG-18 |
| MTBE                     |        |            | 109.6  |           | %     |     | 50-140 | 27-AUG-18 |
| m+p-Xylenes              |        |            | 106.2  |           | %     |     | 50-140 | 27-AUG-18 |
| Methyl Ethyl Ketone      |        |            | 105.8  |           | %     |     | 50-140 | 27-AUG-18 |
| Methyl Isobutyl Ketone   |        |            | 98.8   |           | %     |     | 50-140 | 27-AUG-18 |
| o-Xylene                 |        |            | 101.9  |           | %     |     | 50-140 | 27-AUG-18 |
| Styrene                  |        |            | 99.8   |           | %     |     | 50-140 | 27-AUG-18 |
| Tetrachloroethylene      |        |            | 106.5  |           | %     |     | 50-140 | 27-AUG-18 |
| Toluene                  |        |            | 105.8  |           | %     |     | 50-140 | 27-AUG-18 |
| trans-1,2-Dichloroethyle | ne     |            | 103.8  |           | %     |     | 50-140 | 27-AUG-18 |
| trans-1,3-Dichloroproper | ne     |            | 102.1  |           | %     |     | 50-140 | 27-AUG-18 |
| Trichloroethylene        |        |            | 110.3  |           | %     |     | 50-140 | 27-AUG-18 |
| Trichlorofluoromethane   |        |            | 111.2  |           | %     |     | 50-140 | 27-AUG-18 |
| Vinyl chloride           |        |            | 93.8   |           | %     |     | 50-140 | 27-AUG-18 |
| 1                        |        |            |        |           |       |     |        |           |

COMMENTS: RRQC-Matrix Spike Sample recovery was above ALS DQO. Non-detected sample results are considered reliable. Other results, if reported, have been qualified.

Workorder: L2152974 Report Date: 30-AUG-18

Client: Sirati & Partners Consultants Ltd. (Concord) Page 12 of 12

12700 Keele St

King City ON L7B 1H5

Contact: CHAORAN LI

#### Legend:

Limit ALS Control Limit (Data Quality Objectives)

DUP Duplicate

RPD Relative Percent Difference

N/A Not Available

LCS Laboratory Control Sample SRM Standard Reference Material

MS Matrix Spike

MSD Matrix Spike Duplicate

ADE Average Desorption Efficiency

MB Method Blank

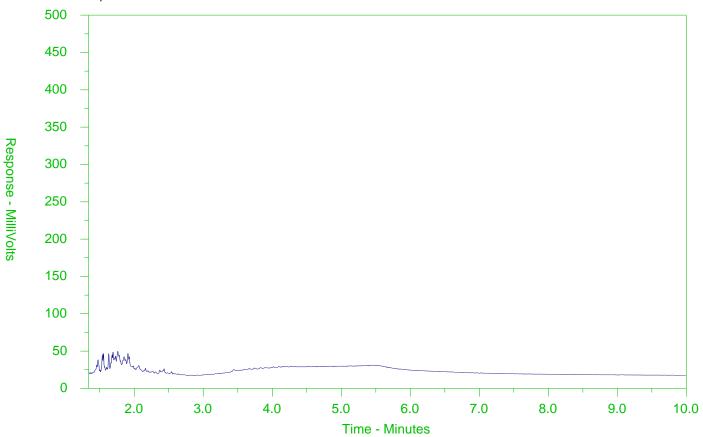
IRM Internal Reference Material
CRM Certified Reference Material
CCV Continuing Calibration Verification
CVS Calibration Verification Standard
LCSD Laboratory Control Sample Duplicate

#### **Sample Parameter Qualifier Definitions:**

| Qualifier | Description                                                                                                                                                                         |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| J         | Duplicate results and limits are expressed in terms of absolute difference.                                                                                                         |
| LCS-H     | Lab Control Sample recovery was above ALS DQO. Non-detected sample results are considered reliable. Other results, if reported, have been qualified.                                |
| MES       | Data Quality Objective was marginally exceeded (by < 10% absolute) for < 10% of analytes in a Multi-Element Scan / Multi-Parameter Scan (considered acceptable as per OMOE & CCME). |
| RPD-NA    | Relative Percent Difference Not Available due to result(s) being less than detection limit.                                                                                         |
| RRQC      | Refer to report remarks for information regarding this QC result.                                                                                                                   |

#### **Hold Time Exceedances:**

All test results reported with this submission were conducted within ALS recommended hold times.


ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

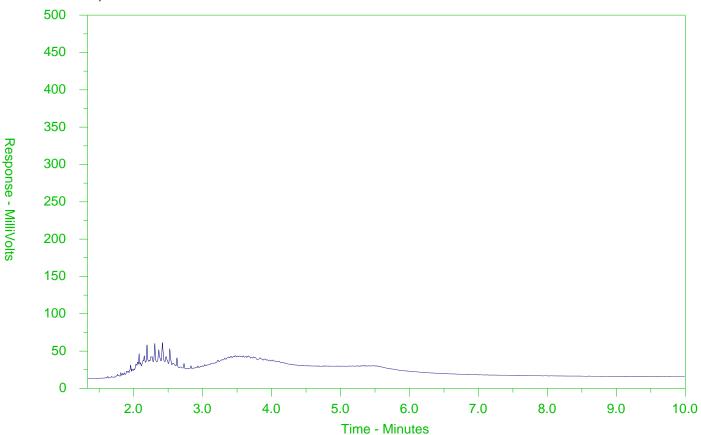
Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.



ALS Sample ID: L2152974-2 Client Sample ID: BH202-SS5



| <b>←</b> -F2- | →-         | —F3—→←—F4— | <b>&gt;</b>               |
|---------------|------------|------------|---------------------------|
| nC10          | nC16       | nC34       | nC50                      |
| 174°C         | 287°C      | 481°C      | 575°C                     |
| 346°F         | 549°F      | 898°F      | 1067⁰F                    |
| Gasolin       | e <b>→</b> | ← Mot      | or Oils/Lube Oils/Grease- |
| <b>←</b>      | -Diesel/Je | et Fuels→  |                           |


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

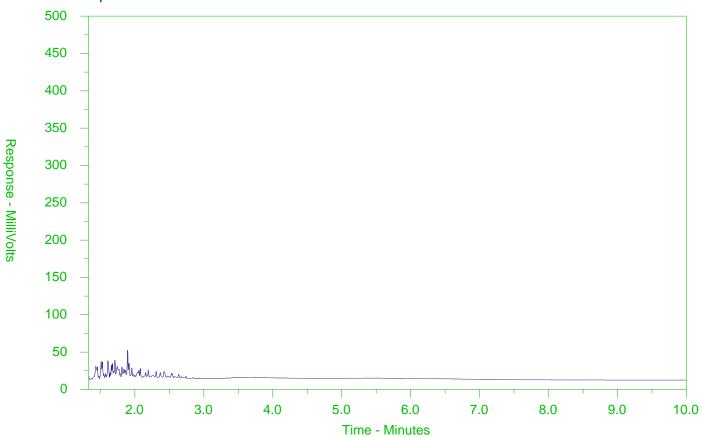
Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.



ALS Sample ID: L2152974-6 Client Sample ID: BH201-SS4



| <b>←</b> -F2- | →-          | _F3 <b>→</b> F4- | <b>→</b>                     |   |
|---------------|-------------|------------------|------------------------------|---|
| nC10          | nC16        | nC34             | nC50                         |   |
| 174°C         | 287°C       | 481°C            | 575°C                        |   |
| 346°F         | 549°F       | 898°F            | 1067°F                       |   |
| Gasolin       | ie →        | <b>←</b> Mo      | tor Oils/Lube Oils/Grease——— | - |
| •             | -Diesel/Jet | Fuels→           |                              |   |


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

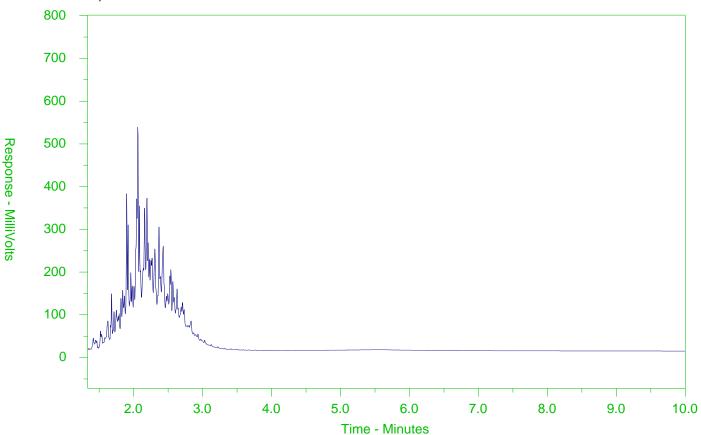
Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.



ALS Sample ID: L2152974-7 Client Sample ID: BH204-SS4



| <b>←</b> -F2- | →-          | _F3 <b>→</b> F4- | <b>→</b>                     |   |
|---------------|-------------|------------------|------------------------------|---|
| nC10          | nC16        | nC34             | nC50                         |   |
| 174°C         | 287°C       | 481°C            | 575°C                        |   |
| 346°F         | 549°F       | 898°F            | 1067°F                       |   |
| Gasolin       | ie →        | <b>←</b> Mo      | tor Oils/Lube Oils/Grease——— | - |
| •             | -Diesel/Jet | Fuels→           |                              |   |


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

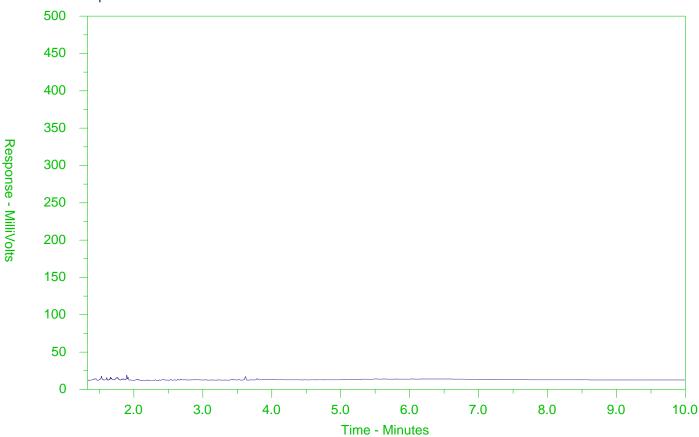
Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.



ALS Sample ID: L2152974-8 Client Sample ID: BH205-SS3



| <b>←</b> -F2- | →-          | _F3 <b>→</b> F4- | <b>→</b>                     |   |
|---------------|-------------|------------------|------------------------------|---|
| nC10          | nC16        | nC34             | nC50                         |   |
| 174°C         | 287°C       | 481°C            | 575°C                        |   |
| 346°F         | 549°F       | 898°F            | 1067°F                       |   |
| Gasolin       | ie →        | <b>←</b> Mo      | tor Oils/Lube Oils/Grease——— | - |
| •             | -Diesel/Jet | Fuels→           |                              |   |


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

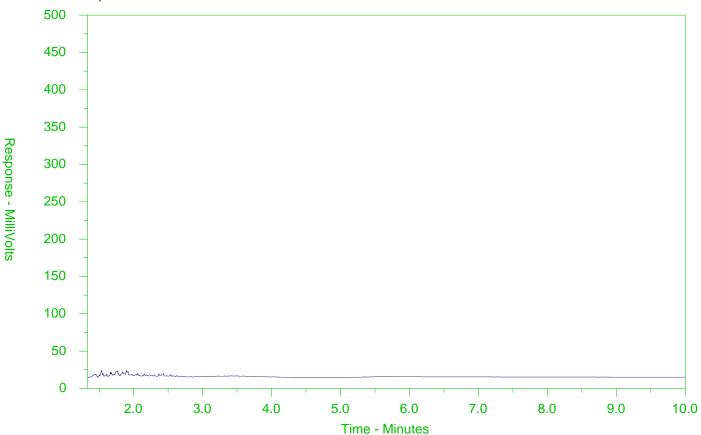
Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.



ALS Sample ID: L2152974-9 Client Sample ID: BH207-SS4



| <b>←</b> -F2- | →-          | _F3 <b>→</b> F4- | <b>→</b>                     |   |
|---------------|-------------|------------------|------------------------------|---|
| nC10          | nC16        | nC34             | nC50                         |   |
| 174°C         | 287°C       | 481°C            | 575°C                        |   |
| 346°F         | 549°F       | 898°F            | 1067°F                       |   |
| Gasolin       | ie →        | <b>←</b> Mo      | tor Oils/Lube Oils/Grease——— | - |
| •             | -Diesel/Jet | Fuels→           |                              |   |


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

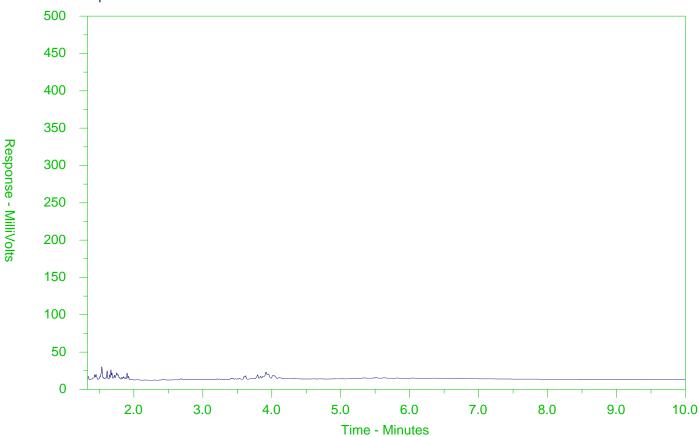
Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.



ALS Sample ID: L2152974-10 Client Sample ID: BH208-SS5



| <b>←</b> -F2- | →-          | _F3 <b>→</b> F4- | <b>→</b>                     |   |
|---------------|-------------|------------------|------------------------------|---|
| nC10          | nC16        | nC34             | nC50                         |   |
| 174°C         | 287°C       | 481°C            | 575°C                        |   |
| 346°F         | 549°F       | 898°F            | 1067°F                       |   |
| Gasolin       | ie →        | <b>←</b> Mo      | tor Oils/Lube Oils/Grease——— | - |
| •             | -Diesel/Jet | Fuels→           |                              |   |


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

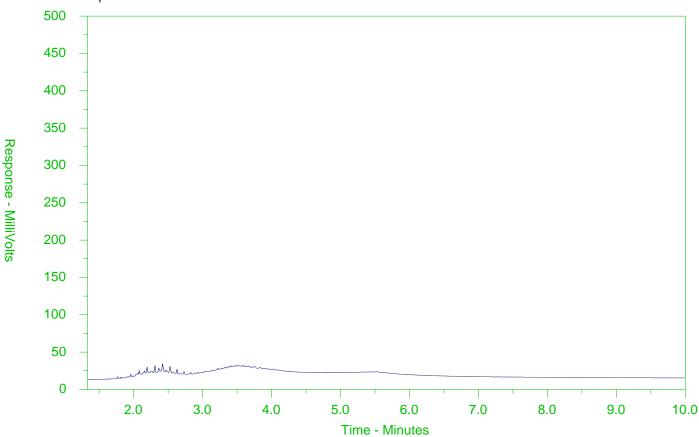
Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.



ALS Sample ID: L2152974-11 Client Sample ID: DUP-S202



| <b>←</b> -F2- | →-          | _F3 <b>→</b> F4- | <b>→</b>                     |   |
|---------------|-------------|------------------|------------------------------|---|
| nC10          | nC16        | nC34             | nC50                         |   |
| 174°C         | 287°C       | 481°C            | 575°C                        |   |
| 346°F         | 549°F       | 898°F            | 1067°F                       |   |
| Gasolin       | ie →        | <b>←</b> Mo      | tor Oils/Lube Oils/Grease——— | - |
| •             | -Diesel/Jet | Fuels→           |                              |   |


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.



ALS Sample ID: L2152974-12 Client Sample ID: DUP-S203



| <b>←</b> -F2- | →-          | _F3 <b>→</b> F4- | <b>→</b>                     |   |
|---------------|-------------|------------------|------------------------------|---|
| nC10          | nC16        | nC34             | nC50                         |   |
| 174°C         | 287°C       | 481°C            | 575°C                        |   |
| 346°F         | 549°F       | 898°F            | 1067°F                       |   |
| Gasolin       | ie →        | <b>←</b> Mo      | tor Oils/Lube Oils/Grease——— | - |
| •             | -Diesel/Jet | Fuels→           |                              |   |

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

# Environmental

1. If any water samples are taken from a Regulated Drinking Water (DW). System, please submit using an Authorized DW COC form.

# Chain of Custody (COC) / Analytical Request Form

Canada Toll Free: 1 800 668 9878

COC Number: 17 - 727586

L2152974-COFC Page of

|                   | www.alsglobal.com                                                                                        |                                | <u> </u>                                | <del></del>                                      |                                                  |                   |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 1                                                |              |              |             |               |          |            |                                        |                     |
|-------------------|----------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------|--------------------------------------------------|--------------------------------------------------|-------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------|--------------|--------------|-------------|---------------|----------|------------|----------------------------------------|---------------------|
| Report To         | Contact and company name below will appear                                                               |                                | Report Format                           |                                                  |                                                  |                   | Sele                                             | ct Service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Level Below        | - Contact yo                                     | ur AM to     | confirm a    | II E&P T    | ATs (su       | rcharges | may ap     | ply)                                   |                     |
| Company:          | SIRATIO partne                                                                                           | <b>√</b> Select                | Report Format: PDF                      | EXCEL   E                                        |                                                  |                   | Reg                                              | ular (R)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Standa             | rd TAT if receive                                | ed by 3 pm   | - business ( | days - no s | surcharge     | es apply |            |                                        |                     |
| Contact:          | CHaoran Li                                                                                               |                                | Control (QC) Report with Rep            |                                                  |                                                  | E E               | 4 day                                            | [P4-20%]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    | §  1 B                                           | usiness      | day (E-10    | 10%]        |               |          |            |                                        |                     |
| Phone:            | 905-833 1582                                                                                             |                                | Compare Results to Criteria on Report - |                                                  |                                                  | RIOR              | -                                                | [P3-25%]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ==                 |                                                  |              | Veekend :    |             |               |          | 2-2009     | 6                                      | I                   |
| . <u> </u>        | Company address below will appear on the final                                                           |                                |                                         | MAIL 📋                                           |                                                  | ٠ē                | 2 day                                            | [P2-50%]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    | " (Lab                                           | oratory      | opening      | fees ma     | y appl        | .iy)]    |            |                                        |                     |
| Street:           | 12700 KERT COT                                                                                           |                                | 1 or Fax Chaoran L                      |                                                  |                                                  |                   |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | uired for all E8   |                                                  |              |              |             | nmm-yy        | / hh:mm  |            |                                        |                     |
| City/Province:    | King city, of                                                                                            | Email:                         | 2 ggarofalow                            | spoonsult                                        | auts) tolica                                     | For tes           | ts that can                                      | not be perfor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | med according t    |                                                  |              |              | ontacted.   |               |          |            |                                        |                     |
| Postal Code:      | L772 / H2/                                                                                               | Email :                        | 3 & berhave                             |                                                  | alkantild                                        | ca_               |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                  |              | Request      |             |               |          |            | `<br><del>1 /6 '</del> 7               |                     |
| Invoice To        | Same as Report To YES                                                                                    | NO                             | Invoice Di                              | stribution                                       |                                                  |                   |                                                  | Indicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Filtered (F), Pr   | eserved (P) or F                                 | iltered and  | Preserved    | (F/P) belov | w             |          |            | detalls                                | 1 1                 |
| ·                 | Copy of Invoice with Report YES                                                                          | NO Select                      | Invoice Distribution:                   | MAIL MAIL                                        | FAX                                              |                   |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                  | ,            |              |             |               |          |            | , p                                    | 1 1                 |
| Company:          |                                                                                                          | Email :                        | 1 or Fax                                |                                                  |                                                  |                   |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                  |              |              |             |               |          | 7          | further                                | 1 1                 |
| Contact:          |                                                                                                          | Email 2                        | 2                                       | <u> </u>                                         | <u> </u>                                         | i                 |                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                                                  |              |              |             |               | - 1      |            | Je fr                                  | 1 1                 |
|                   | Project Information                                                                                      | 1.01.00.00                     | Oil and Gas Require                     | d Fields (client u                               | se)                                              | 1                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                  |              |              |             |               |          |            | epino.                                 | 1 1                 |
| ALS Account#/     |                                                                                                          | AFE/Cos                        | st Center:                              | PO#                                              |                                                  | 1                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                  |              |              |             |               | -        |            | 9                                      | t I                 |
| Job #:            | SP18-306-20                                                                                              | Major/Mi                       | inor Code:                              | Routing Code:                                    |                                                  | 1                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                  |              |              |             |               |          |            | je<br>je<br>je                         | ES                  |
| PO / AFE:         |                                                                                                          | Requis                         | sitioner:                               |                                                  |                                                  | 1                 | l to l                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | }                  |                                                  |              |              |             |               |          | ۔ ا        | 8.<br>T)                               | Į₹I                 |
| LSD:              | <u> </u>                                                                                                 | Location                       | on:                                     |                                                  |                                                  | ]                 | 0                                                | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                  |                                                  |              |              |             |               |          | HOLD       | Ę                                      | ᄫ                   |
| ALS Lab Wor       | rk Order# (lab use only):                                                                                | S 2974 ALSO                    | Contact:                                | Sampler:                                         | Ac                                               | J                 | ctro                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                  |              |              |             |               |          | ₹          | is haza                                | NUMBER OF CONTAINER |
| ALS Sample #      | Sample Identification                                                                                    | and/or Coordinates             | Date                                    | Time                                             |                                                  | 7                 | PH                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                                                  |              |              |             |               |          | SAMPLES    | Sample                                 | 闄                   |
| (lab use only)    | (This description will a                                                                                 | ppear on the report)           | (dd-mmm-yy)                             | (hh:mm)                                          | Sample Type                                      | E                 | P                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                  |              |              |             | ,             |          | SA.        | San                                    |                     |
|                   | RH202-553                                                                                                |                                | 24 AUG-18                               | OW                                               | Soil                                             | R                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                  |              |              |             |               |          |            |                                        | $\Box$              |
| )                 | BH202-555                                                                                                |                                | 24-Aug-18                               |                                                  | l l                                              |                   | 2                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                  | 1 1          |              |             |               |          | 1          | 1                                      | 3                   |
| 2                 | BH 214-552                                                                                               | <del></del>                    | 23-AU7-18                               | pm                                               |                                                  | R                 | <del>    -  </del>                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                  |              |              | 1           |               |          | 1          | 1                                      |                     |
| 7                 | BH 215 -SS2                                                                                              |                                | 12-40-51 B                              | To voc                                           | <del>                                     </del> | 12                | +-+                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +                  | +                                                |              |              | ,           |               |          | +          |                                        | <del>- `-</del>     |
| 1                 |                                                                                                          |                                |                                         | <del>                                     </del> | + - [                                            | 0                 | +                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | +                                                | <del> </del> |              | +           |               | +        | +-         | ╁                                      | +                   |
| <b> </b>          | RH 216 -552                                                                                              |                                |                                         | <del>                                     </del> | <del> </del>                                     | <u> </u>          | <del>                                     </del> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>      -</del> | +   -                                            | +            |              |             |               |          | ┽—         | -                                      |                     |
| <u>\</u>          | BH 201- 354                                                                                              |                                |                                         |                                                  | <del> </del>                                     | —                 | 2                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ╀—┼—               | <del></del>                                      | +            |              |             |               | L        | —          | <del> </del>                           | 3                   |
| <u> </u>          | BH 204 - 854                                                                                             |                                |                                         |                                                  |                                                  | <u> </u>          | R                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>           |                                                  |              |              | <u> </u>    | $\rightarrow$ |          | Ц_         | ļ                                      | 3                   |
| <u>~</u>          | B11 205 - 553                                                                                            | ·                              |                                         |                                                  |                                                  |                   | 12                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                  |              |              |             |               | _        |            | <u> </u>                               | 3                   |
| 91                | BH207-554                                                                                                |                                |                                         |                                                  |                                                  |                   | R                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                  |              |              |             |               | T        |            | 1                                      | 3                   |
| ίờ                |                                                                                                          |                                |                                         |                                                  |                                                  |                   | R                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                  |              |              | 1.          |               |          | ٦,         |                                        | 3                   |
| 11                | Dup-5202                                                                                                 |                                |                                         | 1                                                |                                                  | <b>ऻ</b>          | 2                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | † †                                              | 7            |              | 1 1         |               |          | $\top$     | T .                                    | 3                   |
| 12                | Dup-5203                                                                                                 |                                |                                         | 1                                                | \ \frac{1}{2}                                    | +                 | 15                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1                | <del>                                     </del> | 1-1          |              | + 1         |               | $\neg +$ | +          | 1                                      | 3                   |
|                   | D = 1 0 2 3                                                                                              | Canada Instructions / Specific | Criteria to add on report by clic       | tion on the dead                                 | List balance                                     | -                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAMP               | LE CONDITI                                       | ON AS        | RECEIVE      | n (lab u    | se only       | <u> </u> |            | ــــــــــــــــــــــــــــــــــــــ | 띡                   |
| Drinkin           | g Water (DW) Samples¹ (client use)                                                                       | opecial management opecity     | (electronic COC only)                   | king on the grop-a                               | OMU list perow                                   | Froze             | en                                               | . 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | SIF Obser                                        | _            | Yes          |             | J             | ,,<br>N  | 0          |                                        |                     |
| Are samples taker | n from a Regulated DW System?                                                                            | <u></u>                        |                                         |                                                  |                                                  |                   |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Custody s                                        |              | t Yes        | , <u> </u>  | ]             | N        | 0          | _                                      | <b>-</b>            |
| ☐ YE              | ES 🔲 NO                                                                                                  | Tolde 1 2                      | -0 OAT                                  |                                                  |                                                  |                   |                                                  | ated (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                  |                                                  |              |              |             |               |          |            |                                        |                     |
| Are samples for h | uman consumption/ use?                                                                                   | Table 1 of                     | O KhT                                   |                                                  |                                                  |                   |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LER TEMPERA        | TURES °C                                         |              |              |             | COOLER        | TEMPER   | TURES °    | c                                      |                     |
| YE                | es   <u> </u> NO                                                                                         | 1                              | 4                                       |                                                  |                                                  | 万                 | 0.                                               | 6.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                                                  |              | 9-1          | $^{\circ}$  |               |          |            |                                        | ]                   |
| Balanta           | SHIPMENT RELEASE (client use)                                                                            |                                | INITIAL SHIPMEN                         |                                                  |                                                  |                   |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                  | FINAL SH                                         | IPMENT       | RECEPT       | ION (la     | b use d       | only)    |            |                                        |                     |
|                   | Cle Date: 24-Aug                                                                                         | _90 18 11:521                  | mol                                     | Ang ô                                            |                                                  |                   |                                                  | Received<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ZZ                 | 0                                                | Date:        | 4-40         | 10,~        | (8            |          | Time<br>(9 | <u>6:6</u>                             | S.                  |
|                   | PAGE FOR ALS LOCATIONS AND SAMPLING INF<br>portions of this form may delay analysis. Please fill in this |                                | WH                                      | TE - LABORATORY                                  | COPY YELLO                                       | W - CL<br>ck nade | IENT CC                                          | PY (In the second secon |                    |                                                  |              |              | O           | •             |          | 1          |                                        | 2017 FRONT          |



Sirati & Partners Consultants Ltd.

(Concord)

ATTN: Dr. Giorgio Garofalo

12700 Keele St

King City ON L7B 1H5

Date Received: 24-AUG-18

Report Date: 06-SEP-18 09:01 (MT)

Version: FINAL

Client Phone: 905-833-1582

## Certificate of Analysis

Lab Work Order #: L2153058
Project P.O. #: SP18-306-20
Job Reference: SP18-306-20

C of C Numbers: Legal Site Desc:

Rick Hawthorne Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 5730 Coopers Avenue, Unit #26 , Mississauga, ON L4Z 2E9 Canada | Phone: +1 905 507 6910 | Fax: +1 905 507 6927 ALS CANADA LTD Part of the ALS Group An ALS Limited Company





L2153058 CONT'D....

Job Reference: SP18-306-20

PAGE 2 of 16

06-SEP-18 09:01 (MT)

#### **Summary of Guideline Exceedances**

| Guideline<br>ALS ID | Client ID                 | Grouping                                  | Analyte                        | Result  | Guideline Limit | Unit         |
|---------------------|---------------------------|-------------------------------------------|--------------------------------|---------|-----------------|--------------|
|                     |                           | <u>.                                 </u> |                                |         |                 |              |
|                     |                           | 5, 2011 Standards - T1-Soil-Res/Park/Ir   | ist/ind/Com/Commu Property Use |         |                 |              |
| .2153058-2          | BH218-SS4                 | Volatile Organic Compounds                | Xylenes (Total)                | 0.136   | 0.05            | ug/g         |
| _2153058-4          | BH209-SS7                 | Volatile Organic Compounds                | Benzene                        | 0.0886  | 0.02            | ug/g         |
|                     |                           |                                           | Bromodichloromethane           | 0.608   | 0.05            | ug/g         |
|                     |                           |                                           | Chloroform                     | 0.626   | 0.05            | ug/g         |
|                     |                           |                                           | 1,2-Dibromoethane              | <0.24   | 0.05            | ug/g         |
|                     |                           |                                           | 1,2-Dichloroethane             | < 0.070 | 0.05            | ug/g         |
|                     |                           |                                           | Ethylbenzene                   | 0.086   | 0.05            | ug/g         |
|                     |                           |                                           | n-Hexane                       | 8.18    | 0.05            | ug/g         |
|                     |                           |                                           | 1,1,2,2-Tetrachloroethane      | <0.25   | 0.05            | ug/g         |
|                     |                           |                                           | 1,1,2-Trichloroethane          | <0.32   | 0.05            | ug/g         |
|                     |                           | Hydrocarbons                              | F1 (C6-C10)                    | 208     | 25              | ug/g         |
|                     |                           |                                           | F1-BTEX                        | 208     | 25              | ug/g         |
|                     |                           |                                           | F2 (C10-C16)                   | 81      | 10              | ug/g         |
| _2153058-5          | BH210-SS5                 | Volatile Organic Compounds                | Benzene                        | 0.0326  | 0.02            | ug/g         |
|                     |                           |                                           | Bromodichloromethane           | 0.137   | 0.05            | ug/g         |
|                     |                           |                                           | Chloroform                     | < 0.065 | 0.05            | ug/g         |
|                     |                           |                                           | n-Hexane                       | 0.207   | 0.05            | ug/g         |
|                     |                           |                                           | Xylenes (Total)                | 0.094   | 0.05            | ug/g         |
|                     |                           | Hydrocarbons                              | F2 (C10-C16)                   | 24      | 10              | ug/g         |
|                     |                           |                                           | F3 (C16-C34)                   | 340     | 240             | ug/g         |
|                     |                           |                                           | F4 (C34-C50)                   | 890     | 120             | ug/g         |
|                     |                           |                                           | F4G-SG (GHH-Silica)            | 2430    | 120             | ug/g         |
| 2153058-6           | BH211-SS3                 | Physical Tests                            | Conductivity                   | 1.72    | 0.57            | mS/cm        |
|                     |                           | Saturated Paste Extractables              | SAR                            | 25.5    | 2.4             | SAR          |
| L2153058-7          | BH212-SS3                 | Physical Tests                            | Conductivity                   | 1.59    | 0.57            | mS/cm        |
|                     |                           | Saturated Paste Extractables              | SAR                            | 13.0    | 2.4             | SAR          |
| _2153058-8          | BH213-SS3                 | Physical Tests                            |                                |         |                 | mS/cm        |
|                     |                           | Saturated Paste Extractables              | Conductivity                   | 0.672   | 0.57            |              |
| 0450050.0           | DUD COO4                  |                                           | SAR                            | 5.16    | 2.4             | SAR          |
| _2153058-9          | DUP-S201                  | Physical Tests                            | Conductivity                   | 0.684   | 0.57            | mS/cm        |
|                     |                           | Saturated Paste Extractables              | SAR                            | 5.11    | 2.4             | SAR          |
| Intario Reg         | gulation 153/04 - April 1 | 5, 2011 Standards - T2-Soil-Res/Park/Ir   | nst. Property Use (Coarse)     |         |                 |              |
| _2153058-4          | BH209-SS7                 | Volatile Organic Compounds                | Chloroform                     | 0.626   | 0.05            | ug/g         |
|                     |                           | - '                                       | 1,2-Dibromoethane              | <0.24   | 0.05            | ug/g<br>ug/g |
|                     |                           |                                           | 1,2-Dichloroethane             | <0.070  | 0.05            | ug/g<br>ug/g |

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2153058 CONT'D....

Job Reference: SP18-306-20

PAGE 3 of 16

06-SEP-18 09:01 (MT)

#### **Summary of Guideline Exceedances**

| Guideline   |                               |                                      |                            |        |                 |       |
|-------------|-------------------------------|--------------------------------------|----------------------------|--------|-----------------|-------|
| ALS ID      | Client ID                     | Grouping                             | Analyte                    | Result | Guideline Limit | Unit  |
| Ontario Reg | julation 153/04 - April 15, 2 | 2011 Standards - T2-Soil-Res/Park/Iı | nst. Property Use (Coarse) |        |                 |       |
| L2153058-4  | BH209-SS7                     | Volatile Organic Compounds           | n-Hexane                   | 8.18   | 2.8             | ug/g  |
|             |                               |                                      | 1,1,2,2-Tetrachloroethane  | <0.25  | 0.05            | ug/g  |
|             |                               |                                      | 1,1,2-Trichloroethane      | <0.32  | 0.05            | ug/g  |
|             |                               | Hydrocarbons                         | F1 (C6-C10)                | 208    | 55              | ug/g  |
|             |                               |                                      | F1-BTEX                    | 208    | 55              | ug/g  |
| L2153058-5  | BH210-SS5                     | Volatile Organic Compounds           | Chloroform                 | <0.065 | 0.05            | ug/g  |
|             |                               | Hydrocarbons                         | F3 (C16-C34)               | 340    | 300             | ug/g  |
| L2153058-6  | BH211-SS3                     | Physical Tests                       | Conductivity               | 1.72   | 0.7             | mS/cm |
|             |                               | Saturated Paste Extractables         | SAR                        | 25.5   | 5               | SAR   |
| L2153058-7  | BH212-SS3                     | Physical Tests                       | Conductivity               | 1.59   | 0.7             | mS/cm |
|             |                               | Saturated Paste Extractables         | SAR                        | 13.0   | 5               | SAR   |
| L2153058-8  | BH213-SS3                     | Saturated Paste Extractables         | SAR                        | 5.16   | 5               | SAR   |
| L2153058-9  | DUP-S201                      | Saturated Paste Extractables         | SAR                        | 5.11   | 5               | SAR   |

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2153058 CONT'D....
Job Reference: SP18-306-20

PAGE 4 of 16 06-SEP-18 09:01 (MT)

**Physical Tests - SOIL** 

|                  |            | L             | ₋ab ID       | L2153058-1 | L2153058-2 | L2153058-3 | L2153058-4 | L2153058-5 | L2153058-6   | L2153058-7   | L2153058-8    | L2153058-9    |
|------------------|------------|---------------|--------------|------------|------------|------------|------------|------------|--------------|--------------|---------------|---------------|
|                  |            | Sample        | e Date       | 21-AUG-18  | 21-AUG-18  | 21-AUG-18  | 21-AUG-18  | 21-AUG-18  | 21-AUG-18    | 21-AUG-18    | 21-AUG-18     | 21-AUG-18     |
|                  |            | Sam           | ple ID       | BH217-SS4  | BH218-SS4  | BH206-SS5  | BH209-SS7  | BH210-SS5  | BH211-SS3    | BH212-SS3    | BH213-SS3     | DUP-S201      |
| Analyte          | Unit       | Guide  <br>#1 | Limits<br>#2 |            |            |            |            |            |              |              |               |               |
| Allalyte         |            |               |              |            |            |            |            |            |              |              |               |               |
| Conductivity     | 0/         |               |              |            |            |            |            |            |              |              |               |               |
|                  | mS/cm      | 0.57          | 0.7          |            |            |            |            |            | 1.72         | 1.59         | 0.672         | 0.684         |
| % Moisture       | mS/cm<br>% | 0.57          | 0.7          | 16.3       | 17.1       | 8.06       | 13.8       | 20.6       | 1.72<br>17.4 | 1.59<br>14.7 | 0.672<br>15.6 | 0.684<br>17.3 |
| % Moisture<br>pH |            |               |              | 16.3       | 17.1       | 8.06       | 13.8       | 20.6       |              |              |               |               |

Guide Limit #1: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use Guide Limit #2: T2-Soil-Res/Park/Inst. Property Use (Coarse)

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2153058 CONT'D....

Job Reference: SP18-306-20

PAGE 5 of 16

06-SEP-18 09:01 (MT)

#### Cyanides - SOIL

| Cyanide, Weak Acid Diss | ug/g | 0.051  | 0.051   | <0.050     | <0.050       | <0.050       | <0.050     |
|-------------------------|------|--------|---------|------------|--------------|--------------|------------|
| Analyte                 | Unit | #1     | #2      |            |              |              |            |
|                         |      | Guide  | Limits  |            |              |              |            |
|                         |      | Jan    | ipie ib | BH211-000  | DI 12 12-003 | DI 12 10-000 | DOI -0201  |
|                         |      | Sam    | nple ID | BH211-SS3  | BH212-SS3    | BH213-SS3    | DUP-S201   |
|                         |      | Sample | e Date  | 21-AUG-18  | 21-AUG-18    | 21-AUG-18    | 21-AUG-18  |
|                         |      | l      | Lab ID  | L2153058-6 | L2153058-7   | L2153058-8   | L2153058-9 |

Guide Limit #1: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use Guide Limit #2: T2-Soil-Res/Park/Inst. Property Use (Coarse)

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2153058 CONT'D....

Job Reference: SP18-306-20

PAGE 6 of 16

06-SEP-18 09:01 (MT)

#### **Saturated Paste Extractables - SOIL**

|                |      | I     | Lab ID | L2153058-6 | L2153058-7 | L2153058-8 | L2153058-9 |
|----------------|------|-------|--------|------------|------------|------------|------------|
|                |      | Sampl | e Date | 21-AUG-18  | 21-AUG-18  | 21-AUG-18  | 21-AUG-18  |
|                |      | Sam   | ple ID | BH211-SS3  | BH212-SS3  | BH213-SS3  | DUP-S201   |
|                |      |       |        |            |            |            |            |
|                |      | Guide | Limits |            |            |            |            |
| Analyte        | Unit | #1    | #2     |            |            |            |            |
| SAR            | SAR  | 2.4   | 5      | 25.5       | 13.0       | 5.16       | 5.11       |
| Calcium (Ca)   | mg/L | -     | -      | 12.7       | 28.4       | 17.1       | 17.8       |
| Magnesium (Mg) | mg/L | -     | -      | 1.1        | 2.4        | 1.6        | 1.6        |
| Sodium (Na)    | mg/L | -     | -      | 352        | 269        | 83.4       | 83.8       |
|                |      |       |        |            |            |            |            |

Guide Limit #1: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use Guide Limit #2: T2-Soil-Res/Park/Inst. Property Use (Coarse)

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2153058 CONT'D....

Job Reference: SP18-306-20

PAGE 7 of 16

06-SEP-18 09:01 (MT)

#### **Metals - SOIL**

| MELAIS - SOIL             |      |             |              |            |            |            |            |
|---------------------------|------|-------------|--------------|------------|------------|------------|------------|
|                           |      |             | Lab ID       | L2153058-6 | L2153058-7 | L2153058-8 | L2153058-9 |
|                           |      | Sample Date |              | 21-AUG-18  | 21-AUG-18  | 21-AUG-18  | 21-AUG-18  |
|                           |      | Sam         | ple ID       | BH211-SS3  | BH212-SS3  | BH213-SS3  | DUP-S201   |
| Analyte                   | Unit | Guide<br>#1 | Limits<br>#2 |            |            |            |            |
| Antimony (Sb)             | ug/g | 1.3         | 7.5          | <1.0       | <1.0       | <1.0       | <1.0       |
| Arsenic (As)              | ug/g | 18          | 18           | 6.2        | 4.9        | 4.3        | 5.2        |
| Barium (Ba)               | ug/g | 220         | 390          | 95.6       | 61.4       | 51.6       | 60.8       |
| Beryllium (Be)            | ug/g | 2.5         | 4            | 0.83       | 0.59       | 0.52       | 0.58       |
| Boron (B)                 | ug/g | 36          | 120          | 7.5        | 5.2        | 5.1        | 5.9        |
| Boron (B), Hot Water Ext. | ug/g | 36          | 1.5          | 0.89       | 0.30       | 0.35       | 0.27       |
| Cadmium (Cd)              | ug/g | 1.2         | 1.2          | 0.52       | <0.50      | <0.50      | <0.50      |
| Chromium (Cr)             | ug/g | 70          | 160          | 27.3       | 21.2       | 17.7       | 21.0       |
| Cobalt (Co)               | ug/g | 21          | 22           | 12.9       | 10.0       | 8.6        | 10.2       |
| Copper (Cu)               | ug/g | 92          | 140          | 39.2       | 22.4       | 25.3       | 27.4       |
| Lead (Pb)                 | ug/g | 120         | 120          | 20.3       | 8.8        | 9.0        | 9.1        |
| Mercury (Hg)              | ug/g | 0.27        | 0.27         | 0.0390     | 0.0239     | 0.0255     | 0.0244     |
| Molybdenum (Mo)           | ug/g | 2           | 6.9          | <1.0       | <1.0       | <1.0       | <1.0       |
| Nickel (Ni)               | ug/g | 82          | 100          | 29.2       | 21.3       | 19.8       | 22.7       |
| Selenium (Se)             | ug/g | 1.5         | 2.4          | <1.0       | <1.0       | <1.0       | <1.0       |
| Silver (Ag)               | ug/g | 0.5         | 20           | <0.20      | <0.20      | <0.20      | <0.20      |
| Thallium (TI)             | ug/g | 1           | 1            | <0.50      | <0.50      | <0.50      | <0.50      |
| Uranium (U)               | ug/g | 2.5         | 23           | <1.0       | <1.0       | <1.0       | <1.0       |
| Vanadium (V)              | ug/g | 86          | 86           | 39.9       | 30.6       | 29.2       | 33.1       |
| Zinc (Zn)                 | ug/g | 290         | 340          | 80.7       | 49.3       | 41.7       | 49.1       |
|                           |      |             |              |            |            |            |            |

Guide Limit #1: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use Guide Limit #2: T2-Soil-Res/Park/Inst. Property Use (Coarse)

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2153058 CONT'D....

Job Reference: SP18-306-20

PAGE 8 of 16

06-SEP-18 09:01 (MT)

#### **Speciated Metals - SOIL**

| Chromium, Hexavalent | ug/g | 0.66  | 8       | <0.20      | 0.50       | <0.20      | <0.20      |
|----------------------|------|-------|---------|------------|------------|------------|------------|
| Analyte              | Unit | #1    | #2      |            |            |            |            |
|                      |      | Guide | Limits  |            |            |            |            |
|                      |      | Sam   | nple ID | BH211-SS3  | BH212-SS3  | BH213-SS3  | DUP-S201   |
|                      |      | Sampl |         | 21-AUG-18  | 21-AUG-18  | 21-AUG-18  | 21-AUG-18  |
|                      |      |       | Lab ID  | L2153058-6 | L2153058-7 | L2153058-8 | L2153058-9 |

Guide Limit #1: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use Guide Limit #2: T2-Soil-Res/Park/Inst. Property Use (Coarse)

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2153058 CONT'D....

Job Reference: SP18-306-20

PAGE 9 of 16

06-SEP-18 09:01 (MT)

#### **Volatile Organic Compounds - SOIL**

| Volatile Organic Compound         | <del> </del> |             | Lab ID | L2153058-1 | L2153058-2 | L2153058-3 | L2153058-4             | L2153058-5             |
|-----------------------------------|--------------|-------------|--------|------------|------------|------------|------------------------|------------------------|
|                                   |              | Sample      |        | 21-AUG-18  | 21-AUG-18  | 21-AUG-18  | 21-AUG-18              | 21-AUG-18              |
|                                   |              |             | ple ID | BH217-SS4  | BH218-SS4  | BH206-SS5  | BH209-SS7              | BH210-SS5              |
|                                   |              |             | -      |            |            |            |                        |                        |
|                                   |              |             |        |            |            |            |                        |                        |
| Analyte                           | Unit         | Guide<br>#1 | #2     |            |            |            |                        |                        |
| Acetone                           | ug/g         | 0.5         | 16     | <0.50      | <0.50      | <0.50      | <0.50                  | <0.50                  |
| Benzene                           | ug/g         | 0.02        | 0.21   | <0.0068    | 0.0104     | <0.0068    | 0.0886                 | 0.0326                 |
| Bromodichloromethane              | ug/g         | 0.05        | 1.5    | <0.050     | <0.050     | < 0.050    | 0.608                  | 0.137                  |
| Bromoform                         | ug/g         | 0.05        | 0.27   | <0.050     | <0.050     | < 0.050    | <0.050                 | < 0.050                |
| Bromomethane                      | ug/g         | 0.05        | 0.05   | <0.050     | <0.050     | < 0.050    | <0.050                 | < 0.050                |
| Carbon tetrachloride              | ug/g         | 0.05        | 0.05   | <0.050     | <0.050     | <0.050     | <0.050                 | <0.050                 |
| Chlorobenzene                     | ug/g         | 0.05        | 2.4    | <0.050     | <0.050     | <0.050     | < 0.050                | <0.050                 |
| Dibromochloromethane              | ug/g         | 0.05        | 2.3    | <0.050     | <0.050     | <0.050     | <0.050                 | <0.050                 |
| Chloroform                        | ug/g         | 0.05        | 0.05   | <0.050     | <0.050     | <0.050     | 0.626                  | <0.065 <sup>DLVH</sup> |
| 1,2-Dibromoethane                 | ug/g         | 0.05        | 0.05   | <0.050     | <0.050     | <0.050     | <0.24 DLVH             | <0.050                 |
| 1,2-Dichlorobenzene               | ug/g         | 0.05        | 1.2    | <0.050     | <0.050     | <0.050     | <0.050                 | <0.050                 |
| 1,3-Dichlorobenzene               | ug/g         | 0.05        | 4.8    | <0.050     | <0.050     | <0.050     | <0.050                 | <0.050                 |
| 1,4-Dichlorobenzene               | ug/g         | 0.05        | 0.083  | <0.050     | <0.050     | <0.050     | <0.050                 | < 0.050                |
| Dichlorodifluoromethane           | ug/g         | 0.05        | 16     | <0.050     | <0.050     | <0.050     | <0.050                 | <0.050                 |
| 1,1-Dichloroethane                | ug/g         | 0.05        | 0.47   | <0.050     | <0.050     | <0.050     | <0.050                 | <0.050                 |
| 1,2-Dichloroethane                | ug/g         | 0.05        | 0.05   | <0.050     | <0.050     | <0.050     | <0.070 <sup>DLVH</sup> | <0.050                 |
| 1,1-Dichloroethylene              | ug/g         | 0.05        | 0.05   | <0.050     | < 0.050    | <0.050     | <0.050                 | < 0.050                |
| cis-1,2-Dichloroethylene          | ug/g         | 0.05        | 1.9    | <0.050     | <0.050     | <0.050     | <0.050                 | <0.050                 |
| trans-1,2-Dichloroethylene        | ug/g         | 0.05        | 0.084  | <0.050     | <0.050     | <0.050     | <0.050                 | <0.050                 |
| Methylene Chloride                | ug/g         | 0.05        | 0.1    | <0.050     | <0.050     | <0.050     | <0.050                 | <0.050                 |
| 1,2-Dichloropropane               | ug/g         | 0.05        | 0.05   | <0.050     | < 0.050    | <0.050     | <0.050                 | < 0.050                |
| cis-1,3-Dichloropropene           | ug/g         | -           | -      | <0.030     | < 0.030    | <0.030     | <0.030                 | <0.030                 |
| trans-1,3-Dichloropropene         | ug/g         | -           | -      | <0.030     | < 0.030    | <0.030     | <0.030                 | < 0.030                |
| 1,3-Dichloropropene (cis & trans) | ug/g         | 0.05        | 0.05   | <0.042     | <0.042     | <0.042     | <0.042                 | <0.042                 |
| Ethylbenzene                      | ug/g         | 0.05        | 1.1    | <0.018     | 0.034      | <0.018     | 0.086                  | <0.018                 |
| n-Hexane                          | ug/g         | 0.05        | 2.8    | <0.050     | <0.050     | <0.050     | 8.18                   | 0.207                  |
| Methyl Ethyl Ketone               | ug/g         | 0.5         | 16     | <0.50      | <0.50      | <0.50      | <0.50                  | <0.50                  |
| Methyl Isobutyl Ketone            | ug/g         | 0.5         | 1.7    | <0.50      | <0.50      | <0.50      | <0.50                  | <0.50                  |
| MTBE                              | ug/g         | 0.05        | 0.75   | <0.050     | <0.050     | <0.050     | <0.050                 | <0.050                 |
| Styrene                           | ug/g         | 0.05        | 0.7    | <0.050     | <0.050     | <0.050     | <0.050                 | <0.050                 |

Guide Limit #1: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use Guide Limit #2: T2-Soil-Res/Park/Inst. Property Use (Coarse)

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2153058 CONT'D.... Job Reference: SP18-306-20 PAGE 10 of 16 06-SEP-18 09:01 (MT)

Volatile Organic Compounds - SOIL

|                                 |      |             | Lab ID       | L2153058-1 | L2153058-2 | L2153058-3 | L2153058-4 | L2153058-5 |
|---------------------------------|------|-------------|--------------|------------|------------|------------|------------|------------|
|                                 |      | Sample      | e Date       | 21-AUG-18  | 21-AUG-18  | 21-AUG-18  | 21-AUG-18  | 21-AUG-18  |
|                                 |      | •           | ple ID       | BH217-SS4  | BH218-SS4  | BH206-SS5  | BH209-SS7  | BH210-SS5  |
| Analyte                         | Unit | Guide<br>#1 | Limits<br>#2 |            |            |            |            |            |
| 1,1,1,2-Tetrachloroethane       | ug/g | 0.05        | 0.058        | <0.050     | <0.050     | <0.050     | <0.050     | <0.050     |
| 1,1,2,2-Tetrachloroethane       | ug/g | 0.05        | 0.05         | <0.050     | <0.050     | <0.050     | <0.25 DLVH | < 0.050    |
| Tetrachloroethylene             | ug/g | 0.05        | 0.28         | <0.050     | <0.050     | < 0.050    | < 0.050    | < 0.050    |
| Toluene                         | ug/g | 0.2         | 2.3          | <0.080     | <0.080     | <0.080     | <0.080     | <0.080     |
| 1,1,1-Trichloroethane           | ug/g | 0.05        | 0.38         | <0.050     | <0.050     | < 0.050    | < 0.050    | < 0.050    |
| 1,1,2-Trichloroethane           | ug/g | 0.05        | 0.05         | <0.050     | <0.050     | <0.050     | <0.32 DLVH | < 0.050    |
| Trichloroethylene               | ug/g | 0.05        | 0.061        | 0.027      | 0.014      | <0.010     | <0.010     | <0.010     |
| Trichlorofluoromethane          | ug/g | 0.25        | 4            | <0.050     | <0.050     | <0.050     | <0.050     | <0.050     |
| Vinyl chloride                  | ug/g | 0.02        | 0.02         | <0.020     | <0.020     | <0.020     | <0.020     | <0.020     |
| o-Xylene                        | ug/g | -           | -            | <0.020     | <0.020     | <0.020     | <0.020     | <0.020     |
| m+p-Xylenes                     | ug/g | -           | -            | <0.030     | 0.136      | <0.030     | 0.036      | 0.094      |
| Xylenes (Total)                 | ug/g | 0.05        | 3.1          | <0.050     | 0.136      | <0.050     | <0.050     | 0.094      |
| Surrogate: 4-Bromofluorobenzene | %    | -           | -            | 92.5       | 100.7      | 107.9      | 119.0      | 114.2      |
| Surrogate: 1,4-Difluorobenzene  | %    | -           | -            | 102.4      | 105.7      | 106.2      | 100.2      | 110.5      |

Guide Limit #1: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use Guide Limit #2: T2-Soil-Res/Park/Inst. Property Use (Coarse)

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2153058 CONT'D.... Job Reference: SP18-306-20 PAGE 11 of 16 06-SEP-18 09:01 (MT)

#### Hydrocarbons - SOII

| nyurocarbons - SOIL                |      |             |              |            |            |            |
|------------------------------------|------|-------------|--------------|------------|------------|------------|
|                                    |      |             | Lab ID       | L2153058-3 | L2153058-4 | L2153058-5 |
|                                    |      | Sample      | e Date       | 21-AUG-18  | 21-AUG-18  | 21-AUG-18  |
|                                    |      | Sam         | ple ID       | BH206-SS5  | BH209-SS7  | BH210-SS5  |
| Analyte                            | Unit | Guide<br>#1 | Limits<br>#2 |            |            |            |
| F1 (C6-C10)                        | ug/g | 25          | 55           | <5.0       | 208        | 12.1       |
| F1-BTEX                            | ug/g | 25          | 55           | <5.0       | 208        | 12.0       |
| F2 (C10-C16)                       | ug/g | 10          | 98           | <10        | 81         | 24 DLM     |
| F3 (C16-C34)                       | ug/g | 240         | 300          | <50        | <50        | 340 DLM    |
| F4 (C34-C50)                       | ug/g | 120         | 2800         | <50        | <50        | 890 DLM    |
| F4G-SG (GHH-Silica)                | ug/g | 120         | 2800         |            |            | 2430       |
| Total Hydrocarbons (C6-C50)        | ug/g | -           | -            | <72        | 289        | 1270       |
| Chrom. to baseline at nC50         |      | -           | -            | YES        | YES        | NO         |
| Surrogate: 2-Bromobenzotrifluoride | %    | -           | -            | 88.7       | 94.9       | 97.1       |
| Surrogate: 3,4-Dichlorotoluene     | %    | -           | -            | 79.3       | 80.3       | 73.1       |

Guide Limit #1: T1-Soil-Res/Park/Inst/Ind/Com/Commu Property Use Guide Limit #2: T2-Soil-Res/Park/Inst. Property Use (Coarse)

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2153058 CONT'D....
Job Reference: SP18-306-20
PAGE 12 of 16
06-SEP-18 09:01 (MT)

#### **Qualifiers for Individual Parameters Listed:**

| Qualifier | Description                                                                                                                                                                      |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DLVH      | Detection Limit raised due to interference from Volatile Hydrocarbons on VOC method. Chromatographic elution of interfering peaks in the same region as test analytes prevents a |

L2153058 CONT'D....
Job Reference: SP18-306-20
PAGE 13 of 16
06-SEP-18 09:01 (MT)

determination of whether VOC analyte is present or absent (above/below regular detection limits).

DLM Detection

Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).

Methods Listed (if applicable):

| ALS Test Code | Matrix | Test Description         | Method Reference**            |
|---------------|--------|--------------------------|-------------------------------|
| B-HWS-R511-WT | Soil   | Boron-HWE-O.Reg 153/04 ( | July 2011) HW EXTR, EPA 6010B |

A dried solid sample is extracted with calcium chloride, the sample undergoes a heating process. After cooling the sample is filtered and analyzed by ICP/OES.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

CN-WAD-R511-WT Soil Cyanide (WAD)-O.Reg 153/04 (July MOE 3015/APHA 4500CN I-WAD 2011)

The sample is extracted with a strong base for 16 hours, and then filtered. The filtrate is then distilled where the cyanide is converted to cyanogen chloride by reacting with chloramine-T, the cyanogen chloride then reacts with a combination of barbituric acid and isonicotinic acid to form a highly colored complex.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

CR-CR6-IC-WT Soil Hexavalent Chromium in Soil SW846 3060A/7199

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Method 7199, published by the United States Environmental Protection Agency (EPA). The procedure involves analysis for chromium (VI) by ion chromatography using diphenylcarbazide in a sulphuric acid solution.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

EC-WT Soil Conductivity (EC) MOEE E3138

A representative subsample is tumbled with de-ionized (DI) water. The ratio of water to soil is 2:1 v/w. After tumbling the sample is then analyzed by a conductivity meter.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

F1-F4-511-CALC-WT Soil F1-F4 Hydrocarbon Calculated CCME CWS-PHC, Pub #1310, Dec 2001-S

Parameters

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

Hydrocarbon results are expressed on a dry weight basis.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

L2153058 CONT'D....
Job Reference: SP18-306-20
PAGE 14 of 16
06-SEP-18 09:01 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference\*\*

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.
- 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
- 4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

F1-HS-511-WT

Soil

F1-O.Reg 153/04 (July 2011)

E3398/CCME TIER 1-HS

Fraction F1 is determined by extracting a soil or sediment sample as received with methanol, then analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F2-F4-511-WT

Soil

F2-F4-O.Reg 153/04 (July 2011)

**CCME Tier 1** 

Petroleum Hydrocarbons (F2-F4 fractions) are extracted from soil with 1:1 hexane:acetone using a rotary extractor. Extracts are treated with silica gel to remove polar organic interferences. F2, F3, & F4 are analyzed by GC-FID. F4G-sg is analyzed gravimetrically.

#### Notes:

- 1. F2 (C10-C16): Sum of all hydrocarbons that elute between nC10 and nC16.
- 2. F3 (C16-C34): Sum of all hydrocarbons that elute between nC16 and nC34.
- 3. F4 (C34-C50): Sum of all hydrocarbons that elute between nC34 and nC50.
- 4. F4G: Gravimetric Heavy Hydrocarbons
- 5. F4G-sq: Gravimetric Heavy Hydrocarbons (F4G) after silica gel treatment.
- 6. Where both F4 (C34-C50) and F4G-sq are reported for a sample, the larger of the two values is used for comparison against the relevant CCME guideline for F4.
- 7. F4G-sq cannot be added to the C6 to C50 hydrocarbon results to obtain an estimate of total extractable hydrocarbons.
- 8. This method is validated for use.
- 9. Data from analysis of validation and quality control samples is available upon request.
- 10. Reported results are expressed as milligrams per dry kilogram, unless otherwise indicated.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F4G-ADD-511-WT

Soil

F4G SG-O.Reg 153/04 (July 2011)

MOE DECPH-E3398/CCME TIER 1

F4G, gravimetric analysis, is determined if the chromatogram does not return to baseline at or before C50. A soil sample is extracted with a solvent mix, the solvent is evaporated and the weight of the residue is determined.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

HG-200.2-CVAA-WT

Soil

Mercury in Soil by CVAAS

EPA 200.2/1631E (mod)

Soil samples are digested with nitric and hydrochloric acids, followed by analysis by CVAAS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

MET-200.2-CCMS-WT

Soil

Metals in Soil by CRC ICPMS

EPA 200.2/6020A (mod)

This method uses a heated strong acid digestion with HNO3 and HCl and is intended to liberate metals that may be environmentally available. Silicate minerals are not solubilized. Dependent on sample matrix, some metals may be only partially recovered, including Al, Ba, Be, Cr, Sr, Ti, Tl, V, W, and Zr. Volatile forms of sulfur (including sulfide) may not be captured, as they may be lost during sampling, storage, or digestion. Analysis is by Collision/Reaction Cell ICPMS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

L2153058 CONT'D....
Job Reference: SP18-306-20
PAGE 15 of 16
06-SEP-18 09:01 (MT)

Methods Listed (if applicable):

| ALS Test Code | Matrix | Test Description | Method Reference**      |  |
|---------------|--------|------------------|-------------------------|--|
| MOISTURE-WT   | Soil   | % Moisture       | Gravimetric: Oven Dried |  |
| PH-WT         | Soil   | рН               | MOEE E3137A             |  |

A minimum 10g portion of the sample is extracted with 20mL of 0.01M calcium chloride solution by shaking for at least 30 minutes. The aqueous layer is separated from the soil and then analyzed using a pH meter and electrode.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

**SAR-R511-WT** Soil SAR-O.Reg 153/04 (July 2011) SW846 6010C

A dried, disaggregated solid sample is extracted with deionized water, the aqueous extract is separated from the solid, acidified and then analyzed using a ICP/OES. The concentrations of Na, Ca and Mg are reported as per CALA requirements for calculated parameters. These individual parameters are not for comparison to any guideline.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

 VOC-1,3-DCP-CALC-WT
 Soil
 Regulation 153 VOCs
 SW8260B/SW8270C

 VOC-511-HS-WT
 Soil
 VOC-O.Reg 153/04 (July 2011)
 SW846 8260 (511)

Soil and sediment samples are extracted in methanol and analyzed by headspace-GC/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

XYLENES-SUM-CALC-WT Soil Sum of Xylene Isomer Concentrations CALCULATION

Total xylenes represents the sum of o-xylene and m&p-xylene.

| **ALS test methods may incorporate modifications from specified reference methods to improve performance. |                                                                                                                    |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Chain of Custody Numbers:                                                                                 | Chain of Custody Numbers:                                                                                          |  |  |  |  |  |  |
| The last two letters of the about                                                                         | ve test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below: |  |  |  |  |  |  |
| Laboratory Definition Code                                                                                | Laboratory Location                                                                                                |  |  |  |  |  |  |
| WT                                                                                                        | ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA                                                                      |  |  |  |  |  |  |

L2153058 CONT'D....
Job Reference: SP18-306-20
PAGE 16 of 16
06-SEP-18 09:01 (MT)

#### **GLOSSARY OF REPORT TERMS**

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.



Workorder: L2153058 Report Date: 06-SEP-18 Page 1 of 23

Sirati & Partners Consultants Ltd. (Concord) Client:

12700 Keele St

King City ON L7B 1H5

Contact: Dr. Giorgio Garofalo

| Test Matrix                                        | Reference                 | Result              | Qualifier | Units | RPD | Limit  | Analyzed  |
|----------------------------------------------------|---------------------------|---------------------|-----------|-------|-----|--------|-----------|
| B-HWS-R511-WT Soil                                 |                           |                     |           |       |     |        |           |
| Batch R4191634                                     |                           |                     |           |       |     |        |           |
| WG2862085-4 DUP<br>Boron (B), Hot Water Ext.       | <b>L2153109-4</b> <0.10   | <0.10               | RPD-NA    | ug/g  | N/A | 30     | 29-AUG-18 |
| <b>WG2862085-2 IRM</b> Boron (B), Hot Water Ext.   | HOTB-SAL_S                | <b>OIL5</b><br>87.1 |           | %     |     | 70-130 | 29-AUG-18 |
| <b>WG2862085-3 LCS</b> Boron (B), Hot Water Ext.   |                           | 110.6               |           | %     |     | 70-130 | 29-AUG-18 |
| <b>WG2862085-1 MB</b><br>Boron (B), Hot Water Ext. |                           | <0.10               |           | ug/g  |     | 0.1    | 29-AUG-18 |
| CN-WAD-R511-WT Soil                                |                           |                     |           |       |     |        |           |
| Batch R4191347                                     |                           |                     |           |       |     |        |           |
| WG2859341-3 DUP<br>Cyanide, Weak Acid Diss         | <b>L2147619-5</b> <0.050  | <0.050              | RPD-NA    | ug/g  | N/A | 35     | 28-AUG-18 |
| WG2859341-2 LCS<br>Cyanide, Weak Acid Diss         |                           | 96.1                |           | %     |     | 80-120 | 28-AUG-18 |
| WG2859341-1 MB<br>Cyanide, Weak Acid Diss          |                           | <0.050              |           | ug/g  |     | 0.05   | 28-AUG-18 |
| WG2859341-4 MS<br>Cyanide, Weak Acid Diss          | L2147619-5                | 99.9                |           | %     |     | 70-130 | 28-AUG-18 |
| Batch R4192253                                     |                           |                     |           |       |     |        |           |
| WG2861940-3 DUP<br>Cyanide, Weak Acid Diss         | <b>L2153109-21</b> <0.050 | <0.050              | RPD-NA    | ug/g  | N/A | 35     | 29-AUG-18 |
| WG2861940-2 LCS<br>Cyanide, Weak Acid Diss         |                           | 93.6                |           | %     |     | 80-120 | 29-AUG-18 |
| WG2861940-1 MB<br>Cyanide, Weak Acid Diss          |                           | <0.050              |           | ug/g  |     | 0.05   | 29-AUG-18 |
| WG2861940-4 MS<br>Cyanide, Weak Acid Diss          | L2153109-21               | 98.7                |           | %     |     | 70-130 | 29-AUG-18 |
| CR-CR6-IC-WT Soil                                  |                           |                     |           |       |     |        |           |
| Batch R4188251                                     |                           |                     |           |       |     |        |           |
| WG2860950-4 CRM<br>Chromium, Hexavalent            | WT-SQC012                 | 88.5                |           | %     |     | 70-130 | 28-AUG-18 |
| WG2860950-3 DUP<br>Chromium, Hexavalent            | <b>L2153244-4</b> <0.20   | <0.20               | RPD-NA    | ug/g  | N/A | 35     | 28-AUG-18 |
| WG2860950-2 LCS<br>Chromium, Hexavalent            |                           | 96.1                |           | %     |     | 80-120 | 28-AUG-18 |
| WG2860950-1 MB<br>Chromium, Hexavalent             |                           | <0.20               |           | ug/g  |     | 0.2    | 28-AUG-18 |



Workorder: L2153058 Report Date: 06-SEP-18 Page 2 of 23

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                              |            | Matrix        | Reference               | Result  | Qualifier | Units | RPD  | Limit  | Analyzed  |
|-----------------------------------|------------|---------------|-------------------------|---------|-----------|-------|------|--------|-----------|
| EC-WT                             |            | Soil          |                         |         |           |       |      |        |           |
|                                   | 193609     |               |                         |         |           |       |      |        |           |
| WG2862141-4<br>Conductivity       | DUP        |               | <b>WG2862141-3</b> 2.40 | 2.47    |           | mS/cm | 2.9  | 20     | 29-AUG-18 |
| WG2862141-2<br>Conductivity       | IRM        |               | WT SAR2                 | 107.4   |           | %     |      | 70-130 | 29-AUG-18 |
| WG2862819-1<br>Conductivity       | LCS        |               |                         | 93.1    |           | %     |      | 90-110 | 29-AUG-18 |
| WG2862141-1<br>Conductivity       | МВ         |               |                         | <0.0040 |           | mS/cm |      | 0.004  | 29-AUG-18 |
| F1-HS-511-WT                      |            | Soil          |                         |         |           |       |      |        |           |
| Batch R4                          | 187612     |               |                         |         |           |       |      |        |           |
| WG2860900-4                       | DUP        |               | WG2860900-3             | -E O    |           | ua/a  | N1/A | 20     | 00 410 40 |
| F1 (C6-C10)<br>WG2860900-2        | LCS        |               | <5.0                    | <5.0    | RPD-NA    | ug/g  | N/A  | 30     | 28-AUG-18 |
| F1 (C6-C10)                       |            |               |                         | 88.6    |           | %     |      | 80-120 | 28-AUG-18 |
| <b>WG2860900-1</b><br>F1 (C6-C10) | MB         |               |                         | <5.0    |           | ug/g  |      | 5      | 28-AUG-18 |
| Surrogate: 3,4-l                  | Dichloroto | oluene        |                         | 82.8    |           | %     |      | 60-140 | 28-AUG-18 |
| <b>WG2860900-6</b><br>F1 (C6-C10) | MS         |               | L2153109-11             | 86.6    |           | %     |      | 60-140 | 28-AUG-18 |
| F2-F4-511-WT                      |            | Soil          |                         |         |           |       |      |        |           |
| Batch R4                          | 190833     |               |                         |         |           |       |      |        |           |
| <b>WG2860932-3</b> F2 (C10-C16)   | DUP        |               | <b>WG2860932-5</b> <10  | <10     | RPD-NA    | ug/g  | N/A  | 30     | 29-AUG-18 |
| F3 (C16-C34)                      |            |               | <50                     | <50     | RPD-NA    | ug/g  | N/A  | 30     | 29-AUG-18 |
| F4 (C34-C50)                      |            |               | <50                     | <50     | RPD-NA    | ug/g  | N/A  | 30     | 29-AUG-18 |
| <b>WG2860932-2</b> F2 (C10-C16)   | LCS        |               |                         | 105.5   |           | %     |      | 80-120 | 29-AUG-18 |
| F3 (C16-C34)                      |            |               |                         | 102.3   |           | %     |      | 80-120 | 29-AUG-18 |
| F4 (C34-C50)                      |            |               |                         | 110.1   |           | %     |      | 80-120 | 29-AUG-18 |
| <b>WG2860932-1</b> F2 (C10-C16)   | MB         |               |                         | <10     |           | ug/g  |      | 10     | 29-AUG-18 |
| F3 (C16-C34)                      |            |               |                         | <50     |           | ug/g  |      | 50     | 29-AUG-18 |
| F4 (C34-C50)                      |            |               |                         | <50     |           | ug/g  |      | 50     | 29-AUG-18 |
| Surrogate: 2-Br                   | omobenz    | zotrifluoride |                         | 94.6    |           | %     |      | 60-140 | 29-AUG-18 |
| WG2860932-4                       | MS         |               | WG2860932-5             |         |           |       |      |        | · ·       |
| F2 (C10-C16)                      |            |               |                         | 103.9   |           | %     |      | 60-140 | 29-AUG-18 |
| F3 (C16-C34)                      |            |               |                         | 99.3    |           | %     |      | 60-140 |           |



Qualifier

Workorder: L2153058 Report Date: 06-SEP-18 Page 3 of 23

RPD

Limit

Analyzed

Units

Client: Sirati & Partners Consultants Ltd. (Concord)

Matrix

Reference

Result

12700 Keele St

King City ON L7B 1H5

Contact: Dr. Giorgio Garofalo

Test

|                                                          | WIALITX | Reference                 | Result                | Qualifier | Units | KPU | Lillill   | Analyzeu  |
|----------------------------------------------------------|---------|---------------------------|-----------------------|-----------|-------|-----|-----------|-----------|
| F2-F4-511-WT                                             | Soil    |                           |                       |           |       | ·   |           |           |
| Batch R4190833<br>WG2860932-4 MS<br>F3 (C16-C34)         |         | WG2860932-5               | 99.3                  |           | %     |     | 60-140    | 29-AUG-18 |
| F4 (C34-C50)                                             |         |                           | 106.8                 |           | %     |     | 60-140    | 29-AUG-18 |
| ,                                                        |         |                           | 100.0                 |           | 70    |     | 60-140    | 29-AUG-16 |
| F4G-ADD-511-WT                                           | Soil    |                           |                       |           |       |     |           |           |
| Batch R4191712<br>WG2863068-2 LCS<br>F4G-SG (GHH-Silica) |         |                           | 77.6                  |           | %     |     | 60-140    | 28-AUG-18 |
| WG2863068-1 MB<br>F4G-SG (GHH-Silica)                    |         |                           | <250                  |           | ug/g  |     | 250       | 28-AUG-18 |
| HG-200.2-CVAA-WT                                         | Soil    |                           |                       |           |       |     |           |           |
| Batch R4191447                                           |         |                           |                       |           |       |     |           |           |
| WG2862015-2 CRM<br>Mercury (Hg)                          |         | WT-CANMET-                | <b>TILL1</b> 106.2    |           | %     |     | 70-130    | 29-AUG-18 |
| WG2862015-6 DUP<br>Mercury (Hg)                          |         | <b>WG2862015-5</b> 0.0061 | 0.0055                |           | ug/g  | 10  | 40        | 29-AUG-18 |
| WG2862015-3 LCS<br>Mercury (Hg)                          |         |                           | 111.5                 |           | %     |     | 80-120    | 29-AUG-18 |
| WG2862015-1 MB<br>Mercury (Hg)                           |         |                           | <0.0050               |           | mg/kg |     | 0.005     | 29-AUG-18 |
| MET-200.2-CCMS-WT                                        | Soil    |                           |                       |           |       |     |           |           |
| Batch R4194157                                           |         |                           |                       |           |       |     |           |           |
| WG2862015-2 CRM<br>Antimony (Sb)                         |         | WT-CANMET-                | <b>TILL1</b><br>115.5 |           | %     |     | 70-130    | 29-AUG-18 |
| Arsenic (As)                                             |         |                           | 118.6                 |           | %     |     | 70-130    | 29-AUG-18 |
| Barium (Ba)                                              |         |                           | 119.5                 |           | %     |     | 70-130    | 29-AUG-18 |
| Beryllium (Be)                                           |         |                           | 128.1                 |           | %     |     | 70-130    | 29-AUG-18 |
| Boron (B)                                                |         |                           | 3.6                   |           | mg/kg |     | 0-8.2     | 29-AUG-18 |
| Cadmium (Cd)                                             |         |                           | 114.6                 |           | %     |     | 70-130    | 29-AUG-18 |
| Chromium (Cr)                                            |         |                           | 112.0                 |           | %     |     | 70-130    | 29-AUG-18 |
| Cobalt (Co)                                              |         |                           | 116.5                 |           | %     |     | 70-130    | 29-AUG-18 |
| Copper (Cu)                                              |         |                           | 117.4                 |           | %     |     | 70-130    | 29-AUG-18 |
| Lead (Pb)                                                |         |                           | 107.8                 |           | %     |     | 70-130    | 29-AUG-18 |
| Molybdenum (Mo)                                          |         |                           | 124.6                 |           | %     |     | 70-130    | 29-AUG-18 |
| Nickel (Ni)                                              |         |                           | 113.6                 |           | %     |     | 70-130    | 29-AUG-18 |
| Selenium (Se)                                            |         |                           | 0.38                  |           | mg/kg |     | 0.11-0.51 | 29-AUG-18 |
| Silver (Ag)                                              |         |                           | 0.25                  |           | mg/kg |     | 0.13-0.33 | 29-AUG-18 |
|                                                          |         |                           |                       |           |       |     |           |           |



Workorder: L2153058 Report Date: 06-SEP-18 Page 4 of 23

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                             | Matrix | Reference                | Result                | Qualifier | Units | RPD | Limit      | Analyzed  |
|----------------------------------|--------|--------------------------|-----------------------|-----------|-------|-----|------------|-----------|
| MET-200.2-CCMS-WT                | Soil   |                          |                       |           |       |     |            |           |
| Batch R4194157                   |        |                          |                       |           |       |     |            |           |
| WG2862015-2 CRM<br>Thallium (TI) |        | WT-CANMET-               | <b>ΓΙLL1</b><br>0.125 |           | mg/kg |     | 0.077-0.18 | 29-AUG-18 |
| Uranium (U)                      |        |                          | 104.1                 |           | %     |     | 70-130     | 29-AUG-18 |
| Vanadium (V)                     |        |                          | 111.8                 |           | %     |     | 70-130     | 29-AUG-18 |
| Zinc (Zn)                        |        |                          | 112.0                 |           | %     |     | 70-130     | 29-AUG-18 |
| WG2862015-6 DUP<br>Antimony (Sb) |        | <b>WG2862015-5</b> <0.10 | <0.10                 | RPD-NA    | ug/g  | N/A | 30         | 29-AUG-18 |
| Arsenic (As)                     |        | 2.07                     | 2.09                  |           | ug/g  | 1.0 | 30         | 29-AUG-18 |
| Barium (Ba)                      |        | 31.1                     | 30.8                  |           | ug/g  | 1.2 | 40         | 29-AUG-18 |
| Beryllium (Be)                   |        | 0.23                     | 0.23                  |           | ug/g  | 0.2 | 30         | 29-AUG-18 |
| Boron (B)                        |        | <5.0                     | <5.0                  | RPD-NA    | ug/g  | N/A | 30         | 29-AUG-18 |
| Cadmium (Cd)                     |        | 0.076                    | 0.068                 |           | ug/g  | 11  | 30         | 29-AUG-18 |
| Chromium (Cr)                    |        | 10.0                     | 10.3                  |           | ug/g  | 2.9 | 30         | 29-AUG-18 |
| Cobalt (Co)                      |        | 4.81                     | 4.56                  |           | ug/g  | 5.4 | 30         | 29-AUG-18 |
| Copper (Cu)                      |        | 7.54                     | 7.55                  |           | ug/g  | 0.2 | 30         | 29-AUG-18 |
| Lead (Pb)                        |        | 4.22                     | 4.55                  |           | ug/g  | 7.6 | 40         | 29-AUG-18 |
| Molybdenum (Mo)                  |        | 0.21                     | 0.20                  |           | ug/g  | 1.6 | 40         | 29-AUG-18 |
| Nickel (Ni)                      |        | 7.68                     | 7.78                  |           | ug/g  | 1.3 | 30         | 29-AUG-18 |
| Selenium (Se)                    |        | <0.20                    | <0.20                 | RPD-NA    | ug/g  | N/A | 30         | 29-AUG-18 |
| Silver (Ag)                      |        | <0.10                    | <0.10                 | RPD-NA    | ug/g  | N/A | 40         | 29-AUG-18 |
| Thallium (TI)                    |        | 0.059                    | 0.062                 |           | ug/g  | 5.5 | 30         | 29-AUG-18 |
| Uranium (U)                      |        | 0.412                    | 0.427                 |           | ug/g  | 3.5 | 30         | 29-AUG-18 |
| Vanadium (V)                     |        | 22.1                     | 21.8                  |           | ug/g  | 1.1 | 30         | 29-AUG-18 |
| Zinc (Zn)                        |        | 28.3                     | 24.6                  |           | ug/g  | 14  | 30         | 29-AUG-18 |
| WG2862015-4 LCS<br>Antimony (Sb) |        |                          | 100.9                 |           | %     |     | 80-120     | 29-AUG-18 |
| Arsenic (As)                     |        |                          | 115.1                 |           | %     |     | 80-120     | 29-AUG-18 |
| Barium (Ba)                      |        |                          | 110.3                 |           | %     |     | 80-120     | 29-AUG-18 |
| Beryllium (Be)                   |        |                          | 95.0                  |           | %     |     | 80-120     | 29-AUG-18 |
| Boron (B)                        |        |                          | 113.8                 |           | %     |     | 80-120     | 29-AUG-18 |
| Cadmium (Cd)                     |        |                          | 115.3                 |           | %     |     | 80-120     | 29-AUG-18 |
| Chromium (Cr)                    |        |                          | 114.0                 |           | %     |     | 80-120     | 29-AUG-18 |
| Cobalt (Co)                      |        |                          | 112.0                 |           | %     |     | 80-120     | 29-AUG-18 |
| Copper (Cu)                      |        |                          | 111.5                 |           | %     |     | 80-120     | 29-AUG-18 |
|                                  |        |                          |                       |           |       |     |            |           |



Workorder: L2153058 Report Date: 06-SEP-18 Page 5 of 23

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                                | Matrix | Reference                  | Result | Qualifier | Units | RPD | Limit  | Analyzed  |
|-------------------------------------|--------|----------------------------|--------|-----------|-------|-----|--------|-----------|
| MET-200.2-CCMS-WT                   | Soil   |                            |        |           |       |     |        |           |
| Batch R4194157                      |        |                            |        |           |       |     |        |           |
| WG2862015-4 LCS                     |        |                            | 100.5  |           | 0/    |     |        |           |
| Lead (Pb)                           |        |                            | 108.6  |           | %     |     | 80-120 | 29-AUG-18 |
| Molybdenum (Mo)                     |        |                            | 116.9  |           | %     |     | 80-120 | 29-AUG-18 |
| Nickel (Ni)                         |        |                            | 111.3  |           | %     |     | 80-120 | 29-AUG-18 |
| Selenium (Se)                       |        |                            | 116.9  |           | %     |     | 80-120 | 29-AUG-18 |
| Silver (Ag)                         |        |                            | 115.3  |           | %     |     | 80-120 | 29-AUG-18 |
| Thallium (TI)                       |        |                            | 108.2  |           | %     |     | 80-120 | 29-AUG-18 |
| Uranium (U)                         |        |                            | 110.7  |           | %     |     | 80-120 | 29-AUG-18 |
| Vanadium (V)                        |        |                            | 115.7  |           | %     |     | 80-120 | 29-AUG-18 |
| Zinc (Zn)                           |        |                            | 103.4  |           | %     |     | 80-120 | 29-AUG-18 |
| <b>WG2862015-1 MB</b> Antimony (Sb) |        |                            | <0.10  |           | mg/kg |     | 0.1    | 29-AUG-18 |
| Arsenic (As)                        |        |                            | <0.10  |           | mg/kg |     | 0.1    | 29-AUG-18 |
| Barium (Ba)                         |        |                            | <0.50  |           | mg/kg |     | 0.5    | 29-AUG-18 |
| Beryllium (Be)                      |        |                            | <0.10  |           | mg/kg |     | 0.1    | 29-AUG-18 |
| Boron (B)                           |        |                            | <5.0   |           | mg/kg |     | 5      | 29-AUG-18 |
| Cadmium (Cd)                        |        |                            | <0.020 |           | mg/kg |     | 0.02   | 29-AUG-18 |
| Chromium (Cr)                       |        |                            | <0.50  |           | mg/kg |     | 0.5    | 29-AUG-18 |
| Cobalt (Co)                         |        |                            | <0.10  |           | mg/kg |     | 0.1    | 29-AUG-18 |
| Copper (Cu)                         |        |                            | <0.50  |           | mg/kg |     | 0.5    | 29-AUG-18 |
| Lead (Pb)                           |        |                            | <0.50  |           | mg/kg |     | 0.5    | 29-AUG-18 |
| Molybdenum (Mo)                     |        |                            | <0.10  |           | mg/kg |     | 0.1    | 29-AUG-18 |
| Nickel (Ni)                         |        |                            | <0.50  |           | mg/kg |     | 0.5    | 29-AUG-18 |
| Selenium (Se)                       |        |                            | <0.20  |           | mg/kg |     | 0.2    | 29-AUG-18 |
| Silver (Ag)                         |        |                            | <0.10  |           | mg/kg |     | 0.1    | 29-AUG-18 |
| Thallium (TI)                       |        |                            | <0.050 |           | mg/kg |     | 0.05   | 29-AUG-18 |
| Uranium (U)                         |        |                            | <0.050 |           | mg/kg |     | 0.05   | 29-AUG-18 |
| Vanadium (V)                        |        |                            | <0.20  |           | mg/kg |     | 0.2    | 29-AUG-18 |
| Zinc (Zn)                           |        |                            | <2.0   |           | mg/kg |     | 2      | 29-AUG-18 |
| MOISTURE-WT                         | Soil   |                            |        |           |       |     |        |           |
| Batch R4182921                      |        |                            |        |           |       |     |        |           |
| <b>WG2859445-3 DUP</b> % Moisture   |        | <b>L2152963-11</b><br>9.26 | 9.78   |           | %     | 5.4 | 20     | 25-AUG-18 |
| WG2859445-2 LCS                     |        |                            |        |           |       |     |        |           |
| % Moisture                          |        |                            | 98.9   |           | %     |     | 90-110 | 25-AUG-18 |



Workorder: L2153058 Report Date: 06-SEP-18 Page 6 of 23

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                                  |                | Matrix | Reference                 | Result | Qualifier | Units    | RPD  | Limit   | Analyzed  |
|---------------------------------------|----------------|--------|---------------------------|--------|-----------|----------|------|---------|-----------|
| MOISTURE-WT                           |                | Soil   |                           |        |           |          |      |         |           |
| Batch R4<br>WG2859445-1<br>% Moisture | 1182921<br>MB  |        |                           | <0.10  |           | %        |      | 0.1     | 25-AUG-18 |
| Batch R4<br>WG2861268-3<br>% Moisture | 1186770<br>DUP |        | <b>L2153794-5</b> 5.16    | 5.59   |           | %        | 8.0  | 20      | 28-AUG-18 |
| <b>WG2861268-2</b> % Moisture         | LCS            |        |                           | 100.9  |           | %        |      | 90-110  | 28-AUG-18 |
| <b>WG2861268-1</b> % Moisture         | МВ             |        |                           | <0.10  |           | %        |      | 0.1     | 28-AUG-18 |
| Batch R4                              | 1186771        |        |                           |        |           |          |      |         |           |
| <b>WG2861022-3</b> % Moisture         | DUP            |        | <b>L2153272-1</b> 29.9    | 30.3   |           | %        | 1.3  | 20      | 28-AUG-18 |
| <b>WG2861022-2</b> % Moisture         | LCS            |        |                           | 98.2   |           | %        |      | 90-110  | 28-AUG-18 |
| <b>WG2861022-1</b><br>% Moisture      | MB             |        |                           | <0.10  |           | %        |      | 0.1     | 28-AUG-18 |
| PH-WT                                 |                | Soil   |                           |        |           |          |      |         |           |
| <b>Batch R4 WG2859490-1</b> pH        | 1185088<br>DUP |        | <b>L2147619-5</b><br>7.96 | 8.00   | J         | pH units | 0.04 | 0.3     | 27-AUG-18 |
| <b>WG2860744-1</b><br>pH              | LCS            |        |                           | 6.96   |           | pH units |      | 6.9-7.1 | 27-AUG-18 |
| Batch R4                              | 1185829        |        |                           |        |           |          |      |         |           |
| <b>WG2859552-1</b><br>pH              | DUP            |        | <b>L2153109-10</b> 7.72   | 7.59   | J         | pH units | 0.13 | 0.3     | 27-AUG-18 |
| <b>WG2860747-1</b><br>pH              | LCS            |        |                           | 6.97   |           | pH units |      | 6.9-7.1 | 27-AUG-18 |
| SAR-R511-WT                           |                | Soil   |                           |        |           |          |      |         |           |
| Batch R4                              | 192323         |        |                           |        |           |          |      |         |           |
| <b>WG2862141-4</b><br>Calcium (Ca)    | DUP            |        | <b>WG2862141-3</b> 1.3    | 1.3    |           | mg/L     | 1.4  | 30      | 29-AUG-18 |
| Sodium (Na)                           |                |        | 490                       | 502    |           | mg/L     | 2.4  | 30      | 29-AUG-18 |
| Magnesium (M                          | g)             |        | <1.0                      | <1.0   | RPD-NA    | mg/L     | N/A  | 30      | 29-AUG-18 |
| WG2862141-2                           | IRM            |        | WT SAR2                   |        | 2 101     |          |      |         |           |
| Calcium (Ca)                          |                |        |                           | 100.1  |           | %        |      | 70-130  | 29-AUG-18 |
| Calcium (Ca)                          |                |        |                           | 100.1  |           | %        |      | 70-130  | 29-AUG-18 |



Workorder: L2153058 Report Date: 06-SEP-18 Page 7 of 23

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                               | Matrix            | Reference        | Result           | Qualifier        | Units        | RPD        | Limit          | Analyzed               |
|------------------------------------|-------------------|------------------|------------------|------------------|--------------|------------|----------------|------------------------|
| SAR-R511-WT                        | Soil              |                  |                  |                  |              |            |                |                        |
| Batch R4192323<br>WG2862141-2 IRM  | <b>,</b>          | WT SAR2          |                  |                  |              |            |                |                        |
| Sodium (Na)                        |                   |                  | 97.1             |                  | %            |            | 70-130         | 29-AUG-18              |
| Magnesium (Mg)                     |                   |                  | 93.7             |                  | %            |            | 70-130         | 29-AUG-18              |
| <b>WG2862141-1 MB</b> Calcium (Ca) |                   |                  | <1.0             |                  | mg/L         |            | 1              | 29-AUG-18              |
| Sodium (Na)                        |                   |                  | <1.0             |                  | mg/L         |            | 1              | 29-AUG-18              |
| Magnesium (Mg)                     |                   |                  | <1.0             |                  | mg/L         |            | 1              | 29-AUG-18              |
| VOC-511-HS-WT                      | Soil              |                  |                  |                  |              |            |                |                        |
| Batch R4187612                     | !                 |                  |                  |                  |              |            |                |                        |
| WG2860900-4 DUP                    | 200               | WG2860900-       |                  |                  | ug/g         | B1/A       | 40             | 00 4110 40             |
| 1,1,1,2-Tetrachloroetha            |                   | <0.050           | <0.050           | RPD-NA           | ug/g         | N/A        | 40             | 28-AUG-18              |
| 1,1,2,2-Tetrachioroethane          | ıı ı <del>C</del> | <0.050<br><0.050 | <0.050<br><0.050 | RPD-NA           | ug/g         | N/A        | 40             | 28-AUG-18              |
| 1,1,2-Trichloroethane              |                   | <0.050           | <0.050           | RPD-NA<br>RPD-NA | ug/g         | N/A        | 40             | 28-AUG-18              |
| 1,1-Dichloroethane                 |                   | <0.050           | <0.050           | RPD-NA<br>RPD-NA | ug/g<br>ug/g | N/A<br>N/A | 40             | 28-AUG-18              |
| 1,1-Dichloroethylene               |                   | <0.050           | <0.050           | RPD-NA           | ug/g<br>ug/g |            | 40             | 28-AUG-18              |
| 1,2-Dibromoethane                  |                   | <0.050           | <0.050           | RPD-NA           | ug/g<br>ug/g | N/A<br>N/A | 40<br>40       | 28-AUG-18<br>28-AUG-18 |
| 1,2-Dichlorobenzene                |                   | <0.050           | <0.050           | RPD-NA           | ug/g         | N/A        | 40             |                        |
| 1,2-Dichloroethane                 |                   | <0.050           | <0.050           | RPD-NA           | ug/g<br>ug/g | N/A        | 40             | 28-AUG-18<br>28-AUG-18 |
| 1,2-Dichloropropane                |                   | <0.050           | <0.050           | RPD-NA           | ug/g         | N/A        | 40             | 28-AUG-18              |
| 1,3-Dichlorobenzene                |                   | <0.050           | <0.050           | RPD-NA           | ug/g         | N/A        | 40             | 28-AUG-18              |
| 1,4-Dichlorobenzene                |                   | <0.050           | <0.050           | RPD-NA           | ug/g         | N/A        | 40             | 28-AUG-18              |
| Acetone                            |                   | <0.50            | <0.50            | RPD-NA           | ug/g         | N/A        | 40             | 28-AUG-18              |
| Benzene                            |                   | <0.0068          | <0.0068          | RPD-NA           | ug/g         | N/A        | 40             | 28-AUG-18              |
| Bromodichloromethane               | <del>)</del>      | <0.050           | <0.050           | RPD-NA           | ug/g         | N/A        | 40             | 28-AUG-18              |
| Bromoform                          |                   | <0.050           | <0.050           | RPD-NA           | ug/g         | N/A        | 40             | 28-AUG-18              |
| Bromomethane                       |                   | <0.050           | <0.050           | RPD-NA           | ug/g         | N/A        | 40             | 28-AUG-18              |
| Carbon tetrachloride               |                   | <0.050           | <0.050           | RPD-NA           | ug/g         | N/A        | 40             | 28-AUG-18              |
| Chlorobenzene                      |                   | <0.050           | <0.050           | RPD-NA           | ug/g         | N/A        | 40             | 28-AUG-18              |
| Chloroform                         |                   | <0.050           | <0.050           | RPD-NA           | ug/g         | N/A        | 40             | 28-AUG-18              |
| cis-1,2-Dichloroethylen            | e                 | <0.050           | <0.050           | RPD-NA           | ug/g         | N/A        | 40             | 28-AUG-18              |
| cis-1,3-Dichloropropend            |                   | <0.030           | <0.030           | RPD-NA           | ug/g         | N/A        | 40             | 28-AUG-18              |
| Dibromochloromethane               |                   | <0.050           | <0.050           | RPD-NA           | ug/g         | N/A        | 40             | 28-AUG-18              |
| Dichlorodifluoromethan             |                   | <0.050           | <0.050           | RPD-NA           | ug/g         | N/A        | 40             | 28-AUG-18              |
|                                    |                   |                  |                  | 5 101            | 0.0          |            | · <del>-</del> |                        |



Workorder: L2153058 Report Date: 06-SEP-18 Page 8 of 23

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                                      | Matrix | Reference                   | Result          | Qualifier | Units | RPD | Limit  | Analyzed  |
|-------------------------------------------|--------|-----------------------------|-----------------|-----------|-------|-----|--------|-----------|
| VOC-511-HS-WT                             | Soil   |                             |                 |           |       |     |        |           |
| Batch R418761                             | 2      |                             |                 |           |       |     |        |           |
| WG2860900-4 DUP<br>Ethylbenzene           | 1      | <b>WG2860900-</b><br><0.018 | <b>3</b> <0.018 | RPD-NA    | ug/g  | N/A | 40     | 28-AUG-18 |
| n-Hexane                                  |        | <0.050                      | <0.050          | RPD-NA    | ug/g  | N/A | 40     | 28-AUG-18 |
| Methylene Chloride                        |        | <0.050                      | <0.050          | RPD-NA    | ug/g  | N/A | 40     | 28-AUG-18 |
| MTBE                                      |        | <0.050                      | <0.050          | RPD-NA    | ug/g  | N/A | 40     | 28-AUG-18 |
| m+p-Xylenes                               |        | <0.030                      | < 0.030         | RPD-NA    | ug/g  | N/A | 40     | 28-AUG-18 |
| Methyl Ethyl Ketone                       |        | <0.50                       | <0.50           | RPD-NA    | ug/g  | N/A | 40     | 28-AUG-18 |
| Methyl Isobutyl Ketone                    | Э      | <0.50                       | <0.50           | RPD-NA    | ug/g  | N/A | 40     | 28-AUG-18 |
| o-Xylene                                  |        | <0.020                      | <0.020          | RPD-NA    | ug/g  | N/A | 40     | 28-AUG-18 |
| Styrene                                   |        | <0.050                      | <0.050          | RPD-NA    | ug/g  | N/A | 40     | 28-AUG-18 |
| Tetrachloroethylene                       |        | <0.050                      | < 0.050         | RPD-NA    | ug/g  | N/A | 40     | 28-AUG-18 |
| Toluene                                   |        | <0.080                      | <0.080          | RPD-NA    | ug/g  | N/A | 40     | 28-AUG-18 |
| trans-1,2-Dichloroethy                    | /lene  | <0.050                      | < 0.050         | RPD-NA    | ug/g  | N/A | 40     | 28-AUG-18 |
| trans-1,3-Dichloroprop                    | oene   | <0.030                      | <0.030          | RPD-NA    | ug/g  | N/A | 40     | 28-AUG-18 |
| Trichloroethylene                         |        | <0.010                      | <0.010          | RPD-NA    | ug/g  | N/A | 40     | 28-AUG-18 |
| Trichlorofluoromethan                     | е      | <0.050                      | <0.050          | RPD-NA    | ug/g  | N/A | 40     | 28-AUG-18 |
| Vinyl chloride                            |        | <0.020                      | <0.020          | RPD-NA    | ug/g  | N/A | 40     | 28-AUG-18 |
| WG2860900-2 LCS<br>1,1,1,2-Tetrachloroeth |        |                             | 111.9           |           | %     |     | 60-130 | 28-AUG-18 |
| 1,1,2,2-Tetrachloroeth                    |        |                             | 93.0            |           | %     |     | 60-130 | 28-AUG-18 |
| 1,1,1-Trichloroethane                     |        |                             | 115.3           |           | %     |     | 60-130 | 28-AUG-18 |
| 1,1,2-Trichloroethane                     |        |                             | 106.0           |           | %     |     | 60-130 | 28-AUG-18 |
| 1,1-Dichloroethane                        |        |                             | 103.4           |           | %     |     | 60-130 | 28-AUG-18 |
| 1,1-Dichloroethylene                      |        |                             | 98.1            |           | %     |     | 60-130 | 28-AUG-18 |
| 1,2-Dibromoethane                         |        |                             | 107.0           |           | %     |     | 70-130 | 28-AUG-18 |
| 1,2-Dichlorobenzene                       |        |                             | 111.3           |           | %     |     | 70-130 | 28-AUG-18 |
| 1,2-Dichloroethane                        |        |                             | 114.0           |           | %     |     | 60-130 | 28-AUG-18 |
| 1,2-Dichloropropane                       |        |                             | 100.2           |           | %     |     | 70-130 | 28-AUG-18 |
| 1,3-Dichlorobenzene                       |        |                             | 113.2           |           | %     |     | 70-130 | 28-AUG-18 |
| 1,4-Dichlorobenzene                       |        |                             | 112.4           |           | %     |     | 70-130 | 28-AUG-18 |
| Acetone                                   |        |                             | 96.1            |           | %     |     | 60-140 | 28-AUG-18 |
| Benzene                                   |        |                             | 106.0           |           | %     |     | 70-130 | 28-AUG-18 |
| Bromodichloromethan                       | ne     |                             | 112.0           |           | %     |     | 50-140 | 28-AUG-18 |
| Bromoform                                 |        |                             | 108.0           |           | %     |     | 70-130 | 28-AUG-18 |



Workorder: L2153058 Report Date: 06-SEP-18 Page 9 of 23

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                                         | Matrix       | Reference | Result | Qualifier | Units        | RPD | Limit  | Analyzed   |
|----------------------------------------------|--------------|-----------|--------|-----------|--------------|-----|--------|------------|
| VOC-511-HS-WT                                | Soil         |           |        |           |              |     |        |            |
| Batch R4187612                               |              |           |        |           |              |     |        |            |
| WG2860900-2 LCS Bromomethane                 |              |           | 80.0   |           | %            |     | 50.440 | 00 1110 10 |
| Carbon tetrachloride                         |              |           | 116.0  |           | %            |     | 50-140 | 28-AUG-18  |
| Chlorobenzene                                |              |           | 108.3  |           |              |     | 70-130 | 28-AUG-18  |
|                                              |              |           |        |           | %            |     | 70-130 | 28-AUG-18  |
| Chloroform                                   |              |           | 113.8  |           | %            |     | 70-130 | 28-AUG-18  |
| cis-1,2-Dichloroethylene                     |              |           | 109.0  |           | %            |     | 70-130 | 28-AUG-18  |
| cis-1,3-Dichloropropene Dibromochloromethane |              |           | 107.9  |           | %            |     | 70-130 | 28-AUG-18  |
|                                              |              |           | 110.8  |           | %            |     | 60-130 | 28-AUG-18  |
| Dichlorodifluoromethane                      | <del>)</del> |           | 82.8   |           | %            |     | 50-140 | 28-AUG-18  |
| Ethylbenzene                                 |              |           | 101.8  |           | %            |     | 70-130 | 28-AUG-18  |
| n-Hexane                                     |              |           | 112.5  |           | %            |     | 70-130 | 28-AUG-18  |
| Methylene Chloride                           |              |           | 107.7  |           | %            |     | 70-130 | 28-AUG-18  |
| MTBE                                         |              |           | 108.8  |           | %            |     | 70-130 | 28-AUG-18  |
| m+p-Xylenes                                  |              |           | 106.8  |           | %            |     | 70-130 | 28-AUG-18  |
| Methyl Ethyl Ketone                          |              |           | 87.4   |           | %            |     | 60-140 | 28-AUG-18  |
| Methyl Isobutyl Ketone                       |              |           | 91.0   |           | %            |     | 60-140 | 28-AUG-18  |
| o-Xylene                                     |              |           | 101.2  |           | %            |     | 70-130 | 28-AUG-18  |
| Styrene                                      |              |           | 102.1  |           | %            |     | 70-130 | 28-AUG-18  |
| Tetrachloroethylene                          |              |           | 113.1  |           | %            |     | 60-130 | 28-AUG-18  |
| Toluene                                      |              |           | 104.2  |           | %            |     | 70-130 | 28-AUG-18  |
| trans-1,2-Dichloroethyle                     |              |           | 103.9  |           | %            |     | 60-130 | 28-AUG-18  |
| trans-1,3-Dichloroproper                     | ne           |           | 105.8  |           | %            |     | 70-130 | 28-AUG-18  |
| Trichloroethylene                            |              |           | 117.0  |           | %            |     | 60-130 | 28-AUG-18  |
| Trichlorofluoromethane                       |              |           | 113.2  |           | %            |     | 50-140 | 28-AUG-18  |
| Vinyl chloride                               |              |           | 85.7   |           | %            |     | 60-140 | 28-AUG-18  |
| WG2860900-1 MB<br>1,1,1,2-Tetrachloroethar   | ne           |           | <0.050 |           | ug/g         |     | 0.05   | 28-AUG-18  |
| 1,1,2,2-Tetrachloroethar                     |              |           | <0.050 |           | ug/g         |     | 0.05   | 28-AUG-18  |
| 1,1,1-Trichloroethane                        | 10           |           | <0.050 |           | ug/g         |     | 0.05   | 28-AUG-18  |
| 1,1,2-Trichloroethane                        |              |           | <0.050 |           | ug/g<br>ug/g |     | 0.05   | 28-AUG-18  |
| 1,1-Dichloroethane                           |              |           | <0.050 |           | ug/g<br>ug/g |     | 0.05   |            |
| 1,1-Dichloroethylene                         |              |           | <0.050 |           | ug/g<br>ug/g |     | 0.05   | 28-AUG-18  |
| 1,2-Dibromoethane                            |              |           | <0.050 |           | ug/g<br>ug/g |     | 0.05   | 28-AUG-18  |
| 1,2-Dichlorobenzene                          |              |           | <0.050 |           |              |     | 0.05   | 28-AUG-18  |
| 1,2-Dichloroethane                           |              |           |        |           | ug/g         |     |        | 28-AUG-18  |
| 1,2-Dichloroethane                           |              |           | <0.050 |           | ug/g         |     | 0.05   | 28-AUG-18  |



Workorder: L2153058 Report Date: 06-SEP-18 Page 10 of 23

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| VOC-511-HS-WT         Soil           Batch         R4187612           WG286900-01         MB           1.3-Dichlorobenzene         <0.050         ug/g         0.05         28-AUG-18           1.3-Dichlorobenzene         <0.050         ug/g         0.05         28-AUG-18           Acetone         <0.050         ug/g         0.05         28-AUG-18           Acetone         <0.050         ug/g         0.05         28-AUG-18           Bromodichloromethane         <0.008         ug/g         0.066         28-AUG-18           Bromoform         <0.050         ug/g         0.05         28-AUG-18           Carbon tetrachloride         <0.050         ug/g         0.05         28-AUG-18           Chloroberzene         <0.050         ug/g         0.05         28-AUG-18           Chlorotorm         <0.050         ug/g         0.05         28-AUG-18           Chlorotormethane         <0.050         ug/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Test           | Matrix   | Reference          | Result | Qualifier | Units          | RPD | Limit | Analyzed   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------|--------------------|--------|-----------|----------------|-----|-------|------------|
| Naceseagobo-1 MB   1.2-Dichloropropane   <0.050   ug/g   0.05   28-AUG-18   1.3-Dichloropenzene   <0.050   ug/g   0.05   28-AUG-18   1.4-Dichlorobenzene   <0.050   ug/g   0.05   28-AUG-18   1.4-Dichlorobenzene   <0.050   ug/g   0.5   28-AUG-18   1.4-Dichlorobenzene   <0.050   ug/g   0.5   28-AUG-18   1.4-Dichlorobenzene   <0.050   ug/g   0.05   28-AUG-18   1.4-Dichlorobenzene   <0.050   u  | VOC-511-HS-WT  | Soil     |                    |        |           |                |     |       |            |
| 1.2-Dichloropropane 1.3-Dichlorobenzene 1.3-Dichlorobenzene 2.0.050 1.9/g 0.05 28-AUG-18 1.4-Dichlorobenzene 2.0.050 1.9/g 0.05 28-AUG-18 Acetone 2.0.50 1.9/g 0.05 28-AUG-18 Acetone 2.0.068 2.0.068 2.0.068 2.0.068 2.0.068 2.0.068 2.0.068 2.0.068 2.0.068 2.0.068 2.0.068 2.0.068 2.0.068 2.0.068 2.0.068 2.0.068 2.0.068 2.0.068 2.0.068 2.0.068 2.0.068 2.0.068 2.0.068 2.0.068 2.0.068 2.0.068 2.0.068 2.0.068 2.0.068 2.0.068 2.0.068 2.0.068 2.0.068 2.0.068 2.0.068 2.0.068 2.0.068 2.0.068 2.0.068 2.0.068 2.0.068 2.0.068 2.0.068 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 2.0.069 | Batch R4187612 |          |                    |        |           |                |     |       |            |
| 1.3-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |          |                    | -0.0E0 |           | 110/0          |     | 0.05  | 00 4110 40 |
| 1,4-Dichlorobenzene         <0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |          |                    |        |           |                |     |       |            |
| Acetone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |          |                    |        |           |                |     |       |            |
| Benzene         <0.0068         ug/g         0.0068         28-AUG-18           Bromodichloromethane         <0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •              |          |                    |        |           |                |     |       |            |
| Bromodichioromethane         <0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |          |                    |        |           |                |     |       |            |
| Bromoform         c.0.550         ug/g         0.05         28-AUG-18           Bromomethane         <0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |          |                    |        |           |                |     |       |            |
| Bromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |          |                    |        |           |                |     |       |            |
| Carbon tetrachloride         <0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |          |                    |        |           |                |     |       |            |
| Chlorobenzene         <0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |          |                    |        |           |                |     |       |            |
| Chloroform         <0.050         ug/g         0.05         28-AUG-18           cis-1,2-Dichloroethylene         <0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |          |                    |        |           |                |     |       |            |
| cis-1,2-Dichloroethylene         <0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |          |                    |        |           |                |     |       |            |
| cis-1,3-Dichloropropene         <0.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |          |                    |        |           |                |     |       |            |
| Dibromochloromethane         <0.050         ug/g         0.05         28-AUG-18           Dichlorodifluoromethane         <0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •              |          |                    |        |           |                |     |       |            |
| Dichlorodifluoromethane         <0.050         ug/g         0.05         28-AUG-18           Ethylbenzene         <0.018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |          |                    |        |           |                |     |       |            |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |          |                    |        |           |                |     |       |            |
| n-Hexane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |          |                    |        |           |                |     |       |            |
| Methylene Chloride         <0.050         ug/g         0.05         28-AUG-18           MTBE         <0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,              |          |                    |        |           |                |     |       |            |
| MTBE       <0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |          |                    |        |           |                |     |       |            |
| m+p-Xylenes       <0.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -              |          |                    |        |           |                |     |       |            |
| Methyl Ethyl Ketone       <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |          |                    |        |           |                |     |       |            |
| Methyl Isobutyl Ketone       <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |          |                    |        |           |                |     |       |            |
| o-Xylene       <0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |          |                    |        |           |                |     |       |            |
| Styrene         <0.050         ug/g         0.05         28-AUG-18           Tetrachloroethylene         <0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |          |                    |        |           |                |     |       |            |
| Tetrachloroethylene       <0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ŕ              |          |                    |        |           |                |     |       |            |
| Toluene       <0.080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -              |          |                    |        |           |                |     |       |            |
| trans-1,2-Dichloroethylene       <0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -              |          |                    |        |           |                |     |       |            |
| trans-1,3-Dichloropropene       <0.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | <u> </u> |                    |        |           |                |     |       |            |
| Trichloroethylene       <0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •              |          |                    |        |           |                |     |       |            |
| Trichlorofluoromethane         <0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | •        |                    |        |           |                |     |       |            |
| Vinyl chloride       <0.020       ug/g       0.02       28-AUG-18         Surrogate: 1,4-Difluorobenzene       104.6       %       50-140       28-AUG-18         Surrogate: 4-Bromofluorobenzene       106.7       %       50-140       28-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ·              |          |                    |        |           |                |     |       |            |
| Surrogate: 1,4-Difluorobenzene         104.6         %         50-140         28-AUG-18           Surrogate: 4-Bromofluorobenzene         106.7         %         50-140         28-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |          |                    |        |           |                |     |       |            |
| Surrogate: 4-Bromofluorobenzene 106.7 % 50-140 28-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •              | nzene    |                    |        |           |                |     |       |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •              |          |                    |        |           |                |     |       |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _              |          | 215303 <i>4</i> -1 |        |           | , <del>.</del> |     |       | 20 700-10  |



Workorder: L2153058 Report Date: 06-SEP-18 Page 11 of 23

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                   | Matrix | Reference  | Result | Qualifier | Units | RPD | Limit  | Analyzed  |
|------------------------|--------|------------|--------|-----------|-------|-----|--------|-----------|
| VOC-511-HS-WT          | Soil   |            |        |           |       |     |        |           |
| Batch R41876           | 12     |            |        |           |       |     |        |           |
| WG2860900-5 MS         |        | L2153034-1 |        |           |       |     |        |           |
| 1,1,1,2-Tetrachloroet  |        |            | 133.0  |           | %     |     | 50-140 | 28-AUG-18 |
| 1,1,2,2-Tetrachloroet  |        |            | 112.3  |           | %     |     | 50-140 | 28-AUG-18 |
| 1,1,1-Trichloroethane  |        |            | 136.6  |           | %     |     | 50-140 | 28-AUG-18 |
| 1,1,2-Trichloroethane  | •      |            | 124.5  |           | %     |     | 50-140 | 28-AUG-18 |
| 1,1-Dichloroethane     |        |            | 121.2  |           | %     |     | 50-140 | 28-AUG-18 |
| 1,1-Dichloroethylene   |        |            | 114.4  |           | %     |     | 50-140 | 28-AUG-18 |
| 1,2-Dibromoethane      |        |            | 126.5  |           | %     |     | 50-140 | 28-AUG-18 |
| 1,2-Dichlorobenzene    |        |            | 125.4  |           | %     |     | 50-140 | 28-AUG-18 |
| 1,2-Dichloroethane     |        |            | 134.9  |           | %     |     | 50-140 | 28-AUG-18 |
| 1,2-Dichloropropane    |        |            | 117.7  |           | %     |     | 50-140 | 28-AUG-18 |
| 1,3-Dichlorobenzene    |        |            | 126.8  |           | %     |     | 50-140 | 28-AUG-18 |
| 1,4-Dichlorobenzene    |        |            | 126.1  |           | %     |     | 50-140 | 28-AUG-18 |
| Acetone                |        |            | 115.2  |           | %     |     | 50-140 | 28-AUG-18 |
| Benzene                |        |            | 125.2  |           | %     |     | 50-140 | 28-AUG-18 |
| Bromodichlorometha     | ne     |            | 134.0  |           | %     |     | 50-140 | 28-AUG-18 |
| Bromoform              |        |            | 129.4  |           | %     |     | 50-140 | 28-AUG-18 |
| Bromomethane           |        |            | 91.3   |           | %     |     | 50-140 | 28-AUG-18 |
| Carbon tetrachloride   |        |            | 138.0  |           | %     |     | 50-140 | 28-AUG-18 |
| Chlorobenzene          |        |            | 127.9  |           | %     |     | 50-140 | 28-AUG-18 |
| Chloroform             |        |            | 135.2  |           | %     |     | 50-140 | 28-AUG-18 |
| cis-1,2-Dichloroethyle | ene    |            | 128.2  |           | %     |     | 50-140 | 28-AUG-18 |
| cis-1,3-Dichloroprope  | ene    |            | 126.4  |           | %     |     | 50-140 | 28-AUG-18 |
| Dibromochlorometha     | ne     |            | 132.4  |           | %     |     | 50-140 | 28-AUG-18 |
| Dichlorodifluorometha  | ane    |            | 76.8   |           | %     |     | 50-140 | 28-AUG-18 |
| Ethylbenzene           |        |            | 121.1  |           | %     |     | 50-140 | 28-AUG-18 |
| n-Hexane               |        |            | 126.3  |           | %     |     | 50-140 | 28-AUG-18 |
| Methylene Chloride     |        |            | 124.4  |           | %     |     | 50-140 | 28-AUG-18 |
| MTBE                   |        |            | 128.8  |           | %     |     | 50-140 | 28-AUG-18 |
| m+p-Xylenes            |        |            | 126.6  |           | %     |     | 50-140 | 28-AUG-18 |
| Methyl Ethyl Ketone    |        |            | 102.2  |           | %     |     | 50-140 | 28-AUG-18 |
| Methyl Isobutyl Keton  | ne     |            | 108.5  |           | %     |     | 50-140 | 28-AUG-18 |
| o-Xylene               |        |            | 120.3  |           | %     |     | 50-140 | 28-AUG-18 |
| Styrene                |        |            | 120.9  |           | %     |     | 50-140 | 28-AUG-18 |
|                        |        |            |        |           |       |     |        |           |



Workorder: L2153058 Report Date: 06-SEP-18 Page 12 of 23

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                                      | Matrix | Reference                | Result               | Qualifier | Units | RPD | Limit  | Analyzed  |
|-------------------------------------------|--------|--------------------------|----------------------|-----------|-------|-----|--------|-----------|
| VOC-511-HS-WT                             | Soil   |                          |                      |           |       |     |        |           |
| Batch R41876                              | 12     |                          |                      |           |       |     |        |           |
| WG2860900-5 MS                            |        | L2153034-1               | 100.4                |           | 0/    |     |        |           |
| Tetrachloroethylene                       |        |                          | 133.4                |           | %     |     | 50-140 | 28-AUG-18 |
| Toluene                                   |        |                          | 122.8                |           | %     |     | 50-140 | 28-AUG-18 |
| trans-1,2-Dichloroeth                     | •      |                          | 120.2                |           | %     |     | 50-140 | 28-AUG-18 |
| trans-1,3-Dichloropro                     | pene   |                          | 123.3                |           | %     |     | 50-140 | 28-AUG-18 |
| Trichloroethylene Trichlorofluoromethar   |        |                          | 138.8                |           | %     |     | 50-140 | 28-AUG-18 |
| Vinyl chloride                            | ile    |                          | 131.0<br>95.4        |           | %     |     | 50-140 | 28-AUG-18 |
| •                                         |        |                          | 95.4                 |           | 70    |     | 50-140 | 28-AUG-18 |
| Batch R419154                             |        | WC2960044                | 2                    |           |       |     |        |           |
| WG2860944-4 DUF<br>1,1,1,2-Tetrachloroetl |        | <b>WG2860944</b> < 0.050 | - <b>3</b><br><0.050 | RPD-NA    | ug/g  | N/A | 40     | 29-AUG-18 |
| 1,1,2,2-Tetrachloroetl                    | hane   | < 0.050                  | <0.050               | RPD-NA    | ug/g  | N/A | 40     | 29-AUG-18 |
| 1,1,1-Trichloroethane                     | )      | < 0.050                  | <0.050               | RPD-NA    | ug/g  | N/A | 40     | 29-AUG-18 |
| 1,1,2-Trichloroethane                     | )      | < 0.050                  | <0.050               | RPD-NA    | ug/g  | N/A | 40     | 29-AUG-18 |
| 1,1-Dichloroethane                        |        | < 0.050                  | <0.050               | RPD-NA    | ug/g  | N/A | 40     | 29-AUG-18 |
| 1,1-Dichloroethylene                      |        | < 0.050                  | <0.050               | RPD-NA    | ug/g  | N/A | 40     | 29-AUG-18 |
| 1,2-Dibromoethane                         |        | < 0.050                  | <0.050               | RPD-NA    | ug/g  | N/A | 40     | 29-AUG-18 |
| 1,2-Dichlorobenzene                       |        | < 0.050                  | <0.050               | RPD-NA    | ug/g  | N/A | 40     | 29-AUG-18 |
| 1,2-Dichloroethane                        |        | < 0.050                  | <0.050               | RPD-NA    | ug/g  | N/A | 40     | 29-AUG-18 |
| 1,2-Dichloropropane                       |        | < 0.050                  | <0.050               | RPD-NA    | ug/g  | N/A | 40     | 29-AUG-18 |
| 1,3-Dichlorobenzene                       |        | < 0.050                  | <0.050               | RPD-NA    | ug/g  | N/A | 40     | 29-AUG-18 |
| 1,4-Dichlorobenzene                       |        | < 0.050                  | <0.050               | RPD-NA    | ug/g  | N/A | 40     | 29-AUG-18 |
| Acetone                                   |        | <0.50                    | <0.50                | RPD-NA    | ug/g  | N/A | 40     | 29-AUG-18 |
| Benzene                                   |        | <0.0068                  | <0.0068              | RPD-NA    | ug/g  | N/A | 40     | 29-AUG-18 |
| Bromodichloromethai                       | ne     | < 0.050                  | <0.050               | RPD-NA    | ug/g  | N/A | 40     | 29-AUG-18 |
| Bromoform                                 |        | < 0.050                  | <0.050               | RPD-NA    | ug/g  | N/A | 40     | 29-AUG-18 |
| Bromomethane                              |        | <0.050                   | <0.050               | RPD-NA    | ug/g  | N/A | 40     | 29-AUG-18 |
| Carbon tetrachloride                      |        | < 0.050                  | <0.050               | RPD-NA    | ug/g  | N/A | 40     | 29-AUG-18 |
| Chlorobenzene                             |        | <0.050                   | <0.050               | RPD-NA    | ug/g  | N/A | 40     | 29-AUG-18 |
| Chloroform                                |        | <0.050                   | <0.050               | RPD-NA    | ug/g  | N/A | 40     | 29-AUG-18 |
| cis-1,2-Dichloroethyle                    | ene    | <0.050                   | <0.050               | RPD-NA    | ug/g  | N/A | 40     | 29-AUG-18 |
| cis-1,3-Dichloroprope                     | ene    | <0.030                   | <0.030               | RPD-NA    | ug/g  | N/A | 40     | 29-AUG-18 |
| Dibromochlorometha                        | ne     | <0.050                   | <0.050               | RPD-NA    | ug/g  | N/A | 40     | 29-AUG-18 |
| Dichlorodifluorometha                     | ane    | < 0.050                  | <0.050               | RPD-NA    | ug/g  | N/A | 40     | 29-AUG-18 |
|                                           |        |                          |                      |           | •     |     |        |           |



Workorder: L2153058 Report Date: 06-SEP-18 Page 13 of 23

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                                       | Matrix   | Reference                   | Result          | Qualifier | Units | RPD | Limit  | Analyzed  |
|--------------------------------------------|----------|-----------------------------|-----------------|-----------|-------|-----|--------|-----------|
| VOC-511-HS-WT                              | Soil     |                             |                 |           |       |     |        |           |
| Batch R4191547                             | 7        |                             |                 |           |       |     |        |           |
| WG2860944-4 DUP<br>Ethylbenzene            |          | <b>WG2860944-</b><br><0.018 | <b>3</b> <0.018 | RPD-NA    | ug/g  | N/A | 40     | 29-AUG-18 |
| n-Hexane                                   |          | 0.095                       | 0.089           |           | ug/g  | 7.0 | 40     | 30-AUG-18 |
| Methylene Chloride                         |          | <0.050                      | <0.050          | RPD-NA    | ug/g  | N/A | 40     | 29-AUG-18 |
| MTBE                                       |          | <0.050                      | <0.050          | RPD-NA    | ug/g  | N/A | 40     | 29-AUG-18 |
| m+p-Xylenes                                |          | <0.030                      | < 0.030         | RPD-NA    | ug/g  | N/A | 40     | 29-AUG-18 |
| Methyl Ethyl Ketone                        |          | <0.50                       | <0.50           | RPD-NA    | ug/g  | N/A | 40     | 29-AUG-18 |
| Methyl Isobutyl Ketone                     | <b>;</b> | <0.50                       | <0.50           | RPD-NA    | ug/g  | N/A | 40     | 29-AUG-18 |
| o-Xylene                                   |          | <0.020                      | <0.020          | RPD-NA    | ug/g  | N/A | 40     | 29-AUG-18 |
| Styrene                                    |          | <0.050                      | < 0.050         | RPD-NA    | ug/g  | N/A | 40     | 29-AUG-18 |
| Tetrachloroethylene                        |          | <0.050                      | <0.050          | RPD-NA    | ug/g  | N/A | 40     | 29-AUG-18 |
| Toluene                                    |          | <0.080                      | <0.080          | RPD-NA    | ug/g  | N/A | 40     | 29-AUG-18 |
| trans-1,2-Dichloroethyl                    | lene     | <0.050                      | < 0.050         | RPD-NA    | ug/g  | N/A | 40     | 29-AUG-18 |
| trans-1,3-Dichloroprop                     | ene      | <0.030                      | <0.030          | RPD-NA    | ug/g  | N/A | 40     | 29-AUG-18 |
| Trichloroethylene                          |          | <0.010                      | <0.010          | RPD-NA    | ug/g  | N/A | 40     | 29-AUG-18 |
| Trichlorofluoromethane                     | е        | <0.050                      | < 0.050         | RPD-NA    | ug/g  | N/A | 40     | 29-AUG-18 |
| Vinyl chloride                             |          | <0.020                      | <0.020          | RPD-NA    | ug/g  | N/A | 40     | 29-AUG-18 |
| WG2860944-2 LCS<br>1,1,1,2-Tetrachloroetha | ane      |                             | 107.7           |           | %     |     | 60-130 | 29-AUG-18 |
| 1,1,2,2-Tetrachloroetha                    | ane      |                             | 97.2            |           | %     |     | 60-130 | 29-AUG-18 |
| 1,1,1-Trichloroethane                      |          |                             | 109.2           |           | %     |     | 60-130 | 29-AUG-18 |
| 1,1,2-Trichloroethane                      |          |                             | 103.8           |           | %     |     | 60-130 | 29-AUG-18 |
| 1,1-Dichloroethane                         |          |                             | 108.6           |           | %     |     | 60-130 | 29-AUG-18 |
| 1,1-Dichloroethylene                       |          |                             | 102.7           |           | %     |     | 60-130 | 29-AUG-18 |
| 1,2-Dibromoethane                          |          |                             | 99.5            |           | %     |     | 70-130 | 29-AUG-18 |
| 1,2-Dichlorobenzene                        |          |                             | 111.2           |           | %     |     | 70-130 | 29-AUG-18 |
| 1,2-Dichloroethane                         |          |                             | 101.3           |           | %     |     | 60-130 | 29-AUG-18 |
| 1,2-Dichloropropane                        |          |                             | 107.1           |           | %     |     | 70-130 | 29-AUG-18 |
| 1,3-Dichlorobenzene                        |          |                             | 117.3           |           | %     |     | 70-130 | 29-AUG-18 |
| 1,4-Dichlorobenzene                        |          |                             | 115.7           |           | %     |     | 70-130 | 29-AUG-18 |
| Acetone                                    |          |                             | 100.8           |           | %     |     | 60-140 | 29-AUG-18 |
| Benzene                                    |          |                             | 108.4           |           | %     |     | 70-130 | 29-AUG-18 |
| Bromodichloromethane                       | е        |                             | 105.5           |           | %     |     | 50-140 | 29-AUG-18 |
| Bromoform                                  |          |                             | 99.9            |           | %     |     | 70-130 | 29-AUG-18 |



Workorder: L2153058 Report Date: 06-SEP-18 Page 14 of 23

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                         | Matrix   | Reference | Result | Qualifier | Units     | RPD | Limit  | Analyzed  |
|------------------------------|----------|-----------|--------|-----------|-----------|-----|--------|-----------|
| VOC-511-HS-WT                | Soil     |           |        |           |           |     |        |           |
| Batch R4191547               |          |           |        |           |           |     |        |           |
| WG2860944-2 LCS Bromomethane |          |           | 84.6   |           | %         |     | 50-140 | 29-AUG-18 |
| Carbon tetrachloride         |          |           | 110.1  |           | %         |     | 70-130 | 29-AUG-18 |
| Chlorobenzene                |          |           | 111.2  |           | %         |     | 70-130 | 29-AUG-18 |
| Chloroform                   |          |           | 109.7  |           | %         |     | 70-130 | 29-AUG-18 |
| cis-1,2-Dichloroethylene     | <b>;</b> |           | 106.7  |           | %         |     | 70-130 | 29-AUG-18 |
| cis-1,3-Dichloropropene      |          |           | 109.6  |           | %         |     | 70-130 | 29-AUG-18 |
| Dibromochloromethane         |          |           | 105.2  |           | %         |     | 60-130 | 29-AUG-18 |
| Dichlorodifluoromethane      | 9        |           | 89.5   |           | %         |     | 50-140 | 29-AUG-18 |
| Ethylbenzene                 |          |           | 114.2  |           | %         |     | 70-130 | 29-AUG-18 |
| n-Hexane                     |          |           | 125.8  |           | %         |     | 70-130 | 29-AUG-18 |
| Methylene Chloride           |          |           | 102.8  |           | %         |     | 70-130 | 29-AUG-18 |
| MTBE                         |          |           | 110.1  |           | %         |     | 70-130 | 29-AUG-18 |
| m+p-Xylenes                  |          |           | 115.9  |           | %         |     | 70-130 | 29-AUG-18 |
| Methyl Ethyl Ketone          |          |           | 93.0   |           | %         |     | 60-140 | 29-AUG-18 |
| Methyl Isobutyl Ketone       |          |           | 88.6   |           | %         |     | 60-140 | 29-AUG-18 |
| o-Xylene                     |          |           | 118.6  |           | %         |     | 70-130 | 29-AUG-18 |
| Styrene                      |          |           | 116.5  |           | %         |     | 70-130 | 29-AUG-18 |
| Tetrachloroethylene          |          |           | 120.5  |           | %         |     | 60-130 | 29-AUG-18 |
| Toluene                      |          |           | 110.9  |           | %         |     | 70-130 | 29-AUG-18 |
| trans-1,2-Dichloroethyle     | ne       |           | 110.8  |           | %         |     | 60-130 | 29-AUG-18 |
| trans-1,3-Dichloroprope      | ne       |           | 109.8  |           | %         |     | 70-130 | 29-AUG-18 |
| Trichloroethylene            |          |           | 115.5  |           | %         |     | 60-130 | 29-AUG-18 |
| Trichlorofluoromethane       |          |           | 113.8  |           | %         |     | 50-140 | 29-AUG-18 |
| Vinyl chloride               |          |           | 101.1  |           | %         |     | 60-140 | 29-AUG-18 |
| WG2860944-1 MB               |          |           |        |           | ,         |     | 0.05   |           |
| 1,1,1,2-Tetrachloroetha      |          |           | <0.050 |           | ug/g<br>, |     | 0.05   | 29-AUG-18 |
| 1,1,2,2-Tetrachloroetha      | ne       |           | <0.050 |           | ug/g      |     | 0.05   | 29-AUG-18 |
| 1,1,1-Trichloroethane        |          |           | <0.050 |           | ug/g      |     | 0.05   | 29-AUG-18 |
| 1,1,2-Trichloroethane        |          |           | <0.050 |           | ug/g      |     | 0.05   | 29-AUG-18 |
| 1,1-Dichloroethane           |          |           | <0.050 |           | ug/g      |     | 0.05   | 29-AUG-18 |
| 1,1-Dichloroethylene         |          |           | <0.050 |           | ug/g      |     | 0.05   | 29-AUG-18 |
| 1,2-Dibromoethane            |          |           | <0.050 |           | ug/g<br>, |     | 0.05   | 29-AUG-18 |
| 1,2-Dichlorobenzene          |          |           | <0.050 |           | ug/g      |     | 0.05   | 29-AUG-18 |
| 1,2-Dichloroethane           |          |           | <0.050 |           | ug/g      |     | 0.05   | 29-AUG-18 |



Workorder: L2153058 Report Date: 06-SEP-18 Page 15 of 23

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                     | Matrix   | Reference   | Result  | Qualifier | Units | RPD | Limit  | Analyzed  |
|--------------------------|----------|-------------|---------|-----------|-------|-----|--------|-----------|
| VOC-511-HS-WT            | Soil     |             |         |           |       |     |        |           |
| Batch R4191547           |          |             |         |           |       |     |        |           |
| WG2860944-1 MB           |          |             |         |           | ,     |     | 0.05   |           |
| 1,2-Dichloropropane      |          |             | <0.050  |           | ug/g  |     | 0.05   | 29-AUG-18 |
| 1,3-Dichlorobenzene      |          |             | <0.050  |           | ug/g  |     | 0.05   | 29-AUG-18 |
| 1,4-Dichlorobenzene      |          |             | <0.050  |           | ug/g  |     | 0.05   | 29-AUG-18 |
| Acetone                  |          |             | <0.50   |           | ug/g  |     | 0.5    | 29-AUG-18 |
| Benzene                  |          |             | <0.0068 |           | ug/g  |     | 0.0068 | 29-AUG-18 |
| Bromodichloromethane     |          |             | <0.050  |           | ug/g  |     | 0.05   | 29-AUG-18 |
| Bromoform                |          |             | <0.050  |           | ug/g  |     | 0.05   | 29-AUG-18 |
| Bromomethane             |          |             | <0.050  |           | ug/g  |     | 0.05   | 29-AUG-18 |
| Carbon tetrachloride     |          |             | <0.050  |           | ug/g  |     | 0.05   | 29-AUG-18 |
| Chlorobenzene            |          |             | <0.050  |           | ug/g  |     | 0.05   | 29-AUG-18 |
| Chloroform               |          |             | <0.050  |           | ug/g  |     | 0.05   | 29-AUG-18 |
| cis-1,2-Dichloroethylene |          |             | <0.050  |           | ug/g  |     | 0.05   | 29-AUG-18 |
| cis-1,3-Dichloropropene  |          |             | <0.030  |           | ug/g  |     | 0.03   | 29-AUG-18 |
| Dibromochloromethane     |          |             | <0.050  |           | ug/g  |     | 0.05   | 29-AUG-18 |
| Dichlorodifluoromethane  | )        |             | <0.050  |           | ug/g  |     | 0.05   | 29-AUG-18 |
| Ethylbenzene             |          |             | <0.018  |           | ug/g  |     | 0.018  | 29-AUG-18 |
| n-Hexane                 |          |             | <0.050  |           | ug/g  |     | 0.05   | 29-AUG-18 |
| Methylene Chloride       |          |             | <0.050  |           | ug/g  |     | 0.05   | 29-AUG-18 |
| MTBE                     |          |             | <0.050  |           | ug/g  |     | 0.05   | 29-AUG-18 |
| m+p-Xylenes              |          |             | < 0.030 |           | ug/g  |     | 0.03   | 29-AUG-18 |
| Methyl Ethyl Ketone      |          |             | < 0.50  |           | ug/g  |     | 0.5    | 29-AUG-18 |
| Methyl Isobutyl Ketone   |          |             | < 0.50  |           | ug/g  |     | 0.5    | 29-AUG-18 |
| o-Xylene                 |          |             | <0.020  |           | ug/g  |     | 0.02   | 29-AUG-18 |
| Styrene                  |          |             | < 0.050 |           | ug/g  |     | 0.05   | 29-AUG-18 |
| Tetrachloroethylene      |          |             | < 0.050 |           | ug/g  |     | 0.05   | 29-AUG-18 |
| Toluene                  |          |             | <0.080  |           | ug/g  |     | 0.08   | 29-AUG-18 |
| trans-1,2-Dichloroethyle | ne       |             | <0.050  |           | ug/g  |     | 0.05   | 29-AUG-18 |
| trans-1,3-Dichloroprope  | ne       |             | < 0.030 |           | ug/g  |     | 0.03   | 29-AUG-18 |
| Trichloroethylene        |          |             | <0.010  |           | ug/g  |     | 0.01   | 29-AUG-18 |
| Trichlorofluoromethane   |          |             | <0.050  |           | ug/g  |     | 0.05   | 29-AUG-18 |
| Vinyl chloride           |          |             | <0.020  |           | ug/g  |     | 0.02   | 29-AUG-18 |
| Surrogate: 1,4-Difluorob | enzene   |             | 108.4   |           | %     |     | 50-140 | 29-AUG-18 |
| Surrogate: 4-Bromofluor  | obenzene |             | 104.4   |           | %     |     | 50-140 | 29-AUG-18 |
| WG2860944-5 MS           |          | L2153109-21 |         |           |       |     |        |           |



Workorder: L2153058 Report Date: 06-SEP-18 Page 16 of 23

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| VOC-511-HS-WT         Soil           Batch         R4191545           WG286904-59         MS           1.1.1.2-Testachloroethane         119.2         %         50-140         29-AUG-18           1.1.1.2-Testrachloroethane         119.2         %         50-140         29-AUG-18           1.1.1-Tickloroethane         118.3         %         50-140         29-AUG-18           1.1.1-Tickloroethane         119.6         %         50-140         29-AUG-18           1.1-Dichloroethane         119.6         %         50-140         29-AUG-18           1.1-Dichloroethane         119.6         %         50-140         29-AUG-18           1.1-Dichloroethyne         119.7         %         50-140         29-AUG-18           1.2-Dichloroethane         119.7         %         50-140         29-AUG-18           1.2-Dichloroethane         119.7         %         50-140         29-AUG-18           1.2-Dichloroethane         116.7         %         50-140         29-AUG-18           1.2-Dichloroethane         120.8         %         50-140         29-AUG-18           1.2-Dichloroethane         119.7         %         50-140         29-AUG-18           1.2-Dichloroethane </th <th>Test</th> <th>Matrix</th> <th>Reference</th> <th>Result</th> <th>Qualifier</th> <th>Units</th> <th>RPD</th> <th>Limit</th> <th>Analyzed</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Test                   | Matrix       | Reference   | Result | Qualifier | Units | RPD | Limit  | Analyzed  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------|-------------|--------|-----------|-------|-----|--------|-----------|
| March   Marc   | VOC-511-HS-WT          | Soil         |             |        |           |       |     |        |           |
| 1.1,1.2-Tetrachloroethane       119.2       %       50.140       29-AUG-18         1.1,2.2-Tetrachloroethane       118.3       %       50.140       29-AUG-18         1.1,1.7-Trichloroethane       118.3       %       50.140       29-AUG-18         1.1,1.2-Trichloroethane       117.8       %       50.140       29-AUG-18         1.1-Dichloroethylene       119.6       %       50.140       29-AUG-18         1.1-Dichloroethylene       114.7       %       50.140       29-AUG-18         1.2-Dichlorobenzene       119.7       %       50.140       29-AUG-18         1.2-Dichloroethane       116.7       %       50.140       29-AUG-18         1.2-Dichloroethane       116.7       %       50.140       29-AUG-18         1.2-Dichloroethane       116.7       %       50.140       29-AUG-18         1.2-Dichloroethane       120.8       %       50.140       29-AUG-18         1.2-Dichloroethane       123.3       %       50.140       29-AUG-18         1.2-Dichloroethane       121.8       %       50.140       29-AUG-18         1.4-Dichloroethane       121.8       %       50.140       29-AUG-18         1.4-Dichloroethane       119.6 <td< th=""><th>Batch R41915</th><th>47</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Batch R41915           | 47           |             |        |           |       |     |        |           |
| 1.1.2.2-Tetrachloroethane         115.2         %         50.140         29-AUG-18           1.1.1-Trichloroethane         118.3         %         50.140         29-AUG-18           1.1.2-Trichloroethane         119.6         %         50.140         29-AUG-18           1.1-Dichloroethylene         107.3         %         50.140         29-AUG-18           1.1-Dichloroethylene         107.3         %         50.140         29-AUG-18           1.2-Dichlorobenzene         119.7         %         50.140         29-AUG-18           1.2-Dichlorobenzene         119.7         %         50.140         29-AUG-18           1.2-Dichloropropane         120.8         %         50.140         29-AUG-18           1.2-Dichlorobenzene         120.8         %         50.140         29-AUG-18           1.3-Dichlorobenzene         123.3         %         50.140         29-AUG-18           1.3-Dichlorobenzene         121.8         %         50.140         29-AUG-18           1.4-Dichlorobenzene         121.8         %         50.140         29-AUG-18           Berozene         119.4         %         50.140         29-AUG-18           Bromodichloromethane         119.6         %         50.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |              | L2153109-21 |        |           |       |     |        |           |
| 1.1,1-Trichloroethane         118.3         %         50-140         29-AUG-18           1.1,2-Trichloroethane         117.8         %         50-140         29-AUG-18           1.1-Dichloroethane         119.6         %         50-140         29-AUG-18           1.1-Dichloroethylene         107.3         %         50-140         29-AUG-18           1.2-Dichloroethane         114.7         %         50-140         29-AUG-18           1.2-Dichloroethane         119.7         %         50-140         29-AUG-18           1.2-Dichloroptopane         116.7         %         50-140         29-AUG-18           1.2-Dichloroptopane         120.8         %         50-140         29-AUG-18           1.3-Dichlorobenzene         123.3         %         50-140         29-AUG-18           1.3-Dichlorobenzene         121.8         %         50-140         29-AUG-18           4.cetone         125.4         %         50-140         29-AUG-18           4.cetone         125.4         %         50-140         29-AUG-18           Benzene         119.4         %         50-140         29-AUG-18           Benzene         119.9         %         50-140         29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |              |             |        |           |       |     |        |           |
| 1,1,2-Trichloroethane       117.8       %       50-140       29-AUG-18         1,1-Dichloroethane       119.6       %       50-140       29-AUG-18         1,1-Dichloroethylene       107.3       %       50-140       29-AUG-18         1,2-Dichloroethylene       114.7       %       50-140       29-AUG-18         1,2-Dichloroethane       119.7       %       50-140       29-AUG-18         1,2-Dichloroptopane       116.7       %       50-140       29-AUG-18         1,2-Dichloroptopane       120.8       %       50-140       29-AUG-18         1,2-Dichloroptopane       123.3       %       50-140       29-AUG-18         1,3-Dichlorobenzene       121.8       %       50-140       29-AUG-18         Acetone       125.4       %       50-140       29-AUG-18         Benzene       119.4       %       50-140       29-AUG-18         Bromodichloromethane       119.6       %       50-140       29-AUG-18         Bromodermane       115.7       %       50-140       29-AUG-18         Carbon tetrachloride       118.1       %       50-140       29-AUG-18         Chloroform       121.5       %       50-140       29-AUG-18<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |              |             |        |           |       |     |        |           |
| 1,1-Dichloroethane       119.6       %       50-140       29-AUG-18         1,1-Dichloroethylene       107.3       %       50-140       29-AUG-18         1,2-Dichloroethane       114.7       %       50-140       29-AUG-18         1,2-Dichloroethane       119.7       %       50-140       29-AUG-18         1,2-Dichloroptrane       116.7       %       50-140       29-AUG-18         1,2-Dichloroptrane       120.8       %       50-140       29-AUG-18         1,2-Dichloroptrapene       122.3       %       50-140       29-AUG-18         1,3-Dichlorobenzene       121.8       %       50-140       29-AUG-18         1,4-Dichlorobenzene       125.4       %       50-140       29-AUG-18         Acetone       125.4       %       50-140       29-AUG-18         Bromodichloromethane       119.4       %       50-140       29-AUG-18         Bromotorm       115.7       %       50-140       29-AUG-18         Bromotorm       115.7       %       50-140       29-AUG-18         Carbon tetrachloride       118.1       %       50-140       29-AUG-18         Chloroform       121.5       %       50-140       29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |              |             |        |           |       |     |        |           |
| 1,1-Dichloroethylene 107.3 % 50-140 29-AUG-18 1,2-Dibromoethane 114.7 % 50-140 29-AUG-18 1,2-Dichlorobenzene 119.7 % 50-140 29-AUG-18 1,2-Dichlorobenzene 116.7 % 50-140 29-AUG-18 1,2-Dichloropenzene 116.7 % 50-140 29-AUG-18 1,2-Dichloropenzene 120.8 % 50-140 29-AUG-18 1,3-Dichloropenzene 123.3 % 50-140 29-AUG-18 1,3-Dichlorobenzene 123.3 % 50-140 29-AUG-18 1,3-Dichlorobenzene 121.8 % 50-140 29-AUG-18 1,4-Dichlorobenzene 125.4 % 50-140 29-AUG-18 1,4-Dichlorobenzene 125.4 % 50-140 29-AUG-18 1,4-Dichlorobenzene 119.4 % 50-140 29-AUG-18 1,4-Dichlorobenzene 119.4 % 50-140 29-AUG-18 1,4-Dichlorobenzene 119.6 % 50-140 29-AUG-18 1,4-Dichlorobenzene 121.9 % 50-140 29-AUG-18 1,4-Dichlorobenzene 121.9 % 50-140 29-AUG-18 1,4-Dichlorobenzene 121.1 % 50-140 29-AUG-18 1,4-Dichlorobenzene 122.4 % 50-140 29-AUG-18 1,4-Dichlorobenzene 12 |                        | <del>)</del> |             |        |           |       |     |        |           |
| 1,2-Dibromoethane 114.7 % 50-140 29-AUG-18 1,2-Dibrlorobenzene 119.7 % 50-140 29-AUG-18 1,2-Dibrlorobenzene 119.7 % 50-140 29-AUG-18 1,2-Dibrlorobenzene 116.7 % 50-140 29-AUG-18 1,2-Dibrloropropane 120.8 % 50-140 29-AUG-18 1,3-Dibrlorobenzene 120.8 % 50-140 29-AUG-18 1,3-Dibrlorobenzene 121.8 % 50-140 29-AUG-18 1,4-Dibrlorobenzene 121.8 % 50-140 29-AUG-18 Acetone 125.4 % 50-140 29-AUG-18 Benzene 119.4 % 50-140 29-AUG-18 Bromodibrloromethane 119.6 % 50-140 29-AUG-18 Bromoform 115.7 % 50-140 29-AUG-18 Bromoethane 87.9 % 50-140 29-AUG-18 Bromoethane 87.9 % 50-140 29-AUG-18 Carbon tetrachloride 118.1 % 50-140 29-AUG-18 Chlorobenzene 121.9 % 50-140 29-AUG-18 Chlorobenzene 121.9 % 50-140 29-AUG-18 Chloroform 121.5 % 50-140 29-AUG-18 Chloroform 121.5 % 50-140 29-AUG-18 Cis-1,2-Dibrloropropene 121.1 % 50-140 29-AUG-18 Dibromochloromethane 119.9 % 50-140 29-AUG-18 Eithylbenzene 121.1 % 50-140 29-AUG-18 Cis-1,3-Dibrloropropene 121.1 % 50-140 29-AUG-18 Dibromochloromethane 119.9 % 50-140 29-AUG-18 Cis-1,3-Dibrloropropene 121.1 % 50-140 29-AUG-18 Cis-1,3-Dibrloropropene 122.4 % 50-140 29-AUG-18 Cis-1,3-Dibrlor |                        |              |             |        |           |       |     |        |           |
| 1,2-Dichlorobenzene 119.7 % 50-140 29-AUG-18 1,2-Dichloroethane 116.7 % 50-140 29-AUG-18 1,2-Dichloropropane 120.8 % 50-140 29-AUG-18 1,3-Dichlorobenzene 123.3 % 50-140 29-AUG-18 1,3-Dichlorobenzene 123.3 % 50-140 29-AUG-18 1,4-Dichlorobenzene 121.8 % 50-140 29-AUG-18 1,4-Dichlorobenzene 125.4 % 50-140 29-AUG-18 1,4-Dichlorobenzene 119.4 % 50-140 29-AUG-18 1,5-Dichloromethane 119.6 % 50-140 29-AUG-18 1,5-Dichloromethane 119.6 % 50-140 29-AUG-18 1,5-Dichlorobenzene 115.7 % 50-140 29-AUG-18 1,5-Dichlorobenzene 121.9 % 50-140 29-AUG-18 1,5-Dichlorobenzene 121.9 % 50-140 29-AUG-18 1,5-Dichlorothylene 117.5 % 50-140 29-AUG-18 1,5-Dichlorothylene 117.5 % 50-140 29-AUG-18 1,5-Dichloromethane 119.9 % 50-140 29-AUG-18 1,5-Dichlorodifluoromethane 122.4 % 50-140 29-AUG-18 1,5-Dichlorodifluoromethane 129.4 % 50-140 29-AUG-18 1,5-Dichlorodifluoromethane 120.4 % 50-140 29-AUG-18 1,5-D | -                      |              |             |        |           |       |     | 50-140 | 29-AUG-18 |
| 1,2-Dichloroethane       116.7       %       50.140       29-AUG-18         1,2-Dichloropropane       120.8       %       50.140       29-AUG-18         1,3-Dichlorobenzene       123.3       %       50.140       29-AUG-18         1,4-Dichlorobenzene       121.8       %       50.140       29-AUG-18         Acetone       125.4       %       50.140       29-AUG-18         Benzene       119.4       %       50.140       29-AUG-18         Bromodichloromethane       119.6       %       50.140       29-AUG-18         Bromoform       115.7       %       50.140       29-AUG-18         Bromomethane       87.9       %       50.140       29-AUG-18         Carbon tetrachloride       118.1       %       50.140       29-AUG-18         Chloroform       121.9       %       50.140       29-AUG-18         Chloroformethane       117.5       %       50.140       29-AUG-18         Cis-1,2-Dichloroethylene       117.5       %       50.140       29-AUG-18         Cis-1,3-Dichloropropene       121.1       %       50.140       29-AUG-18         Dibromochloromethane       119.9       %       50.140       29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                      |              |             |        |           |       |     | 50-140 |           |
| 1,2-Dichloropropane       120.8       %       50.140       29-AUG-18         1,3-Dichlorobenzene       123.3       %       50.140       29-AUG-18         1,4-Dichlorobenzene       121.8       %       50.140       29-AUG-18         Acetone       125.4       %       50.140       29-AUG-18         Benzene       119.4       %       50.140       29-AUG-18         Bromodichloromethane       119.6       %       50.140       29-AUG-18         Bromoform       115.7       %       50.140       29-AUG-18         Bromomethane       87.9       %       50.140       29-AUG-18         Carbon tetrachloride       118.1       %       50.140       29-AUG-18         Chlorotoram       121.9       %       50.140       29-AUG-18         Chlorotorim       121.5       %       50.140       29-AUG-18         Chlorotorim       121.5       %       50.140       29-AUG-18         cis-1,2-Dichloroethylene       117.5       %       50.140       29-AUG-18         cis-1,2-Dichloroethylene       117.5       %       50.140       29-AUG-18         Dibromochloromethane       119.9       %       50.140       29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |              |             |        |           |       |     |        |           |
| 1,3-Dichlorobenzene       123.3       %       50-140       29-AUG-18         1,4-Dichlorobenzene       121.8       %       50-140       29-AUG-18         Acetone       125.4       %       50-140       29-AUG-18         Benzene       119.4       %       50-140       29-AUG-18         Bromodichloromethane       119.6       %       50-140       29-AUG-18         Bromoform       115.7       %       50-140       29-AUG-18         Bromomethane       87.9       %       50-140       29-AUG-18         Carbon tetrachloride       118.1       %       50-140       29-AUG-18         Chloroform       121.9       %       50-140       29-AUG-18         Chloroform       121.5       %       50-140       29-AUG-18         Chloroform       121.5       %       50-140       29-AUG-18         cis-1,2-Dichloroethylene       117.5       %       50-140       29-AUG-18         cis-1,2-Dichloropropene       121.1       %       50-140       29-AUG-18         Dichlorodifluoromethane       119.9       %       50-140       29-AUG-18         Dichlorodifluoromethane       159.9       \$0.140       29-AUG-18         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                      |              |             |        |           |       |     | 50-140 |           |
| 1,4-Dichlorobenzene       121.8       %       50-140       29-AUG-18         Acetone       125.4       %       50-140       29-AUG-18         Benzene       119.4       %       50-140       29-AUG-18         Bromodichloromethane       119.6       %       50-140       29-AUG-18         Bromoform       115.7       %       50-140       29-AUG-18         Bromomethane       87.9       %       50-140       29-AUG-18         Carbon tetrachloride       118.1       %       50-140       29-AUG-18         Chlorobenzene       121.9       %       50-140       29-AUG-18         Chloroform       121.5       %       50-140       29-AUG-18         Cis-1,2-Dichloroethylene       117.5       %       50-140       29-AUG-18         cis-1,2-Dichloropropene       121.1       %       50-140       29-AUG-18         Dibromochloromethane       119.9       %       50-140       29-AUG-18         Dichlorodifluoromethane       15.9       %       50-140       29-AUG-18         Ethylbenzene       122.4       %       50-140       29-AUG-18         n-Hexane       129.4       %       50-140       29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |              |             |        |           |       |     | 50-140 | 29-AUG-18 |
| Acetone       125.4       %       50.140       29.AUG-18         Benzene       119.4       %       50.140       29.AUG-18         Bromodichloromethane       119.6       %       50.140       29.AUG-18         Bromoform       115.7       %       50.140       29.AUG-18         Bromomethane       87.9       %       50.140       29.AUG-18         Carbon tetrachloride       118.1       %       50.140       29.AUG-18         Chlorobenzene       121.9       %       50.140       29.AUG-18         Chloroform       121.5       %       50.140       29.AUG-18         cis-1,2-Dichloroethylene       117.5       %       50.140       29.AUG-18         cis-1,2-Dichloropropene       121.1       %       50.140       29.AUG-18         cis-1,3-Dichloromethane       119.9       %       50.140       29.AUG-18         Dibromochloromethane       119.9       %       50.140       29.AUG-18         Dichlorodifluoromethane       75.9       %       50.140       29.AUG-18         Ethylbenzene       122.4       %       50.140       29.AUG-18         n-Hexane       129.4       %       50.140       29.AUG-18      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |              |             |        |           |       |     | 50-140 | 29-AUG-18 |
| Benzene         119.4         %         50.140         29.AUG-18           Bromodichloromethane         119.6         %         50.140         29.AUG-18           Bromoform         115.7         %         50.140         29.AUG-18           Bromomethane         87.9         %         50.140         29.AUG-18           Carbon tetrachloride         118.1         %         50.140         29.AUG-18           Chlorobenzene         121.9         %         50.140         29.AUG-18           Chloroform         121.5         %         50.140         29.AUG-18           cis-1,2-Dichloroethylene         117.5         %         50.140         29.AUG-18           cis-1,3-Dichloropropene         121.1         %         50.140         29.AUG-18           Dibromochloromethane         119.9         %         50.140         29.AUG-18           Dichlorodifluoromethane         75.9         %         50.140         29.AUG-18           Ethylbenzene         122.4         %         50.140         29.AUG-18           n-Hexane         129.4         %         50.140         29.AUG-18           Methylene Chloride         114.4         %         50.140         29.AUG-18 <tr< td=""><td>1,4-Dichlorobenzene</td><td></td><td></td><td></td><td></td><td></td><td></td><td>50-140</td><td>29-AUG-18</td></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,4-Dichlorobenzene    |              |             |        |           |       |     | 50-140 | 29-AUG-18 |
| Bromodichloromethane         119.6         %         50-140         29-AUG-18           Bromoform         115.7         %         50-140         29-AUG-18           Bromomethane         87.9         %         50-140         29-AUG-18           Carbon tetrachloride         118.1         %         50-140         29-AUG-18           Chlorobenzene         121.9         %         50-140         29-AUG-18           Chloroform         121.5         %         50-140         29-AUG-18           cis-1,2-Dichloroethylene         117.5         %         50-140         29-AUG-18           cis-1,3-Dichloropropene         121.1         %         50-140         29-AUG-18           Dibromochloromethane         119.9         %         50-140         29-AUG-18           Dichlorodifluoromethane         75.9         %         50-140         29-AUG-18           Ethylbenzene         122.4         %         50-140         29-AUG-18           n-Hexane         129.4         %         50-140         29-AUG-18           Methylene Chloride         114.4         %         50-140         29-AUG-18           MHPS         50-140         29-AUG-18         50-140         29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Acetone                |              |             | 125.4  |           | %     |     | 50-140 | 29-AUG-18 |
| Bromoform         115.7         %         50-140         29-AUG-18           Bromomethane         87.9         %         50-140         29-AUG-18           Carbon tetrachloride         118.1         %         50-140         29-AUG-18           Chlorobenzene         121.9         %         50-140         29-AUG-18           Chloroform         121.5         %         50-140         29-AUG-18           cis-1,2-Dichloroethylene         117.5         %         50-140         29-AUG-18           cis-1,3-Dichloropropene         121.1         %         50-140         29-AUG-18           Dibromochloromethane         119.9         %         50-140         29-AUG-18           Dichlorodifluoromethane         75.9         %         50-140         29-AUG-18           Ethylbenzene         122.4         %         50-140         29-AUG-18           n-Hexane         129.4         %         50-140         29-AUG-18           Methylene Chloride         114.4         %         50-140         29-AUG-18           MTBE         119.8         %         50-140         29-AUG-18           Methyl Ethyl Ketone         121.3         %         50-140         29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Benzene                |              |             | 119.4  |           | %     |     | 50-140 | 29-AUG-18 |
| Bromomethane 87.9 % 50-140 29-AUG-18 Carbon tetrachloride 118.1 % 50-140 29-AUG-18 Chlorobenzene 121.9 % 50-140 29-AUG-18 Chloroform 121.5 % 50-140 29-AUG-18 cis-1,2-Dichloroethylene 117.5 % 50-140 29-AUG-18 cis-1,3-Dichloropropene 121.1 % 50-140 29-AUG-18 Dibromochloromethane 119.9 % 50-140 29-AUG-18 Dichlorodifluoromethane 75.9 % 50-140 29-AUG-18 Ethylbenzene 122.4 % 50-140 29-AUG-18 n-Hexane 129.4 % 50-140 29-AUG-18 Methylene Chloride 114.4 % 50-140 29-AUG-18 MTBE 119.8 % 50-140 29-AUG-18 Mthyl Ethyl Ketone 121.3 % 50-140 29-AUG-18 Methyl Ethyl Ketone 121.3 % 50-140 29-AUG-18 Methyl Isobutyl Ketone 107.6 % 50-140 29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bromodichlorometha     | ne           |             | 119.6  |           | %     |     | 50-140 | 29-AUG-18 |
| Carbon tetrachloride       118.1       %       50-140       29-AUG-18         Chlorobenzene       121.9       %       50-140       29-AUG-18         Chloroform       121.5       %       50-140       29-AUG-18         cis-1,2-Dichloroethylene       117.5       %       50-140       29-AUG-18         cis-1,3-Dichloropropene       121.1       %       50-140       29-AUG-18         Dibromochloromethane       119.9       %       50-140       29-AUG-18         Dichlorodifluoromethane       75.9       %       50-140       29-AUG-18         Ethylbenzene       122.4       %       50-140       29-AUG-18         n-Hexane       129.4       %       50-140       29-AUG-18         Methylene Chloride       114.4       %       50-140       29-AUG-18         MTBE       119.8       %       50-140       29-AUG-18         M+p-Xylenes       123.8       %       50-140       29-AUG-18         Methyl Ethyl Ketone       121.3       %       50-140       29-AUG-18         Methyl Isobutyl Ketone       107.6       %       50-140       29-AUG-18         0-Xylene       128.6       %       50-140       29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bromoform              |              |             | 115.7  |           | %     |     | 50-140 | 29-AUG-18 |
| Chlorobenzene       121.9       %       50-140       29-AUG-18         Chloroform       121.5       %       50-140       29-AUG-18         cis-1,2-Dichloroethylene       117.5       %       50-140       29-AUG-18         cis-1,3-Dichloropropene       121.1       %       50-140       29-AUG-18         Dibromochloromethane       119.9       %       50-140       29-AUG-18         Dichlorodifluoromethane       75.9       %       50-140       29-AUG-18         Ethylbenzene       122.4       %       50-140       29-AUG-18         n-Hexane       129.4       %       50-140       29-AUG-18         Methylene Chloride       114.4       %       50-140       29-AUG-18         MTBE       119.8       %       50-140       29-AUG-18         Methyl Ethyl Ketone       123.8       %       50-140       29-AUG-18         Methyl Isobutyl Ketone       107.6       %       50-140       29-AUG-18         O-Xylene       128.6       %       50-140       29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bromomethane           |              |             | 87.9   |           | %     |     | 50-140 | 29-AUG-18 |
| Chloroform       121.5       %       50-140       29-AUG-18         cis-1,2-Dichloroethylene       117.5       %       50-140       29-AUG-18         cis-1,3-Dichloropropene       121.1       %       50-140       29-AUG-18         Dibromochloromethane       119.9       %       50-140       29-AUG-18         Dichlorodifluoromethane       75.9       %       50-140       29-AUG-18         Ethylbenzene       122.4       %       50-140       29-AUG-18         n-Hexane       129.4       %       50-140       29-AUG-18         Methylene Chloride       114.4       %       50-140       29-AUG-18         MTBE       119.8       %       50-140       29-AUG-18         m+p-Xylenes       123.8       %       50-140       29-AUG-18         Methyl Ethyl Ketone       121.3       %       50-140       29-AUG-18         Methyl Isobutyl Ketone       107.6       %       50-140       29-AUG-18         0-Xylene       128.6       %       50-140       29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Carbon tetrachloride   |              |             | 118.1  |           | %     |     | 50-140 | 29-AUG-18 |
| cis-1,2-Dichloroethylene       117.5       %       50-140       29-AUG-18         cis-1,3-Dichloropropene       121.1       %       50-140       29-AUG-18         Dibromochloromethane       119.9       %       50-140       29-AUG-18         Dichlorodifluoromethane       75.9       %       50-140       29-AUG-18         Ethylbenzene       122.4       %       50-140       29-AUG-18         n-Hexane       129.4       %       50-140       29-AUG-18         Methylene Chloride       114.4       %       50-140       29-AUG-18         MTBE       119.8       %       50-140       29-AUG-18         m+p-Xylenes       123.8       %       50-140       29-AUG-18         Methyl Ethyl Ketone       121.3       %       50-140       29-AUG-18         Methyl Isobutyl Ketone       107.6       %       50-140       29-AUG-18         O-Xylene       128.6       %       50-140       29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chlorobenzene          |              |             | 121.9  |           | %     |     | 50-140 | 29-AUG-18 |
| cis-1,3-Dichloropropene       121.1       %       50-140       29-AUG-18         Dibromochloromethane       119.9       %       50-140       29-AUG-18         Dichlorodifluoromethane       75.9       %       50-140       29-AUG-18         Ethylbenzene       122.4       %       50-140       29-AUG-18         n-Hexane       129.4       %       50-140       29-AUG-18         Methylene Chloride       114.4       %       50-140       29-AUG-18         MTBE       119.8       %       50-140       29-AUG-18         m+p-Xylenes       123.8       %       50-140       29-AUG-18         Methyl Ethyl Ketone       121.3       %       50-140       29-AUG-18         Methyl Isobutyl Ketone       107.6       %       50-140       29-AUG-18         0-Xylene       128.6       %       50-140       29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Chloroform             |              |             | 121.5  |           | %     |     | 50-140 | 29-AUG-18 |
| Dibromochloromethane       119.9       %       50-140       29-AUG-18         Dichlorodifluoromethane       75.9       %       50-140       29-AUG-18         Ethylbenzene       122.4       %       50-140       29-AUG-18         n-Hexane       129.4       %       50-140       29-AUG-18         Methylene Chloride       114.4       %       50-140       29-AUG-18         MTBE       119.8       %       50-140       29-AUG-18         m+p-Xylenes       123.8       %       50-140       29-AUG-18         Methyl Ethyl Ketone       121.3       %       50-140       29-AUG-18         Methyl Isobutyl Ketone       107.6       %       50-140       29-AUG-18         o-Xylene       128.6       %       50-140       29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | cis-1,2-Dichloroethyle | ene          |             | 117.5  |           | %     |     | 50-140 | 29-AUG-18 |
| Dichlorodifluoromethane       75.9       %       50-140       29-AUG-18         Ethylbenzene       122.4       %       50-140       29-AUG-18         n-Hexane       129.4       %       50-140       29-AUG-18         Methylene Chloride       114.4       %       50-140       29-AUG-18         MTBE       119.8       %       50-140       29-AUG-18         m+p-Xylenes       123.8       %       50-140       29-AUG-18         Methyl Ethyl Ketone       121.3       %       50-140       29-AUG-18         Methyl Isobutyl Ketone       107.6       %       50-140       29-AUG-18         o-Xylene       128.6       %       50-140       29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | cis-1,3-Dichloroprope  | ene          |             | 121.1  |           | %     |     | 50-140 | 29-AUG-18 |
| Ethylbenzene 122.4 % 50-140 29-AUG-18 n-Hexane 129.4 % 50-140 29-AUG-18 Methylene Chloride 114.4 % 50-140 29-AUG-18 MTBE 119.8 % 50-140 29-AUG-18 m+p-Xylenes 123.8 % 50-140 29-AUG-18 Methyl Ethyl Ketone 121.3 % 50-140 29-AUG-18 Methyl Isobutyl Ketone 107.6 % 50-140 29-AUG-18 o-Xylene 128.6 % 50-140 29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dibromochlorometha     | ne           |             | 119.9  |           | %     |     | 50-140 | 29-AUG-18 |
| n-Hexane       129.4       %       50-140       29-AUG-18         Methylene Chloride       114.4       %       50-140       29-AUG-18         MTBE       119.8       %       50-140       29-AUG-18         m+p-Xylenes       123.8       %       50-140       29-AUG-18         Methyl Ethyl Ketone       121.3       %       50-140       29-AUG-18         Methyl Isobutyl Ketone       107.6       %       50-140       29-AUG-18         o-Xylene       128.6       %       50-140       29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dichlorodifluorometh   | ane          |             | 75.9   |           | %     |     | 50-140 | 29-AUG-18 |
| Methylene Chloride       114.4       %       50-140       29-AUG-18         MTBE       119.8       %       50-140       29-AUG-18         m+p-Xylenes       123.8       %       50-140       29-AUG-18         Methyl Ethyl Ketone       121.3       %       50-140       29-AUG-18         Methyl Isobutyl Ketone       107.6       %       50-140       29-AUG-18         o-Xylene       128.6       %       50-140       29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ethylbenzene           |              |             | 122.4  |           | %     |     | 50-140 | 29-AUG-18 |
| MTBE       119.8       %       50-140       29-AUG-18         m+p-Xylenes       123.8       %       50-140       29-AUG-18         Methyl Ethyl Ketone       121.3       %       50-140       29-AUG-18         Methyl Isobutyl Ketone       107.6       %       50-140       29-AUG-18         o-Xylene       128.6       %       50-140       29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n-Hexane               |              |             | 129.4  |           | %     |     | 50-140 | 29-AUG-18 |
| m+p-Xylenes       123.8       %       50-140       29-AUG-18         Methyl Ethyl Ketone       121.3       %       50-140       29-AUG-18         Methyl Isobutyl Ketone       107.6       %       50-140       29-AUG-18         o-Xylene       128.6       %       50-140       29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Methylene Chloride     |              |             | 114.4  |           | %     |     | 50-140 | 29-AUG-18 |
| Methyl Ethyl Ketone       121.3       %       50-140       29-AUG-18         Methyl Isobutyl Ketone       107.6       %       50-140       29-AUG-18         o-Xylene       128.6       %       50-140       29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MTBE                   |              |             | 119.8  |           | %     |     | 50-140 | 29-AUG-18 |
| Methyl Isobutyl Ketone     107.6     %     50-140     29-AUG-18       o-Xylene     128.6     %     50-140     29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m+p-Xylenes            |              |             | 123.8  |           | %     |     | 50-140 | 29-AUG-18 |
| o-Xylene 128.6 % 50-140 29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Methyl Ethyl Ketone    |              |             | 121.3  |           | %     |     | 50-140 | 29-AUG-18 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Methyl Isobutyl Ketor  | ne           |             | 107.6  |           | %     |     | 50-140 | 29-AUG-18 |
| Styrene 128.0 % 50-140 29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | o-Xylene               |              |             | 128.6  |           | %     |     | 50-140 | 29-AUG-18 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Styrene                |              |             | 128.0  |           | %     |     | 50-140 | 29-AUG-18 |



Workorder: L2153058 Report Date: 06-SEP-18 Page 17 of 23

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                               | Matrix | Reference   | Result         | Qualifier | Units  | RPD | Limit            | Analyzed               |
|------------------------------------|--------|-------------|----------------|-----------|--------|-----|------------------|------------------------|
| VOC-511-HS-WT                      | Soil   |             |                |           |        |     |                  |                        |
| Batch R419154                      | 7      |             |                |           |        |     |                  |                        |
| WG2860944-5 MS Tetrachloroethylene |        | L2153109-21 |                |           | %      |     | 50.440           | 00 4110 40             |
| Toluene                            |        |             | 126.6<br>120.0 |           | %<br>% |     | 50-140           | 29-AUG-18              |
| trans-1,2-Dichloroethy             | dene   |             | 118.0          |           | %      |     | 50-140           | 29-AUG-18              |
| trans-1,3-Dichloroprop             |        |             | 121.1          |           | %      |     | 50-140           | 29-AUG-18              |
| Trichloroethylene                  | Derie  |             | 124.0          |           | %      |     | 50-140<br>50-140 | 29-AUG-18              |
| Trichlorofluoromethan              | ۵      |             | 116.8          |           | %      |     | 50-140           | 29-AUG-18              |
| Vinyl chloride                     |        |             | 100.8          |           | %      |     | 50-140           | 29-AUG-18<br>29-AUG-18 |
|                                    |        |             | 100.0          |           | 70     |     | 50-140           | 29-AUG-16              |
| Batch R419175<br>WG2861064-4 DUP   |        | WG2861064-  | 3              |           |        |     |                  |                        |
| 1,1,1,2-Tetrachloroeth             |        | < 0.050     | <0.050         | RPD-NA    | ug/g   | N/A | 40               | 29-AUG-18              |
| 1,1,2,2-Tetrachloroeth             | nane   | <0.050      | <0.050         | RPD-NA    | ug/g   | N/A | 40               | 29-AUG-18              |
| 1,1,1-Trichloroethane              |        | <0.050      | <0.050         | RPD-NA    | ug/g   | N/A | 40               | 29-AUG-18              |
| 1,1,2-Trichloroethane              |        | <0.050      | <0.050         | RPD-NA    | ug/g   | N/A | 40               | 29-AUG-18              |
| 1,1-Dichloroethane                 |        | <0.050      | <0.050         | RPD-NA    | ug/g   | N/A | 40               | 29-AUG-18              |
| 1,1-Dichloroethylene               |        | <0.050      | <0.050         | RPD-NA    | ug/g   | N/A | 40               | 29-AUG-18              |
| 1,2-Dibromoethane                  |        | <0.050      | <0.050         | RPD-NA    | ug/g   | N/A | 40               | 29-AUG-18              |
| 1,2-Dichlorobenzene                |        | <0.050      | <0.050         | RPD-NA    | ug/g   | N/A | 40               | 29-AUG-18              |
| 1,2-Dichloroethane                 |        | <0.050      | <0.050         | RPD-NA    | ug/g   | N/A | 40               | 29-AUG-18              |
| 1,2-Dichloropropane                |        | <0.050      | <0.050         | RPD-NA    | ug/g   | N/A | 40               | 29-AUG-18              |
| 1,3-Dichlorobenzene                |        | <0.050      | <0.050         | RPD-NA    | ug/g   | N/A | 40               | 29-AUG-18              |
| 1,4-Dichlorobenzene                |        | <0.050      | <0.050         | RPD-NA    | ug/g   | N/A | 40               | 29-AUG-18              |
| Acetone                            |        | <0.50       | <0.50          | RPD-NA    | ug/g   | N/A | 40               | 29-AUG-18              |
| Benzene                            |        | <0.0068     | <0.0068        | RPD-NA    | ug/g   | N/A | 40               | 29-AUG-18              |
| Bromodichloromethan                | ne     | <0.050      | <0.050         | RPD-NA    | ug/g   | N/A | 40               | 29-AUG-18              |
| Bromoform                          |        | <0.050      | <0.050         | RPD-NA    | ug/g   | N/A | 40               | 29-AUG-18              |
| Bromomethane                       |        | <0.050      | <0.050         | RPD-NA    | ug/g   | N/A | 40               | 29-AUG-18              |
| Carbon tetrachloride               |        | <0.050      | <0.050         | RPD-NA    | ug/g   | N/A | 40               | 29-AUG-18              |
| Chlorobenzene                      |        | <0.050      | <0.050         | RPD-NA    | ug/g   | N/A | 40               | 29-AUG-18              |
| Chloroform                         |        | <0.050      | <0.050         | RPD-NA    | ug/g   | N/A | 40               | 29-AUG-18              |
| cis-1,2-Dichloroethyle             | ne     | <0.050      | <0.050         | RPD-NA    | ug/g   | N/A | 40               | 29-AUG-18              |
| cis-1,3-Dichloroproper             | ne     | <0.030      | <0.030         | RPD-NA    | ug/g   | N/A | 40               | 29-AUG-18              |
| Dibromochloromethan                | ne     | <0.050      | <0.050         | RPD-NA    | ug/g   | N/A | 40               | 29-AUG-18              |
| Dichlorodifluorometha              | ne     | <0.050      | <0.050         | RPD-NA    | ug/g   | N/A | 40               | 29-AUG-18              |
|                                    |        |             |                |           |        |     |                  |                        |



Workorder: L2153058 Report Date: 06-SEP-18 Page 18 of 23

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                                     | Matrix           | Reference       | Result          | Qualifier | Units | RPD  | Limit  | Analyzed   |
|------------------------------------------|------------------|-----------------|-----------------|-----------|-------|------|--------|------------|
| VOC-511-HS-WT                            | Soil             |                 |                 |           |       |      |        |            |
| Batch R41917                             | 54               |                 |                 |           |       |      |        |            |
| WG2861064-4 DUI<br>Ethylbenzene          | P                | WG2861064       |                 | DDD MA    | ua/a  | N1/A | 40     | 00 4110 40 |
| n-Hexane                                 |                  | <0.018<br>0.099 | <0.018<br>0.109 | RPD-NA    | ug/g  | N/A  | 40     | 29-AUG-18  |
|                                          |                  |                 |                 | DDD NA    | ug/g  | 9.4  | 40     | 29-AUG-18  |
| Methylene Chloride                       |                  | <0.050          | <0.050          | RPD-NA    | ug/g  | N/A  | 40     | 29-AUG-18  |
| MTBE                                     |                  | <0.050          | <0.050          | RPD-NA    | ug/g  | N/A  | 40     | 29-AUG-18  |
| m+p-Xylenes                              |                  | <0.030          | <0.030          | RPD-NA    | ug/g  | N/A  | 40     | 29-AUG-18  |
| Methyl Ethyl Ketone                      |                  | <0.50           | <0.50           | RPD-NA    | ug/g  | N/A  | 40     | 29-AUG-18  |
| Methyl Isobutyl Ketor                    | ne               | <0.50           | <0.50           | RPD-NA    | ug/g  | N/A  | 40     | 29-AUG-18  |
| o-Xylene                                 |                  | <0.020          | <0.020          | RPD-NA    | ug/g  | N/A  | 40     | 29-AUG-18  |
| Styrene                                  |                  | <0.050          | <0.050          | RPD-NA    | ug/g  | N/A  | 40     | 29-AUG-18  |
| Tetrachloroethylene                      |                  | <0.050          | < 0.050         | RPD-NA    | ug/g  | N/A  | 40     | 29-AUG-18  |
| Toluene                                  |                  | <0.080          | <0.080          | RPD-NA    | ug/g  | N/A  | 40     | 29-AUG-18  |
| trans-1,2-Dichloroeth                    | ylene            | <0.050          | < 0.050         | RPD-NA    | ug/g  | N/A  | 40     | 29-AUG-18  |
| trans-1,3-Dichloropro                    | pene             | <0.030          | < 0.030         | RPD-NA    | ug/g  | N/A  | 40     | 29-AUG-18  |
| Trichloroethylene                        |                  | <0.010          | <0.010          | RPD-NA    | ug/g  | N/A  | 40     | 29-AUG-18  |
| Trichlorofluorometha                     | ne               | <0.050          | < 0.050         | RPD-NA    | ug/g  | N/A  | 40     | 29-AUG-18  |
| Vinyl chloride                           |                  | <0.020          | <0.020          | RPD-NA    | ug/g  | N/A  | 40     | 29-AUG-18  |
| WG2861064-2 LCS<br>1,1,1,2-Tetrachloroet | _                |                 | 101.3           |           | %     |      | 60-130 | 29-AUG-18  |
| 1,1,2,2-Tetrachloroet                    |                  |                 | 105.9           |           | %     |      | 60-130 | 29-AUG-18  |
| 1,1,1-Trichloroethane                    |                  |                 | 102.4           |           | %     |      | 60-130 | 29-AUG-18  |
| 1,1,2-Trichloroethane                    |                  |                 | 105.4           |           | %     |      | 60-130 | 29-AUG-18  |
| 1,1-Dichloroethane                       |                  |                 | 101.6           |           | %     |      | 60-130 | 29-AUG-18  |
| 1,1-Dichloroethylene                     |                  |                 | 83.5            |           | %     |      | 60-130 | 29-AUG-18  |
| 1,2-Dibromoethane                        |                  |                 | 107.8           |           | %     |      | 70-130 | 29-AUG-18  |
| 1,2-Dichlorobenzene                      |                  |                 | 108.6           |           | %     |      | 70-130 | 29-AUG-18  |
| 1,2-Dichloroethane                       |                  |                 | 112.4           |           | %     |      | 60-130 | 29-AUG-18  |
| 1,2-Dichloropropane                      |                  |                 | 104.3           |           | %     |      | 70-130 | 29-AUG-18  |
| 1,3-Dichlorobenzene                      |                  |                 | 106.1           |           | %     |      | 70-130 | 29-AUG-18  |
| 1,4-Dichlorobenzene                      |                  |                 | 107.6           |           | %     |      | 70-130 | 29-AUG-18  |
| Acetone                                  |                  |                 | 110.0           |           | %     |      | 60-140 | 29-AUG-18  |
| Benzene                                  |                  |                 | 107.3           |           | %     |      | 70-130 | 29-AUG-18  |
| Bromodichlorometha                       | ne               |                 | 110.8           |           | %     |      | 50-140 | 29-AUG-18  |
| Bromoform                                | · · <del>·</del> |                 | 107.4           |           | %     |      | 70-130 | 29-AUG-18  |



Workorder: L2153058 Report Date: 06-SEP-18 Page 19 of 23

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                                      | Matrix | Reference | Result        | Qualifier | Units                         | RPD | Limit  | Analyzed  |
|-------------------------------------------|--------|-----------|---------------|-----------|-------------------------------|-----|--------|-----------|
| VOC-511-HS-WT                             | Soil   |           |               |           |                               |     |        |           |
| Batch R4191754                            |        |           |               |           |                               |     |        |           |
| WG2861064-2 LCS                           |        |           | 05.0          |           | 0/                            |     | 50.440 |           |
| Bromomethane Carbon tetrachloride         |        |           | 65.8<br>104.1 |           | %                             |     | 50-140 | 29-AUG-18 |
| Chlorobenzene                             |        |           | 104.1         |           | %                             |     | 70-130 | 29-AUG-18 |
| Chloroform                                |        |           | 104.5         |           | %                             |     | 70-130 | 29-AUG-18 |
| cis-1,2-Dichloroethylene                  |        |           | 106.9         |           | %                             |     | 70-130 | 29-AUG-18 |
| cis-1,3-Dichloropropene                   |        |           | 104.5         |           | %                             |     | 70-130 | 29-AUG-18 |
| Dibromochloromethane                      |        |           | 109.5         |           | %                             |     | 70-130 | 29-AUG-18 |
|                                           |        |           |               | MEO       |                               |     | 60-130 | 29-AUG-18 |
| Dichlorodifluoromethane                   | 5      |           | 47.8<br>90.6  | MES       | %                             |     | 50-140 | 29-AUG-18 |
| Ethylbenzene<br>n-Hexane                  |        |           | 90.6          |           | %                             |     | 70-130 | 29-AUG-18 |
|                                           |        |           | 92.0<br>99.7  |           | %                             |     | 70-130 | 29-AUG-18 |
| Methylene Chloride<br>MTBE                |        |           |               |           |                               |     | 70-130 | 29-AUG-18 |
|                                           |        |           | 101.4         |           | %                             |     | 70-130 | 29-AUG-18 |
| m+p-Xylenes                               |        |           | 95.9          |           | %                             |     | 70-130 | 29-AUG-18 |
| Methyl Leabutyl Ketone                    |        |           | 115.8         |           | %                             |     | 60-140 | 29-AUG-18 |
| Methyl Isobutyl Ketone                    |        |           | 103.4         |           | %                             |     | 60-140 | 29-AUG-18 |
| o-Xylene                                  |        |           | 90.7          |           | %                             |     | 70-130 | 29-AUG-18 |
| Styrene                                   |        |           | 105.0         |           | %                             |     | 70-130 | 29-AUG-18 |
| Tetrachloroethylene                       |        |           | 96.4          |           | %                             |     | 60-130 | 29-AUG-18 |
| Toluene                                   |        |           | 93.9          |           | %                             |     | 70-130 | 29-AUG-18 |
| trans-1,2-Dichloroethyle                  |        |           | 87.2          |           | %                             |     | 60-130 | 29-AUG-18 |
| trans-1,3-Dichloroprope                   | ne     |           | 102.0         |           | %                             |     | 70-130 | 29-AUG-18 |
| Trichloroethylene                         |        |           | 105.9         |           | %                             |     | 60-130 | 29-AUG-18 |
| Trichlorofluoromethane                    |        |           | 91.8          |           | %                             |     | 50-140 | 29-AUG-18 |
| Vinyl chloride                            |        |           | 57.8          | MES       | %                             |     | 60-140 | 29-AUG-18 |
| WG2861064-1 MB<br>1,1,1,2-Tetrachloroetha | ne     |           | <0.050        |           | ug/g                          |     | 0.05   | 29-AUG-18 |
| 1,1,2,2-Tetrachloroetha                   |        |           | <0.050        |           | ug/g                          |     | 0.05   | 29-AUG-18 |
| 1,1,1-Trichloroethane                     |        |           | <0.050        |           | ug/g                          |     | 0.05   | 29-AUG-18 |
| 1,1,2-Trichloroethane                     |        |           | < 0.050       |           | ug/g                          |     | 0.05   | 29-AUG-18 |
| 1,1-Dichloroethane                        |        |           | <0.050        |           | ug/g                          |     | 0.05   | 29-AUG-18 |
| 1,1-Dichloroethylene                      |        |           | <0.050        |           | ug/g                          |     | 0.05   | 29-AUG-18 |
| 1,2-Dibromoethane                         |        |           | <0.050        |           | ug/g                          |     | 0.05   | 29-AUG-18 |
| 1,2-Dichlorobenzene                       |        |           | <0.050        |           | ug/g                          |     | 0.05   | 29-AUG-18 |
| 1,2-Dichloroethane                        |        |           | <0.050        |           | ug/g                          |     | 0.05   | 29-AUG-18 |
| .,2 2.55.000.00.00                        |        |           | 10.000        |           | ~ <del>3</del> ′ <del>3</del> |     | 5.55   | 20 700-10 |



Workorder: L2153058 Report Date: 06-SEP-18 Page 20 of 23

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                                    | Matrix   | Reference  | Result           | Qualifier | Units     | RPD | Limit  | Analyzed   |
|-----------------------------------------|----------|------------|------------------|-----------|-----------|-----|--------|------------|
| VOC-511-HS-WT                           | Soil     |            |                  |           |           |     |        |            |
| Batch R4191754                          |          |            |                  |           |           |     |        |            |
| WG2861064-1 MB                          |          |            | -O OEO           |           | 110/0     |     | 0.05   | 00 4110 40 |
| 1,2-Dichloropropane 1,3-Dichlorobenzene |          |            | <0.050<br><0.050 |           | ug/g      |     | 0.05   | 29-AUG-18  |
| 1,4-Dichlorobenzene                     |          |            | <0.050           |           | ug/g      |     | 0.05   | 29-AUG-18  |
| Acetone                                 |          |            | <0.50            |           | ug/g      |     | 0.03   | 29-AUG-18  |
| Benzene                                 |          |            |                  |           | ug/g      |     | 0.0068 | 29-AUG-18  |
| Bromodichloromethane                    |          |            | <0.0068          |           | ug/g      |     | 0.008  | 29-AUG-18  |
| Bromoform                               |          |            | <0.050           |           | ug/g      |     |        | 29-AUG-18  |
|                                         |          |            | <0.050           |           | ug/g      |     | 0.05   | 29-AUG-18  |
| Bromomethane                            |          |            | <0.050           |           | ug/g      |     | 0.05   | 29-AUG-18  |
| Carbon tetrachloride                    |          |            | <0.050           |           | ug/g      |     | 0.05   | 29-AUG-18  |
| Chlorobenzene                           |          |            | <0.050           |           | ug/g      |     | 0.05   | 29-AUG-18  |
| Chloroform                              |          |            | <0.050           |           | ug/g      |     | 0.05   | 29-AUG-18  |
| cis-1,2-Dichloroethylene                |          |            | <0.050           |           | ug/g<br>, |     | 0.05   | 29-AUG-18  |
| cis-1,3-Dichloropropene                 |          |            | <0.030           |           | ug/g      |     | 0.03   | 29-AUG-18  |
| Dibromochloromethane                    |          |            | <0.050           |           | ug/g      |     | 0.05   | 29-AUG-18  |
| Dichlorodifluoromethane                 | )        |            | <0.050           |           | ug/g      |     | 0.05   | 29-AUG-18  |
| Ethylbenzene                            |          |            | <0.018           |           | ug/g      |     | 0.018  | 29-AUG-18  |
| n-Hexane                                |          |            | <0.050           |           | ug/g      |     | 0.05   | 29-AUG-18  |
| Methylene Chloride                      |          |            | <0.050           |           | ug/g      |     | 0.05   | 29-AUG-18  |
| MTBE                                    |          |            | <0.050           |           | ug/g      |     | 0.05   | 29-AUG-18  |
| m+p-Xylenes                             |          |            | <0.030           |           | ug/g      |     | 0.03   | 29-AUG-18  |
| Methyl Ethyl Ketone                     |          |            | <0.50            |           | ug/g      |     | 0.5    | 29-AUG-18  |
| Methyl Isobutyl Ketone                  |          |            | <0.50            |           | ug/g      |     | 0.5    | 29-AUG-18  |
| o-Xylene                                |          |            | <0.020           |           | ug/g      |     | 0.02   | 29-AUG-18  |
| Styrene                                 |          |            | < 0.050          |           | ug/g      |     | 0.05   | 29-AUG-18  |
| Tetrachloroethylene                     |          |            | < 0.050          |           | ug/g      |     | 0.05   | 29-AUG-18  |
| Toluene                                 |          |            | <0.080           |           | ug/g      |     | 0.08   | 29-AUG-18  |
| trans-1,2-Dichloroethyle                | ne       |            | <0.050           |           | ug/g      |     | 0.05   | 29-AUG-18  |
| trans-1,3-Dichloroproper                | ne       |            | <0.030           |           | ug/g      |     | 0.03   | 29-AUG-18  |
| Trichloroethylene                       |          |            | <0.010           |           | ug/g      |     | 0.01   | 29-AUG-18  |
| Trichlorofluoromethane                  |          |            | <0.050           |           | ug/g      |     | 0.05   | 29-AUG-18  |
| Vinyl chloride                          |          |            | <0.020           |           | ug/g      |     | 0.02   | 29-AUG-18  |
| Surrogate: 1,4-Difluorob                | enzene   |            | 108.9            |           | %         |     | 50-140 | 29-AUG-18  |
| Surrogate: 4-Bromofluor                 | obenzene |            | 97.9             |           | %         |     | 50-140 | 29-AUG-18  |
| WG2861064-5 MS                          |          | L2148551-6 |                  |           |           |     |        |            |



Workorder: L2153058 Report Date: 06-SEP-18 Page 21 of 23

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| No.   Solid   Ratio    | Test                   | Matrix | Reference  | Result | Qualifier | Units | RPD | Limit  | Analyzed  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------|------------|--------|-----------|-------|-----|--------|-----------|
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VOC-511-HS-WT          | Soil   |            |        |           |       |     |        |           |
| 1.1.1.2-Tertachloroethane       108.8       %       50-140       29-AUG-18         1.1.2.2-Tetrachloroethane       111.4       %       50-140       29-AUG-18         1.1.1-Trichloroethane       111.2       %       50-140       29-AUG-18         1.1.1-Trichloroethane       111.7       %       50-140       29-AUG-18         1.1-Dichloroethylore       75.1       %       50-140       29-AUG-18         1.2-Dichloroethane       113.7       %       50-140       29-AUG-18         1.2-Dichlorobenzene       115.4       %       50-140       29-AUG-18         1.2-Dichlorobenzene       115.4       %       50-140       29-AUG-18         1.2-Dichloropenzene       111.3       %       50-140       29-AUG-18         1.2-Dichloropenzene       111.3       %       50-140       29-AUG-18         1.2-Dichloropenzene       112.4       %       50-140       29-AUG-18         1.3-Dichlorobenzene       113.4       %       50-140       29-AUG-18         1.4-Dichlorobenzene       113.4       %       50-140       29-AUG-18         Benzene       114.7       %       50-140       29-AUG-18         Benzene       114.7       %       50-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Batch R41917           | 54     |            |        |           |       |     |        |           |
| 1.1.2.2-Tetrachloroethane       111.4       %       50.140       29-AUG-18         1.1.1-Trichloroethane       111.2       %       50.140       29-AUG-18         1.1.2-Trichloroethane       111.7       %       50.140       29-AUG-18         1.1-Dichloroethylene       75.1       %       50.140       29-AUG-18         1.1-Dichloroethylene       75.1       %       50.140       29-AUG-18         1.2-Dichloroethane       113.7       %       50.140       29-AUG-18         1.2-Dichloroethane       118.5       %       50.140       29-AUG-18         1.2-Dichloropropane       111.3       %       50.140       29-AUG-18         1.2-Dichlorobenzene       112.4       %       50.140       29-AUG-18         1.3-Dichlorobenzene       112.4       %       50.140       29-AUG-18         1.3-Dichlorobenzene       113.4       %       50.140       29-AUG-18         Acetone       87.3       %       50.140       29-AUG-18         Benzene       114.7       %       50.140       29-AUG-18         Bromodichloromethane       117.5       %       50.140       29-AUG-18         Bromodermane       113.3       %       50.140       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |        | L2148551-6 |        |           |       |     |        |           |
| 1.1,1-Trichloroethane         111.2         %         50-140         29-AUG-18           1.1,2-Trichloroethane         111.7         %         50-140         29-AUG-18           1.1-Dichloroethane         110.2         %         50-140         29-AUG-18           1,1-Dichloroethylene         75.1         %         50-140         29-AUG-18           1,2-Dichlorobenzene         113.7         %         50-140         29-AUG-18           1,2-Dichlorobenzene         115.4         %         50-140         29-AUG-18           1,2-Dichlorobenzene         118.5         %         50-140         29-AUG-18           1,2-Dichloropropane         111.3         %         50-140         29-AUG-18           1,3-Dichlorobenzene         112.4         %         50-140         29-AUG-18           1,4-Dichlorobenzene         113.4         %         50-140         29-AUG-18           Acetone         87.3         %         50-140         29-AUG-18           Benzene         114.7         %         50-140         29-AUG-18           Bromodichloromethane         117.5         %         50-140         29-AUG-18           Bromomethane         69.0         %         50-140         29-AUG-18 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |        |            |        |           |       |     |        |           |
| 1,1,2-Trichloroethane         111.7         %         \$0.140         29-AUG-18           1,1-Dichloroethane         110.2         %         \$0.140         29-AUG-18           1,1-Dichloroethylene         75.1         %         \$0.140         29-AUG-18           1,2-Dichromoethane         113.7         %         \$0.140         29-AUG-18           1,2-Dichlorobenzene         115.4         %         \$0.140         29-AUG-18           1,2-Dichloroethane         118.5         %         \$0.140         29-AUG-18           1,2-Dichloropropane         111.3         %         \$0.140         29-AUG-18           1,3-Dichlorobenzene         112.4         %         \$0.140         29-AUG-18           1,3-Dichlorobenzene         113.4         %         \$0.140         29-AUG-18           Acetone         87.3         %         \$0.140         29-AUG-18           Benzene         114.7         %         \$0.140         29-AUG-18           Bromodichloromethane         117.5         %         \$0.140         29-AUG-18           Bromoform         113.4         %         \$0.140         29-AUG-18           Bromomethane         68.0         %         \$0.140         29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |        |            |        |           |       |     |        |           |
| 1,1-Dichloroethane         110.2         %         50.140         29-AUG-18           1,1-Dichloroethylene         75.1         %         50.140         29-AUG-18           1,2-Dichroroethane         113.7         %         50.140         29-AUG-18           1,2-Dichloroethane         115.4         %         50.140         29-AUG-18           1,2-Dichloroptane         111.3         %         50.140         29-AUG-18           1,2-Dichloroptane         111.3         %         50.140         29-AUG-18           1,3-Dichloroptazene         112.4         %         50.140         29-AUG-18           1,4-Dichlorobenzene         113.4         %         50.140         29-AUG-18           Acetone         87.3         %         50.140         29-AUG-18           Benzene         114.7         %         50.140         29-AUG-18           Bromodichloromethane         117.5         %         50.140         29-AUG-18           Bromoderm         113.4         %         50.140         29-AUG-18           Bromoderme         113.3         %         50.140         29-AUG-18           Carbon tetrachloride         113.3         %         50.140         29-AUG-18 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |        |            |        |           |       |     |        |           |
| 1,1-Dichloroethylene 75.1 % 50-140 29-AUG-18 1,2-Dibromoethane 113.7 % 50-140 29-AUG-18 1,2-Dichlorobenzene 115.4 % 50-140 29-AUG-18 1,2-Dichlorobenzene 118.5 % 50-140 29-AUG-18 1,2-Dichloropropane 1113.3 % 50-140 29-AUG-18 1,3-Dichloropropane 1112.4 % 50-140 29-AUG-18 1,3-Dichlorobenzene 112.4 % 50-140 29-AUG-18 1,3-Dichlorobenzene 113.4 % 50-140 29-AUG-18 1,3-Dichlorobenzene 113.4 % 50-140 29-AUG-18 1,3-Dichlorobenzene 114.7 % 50-140 29-AUG-18 Benzene 87.3 % 50-140 29-AUG-18 Bromodichloromethane 117.5 % 50-140 29-AUG-18 Bromodichloromethane 117.5 % 50-140 29-AUG-18 Bromodorm 113.4 % 50-140 29-AUG-18 Bromodorm 113.4 % 50-140 29-AUG-18 Carbon tetrachloride 113.3 % 50-140 29-AUG-18 Chlorobenzene 111.3 % 50-140 29-AUG-18 Chlorobenzene 111.3 % 50-140 29-AUG-18 Chlorobenzene 111.5 % 50-140 29-AUG-18 cis-1,2-Dichloroethylene 111.5 % 50-140 29-AUG-18 cis-1,3-Dichloropropene 115.2 % 50-140 29-AUG-18 Dibromochloromethane 116.5 % 50-140 29-AUG-18 Dibromochloromethane 116.5 % 50-140 29-AUG-18 Dibromochloromethane 116.5 % 50-140 29-AUG-18 Ethylbenzene 96.4 % 50-140 29-AUG-18 Ethylbenzene 96.4 % 50-140 29-AUG-18 Methylene Chloride 108.8 % 50-140 29-AUG-18 Methylene Chloride 108.8 % 50-140 29-AUG-18 Methylene Chloride 108.8 % 50-140 29-AUG-18 Methylene Chloride 115.6 % 50-140 29-AUG-18 Methyl Ethyl Ketone 115.6 % 50-140 29-AUG-18 Methyl Isobutyl Ketone 106.4 % 50-140 29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        | 9      |            |        |           |       |     |        |           |
| 1,2-Dibromoethane 113.7 % 50.140 29-AUG-18 1,2-Dichlorobenzene 115.4 % 50.140 29-AUG-18 1,2-Dichloroethane 118.5 % 50.140 29-AUG-18 1,2-Dichloroethane 118.5 % 50.140 29-AUG-18 1,2-Dichloropropane 111.3 % 50.140 29-AUG-18 1,3-Dichlorobenzene 111.4 % 50.140 29-AUG-18 1,3-Dichlorobenzene 112.4 % 50.140 29-AUG-18 1,4-Dichlorobenzene 113.4 % 50.140 29-AUG-18 Acetone 87.3 % 50.140 29-AUG-18 Benzene 114.7 % 50.140 29-AUG-18 Bromodichloromethane 117.5 % 50.140 29-AUG-18 Bromodichloromethane 117.5 % 50.140 29-AUG-18 Bromoform 113.4 % 50.140 29-AUG-18 Bromoform 113.4 % 50.140 29-AUG-18 Carbon tetrachloride 113.3 % 50.140 29-AUG-18 Chlorobenzene 111.3 % 50.140 29-AUG-18 Chlorobenzene 111.3 % 50.140 29-AUG-18 Chloroform 118.8 % 50.140 29-AUG-18 Chloroform 116.8 % 50.140 29-AUG-18 Chloroform 116.5 % 50.140 29-AUG-18 Dibromochloromethane 115.2 % 50.140 29-AUG-18 Cis-1,3-Dichloroethylene 115.2 % 50.140 29-AUG-18 Dibromochloromethane 116.5 % 50.140 29-AUG-18 Ethylbenzene 96.4 % 50.140 29-AUG-18 Ethylbenzene 96.4 % 50.140 29-AUG-18 Dibromochloromethane 116.5 % 50.140 29-AUG-18 Methylene Chloride 108.8 % 50.140 29-AUG-18 Methylene Chloride 106.4 % 50.140 29-AUG-18 Methylene Chloride 115.6 % 50.140 29-AUG-18 Methylene Shouthylene 115.6 % 50.140 29-AUG-18 Methylene Shouthylene 115.6 % 50.140 29-AU |                        |        |            |        |           |       |     |        |           |
| 1,2-Dichlorobenzene 115.4 % 50-140 29-AUG-18 1,2-Dichloroethane 118.5 % 50-140 29-AUG-18 1,2-Dichloropropane 111.3 % 50-140 29-AUG-18 1,3-Dichlorobenzene 112.4 % 50-140 29-AUG-18 1,3-Dichlorobenzene 112.4 % 50-140 29-AUG-18 1,4-Dichlorobenzene 113.4 % 50-140 29-AUG-18 1,4-Dichlorobenzene 113.4 % 50-140 29-AUG-18 1,4-Dichlorobenzene 113.4 % 50-140 29-AUG-18 1,4-Dichlorobenzene 114.7 % 50-140 29-AUG-18 1,4-Dichloromethane 117.5 % 50-140 29-AUG-18 1,4-Dichloromethane 117.5 % 50-140 29-AUG-18 1,4-Dichloromethane 117.5 % 50-140 29-AUG-18 1,4-Dichloromethane 69.0 % 50-140 29-AUG-18 1,4-Dichlorobenzene 113.3 % 50-140 29-AUG-18 1,1-Dichlorobenzene 111.3 % 50-140 29-AUG-18 1,1-Dichlorobenzene 111.3 % 50-140 29-AUG-18 1,1-Dichloromethane 116.8 % 50-140 29-AUG-18 1,1-Dichloromethane 116.5 % 50-140 29-AUG-18 1,1-Dichloromethane 116 | -                      |        |            |        |           |       |     | 50-140 | 29-AUG-18 |
| 1,2-Dichloroethane       118.5       %       50-140       29-AUG-18         1,2-Dichloropropane       111.3       %       50-140       29-AUG-18         1,3-Dichlorobenzene       112.4       %       50-140       29-AUG-18         1,4-Dichlorobenzene       113.4       %       50-140       29-AUG-18         Acetone       87.3       %       50-140       29-AUG-18         Benzene       114.7       %       50-140       29-AUG-18         Bromodichloromethane       117.5       %       50-140       29-AUG-18         Bromoform       113.4       %       50-140       29-AUG-18         Bromomethane       69.0       %       50-140       29-AUG-18         Carbon tetrachloride       113.3       %       50-140       29-AUG-18         Chloroform       116.8       %       50-140       29-AUG-18         Chloroformethane       111.5       %       50-140       29-AUG-18         Cis-1,2-Dichloroethylene       111.5       %       50-140       29-AUG-18         Dibromochloromethane       116.5       %       50-140       29-AUG-18         Dibromochloromethane       116.5       %       50-140       29-AUG-18 </td <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>50-140</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                      |        |            |        |           |       |     | 50-140 |           |
| 1,2-Dichloropropane       111.3       %       50-140       29-AUG-18         1,3-Dichlorobenzene       112.4       %       50-140       29-AUG-18         1,4-Dichlorobenzene       113.4       %       50-140       29-AUG-18         Acetone       87.3       %       50-140       29-AUG-18         Benzene       114.7       %       50-140       29-AUG-18         Bromodichloromethane       117.5       %       50-140       29-AUG-18         Bromoform       113.4       %       50-140       29-AUG-18         Bromomethane       69.0       %       50-140       29-AUG-18         Carbon tetrachloride       113.3       %       50-140       29-AUG-18         Chlorobenzene       111.3       %       50-140       29-AUG-18         Chloroform       116.8       %       50-140       29-AUG-18         Cis-1,2-Dichloroethylene       111.5       %       50-140       29-AUG-18         cis-1,2-Dichloropropene       115.2       %       50-140       29-AUG-18         Dichlorodifluoromethane       116.5       %       50-140       29-AUG-18         Dichlorodifluoromethane       66.3       %       50-140       29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |        |            |        |           |       |     |        |           |
| 1,3-Dichlorobenzene 112.4 % 50-140 29-AUG-18 1,4-Dichlorobenzene 113.4 % 50-140 29-AUG-18 Acetone 87.3 % 50-140 29-AUG-18 Benzene 114.7 % 50-140 29-AUG-18 Bromodichloromethane 117.5 % 50-140 29-AUG-18 Bromodichloromethane 117.5 % 50-140 29-AUG-18 Bromomethane 69.0 % 50-140 29-AUG-18 Bromomethane 69.0 % 50-140 29-AUG-18 Chlorobenzene 111.3 % 50-140 29-AUG-18 Chlorobenzene 111.3 % 50-140 29-AUG-18 Chlorobenzene 111.3 % 50-140 29-AUG-18 Chloroform 116.8 % 50-140 29-AUG-18 Cis-1,2-Dichloroethylene 111.5 % 50-140 29-AUG-18 Cis-1,3-Dichloropropene 115.2 % 50-140 29-AUG-18 Dibromochloromethane 116.5 % 50-140 29-AUG-18 Ethylbenzene 96.4 % 50-140 29-AUG-18 Ethylbenzene 99.6 % 50-140 29-AUG-18 Methylene Chloride 108.8 % 50-140 29-AUG-18 Methylene Chloride 108.8 % 50-140 29-AUG-18 MTBE 112.2 % 50-140 29-AUG-18 MTBE 112.2 % 50-140 29-AUG-18 MTBE 112.2 % 50-140 29-AUG-18 Methylene Chloride 115.6 % 50-140 29-AUG-18 MTBE 112.2 % 50-140 29-AUG-18 Methylene Chloride 115.6 % 50-140 29-AUG-18 Methylene Chloride 115.6 % 50-140 29-AUG-18 MTBE 112.2 % 50-140 29-AUG-18 MtBE 115.6 % 50-140 29-AUG-18 Methyl Ethyl Ketone 106.4 % 50-140 29-AUG-18 Methyl Isobutyl Ketone 106.4 % 50-140 29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                      |        |            |        |           |       |     | 50-140 | 29-AUG-18 |
| 1,4-Dichlorobenzene       113.4       %       50-140       29-AUG-18         Acetone       87.3       %       50-140       29-AUG-18         Benzene       114.7       %       50-140       29-AUG-18         Bromodichloromethane       117.5       %       50-140       29-AUG-18         Bromoform       113.4       %       50-140       29-AUG-18         Bromomethane       69.0       %       50-140       29-AUG-18         Carbon tetrachloride       113.3       %       50-140       29-AUG-18         Chlorobenzene       111.3       %       50-140       29-AUG-18         Chloroform       116.8       %       50-140       29-AUG-18         Chloroformethane       111.5       %       50-140       29-AUG-18         cis-1,2-Dichloroethylene       111.5       %       50-140       29-AUG-18         cis-1,3-Dichloropropene       115.2       %       50-140       29-AUG-18         Dichlorodifluoromethane       116.5       %       50-140       29-AUG-18         Ethylbenzene       96.4       %       50-140       29-AUG-18         n-Hexane       90.6       %       50-140       29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |        |            |        |           |       |     | 50-140 | 29-AUG-18 |
| Acetone 87.3 % 50-140 29-AUG-18 Benzene 114.7 % 50-140 29-AUG-18 Bromodichloromethane 117.5 % 50-140 29-AUG-18 Bromoform 113.4 % 50-140 29-AUG-18 Bromomethane 69.0 % 50-140 29-AUG-18 Carbon tetrachloride 113.3 % 50-140 29-AUG-18 Chlorobenzene 111.3 % 50-140 29-AUG-18 Chloroform 116.8 % 50-140 29-AUG-18 cis-1,2-Dichloroethylene 111.5 % 50-140 29-AUG-18 cis-1,3-Dichloropropene 115.2 % 50-140 29-AUG-18 Dibromochloromethane 116.5 % 50-140 29-AUG-18 Dichlorodifluoromethane 166.3 % 50-140 29-AUG-18 Ethylbenzene 96.4 % 50-140 29-AUG-18 Methylene Chloride 108.8 % 50-140 29-AUG-18 MTBE 112.2 % 50-140 29-AUG-18 Methylene Chloride 108.8 % 50-140 29-AUG-18 Methylene Chloride 101.7 % 50-140 29-AUG-18 Methyl Ethyl Ketone 115.6 % 50-140 29-AUG-18 Methyl Ethyl Ketone 106.4 % 50-140 29-AUG-18 Methyl I sobutyl Ketone 106.4 % 50-140 29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                      |        |            |        |           |       |     | 50-140 | 29-AUG-18 |
| Benzene         114.7         %         50-140         29-AUG-18           Bromodichloromethane         117.5         %         50-140         29-AUG-18           Bromoform         113.4         %         50-140         29-AUG-18           Bromomethane         69.0         %         50-140         29-AUG-18           Carbon tetrachloride         113.3         %         50-140         29-AUG-18           Chlorobenzene         111.3         %         50-140         29-AUG-18           Chloroform         116.8         %         50-140         29-AUG-18           cis-1,2-Dichloroethylene         111.5         %         50-140         29-AUG-18           cis-1,3-Dichloropropene         115.2         %         50-140         29-AUG-18           cis-1,3-Dichloromethane         116.5         %         50-140         29-AUG-18           Dibromochloromethane         116.5         %         50-140         29-AUG-18           Dichlorodifluoromethane         66.3         %         50-140         29-AUG-18           Ethylbenzene         96.4         %         50-140         29-AUG-18           n-Hexane         90.6         %         50-140         29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,4-Dichlorobenzene    |        |            |        |           |       |     | 50-140 | 29-AUG-18 |
| Bromodichloromethane         117.5         %         50-140         29-AUG-18           Bromoform         113.4         %         50-140         29-AUG-18           Bromomethane         69.0         %         50-140         29-AUG-18           Carbon tetrachloride         113.3         %         50-140         29-AUG-18           Chlorobenzene         111.3         %         50-140         29-AUG-18           Chloroform         116.8         %         50-140         29-AUG-18           cis-1,2-Dichloroethylene         111.5         %         50-140         29-AUG-18           cis-1,3-Dichloropropene         115.2         %         50-140         29-AUG-18           cis-1,3-Dichloropropene         116.5         %         50-140         29-AUG-18           Dibromochloromethane         116.5         %         50-140         29-AUG-18           Dichlorodifluoromethane         66.3         %         50-140         29-AUG-18           Ethylbenzene         96.4         %         50-140         29-AUG-18           n-Hexane         90.6         %         50-140         29-AUG-18           Methylene Chloride         108.8         %         50-140         29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Acetone                |        |            | 87.3   |           |       |     | 50-140 | 29-AUG-18 |
| Bromoform         113.4         %         50-140         29-AUG-18           Bromomethane         69.0         %         50-140         29-AUG-18           Carbon tetrachloride         113.3         %         50-140         29-AUG-18           Chlorobenzene         111.3         %         50-140         29-AUG-18           Chloroform         116.8         %         50-140         29-AUG-18           cis-1,2-Dichloroethylene         111.5         %         50-140         29-AUG-18           cis-1,3-Dichloropropene         115.2         %         50-140         29-AUG-18           Dibromochloromethane         116.5         %         50-140         29-AUG-18           Dichlorodifluoromethane         66.3         %         50-140         29-AUG-18           Ethylbenzene         96.4         %         50-140         29-AUG-18           n-Hexane         90.6         %         50-140         29-AUG-18           Methylene Chloride         108.8         %         50-140         29-AUG-18           MTBE         112.2         %         50-140         29-AUG-18           Methyl Ethyl Ketone         106.4         %         50-140         29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |        |            |        |           |       |     | 50-140 | 29-AUG-18 |
| Bromomethane 69.0 % 50-140 29-AUG-18 Carbon tetrachloride 113.3 % 50-140 29-AUG-18 Chlorobenzene 111.3 % 50-140 29-AUG-18 Chloroform 116.8 % 50-140 29-AUG-18 cis-1,2-Dichloroethylene 111.5 % 50-140 29-AUG-18 cis-1,3-Dichloropropene 115.2 % 50-140 29-AUG-18 Dibromochloromethane 116.5 % 50-140 29-AUG-18 Dichlorodifluoromethane 66.3 % 50-140 29-AUG-18 Ethylbenzene 96.4 % 50-140 29-AUG-18 n-Hexane 90.6 % 50-140 29-AUG-18 Methylene Chloride 108.8 % 50-140 29-AUG-18 MTBE 112.2 % 50-140 29-AUG-18 m+p-Xylenes 101.7 % 50-140 29-AUG-18 Methyl Ethyl Ketone 115.6 % 50-140 29-AUG-18 Methyl Isobutyl Ketone 106.4 % 50-140 29-AUG-18 Methyl Isobutyl Ketone 96.4 % 50-140 29-AUG-18 Methyl Isobutyl Ketone 96.4 % 50-140 29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bromodichlorometha     | ne     |            | 117.5  |           | %     |     | 50-140 | 29-AUG-18 |
| Carbon tetrachloride       113.3       %       50-140       29-AUG-18         Chlorobenzene       111.3       %       50-140       29-AUG-18         Chloroform       116.8       %       50-140       29-AUG-18         cis-1,2-Dichloroethylene       111.5       %       50-140       29-AUG-18         cis-1,3-Dichloropropene       115.2       %       50-140       29-AUG-18         Dibromochloromethane       116.5       %       50-140       29-AUG-18         Dichlorodifluoromethane       66.3       %       50-140       29-AUG-18         Ethylbenzene       96.4       %       50-140       29-AUG-18         n-Hexane       90.6       %       50-140       29-AUG-18         Methylene Chloride       108.8       %       50-140       29-AUG-18         MTBE       112.2       %       50-140       29-AUG-18         Methyl Ethyl Ketone       101.7       %       50-140       29-AUG-18         Methyl Isobutyl Ketone       106.4       %       50-140       29-AUG-18         O-Xylene       96.4       %       50-140       29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bromoform              |        |            | 113.4  |           | %     |     | 50-140 | 29-AUG-18 |
| Chlorobenzene       111.3       %       50-140       29-AUG-18         Chloroform       116.8       %       50-140       29-AUG-18         cis-1,2-Dichloroethylene       111.5       %       50-140       29-AUG-18         cis-1,3-Dichloropropene       115.2       %       50-140       29-AUG-18         Dibromochloromethane       116.5       %       50-140       29-AUG-18         Dichlorodifluoromethane       66.3       %       50-140       29-AUG-18         Ethylbenzene       96.4       %       50-140       29-AUG-18         n-Hexane       90.6       %       50-140       29-AUG-18         Methylene Chloride       108.8       %       50-140       29-AUG-18         MTBE       112.2       %       50-140       29-AUG-18         Methyl Ethyl Ketone       101.7       %       50-140       29-AUG-18         Methyl Isobutyl Ketone       106.4       %       50-140       29-AUG-18         0-Xylene       96.4       %       50-140       29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bromomethane           |        |            | 69.0   |           | %     |     | 50-140 | 29-AUG-18 |
| Chloroform       116.8       %       50-140       29-AUG-18         cis-1,2-Dichloroethylene       111.5       %       50-140       29-AUG-18         cis-1,3-Dichloropropene       115.2       %       50-140       29-AUG-18         Dibromochloromethane       116.5       %       50-140       29-AUG-18         Dichlorodifluoromethane       66.3       %       50-140       29-AUG-18         Ethylbenzene       96.4       %       50-140       29-AUG-18         n-Hexane       90.6       %       50-140       29-AUG-18         Methylene Chloride       108.8       %       50-140       29-AUG-18         MTBE       112.2       %       50-140       29-AUG-18         m+p-Xylenes       101.7       %       50-140       29-AUG-18         Methyl Ethyl Ketone       115.6       %       50-140       29-AUG-18         Methyl Isobutyl Ketone       106.4       %       50-140       29-AUG-18         o-Xylene       96.4       %       50-140       29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Carbon tetrachloride   |        |            | 113.3  |           | %     |     | 50-140 | 29-AUG-18 |
| cis-1,2-Dichloroethylene       111.5       %       50-140       29-AUG-18         cis-1,3-Dichloropropene       115.2       %       50-140       29-AUG-18         Dibromochloromethane       116.5       %       50-140       29-AUG-18         Dichlorodifluoromethane       66.3       %       50-140       29-AUG-18         Ethylbenzene       96.4       %       50-140       29-AUG-18         n-Hexane       90.6       %       50-140       29-AUG-18         Methylene Chloride       108.8       %       50-140       29-AUG-18         MTBE       112.2       %       50-140       29-AUG-18         m+p-Xylenes       101.7       %       50-140       29-AUG-18         Methyl Ethyl Ketone       115.6       %       50-140       29-AUG-18         Methyl Isobutyl Ketone       106.4       %       50-140       29-AUG-18         0-Xylene       96.4       %       50-140       29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Chlorobenzene          |        |            | 111.3  |           | %     |     | 50-140 | 29-AUG-18 |
| cis-1,3-Dichloropropene       115.2       %       50-140       29-AUG-18         Dibromochloromethane       116.5       %       50-140       29-AUG-18         Dichlorodifluoromethane       66.3       %       50-140       29-AUG-18         Ethylbenzene       96.4       %       50-140       29-AUG-18         n-Hexane       90.6       %       50-140       29-AUG-18         Methylene Chloride       108.8       %       50-140       29-AUG-18         MTBE       112.2       %       50-140       29-AUG-18         m+p-Xylenes       101.7       %       50-140       29-AUG-18         Methyl Ethyl Ketone       115.6       %       50-140       29-AUG-18         Methyl Isobutyl Ketone       106.4       %       50-140       29-AUG-18         0-Xylene       96.4       %       50-140       29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Chloroform             |        |            | 116.8  |           | %     |     | 50-140 | 29-AUG-18 |
| Dibromochloromethane       116.5       %       50-140       29-AUG-18         Dichlorodifluoromethane       66.3       %       50-140       29-AUG-18         Ethylbenzene       96.4       %       50-140       29-AUG-18         n-Hexane       90.6       %       50-140       29-AUG-18         Methylene Chloride       108.8       %       50-140       29-AUG-18         MTBE       112.2       %       50-140       29-AUG-18         m+p-Xylenes       101.7       %       50-140       29-AUG-18         Methyl Ethyl Ketone       115.6       %       50-140       29-AUG-18         Methyl Isobutyl Ketone       106.4       %       50-140       29-AUG-18         o-Xylene       96.4       %       50-140       29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cis-1,2-Dichloroethyle | ene    |            | 111.5  |           | %     |     | 50-140 | 29-AUG-18 |
| Dichlorodifluoromethane       66.3       %       50-140       29-AUG-18         Ethylbenzene       96.4       %       50-140       29-AUG-18         n-Hexane       90.6       %       50-140       29-AUG-18         Methylene Chloride       108.8       %       50-140       29-AUG-18         MTBE       112.2       %       50-140       29-AUG-18         m+p-Xylenes       101.7       %       50-140       29-AUG-18         Methyl Ethyl Ketone       115.6       %       50-140       29-AUG-18         Methyl Isobutyl Ketone       106.4       %       50-140       29-AUG-18         o-Xylene       96.4       %       50-140       29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cis-1,3-Dichloroprope  | ene    |            | 115.2  |           | %     |     | 50-140 | 29-AUG-18 |
| Ethylbenzene 96.4 % 50-140 29-AUG-18 n-Hexane 90.6 % 50-140 29-AUG-18 Methylene Chloride 108.8 % 50-140 29-AUG-18 MTBE 112.2 % 50-140 29-AUG-18 m+p-Xylenes 101.7 % 50-140 29-AUG-18 Methyl Ethyl Ketone 115.6 % 50-140 29-AUG-18 Methyl Isobutyl Ketone 106.4 % 50-140 29-AUG-18 o-Xylene 96.4 % 50-140 29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dibromochlorometha     | ine    |            | 116.5  |           | %     |     | 50-140 | 29-AUG-18 |
| n-Hexane       90.6       %       50-140       29-AUG-18         Methylene Chloride       108.8       %       50-140       29-AUG-18         MTBE       112.2       %       50-140       29-AUG-18         m+p-Xylenes       101.7       %       50-140       29-AUG-18         Methyl Ethyl Ketone       115.6       %       50-140       29-AUG-18         Methyl Isobutyl Ketone       106.4       %       50-140       29-AUG-18         o-Xylene       96.4       %       50-140       29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dichlorodifluorometh   | ane    |            | 66.3   |           | %     |     | 50-140 | 29-AUG-18 |
| Methylene Chloride       108.8       %       50-140       29-AUG-18         MTBE       112.2       %       50-140       29-AUG-18         m+p-Xylenes       101.7       %       50-140       29-AUG-18         Methyl Ethyl Ketone       115.6       %       50-140       29-AUG-18         Methyl Isobutyl Ketone       106.4       %       50-140       29-AUG-18         o-Xylene       96.4       %       50-140       29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ethylbenzene           |        |            | 96.4   |           | %     |     | 50-140 | 29-AUG-18 |
| MTBE       112.2       %       50-140       29-AUG-18         m+p-Xylenes       101.7       %       50-140       29-AUG-18         Methyl Ethyl Ketone       115.6       %       50-140       29-AUG-18         Methyl Isobutyl Ketone       106.4       %       50-140       29-AUG-18         o-Xylene       96.4       %       50-140       29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n-Hexane               |        |            | 90.6   |           | %     |     | 50-140 | 29-AUG-18 |
| m+p-Xylenes       101.7       %       50-140       29-AUG-18         Methyl Ethyl Ketone       115.6       %       50-140       29-AUG-18         Methyl Isobutyl Ketone       106.4       %       50-140       29-AUG-18         o-Xylene       96.4       %       50-140       29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Methylene Chloride     |        |            | 108.8  |           | %     |     | 50-140 | 29-AUG-18 |
| Methyl Ethyl Ketone       115.6       %       50-140       29-AUG-18         Methyl Isobutyl Ketone       106.4       %       50-140       29-AUG-18         o-Xylene       96.4       %       50-140       29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MTBE                   |        |            | 112.2  |           | %     |     | 50-140 | 29-AUG-18 |
| Methyl Isobutyl Ketone       106.4       %       50-140       29-AUG-18         o-Xylene       96.4       %       50-140       29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m+p-Xylenes            |        |            | 101.7  |           | %     |     | 50-140 | 29-AUG-18 |
| o-Xylene 96.4 % 50-140 29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Methyl Ethyl Ketone    |        |            | 115.6  |           | %     |     | 50-140 | 29-AUG-18 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Methyl Isobutyl Ketor  | ne     |            | 106.4  |           | %     |     | 50-140 | 29-AUG-18 |
| Styrene 110.6 % 50-140 29-AUG-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | o-Xylene               |        |            | 96.4   |           | %     |     | 50-140 | 29-AUG-18 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Styrene                |        |            | 110.6  |           | %     |     | 50-140 | 29-AUG-18 |



Workorder: L2153058 Report Date: 06-SEP-18 Page 22 of 23

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                      | Matrix | Reference  | Result | Qualifier | Units | RPD | Limit  | Analyzed  |
|---------------------------|--------|------------|--------|-----------|-------|-----|--------|-----------|
| VOC-511-HS-WT             | Soil   |            |        |           |       |     |        |           |
| Batch R4191754            |        |            |        |           |       |     |        |           |
| WG2861064-5 MS            |        | L2148551-6 |        |           |       |     |        |           |
| Tetrachloroethylene       |        |            | 103.1  |           | %     |     | 50-140 | 29-AUG-18 |
| Toluene                   |        |            | 100.4  |           | %     |     | 50-140 | 29-AUG-18 |
| trans-1,2-Dichloroethyler | e      |            | 96.1   |           | %     |     | 50-140 | 29-AUG-18 |
| trans-1,3-Dichloropropen  | е      |            | 106.6  |           | %     |     | 50-140 | 29-AUG-18 |
| Trichloroethylene         |        |            | 113.4  |           | %     |     | 50-140 | 29-AUG-18 |
| Trichlorofluoromethane    |        |            | 91.0   |           | %     |     | 50-140 | 29-AUG-18 |
| Vinyl chloride            |        |            | 65.1   |           | %     |     | 50-140 | 29-AUG-18 |

Report Date: 06-SEP-18 Workorder: L2153058

Sirati & Partners Consultants Ltd. (Concord) Client: Page 23 of 23

12700 Keele St

King City ON L7B 1H5

Contact: Dr. Giorgio Garofalo

#### Legend:

CCV

CVS

| Limit | ALS Control Limit (Data Quality Objectives) |
|-------|---------------------------------------------|
| DUP   | Duplicate                                   |
| RPD   | Relative Percent Difference                 |
| N/A   | Not Available                               |
| LCS   | Laboratory Control Sample                   |
| SRM   | Standard Reference Material                 |
| MS    | Matrix Spike                                |
| MSD   | Matrix Spike Duplicate                      |
| ADE   | Average Desorption Efficiency               |
| MB    | Method Blank                                |
| IRM   | Internal Reference Material                 |
| CRM   | Certified Reference Material                |

#### **Sample Parameter Qualifier Definitions:**

Continuing Calibration Verification

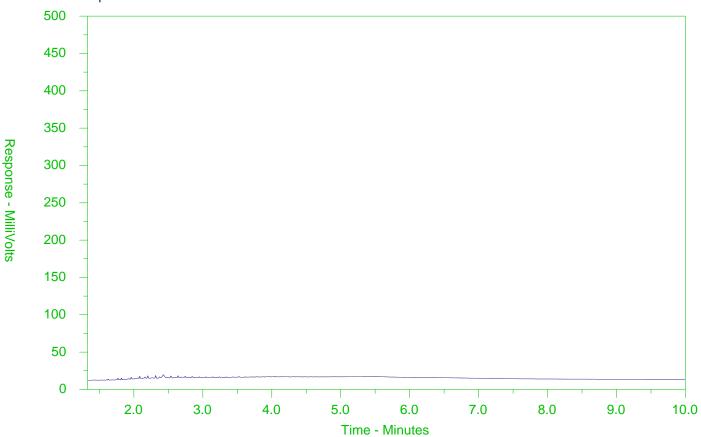
Calibration Verification Standard LCSD Laboratory Control Sample Duplicate

| Qualifier | Description                                                                                                                                                                         |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| J         | Duplicate results and limits are expressed in terms of absolute difference.                                                                                                         |
| MES       | Data Quality Objective was marginally exceeded (by < 10% absolute) for < 10% of analytes in a Multi-Element Scan / Multi-Parameter Scan (considered acceptable as per OMOE & CCME). |
| RPD-NA    | Relative Percent Difference Not Available due to result(s) being less than detection limit.                                                                                         |

#### **Hold Time Exceedances:**

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.


The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

#### CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT



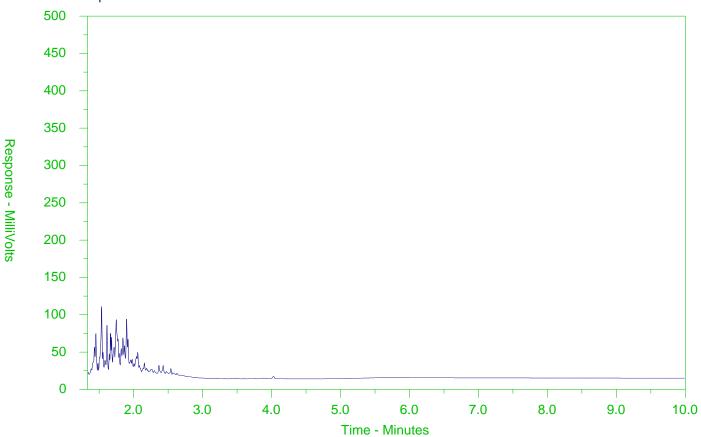
ALS Sample ID: L2153058-3 Client Sample ID: BH206-SS5



| <b>←</b> -F2- | → ←         | —F3——◆4—F4- | <b>→</b>                    |   |
|---------------|-------------|-------------|-----------------------------|---|
| nC10          | nC16        | nC34        | nC50                        |   |
| 174°C         | 287°C       | 481°C       | 575°C                       |   |
| 346°F         | 549°F       | 898°F       | 1067°F                      |   |
| Gasolin       | e <b>→</b>  | <b>←</b> M  | otor Oils/Lube Oils/Grease— | - |
| <b>←</b>      | -Diesel/Jet | Fuels→      |                             |   |

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at <a href="https://www.alsglobal.com">www.alsglobal.com</a>.

#### CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT



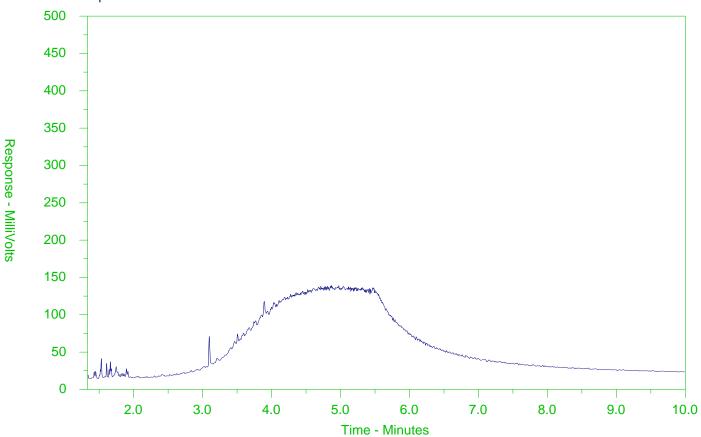
ALS Sample ID: L2153058-4 Client Sample ID: BH209-SS7



| <b>←</b> -F2- | →←          | _F3F4-      | <b>→</b>                     |   |
|---------------|-------------|-------------|------------------------------|---|
| nC10          | nC16        | nC34        | nC50                         |   |
| 174°C         | 287°C       | 481°C       | 575°C                        |   |
| 346°F         | 549°F       | 898°F       | 1067°F                       |   |
| Gasolin       | ie →        | <b>←</b> Mo | tor Oils/Lube Oils/Grease——— | - |
| <b>←</b>      | -Diesel/Jet | Fuels→      |                              |   |

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at <a href="https://www.alsglobal.com">www.alsglobal.com</a>.

#### CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT



ALS Sample ID: L2153058-5 Client Sample ID: BH210-SS5



| <b>←</b> -F2- | →←          | _F3F4-      | <b>→</b>                     |   |
|---------------|-------------|-------------|------------------------------|---|
| nC10          | nC16        | nC34        | nC50                         |   |
| 174°C         | 287°C       | 481°C       | 575°C                        |   |
| 346°F         | 549°F       | 898°F       | 1067°F                       |   |
| Gasolin       | ie →        | <b>←</b> Mo | tor Oils/Lube Oils/Grease——— | - |
| <b>←</b>      | -Diesel/Jet | Fuels→      |                              |   |

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at <a href="https://www.alsglobal.com">www.alsglobal.com</a>.



# Chain of Custody (COC) / Analytical Request Form

Canada Toll Free: 1 800 668 9878

L2153058-COFC

COC Number: 15 -

age 1 of 1

|                   | www.alsglobal.com               | n             |              |             |              |            |           |               |                         |                     |                   |                           |          |           |               |               |          |           |          |               |               |               |               |          |                      |
|-------------------|---------------------------------|---------------|--------------|-------------|--------------|------------|-----------|---------------|-------------------------|---------------------|-------------------|---------------------------|----------|-----------|---------------|---------------|----------|-----------|----------|---------------|---------------|---------------|---------------|----------|----------------------|
| Report To         | Contact and compa               | any name b    | olow will ap | opear on    | the final re | port       |           |               | Report Forma            | t / Disu            |                   | J                         |          | ~~~~      |               |               | n all E  | &P TA     | Ts with  | your Ali      | 1 - surch     | arges         | will apply    | y        |                      |
| Company:          | SP Consultants (Sirati          | and Partr     | ers) Ltd     |             |              |            | Selec     | ct Report F   | ormat: 🖸 PDF            | ☑ EXCEL □ E         | DD (DIGITAL)      |                           | R        | egular    | [R] 🗵         | Stand         | lard TA  | T if red  | ceived t | y 3 pm        | ı - busir     | ness da       | iys - no      | surcha   | ges apply            |
| Contact:          | Chaoran Li                      |               |              |             |              |            | Qualit    | ity Control   | (QC) Report with F      | leport 🗹 YES        | □ NO              | ays)                      | 4        | day [l    | 24]           |               |          | ò         | 1        | Busin         | ness (        | day [i        | <u>=1]</u>    | -        |                      |
| Phone:            | 905-833-1582                    |               |              |             |              |            | ☑ Con     | mpare Result  | s to Criteria on Report | provide details bel | ow if box checked | PRIORATY<br>Islness Days) | ] 3      | day [l    | 23]           |               |          | EMERGENCY | 1 1      | Same          | Dav           | Weel          | end o         | r        |                      |
|                   | Company address below           | v will appear | on the fina  | al report   |              |            | Selec     | ct Distribut  | on: 🛛 EMAIL             | ☐ MAIL ☐            | FAX               | Bush PR                   | 2        | day [l    | 2]            |               |          | EME       |          |               |               |               | ay [E0]       |          |                      |
| Street:           | 12700 Keele Street              |               |              |             |              |            | Email     | il 1 or Fax   | chaoranli@spcon         | sultantsItd.ca      |                   |                           | Date a   | nd Tim    | Requir        | d for a       | II E&P   | TATs:     |          |               |               |               |               |          |                      |
| City/Province:    | King City, ON                   |               |              |             |              |            | Email     | il 2          | ggarofalo@spcor         | sultantsItd.ca      |                   | For te                    | sts that | can not b | e perform     | ed acco       | rding to | the se    | rvice le | vel sele      | cted, yo      | u will b      | e contaç      | ted.     |                      |
| Postal Code:      | L7B 1H5                         |               |              |             |              |            | Email     | il 3          | tberhane@spcon          | sultantsltd.ca      |                   |                           |          |           |               | •             | - /      | Analy     | /sis R   | eques         | at            |               |               |          |                      |
| Invoice To        | Same as Report To               |               | ☑ YES        | □ NO        |              |            |           |               | Invoice D               | stribution          |                   |                           | Inc      | icate Fil | tered (F),    | Preser        | ved (P)  | or Filt   | ered ar  | nd Pres       | erved (       | F/P) be       | wole          |          |                      |
|                   | Copy of Invoice with Re         | eport         | ☑ YES        | □ NO        |              |            | Selec     | ct Invoice [  | Distribution: 🗹 EM      | AIL   MAIL          | □ FAX             | П                         |          | T         |               |               |          |           |          | $\Box$        |               |               |               | $\neg$   |                      |
| Company:          |                                 |               |              |             |              |            | Email     | il 1 or Fax   | chaoranli@spcon         | sultantsitd.ca      |                   | İ                         |          |           |               |               |          |           | $\vdash$ |               |               | $\neg$        |               | $\neg$   |                      |
| Contact:          |                                 |               |              |             |              |            | Email     | il 2          | GGarofalo@spco          | nsuitantsitd.ca     |                   | 1                         |          | 1         |               | ĺ             |          |           |          |               | .             |               |               |          | ω                    |
|                   | Project                         | Informat      | оп           |             |              |            |           | Oi            | and Gas Require         | d Fields (clien     | t use)            | 1                         |          |           |               |               |          |           |          |               | . 1           |               |               |          | <u>n</u> er          |
| ALS Account #     | / Quote #:                      | Q63375        | _            |             |              |            | AFE/C     | cost Center:  |                         | PO#                 |                   | 1                         |          |           |               | . 1           |          |           |          |               | .             |               |               |          | nta                  |
| Job #:            |                                 |               |              |             |              |            | Major/N   | Minor Code:   |                         | Routing Code        |                   | 1                         | 1        | l         |               |               |          |           | 1 1      |               | .             |               |               |          | ပို                  |
| PO / AFE:         | SP18-306-20                     |               |              |             |              |            | Requi     | isitioner:    |                         |                     |                   | 1                         |          |           |               |               |          |           |          | il            | .             | ŀ             |               |          | <u>=</u>             |
| LSD:              |                                 |               |              |             |              |            | Locati    | tion:         |                         |                     |                   | 1                         |          |           |               | - 1           |          |           |          | . 1           |               |               |               |          | Number of Containers |
| ALS Lab Wor       | rk Order# (lab use on           | ly)           | 21           | <u>ව</u> දී | 320,         | 394        | ALS (     | Contact:      | RICK H                  | Sampler:            | Chaoran Li        |                           | PHCsNOCs |           |               |               |          |           |          | ·             |               |               |               |          | Z                    |
| ALS Sample #      | Sai                             | mple ider     | tificatio    | n and/      | or Coord     | dinates    |           |               | Date                    | Time                | Comple Tons       | 1_                        | SS       | l g       |               |               |          |           |          |               | .             |               | İ             |          |                      |
| (lab use only)    | (Т                              | his descri    | ption will   | appea       | r on the r   | report)    |           |               | (dd-mmm-yy)             | (hh:mm)             | Sample Type       | ΜœΙ                       | X        | VOCs      |               |               |          |           |          |               |               |               |               |          |                      |
| 1                 | BH217-SS4                       |               |              |             |              |            |           |               | 18-Aug-21               | AM                  | Soil              |                           |          | R         |               |               |          |           |          |               | $\neg$        | $\neg$        | 一十            |          | 3                    |
| Q                 | BH218-SS4                       |               |              |             |              |            |           |               | 18-Aug-21               | AM                  | Soil              |                           |          | R         |               |               |          |           | $\Box$   | $\neg$        | $\neg$        | $\neg$        | $\dashv$      | $\dashv$ | 3                    |
| 3                 | BH206-SS5                       | _             |              |             |              |            |           |               | 18-Aug-21               | PM                  | Soil              |                           | R        |           |               | $\neg$        |          |           |          | $\neg$        | $\neg$        | 十             | $\dashv$      | $\neg$   | 3                    |
|                   | BH209-SS7                       |               |              |             |              |            |           |               | 18-Aug-21               | AM                  | Soil              |                           | R        |           |               |               |          |           |          | $\neg$        | $\neg$        | 寸             | $\dashv$      | $\dashv$ | 3                    |
| 5                 | BH210-SS5                       |               | _            |             |              |            |           |               | 18-Aug-21               | AM                  | Soil              |                           | R        |           |               | $\neg$        |          |           | $\Box$   | $\rightarrow$ | $\dashv$      | $\dashv$      | $\dashv$      | $\dashv$ | 3                    |
| 6                 | BH211-SS3                       |               |              |             |              |            |           |               | 18-Aug-21               | PM                  | Soil              | R                         |          |           | _             |               | _        | Н         |          | -+            | $\dashv$      | $\dashv$      | $\rightarrow$ | $\dashv$ | 1                    |
| 7                 | BH212-SS3                       |               |              |             |              |            |           |               | 18-Aug-21               | PM                  | Soil              | R                         | -        |           | $\dashv$      |               | $\neg$   |           | $\vdash$ | $\rightarrow$ | $\dashv$      | $\dashv$      | $\dashv$      | $\dashv$ | 1                    |
| 8                 | BH213-SS3                       |               |              |             |              |            |           |               | 18-Aug-21               | PM                  | Soil              | R                         |          |           |               | -             | -        |           |          |               | $\rightarrow$ | $\dashv$      | $\dashv$      | $\dashv$ | 1                    |
| 9.                | Dup-S201                        |               |              |             |              |            |           |               | 18-Aug-21               | PM                  | Soil              | R                         |          |           | $\rightarrow$ | -             | $\neg$   |           | $\vdash$ | -             | -             | $\rightarrow$ | -+            | $\dashv$ | 1                    |
|                   |                                 |               |              |             |              |            |           |               |                         |                     |                   | <u> </u>                  |          |           | -             | $\dashv$      | _        |           | $\vdash$ | -             | -+            | $\dashv$      | $\dashv$      | $\dashv$ | <u> </u>             |
|                   |                                 |               |              |             |              |            |           |               |                         |                     | <del></del> -     |                           |          |           |               |               |          | Н         | $\vdash$ | $\dashv$      | $\dashv$      | $\dashv$      |               | $\dashv$ |                      |
|                   |                                 |               |              |             |              |            |           |               | <u> </u>                |                     |                   |                           | -        |           | -             |               | $\dashv$ |           | $\vdash$ | $\dashv$      | $\dashv$      | $\dashv$      | $\dashv$      | $\dashv$ | <del></del>          |
|                   |                                 |               |              | Speci       | al Instruc   | rtions / 9 | enecity C | `ritoria to s | dd on report by cli     | hina on the dee     | n dawn lint below |                           |          |           | SAMP          | E CC          | MDIT     | TON       | AS DE    | CEIV          | /ED (1        | ab us         |               |          |                      |
| Drinking '        | Water (DW) Samples <sup>1</sup> | (client us    | e)           | ] open      |              |            | opcony o  | (elec         | tronic COC only)        | cking on the dro    | h-down list nelow | Froze                     | n        | _         | O/dini        |               |          | _         | Observ   |               |               | res           |               | No       |                      |
| Are samples take  | n from a Regulated DW           | System?       |              |             |              |            |           |               |                         |                     |                   | Ice P                     |          |           | Ice Cu        | bes           |          |           | ody se   |               |               | Yes           | -             | No       |                      |
| ☐ YES             | ☑ NO                            |               |              | Ontari      | o Regula     | ation 153  | /04 - Apı | ril 15, 201   | ! Standards             |                     |                   |                           | ng Initi |           | M.            |               |          | -         | , u, oo  |               |               |               | _             |          |                      |
| Are samples for h | numan drinking water us         | se?           |              | Table       | 1 and Ta     | able 2 RF  | 기         |               |                         |                     |                   |                           |          | IAL CO    | LER TE        | <b>VIPERA</b> | TURES    | S °C      |          |               | FINAL         | COOL          | ER TEM        | IPERA    | TURES °C             |
| ☐ YES             | ☑ NO                            |               |              | l           |              |            |           |               |                         |                     |                   | 4                         | .9       |           |               |               |          |           |          | 44            | 6             |               |               |          |                      |
|                   | SHIPMENT REI                    |               |              |             |              |            |           |               | INITIAL SHIPMEN         | IT RECEPTION        | (lab use only)    |                           | • •      |           |               | FIN           | IAL SI   | HIPM      | ENT      |               |               | √ (lab        | use or        | nly)     |                      |
| Released by: Ch   | naoran Li                       | Date: Au      | gust 22,     | 2018        |              | Time       |           | ived by:      | 131/                    | Date:               | 1.0               | Time                      | 50       | Rece      | yed by:       |               |          |           |          | Date:         |               | VI I          |               |          | Time: V9             |
| REFER TO BACK     | PAGE FOR ALS LOCATION           | ONS AND       | SAMOLIN      | NO INE      | TOMATIC      | 10-3       | 4         |               |                         | TE-LABORATE         | 134/18            | N                         | ,        |           | N.            |               |          |           |          | (M            | <u> Wo</u>    | <b>火</b> へ    | 1             |          | DINA                 |

# APPENDIX D





Sirati & Partners Consultants Ltd.

(Concord)

ATTN: CHAORAN LI 12700 Keele St

King City ON L7B 1H5

Date Received: 13-JUN-18

Report Date: 21-JUN-18 14:23 (MT)

Version: FINAL

Client Phone: 905-833-1582

# Certificate of Analysis

Lab Work Order #: L2111659
Project P.O. #: SP18-306-20
Job Reference: SP18-306-20
C of C Numbers: 17-624411

Legal Site Desc:

Rick Hawthorne Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 5730 Coopers Avenue, Unit #26 , Mississauga, ON L4Z 2E9 Canada | Phone: +1 905 507 6910 | Fax: +1 905 507 6927 ALS CANADA LTD Part of the ALS Group An ALS Limited Company





#### **ANALYTICAL REPORT**

L2111659 CONT'D....

Job Reference: SP18-306-20

PAGE 2 of 14

21-JUN-18 14:23 (MT)

#### **Summary of Guideline Exceedances**

| Guideline<br>ALS ID | Client ID                 | Grouping                              | Analyte                               | Result | Guideline Limit | Unit |
|---------------------|---------------------------|---------------------------------------|---------------------------------------|--------|-----------------|------|
| Ontario Reg         | ulation 153/04 - April 15 | 5, 2011 Standards - T1-Ground Water-A | All Types of Property Uses            |        |                 |      |
| _2111659-2          | MW E4                     | Anions and Nutrients                  | Chloride (CI)                         | 1500   | 790             | mg/L |
|                     |                           | Dissolved Metals                      | Beryllium (Be)-Dissolved              | <1.0   | 0.5             | ug/L |
|                     |                           |                                       | Silver (Ag)-Dissolved                 | <0.50  | 0.3             | ug/L |
|                     |                           |                                       | Sodium (Na)-Dissolved                 | 768000 | 490000          | ug/L |
|                     |                           |                                       | Vanadium (V)-Dissolved                | <5.0   | 3.9             | ug/L |
| 2111659-5           | MW E10                    | Volatile Organic Compounds            | Benzene                               | 18.6   | 0.5             | ug/L |
|                     |                           |                                       | Ethylbenzene                          | 1.64   | 0.5             | ug/L |
|                     |                           | Hydrocarbons                          | F2 (C10-C16)                          | 280    | 150             | ug/L |
| 2111659-8           | DUP-W2                    | Volatile Organic Compounds            | Benzene                               | 18.7   | 0.5             | ug/L |
|                     |                           |                                       | Ethylbenzene                          | 1.71   | 0.5             | ug/L |
|                     |                           | Hydrocarbons                          | F2 (C10-C16)                          | 280    | 150             | ug/L |
| ntario Reg          | ulation 153/04 - April 15 | 5, 2011 Standards - T2-Ground Water ( | Coarse Soil)-All Types of Property Us | se     |                 |      |
| 2111659-2           | MW E4                     | Anions and Nutrients                  | Chloride (CI)                         | 1500   | 790             | mg/L |
|                     |                           | Dissolved Metals                      | Sodium (Na)-Dissolved                 | 768000 | 490000          | ug/L |
| 2111659-5           | MW E10                    | Volatile Organic Compounds            | Benzene                               | 18.6   | 5               | ug/L |
|                     |                           | Hydrocarbons                          | F2 (C10-C16)                          | 280    | 150             | ug/L |
| 2111659-8           | DUP-W2                    | Volatile Organic Compounds            | Benzene                               | 18.7   | 5               | ug/L |
|                     |                           | Hydrocarbons                          | F2 (C10-C16)                          | 280    | 150             | ug/L |

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



#### **ANALYTICAL REPORT**

L2111659 CONT'D....

Job Reference: SP18-306-20

PAGE 3 of 14

21-JUN-18 14:23 (MT)

#### **Physical Tests - WATER**

| ,            | `        |           |            |            |
|--------------|----------|-----------|------------|------------|
|              |          | Lab ID    | L2111659-2 | L2111659-3 |
|              | San      | ple Date  | 12-JUN-18  | 12-JUN-18  |
|              | S        | ample ID  | MW E4      | MW E5      |
|              | Gui      | de Limits |            |            |
| Analyte      | Unit #   | 1 #2      |            |            |
| Conductivity | mS/cm    |           | 4.46       | 1.85       |
| pH           | pH units |           | 7.56       | 7.81       |

Guide Limit #1: T1-Ground Water-All Types of Property Uses

Guide Limit #2: T2-Ground Water (Coarse Soil)-All Types of Property Use

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



#### **ANALYTICAL REPORT**

L2111659 CONT'D....

Job Reference: SP18-306-20

PAGE 4 of 14

21-JUN-18 14:23 (MT)

#### **Anions and Nutrients - WATER**

| L       | ab ID          | L2111659-2                                         | L2111659-3                            |
|---------|----------------|----------------------------------------------------|---------------------------------------|
| Sample  | Date           | 12-JUN-18                                          | 12-JUN-18                             |
| Samp    | ole ID         | MW E4                                              | MW E5                                 |
| Guide L | _imits         |                                                    |                                       |
| Unit #1 | #2             |                                                    |                                       |
|         | Sample<br>Samp | Lab ID<br>Sample Date<br>Sample ID<br>Guide Limits | Sample Date 12-JUN-18 Sample ID MW E4 |

Guide Limit #1: T1-Ground Water-All Types of Property Uses Guide Limit #2: T2-Ground Water (Coarse Soil)-All Types of Property Use

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2111659 CONT'D....

Job Reference: SP18-306-20

PAGE 5 of 14

21-JUN-18 14:23 (MT)

#### **Cyanides - WATER**

|      |             | Lab ID                | L2111659-2                                                       | L2111659-3                                          |
|------|-------------|-----------------------|------------------------------------------------------------------|-----------------------------------------------------|
|      | Sampl       | e Date                | 12-JUN-18                                                        | 12-JUN-18                                           |
|      | San         | nple ID               | MW E4                                                            | MW E5                                               |
| Unit | Guide<br>#1 | Limits<br>#2          |                                                                  |                                                     |
|      |             |                       |                                                                  |                                                     |
|      | Unit        | Sampl<br>San<br>Guide | Lab ID<br>Sample Date<br>Sample ID<br>Guide Limits<br>Unit #1 #2 | Sample Date 12-JUN-18 Sample ID MW E4  Guide Limits |

Guide Limit #1: T1-Ground Water-All Types of Property Uses Guide Limit #2: T2-Ground Water (Coarse Soil)-All Types of Property Use

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2111659 CONT'D....

Job Reference: SP18-306-20

PAGE 6 of 14

21-JUN-18 14:23 (MT)

#### **Dissolved Metals - WATER**

|                                       |      | Lab ID<br>Sample Date<br>Sample ID<br>Guide Limits<br>Unit #1 #2 |        | L2111659-2<br>12-JUN-18<br>MW E4 | L2111659-3<br>12-JUN-18<br>MW E5 |
|---------------------------------------|------|------------------------------------------------------------------|--------|----------------------------------|----------------------------------|
| Analyte                               | Unit |                                                                  |        |                                  |                                  |
| Dissolved Mercury Filtration Location |      | -                                                                | -      | FIELD                            | NA                               |
| Dissolved Metals Filtration Location  |      | -                                                                | -      | FIELD                            | FIELD                            |
| Antimony (Sb)-Dissolved               | ug/L | 1.5                                                              | 6      | <1.0 DLHC                        | 0.42                             |
| Arsenic (As)-Dissolved                | ug/L | 13                                                               | 25     | <1.0 DLHC                        | 1.23                             |
| Barium (Ba)-Dissolved                 | ug/L | 610                                                              | 1000   | 157 DLHC                         | 70.4                             |
| Beryllium (Be)-Dissolved              | ug/L | 0.5                                                              | 4      | <1.0 DLHC                        | <0.10                            |
| Boron (B)-Dissolved                   | ug/L | 1700                                                             | 5000   | 210 DLHC                         | 608                              |
| Cadmium (Cd)-Dissolved                | ug/L | 0.5                                                              | 2.7    | <0.050 <sup>DLHC</sup>           | 0.010                            |
| Chromium (Cr)-Dissolved               | ug/L | 11                                                               | 50     | <5.0 DLHC                        | <0.50                            |
| Cobalt (Co)-Dissolved                 | ug/L | 3.8                                                              | 3.8    | 1.8 DLHC                         | 0.68                             |
| Copper (Cu)-Dissolved                 | ug/L | 5                                                                | 87     | 3.2 DLHC                         | 0.36                             |
| Lead (Pb)-Dissolved                   | ug/L | 1.9                                                              | 10     | <0.50 DLHC                       | < 0.050                          |
| Mercury (Hg)-Dissolved                | ug/L | 0.1                                                              | 0.29   | <0.010                           | <0.010                           |
| Molybdenum (Mo)-Dissolved             | ug/L | 23                                                               | 70     | 0.99 DLHC                        | 3.98                             |
| Nickel (Ni)-Dissolved                 | ug/L | 14                                                               | 100    | <5.0 DLHC                        | 1.00                             |
| Selenium (Se)-Dissolved               | ug/L | 5                                                                | 10     | <0.50 DLHC                       | 0.125                            |
| Silver (Ag)-Dissolved                 | ug/L | 0.3                                                              | 1.5    | <0.50 DLHC                       | <0.050                           |
| Sodium (Na)-Dissolved                 | ug/L | 490000                                                           | 490000 | 768000 <sup>DLHC</sup>           | 185000 <sup>DLHC</sup>           |
| Thallium (TI)-Dissolved               | ug/L | 0.5                                                              | 2      | <0.10 DLHC                       | 0.019                            |
| Uranium (U)-Dissolved                 | ug/L | 8.9                                                              | 20     | 1.27 DLHC                        | 1.92                             |
| Vanadium (V)-Dissolved                | ug/L | 3.9                                                              | 6.2    | <5.0 DLHC                        | 0.80                             |
| Zinc (Zn)-Dissolved                   | ug/L | 160                                                              | 1100   | 11 DLHC                          | 1.2                              |

Guide Limit #1: T1-Ground Water-All Types of Property Uses

Guide Limit #2: T2-Ground Water (Coarse Soil)-All Types of Property Use

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2111659 CONT'D....

Job Reference: SP18-306-20

PAGE 7 of 14

21-JUN-18 14:23 (MT)

#### **Speciated Metals - WATER**

|                      |      |             | Lab ID       | L2111659-2 | L2111659-3 |
|----------------------|------|-------------|--------------|------------|------------|
|                      |      | Sampl       | e Date       | 12-JUN-18  | 12-JUN-18  |
|                      |      | San         | iple ID      | MW E4      | MW E5      |
| Analyte              | Unit | Guide<br>#1 | Limits<br>#2 |            |            |
| Chromium, Hexavalent |      |             |              |            |            |

Guide Limit #1: T1-Ground Water-All Types of Property Uses Guide Limit #2: T2-Ground Water (Coarse Soil)-All Types of Property Use

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2111659 CONT'D.... Job Reference: SP18-306-20 PAGE 8 of 14 21-JUN-18 14:23 (MT)

|                                   |      | Sample      | ab ID Date ple ID | L2111659-1<br>12-JUN-18<br>MW E3 | L2111659-2<br>12-JUN-18<br>MW E4 | L2111659-3<br>12-JUN-18<br>MW E5 | L2111659-4<br>12-JUN-18<br>MW E9 | L2111659-5<br>12-JUN-18<br>MW E10 | L2111659-6<br>12-JUN-18<br>MW E6 | L2111659-7<br>12-JUN-18<br>MW E7 | L2111659-8<br>12-JUN-18<br>DUP-W2 |
|-----------------------------------|------|-------------|-------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------------------|----------------------------------|----------------------------------|-----------------------------------|
| Analyte                           | Unit | Guide<br>#1 | Limits<br>#2      |                                  |                                  |                                  |                                  |                                   |                                  |                                  |                                   |
| Acetone                           | ug/L | 2700        | 2700              |                                  | <30                              | <30                              |                                  |                                   |                                  |                                  |                                   |
| Benzene                           | ug/L | 0.5         | 5                 | <0.50                            | <0.50                            | <0.50                            | <0.50                            | 18.6                              | <0.50                            | <0.50                            | 18.7                              |
| Bromodichloromethane              | ug/L | 2           | 16                |                                  | <2.0                             | <2.0                             |                                  |                                   |                                  |                                  |                                   |
| Bromoform                         | ug/L | 5           | 25                |                                  | <5.0                             | <5.0                             |                                  |                                   |                                  |                                  |                                   |
| Bromomethane                      | ug/L | 0.89        | 0.89              |                                  | <0.50                            | <0.50                            |                                  |                                   |                                  |                                  |                                   |
| Carbon tetrachloride              | ug/L | 0.2         | 0.79              |                                  | <0.20                            | <0.20                            |                                  |                                   |                                  |                                  |                                   |
| Chlorobenzene                     | ug/L | 0.5         | 30                |                                  | <0.50                            | <0.50                            |                                  |                                   |                                  |                                  |                                   |
| Dibromochloromethane              | ug/L | 2           | 25                |                                  | <2.0                             | <2.0                             |                                  |                                   |                                  |                                  |                                   |
| Chloroform                        | ug/L | 2           | 2.4               |                                  | <1.0                             | <1.0                             |                                  |                                   |                                  |                                  |                                   |
| 1,2-Dibromoethane                 | ug/L | 0.2         | 0.2               |                                  | <0.20                            | <0.20                            |                                  |                                   |                                  |                                  |                                   |
| 1,2-Dichlorobenzene               | ug/L | 0.5         | 3                 |                                  | <0.50                            | <0.50                            |                                  |                                   |                                  |                                  |                                   |
| 1,3-Dichlorobenzene               | ug/L | 0.5         | 59                |                                  | <0.50                            | <0.50                            |                                  |                                   |                                  |                                  |                                   |
| 1,4-Dichlorobenzene               | ug/L | 0.5         | 1                 |                                  | <0.50                            | <0.50                            |                                  |                                   |                                  |                                  |                                   |
| Dichlorodifluoromethane           | ug/L | 590         | 590               |                                  | <2.0                             | <2.0                             |                                  |                                   |                                  |                                  |                                   |
| 1,1-Dichloroethane                | ug/L | 0.5         | 5                 |                                  | <0.50                            | <0.50                            |                                  |                                   |                                  |                                  |                                   |
| 1,2-Dichloroethane                | ug/L | 0.5         | 1.6               |                                  | <0.50                            | <0.50                            |                                  |                                   |                                  |                                  |                                   |
| 1,1-Dichloroethylene              | ug/L | 0.5         | 1.6               |                                  | <0.50                            | <0.50                            |                                  |                                   |                                  |                                  |                                   |
| cis-1,2-Dichloroethylene          | ug/L | 1.6         | 1.6               |                                  | <0.50                            | <0.50                            |                                  |                                   |                                  |                                  |                                   |
| trans-1,2-Dichloroethylene        | ug/L | 1.6         | 1.6               |                                  | <0.50                            | <0.50                            |                                  |                                   |                                  |                                  |                                   |
| Methylene Chloride                | ug/L | 5           | 50                |                                  | <5.0                             | <5.0                             |                                  |                                   |                                  |                                  |                                   |
| 1,2-Dichloropropane               | ug/L | 0.5         | 5                 |                                  | <0.50                            | <0.50                            |                                  |                                   |                                  |                                  |                                   |
| cis-1,3-Dichloropropene           | ug/L | -           | -                 |                                  | <0.30                            | <0.30                            |                                  |                                   |                                  |                                  |                                   |
| trans-1,3-Dichloropropene         | ug/L | -           | -                 |                                  | <0.30                            | <0.30                            |                                  |                                   |                                  |                                  |                                   |
| 1,3-Dichloropropene (cis & trans) | ug/L | 0.5         | 0.5               |                                  | <0.50                            | <0.50                            |                                  |                                   |                                  |                                  |                                   |
| Ethylbenzene                      | ug/L | 0.5         | 2.4               | <0.50                            | <0.50                            | <0.50                            | <0.50                            | 1.64                              | <0.50                            | <0.50                            | 1.71                              |
| n-Hexane                          | ug/L | 5           | 51                |                                  | <0.50                            | <0.50                            |                                  |                                   |                                  |                                  |                                   |
| Methyl Ethyl Ketone               | ug/L | 400         | 1800              |                                  | <20                              | <20                              |                                  |                                   |                                  |                                  |                                   |
| Methyl Isobutyl Ketone            | ug/L | 640         | 640               |                                  | <20                              | <20                              |                                  |                                   |                                  |                                  |                                   |
| MTBE                              | ug/L | 15          | 15                |                                  | <2.0                             | <2.0                             |                                  |                                   |                                  |                                  |                                   |
| Styrene                           | ug/L | 0.5         | 5.4               |                                  | <0.50                            | <0.50                            |                                  |                                   |                                  |                                  |                                   |

Guide Limit #1: T1-Ground Water-All Types of Property Uses Guide Limit #2: T2-Ground Water (Coarse Soil)-All Types of Property Use

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2111659 CONT'D.... Job Reference: SP18-306-20 PAGE 9 of 14 21-JUN-18 14:23 (MT)

Volatile Organic Compounds - WATER

|                                 |      | ı           | _ab ID       | L2111659-1 | L2111659-2 | L2111659-3 | L2111659-4 | L2111659-5 | L2111659-6 | L2111659-7 | L2111659-8 |
|---------------------------------|------|-------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|
|                                 |      | Sample      | e Date       | 12-JUN-18  | 12-JUN-18  | 12-JUN-18  | 12-JUN-18  | 12-JUN-18  | 12-JUN-18  | 12-JUN-18  | 12-JUN-18  |
|                                 |      | •           | ple ID       | MW E3      | MW E4      | MW E5      | MW E9      | MW E10     | MW E6      | MW E7      | DUP-W2     |
| Analyte                         | Unit | Guide<br>#1 | Limits<br>#2 |            |            |            |            |            |            |            |            |
| 1,1,1,2-Tetrachloroethane       | ug/L | 1.1         | 1.1          |            | <0.50      | <0.50      |            |            |            |            |            |
| 1,1,2,2-Tetrachloroethane       | ug/L | 0.5         | 1            |            | <0.50      | <0.50      |            |            |            |            |            |
| Tetrachloroethylene             | ug/L | 0.5         | 1.6          |            | <0.50      | <0.50      |            |            |            |            |            |
| Toluene                         | ug/L | 0.8         | 24           | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      |
| 1,1,1-Trichloroethane           | ug/L | 0.5         | 200          |            | <0.50      | <0.50      |            |            |            |            |            |
| 1,1,2-Trichloroethane           | ug/L | 0.5         | 4.7          |            | <0.50      | <0.50      |            |            |            |            |            |
| Trichloroethylene               | ug/L | 0.5         | 1.6          |            | <0.50      | <0.50      |            |            |            |            |            |
| Trichlorofluoromethane          | ug/L | 150         | 150          |            | <5.0       | <5.0       |            |            |            |            |            |
| Vinyl chloride                  | ug/L | 0.5         | 0.5          |            | <0.50      | <0.50      |            |            |            |            |            |
| o-Xylene                        | ug/L | -           | -            | <0.30      | <0.30      | <0.30      | <0.30      | <0.30      | <0.30      | <0.30      | <0.30      |
| m+p-Xylenes                     | ug/L | -           | -            | <0.40      | <0.40      | <0.40      | <0.40      | <0.40      | <0.40      | <0.40      | <0.40      |
| Xylenes (Total)                 | ug/L | 72          | 300          | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      |
| Surrogate: 4-Bromofluorobenzene | %    | -           | -            | 92.6       | 93.4       | 93.4       | 92.4       | 92.6       | 95.4       | 93.0       | 92.5       |
| Surrogate: 1,4-Difluorobenzene  | %    | -           | -            | 97.7       | 97.1       | 96.9       | 96.9       | 96.6       | 97.6       | 97.8       | 97.0       |

Guide Limit #1: T1-Ground Water-All Types of Property Uses

Guide Limit #2: T2-Ground Water (Coarse Soil)-All Types of Property Use

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2111659 CONT'D....

Job Reference: SP18-306-20

PAGE 10 of 14

21-JUN-18 14:23 (MT)

**Hydrocarbons - WATER** 

| riyurocarbons - WATEN              |      |             |              |            |            |            |            |            |            |            |            |
|------------------------------------|------|-------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|
|                                    |      | ı           | ∟ab ID       | L2111659-1 | L2111659-2 | L2111659-3 | L2111659-4 | L2111659-5 | L2111659-6 | L2111659-7 | L2111659-8 |
|                                    |      | Sample      | e Date       | 12-JUN-18  | 12-JUN-18  | 12-JUN-18  | 12-JUN-18  | 12-JUN-18  | 12-JUN-18  | 12-JUN-18  | 12-JUN-18  |
|                                    |      | Sam         | ple ID       | MW E3      | MW E4      | MW E5      | MW E9      | MW E10     | MW E6      | MW E7      | DUP-W2     |
| Analyte                            | Unit | Guide<br>#1 | Limits<br>#2 |            |            |            |            |            |            |            |            |
| F1 (C6-C10)                        | ug/L | 420         | 750          | <25        | <25        | <25        | <25        | 62         | <25        | <25        | 67         |
| F1-BTEX                            | ug/L | 420         | 750          | <25        | <25        | <25        | <25        | 41         | <25        | <25        | 47         |
| F2 (C10-C16)                       | ug/L | 150         | 150          | <100       | <100       | <100       | <100       | 280        | <100       | <100       | 280        |
| F3 (C16-C34)                       | ug/L | 500         | 500          | <250       | <250       | <250       | <250       | 280        | <250       | <250       | <250       |
| F4 (C34-C50)                       | ug/L | 500         | 500          | <250       | <250       | <250       | <250       | <250       | <250       | <250       | <250       |
| Total Hydrocarbons (C6-C50)        | ug/L | -           | -            | <370       | <370       | <370       | <370       | 630        | <370       | <370       | <370       |
| Chrom. to baseline at nC50         |      | -           | -            | YES        |
| Surrogate: 2-Bromobenzotrifluoride | %    | -           | -            | 91.4       | 89.0       | 85.1       | 93.5       | 92.9       | 89.3       | 83.0       | 86.6       |
| Surrogate: 3,4-Dichlorotoluene     | %    | -           | -            | 89.2       | 78.6       | 78.7       | 80.5       | 81.0       | 79.3       | 88.4       | 80.3       |
|                                    |      |             |              |            |            |            |            |            |            |            |            |

Guide Limit #1: T1-Ground Water-All Types of Property Uses Guide Limit #2: T2-Ground Water (Coarse Soil)-All Types of Property Use

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2111659 CONT'D....

Job Reference: SP18-306-20

PAGE 11 of 14

21-JUN-18 14:23 (MT)

#### **Polychlorinated Biphenyls - WATER**

| oryonnormatoa Bipilony      |      |             |              |            |            |
|-----------------------------|------|-------------|--------------|------------|------------|
|                             |      |             | Lab ID       | L2111659-2 | L2111659-3 |
|                             |      | Sampl       | e Date       | 12-JUN-18  | 12-JUN-18  |
|                             |      | Sam         | ple ID       | MW E4      | MW E5      |
| Analyte                     | Unit | Guide<br>#1 | Limits<br>#2 |            |            |
| Aroclor 1242                | ug/L | -           | -            | <0.020     | <0.020     |
| Aroclor 1248                | ug/L | -           | -            | <0.020     | <0.020     |
| Aroclor 1254                | ug/L | -           | -            | <0.020     | <0.020     |
| Aroclor 1260                | ug/L | -           | -            | <0.020     | <0.020     |
| Total PCBs                  | ug/L | 0.2         | 3            | <0.040     | <0.040     |
| Surrogate: 2-fluorobiphenyl | %    | -           | -            | 68.8       | 51.4       |

Guide Limit #1: T1-Ground Water-All Types of Property Uses

Guide Limit #2: T2-Ground Water (Coarse Soil)-All Types of Property Use

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.

#### **Reference Information**

L2111659 CONT'D....
Job Reference: SP18-306-20
PAGE 12 of 14
21-JUN-18 14:23 (MT)

**Qualifiers for Individual Parameters Listed:** 

Qualifier Description

DLHC Detection Limit Raised: Dilution required due to high concentration of test analyte(s).

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference\*\*

BTX-511-HS-WT Water BTEX by Headspace SW846 8260 (511)

BTX is determined by analyzing by headspace-GC/MS.

CL-IC-N-WT Water Chloride by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

CN-WAD-R511-WT Water Cyanide (WAD)-O.Reg 153/04 APHA 4500CN I-Weak acid Dist Colorimet

Weak acid dissociable cyanide (WAD) is determined by undergoing a distillation procedure. Cyanide is converted to cyanogen chloride by reacting with chloramine-T, the cyanogen chloride then reacts with a combination of barbituric acid and isonicotinic acid to form a highly colored complex.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

CR-CR6-IC-R511-WT Water Hex Chrom-O.Reg 153/04 (July 2011) EPA 7199

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Method 7199, published by the United States Environmental Protection Agency (EPA). The procedure involves analysis for chromium (VI) by ion chromatography using diphenylcarbazide in a sulphuric acid solution. Chromium (III) is calculated as the difference between the total chromium and the chromium (VI) results.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

**EC-R511-WT** Water Conductivity-O.Reg 153/04 (July 2011) APHA 2510 B

Water samples can be measured directly by immersing the conductivity cell into the sample.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

F1-F4-511-CALC-WT Water F1-F4 Hydrocarbon Calculated CCME CWS-PHC, Pub #1310, Dec 2001-L

Parameters

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

1. All extraction and analysis holding times were met.

#### **Reference Information**

L2111659 CONT'D.... Job Reference: SP18-306-20 PAGE 13 of 14 21-JUN-18 14:23 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference\*\*

2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.

3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.

4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

**F1-HS-511-WT** Water F1-O.Reg 153/04 (July 2011) E3398

E3398/CCME TIER 1-HS

Fraction F1 is determined by analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F2-F4-511-WT

Water

F2-F4-O.Reg 153/04 (July 2011)

EPA 3511/CCME Tier 1

Petroleum Hydrocarbons (F2-F4 fractions) are extracted from water using a hexane micro-extraction technique. Instrumental analysis is by GC-FID, as per the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Tier 1 Method, CCME, 2001.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

**HG-D-UG/L-CVAA-WT** 

Water

Diss. Mercury in Water by CVAAS

EPA 1631E (mod)

(ug/L)

Water samples are filtered (0.45 um), preserved with hydrochloric acid, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

MET-D-UG/L-MS-WT

Water

Diss. Metals in Water by ICPMS (ug/L) EPA 200.8

The metal constituents of a non-acidified sample that pass through a membrane filter prior to ICP/MS analysis.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

PCB-511-WT

Water

PCB-O. Reg 153/04 (July 2011)

SW846 3510/8082

Aqueous samples are extracted, then concentrated, reconstituted, and analyzed by GC/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

PH-WT

Water

pН

APHA 4500 H-Electrode

Water samples are analyzed directly by a calibrated pH meter.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011). Holdtime for samples under this regulation is 28 days

VOC-1.3-DCP-CALC-WT

Water

Regulation 153 VOCs

SW8260B/SW8270C

VOC-511-HS-WT

Water

VOC by GCMS HS O.Reg 153/04 (July SW846 8260

2011)

Liquid samples are analyzed by headspace GC/MSD.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

XYLENES-SUM-CALC-WT Water

Sum of Xylene Isomer Concentrations CALCULATION

#### **Reference Information**

L2111659 CONT'D....
Job Reference: SP18-306-20
PAGE 14 of 14
21-JUN-18 14:23 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference\*\*

Total xylenes represents the sum of o-xylene and m&p-xylene.

\*\*ALS test methods may incorporate modifications from specified reference methods to improve performance.

Chain of Custody Numbers:

17-624411

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code

Laboratory Location

WT

ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

#### **GLOSSARY OF REPORT TERMS**

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information.



Workorder: L2111659 Report Date: 21-JUN-18 Page 1 of 14

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                          | Matrix           | Reference      | Result        | Qualifier | Units        | RPD        | Limit  | Analyzed    |
|-------------------------------|------------------|----------------|---------------|-----------|--------------|------------|--------|-------------|
| BTX-511-HS-WT                 | Water            |                |               |           |              |            |        |             |
| Batch R4                      | 083723           |                |               |           |              |            |        |             |
| WG2795608-4                   | DUP              | WG2795608-3    |               |           |              |            |        |             |
| Benzene                       |                  | <0.50          | <0.50         | RPD-NA    | ug/L         | N/A        | 30     | 15-JUN-18   |
| Ethylbenzene                  |                  | <0.50          | <0.50         | RPD-NA    | ug/L         | N/A        | 30     | 15-JUN-18   |
| m+p-Xylenes                   |                  | <0.40          | <0.40         | RPD-NA    | ug/L         | N/A        | 30     | 15-JUN-18   |
| o-Xylene<br>·                 |                  | <0.30          | <0.30         | RPD-NA    | ug/L         | N/A        | 30     | 15-JUN-18   |
| Toluene                       |                  | <0.50          | <0.50         | RPD-NA    | ug/L         | N/A        | 30     | 15-JUN-18   |
| WG2795608-1<br>Benzene        | LCS              |                | 102.9         |           | %            |            | 70-130 | 15-JUN-18   |
| Ethylbenzene                  |                  |                | 92.6          |           | %            |            | 70-130 | 15-JUN-18   |
| m+p-Xylenes                   |                  |                | 102.9         |           | %            |            | 70-130 | 15-JUN-18   |
| o-Xylene                      |                  |                | 93.9          |           | %            |            | 70-130 | 15-JUN-18   |
| Toluene                       |                  |                | 98.1          |           | %            |            | 70-130 | 15-JUN-18   |
| <b>WG2795608-2</b><br>Benzene | MB               |                | <0.50         |           | ug/L         |            | 0.5    | 15-JUN-18   |
| Ethylbenzene                  |                  |                | <0.50         |           | ug/L         |            | 0.5    | 15-JUN-18   |
| m+p-Xylenes                   |                  |                | <0.40         |           | ug/L         |            | 0.4    | 15-JUN-18   |
| o-Xylene                      |                  |                | <0.30         |           | ug/L         |            | 0.3    | 15-JUN-18   |
| Toluene                       |                  |                | <0.50         |           | ug/L         |            | 0.5    | 15-JUN-18   |
| Surrogate: 1,4-I              | Difluorobenzene  |                | 96.6          |           | %            |            | 70-130 | 15-JUN-18   |
| Surrogate: 4-Br               | omofluorobenzene |                | 90.9          |           | %            |            | 70-130 | 15-JUN-18   |
| WG2795608-5                   | MS               | WG2795608-3    |               |           |              |            |        |             |
| Benzene                       |                  |                | 102.6         |           | %            |            | 50-140 | 15-JUN-18   |
| Ethylbenzene                  |                  |                | 89.1          |           | %            |            | 50-140 | 15-JUN-18   |
| m+p-Xylenes                   |                  |                | 99.3          |           | %            |            | 50-140 | 15-JUN-18   |
| o-Xylene                      |                  |                | 91.6          |           | %            |            | 50-140 | 15-JUN-18   |
| Toluene                       |                  |                | 95.6          |           | %            |            | 50-140 | 15-JUN-18   |
| Batch R4                      | 083775           |                |               |           |              |            |        |             |
| WG2795606-4                   | DUP              | WG2795606-3    |               | DDD NA    | ua/l         | NI/A       | 20     | 45 11111 40 |
| Benzene<br>Ethylbenzene       |                  | <0.50<br><0.50 | <0.50         | RPD-NA    | ug/L         | N/A        | 30     | 15-JUN-18   |
| -                             |                  | 1.16           | <0.50<br>1.20 | RPD-NA    | ug/L         | N/A        | 30     | 15-JUN-18   |
| m+p-Xylenes<br>o-Xylene       |                  | <0.30          | <0.30         |           | ug/L<br>ug/L | 3.4<br>N/A | 30     | 15-JUN-18   |
| Toluene                       |                  | <0.50          | <0.50         | RPD-NA    |              | N/A        | 30     | 15-JUN-18   |
|                               | 1.00             | <0.50          | <0.30         | RPD-NA    | ug/L         | N/A        | 30     | 15-JUN-18   |
| <b>WG2795606-1</b><br>Benzene | LCS              |                | 102.4         |           | %            |            | 70-130 | 14-JUN-18   |



Workorder: L2111659 Report Date: 21-JUN-18 Page 2 of 14

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                                | i                       | Matrix  | Reference                 | Result | Qualifier | Units | RPD | Limit  | Analyzed    |
|-------------------------------------|-------------------------|---------|---------------------------|--------|-----------|-------|-----|--------|-------------|
| BTX-511-HS-WT                       |                         | Water   |                           |        |           |       |     |        |             |
| Batch R4                            | 083775                  |         |                           |        |           |       |     |        |             |
| WG2795606-1                         | LCS                     |         |                           | 93.2   |           | %     |     | 70.400 | 44 11111 40 |
| Ethylbenzene                        |                         |         |                           |        |           |       |     | 70-130 | 14-JUN-18   |
| m+p-Xylenes                         |                         |         |                           | 102.3  |           | %     |     | 70-130 | 14-JUN-18   |
| o-Xylene                            |                         |         |                           | 94.3   |           | %     |     | 70-130 | 14-JUN-18   |
| Toluene                             |                         |         |                           | 97.9   |           | %     |     | 70-130 | 14-JUN-18   |
| WG2795606-2<br>Benzene              | MB                      |         |                           | <0.50  |           | ug/L  |     | 0.5    | 15-JUN-18   |
| Ethylbenzene                        |                         |         |                           | <0.50  |           | ug/L  |     | 0.5    | 15-JUN-18   |
| m+p-Xylenes                         |                         |         |                           | < 0.40 |           | ug/L  |     | 0.4    | 15-JUN-18   |
| o-Xylene                            |                         |         |                           | <0.30  |           | ug/L  |     | 0.3    | 15-JUN-18   |
| Toluene                             |                         |         |                           | <0.50  |           | ug/L  |     | 0.5    | 15-JUN-18   |
| Surrogate: 1,4-E                    | Difluorober             | nzene   |                           | 98.4   |           | %     |     | 70-130 | 15-JUN-18   |
| Surrogate: 4-Bro                    | omofluorok              | penzene |                           | 94.5   |           | %     |     | 70-130 | 15-JUN-18   |
| WG2795606-5                         | MS                      |         | WG2795606-                | 3      |           |       |     |        |             |
| Benzene                             |                         |         |                           | 101.7  |           | %     |     | 50-140 | 15-JUN-18   |
| Ethylbenzene                        |                         |         |                           | 92.9   |           | %     |     | 50-140 | 15-JUN-18   |
| m+p-Xylenes                         |                         |         |                           | 103.4  |           | %     |     | 50-140 | 15-JUN-18   |
| o-Xylene                            |                         |         |                           | 95.3   |           | %     |     | 50-140 | 15-JUN-18   |
| Toluene                             |                         |         |                           | 96.0   |           | %     |     | 50-140 | 15-JUN-18   |
| CL-IC-N-WT                          | ,                       | Water   |                           |        |           |       |     |        |             |
| Batch R4                            | 084012                  |         |                           |        |           |       |     |        |             |
| <b>WG2797079-3</b><br>Chloride (CI) | DUP                     |         | <b>L2109839-1</b><br>77.4 | 77.5   |           | mg/L  | 0.1 | 20     | 14-JUN-18   |
| WG2797079-2                         | LCS                     |         | 77.4                      | 77.5   |           | mg/L  | 0.1 | 20     | 14-3011-10  |
| Chloride (CI)                       | LUS                     |         |                           | 99.3   |           | %     |     | 90-110 | 14-JUN-18   |
| WG2797079-1                         | MB                      |         |                           |        |           |       |     |        |             |
| Chloride (CI)                       |                         |         |                           | <0.50  |           | mg/L  |     | 0.5    | 14-JUN-18   |
| WG2797079-4                         | MS                      |         | L2109839-1                | 102 F  |           | 0/    |     | 75.405 | 44 11111 40 |
| Chloride (Cl)                       |                         |         |                           | 102.5  |           | %     |     | 75-125 | 14-JUN-18   |
| CN-WAD-R511-WT                      |                         | Water   |                           |        |           |       |     |        |             |
|                                     | 094024                  |         |                           |        |           |       |     |        |             |
| WG2802382-3<br>Cyanide, Weak        | <b>DUP</b><br>Acid Diss |         | <b>L2111659-2</b> <2.0    | <2.0   | RPD-NA    | ug/L  | N/A | 20     | 20-JUN-18   |
| WG2802382-2                         |                         |         |                           | 00.5   |           | 0.4   |     |        |             |
| Cyanide, Weak                       |                         |         |                           | 96.8   |           | %     |     | 80-120 | 20-JUN-18   |
| WG2802382-1                         | MB                      |         |                           |        |           |       |     |        |             |



Workorder: L2111659 Report Date: 21-JUN-18 Page 3 of 14

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                                                       | Matrix | Reference                 | Result  | Qualifier | Units | RPD | Limit  | Analyzed  |
|------------------------------------------------------------|--------|---------------------------|---------|-----------|-------|-----|--------|-----------|
| CN-WAD-R511-WT                                             | Water  |                           |         |           |       |     |        |           |
| Batch R4094024<br>WG2802382-1 MB<br>Cyanide, Weak Acid Dis | es     |                           | <2.0    |           | ug/L  |     | 2      | 20-JUN-18 |
| WG2802382-4 MS<br>Cyanide, Weak Acid Dis                   | ss     | L2111659-2                | 98.2    |           | %     |     | 75-125 | 20-JUN-18 |
| CR-CR6-IC-R511-WT                                          | Water  |                           |         |           |       |     |        |           |
| Batch R4083503<br>WG2796865-4 DUP<br>Chromium, Hexavalent  |        | <b>WG2796865-3</b> <0.50  | <0.50   | RPD-NA    | ug/L  | N/A | 20     | 14-JUN-18 |
| WG2796865-2 LCS<br>Chromium, Hexavalent                    |        |                           | 101.1   |           | %     |     | 80-120 | 14-JUN-18 |
| WG2796865-1 MB<br>Chromium, Hexavalent                     |        | W0070005 0                | <0.50   |           | ug/L  |     | 0.5    | 14-JUN-18 |
| WG2796865-5 MS<br>Chromium, Hexavalent                     |        | WG2796865-3               | 99.3    |           | %     |     | 70-130 | 14-JUN-18 |
| EC-R511-WT                                                 | Water  |                           |         |           |       |     |        |           |
| Batch R4083522<br>WG2796759-4 DUP<br>Conductivity          |        | <b>WG2796759-3</b> 2.53   | 2.51    |           | mS/cm | 0.8 | 10     | 14-JUN-18 |
| WG2796759-8 DUP<br>Conductivity                            |        | <b>WG2796759-7</b> 0.946  | 0.945   |           | mS/cm | 0.1 | 10     | 14-JUN-18 |
| WG2796759-2 LCS<br>Conductivity                            |        |                           | 97.1    |           | %     |     | 90-110 | 14-JUN-18 |
| WG2796759-6 LCS<br>Conductivity                            |        |                           | 97.7    |           | %     |     | 90-110 | 14-JUN-18 |
| WG2796759-1 MB<br>Conductivity                             |        |                           | <0.0030 |           | mS/cm |     | 0.003  | 14-JUN-18 |
| WG2796759-5 MB<br>Conductivity                             |        |                           | <0.0030 |           | mS/cm |     | 0.003  | 14-JUN-18 |
| F1-HS-511-WT                                               | Water  |                           |         |           |       |     |        |           |
| Batch R4082559                                             |        | WG2794395-3               |         |           |       |     |        |           |
| <b>WG2794395-4 DUP</b> F1 (C6-C10)                         |        | <b>WG2794395-3</b><br><25 | <25     | RPD-NA    | ug/L  | N/A | 30     | 14-JUN-18 |
| <b>WG2794395-1 LCS</b><br>F1 (C6-C10)                      |        |                           | 89.1    |           | %     |     | 80-120 | 14-JUN-18 |
| <b>WG2794395-2 MB</b><br>F1 (C6-C10)                       |        |                           | <25     |           | ug/L  |     | 25     | 14-JUN-18 |
| Surrogate: 3,4-Dichlorot                                   | oluene |                           | 88.9    |           | %     |     | 60-140 | 14-JUN-18 |



Workorder: L2111659 Report Date: 21-JUN-18 Page 4 of 14

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                               | Matrix          | Reference                | Result | Qualifier | Units | RPD | Limit            | Analyzed               |
|------------------------------------|-----------------|--------------------------|--------|-----------|-------|-----|------------------|------------------------|
| F1-HS-511-WT                       | Water           |                          |        |           |       |     |                  |                        |
| Batch R4                           | 082559          |                          |        |           |       |     |                  |                        |
| <b>WG2794395-5</b><br>F1 (C6-C10)  | MS              | WG2794395-3              | 86.0   |           | %     |     | 60-140           | 14-JUN-18              |
| Batch R4                           | 083723          |                          |        |           |       |     |                  |                        |
| <b>WG2795608-4</b><br>F1 (C6-C10)  | DUP             | <b>WG2795608-3</b> <25   | <25    | RPD-NA    | ug/L  | N/A | 30               | 15-JUN-18              |
| <b>WG2795608-1</b><br>F1 (C6-C10)  | LCS             |                          | 103.0  |           | %     |     | 80-120           | 15-JUN-18              |
| <b>WG2795608-2</b><br>F1 (C6-C10)  | МВ              |                          | <25    |           | ug/L  |     | 25               | 15-JUN-18              |
| Surrogate: 3,4-I                   | Dichlorotoluene |                          | 97.7   |           | %     |     | 60-140           | 15-JUN-18              |
| WG2795608-5                        | MS              | WG2795608-3              |        |           |       |     |                  | 10 0011 10             |
| F1 (C6-C10)                        |                 |                          | 82.0   |           | %     |     | 60-140           | 15-JUN-18              |
| Batch R4                           | 083775          |                          |        |           |       |     |                  |                        |
| <b>WG2795606-4</b><br>F1 (C6-C10)  | DUP             | <b>WG2795606-3</b><br>37 | 36     |           | ug/L  | 3.5 | 30               | 15-JUN-18              |
| <b>WG2795606-1</b><br>F1 (C6-C10)  | LCS             |                          | 101.0  |           | %     |     | 80-120           | 14-JUN-18              |
| WG2795606-2                        | MB              |                          |        |           |       |     |                  |                        |
| F1 (C6-C10)                        | S               |                          | <25    |           | ug/L  |     | 25               | 15-JUN-18              |
| Surrogate: 3,4-l                   |                 |                          | 109.4  |           | %     |     | 60-140           | 15-JUN-18              |
| <b>WG2795606-5</b><br>F1 (C6-C10)  | MS              | WG2795606-3              | 85.1   |           | %     |     | 60-140           | 15-JUN-18              |
| F2-F4-511-WT                       | Water           |                          |        |           |       |     |                  |                        |
| Batch R4                           | 092647          |                          |        |           |       |     |                  |                        |
| <b>WG2801621-2</b><br>F2 (C10-C16) | LCS             |                          | 101.4  |           | %     |     | 70 120           | 20 IIIN 40             |
| F3 (C16-C34)                       |                 |                          | 101.4  |           | %     |     | 70-130<br>70-130 | 20-JUN-18<br>20-JUN-18 |
| F4 (C34-C50)                       |                 |                          | 107.1  |           | %     |     | 70-130           | 20-JUN-18              |
| WG2801621-3                        | LCSD            | WG2801621-2              |        |           | 70    |     | 10-130           | 20-00IN-10             |
| F2 (C10-C16)                       | 2002            | 101.4                    | 102.5  |           | %     | 1.0 | 50               | 20-JUN-18              |
| F3 (C16-C34)                       |                 | 101.6                    | 98.7   |           | %     | 2.8 | 50               | 20-JUN-18              |
| F4 (C34-C50)                       |                 | 107.1                    | 105.8  |           | %     | 1.2 | 50               | 20-JUN-18              |
| <b>WG2801621-1</b><br>F2 (C10-C16) | МВ              |                          | <100   |           | ug/L  |     | 100              | 20-JUN-18              |
| F3 (C16-C34)                       |                 |                          | <250   |           | ug/L  |     | 250              | 20-JUN-18              |
| F4 (C34-C50)                       |                 |                          | <250   |           | ug/L  |     | 250              | 20-JUN-18              |



Workorder: L2111659 Report Date: 21-JUN-18 Page 5 of 14

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                                                      | Matrix          | Reference                | Result        | Qualifier | Units | RPD | Limit  | Analyzed  |
|-----------------------------------------------------------|-----------------|--------------------------|---------------|-----------|-------|-----|--------|-----------|
| F2-F4-511-WT                                              | Water           |                          |               |           |       |     |        |           |
| Batch R409264<br>WG2801621-1 MB<br>Surrogate: 2-Bromobe   |                 |                          | 82.1          |           | %     |     | 60-140 | 20-JUN-18 |
| Batch R409425<br>WG2802832-2 LCS<br>F2 (C10-C16)          |                 |                          | 96.1          |           | %     |     | 70-130 | 21-JUN-18 |
| F3 (C16-C34)                                              |                 |                          | 89.9          |           | %     |     | 70-130 | 21-JUN-18 |
| F4 (C34-C50)                                              |                 |                          | 99.8          |           | %     |     | 70-130 | 21-JUN-18 |
| <b>WG2802832-3</b> LCS F2 (C10-C16)                       | D               | <b>WG2802832-</b> 2      | 98.0          |           | %     | 1.9 | 50     | 21-JUN-18 |
| F3 (C16-C34)                                              |                 | 89.9                     | 92.5          |           | %     | 2.9 | 50     | 21-JUN-18 |
| F4 (C34-C50) WG2802832-1 MB                               |                 | 99.8                     | 105.2         |           | %     | 5.3 | 50     | 21-JUN-18 |
| F2 (C10-C16)                                              |                 |                          | <100          |           | ug/L  |     | 100    | 21-JUN-18 |
| F3 (C16-C34)                                              |                 |                          | <250          |           | ug/L  |     | 250    | 21-JUN-18 |
| F4 (C34-C50)                                              |                 |                          | <250          |           | ug/L  |     | 250    | 21-JUN-18 |
| Surrogate: 2-Bromobe                                      | enzotrifiuoriae |                          | 91.0          |           | %     |     | 60-140 | 21-JUN-18 |
| HG-D-UG/L-CVAA-WT                                         | Water           |                          |               |           |       |     |        |           |
| Batch R408610<br>WG2799847-3 DUP<br>Mercury (Hg)-Dissolve | 1               | <b>L2111659-2</b> <0.010 | <0.010        | RPD-NA    | ug/L  | N/A | 20     | 18-JUN-18 |
| WG2799847-2 LCS<br>Mercury (Hg)-Dissolve                  |                 |                          | 99.0          |           | %     |     | 80-120 | 18-JUN-18 |
| WG2799847-1 MB<br>Mercury (Hg)-Dissolve                   | ed              |                          | <0.010        |           | ug/L  |     | 0.01   | 18-JUN-18 |
| WG2799847-4 MS<br>Mercury (Hg)-Dissolve                   | ed              | L2111659-3               | 95.0          |           | %     |     | 70-130 | 18-JUN-18 |
| MET-D-UG/L-MS-WT                                          | Water           |                          |               |           |       |     |        |           |
| Batch R408399                                             | 2               |                          |               |           |       |     |        |           |
| WG2796700-4 DUP<br>Antimony (Sb)-Dissolv                  |                 | <b>WG2796700-</b> 3      | <b>3</b> 0.35 |           | ug/L  | 1.2 | 20     | 14-JUN-18 |
| Arsenic (As)-Dissolve                                     | d               | 7.25                     | 7.26          |           | ug/L  | 0.2 | 20     | 14-JUN-18 |
| Barium (Ba)-Dissolved                                     | d               | 144                      | 142           |           | ug/L  | 1.8 | 20     | 14-JUN-18 |
| Beryllium (Be)-Dissolv                                    | red             | <0.10                    | <0.10         | RPD-NA    | ug/L  | N/A | 20     | 14-JUN-18 |
| Boron (B)-Dissolved                                       |                 | 137                      | 143           |           | ug/L  | 4.0 | 20     | 14-JUN-18 |
| Cadmium (Cd)-Dissol                                       | ved             | 0.0252                   | 0.0210        |           | ug/L  | 18  | 20     | 14-JUN-18 |



Workorder: L2111659 Report Date: 21-JUN-18 Page 6 of 14

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                                      | Matrix | Reference               | Result | Qualifier | Units | RPD | Limit  | Analyzed  |
|-------------------------------------------|--------|-------------------------|--------|-----------|-------|-----|--------|-----------|
| MET-D-UG/L-MS-WT                          | Water  |                         |        |           |       |     |        |           |
| Batch R4083992                            |        |                         |        |           |       |     |        |           |
| WG2796700-4 DUP<br>Chromium (Cr)-Dissolve | ed     | <b>WG2796700</b> -<0.50 | <0.50  | RPD-NA    | ug/L  | N/A | 20     | 14-JUN-18 |
| Cobalt (Co)-Dissolved                     | -      | 12.4                    | 12.1   | THE TWA   | ug/L  | 1.9 | 20     | 14-JUN-18 |
| Copper (Cu)-Dissolved                     |        | 4.29                    | 4.30   |           | ug/L  | 0.2 | 20     | 14-JUN-18 |
| Lead (Pb)-Dissolved                       |        | 0.079                   | 0.067  |           | ug/L  | 16  | 20     | 14-JUN-18 |
| Molybdenum (Mo)-Disso                     | olved  | 18.9                    | 19.0   |           | ug/L  | 0.9 | 20     | 14-JUN-18 |
| Nickel (Ni)-Dissolved                     |        | 25.5                    | 25.5   |           | ug/L  | 0.2 | 20     | 14-JUN-18 |
| Selenium (Se)-Dissolved                   | d      | 0.434                   | 0.480  |           | ug/L  | 10  | 20     | 14-JUN-18 |
| Silver (Ag)-Dissolved                     |        | <0.050                  | <0.050 | RPD-NA    | ug/L  | N/A | 20     | 14-JUN-18 |
| Sodium (Na)-Dissolved                     |        | 83100                   | 84400  | 10.2107   | ug/L  | 1.6 | 20     | 14-JUN-18 |
| Thallium (TI)-Dissolved                   |        | 0.516                   | 0.498  |           | ug/L  | 3.5 | 20     | 14-JUN-18 |
| Uranium (U)-Dissolved                     |        | 23.6                    | 22.8   |           | ug/L  | 3.4 | 20     | 14-JUN-18 |
| Vanadium (V)-Dissolved                    | I      | <0.50                   | <0.50  | RPD-NA    | ug/L  | N/A | 20     | 14-JUN-18 |
| Zinc (Zn)-Dissolved                       |        | 3.1                     | 3.4    |           | ug/L  | 8.8 | 20     | 14-JUN-18 |
| WG2796700-2 LCS                           |        |                         |        |           | •     |     |        |           |
| Antimony (Sb)-Dissolved                   | t      |                         | 100.3  |           | %     |     | 80-120 | 14-JUN-18 |
| Arsenic (As)-Dissolved                    |        |                         | 99.8   |           | %     |     | 80-120 | 14-JUN-18 |
| Barium (Ba)-Dissolved                     |        |                         | 109.3  |           | %     |     | 80-120 | 14-JUN-18 |
| Beryllium (Be)-Dissolved                  | t      |                         | 105.7  |           | %     |     | 80-120 | 14-JUN-18 |
| Boron (B)-Dissolved                       |        |                         | 103.1  |           | %     |     | 80-120 | 14-JUN-18 |
| Cadmium (Cd)-Dissolve                     | d      |                         | 101.9  |           | %     |     | 80-120 | 14-JUN-18 |
| Chromium (Cr)-Dissolve                    | ed     |                         | 102.4  |           | %     |     | 80-120 | 14-JUN-18 |
| Cobalt (Co)-Dissolved                     |        |                         | 101.1  |           | %     |     | 80-120 | 14-JUN-18 |
| Copper (Cu)-Dissolved                     |        |                         | 103.6  |           | %     |     | 80-120 | 14-JUN-18 |
| Lead (Pb)-Dissolved                       |        |                         | 101.5  |           | %     |     | 80-120 | 14-JUN-18 |
| Molybdenum (Mo)-Disso                     | olved  |                         | 104.8  |           | %     |     | 80-120 | 14-JUN-18 |
| Nickel (Ni)-Dissolved                     |        |                         | 103.6  |           | %     |     | 80-120 | 14-JUN-18 |
| Selenium (Se)-Dissolved                   | b      |                         | 101.4  |           | %     |     | 80-120 | 14-JUN-18 |
| Silver (Ag)-Dissolved                     |        |                         | 91.6   |           | %     |     | 80-120 | 14-JUN-18 |
| Sodium (Na)-Dissolved                     |        |                         | 101.7  |           | %     |     | 80-120 | 14-JUN-18 |
| Thallium (TI)-Dissolved                   |        |                         | 100.9  |           | %     |     | 80-120 | 14-JUN-18 |
| Uranium (U)-Dissolved                     |        |                         | 107.1  |           | %     |     | 80-120 | 14-JUN-18 |
| Vanadium (V)-Dissolved                    | I      |                         | 104.7  |           | %     |     | 80-120 | 14-JUN-18 |
| Zinc (Zn)-Dissolved                       |        |                         | 95.1   |           | %     |     | 80-120 | 14-JUN-18 |
|                                           |        |                         |        |           |       |     |        |           |



Workorder: L2111659 Report Date: 21-JUN-18 Page 7 of 14

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                                  | Matrix   | Reference   | Result  | Qualifier | Units | RPD | Limit  | Analyzed  |
|---------------------------------------|----------|-------------|---------|-----------|-------|-----|--------|-----------|
| MET-D-UG/L-MS-WT                      | Water    |             |         |           |       |     |        |           |
| Batch R40839                          | 92       |             |         |           |       |     |        |           |
| WG2796700-1 MB                        |          |             |         |           |       |     |        |           |
| Antimony (Sb)-Disso                   |          |             | <0.10   |           | ug/L  |     | 0.1    | 14-JUN-18 |
| Arsenic (As)-Dissolv                  |          |             | <0.10   |           | ug/L  |     | 0.1    | 14-JUN-18 |
| Barium (Ba)-Dissolve                  |          |             | <0.10   |           | ug/L  |     | 0.1    | 14-JUN-18 |
| Beryllium (Be)-Disso                  | lved     |             | <0.10   |           | ug/L  |     | 0.1    | 14-JUN-18 |
| Boron (B)-Dissolved                   |          |             | <10     |           | ug/L  |     | 10     | 14-JUN-18 |
| Cadmium (Cd)-Disso                    |          |             | <0.0050 |           | ug/L  |     | 0.005  | 14-JUN-18 |
| Chromium (Cr)-Disse                   |          |             | <0.50   |           | ug/L  |     | 0.5    | 14-JUN-18 |
| Cobalt (Co)-Dissolve                  |          |             | <0.10   |           | ug/L  |     | 0.1    | 14-JUN-18 |
| Copper (Cu)-Dissolv                   |          |             | <0.20   |           | ug/L  |     | 0.2    | 14-JUN-18 |
| Lead (Pb)-Dissolved                   |          |             | <0.050  |           | ug/L  |     | 0.05   | 14-JUN-18 |
| Molybdenum (Mo)-D                     | issolved |             | <0.050  |           | ug/L  |     | 0.05   | 14-JUN-18 |
| Nickel (Ni)-Dissolved                 | i        |             | <0.50   |           | ug/L  |     | 0.5    | 14-JUN-18 |
| Selenium (Se)-Disso                   | lved     |             | <0.050  |           | ug/L  |     | 0.05   | 14-JUN-18 |
| Silver (Ag)-Dissolved                 | i        |             | <0.050  |           | ug/L  |     | 0.05   | 14-JUN-18 |
| Sodium (Na)-Dissolv                   | red      |             | <50     |           | ug/L  |     | 50     | 14-JUN-18 |
| Thallium (TI)-Dissolv                 | ed       |             | <0.010  |           | ug/L  |     | 0.01   | 14-JUN-18 |
| Uranium (U)-Dissolv                   | ed       |             | <0.010  |           | ug/L  |     | 0.01   | 14-JUN-18 |
| Vanadium (V)-Dissol                   | ved      |             | <0.50   |           | ug/L  |     | 0.5    | 14-JUN-18 |
| Zinc (Zn)-Dissolved                   |          |             | <1.0    |           | ug/L  |     | 1      | 14-JUN-18 |
| WG2796700-5 MS<br>Antimony (Sb)-Disso |          | WG2796700-3 | 102.4   |           | %     |     | 70-130 | 14-JUN-18 |
| Arsenic (As)-Dissolv                  | ed       |             | 105.5   |           | %     |     | 70-130 | 14-JUN-18 |
| Barium (Ba)-Dissolve                  | ed       |             | N/A     | MS-B      | %     |     | -      | 14-JUN-18 |
| Beryllium (Be)-Disso                  | lved     |             | 110.7   |           | %     |     | 70-130 | 14-JUN-18 |
| Boron (B)-Dissolved                   |          |             | N/A     | MS-B      | %     |     | -      | 14-JUN-18 |
| Cadmium (Cd)-Disso                    | olved    |             | 98.8    |           | %     |     | 70-130 | 14-JUN-18 |
| Chromium (Cr)-Disse                   | olved    |             | 102.1   |           | %     |     | 70-130 | 14-JUN-18 |
| Cobalt (Co)-Dissolve                  | ed       |             | 92.8    |           | %     |     | 70-130 | 14-JUN-18 |
| Copper (Cu)-Dissolv                   | ed       |             | 93.7    |           | %     |     | 70-130 | 14-JUN-18 |
| Lead (Pb)-Dissolved                   |          |             | 94.4    |           | %     |     | 70-130 | 14-JUN-18 |
| Molybdenum (Mo)-D                     | issolved |             | N/A     | MS-B      | %     |     | -      | 14-JUN-18 |
| Nickel (Ni)-Dissolved                 | i        |             | N/A     | MS-B      | %     |     | -      | 14-JUN-18 |
| Selenium (Se)-Disso                   | lved     |             | 110.2   |           | %     |     | 70-130 | 14-JUN-18 |
| Silver (Ag)-Dissolved                 | j        |             | 74.8    |           | %     |     | 70-130 | 18-JUN-18 |
|                                       |          |             |         |           |       |     |        |           |



Workorder: L2111659 Report Date: 21-JUN-18 Page 8 of 14

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                                      |                | Matrix | Reference                  | Result      | Qualifier | Units    | RPD  | Limit       | Analyzed               |
|-------------------------------------------|----------------|--------|----------------------------|-------------|-----------|----------|------|-------------|------------------------|
| MET-D-UG/L-MS-V                           | VT             | Water  |                            |             |           |          |      |             |                        |
| Batch R4<br>WG2796700-5<br>Sodium (Na)-Di | MS             |        | WG2796700-3                | NI/A        | MC D      | %        |      |             | 44 11111 40            |
| Thallium (TI)-Di                          |                |        |                            | N/A<br>93.4 | MS-B      | %        |      | 70.420      | 14-JUN-18              |
| Uranium (U)-Di                            |                |        |                            | 93.4<br>N/A | MS-B      | %        |      | 70-130      | 14-JUN-18<br>14-JUN-18 |
| Vanadium (V)-                             |                |        |                            | 109.2       | IVIO-B    | %        |      | -<br>70-130 | 14-JUN-18              |
| Zinc (Zn)-Disso                           |                |        |                            | 97.1        |           | %        |      | 70-130      | 14-JUN-18              |
| PCB-511-WT                                |                | Water  |                            | 07.1        |           | ,0       |      | 70-130      | 14-3014-10             |
|                                           | 1088570        |        |                            |             |           |          |      |             |                        |
| WG2798112-2                               | LCS            |        |                            |             |           |          |      |             |                        |
| Aroclor 1242                              |                |        |                            | 75.9        |           | %        |      | 60-140      | 19-JUN-18              |
| Aroclor 1248                              |                |        |                            | 76.3        |           | %        |      | 60-140      | 19-JUN-18              |
| Aroclor 1254                              |                |        |                            | 81.5        |           | %        |      | 60-140      | 19-JUN-18              |
| Aroclor 1260                              |                |        |                            | 97.1        |           | %        |      | 60-140      | 19-JUN-18              |
| <b>WG2798112-3</b><br>Aroclor 1242        | LCSD           |        | <b>WG2798112-2</b> 75.9    | 83.9        |           | %        | 10   | 50          | 19-JUN-18              |
| Aroclor 1248                              |                |        | 76.3                       | 76.3        |           | %        | 0.0  | 50          | 19-JUN-18              |
| Aroclor 1254                              |                |        | 81.5                       | 79.1        |           | %        | 3.0  | 50          | 19-JUN-18              |
| Aroclor 1260                              |                |        | 97.1                       | 110.8       |           | %        | 13   | 50          | 19-JUN-18              |
| <b>WG2798112-1</b><br>Aroclor 1242        | МВ             |        |                            | <0.020      |           | ug/L     |      | 0.02        | 19-JUN-18              |
| Aroclor 1248                              |                |        |                            | <0.020      |           | ug/L     |      | 0.02        | 19-JUN-18              |
| Aroclor 1254                              |                |        |                            | <0.020      |           | ug/L     |      | 0.02        | 19-JUN-18              |
| Aroclor 1260                              |                |        |                            | <0.020      |           | ug/L     |      | 0.02        | 19-JUN-18              |
| Surrogate: 2-flu                          | orobipher      | nyl    |                            | 74.4        |           | %        |      | 50-150      | 19-JUN-18              |
| PH-WT                                     |                | Water  |                            |             |           |          |      |             |                        |
| Batch R4<br>WG2796759-4<br>pH             | 1083522<br>DUP |        | <b>WG2796759-3</b><br>8.90 | 8.90        | J         | pH units | 0.01 | 0.2         | 14-JUN-18              |
| <b>WG2796759-8</b><br>pH                  | DUP            |        | <b>WG2796759-7</b> 7.89    | 7.90        | J         | pH units | 0.01 | 0.2         | 14-JUN-18              |
| <b>WG2796759-2</b> pH                     | LCS            |        |                            | 6.98        | J         | pH units |      | 6.9-7.1     | 14-JUN-18              |
| <b>WG2796759-6</b><br>pH                  | LCS            |        |                            | 7.00        |           | pH units |      | 6.9-7.1     | 14-JUN-18              |
| VOC-511-HS-WT                             |                | Water  |                            |             |           |          |      |             |                        |



Workorder: L2111659 Report Date: 21-JUN-18 Page 9 of 14

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                 | Matrix | Reference  | Result | Qualifier | Units | RPD  | Limit | Analyzed  |
|----------------------|--------|------------|--------|-----------|-------|------|-------|-----------|
| VOC-511-HS-WT        | Water  |            |        |           |       |      |       |           |
| Batch R4082          | 559    |            |        |           |       |      |       |           |
|                      | UP     | WG2794395- |        | 000 114   | /1    | 11/4 | 00    |           |
| 1,1,1,2-Tetrachloro  |        | <0.50      | <0.50  | RPD-NA    | ug/L  | N/A  | 30    | 14-JUN-18 |
| 1,1,2,2-Tetrachloro  |        | <0.50      | <0.50  | RPD-NA    | ug/L  | N/A  | 30    | 14-JUN-18 |
| 1,1,1-Trichloroethar |        | <0.50      | <0.50  | RPD-NA    | ug/L  | N/A  | 30    | 14-JUN-18 |
| 1,1,2-Trichloroethar | ne     | <0.50      | <0.50  | RPD-NA    | ug/L  | N/A  | 30    | 14-JUN-18 |
| 1,1-Dichloroethane   | _      | <0.50      | <0.50  | RPD-NA    | ug/L  | N/A  | 30    | 14-JUN-18 |
| 1,1-Dichloroethylen  |        | <0.50      | <0.50  | RPD-NA    | ug/L  | N/A  | 30    | 14-JUN-18 |
| 1,2-Dibromoethane    |        | <0.20      | <0.20  | RPD-NA    | ug/L  | N/A  | 30    | 14-JUN-18 |
| 1,2-Dichlorobenzen   | е      | <0.50      | <0.50  | RPD-NA    | ug/L  | N/A  | 30    | 14-JUN-18 |
| 1,2-Dichloroethane   |        | <0.50      | <0.50  | RPD-NA    | ug/L  | N/A  | 30    | 14-JUN-18 |
| 1,2-Dichloropropand  |        | <0.50      | <0.50  | RPD-NA    | ug/L  | N/A  | 30    | 14-JUN-18 |
| 1,3-Dichlorobenzen   |        | <0.50      | <0.50  | RPD-NA    | ug/L  | N/A  | 30    | 14-JUN-18 |
| 1,4-Dichlorobenzen   | е      | <0.50      | <0.50  | RPD-NA    | ug/L  | N/A  | 30    | 14-JUN-18 |
| Acetone              |        | <30        | <30    | RPD-NA    | ug/L  | N/A  | 30    | 14-JUN-18 |
| Benzene              |        | <0.50      | <0.50  | RPD-NA    | ug/L  | N/A  | 30    | 14-JUN-18 |
| Bromodichlorometh    | ane    | <2.0       | <2.0   | RPD-NA    | ug/L  | N/A  | 30    | 14-JUN-18 |
| Bromoform            |        | <5.0       | <5.0   | RPD-NA    | ug/L  | N/A  | 30    | 14-JUN-18 |
| Bromomethane         |        | <0.50      | < 0.50 | RPD-NA    | ug/L  | N/A  | 30    | 14-JUN-18 |
| Carbon tetrachloride | е      | <0.20      | <0.20  | RPD-NA    | ug/L  | N/A  | 30    | 14-JUN-18 |
| Chlorobenzene        |        | <0.50      | <0.50  | RPD-NA    | ug/L  | N/A  | 30    | 14-JUN-18 |
| Chloroform           |        | <1.0       | <1.0   | RPD-NA    | ug/L  | N/A  | 30    | 14-JUN-18 |
| cis-1,2-Dichloroethy | /lene  | <0.50      | <0.50  | RPD-NA    | ug/L  | N/A  | 30    | 14-JUN-18 |
| cis-1,3-Dichloroprop | pene   | <0.30      | < 0.30 | RPD-NA    | ug/L  | N/A  | 30    | 14-JUN-18 |
| Dibromochlorometh    | nane   | <2.0       | <2.0   | RPD-NA    | ug/L  | N/A  | 30    | 14-JUN-18 |
| Dichlorodifluoromet  | hane   | <2.0       | <2.0   | RPD-NA    | ug/L  | N/A  | 30    | 14-JUN-18 |
| Ethylbenzene         |        | <0.50      | < 0.50 | RPD-NA    | ug/L  | N/A  | 30    | 14-JUN-18 |
| n-Hexane             |        | <0.50      | <0.50  | RPD-NA    | ug/L  | N/A  | 30    | 14-JUN-18 |
| m+p-Xylenes          |        | <0.40      | <0.40  | RPD-NA    | ug/L  | N/A  | 30    | 14-JUN-18 |
| Methyl Ethyl Ketone  | •      | <20        | <20    | RPD-NA    | ug/L  | N/A  | 30    | 14-JUN-18 |
| Methyl Isobutyl Keto | one    | <20        | <20    | RPD-NA    | ug/L  | N/A  | 30    | 14-JUN-18 |
| Methylene Chloride   |        | <5.0       | <5.0   | RPD-NA    | ug/L  | N/A  | 30    | 14-JUN-18 |
| MTBE                 |        | <2.0       | <2.0   | RPD-NA    | ug/L  | N/A  | 30    | 14-JUN-18 |
| o-Xylene             |        | <0.30      | <0.30  | RPD-NA    | ug/L  | N/A  | 30    | 14-JUN-18 |
| Styrene              |        | <0.50      | <0.50  |           | ug/L  |      |       | 14-JUN-18 |
|                      |        |            |        |           |       |      |       | -         |



Workorder: L2111659 Report Date: 21-JUN-18 Page 10 of 14

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                                        | Matrix | Reference  | Result         | Qualifier | Units    | RPD | Limit  | Analyzed    |
|---------------------------------------------|--------|------------|----------------|-----------|----------|-----|--------|-------------|
| VOC-511-HS-WT                               | Water  |            |                |           |          |     |        |             |
| Batch R408255                               | 59     |            |                |           |          |     |        |             |
| WG2794395-4 DUF                             | •      | WG2794395- | -              |           | <i>n</i> |     |        |             |
| Styrene                                     |        | <0.50      | <0.50          | RPD-NA    | ug/L     | N/A | 30     | 14-JUN-18   |
| Tetrachloroethylene                         |        | <0.50      | <0.50          | RPD-NA    | ug/L     | N/A | 30     | 14-JUN-18   |
| Toluene                                     |        | <0.50      | <0.50          | RPD-NA    | ug/L     | N/A | 30     | 14-JUN-18   |
| trans-1,2-Dichloroethy                      | ylene  | <0.50      | <0.50          | RPD-NA    | ug/L     | N/A | 30     | 14-JUN-18   |
| trans-1,3-Dichloroprop                      | pene   | < 0.30     | <0.30          | RPD-NA    | ug/L     | N/A | 30     | 14-JUN-18   |
| Trichloroethylene                           |        | <0.50      | <0.50          | RPD-NA    | ug/L     | N/A | 30     | 14-JUN-18   |
| Trichlorofluoromethan                       | ne     | <5.0       | <5.0           | RPD-NA    | ug/L     | N/A | 30     | 14-JUN-18   |
| Vinyl chloride                              |        | <0.50      | <0.50          | RPD-NA    | ug/L     | N/A | 30     | 14-JUN-18   |
| WG2794395-1 LCS                             |        |            | 105.2          |           | %        |     | 70.400 | 44 11111 40 |
| 1,1,1,2-Tetrachloroeth                      |        |            | 94.3           |           | %        |     | 70-130 | 14-JUN-18   |
| 1,1,2,2-Tetrachloroeth                      |        |            |                |           | %        |     | 70-130 | 14-JUN-18   |
| 1,1,1-Trichloroethane 1,1,2-Trichloroethane |        |            | 107.3<br>100.8 |           |          |     | 70-130 | 14-JUN-18   |
| • •                                         |        |            |                |           | %        |     | 70-130 | 14-JUN-18   |
| 1,1-Dichloroethane                          |        |            | 102.2          |           | %        |     | 70-130 | 14-JUN-18   |
| 1,1-Dichloroethylene                        |        |            | 94.2<br>99.4   |           | %        |     | 70-130 | 14-JUN-18   |
| 1,2-Dibromoethane                           |        |            |                |           |          |     | 70-130 | 14-JUN-18   |
| 1,2-Dichlorobenzene                         |        |            | 102.6<br>101.3 |           | %        |     | 70-130 | 14-JUN-18   |
| 1,2-Dichloroethane                          |        |            |                |           | %        |     | 70-130 | 14-JUN-18   |
| 1,2-Dichloropropane                         |        |            | 104.3          |           | %        |     | 70-130 | 14-JUN-18   |
| 1,3-Dichlorobenzene                         |        |            | 86.8           |           | %        |     | 70-130 | 14-JUN-18   |
| 1,4-Dichlorobenzene                         |        |            | 88.7           |           | %        |     | 70-130 | 14-JUN-18   |
| Acetone                                     |        |            | 115.7          |           | %        |     | 60-140 | 14-JUN-18   |
| Benzene                                     |        |            | 105.0          |           | %        |     | 70-130 | 14-JUN-18   |
| Bromodichloromethar                         | ne     |            | 100.4          |           | %        |     | 70-130 | 14-JUN-18   |
| Bromoform                                   |        |            | 100.3          |           | %        |     | 70-130 | 14-JUN-18   |
| Bromomethane                                |        |            | 96.9           |           | %        |     | 60-140 | 14-JUN-18   |
| Carbon tetrachloride                        |        |            | 109.7          |           | %        |     | 70-130 | 14-JUN-18   |
| Chlorobenzene                               |        |            | 103.4          |           | %        |     | 70-130 | 14-JUN-18   |
| Chloroform                                  |        |            | 105.2          |           | %        |     | 70-130 | 14-JUN-18   |
| cis-1,2-Dichloroethyle                      |        |            | 103.8          |           | %        |     | 70-130 | 14-JUN-18   |
| cis-1,3-Dichloroprope                       |        |            | 98.9           |           | %        |     | 70-130 | 14-JUN-18   |
| Dibromochloromethar                         |        |            | 105.8          |           | %        |     | 70-130 | 14-JUN-18   |
| Dichlorodifluorometha                       | ane    |            | 69.7           |           | %        |     | 50-140 | 14-JUN-18   |
|                                             |        |            |                |           |          |     |        |             |



Workorder: L2111659 Report Date: 21-JUN-18 Page 11 of 14

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                                       | Matrix         | Reference | Result | Qualifier | Units | RPD | Limit  | Analyzed    |
|--------------------------------------------|----------------|-----------|--------|-----------|-------|-----|--------|-------------|
| VOC-511-HS-WT                              | Water          |           |        |           |       |     |        |             |
| Batch R4082559                             |                |           |        |           |       |     |        |             |
| WG2794395-1 LCS                            |                |           | 400.4  |           | 0/    |     |        |             |
| Ethylbenzene                               |                |           | 102.1  |           | %     |     | 70-130 | 14-JUN-18   |
| n-Hexane                                   |                |           | 110.2  |           | %     |     | 70-130 | 14-JUN-18   |
| m+p-Xylenes                                |                |           | 101.9  |           | %     |     | 70-130 | 14-JUN-18   |
| Methyl Ethyl Ketone                        |                |           | 101.0  |           | %     |     | 60-140 | 14-JUN-18   |
| Methyl Isobutyl Ketone                     |                |           | 101.8  |           | %     |     | 60-140 | 14-JUN-18   |
| Methylene Chloride                         |                |           | 104.7  |           | %     |     | 70-130 | 14-JUN-18   |
| MTBE                                       |                |           | 108.1  |           | %     |     | 70-130 | 14-JUN-18   |
| o-Xylene                                   |                |           | 101.9  |           | %     |     | 70-130 | 14-JUN-18   |
| Styrene                                    |                |           | 100.4  |           | %     |     | 70-130 | 14-JUN-18   |
| Tetrachloroethylene                        |                |           | 102.9  |           | %     |     | 70-130 | 14-JUN-18   |
| Toluene                                    |                |           | 100.9  |           | %     |     | 70-130 | 14-JUN-18   |
| trans-1,2-Dichloroethyler                  |                |           | 103.0  |           | %     |     | 70-130 | 14-JUN-18   |
| trans-1,3-Dichloroproper                   | ne             |           | 100.4  |           | %     |     | 70-130 | 14-JUN-18   |
| Trichloroethylene                          |                |           | 109.0  |           | %     |     | 70-130 | 14-JUN-18   |
| Trichlorofluoromethane                     |                |           | 103.0  |           | %     |     | 60-140 | 14-JUN-18   |
| Vinyl chloride                             |                |           | 94.5   |           | %     |     | 60-140 | 14-JUN-18   |
| WG2794395-2 MB<br>1,1,1,2-Tetrachloroethan | 10             |           | <0.50  |           | ug/l  |     | 0.5    | 44 11111 40 |
| 1,1,2,2-Tetrachloroethan                   |                |           | <0.50  |           | ug/L  |     | 0.5    | 14-JUN-18   |
| 1,1,1-Trichloroethane                      | i <del>c</del> |           | <0.50  |           | ug/L  |     | 0.5    | 14-JUN-18   |
| 1,1,2-Trichloroethane                      |                |           | <0.50  |           | ug/L  |     | 0.5    | 14-JUN-18   |
| 1,1-Dichloroethane                         |                |           | <0.50  |           | ug/L  |     | 0.5    | 14-JUN-18   |
|                                            |                |           | <0.50  |           | ug/L  |     | 0.5    | 14-JUN-18   |
| 1,1-Dichloroethylene 1,2-Dibromoethane     |                |           |        |           | ug/L  |     | 0.5    | 14-JUN-18   |
|                                            |                |           | <0.20  |           | ug/L  |     | 0.5    | 14-JUN-18   |
| 1,2-Dichlorobenzene                        |                |           | <0.50  |           | ug/L  |     | 0.5    | 14-JUN-18   |
| 1,2-Dichloroethane                         |                |           | <0.50  |           | ug/L  |     |        | 14-JUN-18   |
| 1,2-Dichloropropane                        |                |           | <0.50  |           | ug/L  |     | 0.5    | 14-JUN-18   |
| 1,3-Dichlorobenzene                        |                |           | <0.50  |           | ug/L  |     | 0.5    | 14-JUN-18   |
| 1,4-Dichlorobenzene                        |                |           | <0.50  |           | ug/L  |     | 0.5    | 14-JUN-18   |
| Acetone                                    |                |           | <30    |           | ug/L  |     | 30     | 14-JUN-18   |
| Benzene                                    |                |           | <0.50  |           | ug/L  |     | 0.5    | 14-JUN-18   |
| Bromodichloromethane                       |                |           | <2.0   |           | ug/L  |     | 2      | 14-JUN-18   |
| Bromoform                                  |                |           | <5.0   |           | ug/L  |     | 5      | 14-JUN-18   |
| Bromomethane                               |                |           | <0.50  |           | ug/L  |     | 0.5    | 14-JUN-18   |



Workorder: L2111659 Report Date: 21-JUN-18 Page 12 of 14

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| VOC-511-HS-WT Wa<br>Batch R4082559            | nter      |                 |      |        |             |
|-----------------------------------------------|-----------|-----------------|------|--------|-------------|
| Batch R4082559                                |           |                 |      |        |             |
|                                               |           |                 |      |        |             |
| WG2794395-2 MB                                |           | 0.00            |      | 0.0    |             |
| Carbon tetrachloride Chlorobenzene            |           | <0.20           | ug/L | 0.2    | 14-JUN-18   |
|                                               |           | <0.50           | ug/L | 0.5    | 14-JUN-18   |
| Chloroform                                    |           | <1.0            | ug/L | 1      | 14-JUN-18   |
| cis-1,2-Dichloroethylene                      |           | <0.50           | ug/L | 0.5    | 14-JUN-18   |
| cis-1,3-Dichloropropene  Dibromochloromethane |           | <0.30           | ug/L | 0.3    | 14-JUN-18   |
|                                               |           | <2.0            | ug/L | 2      | 14-JUN-18   |
| Dichlorodifluoromethane                       |           | <2.0            | ug/L | 2      | 14-JUN-18   |
| Ethylbenzene                                  |           | <0.50           | ug/L | 0.5    | 14-JUN-18   |
| n-Hexane                                      |           | <0.50           | ug/L | 0.5    | 14-JUN-18   |
| m+p-Xylenes                                   |           | < 0.40          | ug/L | 0.4    | 14-JUN-18   |
| Methyl Ethyl Ketone                           |           | <20             | ug/L | 20     | 14-JUN-18   |
| Methyl Isobutyl Ketone                        |           | <20             | ug/L | 20     | 14-JUN-18   |
| Methylene Chloride                            |           | <5.0            | ug/L | 5      | 14-JUN-18   |
| MTBE                                          |           | <2.0            | ug/L | 2      | 14-JUN-18   |
| o-Xylene                                      |           | < 0.30          | ug/L | 0.3    | 14-JUN-18   |
| Styrene                                       |           | < 0.50          | ug/L | 0.5    | 14-JUN-18   |
| Tetrachloroethylene                           |           | < 0.50          | ug/L | 0.5    | 14-JUN-18   |
| Toluene                                       |           | < 0.50          | ug/L | 0.5    | 14-JUN-18   |
| trans-1,2-Dichloroethylene                    |           | < 0.50          | ug/L | 0.5    | 14-JUN-18   |
| trans-1,3-Dichloropropene                     |           | < 0.30          | ug/L | 0.3    | 14-JUN-18   |
| Trichloroethylene                             |           | <0.50           | ug/L | 0.5    | 14-JUN-18   |
| Trichlorofluoromethane                        |           | <5.0            | ug/L | 5      | 14-JUN-18   |
| Vinyl chloride                                |           | <0.50           | ug/L | 0.5    | 14-JUN-18   |
| Surrogate: 1,4-Difluorobenze                  | ne        | 98.8            | %    | 70-130 | 14-JUN-18   |
| Surrogate: 4-Bromofluoroben                   | zene      | 100.5           | %    | 70-130 | 14-JUN-18   |
| WG2794395-5 MS                                | WG2794395 | <b>-3</b> 105.4 | %    | 50.440 | 44 11111 40 |
| 1,1,1,2-Tetrachloroethane                     |           |                 |      | 50-140 | 14-JUN-18   |
| 1,1,2,2-Tetrachloroethane                     |           | 98.3            | %    | 50-140 | 14-JUN-18   |
| 1,1,1-Trichloroethane                         |           | 105.9           | %    | 50-140 | 14-JUN-18   |
| 1,1,2-Trichloroethane                         |           | 103.1           | %    | 50-140 | 14-JUN-18   |
| 1,1-Dichloroethane                            |           | 101.8           | %    | 50-140 | 14-JUN-18   |
| 1,1-Dichloroethylene                          |           | 90.2            | %    | 50-140 | 14-JUN-18   |
| 1,2-Dibromoethane                             |           | 102.6           | %    | 50-140 | 14-JUN-18   |
| 1,2-Dichlorobenzene                           |           | 102.5           | %    | 50-140 | 14-JUN-18   |



Workorder: L2111659 Report Date: 21-JUN-18 Page 13 of 14

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                     | Matrix | Reference  | Result | Qualifier | Units | RPD | Limit  | Analyzed  |
|--------------------------|--------|------------|--------|-----------|-------|-----|--------|-----------|
| VOC-511-HS-WT            | Water  |            |        |           |       |     |        |           |
| Batch R4082559           |        |            |        |           |       |     |        |           |
| WG2794395-5 MS           |        | WG2794395- |        |           | 0/    |     |        |           |
| 1,2-Dichloroethane       |        |            | 105.4  |           | %     |     | 50-140 | 14-JUN-18 |
| 1,2-Dichloropropane      |        |            | 106.4  |           | %     |     | 50-140 | 14-JUN-18 |
| 1,3-Dichlorobenzene      |        |            | 98.3   |           | %     |     | 50-140 | 14-JUN-18 |
| 1,4-Dichlorobenzene      |        |            | 84.7   |           | %     |     | 50-140 | 14-JUN-18 |
| Acetone                  |        |            | 119.5  |           | %     |     | 50-140 | 14-JUN-18 |
| Benzene                  |        |            | 105.2  |           | %     |     | 50-140 | 14-JUN-18 |
| Bromodichloromethane     |        |            | 103.4  |           | %     |     | 50-140 | 14-JUN-18 |
| Bromoform                |        |            | 105.0  |           | %     |     | 50-140 | 14-JUN-18 |
| Bromomethane             |        |            | 94.2   |           | %     |     | 50-140 | 14-JUN-18 |
| Carbon tetrachloride     |        |            | 107.4  |           | %     |     | 50-140 | 14-JUN-18 |
| Chlorobenzene            |        |            | 102.9  |           | %     |     | 50-140 | 14-JUN-18 |
| Chloroform               |        |            | 106.5  |           | %     |     | 50-140 | 14-JUN-18 |
| cis-1,2-Dichloroethylene |        |            | 104.9  |           | %     |     | 50-140 | 14-JUN-18 |
| cis-1,3-Dichloropropene  |        |            | 102.2  |           | %     |     | 50-140 | 14-JUN-18 |
| Dibromochloromethane     |        |            | 108.5  |           | %     |     | 50-140 | 14-JUN-18 |
| Dichlorodifluoromethan   | е      |            | 76.4   |           | %     |     | 50-140 | 14-JUN-18 |
| Ethylbenzene             |        |            | 99.2   |           | %     |     | 50-140 | 14-JUN-18 |
| n-Hexane                 |        |            | 103.3  |           | %     |     | 50-140 | 14-JUN-18 |
| m+p-Xylenes              |        |            | 99.2   |           | %     |     | 50-140 | 14-JUN-18 |
| Methyl Ethyl Ketone      |        |            | 105.4  |           | %     |     | 50-140 | 14-JUN-18 |
| Methyl Isobutyl Ketone   |        |            | 108.7  |           | %     |     | 50-140 | 14-JUN-18 |
| Methylene Chloride       |        |            | 105.5  |           | %     |     | 50-140 | 14-JUN-18 |
| MTBE                     |        |            | 109.2  |           | %     |     | 50-140 | 14-JUN-18 |
| o-Xylene                 |        |            | 99.9   |           | %     |     | 50-140 | 14-JUN-18 |
| Styrene                  |        |            | 99.7   |           | %     |     | 50-140 | 14-JUN-18 |
| Tetrachloroethylene      |        |            | 99.3   |           | %     |     | 50-140 | 14-JUN-18 |
| Toluene                  |        |            | 98.1   |           | %     |     | 50-140 | 14-JUN-18 |
| trans-1,2-Dichloroethyle | ene    |            | 100.7  |           | %     |     | 50-140 | 14-JUN-18 |
| trans-1,3-Dichloroprope  | ene    |            | 98.4   |           | %     |     | 50-140 | 14-JUN-18 |
| Trichloroethylene        |        |            | 108.2  |           | %     |     | 50-140 | 14-JUN-18 |
| Trichlorofluoromethane   |        |            | 98.5   |           | %     |     | 50-140 | 14-JUN-18 |
| Vinyl chloride           |        |            | 91.3   |           | %     |     | 50-140 | 14-JUN-18 |
|                          |        |            |        |           |       |     |        |           |

Workorder: L2111659 Report Date: 21-JUN-18

Client: Sirati & Partners Consultants Ltd. (Concord)

Page 14 of 14

12700 Keele St

King City ON L7B 1H5

Contact: CHAORAN LI

#### Legend:

CCV CVS

| Limit | ALS Control Limit (Data Quality Objectives) |
|-------|---------------------------------------------|
| DUP   | Duplicate                                   |
| RPD   | Relative Percent Difference                 |
| N/A   | Not Available                               |
| LCS   | Laboratory Control Sample                   |
| SRM   | Standard Reference Material                 |
| MS    | Matrix Spike                                |
| MSD   | Matrix Spike Duplicate                      |
| ADE   | Average Desorption Efficiency               |
| MB    | Method Blank                                |
| IRM   | Internal Reference Material                 |
| CRM   | Certified Reference Material                |

### Sample Parameter Qualifier Definitions:

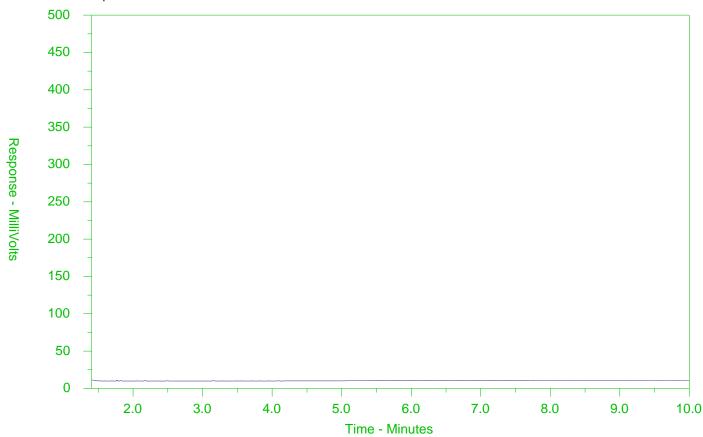
Continuing Calibration Verification

CVS Calibration Verification Standard LCSD Laboratory Control Sample Duplicate

| Qualifier | Description                                                                                        |
|-----------|----------------------------------------------------------------------------------------------------|
| J         | Duplicate results and limits are expressed in terms of absolute difference.                        |
| MS-B      | Matrix Spike recovery could not be accurately calculated due to high analyte background in sample. |
| RPD-NA    | Relative Percent Difference Not Available due to result(s) being less than detection limit.        |

#### **Hold Time Exceedances:**

All test results reported with this submission were conducted within ALS recommended hold times.


ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

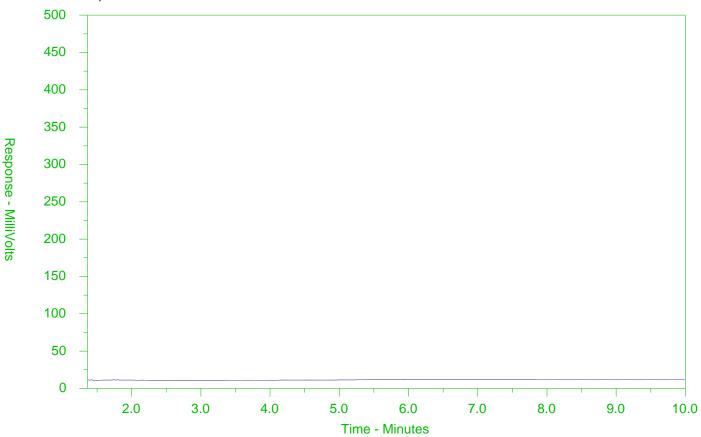
Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.



ALS Sample ID: L2111659-1 Client Sample ID: MW E3



| <b>←</b> -F2- | → ←                                      | —F3—→ <b>←</b> —F4— | <b>→</b> |  |  |  |  |
|---------------|------------------------------------------|---------------------|----------|--|--|--|--|
| nC10          | nC16                                     | nC34                | nC50     |  |  |  |  |
| 174°C         | 287°C                                    | 481°C               | 575°C    |  |  |  |  |
| 346°F         | 549°F                                    | 898°F               | 1067°F   |  |  |  |  |
| Gasolin       | Gasoline → Motor Oils/Lube Oils/Grease → |                     |          |  |  |  |  |
| <b>←</b>      | ← Diesel/Jet Fuels →                     |                     |          |  |  |  |  |


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

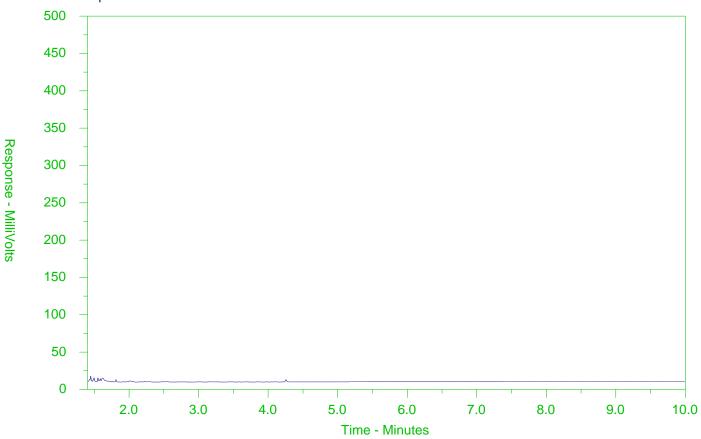
Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.



ALS Sample ID: L2111659-2 Client Sample ID: MW E4



| <b>←</b> -F2- | →←                                       | —F3—→ <b>←</b> —F4— | <b>&gt;</b> |  |  |  |  |
|---------------|------------------------------------------|---------------------|-------------|--|--|--|--|
| nC10          | nC16                                     | nC34                | nC50        |  |  |  |  |
| 174°C         | 287°C                                    | 481°C               | 575°C       |  |  |  |  |
| 346°F         | 549°F                                    | 898°F               | 1067⁰F      |  |  |  |  |
| Gasolin       | Gasoline → Motor Oils/Lube Oils/Grease → |                     |             |  |  |  |  |
| <b>←</b>      | -Diesel/Je                               | t Fuels→            |             |  |  |  |  |


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

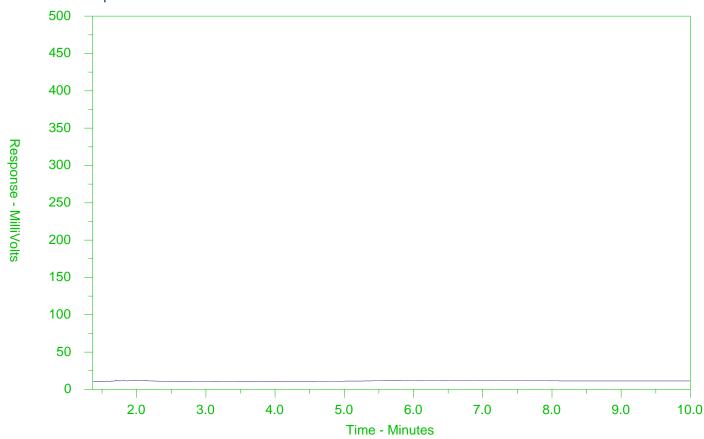
Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.



ALS Sample ID: L2111659-3 Client Sample ID: MW E5



| <b>←</b> -F2- | → ←        | —F3—→ <b>←</b> F4— | •                         |
|---------------|------------|--------------------|---------------------------|
| nC10          | nC16       | nC34               | nC50                      |
| 174°C         | 287°C      | 481°C              | 575°C                     |
| 346°F         | 549°F      | 898°F              | 1067°F                    |
| Gasolin       | e <b>→</b> | ← Mot              | or Oils/Lube Oils/Grease- |
| <b>←</b>      | -Diesel/J  | et Fuels→          |                           |


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

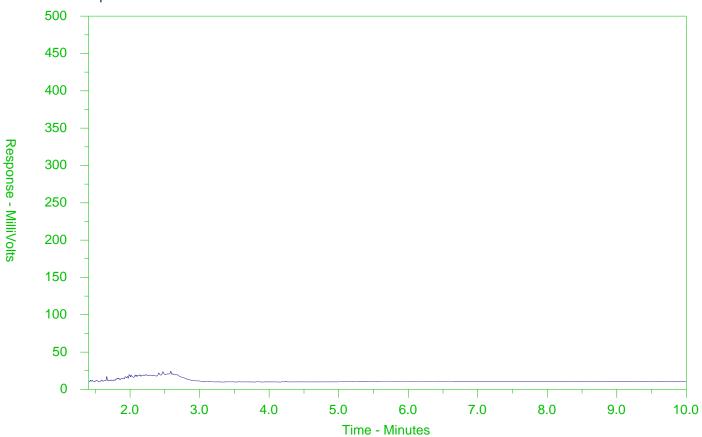
Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.



ALS Sample ID: L2111659-4 Client Sample ID: MW E9



| <b>←</b> -F2- | →-         | —F3—→←—F4— | <b>&gt;</b>               |
|---------------|------------|------------|---------------------------|
| nC10          | nC16       | nC34       | nC50                      |
| 174°C         | 287°C      | 481°C      | 575°C                     |
| 346°F         | 549°F      | 898°F      | 1067⁰F                    |
| Gasolin       | e <b>→</b> | ← Mot      | or Oils/Lube Oils/Grease- |
| <b>←</b>      | -Diesel/Je | et Fuels→  |                           |


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

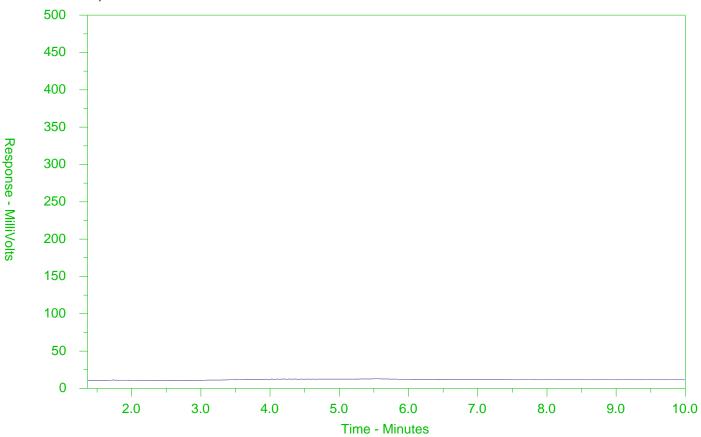
Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.



ALS Sample ID: L2111659-5 Client Sample ID: MW E10



| <b>←</b> -F2- | →←                                       | _F3F4- | <b>→</b> |  |  |  |  |
|---------------|------------------------------------------|--------|----------|--|--|--|--|
| nC10          | nC16                                     | nC34   | nC50     |  |  |  |  |
| 174°C         | 287°C                                    | 481°C  | 575°C    |  |  |  |  |
| 346°F         | 549°F                                    | 898°F  | 1067°F   |  |  |  |  |
| Gasolin       | Gasoline → Motor Oils/Lube Oils/Grease → |        |          |  |  |  |  |
| <b>←</b>      | -Diesel/Jet                              | Fuels→ |          |  |  |  |  |


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

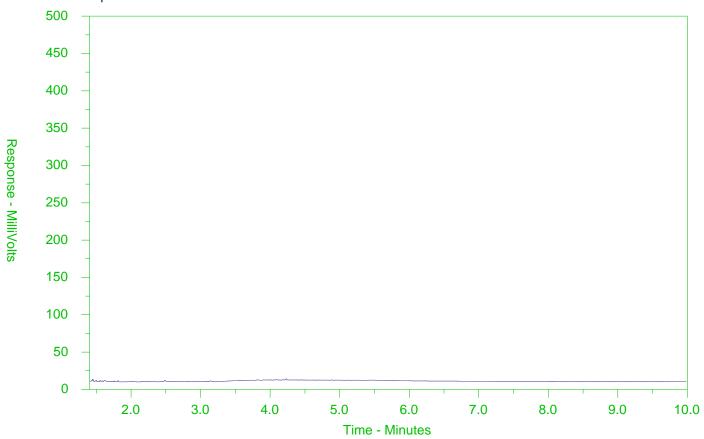
Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.



ALS Sample ID: L2111659-6 Client Sample ID: MW E6



| <b>←</b> -F2- | →←         | —F3—→ <b>←</b> —F4— | <b>&gt;</b>              |
|---------------|------------|---------------------|--------------------------|
| nC10          | nC16       | nC34                | nC50                     |
| 174°C         | 287°C      | 481°C               | 575°C                    |
| 346°F         | 549°F      | 898°F               | 1067⁰F                   |
| Gasolin       | e <b>→</b> | ← Mot               | or Oils/Lube Oils/Grease |
| <b>←</b>      | -Diesel/Je | t Fuels→            |                          |


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

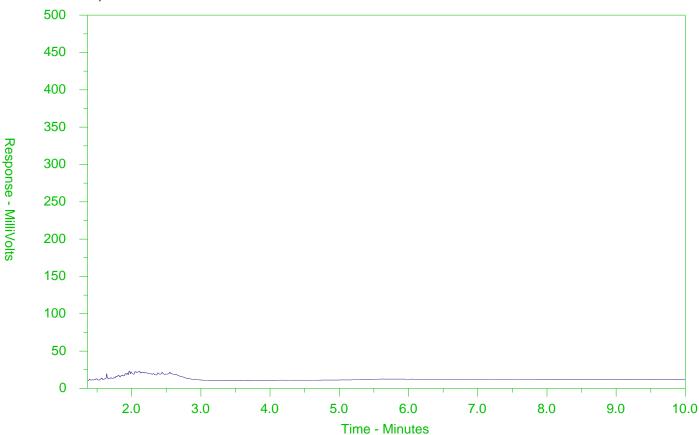
Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.



ALS Sample ID: L2111659-7 Client Sample ID: MW E7



| <b>←</b> -F2- | →-         | —F3—→←—F4— | <b>&gt;</b>               |
|---------------|------------|------------|---------------------------|
| nC10          | nC16       | nC34       | nC50                      |
| 174°C         | 287°C      | 481°C      | 575°C                     |
| 346°F         | 549°F      | 898°F      | 1067⁰F                    |
| Gasolin       | e <b>→</b> | ← Mot      | or Oils/Lube Oils/Grease- |
| <b>←</b>      | -Diesel/Je | et Fuels→  |                           |


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.



ALS Sample ID: L2111659-8 Client Sample ID: DUP-W2



| <b>←</b> -F2- | →←                                       | _F3F4- | <b>→</b> |  |  |  |  |
|---------------|------------------------------------------|--------|----------|--|--|--|--|
| nC10          | nC16                                     | nC34   | nC50     |  |  |  |  |
| 174°C         | 287°C                                    | 481°C  | 575°C    |  |  |  |  |
| 346°F         | 549°F                                    | 898°F  | 1067°F   |  |  |  |  |
| Gasolin       | Gasoline → Motor Oils/Lube Oils/Grease → |        |          |  |  |  |  |
| <b>←</b>      | -Diesel/Jet                              | Fuels→ |          |  |  |  |  |

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

# Environmental

1. If any water samples are taken from a Regulated Drinking Water (OW). System, please submit using an Authorized DW COC form.

# Chain of Custody (COC) / Analytica' Request Form

Canada Toll Free: 1 800 668 9878

COC Number: 17 - 624411

| www.aisgiopal.com                                                        |                                       |                                                  |                          |                |                |                              |                  |                |              |              |            |                |               |           |                |                           |                 |               |
|--------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------|--------------------------|----------------|----------------|------------------------------|------------------|----------------|--------------|--------------|------------|----------------|---------------|-----------|----------------|---------------------------|-----------------|---------------|
| Report To Contact and company name below will appear on the final report |                                       | Report Fc                                        |                          |                |                | Select S                     | ervice l         | Level Belo     | w - Cont     | act your     | AM to a    | onfirm a       | II E&P T/     | Ns (surc  | harges n       | ay appl                   | ly)             |               |
| Company: Sirouti & Countries Consultant (Ar                              | Select Report Fo                      | rmat: PDF                                        | X EXCEL   E              | OD (DIGITAL)   | ٠.             | Regula                       | r [R]            | Stan           | dard TAT if  | received     | by 3 pm -  | business o     | lays - no s   | urcharges | арріу          |                           |                 |               |
| Contact: Chapyon 1                                                       | Quality Control (C                    | C) Report with Repo                              | ort 💢 YES                | NO             | , veys)        | 4 day [P                     | 4-20%]           |                | ENCY         | 1 Bus        | iness d    | lay [E-10      | 0%]           |           | •              |                           |                 |               |
| Phone: 90-835 1582 Ext.23/                                               | Compare Resu                          | its to Criteria on Report - p                    | provide details below if | box checked    | TIORI<br>Temen | 3 day [P:                    | 3-25%]           |                | AERG         | Same         | Day, W     | eekend (       | or Statu      | tory holi | iday (E2       | 200%                      |                 |               |
| Company address below will appear on the final report                    | Select Distribution                   | n: EMAIL                                         | MAIL                     | FAX            | (Bus P         | 2 day.[P:                    | 2-50%]           |                | "            | (Labor       | atory o    | pening         | lees ma       | y appiy)  | 1 .            |                           |                 | 닉             |
| Street: 12 Roy Kaole St.                                                 | Email 1 or Fax                        | CHAORAULTLA                                      | SPINSU                   | TANISTOCA      |                | Date and Ti                  | me Requ          | ired for all   | &P TATs:     | 1            | -          | <del></del>    | dd-m          | тт-уу     | hh:mm          |                           |                 | $\neg$        |
| City/Province: King CAS                                                  | Email 2                               | , (                                              | <del>/ - 1</del>         | <del>/ (</del> | For tests      | that can not                 | be perform       | ned accordin   | g to the ser | vice level s | elected, y | ou will be c   | ontacted.     |           |                |                           |                 | ╗             |
| Postal Code: LRB 1H5                                                     | Email 3                               | •                                                |                          |                |                |                              |                  |                |              | Ana          | lysis R    | equest         |               |           |                |                           |                 | コ             |
| Invoice To Same as Report To X YES NO                                    |                                       | Invoice Dis                                      | tribution                |                |                |                              | Indicate         | Filtered (F),  | Preserved    | (P) or Filte | red and i  | Preserved (    | F/P) below    | ,         |                |                           | ails            | ٦             |
| Copy of Invoice with Report YES NO                                       | Select Invoice Da                     | stribution: X EN                                 | 1AIL MAIL                | FAX .          |                |                              |                  |                |              |              |            |                | T . T         |           |                |                           | r detai         |               |
| Company:                                                                 | Email 1 or Fax (                      | HADRANKI(a)                                      | SPOONSUCIA               | NISCID CAL     |                |                              |                  |                |              |              | •          |                | "             |           |                |                           | ŧ               |               |
| Contact:                                                                 | Email 2                               |                                                  | *                        | , , ,          |                | P.                           |                  |                |              |              |            |                |               |           | 1:             |                           | Ē               |               |
| Project Information                                                      | 0                                     | il and Gas Required                              | Fields (client us        | se)            |                |                              |                  |                |              |              |            |                |               |           |                |                           | provide further | .             |
| ALS Account # / Quote #:                                                 | AFE/Cost Center:                      |                                                  | PO#                      |                |                |                              | . ]              |                | ·            |              |            |                |               |           |                | ľ                         | p.              |               |
| Job#: SD(8-306-20                                                        | Major/Minor Code:                     |                                                  | Routing Code:            |                |                |                              | 1                |                |              |              |            |                |               |           | '              |                           | E S             | SE            |
| PO/AFE:                                                                  | Requisitioner:                        |                                                  |                          |                |                | 14                           |                  | 1 1            | .   .        |              |            |                |               |           | ŀ              |                           | · 🔓             | ₹             |
| LSD: ,                                                                   | Location:                             |                                                  | •                        | •              | S X            | 3.                           |                  |                | .,           |              |            |                |               |           |                | õ                         | 된               | CONTAIN       |
| ALS Lab Work Order # (lab use only): LQ1)1659 38                         | ALS Contact:                          | ЮU                                               | Sampler:                 | •              | 1              | _                            | y v              | ↓              |              |              | `          |                | 1 1           | 1         | 1              | NO                        | 828             | r i           |
| 13B                                                                      | ALO COMBC:                            | RH                                               | Gumpier.                 |                |                | 五字                           | <u> </u>         |                |              |              |            | ŀ              | 1 .           |           |                | ES                        | <u>.5</u>       | <u>ا</u> ۾    |
| ALS Sample # Sample Identification and/or Coordinates                    |                                       | Date                                             | Time                     | Sample Type    | 孟              | 出                            | 3₹               |                |              |              |            |                | 1             |           |                | SAMPI                     | Sample          | ğ             |
| (lab use only) (This description will appear on the report)              |                                       | (dd-mmm-yy)                                      | (hh:mm)                  | 1              |                |                              | <u> </u>         |                | `            |              | -          |                | -             | _         |                | S,                        |                 | NUM           |
| MW\$E3                                                                   |                                       | 0-95-18                                          | (3:00)                   | GW             | X              |                              |                  | Ľ              |              |              |            |                |               |           | <u> </u>       |                           |                 | $\mathcal{L}$ |
| MO\$ E4                                                                  |                                       | 1                                                | 13:15                    | 1              |                | $X \mid X$                   | $\mathcal{X}_{}$ |                |              |              |            |                |               |           | -              |                           | //              | 13            |
| MW FES                                                                   |                                       |                                                  | (3×30 ·                  |                | ľ.             | $\mathbf{x} \mid \mathbf{x}$ | dX.              |                |              |              |            | , '            |               |           |                |                           | * [i            | 3             |
| MW&E9                                                                    |                                       |                                                  | 13:45                    |                | X              | -                            | T "              |                |              |              |            |                |               |           |                |                           |                 | 4             |
| MWDELO                                                                   |                                       |                                                  | 14:00                    |                | X              | 4                            |                  |                |              |              |            | ٦.             | 1             | 1.        |                | . 1                       |                 | 4             |
| Mw6                                                                      |                                       |                                                  | 14:30                    | . ]            | X              |                              | T                |                | <u> </u>     |              |            |                | 1 1           |           | 1              |                           |                 | 4             |
| FWM                                                                      |                                       | <del>                                     </del> | 15:80                    | † /            | X              |                              | -                |                |              | 1 1          |            | .              | 1             |           | 1.             | ~                         |                 |               |
| 1720-(1)7                                                                |                                       | 1, -                                             | 15,00                    | . 7            | Ϋ́             | <del></del>                  |                  | 1              |              | +            | $\dashv$   |                | +             |           | <del>-  </del> | -                         |                 | 4             |
| 14.73                                                                    |                                       |                                                  | 1                        |                |                | <u>.</u>                     | <del></del>      | <del>  -</del> | +-           | 1- 1         |            | - 1            | <del>  </del> | -+-       | +-             | $\vdash$                  |                 | 4             |
|                                                                          | •                                     |                                                  | 4 200                    |                | 7/5            | <del>-</del>                 | + -              | +              | +            | + +          |            |                |               |           |                | $\vdash \vdash \vdash$    |                 | 4             |
|                                                                          | <del></del> _                         |                                                  |                          | <del> </del>   |                | $\dashv$                     |                  | <del>   </del> |              |              |            |                | +-+           |           | +-             |                           | <u></u>         |               |
|                                                                          |                                       |                                                  |                          |                |                |                              |                  |                |              | 1            |            |                |               |           | <u> </u>       |                           |                 | _             |
|                                                                          |                                       |                                                  | <u></u>                  | <u> </u>       |                |                              | 1                |                |              | للل          |            |                |               |           |                |                           |                 |               |
| Drinking Water (DW) Samples¹ (client use)                                |                                       |                                                  | ting on the drop-d       | own list below | <u> </u>       |                              |                  | SAM            |              |              |            | ECEIVE         |               |           |                |                           |                 | _             |
|                                                                          | · · · · · · · · · · · · · · · · · · · | ctronic COC only)                                |                          |                | Frozen         |                              |                  |                |              | Observa      |            | Yes            |               | •         | No             |                           |                 |               |
| T YES T NO                                                               | <u>-1</u>                             |                                                  |                          |                | ice Pa         | cks<br>g Initiated           | •                | Cubes [        | Cust         | ody sea      | Intact     | Yes            |               | J         | No             |                           |                 |               |
| Are samples for human consumption/ use?                                  | >1<br>>2 kPj                          | 7                                                |                          | •              | COOIN          |                              | <u> </u>         | ER TEMPE       | PATHRES      | °C           |            |                | EMAL A        | OCLER TI  | MPÉRATI        | IRES °C                   |                 |               |
| A ST                                                                     | ンブばれ                                  | _                                                |                          |                |                |                              | AL COCK          | EK (EMPE       | AIGILO       | <del>~</del> |            | 1              | (-)           | OOLER II  | - CIVIT        | inca C                    |                 | $\dashv$      |
| YES   NO SHIPMENT RELEASE (client use)                                   | -Y                                    | INITIAL SHIPMEN                                  | T RECEPTION //-          | ah usa ontu)   |                | <del></del>                  |                  | Ļ.—.           |              | i guip       | MENT       | RECEPT         | <u> </u>      |           | 1417           | 1                         |                 | $\dashv$      |
| Released by Company ( Date: 7 ( Time:                                    | Received by:                          | ATTIME OF HE INCH                                | Date:                    | -o dae omy)    | Time:          | Re                           | ceived I         | by:            | <b>7</b> /}  |              | Date:      | A IT           | /// lac       |           | $\mathcal{T}f$ | Time :                    | 7               | ᄸ             |
| ( HPCK+1 /2 Jun (-11)                                                    | <u></u>                               |                                                  |                          |                |                |                              |                  |                | 1            | _            |            | N.H.           | I_W           |           | <u> 110</u>    | $\bigsqcup_{\mathcal{L}}$ | $T_{C}$         | X D           |
| REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION            | from the coordinated                  |                                                  |                          | COPY YELLO     |                |                              |                  |                | IΤ           |              |            | <del>0 .</del> |               | 1         |                |                           | JULY 2017       | FRONT         |



Sirati & Partners Consultants Ltd.

(Concord)

ATTN: Chaoran Li 12700 Keele St

King City ON L7B 1H5

Date Received: 13-JUN-18

Report Date: 21-JUN-18 13:46 (MT)

Version: FINAL

Client Phone: 905-833-1582

## Certificate of Analysis

Lab Work Order #: L2111856
Project P.O. #: SP18-306-20
Job Reference: SP18-306-20
C of C Numbers: 17-622372

Legal Site Desc:

Olich Hawthone

Rick Hawthorne Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 5730 Coopers Avenue, Unit #26 , Mississauga, ON L4Z 2E9 Canada | Phone: +1 905 507 6910 | Fax: +1 905 507 6927 ALS CANADA LTD Part of the ALS Group An ALS Limited Company





L2111856 CONT'D....

Job Reference: SP18-306-20

PAGE 2 of 13

21-JUN-18 13:46 (MT)

### **Summary of Guideline Exceedances**

| Guideline<br>ALS ID | Client ID                 | Grouping                           | Analyta                                    | Result | Guideline Limit | Unit  |
|---------------------|---------------------------|------------------------------------|--------------------------------------------|--------|-----------------|-------|
| ALS ID              | Cilent iD                 | Grouping                           | Analyte                                    | Nesuit | Guideline Limit | Offic |
| Ontario Reg         | gulation 153/04 - April 1 | 15, 2011 Standards - T1-Ground Wat | er-All Types of Property Uses              |        |                 |       |
| L2111856-2          | MW-E2                     | Dissolved Metals                   | Beryllium (Be)-Dissolved                   | <1.0   | 0.5             | ug/L  |
|                     |                           |                                    | Silver (Ag)-Dissolved                      | <0.50  | 0.3             | ug/L  |
|                     |                           |                                    | Vanadium (V)-Dissolved                     | <5.0   | 3.9             | ug/L  |
| L2111856-4          | MW-E7                     | Anions and Nutrients               | Chloride (CI)                              | 1280   | 790             | mg/L  |
|                     |                           | Dissolved Metals                   | Beryllium (Be)-Dissolved                   | <1.0   | 0.5             | ug/L  |
|                     |                           |                                    | Silver (Ag)-Dissolved                      | < 0.50 | 0.3             | ug/L  |
|                     |                           |                                    | Vanadium (V)-Dissolved                     | <5.0   | 3.9             | ug/L  |
| _2111856-6          | MW-E11                    | Hydrocarbons                       | F1 (C6-C10)                                | 606    | 420             | ug/L  |
|                     |                           |                                    | F2 (C10-C16)                               | 1650   | 150             | ug/L  |
| 2111856-9           | DUP-W1                    | Dissolved Metals                   | Beryllium (Be)-Dissolved                   | <1.0   | 0.5             | ug/L  |
|                     |                           |                                    | Silver (Ag)-Dissolved                      | < 0.50 | 0.3             | ug/L  |
|                     |                           |                                    | Vanadium (V)-Dissolved                     | <5.0   | 3.9             | ug/L  |
| )ntario Reg         | gulation 153/04 - April 1 | 15, 2011 Standards - T2-Ground Wat | er (Coarse Soil)-All Types of Property Use |        |                 |       |
| _2111856-4          | MW-E7                     | Anions and Nutrients               | Chloride (CI)                              | 1280   | 790             | mg/L  |
| L2111856-6          | MW-E11                    | Hydrocarbons                       | F2 (C10-C16)                               | 1650   | 150             | ug/L  |
|                     |                           |                                    |                                            |        |                 |       |

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2111856 CONT'D....

Job Reference: SP18-306-20

PAGE 3 of 13

21-JUN-18 13:46 (MT)

#### **Physical Tests - WATER**

| <b>,</b>     |          |           | Lab ID | 10444050.0 | 1.0444050.4 | 1.0444050.0 |
|--------------|----------|-----------|--------|------------|-------------|-------------|
|              |          |           | Lab ID | L2111856-2 | L2111856-4  | L2111856-9  |
|              | 5        | Sampl     | e Date | 13-JUN-18  | 13-JUN-18   | 13-JUN-18   |
|              |          | Sample ID |        |            | MW-E7       | DUP-W1      |
|              |          |           |        |            |             |             |
|              |          | Guide     | Limits |            |             |             |
| Analyte      | Unit     | #1        | #2     |            |             |             |
| Conductivity | mS/cm    | -         | -      | 1.69       | 3.43        | 1.69        |
| рН           | pH units | -         | -      | 7.66       | 7.71        | 7.72        |
|              |          |           |        |            |             |             |

Guide Limit #1: T1-Ground Water-All Types of Property Uses

Guide Limit #2: T2-Ground Water (Coarse Soil)-All Types of Property Use

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2111856 CONT'D....

Job Reference: SP18-306-20

PAGE 4 of 13

21-JUN-18 13:46 (MT)

#### **Anions and Nutrients - WATER**

|       | ı      | Lab ID                 | L2111856-2                                         | L2111856-4                                          | L2111856-9                                                          |
|-------|--------|------------------------|----------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------|
|       | Sample | e Date                 | 13-JUN-18                                          | 13-JUN-18                                           | 13-JUN-18                                                           |
|       | Sam    | ple ID                 | MW-E2                                              | MW-E7                                               | DUP-W1                                                              |
|       | Guide  | Limits                 |                                                    |                                                     |                                                                     |
| 11.24 |        |                        |                                                    |                                                     |                                                                     |
| Unit  | #1     | #2                     |                                                    |                                                     |                                                                     |
|       |        | Sample<br>Sam<br>Guide | Lab ID<br>Sample Date<br>Sample ID<br>Guide Limits | Sample Date 13-JUN-18 Sample ID MW-E2  Guide Limits | Sample Date 13-JUN-18 13-JUN-18 Sample ID MW-E2 MW-E7  Guide Limits |

Guide Limit #1: T1-Ground Water-All Types of Property Uses Guide Limit #2: T2-Ground Water (Coarse Soil)-All Types of Property Use

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2111856 CONT'D....

Job Reference: SP18-306-20

PAGE 5 of 13

21-JUN-18 13:46 (MT)

### **Cyanides - WATER**

| <u> </u>                |      |       |         |            |            |            |
|-------------------------|------|-------|---------|------------|------------|------------|
|                         |      |       | Lab ID  | L2111856-2 | L2111856-4 | L2111856-9 |
|                         |      | Sampl | e Date  | 13-JUN-18  | 13-JUN-18  | 13-JUN-18  |
|                         |      | San   | nple ID | MW-E2      | MW-E7      | DUP-W1     |
|                         |      | Cuido | Limits  |            |            |            |
|                         |      |       | LIIIIII |            |            |            |
| Analyte                 | Unit | #1    | #2      |            |            |            |
| Cyanide, Weak Acid Diss | ug/L | 5     | 66      | <2.0       | <2.0       | <2.0       |
|                         |      |       |         |            |            |            |

Guide Limit #1: T1-Ground Water-All Types of Property Uses Guide Limit #2: T2-Ground Water (Coarse Soil)-All Types of Property Use

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2111856 CONT'D....

Job Reference: SP18-306-20

PAGE 6 of 13

21-JUN-18 13:46 (MT)

#### **Dissolved Metals - WATER**

|                                       |      | Lab ID<br>Sample Date<br>Sample ID<br>Guide Limits<br>Unit #1 #2 |        | L2111856-2<br>13-JUN-18<br>MW-E2 | L2111856-4<br>13-JUN-18<br>MW-E7 | L2111856-9<br>13-JUN-18<br>DUP-W1 |  |
|---------------------------------------|------|------------------------------------------------------------------|--------|----------------------------------|----------------------------------|-----------------------------------|--|
| Analyte                               | Unit |                                                                  |        |                                  |                                  |                                   |  |
| Dissolved Mercury Filtration Location |      | -                                                                | -      | NA                               | NA                               | NA                                |  |
| Dissolved Metals Filtration Location  |      | -                                                                | -      | FIELD                            | FIELD                            | FIELD                             |  |
| Antimony (Sb)-Dissolved               | ug/L | 1.5                                                              | 6      | <1.0 DLHC                        | <1.0 DLHC                        | <1.0 DLHC                         |  |
| Arsenic (As)-Dissolved                | ug/L | 13                                                               | 25     | 3.8 DLHC                         | 2.2 DLHC                         | 3.8 DLHC                          |  |
| Barium (Ba)-Dissolved                 | ug/L | 610                                                              | 1000   | 52.7 DLHC                        | 246 DLHC                         | 51.2 DLHC                         |  |
| Beryllium (Be)-Dissolved              | ug/L | 0.5                                                              | 4      | <1.0 DLHC                        | <1.0 DLHC                        | <1.0 DLHC                         |  |
| Boron (B)-Dissolved                   | ug/L | 1700                                                             | 5000   | 570 DLHC                         | 430 DLHC                         | 570 DLHC                          |  |
| Cadmium (Cd)-Dissolved                | ug/L | 0.5                                                              | 2.7    | <0.050 <sup>DLHC</sup>           | 0.064 DLHC                       | <0.050 <sup>DLHC</sup>            |  |
| Chromium (Cr)-Dissolved               | ug/L | 11                                                               | 50     | <5.0 DLHC                        | <5.0 DLHC                        | <5.0 DLHC                         |  |
| Cobalt (Co)-Dissolved                 | ug/L | 3.8                                                              | 3.8    | <1.0 DLHC                        | 1.2 DLHC                         | <1.0 DLHC                         |  |
| Copper (Cu)-Dissolved                 | ug/L | 5                                                                | 87     | <2.0 DLHC                        | <2.0 DLHC                        | <2.0 DLHC                         |  |
| Lead (Pb)-Dissolved                   | ug/L | 1.9                                                              | 10     | <0.50 DLHC                       | 0.70 DLHC                        | <0.50 DLHC                        |  |
| Mercury (Hg)-Dissolved                | ug/L | 0.1                                                              | 0.29   | <0.010                           | <0.010                           | <0.010                            |  |
| Molybdenum (Mo)-Dissolved             | ug/L | 23                                                               | 70     | 1.08 DLHC                        | 3.22 DLHC                        | 1.03 DLHC                         |  |
| Nickel (Ni)-Dissolved                 | ug/L | 14                                                               | 100    | 11.9 DLHC                        | <5.0 DLHC                        | 11.3 DLHC                         |  |
| Selenium (Se)-Dissolved               | ug/L | 5                                                                | 10     | <0.50 DLHC                       | <0.50 DLHC                       | <0.50 DLHC                        |  |
| Silver (Ag)-Dissolved                 | ug/L | 0.3                                                              | 1.5    | <0.50 DLHC                       | <0.50 DLHC                       | <0.50 DLHC                        |  |
| Sodium (Na)-Dissolved                 | ug/L | 490000                                                           | 490000 | 110000 <sup>DLHC</sup>           | 411000 <sup>DLHC</sup>           | 106000 <sup>DLHC</sup>            |  |
| Thallium (TI)-Dissolved               | ug/L | 0.5                                                              | 2      | <0.10 DLHC                       | <0.10 DLHC                       | <0.10 DLHC                        |  |
| Uranium (U)-Dissolved                 | ug/L | 8.9                                                              | 20     | 0.61 DLHC                        | 1.18 DLHC                        | 0.63 DLHC                         |  |
| Vanadium (V)-Dissolved                | ug/L | 3.9                                                              | 6.2    | <5.0 DLHC                        | <5.0 DLHC                        | <5.0 DLHC                         |  |
| Zinc (Zn)-Dissolved                   | ug/L | 160                                                              | 1100   | <10 DLHC                         | <10 DLHC                         | <10 DLHC                          |  |

Guide Limit #1: T1-Ground Water-All Types of Property Uses

Guide Limit #2: T2-Ground Water (Coarse Soil)-All Types of Property Use

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2111856 CONT'D....

Job Reference: SP18-306-20

PAGE 7 of 13

21-JUN-18 13:46 (MT)

### **Speciated Metals - WATER**

|                      |      |       | Lab ID | L2111856-2 | L2111856-4 | L2111856-9 |
|----------------------|------|-------|--------|------------|------------|------------|
|                      |      | Sampl | e Date | 13-JUN-18  | 13-JUN-18  | 13-JUN-18  |
|                      |      | San   | ple ID | MW-E2      | MW-E7      | DUP-W1     |
|                      |      |       |        |            |            |            |
|                      |      | Guide | Limits |            |            |            |
| Analyte              | Unit | #1    | #2     |            |            |            |
| Chromium, Hexavalent | ug/L | 25    | 25     | <0.50      | <0.50 SFP  | <0.50      |

Guide Limit #1: T1-Ground Water-All Types of Property Uses Guide Limit #2: T2-Ground Water (Coarse Soil)-All Types of Property Use

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2111856 CONT'D....

Job Reference: SP18-306-20

PAGE 8 of 13

21-JUN-18 13:46 (MT)

### **Volatile Organic Compounds - WATER**

|                                   |      | Sample      | Lab ID<br>e Date<br>ple ID | L2111856-3<br>13-JUN-18<br>MW-E6 | L2111856-10<br>13-JUN-18<br>TRIP BLANK 1 |
|-----------------------------------|------|-------------|----------------------------|----------------------------------|------------------------------------------|
| Analyte                           | Unit | Guide<br>#1 | Limits<br>#2               |                                  |                                          |
| Acetone                           | ug/L | 2700        | 2700                       | <30                              | <30                                      |
| Benzene                           | ug/L | 0.5         | 5                          | <0.50                            | <0.50                                    |
| Bromodichloromethane              | ug/L | 2           | 16                         | <2.0                             | <2.0                                     |
| Bromoform                         | ug/L | 5           | 25                         | <5.0                             | <5.0                                     |
| Bromomethane                      | ug/L | 0.89        | 0.89                       | <0.50                            | <0.50                                    |
| Carbon tetrachloride              | ug/L | 0.2         | 0.79                       | <0.20                            | <0.20                                    |
| Chlorobenzene                     | ug/L | 0.5         | 30                         | <0.50                            | <0.50                                    |
| Dibromochloromethane              | ug/L | 2           | 25                         | <2.0                             | <2.0                                     |
| Chloroform                        | ug/L | 2           | 2.4                        | <1.0                             | <1.0                                     |
| 1,2-Dibromoethane                 | ug/L | 0.2         | 0.2                        | <0.20                            | <0.20                                    |
| 1,2-Dichlorobenzene               | ug/L | 0.5         | 3                          | <0.50                            | <0.50                                    |
| 1,3-Dichlorobenzene               | ug/L | 0.5         | 59                         | <0.50                            | <0.50                                    |
| 1,4-Dichlorobenzene               | ug/L | 0.5         | 1                          | <0.50                            | <0.50                                    |
| Dichlorodifluoromethane           | ug/L | 590         | 590                        | <2.0                             | <2.0                                     |
| 1,1-Dichloroethane                | ug/L | 0.5         | 5                          | <0.50                            | <0.50                                    |
| 1,2-Dichloroethane                | ug/L | 0.5         | 1.6                        | <0.50                            | <0.50                                    |
| 1,1-Dichloroethylene              | ug/L | 0.5         | 1.6                        | <0.50                            | <0.50                                    |
| cis-1,2-Dichloroethylene          | ug/L | 1.6         | 1.6                        | <0.50                            | <0.50                                    |
| trans-1,2-Dichloroethylene        | ug/L | 1.6         | 1.6                        | <0.50                            | <0.50                                    |
| Methylene Chloride                | ug/L | 5           | 50                         | <5.0                             | <5.0                                     |
| 1,2-Dichloropropane               | ug/L | 0.5         | 5                          | <0.50                            | <0.50                                    |
| cis-1,3-Dichloropropene           | ug/L | -           | -                          | <0.30                            | <0.30                                    |
| trans-1,3-Dichloropropene         | ug/L | -           | -                          | <0.30                            | <0.30                                    |
| 1,3-Dichloropropene (cis & trans) | ug/L | 0.5         | 0.5                        | <0.50                            | <0.50                                    |
| Ethylbenzene                      | ug/L | 0.5         | 2.4                        | <0.50                            | <0.50                                    |
| n-Hexane                          | ug/L | 5           | 51                         | <0.50                            | <0.50                                    |
| Methyl Ethyl Ketone               | ug/L | 400         | 1800                       | <20                              | <20                                      |
| Methyl Isobutyl Ketone            | ug/L | 640         | 640                        | <20                              | <20                                      |
| MTBE                              | ug/L | 15          | 15                         | <2.0                             | <2.0                                     |
| Styrene                           | ug/L | 0.5         | 5.4                        | <0.50                            | <0.50                                    |

Guide Limit #1: T1-Ground Water-All Types of Property Uses Guide Limit #2: T2-Ground Water (Coarse Soil)-All Types of Property Use

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2111856 CONT'D....

Job Reference: SP18-306-20

PAGE 9 of 13

21-JUN-18 13:46 (MT)

**Volatile Organic Compounds - WATER** 

| Volatile Organic Compound       | - WAILIN |             | 1 - I- ID    | 104440500  | 1011105010   |
|---------------------------------|----------|-------------|--------------|------------|--------------|
|                                 |          |             | Lab ID       | L2111856-3 | L2111856-10  |
|                                 |          | Sampl       |              | 13-JUN-18  | 13-JUN-18    |
|                                 |          | Sam         | iple ID      | MW-E6      | TRIP BLANK 1 |
| Analyte                         | Unit     | Guide<br>#1 | Limits<br>#2 |            |              |
| 1,1,1,2-Tetrachloroethane       | ug/L     | 1.1         | 1.1          | <0.50      | <0.50        |
| 1,1,2,2-Tetrachloroethane       | ug/L     | 0.5         | 1            | <0.50      | <0.50        |
| Tetrachloroethylene             | ug/L     | 0.5         | 1.6          | <0.50      | <0.50        |
| Toluene                         | ug/L     | 8.0         | 24           | <0.50      | <0.50        |
| 1,1,1-Trichloroethane           | ug/L     | 0.5         | 200          | <0.50      | <0.50        |
| 1,1,2-Trichloroethane           | ug/L     | 0.5         | 4.7          | <0.50      | <0.50        |
| Trichloroethylene               | ug/L     | 0.5         | 1.6          | <0.50      | <0.50        |
| Trichlorofluoromethane          | ug/L     | 150         | 150          | <5.0       | <5.0         |
| Vinyl chloride                  | ug/L     | 0.5         | 0.5          | <0.50      | <0.50        |
| o-Xylene                        | ug/L     | -           | -            | <0.30      | <0.30        |
| m+p-Xylenes                     | ug/L     | -           | -            | <0.40      | <0.40        |
| Xylenes (Total)                 | ug/L     | 72          | 300          | <0.50      | <0.50        |
| Surrogate: 4-Bromofluorobenzene | %        | -           | -            | 95.4       | 103.0        |
| Surrogate: 1,4-Difluorobenzene  | %        | -           | -            | 98.2       | 100.2        |
|                                 |          |             |              |            |              |

Guide Limit #1: T1-Ground Water-All Types of Property Uses

Guide Limit #2: T2-Ground Water (Coarse Soil)-All Types of Property Use

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2111856 CONT'D....

Job Reference: SP18-306-20

PAGE 10 of 13

21-JUN-18 13:46 (MT)

**Hydrocarbons - WATER** 

| nyurocarbons - WATER               |      |             |              |            |            |            |            |            |            |            |            |
|------------------------------------|------|-------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|
|                                    |      | ı           | Lab ID       | L2111856-1 | L2111856-2 | L2111856-3 | L2111856-4 | L2111856-5 | L2111856-6 | L2111856-7 | L2111856-8 |
|                                    |      | Sample      | e Date       | 13-JUN-18  | 13-JUN-18  | 13-JUN-18  | 13-JUN-18  | 13-JUN-18  | 13-JUN-18  | 13-JUN-18  | 13-JUN-18  |
|                                    |      | Sam         | ple ID       | MW-E1      | MW-E2      | MW-E6      | MW-E7      | MW-E8      | MW-E11     | MW-E12     | MW-E13     |
| Analyte                            | Unit | Guide<br>#1 | Limits<br>#2 |            |            |            |            |            |            |            |            |
| F1 (C6-C10)                        | ug/L | 420         | 750          | <25        | <25        | <25        | <25        | <25        | 606        | <25        | <25        |
| F1-BTEX                            | ug/L | 420         | 750          |            |            | <25        |            |            |            |            |            |
| F2 (C10-C16)                       | ug/L | 150         | 150          | <100       | <100       | <100       | <100       | <100       | 1650       | <100       | <100       |
| F3 (C16-C34)                       | ug/L | 500         | 500          | <250       | <250       | <250       | <250       | <250       | <250       | <250       | <250       |
| F4 (C34-C50)                       | ug/L | 500         | 500          | <250       | <250       | <250       | <250       | <250       | <250       | <250       | <250       |
| Total Hydrocarbons (C6-C50)        | ug/L | -           | -            | <370       | <370       | <370       | <370       | <370       | 2250       | <370       | <370       |
| Chrom. to baseline at nC50         |      | -           | -            | YES        |
| Surrogate: 2-Bromobenzotrifluoride | %    | -           | -            | 83.5       | 89.8       | 85.1       | 85.7       | 83.3       | 88.4       | 88.8       | 82.5       |
| Surrogate: 3,4-Dichlorotoluene     | %    | -           | -            | 87.0       | 85.2       | 73.8       | 97.0       | 81.7       | 79.7       | 91.8       | 83.7       |

Guide Limit #1: T1-Ground Water-All Types of Property Uses Guide Limit #2: T2-Ground Water (Coarse Soil)-All Types of Property Use

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.

#### **Reference Information**

L2111856 CONT'D....
Job Reference: SP18-306-20
PAGE 11 of 13
21-JUN-18 13:46 (MT)

#### **Qualifiers for Sample Submission Listed:**

Qualifier Description

CINT Cooling initiated. Samples were received packed with ice or ice packs and were sampled the same day as received.

#### **Qualifiers for Individual Parameters Listed:**

Qualifier Description

SFP Sample was Filtered and Preserved at the laboratory

DLHC Detection Limit Raised: Dilution required due to high concentration of test analyte(s).

#### Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference\*\*

CL-IC-N-WT Water Chloride by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

CN-WAD-R511-WT Water Cyanide (WAD)-O.Reg 153/04 APHA 4500CN I-Weak acid Dist Colorimet

Weak acid dissociable cyanide (WAD) is determined by undergoing a distillation procedure. Cyanide is converted to cyanogen chloride by reacting with chloramine-T, the cyanogen chloride then reacts with a combination of barbituric acid and isonicotinic acid to form a highly colored complex.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

CR-CR6-IC-R511-WT Water Hex Chrom-O.Reg 153/04 (July 2011) EPA 7199

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Method 7199, published by the United States Environmental Protection Agency (EPA). The procedure involves analysis for chromium (VI) by ion chromatography using diphenylcarbazide in a sulphuric acid solution. Chromium (III) is calculated as the difference between the total chromium and the chromium (VI) results.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

EC-R511-WT Water Conductivity-O.Reg 153/04 (July 2011) APHA 2510 B

Water samples can be measured directly by immersing the conductivity cell into the sample.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

F1-F4-511-CALC-WT Water F1-F4 Hydrocarbon Calculated CCME CWS-PHC, Pub #1310, Dec 2001-L

Parameters

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

#### **Reference Information**

L2111856 CONT'D....
Job Reference: SP18-306-20
PAGE 12 of 13
21-JUN-18 13:46 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference\*\*

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.
- 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
- 4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

**F1-HS-511-WT** Water F1-O.Reg 153/04 (July 2011) E3398/CCME TIER 1-HS

Fraction F1 is determined by analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

**F2-F4-511-WT** Water F2-F4-O.Reg 153/04 (July 2011) EPA 3511/CCME Tier 1

Petroleum Hydrocarbons (F2-F4 fractions) are extracted from water using a hexane micro-extraction technique. Instrumental analysis is by GC-FID, as per the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Tier 1 Method, CCME, 2001.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

HG-D-UG/L-CVAA-WT Water Diss. Mercury in Water by CVAAS EPA 1631E (mod)

(ug/L)

Water samples are filtered (0.45 um), preserved with hydrochloric acid, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

MET-D-UG/L-MS-WT Water Diss. Metals in Water by ICPMS (ug/L) EPA 200.8

The metal constituents of a non-acidified sample that pass through a membrane filter prior to ICP/MS analysis.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

PH-WT Water pH APHA 4500 H-Electrode

Water samples are analyzed directly by a calibrated pH meter.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011). Holdtime for samples under this regulation is 28 days

VOC-1,3-DCP-CALC-WT Water Regulation 153 VOCs SW8260B/SW8270C

**VOC-511-HS-WT** Water VOC by GCMS HS O.Reg 153/04 (July SW846 8260

2011)

Liquid samples are analyzed by headspace GC/MSD.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

XYLENES-SUM-CALC-WT Water Sum of Xylene Isomer Concentrations CALCULATION

Total xylenes represents the sum of o-xylene and m&p-xylene.

#### **Reference Information**

L2111856 CONT'D.... Job Reference: SP18-306-20 PAGE 13 of 13 21-JUN-18 13:46 (MT)

| mountain Lietter (ii upp                                                                                  |                    |                                    |                                                         |                   |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------|--------------------|------------------------------------|---------------------------------------------------------|-------------------|--|--|--|--|--|
| ALS Test Code                                                                                             | Matrix             | Test Description                   | Method Reference**                                      |                   |  |  |  |  |  |
| **ALS test methods may incorporate modifications from specified reference methods to improve performance. |                    |                                    |                                                         |                   |  |  |  |  |  |
| Chain of Custody Num                                                                                      | bers:              |                                    |                                                         |                   |  |  |  |  |  |
| 17-622372                                                                                                 |                    |                                    |                                                         |                   |  |  |  |  |  |
| The last two letters of t                                                                                 | the above test cod | de(s) indicate the laboratory that | t performed analytical analysis for that test. Refer to | o the list below: |  |  |  |  |  |

Laboratory Definition Code Laboratory Location

ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

#### **GLOSSARY OF REPORT TERMS**

Methods Listed (if applicable):

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

WT

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information.



Workorder: L2111856 Report Date: 21-JUN-18 Page 1 of 11

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                                               | Matrix | Reference                     | Result            | Qualifier | Units | RPD | Limit  | Analyzed  |
|----------------------------------------------------|--------|-------------------------------|-------------------|-----------|-------|-----|--------|-----------|
| CL-IC-N-WT                                         | Water  |                               |                   |           |       |     |        |           |
| Batch R4084012<br>WG2797079-3 DUP<br>Chloride (CI) |        | <b>L2109839-1</b> 77.4        | 77.5              |           | mg/L  | 0.1 | 20     | 14-JUN-18 |
| <b>WG2797079-2 LCS</b> Chloride (CI)               |        |                               | 99.3              |           | %     |     | 90-110 | 14-JUN-18 |
| <b>WG2797079-1 MB</b><br>Chloride (Cl)             |        |                               | <0.50             |           | mg/L  |     | 0.5    | 14-JUN-18 |
| <b>WG2797079-4 MS</b><br>Chloride (Cl)             |        | L2109839-1                    | 102.5             |           | %     |     | 75-125 | 14-JUN-18 |
| CN-WAD-R511-WT                                     | Water  |                               |                   |           |       |     |        |           |
| Batch R4094024                                     |        |                               |                   |           |       |     |        |           |
| WG2802382-3 DUP<br>Cyanide, Weak Acid Dis          | s      | <b>L2111659-2</b> <2.0        | <2.0              | RPD-NA    | ug/L  | N/A | 20     | 20-JUN-18 |
| WG2802382-2 LCS<br>Cyanide, Weak Acid Dis          | s      |                               | 96.8              |           | %     |     | 80-120 | 20-JUN-18 |
| WG2802382-1 MB<br>Cyanide, Weak Acid Dis           | s      |                               | <2.0              |           | ug/L  |     | 2      | 20-JUN-18 |
| WG2802382-4 MS<br>Cyanide, Weak Acid Dis           | s      | L2111659-2                    | 98.2              |           | %     |     | 75-125 | 20-JUN-18 |
| CR-CR6-IC-R511-WT                                  | Water  |                               |                   |           |       |     |        |           |
| Batch R4083503                                     |        |                               |                   |           |       |     |        |           |
| WG2796865-15 DUP<br>Chromium, Hexavalent           |        | <b>WG2796865-1</b> 3<br><0.50 | <b>3</b><br><0.50 | RPD-NA    | ug/L  | N/A | 20     | 14-JUN-18 |
| WG2796865-4 DUP<br>Chromium, Hexavalent            |        | <b>WG2796865-3</b> <0.50      | <0.50             | RPD-NA    | ug/L  | N/A | 20     | 14-JUN-18 |
| WG2796865-12 LCS<br>Chromium, Hexavalent           |        |                               | 101.6             |           | %     |     | 80-120 | 14-JUN-18 |
| WG2796865-2 LCS<br>Chromium, Hexavalent            |        |                               | 101.1             |           | %     |     | 80-120 | 14-JUN-18 |
| WG2796865-1 MB<br>Chromium, Hexavalent             |        |                               | <0.50             |           | ug/L  |     | 0.5    | 14-JUN-18 |
| WG2796865-11 MB<br>Chromium, Hexavalent            |        |                               | <0.50             |           | ug/L  |     | 0.5    | 14-JUN-18 |
| WG2796865-14 MS<br>Chromium, Hexavalent            |        | WG2796865-13                  | <b>3</b><br>98.6  |           | %     |     | 70-130 | 14-JUN-18 |
| WG2796865-5 MS<br>Chromium, Hexavalent             |        | WG2796865-3                   | 99.3              |           | %     |     | 70-130 | 14-JUN-18 |
| EC-R511-WT                                         | Water  |                               |                   |           |       |     |        |           |



Workorder: L2111856 Report Date: 21-JUN-18 Page 2 of 11

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                               | Ma             | trix Reference              | Result           | Qualifier | Units | RPD | Limit  | Analyzed   |
|------------------------------------|----------------|-----------------------------|------------------|-----------|-------|-----|--------|------------|
| EC-R511-WT                         | Wa             | ater                        |                  |           |       |     |        |            |
| Batch R4                           | 083522         |                             |                  |           |       |     |        |            |
| WG2796759-12<br>Conductivity       | DUP            | <b>WG2796759-1</b><br>1.20  | <b>1</b><br>1.20 |           | mS/cm | 0.1 | 10     | 14-JUN-18  |
| WG2796759-10<br>Conductivity       | LCS            |                             | 96.8             |           | %     |     | 90-110 | 14-JUN-18  |
| WG2796759-9<br>Conductivity        | МВ             |                             | <0.0030          |           | mS/cm |     | 0.003  | 14-JUN-18  |
| F1-HS-511-WT                       | Wa             | ater                        |                  |           |       |     |        |            |
| Batch R4                           | 083551         |                             |                  |           |       |     |        |            |
| WG2795609-4                        | DUP            | WG2795609-3                 |                  |           | _     |     |        |            |
| F1 (C6-C10)                        |                | <25                         | <25              | RPD-NA    | ug/L  | N/A | 30     | 15-JUN-18  |
| <b>WG2795609-1</b><br>F1 (C6-C10)  | LCS            |                             | 103.7            |           | %     |     | 80-120 | 15-JUN-18  |
| <b>WG2795609-2</b><br>F1 (C6-C10)  | MB             |                             | <25              |           | ug/L  |     | 25     | 15-JUN-18  |
| Surrogate: 3,4-D                   | Dichlorotoluer | ne                          | 100.7            |           | %     |     | 60-140 | 15-JUN-18  |
| <b>WG2795609-5</b><br>F1 (C6-C10)  | MS             | WG2795609-3                 | 97.0             |           | %     |     | 60-140 | 15-JUN-18  |
|                                    | 005000         |                             | 07.0             |           | ,,    |     | 00 140 | 13-3014-10 |
| Batch R46<br>WG2794398-4           | 085068<br>DUP  | WG2794398-3                 |                  |           |       |     |        |            |
| F1 (C6-C10)                        | 20.            | <25                         | <25              | RPD-NA    | ug/L  | N/A | 30     | 18-JUN-18  |
| <b>WG2794398-1</b><br>F1 (C6-C10)  | LCS            |                             | 93.0             |           | %     |     | 80-120 | 18-JUN-18  |
| <b>WG2794398-2</b><br>F1 (C6-C10)  | MB             |                             | <25              |           | ug/L  |     | 25     | 18-JUN-18  |
| Surrogate: 3,4-D                   | Dichlorotoluer | ne                          | 84.5             |           | %     |     | 60-140 | 18-JUN-18  |
| WG2794398-5                        | MS             | WG2794398-3                 |                  |           | ,,    |     | 00 170 | 10-00IN-10 |
| F1 (C6-C10)                        | HO             | VV G2134330-3               | 80.5             |           | %     |     | 60-140 | 18-JUN-18  |
| F2-F4-511-WT                       | Wa             | ater                        |                  |           |       |     |        |            |
| Batch R4                           | 093928         |                             |                  |           |       |     |        |            |
| <b>WG2801784-2</b><br>F2 (C10-C16) | LCS            |                             | 105.1            |           | %     |     | 70-130 | 20-JUN-18  |
| F3 (C16-C34)                       |                |                             | 106.7            |           | %     |     | 70-130 | 20-JUN-18  |
| F4 (C34-C50)                       |                |                             | 109.8            |           | %     |     | 70-130 | 20-JUN-18  |
| <b>WG2801784-3</b><br>F2 (C10-C16) | LCSD           | <b>WG2801784-2</b><br>105.1 | 110.2            |           | %     | 4.7 | 50     | 20-JUN-18  |
| F3 (C16-C34)                       |                | 106.7                       | 105.8            |           | %     | 0.8 | 50     | 20-JUN-18  |
| F4 (C34-C50)                       |                | 109.8                       | 109.3            |           | %     | 0.5 |        |            |
| 1 7 (004-000)                      |                | 103.0                       | 103.3            |           | /0    | 0.5 | 50     | 20-JUN-18  |



Report Date: 21-JUN-18 Workorder: L2111856 Page 3 of 11

Sirati & Partners Consultants Ltd. (Concord) Client:

12700 Keele St

King City ON L7B 1H5

Contact: Chaoran Li

| Test                                                        | Matrix        | Reference                | Result | Qualifier | Units | RPD | Limit  | Analyzed  |
|-------------------------------------------------------------|---------------|--------------------------|--------|-----------|-------|-----|--------|-----------|
| F2-F4-511-WT                                                | Water         |                          |        |           |       |     |        |           |
| Batch R4093928<br>WG2801784-1 MB<br>F2 (C10-C16)            |               |                          | <100   |           | ug/L  |     | 100    | 20-JUN-18 |
| F3 (C16-C34)                                                |               |                          | <250   |           | ug/L  |     | 250    | 20-JUN-18 |
| F4 (C34-C50)                                                |               |                          | <250   |           | ug/L  |     | 250    | 20-JUN-18 |
| Surrogate: 2-Bromobenz                                      | zotrifluoride |                          | 113.3  |           | %     |     | 60-140 | 20-JUN-18 |
| HG-D-UG/L-CVAA-WT                                           | Water         |                          |        |           |       |     |        |           |
| Batch R4086107<br>WG2799847-3 DUP<br>Mercury (Hg)-Dissolved |               | <b>L2111659-2</b> <0.010 | <0.010 | RPD-NA    | ug/L  | N/A | 20     | 18-JUN-18 |
| WG2799847-2 LCS<br>Mercury (Hg)-Dissolved                   |               |                          | 99.0   |           | %     |     | 80-120 | 18-JUN-18 |
| WG2799847-1 MB<br>Mercury (Hg)-Dissolved                    |               |                          | <0.010 |           | ug/L  |     | 0.01   | 18-JUN-18 |
| WG2799847-4 MS<br>Mercury (Hg)-Dissolved                    |               | L2111659-3               | 95.0   |           | %     |     | 70-130 | 18-JUN-18 |
| MET-D-UG/L-MS-WT                                            | Water         |                          |        |           |       |     |        |           |
| Batch R4083992                                              |               |                          |        |           |       |     |        |           |
| WG2797424-4 DUP Antimony (Sb)-Dissolved                     | 1             | <b>WG2797424-3</b> <1.0  | <1.0   | RPD-NA    | ug/L  | N/A | 20     | 17-JUN-18 |
| Arsenic (As)-Dissolved                                      |               | 3.8                      | 3.8    | 2         | ug/L  | 0.3 | 20     | 17-JUN-18 |
| Barium (Ba)-Dissolved                                       |               | 52.7                     | 53.1   |           | ug/L  | 0.8 | 20     | 17-JUN-18 |
| Beryllium (Be)-Dissolved                                    | i             | <1.0                     | <1.0   | RPD-NA    | ug/L  | N/A | 20     | 17-JUN-18 |
| Boron (B)-Dissolved                                         |               | 570                      | 580    |           | ug/L  | 1.2 | 20     | 17-JUN-18 |
| Cadmium (Cd)-Dissolve                                       | d             | <0.050                   | <0.050 | RPD-NA    | ug/L  | N/A | 20     | 17-JUN-18 |
| Chromium (Cr)-Dissolve                                      | d             | <5.0                     | <5.0   | RPD-NA    | ug/L  | N/A | 20     | 17-JUN-18 |
| Cobalt (Co)-Dissolved                                       |               | <1.0                     | <1.0   | RPD-NA    | ug/L  | N/A | 20     | 17-JUN-18 |
| Copper (Cu)-Dissolved                                       |               | <2.0                     | <2.0   | RPD-NA    | ug/L  | N/A | 20     | 17-JUN-18 |
| Lead (Pb)-Dissolved                                         |               | <0.50                    | <0.50  | RPD-NA    | ug/L  | N/A | 20     | 17-JUN-18 |
| Molybdenum (Mo)-Disso                                       | olved         | 1.08                     | 1.04   |           | ug/L  | 4.4 | 20     | 17-JUN-18 |
| Nickel (Ni)-Dissolved                                       |               | 11.9                     | 11.7   |           | ug/L  | 1.6 | 20     | 17-JUN-18 |
| Selenium (Se)-Dissolved                                     | d             | <0.50                    | <0.50  | RPD-NA    | ug/L  | N/A | 20     | 17-JUN-18 |
| Silver (Ag)-Dissolved                                       |               | <0.50                    | <0.50  | RPD-NA    | ug/L  | N/A | 20     | 17-JUN-18 |
| Sodium (Na)-Dissolved                                       |               | 110000                   | 107000 |           | ug/L  | 2.5 | 20     | 17-JUN-18 |
| Thallium (TI)-Dissolved                                     |               | <0.10                    | <0.10  | RPD-NA    | ug/L  | N/A | 20     | 17-JUN-18 |
| Uranium (U)-Dissolved                                       |               | 0.61                     | 0.62   |           | ug/L  | 0.9 | 20     | 17-JUN-18 |



Workorder: L2111856 Report Date: 21-JUN-18 Page 4 of 11

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                                      | Matrix | Reference               | Result  | Qualifier | Units | RPD | Limit  | Analyzed  |
|-------------------------------------------|--------|-------------------------|---------|-----------|-------|-----|--------|-----------|
| MET-D-UG/L-MS-WT                          | Water  |                         |         |           |       |     |        |           |
| Batch R4083992                            | !      |                         |         |           |       |     |        |           |
| WG2797424-4 DUP<br>Vanadium (V)-Dissolve  | d      | <b>WG2797424-3</b> <5.0 | <5.0    | RPD-NA    | ug/L  | N/A | 20     | 17-JUN-18 |
| Zinc (Zn)-Dissolved                       |        | <10                     | <10     | RPD-NA    | ug/L  | N/A | 20     | 17-JUN-18 |
| WG2797424-2 LCS<br>Antimony (Sb)-Dissolve | ed     |                         | 108.5   |           | %     |     | 80-120 | 17-JUN-18 |
| Arsenic (As)-Dissolved                    |        |                         | 101.9   |           | %     |     | 80-120 | 17-JUN-18 |
| Barium (Ba)-Dissolved                     |        |                         | 106.8   |           | %     |     | 80-120 | 17-JUN-18 |
| Beryllium (Be)-Dissolve                   | ed     |                         | 99.7    |           | %     |     | 80-120 | 17-JUN-18 |
| Boron (B)-Dissolved                       |        |                         | 94.3    |           | %     |     | 80-120 | 17-JUN-18 |
| Cadmium (Cd)-Dissolve                     | ed     |                         | 99.9    |           | %     |     | 80-120 | 17-JUN-18 |
| Chromium (Cr)-Dissolv                     |        |                         | 97.8    |           | %     |     | 80-120 | 17-JUN-18 |
| Cobalt (Co)-Dissolved                     |        |                         | 97.4    |           | %     |     | 80-120 | 17-JUN-18 |
| Copper (Cu)-Dissolved                     |        |                         | 97.0    |           | %     |     | 80-120 | 17-JUN-18 |
| Lead (Pb)-Dissolved                       |        |                         | 104.1   |           | %     |     | 80-120 | 17-JUN-18 |
| Molybdenum (Mo)-Diss                      | solved |                         | 104.0   |           | %     |     | 80-120 | 17-JUN-18 |
| Nickel (Ni)-Dissolved                     |        |                         | 97.0    |           | %     |     | 80-120 | 17-JUN-18 |
| Selenium (Se)-Dissolve                    | ed     |                         | 92.4    |           | %     |     | 80-120 | 17-JUN-18 |
| Silver (Ag)-Dissolved                     |        |                         | 94.4    |           | %     |     | 80-120 | 17-JUN-18 |
| Sodium (Na)-Dissolved                     |        |                         | 96.1    |           | %     |     | 80-120 | 17-JUN-18 |
| Thallium (TI)-Dissolved                   |        |                         | 102.9   |           | %     |     | 80-120 | 17-JUN-18 |
| Uranium (U)-Dissolved                     |        |                         | 99.1    |           | %     |     | 80-120 | 17-JUN-18 |
| Vanadium (V)-Dissolve                     | d      |                         | 101.1   |           | %     |     | 80-120 | 17-JUN-18 |
| Zinc (Zn)-Dissolved                       |        |                         | 98.0    |           | %     |     | 80-120 | 17-JUN-18 |
| WG2797424-1 MB<br>Antimony (Sb)-Dissolve  | ed     |                         | <0.10   |           | ug/L  |     | 0.1    | 17-JUN-18 |
| Arsenic (As)-Dissolved                    |        |                         | <0.10   |           | ug/L  |     | 0.1    | 17-JUN-18 |
| Barium (Ba)-Dissolved                     |        |                         | <0.10   |           | ug/L  |     | 0.1    | 17-JUN-18 |
| Beryllium (Be)-Dissolve                   | ed     |                         | <0.10   |           | ug/L  |     | 0.1    | 17-JUN-18 |
| Boron (B)-Dissolved                       |        |                         | <10     |           | ug/L  |     | 10     | 17-JUN-18 |
| Cadmium (Cd)-Dissolve                     | ed     |                         | <0.0050 |           | ug/L  |     | 0.005  | 17-JUN-18 |
| Chromium (Cr)-Dissolv                     | ed     |                         | <0.50   |           | ug/L  |     | 0.5    | 17-JUN-18 |
| Cobalt (Co)-Dissolved                     |        |                         | <0.10   |           | ug/L  |     | 0.1    | 17-JUN-18 |
| Copper (Cu)-Dissolved                     |        |                         | <0.20   |           | ug/L  |     | 0.2    | 17-JUN-18 |
| Lead (Pb)-Dissolved                       |        |                         | <0.050  |           | ug/L  |     | 0.05   | 17-JUN-18 |
| Molybdenum (Mo)-Diss                      | solved |                         | <0.050  |           | ug/L  |     | 0.05   | 17-JUN-18 |



Workorder: L2111856 Report Date: 21-JUN-18 Page 5 of 11

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                                      | Matrix | Reference   | Result      | Qualifier | Units    | RPD  | Limit            | Analyzed               |
|-------------------------------------------|--------|-------------|-------------|-----------|----------|------|------------------|------------------------|
| MET-D-UG/L-MS-WT                          | Water  |             |             |           |          |      |                  |                        |
| Batch R4083992                            |        |             |             |           |          |      |                  |                        |
| WG2797424-1 MB                            |        |             |             |           |          |      |                  |                        |
| Nickel (Ni)-Dissolved                     |        |             | <0.50       |           | ug/L     |      | 0.5              | 17-JUN-18              |
| Selenium (Se)-Dissolve                    |        |             | <0.050      |           | ug/L     |      | 0.05             | 17-JUN-18              |
| Silver (Ag)-Dissolved                     |        |             | <0.050      |           | ug/L     |      | 0.05             | 17-JUN-18              |
| Sodium (Na)-Dissolved                     |        |             | <50         |           | ug/L     |      | 50               | 17-JUN-18              |
| Thallium (TI)-Dissolved                   |        |             | <0.010      |           | ug/L     |      | 0.01             | 17-JUN-18              |
| Uranium (U)-Dissolved                     |        |             | <0.010      |           | ug/L     |      | 0.01             | 17-JUN-18              |
| Vanadium (V)-Dissolved                    |        |             | <0.50       |           | ug/L     |      | 0.5              | 17-JUN-18              |
| Zinc (Zn)-Dissolved                       |        |             | <1.0        |           | ug/L     |      | 1                | 17-JUN-18              |
| WG2797424-5 MS<br>Antimony (Sb)-Dissolved | ٨      | WG2797424-6 | 93.9        |           | %        |      | 70.400           | 47 1111 40             |
| Arsenic (As)-Dissolved                    | J      |             | 89.8        |           | %        |      | 70-130           | 17-JUN-18              |
| Barium (Ba)-Dissolved                     |        |             | 09.0<br>N/A | MS-B      | %        |      | 70-130           | 17-JUN-18              |
| Beryllium (Be)-Dissolved                  | 1      |             | 88.8        | IVIO-D    | %        |      | -<br>70-130      | 17-JUN-18              |
| Boron (B)-Dissolved                       | 4      |             | N/A         | MS-B      | %        |      | 70-130<br>-      | 17-JUN-18              |
| Cadmium (Cd)-Dissolve                     | d      |             | 88.7        | IVIO-D    | %        |      |                  | 17-JUN-18              |
| Chromium (Cr)-Dissolve                    |        |             | 85.2        |           | %        |      | 70-130           | 17-JUN-18              |
| Cobalt (Co)-Dissolved                     | tu .   |             | 79.7        |           | %        |      | 70-130<br>70-130 | 17-JUN-18<br>17-JUN-18 |
| Copper (Cu)-Dissolved                     |        |             | 79.3        |           | %        |      | 70-130           | 17-JUN-18              |
| Lead (Pb)-Dissolved                       |        |             | 89.1        |           | %        |      | 70-130           | 17-JUN-18              |
| Molybdenum (Mo)-Disso                     | alved  |             | 74.3        |           | %        |      |                  |                        |
| Nickel (Ni)-Dissolved                     | nvcu   |             | 81.4        |           | %        |      | 70-130<br>70-130 | 17-JUN-18              |
| Selenium (Se)-Dissolved                   | 4      |             | 85.5        |           | %        |      |                  | 17-JUN-18<br>17-JUN-18 |
| Silver (Ag)-Dissolved                     | u      |             | 76.1        |           | %        |      | 70-130<br>70-130 | 17-JUN-18              |
| Sodium (Na)-Dissolved                     |        |             | N/A         | MS-B      | %        |      | 70-130           | 17-JUN-18              |
| Thallium (TI)-Dissolved                   |        |             | 87.7        | IVIO-D    | %        |      | 70-130           | 17-JUN-18              |
| Uranium (U)-Dissolved                     |        |             | N/A         | MS-B      | %        |      | 70-130           | 17-JUN-18              |
| Vanadium (V)-Dissolved                    | ı      |             | 89.7        | IVIO-D    | %        |      | 70 120           |                        |
| Zinc (Zn)-Dissolved                       | •      |             | 73.5        |           | %        |      | 70-130<br>70-130 | 17-JUN-18<br>17-JUN-18 |
| , ,                                       |        |             | 70.0        |           | 70       |      | 10-130           | 17-JUIN-10             |
| PH-WT                                     | Water  |             |             |           |          |      |                  |                        |
| Batch R4083522<br>WG2796759-12 DUP        |        | WG2796759-1 | 1           |           |          |      |                  |                        |
| pH                                        |        | 7.88        | 7.89        | J         | pH units | 0.01 | 0.2              | 14-JUN-18              |
| WG2796759-10 LCS                          |        |             |             |           |          |      |                  | -                      |
| рН                                        |        |             | 6.99        |           | pH units |      | 6.9-7.1          | 14-JUN-18              |
|                                           |        |             |             |           |          |      |                  |                        |



Workorder: L2111856 Report Date: 21-JUN-18 Page 6 of 11

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                 | Matrix | Reference | Result | Qualifier | Units | RPD | Limit | Analyzed  |
|----------------------|--------|-----------|--------|-----------|-------|-----|-------|-----------|
| VOC-511-HS-WT        | Water  |           |        |           |       |     |       |           |
| Batch R40850         | 068    |           |        |           |       |     |       |           |
| WG2794398-4 DU       |        | WG2794398 |        |           |       |     |       |           |
| 1,1,1,2-Tetrachloroe |        | <0.50     | <0.50  | RPD-NA    | ug/L  | N/A | 30    | 18-JUN-18 |
| 1,1,2,2-Tetrachloroe |        | <0.50     | <0.50  | RPD-NA    | ug/L  | N/A | 30    | 18-JUN-18 |
| 1,1,1-Trichloroethan |        | <0.50     | <0.50  | RPD-NA    | ug/L  | N/A | 30    | 18-JUN-18 |
| 1,1,2-Trichloroethan | е      | <0.50     | <0.50  | RPD-NA    | ug/L  | N/A | 30    | 18-JUN-18 |
| 1,1-Dichloroethane   |        | <0.50     | <0.50  | RPD-NA    | ug/L  | N/A | 30    | 18-JUN-18 |
| 1,1-Dichloroethylene | •      | <0.50     | <0.50  | RPD-NA    | ug/L  | N/A | 30    | 18-JUN-18 |
| 1,2-Dibromoethane    |        | <0.20     | <0.20  | RPD-NA    | ug/L  | N/A | 30    | 18-JUN-18 |
| 1,2-Dichlorobenzene  | 9      | <0.50     | <0.50  | RPD-NA    | ug/L  | N/A | 30    | 18-JUN-18 |
| 1,2-Dichloroethane   |        | <0.50     | <0.50  | RPD-NA    | ug/L  | N/A | 30    | 18-JUN-18 |
| 1,2-Dichloropropane  | •      | <0.50     | < 0.50 | RPD-NA    | ug/L  | N/A | 30    | 18-JUN-18 |
| 1,3-Dichlorobenzene  | e      | <0.50     | <0.50  | RPD-NA    | ug/L  | N/A | 30    | 18-JUN-18 |
| 1,4-Dichlorobenzene  | e      | <0.50     | <0.50  | RPD-NA    | ug/L  | N/A | 30    | 18-JUN-18 |
| Acetone              |        | <30       | <30    | RPD-NA    | ug/L  | N/A | 30    | 18-JUN-18 |
| Benzene              |        | <0.50     | <0.50  | RPD-NA    | ug/L  | N/A | 30    | 18-JUN-18 |
| Bromodichlorometha   | ane    | <2.0      | <2.0   | RPD-NA    | ug/L  | N/A | 30    | 18-JUN-18 |
| Bromoform            |        | <5.0      | <5.0   | RPD-NA    | ug/L  | N/A | 30    | 18-JUN-18 |
| Bromomethane         |        | <0.50     | <0.50  | RPD-NA    | ug/L  | N/A | 30    | 18-JUN-18 |
| Carbon tetrachloride | •      | <0.20     | <0.20  | RPD-NA    | ug/L  | N/A | 30    | 18-JUN-18 |
| Chlorobenzene        |        | <0.50     | <0.50  | RPD-NA    | ug/L  | N/A | 30    | 18-JUN-18 |
| Chloroform           |        | <1.0      | <1.0   | RPD-NA    | ug/L  | N/A | 30    | 18-JUN-18 |
| cis-1,2-Dichloroethy | lene   | <0.50     | <0.50  | RPD-NA    | ug/L  | N/A | 30    | 18-JUN-18 |
| cis-1,3-Dichloroprop | ene    | <0.30     | < 0.30 | RPD-NA    | ug/L  | N/A | 30    | 18-JUN-18 |
| Dibromochlorometha   | ane    | <2.0      | <2.0   | RPD-NA    | ug/L  | N/A | 30    | 18-JUN-18 |
| Dichlorodifluorometh | nane   | <2.0      | <2.0   | RPD-NA    | ug/L  | N/A | 30    | 18-JUN-18 |
| Ethylbenzene         |        | <0.50     | <0.50  | RPD-NA    | ug/L  | N/A | 30    | 18-JUN-18 |
| n-Hexane             |        | <0.50     | <0.50  | RPD-NA    | ug/L  | N/A | 30    | 18-JUN-18 |
| m+p-Xylenes          |        | <0.40     | <0.40  | RPD-NA    | ug/L  | N/A | 30    | 18-JUN-18 |
| Methyl Ethyl Ketone  |        | <20       | <20    | RPD-NA    | ug/L  | N/A | 30    | 18-JUN-18 |
| Methyl Isobutyl Keto | ne     | <20       | <20    | RPD-NA    | ug/L  | N/A | 30    | 18-JUN-18 |
| Methylene Chloride   |        | <5.0      | <5.0   | RPD-NA    | ug/L  | N/A | 30    | 18-JUN-18 |
| MTBE                 |        | <2.0      | <2.0   | RPD-NA    | ug/L  | N/A | 30    | 18-JUN-18 |
| o-Xylene             |        | <0.30     | < 0.30 | RPD-NA    | ug/L  | N/A | 30    | 18-JUN-18 |
| Styrene              |        | <0.50     | <0.50  |           | ug/L  |     |       | 18-JUN-18 |
|                      |        |           |        |           |       |     |       |           |



Workorder: L2111856 Report Date: 21-JUN-18 Page 7 of 11

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                                     | Matrix | Reference | Result | Qualifier | Units | RPD | Limit  | Analyzed  |
|------------------------------------------|--------|-----------|--------|-----------|-------|-----|--------|-----------|
| VOC-511-HS-WT                            | Water  |           |        |           |       |     |        |           |
| Batch R40850                             | 68     |           |        |           |       |     |        |           |
| WG2794398-4 DUI                          | •      | WG2794398 |        |           |       |     |        |           |
| Styrene                                  |        | <0.50     | <0.50  | RPD-NA    | ug/L  | N/A | 30     | 18-JUN-18 |
| Tetrachloroethylene                      |        | <0.50     | <0.50  | RPD-NA    | ug/L  | N/A | 30     | 18-JUN-18 |
| Toluene                                  |        | <0.50     | <0.50  | RPD-NA    | ug/L  | N/A | 30     | 18-JUN-18 |
| trans-1,2-Dichloroeth                    |        | <0.50     | <0.50  | RPD-NA    | ug/L  | N/A | 30     | 18-JUN-18 |
| trans-1,3-Dichloropro                    | pene   | <0.30     | <0.30  | RPD-NA    | ug/L  | N/A | 30     | 18-JUN-18 |
| Trichloroethylene                        |        | <0.50     | <0.50  | RPD-NA    | ug/L  | N/A | 30     | 18-JUN-18 |
| Trichlorofluorometha                     | ne     | <5.0      | <5.0   | RPD-NA    | ug/L  | N/A | 30     | 18-JUN-18 |
| Vinyl chloride                           |        | <0.50     | <0.50  | RPD-NA    | ug/L  | N/A | 30     | 18-JUN-18 |
| WG2794398-1 LCS<br>1,1,1,2-Tetrachloroet |        |           | 104.8  |           | %     |     | 70-130 | 18-JUN-18 |
| 1,1,2,2-Tetrachloroet                    |        |           | 100.2  |           | %     |     | 70-130 | 18-JUN-18 |
| 1,1,1-Trichloroethane                    |        |           | 104.4  |           | %     |     | 70-130 | 18-JUN-18 |
| 1,1,2-Trichloroethane                    |        |           | 104.8  |           | %     |     | 70-130 | 18-JUN-18 |
| 1,1-Dichloroethane                       |        |           | 101.2  |           | %     |     | 70-130 | 18-JUN-18 |
| 1,1-Dichloroethylene                     |        |           | 89.0   |           | %     |     | 70-130 | 18-JUN-18 |
| 1,2-Dibromoethane                        |        |           | 105.4  |           | %     |     | 70-130 | 18-JUN-18 |
| 1,2-Dichlorobenzene                      |        |           | 102.2  |           | %     |     | 70-130 | 18-JUN-18 |
| 1,2-Dichloroethane                       |        |           | 105.3  |           | %     |     | 70-130 | 18-JUN-18 |
| 1,2-Dichloropropane                      |        |           | 103.5  |           | %     |     | 70-130 | 18-JUN-18 |
| 1,3-Dichlorobenzene                      |        |           | 98.8   |           | %     |     | 70-130 | 18-JUN-18 |
| 1,4-Dichlorobenzene                      |        |           | 98.8   |           | %     |     | 70-130 | 18-JUN-18 |
| Acetone                                  |        |           | 121.8  |           | %     |     | 60-140 | 18-JUN-18 |
| Benzene                                  |        |           | 103.5  |           | %     |     | 70-130 | 18-JUN-18 |
| Bromodichlorometha                       | ne     |           | 101.9  |           | %     |     | 70-130 | 18-JUN-18 |
| Bromoform                                |        |           | 106.8  |           | %     |     | 70-130 | 18-JUN-18 |
| Bromomethane                             |        |           | 99.2   |           | %     |     | 60-140 | 18-JUN-18 |
| Carbon tetrachloride                     |        |           | 107.3  |           | %     |     | 70-130 | 18-JUN-18 |
| Chlorobenzene                            |        |           | 101.9  |           | %     |     | 70-130 | 18-JUN-18 |
| Chloroform                               |        |           | 105.5  |           | %     |     | 70-130 | 18-JUN-18 |
| cis-1,2-Dichloroethyle                   | ene    |           | 106.2  |           | %     |     | 70-130 | 18-JUN-18 |
| cis-1,3-Dichloroprope                    |        |           | 100.6  |           | %     |     | 70-130 | 18-JUN-18 |
| Dibromochlorometha                       |        |           | 109.7  |           | %     |     | 70-130 | 18-JUN-18 |
| Dichlorodifluorometha                    | ane    |           | 84.3   |           | %     |     | 50-140 | 18-JUN-18 |



Workorder: L2111856 Report Date: 21-JUN-18 Page 8 of 11

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                            | Matrix | Reference | Result | Qualifier | Units  | RPD | Limit            | Analyzed               |
|---------------------------------|--------|-----------|--------|-----------|--------|-----|------------------|------------------------|
| VOC-511-HS-WT                   | Water  |           |        |           |        |     |                  |                        |
| Batch R4085068                  |        |           |        |           |        |     |                  |                        |
| WG2794398-1 LCS<br>Ethylbenzene |        |           | 96.1   |           | %      |     | 70.400           | 40 1111 40             |
| n-Hexane                        |        |           | 103.2  |           | %      |     | 70-130<br>70-130 | 18-JUN-18              |
| m+p-Xylenes                     |        |           | 96.4   |           | %      |     |                  | 18-JUN-18              |
| Methyl Ethyl Ketone             |        |           | 112.9  |           | %      |     | 70-130<br>60-140 | 18-JUN-18              |
| Methyl Isobutyl Ketone          |        |           | 103.2  |           | %      |     | 60-140           | 18-JUN-18              |
| Methylene Chloride              |        |           | 103.2  |           | %      |     | 70-130           | 18-JUN-18              |
| MTBE                            |        |           | 109.1  |           | %      |     |                  | 18-JUN-18              |
| o-Xylene                        |        |           | 96.5   |           | %      |     | 70-130           | 18-JUN-18              |
| Styrene                         |        |           | 97.4   |           | %      |     | 70-130           | 18-JUN-18              |
| Tetrachloroethylene             |        |           | 101.3  |           | %<br>% |     | 70-130<br>70-130 | 18-JUN-18<br>18-JUN-18 |
| Toluene                         |        |           | 96.1   |           | %      |     | 70-130<br>70-130 |                        |
| trans-1,2-Dichloroethylen       | 10     |           | 99.98  |           | %      |     |                  | 18-JUN-18              |
| trans-1,3-Dichloropropen        |        |           | 99.90  |           | %      |     | 70-130<br>70-130 | 18-JUN-18<br>18-JUN-18 |
| Trichloroethylene               |        |           | 110.3  |           | %      |     |                  |                        |
| Trichlorofluoromethane          |        |           | 100.8  |           | %      |     | 70-130<br>60-140 | 18-JUN-18<br>18-JUN-18 |
| Vinyl chloride                  |        |           | 94.3   |           | %      |     |                  |                        |
| WG2794398-2 MB                  |        |           | 94.3   |           | 70     |     | 60-140           | 18-JUN-18              |
| 1,1,1,2-Tetrachloroethan        | е      |           | <0.50  |           | ug/L   |     | 0.5              | 18-JUN-18              |
| 1,1,2,2-Tetrachloroethan        |        |           | <0.50  |           | ug/L   |     | 0.5              | 18-JUN-18              |
| 1,1,1-Trichloroethane           |        |           | <0.50  |           | ug/L   |     | 0.5              | 18-JUN-18              |
| 1,1,2-Trichloroethane           |        |           | <0.50  |           | ug/L   |     | 0.5              | 18-JUN-18              |
| 1,1-Dichloroethane              |        |           | <0.50  |           | ug/L   |     | 0.5              | 18-JUN-18              |
| 1,1-Dichloroethylene            |        |           | <0.50  |           | ug/L   |     | 0.5              | 18-JUN-18              |
| 1,2-Dibromoethane               |        |           | <0.20  |           | ug/L   |     | 0.2              | 18-JUN-18              |
| 1,2-Dichlorobenzene             |        |           | <0.50  |           | ug/L   |     | 0.5              | 18-JUN-18              |
| 1,2-Dichloroethane              |        |           | <0.50  |           | ug/L   |     | 0.5              | 18-JUN-18              |
| 1,2-Dichloropropane             |        |           | <0.50  |           | ug/L   |     | 0.5              | 18-JUN-18              |
| 1,3-Dichlorobenzene             |        |           | <0.50  |           | ug/L   |     | 0.5              | 18-JUN-18              |
| 1,4-Dichlorobenzene             |        |           | <0.50  |           | ug/L   |     | 0.5              | 18-JUN-18              |
| Acetone                         |        |           | <30    |           | ug/L   |     | 30               | 18-JUN-18              |
| Benzene                         |        |           | <0.50  |           | ug/L   |     | 0.5              | 18-JUN-18              |
| Bromodichloromethane            |        |           | <2.0   |           | ug/L   |     | 2                | 18-JUN-18              |
| Bromoform                       |        |           | <5.0   |           | ug/L   |     | 5                | 18-JUN-18              |
| Bromomethane                    |        |           | <0.50  |           | ug/L   |     | 0.5              | 18-JUN-18              |
|                                 |        |           |        |           | -      |     |                  | -                      |



Workorder: L2111856 Report Date: 21-JUN-18 Page 9 of 11

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No. | Test N                      | /latrix       | Reference   | Result | Qualifier | Units | RPD | Limit  | Analyzed    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------|-------------|--------|-----------|-------|-----|--------|-------------|
| WG794398-2 MB         Carbon tetrachloride         <0.20         ug/L         0.2         18-JUN-18           Chlorobenzene         <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VOC-511-HS-WT V             | <b>N</b> ater |             |        |           |       |     |        |             |
| Carbon tetrachloride         <0.20         ug/L         0.5         18-JUN-18           Chlorobenzene         <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Batch R4085068              |               |             |        |           |       |     |        |             |
| Chlorobenzene         <0.50         ug/L         0.5         18-JUN-18           Chloroform         <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |               |             | -0.20  |           | ua/l  |     | 0.2    | 40 11111 40 |
| Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |               |             |        |           |       |     |        |             |
| cis-1,2-Dichloroethylene         <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |               |             |        |           |       |     |        |             |
| Cis-1,3-Dichloropropene         <0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |               |             |        |           |       |     |        |             |
| Dibromochloromethane         <2.0         ug/L         2         18-JUN-18           Dichlorodifluoromethane         <2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                           |               |             |        |           |       |     |        |             |
| Dichlorodifluoromethane         <2.0         ug/L         2         18-JUN-18           Ethybenzene         <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |               |             |        |           |       |     |        |             |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |               |             |        |           |       |     |        |             |
| n-Hexane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |               |             |        |           |       |     |        |             |
| m+p-Xylenes         <0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                           |               |             |        |           |       |     |        |             |
| Methyl Ethyl Ketone         <20         ug/L         20         18-JUN-18           Methyl Isobutyl Ketone         <20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |               |             |        |           |       |     |        |             |
| Methyl Isobutyl Ketone         <20         ug/L         20         18-JUN-18           Methylene Chloride         <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |               |             |        |           |       |     |        |             |
| Methylene Chloride         <5.0         ug/L         5         18-JUN-18           MTBE         <2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |               |             |        |           |       |     |        | 18-JUN-18   |
| MTBE         <2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |               |             |        |           | ug/L  |     | 20     | 18-JUN-18   |
| o-Xylene         <0.30         ug/L         0.3         18-JUN-18           Styrene         <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |               |             |        |           | ug/L  |     | 5      | 18-JUN-18   |
| Styrene         <0.50         ug/L         0.5         18-JUN-18           Tetrachloroethylene         <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MTBE                        |               |             | <2.0   |           | ug/L  |     | 2      | 18-JUN-18   |
| Tetrachloroethylene         <0.50         ug/L         0.5         18-JUN-18           Toluene         <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | o-Xylene                    |               |             | <0.30  |           | ug/L  |     | 0.3    | 18-JUN-18   |
| Toluene         <0.50         ug/L         0.5         18-JUN-18           trans-1,2-Dichloroethylene         <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Styrene                     |               |             | <0.50  |           | ug/L  |     | 0.5    | 18-JUN-18   |
| trans-1,2-Dichloroethylene       <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Tetrachloroethylene         |               |             | <0.50  |           | ug/L  |     | 0.5    | 18-JUN-18   |
| trans-1,3-Dichloropropene       <0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Toluene                     |               |             | <0.50  |           | ug/L  |     | 0.5    | 18-JUN-18   |
| Trichloroethylene         <0.50         ug/L         0.5         18-JUN-18           Trichlorofluoromethane         <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | trans-1,2-Dichloroethylene  |               |             | <0.50  |           | ug/L  |     | 0.5    | 18-JUN-18   |
| Trichlorofluoromethane         <5.0         ug/L         5         18-JUN-18           Vinyl chloride         <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | trans-1,3-Dichloropropene   |               |             | <0.30  |           | ug/L  |     | 0.3    | 18-JUN-18   |
| Vinyl chloride       <0.50       ug/L       0.5       18-JUN-18         Surrogate: 1,4-Difluorobenzene       97.6       %       70-130       18-JUN-18         Surrogate: 4-Bromofluorobenzene       94.2       %       70-130       18-JUN-18         WG2794398-5       MS       WG2794398-3       WG2794398-3       VG2794398-3       VG2794398-3 <t< td=""><td>Trichloroethylene</td><td></td><td></td><td>&lt;0.50</td><td></td><td>ug/L</td><td></td><td>0.5</td><td>18-JUN-18</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Trichloroethylene           |               |             | <0.50  |           | ug/L  |     | 0.5    | 18-JUN-18   |
| Surrogate: 1,4-Difluorobenzene       97.6       %       70-130       18-JUN-18         Surrogate: 4-Bromofluorobenzene       94.2       %       70-130       18-JUN-18         WG2794398-5       MS       WG2794398-3         1,1,1,2-Tetrachloroethane       110.3       %       50-140       18-JUN-18         1,1,2,2-Tetrachloroethane       90.2       %       50-140       18-JUN-18         1,1,1-Trichloroethane       107.8       %       50-140       18-JUN-18         1,1,2-Trichloroethane       105.1       %       50-140       18-JUN-18         1,1-Dichloroethane       107.5       %       50-140       18-JUN-18         1,1-Dichloroethylene       97.8       %       50-140       18-JUN-18         1,2-Dibromoethane       108.1       %       50-140       18-JUN-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Trichlorofluoromethane      |               |             | <5.0   |           | ug/L  |     | 5      | 18-JUN-18   |
| Surrogate: 4-Bromofluorobenzene       94.2       %       70-130       18-JUN-18         WG2794398-5       MS       WG2794398-3       WG2794398-3       WG2794398-3       WG2794398-3       Solution of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part                                                                                                                                                 | Vinyl chloride              |               |             | <0.50  |           | ug/L  |     | 0.5    | 18-JUN-18   |
| WG2794398-5       MS       WG2794398-3         1,1,1,2-Tetrachloroethane       110.3       %       50-140       18-JUN-18         1,1,2,2-Tetrachloroethane       90.2       %       50-140       18-JUN-18         1,1,1-Trichloroethane       107.8       %       50-140       18-JUN-18         1,1,2-Trichloroethane       105.1       %       50-140       18-JUN-18         1,1-Dichloroethane       107.5       %       50-140       18-JUN-18         1,1-Dichloroethylene       97.8       %       50-140       18-JUN-18         1,2-Dibromoethane       108.1       %       50-140       18-JUN-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Surrogate: 1,4-Difluorobenz | zene          |             | 97.6   |           | %     |     | 70-130 | 18-JUN-18   |
| 1,1,1,2-Tetrachloroethane       110.3       %       50-140       18-JUN-18         1,1,2,2-Tetrachloroethane       90.2       %       50-140       18-JUN-18         1,1,1-Trichloroethane       107.8       %       50-140       18-JUN-18         1,1,2-Trichloroethane       105.1       %       50-140       18-JUN-18         1,1-Dichloroethane       107.5       %       50-140       18-JUN-18         1,1-Dichloroethylene       97.8       %       50-140       18-JUN-18         1,2-Dibromoethane       108.1       %       50-140       18-JUN-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Surrogate: 4-Bromofluorobe  | enzene        |             | 94.2   |           | %     |     | 70-130 | 18-JUN-18   |
| 1,1,2,2-Tetrachloroethane       90.2       %       50-140       18-JUN-18         1,1,1-Trichloroethane       107.8       %       50-140       18-JUN-18         1,1,2-Trichloroethane       105.1       %       50-140       18-JUN-18         1,1-Dichloroethane       107.5       %       50-140       18-JUN-18         1,1-Dichloroethylene       97.8       %       50-140       18-JUN-18         1,2-Dibromoethane       108.1       %       50-140       18-JUN-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | WG2794398-5 MS              |               | WG2794398-3 |        |           |       |     |        |             |
| 1,1,1-Trichloroethane       107.8       %       50-140       18-JUN-18         1,1,2-Trichloroethane       105.1       %       50-140       18-JUN-18         1,1-Dichloroethane       107.5       %       50-140       18-JUN-18         1,1-Dichloroethylene       97.8       %       50-140       18-JUN-18         1,2-Dibromoethane       108.1       %       50-140       18-JUN-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,1,1,2-Tetrachloroethane   |               |             | 110.3  |           | %     |     | 50-140 | 18-JUN-18   |
| 1,1,2-Trichloroethane       105.1       %       50-140       18-JUN-18         1,1-Dichloroethane       107.5       %       50-140       18-JUN-18         1,1-Dichloroethylene       97.8       %       50-140       18-JUN-18         1,2-Dibromoethane       108.1       %       50-140       18-JUN-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,1,2,2-Tetrachloroethane   |               |             | 90.2   |           | %     |     | 50-140 | 18-JUN-18   |
| 1,1-Dichloroethane       107.5       %       50-140       18-JUN-18         1,1-Dichloroethylene       97.8       %       50-140       18-JUN-18         1,2-Dibromoethane       108.1       %       50-140       18-JUN-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,1,1-Trichloroethane       |               |             | 107.8  |           | %     |     | 50-140 | 18-JUN-18   |
| 1,1-Dichloroethylene       97.8       %       50-140       18-JUN-18         1,2-Dibromoethane       108.1       %       50-140       18-JUN-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,1,2-Trichloroethane       |               |             | 105.1  |           | %     |     | 50-140 | 18-JUN-18   |
| 1,2-Dibromoethane 108.1 % 50-140 18-JUN-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,1-Dichloroethane          |               |             | 107.5  |           | %     |     | 50-140 | 18-JUN-18   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,1-Dichloroethylene        |               |             | 97.8   |           | %     |     | 50-140 | 18-JUN-18   |
| 1,2-Dichlorobenzene 97.7 % 50-140 18-JUN-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,2-Dibromoethane           |               |             | 108.1  |           | %     |     | 50-140 | 18-JUN-18   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,2-Dichlorobenzene         |               |             | 97.7   |           | %     |     | 50-140 | 18-JUN-18   |



Workorder: L2111856 Report Date: 21-JUN-18 Page 10 of 11

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                      | Matrix | Reference   | Result | Qualifier | Units | RPD | Limit  | Analyzed  |
|---------------------------|--------|-------------|--------|-----------|-------|-----|--------|-----------|
| VOC-511-HS-WT             | Water  |             |        |           |       |     |        |           |
| Batch R4085068            |        |             |        |           |       |     |        |           |
| WG2794398-5 MS            |        | WG2794398-3 |        |           | 0/    |     |        |           |
| 1,2-Dichloroethane        |        |             | 110.9  |           | %     |     | 50-140 | 18-JUN-18 |
| 1,2-Dichloropropane       |        |             | 111.5  |           | %     |     | 50-140 | 18-JUN-18 |
| 1,3-Dichlorobenzene       |        |             | 81.1   |           | %     |     | 50-140 | 18-JUN-18 |
| 1,4-Dichlorobenzene       |        |             | 83.7   |           | %     |     | 50-140 | 18-JUN-18 |
| Acetone                   |        |             | 118.4  |           | %     |     | 50-140 | 18-JUN-18 |
| Benzene                   |        |             | 110.4  |           | %     |     | 50-140 | 18-JUN-18 |
| Bromodichloromethane      |        |             | 106.4  |           | %     |     | 50-140 | 18-JUN-18 |
| Bromoform                 |        |             | 108.8  |           | %     |     | 50-140 | 18-JUN-18 |
| Bromomethane              |        |             | 94.9   |           | %     |     | 50-140 | 18-JUN-18 |
| Carbon tetrachloride      |        |             | 106.5  |           | %     |     | 50-140 | 18-JUN-18 |
| Chlorobenzene             |        |             | 106.3  |           | %     |     | 50-140 | 18-JUN-18 |
| Chloroform                |        |             | 101.4  |           | %     |     | 50-140 | 18-JUN-18 |
| cis-1,2-Dichloroethylene  |        |             | 108.2  |           | %     |     | 50-140 | 18-JUN-18 |
| cis-1,3-Dichloropropene   |        |             | 108.4  |           | %     |     | 50-140 | 18-JUN-18 |
| Dibromochloromethane      |        |             | 113.3  |           | %     |     | 50-140 | 18-JUN-18 |
| Dichlorodifluoromethane   |        |             | 96.5   |           | %     |     | 50-140 | 18-JUN-18 |
| Ethylbenzene              |        |             | 97.8   |           | %     |     | 50-140 | 18-JUN-18 |
| n-Hexane                  |        |             | 111.8  |           | %     |     | 50-140 | 18-JUN-18 |
| m+p-Xylenes               |        |             | 98.4   |           | %     |     | 50-140 | 18-JUN-18 |
| Methyl Ethyl Ketone       |        |             | 105.9  |           | %     |     | 50-140 | 18-JUN-18 |
| Methyl Isobutyl Ketone    |        |             | 105.2  |           | %     |     | 50-140 | 18-JUN-18 |
| Methylene Chloride        |        |             | 110.7  |           | %     |     | 50-140 | 18-JUN-18 |
| MTBE                      |        |             | 108.2  |           | %     |     | 50-140 | 18-JUN-18 |
| o-Xylene                  |        |             | 93.9   |           | %     |     | 50-140 | 18-JUN-18 |
| Styrene                   |        |             | 98.0   |           | %     |     | 50-140 | 18-JUN-18 |
| Tetrachloroethylene       |        |             | 128.7  |           | %     |     | 50-140 | 18-JUN-18 |
| Toluene                   |        |             | 135.6  |           | %     |     | 50-140 | 18-JUN-18 |
| trans-1,2-Dichloroethylen |        |             | 106.8  |           | %     |     | 50-140 | 18-JUN-18 |
| trans-1,3-Dichloropropen  | е      |             | 129.5  |           | %     |     | 50-140 | 18-JUN-18 |
| Trichloroethylene         |        |             | 102.3  |           | %     |     | 50-140 | 18-JUN-18 |
| Trichlorofluoromethane    |        |             | 106.9  |           | %     |     | 50-140 | 18-JUN-18 |
| Vinyl chloride            |        |             | 98.2   |           | %     |     | 50-140 | 18-JUN-18 |

Workorder: L2111856 Report Date: 21-JUN-18

Client: Sirati & Partners Consultants Ltd. (Concord) Page 11 of 11

12700 Keele St

King City ON L7B 1H5

Contact: Chaoran Li

#### Legend:

Limit ALS Control Limit (Data Quality Objectives)
DUP Duplicate

RPD Relative Percent Difference

N/A Not Available

LCS Laboratory Control Sample SRM Standard Reference Material

MS Matrix Spike

MSD Matrix Spike Duplicate

ADE Average Desorption Efficiency

MB Method Blank

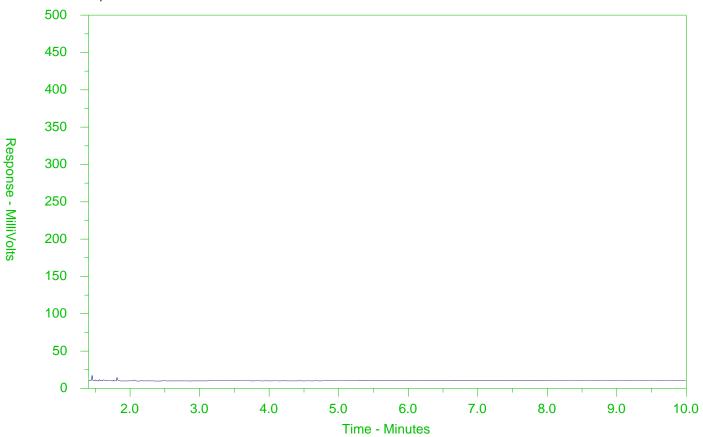
IRM Internal Reference Material
CRM Certified Reference Material
CCV Continuing Calibration Verification
CVS Calibration Verification Standard
LCSD Laboratory Control Sample Duplicate

#### **Sample Parameter Qualifier Definitions:**

| Qualifier | Description                                                                                        |
|-----------|----------------------------------------------------------------------------------------------------|
| J         | Duplicate results and limits are expressed in terms of absolute difference.                        |
| MS-B      | Matrix Spike recovery could not be accurately calculated due to high analyte background in sample. |
| RPD-NA    | Relative Percent Difference Not Available due to result(s) being less than detection limit.        |

#### **Hold Time Exceedances:**

All test results reported with this submission were conducted within ALS recommended hold times.


ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

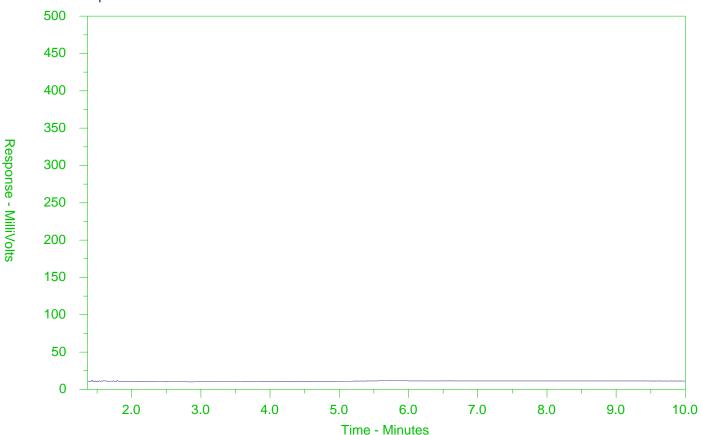
Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.



ALS Sample ID: L2111856-1 Client Sample ID: MW-E1



| <b>←</b> -F2- | →-                   | —F3—→←—F4— | <b>&gt;</b>               |  |  |  |
|---------------|----------------------|------------|---------------------------|--|--|--|
| nC10          | nC16                 | nC34       | nC50                      |  |  |  |
| 174°C         | 287°C                | 481°C      | 575°C                     |  |  |  |
| 346°F         | 549°F                | 898°F      | 1067⁰F                    |  |  |  |
| Gasolin       | e <b>→</b>           | ← Mot      | or Oils/Lube Oils/Grease- |  |  |  |
| <b>←</b>      | ← Diesel/Jet Fuels → |            |                           |  |  |  |


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

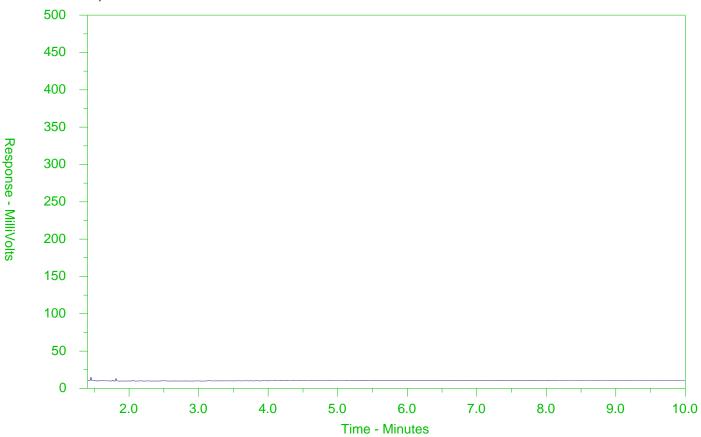
Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.



ALS Sample ID: L2111856-2 Client Sample ID: MW-E2



| <b>←</b> -F2- | →←                   | —F3—→ <b>←</b> —F4— | <b>&gt;</b>              |  |  |  |  |
|---------------|----------------------|---------------------|--------------------------|--|--|--|--|
| nC10          | nC16                 | nC34                | nC50                     |  |  |  |  |
| 174°C         | 287°C                | 481°C               | 575°C                    |  |  |  |  |
| 346°F         | 549°F                | 898°F               | 1067⁰F                   |  |  |  |  |
| Gasolin       | e <b>→</b>           | ← Mot               | or Oils/Lube Oils/Grease |  |  |  |  |
| <b>←</b>      | ← Diesel/Jet Fuels → |                     |                          |  |  |  |  |


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

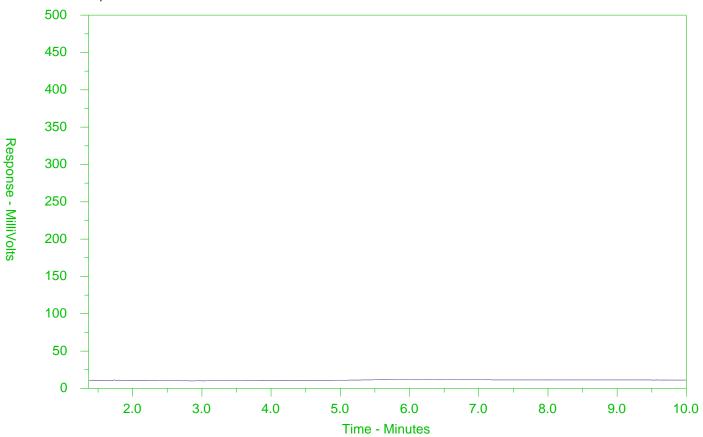
Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.



ALS Sample ID: L2111856-3 Client Sample ID: MW-E6



| <b>←</b> -F2- | →←                   | —F3—→ <b>←</b> —F4— | <b>&gt;</b>              |  |  |  |  |
|---------------|----------------------|---------------------|--------------------------|--|--|--|--|
| nC10          | nC16                 | nC34                | nC50                     |  |  |  |  |
| 174°C         | 287°C                | 481°C               | 575°C                    |  |  |  |  |
| 346°F         | 549°F                | 898°F               | 1067⁰F                   |  |  |  |  |
| Gasolin       | e <b>→</b>           | ← Mot               | or Oils/Lube Oils/Grease |  |  |  |  |
| <b>←</b>      | ← Diesel/Jet Fuels → |                     |                          |  |  |  |  |


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

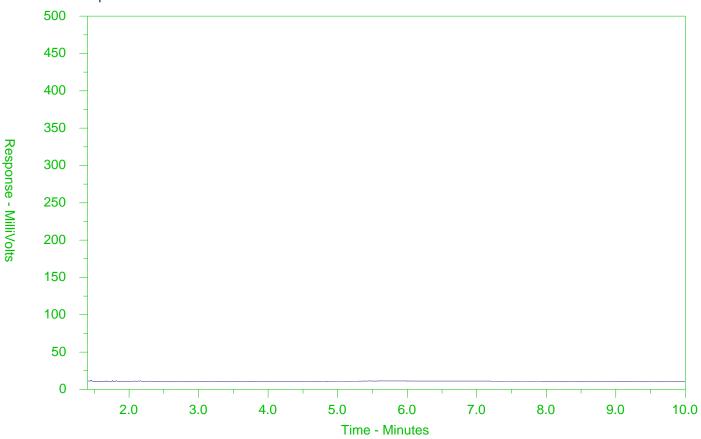
Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.



ALS Sample ID: L2111856-4 Client Sample ID: MW-E7



| <b>←</b> -F2- | →←                   | —F3—→ <b>←</b> —F4— | <b>&gt;</b>              |  |  |  |  |
|---------------|----------------------|---------------------|--------------------------|--|--|--|--|
| nC10          | nC16                 | nC34                | nC50                     |  |  |  |  |
| 174°C         | 287°C                | 481°C               | 575°C                    |  |  |  |  |
| 346°F         | 549°F                | 898°F               | 1067⁰F                   |  |  |  |  |
| Gasolin       | e <b>→</b>           | ← Mot               | or Oils/Lube Oils/Grease |  |  |  |  |
| <b>←</b>      | ← Diesel/Jet Fuels → |                     |                          |  |  |  |  |


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

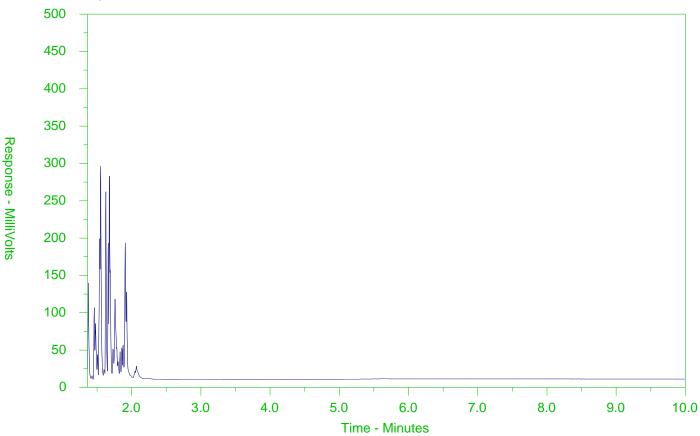
Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.



ALS Sample ID: L2111856-5 Client Sample ID: MW-E8



| <b>←</b> -F2- | → ←                  | —F3—→ <b>←</b> —F4— | <b>→</b>                   |  |  |  |  |
|---------------|----------------------|---------------------|----------------------------|--|--|--|--|
| nC10          | nC16                 | nC34                | nC50                       |  |  |  |  |
| 174°C         | 287°C                | 481°C               | 575°C                      |  |  |  |  |
| 346°F         | 549°F                | 898°F               | 1067°F                     |  |  |  |  |
| Gasolin       | ie →                 | ← Mot               | or Oils/Lube Oils/Grease—— |  |  |  |  |
| <b>←</b>      | ← Diesel/Jet Fuels → |                     |                            |  |  |  |  |


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.



ALS Sample ID: L2111856-6 Client Sample ID: MW-E11



| <b>←</b> -F2- | →←         | —F3—→ <b>←</b> —F4— | <b>&gt;</b>              |
|---------------|------------|---------------------|--------------------------|
| nC10          | nC16       | nC34                | nC50                     |
| 174°C         | 287°C      | 481°C               | 575°C                    |
| 346°F         | 549°F      | 898°F               | 1067⁰F                   |
| Gasolin       | e <b>→</b> | ← Mot               | or Oils/Lube Oils/Grease |
| <b>←</b>      | -Diesel/Je | t Fuels→            |                          |

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

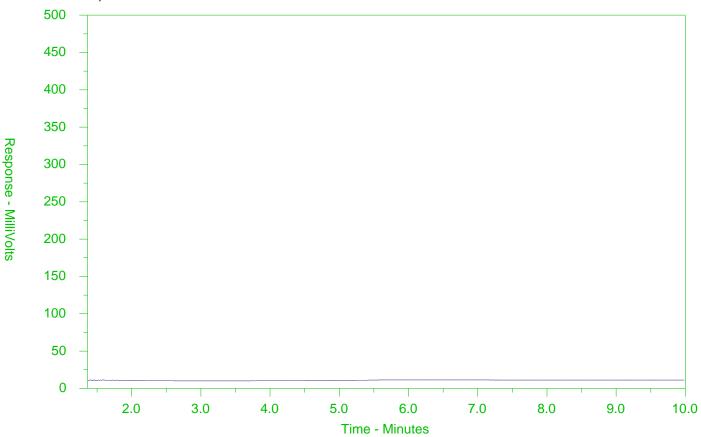
Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.



ALS Sample ID: L2111856-7 Client Sample ID: MW-E12



| <b>←</b> -F2- | → ←        | —F3—→ <b>←</b> —F4— | <b>→</b>                   |  |
|---------------|------------|---------------------|----------------------------|--|
| nC10          | nC16       | nC34                | nC50                       |  |
| 174°C         | 287°C      | 481°C               | 575°C                      |  |
| 346°F         | 549°F      | 898°F               | 1067°F                     |  |
| Gasolin       | ie →       | ← Mot               | or Oils/Lube Oils/Grease—— |  |
| <b>←</b>      | -Diesel/Je | t Fuels→            |                            |  |


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.



ALS Sample ID: L2111856-8 Client Sample ID: MW-E13



| <b>←</b> -F2- | → ←        | —F3—→ <b>←</b> —F4— | <b>→</b>                   |  |
|---------------|------------|---------------------|----------------------------|--|
| nC10          | nC16       | nC34                | nC50                       |  |
| 174°C         | 287°C      | 481°C               | 575°C                      |  |
| 346°F         | 549°F      | 898°F               | 1067°F                     |  |
| Gasolin       | ie →       | ← Mot               | or Oils/Lube Oils/Grease—— |  |
| <b>←</b>      | -Diesel/Je | t Fuels→            |                            |  |

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

# ALS Environmental

# Chain of Custody (COC) / Analytical Request Form

Canada Toll Free: 1 800 668 9878

L2111856-COFC

coc Number: 17 - 622372

ae

|                  | www.aisgionar.com                                |                        |                            |                                             | <u> </u>           |                                                  |             |                                     |                 |                                                                                                                  | <u>,,</u> | <u>'</u>  |             |                 |                |                |             |                 |                                   |                                   |            |             |
|------------------|--------------------------------------------------|------------------------|----------------------------|---------------------------------------------|--------------------|--------------------------------------------------|-------------|-------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------|-----------|-----------|-------------|-----------------|----------------|----------------|-------------|-----------------|-----------------------------------|-----------------------------------|------------|-------------|
| Report To        | Contact and company name below will appear       |                        |                            | Report Format                               | / Distribution =   |                                                  | <u>r - </u> |                                     | <u> </u>        | ,                                                                                                                |           | Conta     | ct your     | AM to           | onfii          | rm all E       | &P TATs     | (surch          | arges m                           | ay app                            | ıly)       |             |
| Company:         | SIRATI & PARTHER                                 | <u> </u>               | Select Report Fo           |                                             |                    | DD (DIGITAL)                                     |             | Reg                                 | ular [R]        |                                                                                                                  | tandard   | TAT if r  | received    | by 3 рп         | n - busin      | iess day:      | s - no surd | harges a        | pply                              |                                   |            |             |
| Contact:         | CHADRANLI                                        |                        | Quality Control (          | QC) Report with Repo                        | ort 🖳 YES          | №                                                | e kar<br>E  | 4 day                               | [P4-20%         |                                                                                                                  |           | ENCY      | 1 Bus       | ness            | day [i         | E-1009         | 6]          |                 |                                   |                                   |            |             |
| Phone:           | 905-833-1582                                     |                        | Compare Res                | ults to Criteria on Report - p              |                    |                                                  | NOR         | 3 day                               | [P3-25%]        |                                                                                                                  |           | MERG      | Same I      | Day, \          | Weeke          | nd or          | Statutor    | y holic         | day [E2                           | -200%                             |            |             |
|                  | Company address below will appear on the final r | eport                  | Select Distribution        | on: EMAIL                                   | MAIL []            | FAX                                              | (Busing     | 2 day                               | [P2-50%]        |                                                                                                                  |           |           | (Labor      | atory           | openi          | ng fee         | s may a     | ipply)          | 1                                 |                                   |            | 니           |
| Street:          | 12700 KEELC St.                                  |                        | Email 1 or Fax             | Chaorantic                                  | Osecousu           | Hours Horce                                      |             | Date ar                             | d Time Req      | uired for                                                                                                        | all E&P   | TATs:     |             | dd-mmm-yy hh:mm |                |                |             |                 |                                   |                                   |            |             |
| City/Province:   | King city ON.                                    |                        | Email 2 & C-Q              | rafalogsp                                   | Consulto           | raks Holicon                                     | For test    | s that can                          | not be perfo    | med acco                                                                                                         | rding to  | the servi | ice level s | elected         | l, you wil     | l be cont      | acted.      |                 |                                   |                                   |            |             |
| Postal Code:     | 1781HX                                           |                        | Email 3 + 6                | whome@                                      | SP CONSON          | fautto co                                        |             |                                     | r               |                                                                                                                  |           |           | Ana         | iysis           | Reque          | st             |             |                 |                                   |                                   | ,          |             |
| Invoice To       | Same as Report To YES                            | NO                     |                            | Invoice Dis                                 | stribution         | ·                                                |             |                                     | Indicate        | Filtered (                                                                                                       | F), Pres  | served (F | ) or Filte  | ered an         | d Preser       | ved (F/F       | ) below     |                 |                                   |                                   | details    |             |
|                  | Copy of Invoice with Report YES                  | NO .                   | Select Invoice D           | istribution: E                              | MAIL MAIL          | FAX                                              |             |                                     |                 |                                                                                                                  |           |           |             |                 |                |                |             |                 |                                   | 1                                 | 8          |             |
| Company:         | SIRATI FOARTNER                                  | ς                      | Email 1 or Fax             |                                             |                    |                                                  |             |                                     |                 |                                                                                                                  |           | l         |             |                 |                | •              |             |                 |                                   |                                   | Ę́ i       | 7 <u>.</u>  |
| Contact:         | Chagran/Li                                       |                        | Email 2                    |                                             |                    |                                                  | 1           |                                     |                 |                                                                                                                  |           |           |             |                 |                | ] -            |             |                 |                                   | 12                                | 후          | •           |
|                  | Project Information                              | <u> </u>               |                            | Dil and Gas Required                        | l Fields (client u | se)                                              |             |                                     |                 | 1                                                                                                                |           |           | ·           | . '             |                |                |             |                 |                                   | 1 1                               |            |             |
| ALS Account # /  |                                                  |                        | AFE/Cost Center:           |                                             | PO#                |                                                  |             | :                                   |                 |                                                                                                                  |           |           |             | .,]             | 19             | Į              |             |                 |                                   | Ιİ                                | ם          |             |
| Job #:           | Sp18 - 306 · 20                                  | <u> </u>               | Major/Minor Code:          |                                             | Routing Code:      |                                                  | 1           | ل ا                                 |                 |                                                                                                                  | ٠         |           |             |                 | ·              | i              |             |                 |                                   | ΙI                                | leas       | S.          |
| PO / AFE:        |                                                  |                        | Requisitioner:             |                                             |                    | <u>-</u>                                         |             | J                                   | '               |                                                                                                                  |           |           |             | .               | ·              |                |             |                 |                                   | ا ، ا                             | 9 (b       | AINE        |
| LSD:             | <u> </u>                                         |                        | Location:                  |                                             |                    |                                                  | الما        | 9                                   | ļ               |                                                                                                                  |           |           | j           | ٠,              | •              | 1              |             |                 |                                   | ₫                                 | Job.       | CONTAINERS  |
| ALS Lab Wor      | k Order # (lab use only): L2 1 1 8               | 56                     | ALS Contact:               | *                                           | Sampler: TC        | ar.                                              | A.          | 1/2/100                             | PHES            | $\left\{ \right\} = \left[ \left[ \left[ \left[ \left[ \left[ \left[ \left[ \left[ \left[ \left[ \left[ \left[ $ | -         | , [       | `.          |                 |                | , ,            |             | *               |                                   | S ON P                            | is haza    | NUMBER OF C |
| ALS Sample #     | Sample Identification a                          | ind/or Coordinates     | <del></del>                | Date                                        | Time               | 1                                                | Σ           | $\mathcal{H}_{\boldsymbol{\theta}}$ | ž Ş             | <u>ا</u>                                                                                                         |           |           |             | `               | ľ              |                |             | ١.              |                                   | ᇫ                                 | eld        | 8           |
| (lab use only)   | (This description will ap                        | pear on the report)    |                            | (dd-mmm-yy)                                 | (hh:mm)            | Sample Type                                      | ے ا         | 9                                   | J-1             |                                                                                                                  |           | .         | .           |                 | 1              |                |             |                 |                                   | §                                 | San        | 5           |
| ŧ .              | MINI-EI                                          | ,                      |                            | Rune 13 2018                                | pm                 | Madel                                            |             |                                     | 2               |                                                                                                                  | •         |           |             |                 | ٧              |                |             | 7.              |                                   |                                   |            | 4           |
| 7                | MINI-EZ                                          |                        |                            | Tures 200                                   |                    | water                                            | 0           |                                     | 0               | +                                                                                                                | ,5+       |           |             | _               |                | 4              |             | +               | + -                               | $\Box$                            |            | 9           |
| 3                |                                                  |                        |                            | 7 -                                         | - 10               | Mater                                            | _           | 2_                                  | 4               | -                                                                                                                |           | - 1       |             | $\dashv$        | <del>-  </del> | $\dashv$       | _           | +-              | +                                 | $\vdash$                          | _          |             |
| 4                | MW-E6                                            | <u> </u>               |                            | June 13, 2012                               | <del>/-</del>      | <del>                                     </del> |             | - Jan-                              |                 |                                                                                                                  |           |           | -           | -+              | -=             | -              | +           | +               | +                                 | $\vdash \vdash \vdash$            |            | 4           |
|                  | MUIZZ                                            | <u> </u>               |                            | June 13, 2012                               | 7 .                | moter                                            | 2           |                                     | P_              | <del></del>                                                                                                      |           |           |             | _               |                | <del></del> -  |             |                 |                                   | $oldsymbol{\sqcup}$               |            | 9           |
| 5                | MINI-E8                                          | <u> </u>               | <del>- '</del>             | June 13,2012                                | pm                 | water                                            |             |                                     | R               |                                                                                                                  |           |           |             | _               | $\rightarrow$  | <u>.</u>       | · .         | <u> </u>        | $\perp \!\!\! \perp \!\!\! \perp$ | Ш                                 |            | 4           |
| ما               | MWZII                                            | ف                      |                            | Tuncis 208                                  | on                 | word                                             |             |                                     | 12              |                                                                                                                  |           |           |             |                 |                |                |             |                 |                                   |                                   |            | 4           |
| 1                | MINELZ.                                          |                        |                            | Func B. Col                                 | pin                | water                                            |             |                                     | R               |                                                                                                                  |           |           |             |                 |                | - 1            | *           |                 |                                   |                                   |            | 4           |
| 8                | MILLE13                                          |                        |                            | June 18 2018                                |                    | Mater                                            |             |                                     | 12              | 1                                                                                                                |           | -         |             |                 | -              |                | $\neg$      |                 |                                   | ·                                 |            | 14          |
| 9                | DUP-INI                                          |                        |                            | Sure 13,00K                                 |                    | water                                            | 0           |                                     |                 | <b>†</b>                                                                                                         |           |           | _           |                 | $\neg$         |                |             | 1               | +                                 |                                   |            | 5           |
| ID.              | Tripblank 1                                      | <del></del>            |                            | <u> </u>                                    |                    | 72.7                                             |             |                                     | - 4             | 1-                                                                                                               |           | $\vdash$  | $\dashv$    |                 | -+             | $\neg \dagger$ |             | _               | +-                                |                                   |            |             |
| . 10             | 14 Cholar PI                                     | 1 7.7                  |                            | g 4                                         | <del></del>        |                                                  |             | -                                   |                 | -                                                                                                                |           | <u>`</u>  |             | $\dashv$        |                | +              | +           | +-              | ┼─┦                               |                                   |            |             |
|                  |                                                  |                        | <del></del>                |                                             |                    | <b> </b>                                         |             |                                     | <del>-  -</del> | <del> </del>                                                                                                     | _         |           |             |                 | $\rightarrow$  |                |             | +-              | 4-4                               | $\dot{oldsymbol{oldsymbol{eta}}}$ |            |             |
|                  |                                                  | _ <del>`</del>         |                            | <u> </u>                                    | <u> </u>           |                                                  |             |                                     |                 | <u> </u>                                                                                                         |           |           |             |                 |                |                |             | Щ.              |                                   | ليبيا                             |            |             |
| Drinkin          | g Water (DW) Samples¹ (client use)               | Special Instructions / | Specify Criteria to<br>ele | add on report by click<br>ctronic COC only) | king on the drop-d | own list below                                   | <u></u>     | _                                   |                 | 5/                                                                                                               |           |           |             | _               |                | Yes (I         | ab use      | only)           |                                   |                                   |            |             |
|                  | n from a Regulated DW System?                    |                        |                            |                                             | ·                  | <del></del> _                                    | Froze       |                                     |                 | Cubes                                                                                                            | . /       |           | bserva      |                 |                | Yes            | 片           |                 | No<br>No                          |                                   | <u> </u>   | -           |
|                  | ES NO                                            | ر برد سید فر           |                            | nud Te                                      | (2)                | 5                                                | ı           | acks<br>na Initia                   | -               | Cubes                                                                                                            | ሥ         | Custo     | dy seal     | mac             | ·              | res            |             |                 | NO                                |                                   |            | ا ا         |
|                  | uman consumption/ use?                           | 3700                   | vere                       | nu je                                       | XUU                | d.                                               |             |                                     | IIITIAL COC     | I ER TEM                                                                                                         | DEDAT     | HOES W    |             |                 |                | <del></del>    | INAL COO    | J FO TE         | MDERATI                           | IRES °C                           |            |             |
| •                | ES   ¥ NO                                        | 1.                     | 1                          |                                             | •                  | ;                                                | 16          |                                     | INL VVC         | E CONTRACTOR                                                                                                     | - 21041   | JAEG (    | <u> </u>    | 一十              | 9.             | <u> 9</u>      | 1           |                 | T                                 | T                                 |            |             |
|                  | SHIPMENT RELEASE (client use)                    | 1                      | Ţ <u>-</u>                 | INITIAL SHIPMEN                             | T RECEPTION (Is    | ab use only)                                     | ПО          | (1)                                 |                 | 1                                                                                                                |           | EMA       | SHIP        | MENT            |                |                | N (iab u    | se onl          |                                   |                                   |            |             |
| Released by:     | cete Date: June B                                | 9013) Time:            | Received by:               |                                             | 72 : '-            |                                                  | Time:       |                                     | Receive         | by:                                                                                                              |           |           |             |                 |                |                |             | <i>56</i> (411) |                                   | Time:                             | 71         |             |
| 1                | ecic sures                                       | / <sup>20</sup> ( ) {  |                            | M                                           | L June             | 13/18                                            | Time:       | 20                                  | Receive         | Qv                                                                                                               | 14        | M         | <u></u>     | We.             | u              | l G            | D           |                 | 1                                 | $\perp I$                         | <u>745</u> | 70          |
| DESCRIPTION BACK | DAGE FOR ALCOHOLOUS SALES SALES WAS AND          | COLUMN I               |                            | \$870.07                                    | IE ADMONTOR        | CODY VELLO                                       | M CIII      | ENT OC                              | nv              |                                                                                                                  | _         | تسيب      |             |                 |                |                |             |                 |                                   |                                   |            |             |



Sirati & Partners Consultants Ltd.

(Concord)

ATTN: Chaoran Li 12700 Keele St

King City ON L7B 1H5

Date Received: 14-SEP-18

Report Date: 21-SEP-18 13:47 (MT)

Version: FINAL

Client Phone: 905-833-1582

# Certificate of Analysis

Lab Work Order #: L2165216
Project P.O. #: SP18-306-20
Job Reference: SP18-306-20
C of C Numbers: 17-638606

Legal Site Desc:

Rick Hawthorne Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 5730 Coopers Avenue, Unit #26 , Mississauga, ON L4Z 2E9 Canada | Phone: +1 905 507 6910 | Fax: +1 905 507 6927 ALS CANADA LTD Part of the ALS Group An ALS Limited Company





L2165216 CONT'D....

Job Reference: SP18-306-20

PAGE 2 of 12

21-SEP-18 13:47 (MT)

# **Summary of Guideline Exceedances**

| Guideline<br>ALS ID | Client ID                 | Grouping                             | Analyte                         | Result | Guideline Limit | Unit         |
|---------------------|---------------------------|--------------------------------------|---------------------------------|--------|-----------------|--------------|
| Ontario Rec         | gulation 153/04 - April 1 | 5, 2011 Standards - T1-Ground Water- | All Types of Property Uses      |        |                 |              |
| .2165216-2          | -                         | Volatile Organic Compounds           | Bromodichloromethane            | <3.0   | 2               | ug/L         |
|                     |                           | Ŭ .                                  | Ethylbenzene                    | 1.39   | 0.5             | ug/L         |
|                     |                           |                                      | n-Hexane                        | 8.38   | 5               | ug/L         |
|                     |                           | Hydrocarbons                         | F1 (C6-C10)                     | 486    | 420             | ug/L         |
|                     |                           | •                                    | F1-BTEX                         | 483    | 420             | ug/L         |
|                     |                           |                                      | F2 (C10-C16)                    | 400    | 150             | ug/L         |
| 2165216-3           | MW204                     | Volatile Organic Compounds           |                                 | 3760   |                 |              |
|                     |                           | Totalio Organio Composituo           | Benzene<br>Bromodichloromethane | <3.2   | 0.5<br>2        | ug/L<br>ug/L |
|                     |                           |                                      | 1,2-Dichloroethane              | 3.22   | 0.5             | ug/L         |
|                     |                           |                                      | Methylene Chloride              | <9.0   | 5               | ug/L         |
|                     |                           |                                      | Ethylbenzene                    | 696    | 0.5             | ug/L         |
|                     |                           |                                      | n-Hexane                        | 71.6   | 5               | ug/L         |
|                     |                           |                                      | Styrene                         | 1.13   | 0.5             | ug/L         |
|                     |                           |                                      | Toluene                         | 518    | 0.8             | ug/L         |
|                     |                           |                                      | Xylenes (Total)                 | 2930   | 72              | ug/L         |
|                     |                           | Hydrocarbons                         | F1 (C6-C10)                     | 10800  | 420             | ug/L         |
|                     |                           |                                      | F1-BTEX                         | 2900   | 420             | ug/L         |
|                     |                           |                                      | F2 (C10-C16)                    | 1610   | 150             | ug/L         |
| 2165216-5           | MW207                     | Volatile Organic Compounds           | Benzene                         | 299    | 0.5             | ug/L         |
|                     |                           |                                      | Bromodichloromethane            | <6.0   | 2               | ug/L         |
|                     |                           |                                      | 1,2-Dichloroethane              | <0.70  | 0.5             | ug/L         |
|                     |                           |                                      | Ethylbenzene                    | 90.5   | 0.5             | ug/L         |
|                     |                           |                                      | n-Hexane                        | 18.8   | 5               | ug/L         |
|                     |                           |                                      | 1,1,2,2-Tetrachloroethane       | <0.80  | 0.5             | ug/L         |
|                     |                           |                                      | Toluene                         | 6.69   | 0.8             | ug/L         |
|                     |                           |                                      | 1,1,2-Trichloroethane           | <2.3   | 0.5             | ug/L         |
|                     |                           | Hydrocarbons                         | F1 (C6-C10)                     | 4190   | 420             | ug/L         |
|                     |                           |                                      | F1-BTEX                         | 3770   | 420             | ug/L         |
|                     |                           |                                      | F2 (C10-C16)                    | 1400   | 150             | ug/L         |
| _2165216-6          | MW208                     | Volatile Organic Compounds           | Benzene                         | 1.82   | 0.5             | ug/L         |
|                     |                           |                                      | Trichloroethylene               | 0.69   | 0.5             | ug/L         |
| _2165216-7          | MW209                     | Volatile Organic Compounds           | Benzene                         | 0.60   | 0.5             | ug/L         |
|                     |                           |                                      | Trichloroethylene               | 0.87   | 0.5             | ug/L         |
| 2165216-8           | MW210                     | Volatile Organic Compounds           | Benzene                         | 32.0   | 0.5             | ug/L         |
|                     |                           | , i                                  | Bromodichloromethane            | <3.6   | 2               | ug/L         |

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2165216 CONT'D....

Job Reference: SP18-306-20

PAGE 3 of 12

21-SEP-18 13:47 (MT)

# **Summary of Guideline Exceedances**

| Guideline   |                           |                                       |                                       |                                                           |                                                                                                                  |      |
|-------------|---------------------------|---------------------------------------|---------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------|
| ALS ID      | Client ID                 | Grouping                              | Analyte                               | Result                                                    | Guideline Limit                                                                                                  | Unit |
| Ontario Reg | gulation 153/04 - April 1 | 5, 2011 Standards - T1-Ground Water-A | All Types of Property Uses            |                                                           |                                                                                                                  |      |
| _2165216-8  | MW210                     | Volatile Organic Compounds            | Ethylbenzene                          | 5.97                                                      | 0.5                                                                                                              | ug/L |
|             |                           |                                       | Toluene                               | 2.17                                                      | 0.5 0.8 420 420 150  150  5 1.6 2.4 51 24 300 750 750 150  5 2.4 750 750 150 5 2.4 750 750 150 5 2.4 750 750 150 | ug/L |
|             |                           | Hydrocarbons                          | F1 (C6-C10)                           | 1680                                                      | 420                                                                                                              | ug/L |
|             |                           |                                       | F1-BTEX                               | 1630                                                      | 0.5 0.8 420 420 150  150  5 1.6 2.4 51 24 300 750 750 150 5 2.4 750 750 150 5 2.4 750 750 750 750                | ug/L |
|             |                           |                                       | F2 (C10-C16)                          | 1810                                                      | 150                                                                                                              | ug/L |
| ntario Reg  | gulation 153/04 - April 1 | 5, 2011 Standards - T2-Ground Water ( | Coarse Soil)-All Types of Property Us | se                                                        |                                                                                                                  |      |
| .2165216-2  | MW202                     | Hydrocarbons                          | F2 (C10-C16)                          | 400                                                       | 150                                                                                                              | ug/L |
| 2165216-3   | MW204                     | Volatile Organic Compounds            | Benzene                               | 3760                                                      | 150<br>5<br>1.6<br>2.4<br>51<br>24<br>300<br>750                                                                 | ug/L |
|             |                           |                                       | 1,2-Dichloroethane                    | 3.22                                                      |                                                                                                                  | ug/L |
|             |                           |                                       | Ethylbenzene                          | 696                                                       | 2.4                                                                                                              | ug/L |
|             |                           |                                       | n-Hexane                              | 71.6                                                      | 51                                                                                                               | ug/L |
|             |                           |                                       | Toluene                               | 71.6       51         518       24         2930       300 | 24                                                                                                               | ug/L |
|             |                           |                                       | Xylenes (Total)                       | 2930                                                      | 300                                                                                                              | ug/L |
|             |                           | Hydrocarbons                          | F1 (C6-C10)                           | 10800                                                     | 750                                                                                                              | ug/L |
|             |                           |                                       | F1-BTEX                               | 2900                                                      | 750                                                                                                              | ug/L |
|             |                           |                                       | F2 (C10-C16)                          | 1610                                                      | 150                                                                                                              | ug/L |
| .2165216-5  | MW207                     | Volatile Organic Compounds            | Benzene                               | 299                                                       | 5                                                                                                                | ug/L |
|             |                           |                                       | Ethylbenzene                          | 90.5                                                      | 2.4                                                                                                              | ug/L |
|             |                           | Hydrocarbons                          | F1 (C6-C10)                           | 4190                                                      | 750                                                                                                              | ug/L |
|             |                           |                                       | F1-BTEX                               | 3770                                                      | 750                                                                                                              | ug/L |
|             |                           |                                       | F2 (C10-C16)                          | 1400                                                      | 150                                                                                                              | ug/L |
| 2165216-8   | MW210                     | Volatile Organic Compounds            | Benzene                               | 32.0                                                      | 5                                                                                                                | ug/L |
|             |                           |                                       | Ethylbenzene                          | 5.97                                                      | 2.4                                                                                                              | ug/L |
|             |                           | Hydrocarbons                          | F1 (C6-C10)                           | 1680                                                      | 750                                                                                                              | ug/L |
|             |                           |                                       | F1-BTEX                               | 1630                                                      | 750                                                                                                              | ug/L |
|             |                           |                                       | F2 (C10-C16)                          | 1810                                                      | 150                                                                                                              | ug/L |

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2165216 CONT'D....

Job Reference: SP18-306-20

PAGE 4 of 12

21-SEP-18 13:47 (MT)

**Volatile Organic Compounds - WATER** 

|                                   |      |             | Lab ID       | L2165216-1 | L2165216-2 | L2165216-3 | L2165216-4 | L2165216-5 | L2165216-6 | L2165216-7 | L2165216-8 | L2165216-9 |
|-----------------------------------|------|-------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|                                   |      | Sampl       |              | 14-SEP-18  | 14-SEP-18  | 14-SEP-18  | 14-SEP-18  | 14-SEP-18  | 14-SEP-18  | 14-SEP-18  | 14-SEP-18  | 14-SEP-18  |
|                                   |      | San         | ple ID       | MW201      | MW202      | MW204      | MW206      | MW207      | MW208      | MW209      | MW210      | DUP-W201   |
| Analyte                           | Unit | Guide<br>#1 | Limits<br>#2 |            |            |            |            |            |            |            |            |            |
| Acetone                           | ug/L | 2700        | 2700         | <30        | <30        | <30        | <30        | <30        | <30        | <30        | <30        | <30        |
| Benzene                           | ug/L | 0.5         | 5            | <0.50      | <0.50      | 3760 DLHC  | <0.50      | 299        | 1.82       | 0.60       | 32.0       | < 0.50     |
| Bromodichloromethane              | ug/L | 2           | 16           | <2.0       | <3.0 DLVH  | <3.2 DLVH  | <2.0       | <6.0 DLVH  | <2.0       | <2.0       | <3.6 DLVH  | <2.0       |
| Bromoform                         | ug/L | 5           | 25           | <5.0       | <5.0       | <5.0       | <5.0       | <5.0       | <5.0       | <5.0       | <5.0       | <5.0       |
| Bromomethane                      | ug/L | 0.89        | 0.89         | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      |
| Carbon tetrachloride              | ug/L | 0.2         | 0.79         | <0.20      | <0.20      | <0.20      | <0.20      | <0.20      | <0.20      | <0.20      | <0.20      | <0.20      |
| Chlorobenzene                     | ug/L | 0.5         | 30           | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      |
| Dibromochloromethane              | ug/L | 2           | 25           | <2.0       | <2.0       | <2.0       | <2.0       | <2.0       | <2.0       | <2.0       | <2.0       | <2.0       |
| Chloroform                        | ug/L | 2           | 2.4          | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       |
| 1,2-Dibromoethane                 | ug/L | 0.2         | 0.2          | <0.20      | <0.20      | <0.20      | <0.20      | <0.20      | <0.20      | <0.20      | <0.20      | <0.20      |
| 1,2-Dichlorobenzene               | ug/L | 0.5         | 3            | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      |
| 1,3-Dichlorobenzene               | ug/L | 0.5         | 59           | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | < 0.50     |
| 1,4-Dichlorobenzene               | ug/L | 0.5         | 1            | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      |
| Dichlorodifluoromethane           | ug/L | 590         | 590          | <2.0       | <2.0       | <2.0       | <2.0       | <2.0       | <2.0       | <2.0       | <2.0       | <2.0       |
| 1,1-Dichloroethane                | ug/L | 0.5         | 5            | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      |
| 1,2-Dichloroethane                | ug/L | 0.5         | 1.6          | <0.50      | <0.50      | 3.22       | <0.50      | <0.70 DLVH | <0.50      | <0.50      | <0.50      | <0.50      |
| 1,1-Dichloroethylene              | ug/L | 0.5         | 1.6          | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      |
| cis-1,2-Dichloroethylene          | ug/L | 1.6         | 1.6          | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      |
| trans-1,2-Dichloroethylene        | ug/L | 1.6         | 1.6          | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      |
| Methylene Chloride                | ug/L | 5           | 50           | <5.0       | <5.0       | <9.0 DLVH  | <5.0       | <5.0       | <5.0       | <5.0       | <5.0       | <5.0       |
| 1,2-Dichloropropane               | ug/L | 0.5         | 5            | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      |
| cis-1,3-Dichloropropene           | ug/L | -           | -            | < 0.30     | <0.30      | <0.30      | <0.30      | <0.30      | <0.30      | <0.30      | < 0.30     | < 0.30     |
| trans-1,3-Dichloropropene         | ug/L | -           | -            | <0.30      | <0.30      | <0.30      | <0.30      | <0.30      | <0.30      | <0.30      | < 0.30     | < 0.30     |
| 1,3-Dichloropropene (cis & trans) | ug/L | 0.5         | 0.5          | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      |
| Ethylbenzene                      | ug/L | 0.5         | 2.4          | <0.50      | 1.39       | 696 DLHC   | <0.50      | 90.5       | <0.50      | <0.50      | 5.97       | <0.50      |
| n-Hexane                          | ug/L | 5           | 51           | <0.50      | 8.38       | 71.6       | <0.50      | 18.8       | <0.50      | <0.50      | 4.94       | <0.50      |
| Methyl Ethyl Ketone               | ug/L | 400         | 1800         | <20        | <20        | <30 DLVH   | <20        | <20        | <20        | <20        | <20        | <20        |
| Methyl Isobutyl Ketone            | ug/L | 640         | 640          | <20        | <20        | <20        | <20        | <20        | <20        | <20        | <20        | <20        |
| MTBE                              | ug/L | 15          | 15           | <2.0       | <2.0       | <2.0       | <2.0       | <2.0       | <2.0       | <2.0       | <2.0       | <2.0       |
| Styrene                           | ug/L | 0.5         | 5.4          | < 0.50     | < 0.50     | 1.13       | < 0.50     | < 0.50     | < 0.50     | <0.50      | <0.50      | < 0.50     |

Guide Limit #1: T1-Ground Water-All Types of Property Uses Guide Limit #2: T2-Ground Water (Coarse Soil)-All Types of Property Use

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2165216 CONT'D....

Job Reference: SP18-306-20

PAGE 5 of 12

21-SEP-18 13:47 (MT)

# **Volatile Organic Compounds - WATER**

Lab ID L2165216-11
Sample Date 14-SEP-18
Sample ID TRIP BLANK

| Analyte                           | Unit | Guide<br>#1 | Limits<br>#2 |        |
|-----------------------------------|------|-------------|--------------|--------|
| Acetone                           | ug/L | 2700        | 2700         | <30    |
| Benzene                           | ug/L | 0.5         | 5            | <0.50  |
| Bromodichloromethane              | ug/L | 2           | 16           | <2.0   |
| Bromoform                         | ug/L | 5           | 25           | <5.0   |
| Bromomethane                      | ug/L | 0.89        | 0.89         | <0.50  |
| Carbon tetrachloride              | ug/L | 0.2         | 0.79         | <0.20  |
| Chlorobenzene                     | ug/L | 0.5         | 30           | <0.50  |
| Dibromochloromethane              | ug/L | 2           | 25           | <2.0   |
| Chloroform                        | ug/L | 2           | 2.4          | <1.0   |
| 1,2-Dibromoethane                 | ug/L | 0.2         | 0.2          | <0.20  |
| 1,2-Dichlorobenzene               | ug/L | 0.5         | 3            | <0.50  |
| 1,3-Dichlorobenzene               | ug/L | 0.5         | 59           | <0.50  |
| 1,4-Dichlorobenzene               | ug/L | 0.5         | 1            | <0.50  |
| Dichlorodifluoromethane           | ug/L | 590         | 590          | <2.0   |
| 1,1-Dichloroethane                | ug/L | 0.5         | 5            | <0.50  |
| 1,2-Dichloroethane                | ug/L | 0.5         | 1.6          | <0.50  |
| 1,1-Dichloroethylene              | ug/L | 0.5         | 1.6          | <0.50  |
| cis-1,2-Dichloroethylene          | ug/L | 1.6         | 1.6          | <0.50  |
| trans-1,2-Dichloroethylene        | ug/L | 1.6         | 1.6          | <0.50  |
| Methylene Chloride                | ug/L | 5           | 50           | <5.0   |
| 1,2-Dichloropropane               | ug/L | 0.5         | 5            | <0.50  |
| cis-1,3-Dichloropropene           | ug/L | -           | -            | <0.30  |
| trans-1,3-Dichloropropene         | ug/L | -           | -            | < 0.30 |
| 1,3-Dichloropropene (cis & trans) | ug/L | 0.5         | 0.5          | <0.50  |
| Ethylbenzene                      | ug/L | 0.5         | 2.4          | <0.50  |
| n-Hexane                          | ug/L | 5           | 51           | <0.50  |
| Methyl Ethyl Ketone               | ug/L | 400         | 1800         | <20    |
| Methyl Isobutyl Ketone            | ug/L | 640         | 640          | <20    |
| MTBE                              | ug/L | 15          | 15           | <2.0   |
| Styrene                           | ug/L | 0.5         | 5.4          | <0.50  |
|                                   |      |             |              |        |

Guide Limit #1: T1-Ground Water-All Types of Property Uses Guide Limit #2: T2-Ground Water (Coarse Soil)-All Types of Property Use

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



L2165216 CONT'D.... Job Reference: SP18-306-20 PAGE 6 of 12 21-SEP-18 13:47 (MT)

Volatile Organic Compounds - WATER

|                                 |      |             | ∟ab ID       | L2165216-1 | L2165216-2 | L2165216-3 | L2165216-4 | L2165216-5 | L2165216-6 | L2165216-7 | L2165216-8  | L2165216-9 |
|---------------------------------|------|-------------|--------------|------------|------------|------------|------------|------------|------------|------------|-------------|------------|
|                                 |      | Sample      | e Date       | 14-SEP-18  | 14-SEP-18  | 14-SEP-18  | 14-SEP-18  | 14-SEP-18  | 14-SEP-18  | 14-SEP-18  | 14-SEP-18   | 14-SEP-18  |
|                                 |      | •           | ple ID       | MW201      | MW202      | MW204      | MW206      | MW207      | MW208      | MW209      | MW210       | DUP-W201   |
| Analyte                         | Unit | Guide<br>#1 | Limits<br>#2 |            |            |            |            |            |            |            |             |            |
| 1,1,1,2-Tetrachloroethane       | ug/L | 1.1         | 1.1          | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50       | <0.50      |
| 1,1,2,2-Tetrachloroethane       | ug/L | 0.5         | 1            | <0.50      | <0.50      | <0.50      | <0.50      | <0.80 DLVH | <0.50      | <0.50      | <0.50       | <0.50      |
| Tetrachloroethylene             | ug/L | 0.5         | 1.6          | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50       | <0.50      |
| Toluene                         | ug/L | 0.8         | 24           | <0.50      | <0.50      | 518 DLHC   | <0.50      | 6.69       | <0.50      | <0.50      | 2.17        | <0.50      |
| 1,1,1-Trichloroethane           | ug/L | 0.5         | 200          | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50       | <0.50      |
| 1,1,2-Trichloroethane           | ug/L | 0.5         | 4.7          | <0.50      | <0.50      | <0.50      | <0.50      | <2.3 DLVH  | <0.50      | <0.50      | <0.50       | < 0.50     |
| Trichloroethylene               | ug/L | 0.5         | 1.6          | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | 0.69       | 0.87       | <0.50       | <0.50      |
| Trichlorofluoromethane          | ug/L | 150         | 150          | <5.0       | <5.0       | <5.0       | <5.0       | <5.0       | <5.0       | <5.0       | <5.0        | <5.0       |
| Vinyl chloride                  | ug/L | 0.5         | 0.5          | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | <0.50       | <0.50      |
| o-Xylene                        | ug/L | -           | -            | <0.30      | < 0.30     | 975 DLHC   | < 0.30     | 1.31       | <0.30      | < 0.30     | 0.86        | < 0.30     |
| m+p-Xylenes                     | ug/L | -           | -            | <0.40      | 1.66       | 1960 DLHC  | <0.40      | 18.6       | <0.40      | <0.40      | 4.58        | <0.40      |
| Xylenes (Total)                 | ug/L | 72          | 300          | <0.50      | 1.66       | 2930       | <0.50      | 19.9       | <0.50      | <0.50      | 5.44        | < 0.50     |
| Surrogate: 4-Bromofluorobenzene | %    | -           | -            | 102.1      | 98.5       | 96.6       | 98.7       | 99.1       | 100.9      | 97.9       | 100.9       | 98.2       |
| Surrogate: 1,4-Difluorobenzene  | %    | -           | -            | 100.4      | 96.5       | 79.4       | 101.8      | 71.5       | 100.5      | 99.0       | 65.5 SOL:MI | 101.7      |

Guide Limit #1: T1-Ground Water-All Types of Property Uses

Guide Limit #2: T2-Ground Water (Coarse Soil)-All Types of Property Use

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



## **ANALYTICAL REPORT**

L2165216 CONT'D....

Job Reference: SP18-306-20
PAGE 7 of 12
21-SEP-18 13:47 (MT)

### **Volatile Organic Compounds - WATER**

|                           |      | Sample | Lab ID<br>e Date<br>ple ID | L2165216-11<br>14-SEP-18<br>TRIP BLANK |
|---------------------------|------|--------|----------------------------|----------------------------------------|
|                           |      |        | Limits                     |                                        |
| Analyte                   | Unit | #1     | #2                         |                                        |
| 1,1,1,2-Tetrachloroethane | ug/L | 1.1    | 1.1                        | <0.50                                  |
| 1,1,2,2-Tetrachloroethane | ug/L | 0.5    | 1                          | <0.50                                  |
| Tetrachloroethylene       | ug/L | 0.5    | 1.6                        | <0.50                                  |
| Toluene                   | ug/L | 0.8    | 24                         | <0.50                                  |
| 1,1,1-Trichloroethane     | ug/L | 0.5    | 200                        | <0.50                                  |
| 1,1,2-Trichloroethane     | ug/L | 0.5    | 4.7                        | <0.50                                  |
| Trichloroethylene         | ug/L | 0.5    | 1.6                        | <0.50                                  |
| Trichlorofluoromethane    | ug/L | 150    | 150                        | <5.0                                   |
| Vinyl chloride            | ug/L | 0.5    | 0.5                        | <0.50                                  |
| o-Xylene                  | ug/L | -      | -                          | <0.30                                  |
| m+p-Xylenes               | ug/L | -      | -                          | <0.40                                  |
| Xylenes (Total)           | ug/L | 72     | 300                        | <0.50                                  |

Guide Limit #1: T1-Ground Water-All Types of Property Uses

Surrogate: 4-Bromofluorobenzene

Surrogate: 1,4-Difluorobenzene

Guide Limit #2: T2-Ground Water (Coarse Soil)-All Types of Property Use

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

102.7

101.9

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.



## **ANALYTICAL REPORT**

L2165216 CONT'D....

Job Reference: SP18-306-20

PAGE 8 of 12

21-SEP-18 13:47 (MT)

**Hydrocarbons - WATER** 

| ,                                  |      |             |              |            |            |            |            |            |            |            |            |            |
|------------------------------------|------|-------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|                                    |      |             | Lab ID       | L2165216-1 | L2165216-2 | L2165216-3 | L2165216-4 | L2165216-5 | L2165216-6 | L2165216-7 | L2165216-8 | L2165216-9 |
|                                    |      | Sample      | e Date       | 14-SEP-18  | 14-SEP-18  | 14-SEP-18  | 14-SEP-18  | 14-SEP-18  | 14-SEP-18  | 14-SEP-18  | 14-SEP-18  | 14-SEP-18  |
|                                    |      | Sam         | ple ID       | MW201      | MW202      | MW204      | MW206      | MW207      | MW208      | MW209      | MW210      | DUP-W201   |
| Analyte                            | Unit | Guide<br>#1 | Limits<br>#2 |            |            |            |            |            |            |            |            |            |
| F1 (C6-C10)                        | ug/L | 420         | 750          | <25        | 486        | 10800 DLHC | <25        | 4190       | 34         | <25        | 1680       | <25        |
| F1-BTEX                            | ug/L | 420         | 750          | <25        | 483        | 2900       | <25        | 3770       | 33         | <25        | 1630       | <25        |
| F2 (C10-C16)                       | ug/L | 150         | 150          | <100       | 400        | 1610       | <100       | 1400 OWP   | <100       | <100       | 1810 OWP   | <100       |
| F3 (C16-C34)                       | ug/L | 500         | 500          | <250       | <250       | <250       | <250       | <250 OWP   | <250       | <250       | <250 OWP   | <250       |
| F4 (C34-C50)                       | ug/L | 500         | 500          | <250       | <250       | <250       | <250       | <250 OWP   | <250       | <250       | <250 OWP   | <250       |
| Total Hydrocarbons (C6-C50)        | ug/L | -           | -            | <370       | 890        | 12400      | <370       | 5590       | <370       | <370       | 3490       | <370       |
| Chrom. to baseline at nC50         |      | -           | -            | YES        |
| Surrogate: 2-Bromobenzotrifluoride | %    | -           | -            | 84.6       | 88.8       | 100.4      | 87.6       | 91.7       | 85.8       | 78.3       | 94.5       | 82.3       |
| Surrogate: 3,4-Dichlorotoluene     | %    | -           | -            | 83.4       | 80.8       | 83.3       | 86.9       | 90.1       | 91.0       | 94.5       | 77.5       | 86.0       |
|                                    |      |             |              |            |            |            |            |            |            |            |            |            |

Guide Limit #1: T1-Ground Water-All Types of Property Uses Guide Limit #2: T2-Ground Water (Coarse Soil)-All Types of Property Use

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2165216 CONT'D....
Job Reference: SP18-306-20
PAGE 9 of 12
21-SEP-18 13:47 (MT)

#### **Qualifiers for Individual Parameters Listed:**

| Qualifier | Description                                                                                                                                                                      |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DLVH      | Detection Limit raised due to interference from Volatile Hydrocarbons on VOC method. Chromatographic elution of interfering peaks in the same region as test analytes prevents a |

L2165216 CONT'D.... Job Reference: SP18-306-20 PAGE 10 of 12 21-SEP-18 13:47 (MT)

determination of whether VOC analyte is present or absent (above/below regular detection limits).

SOL:MI Surrogate recovery outside acceptable limits due to matrix interference

OWP Organic water sample contained visible sediment (must be included as part of analysis). Measured concentrations of organic substances in water can be biased high due to presence of

L2165216 CONT'D....
Job Reference: SP18-306-20
PAGE 11 of 12
21-SEP-18 13:47 (MT)

sediment.

DLHC Detection Limit Raised: Dilution required due to high concentration of test analyte(s).

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference\*\*

F1-F4-511-CALC-WT Water F1-F4 Hydrocarbon Calculated Parameters CCME CWS-PHC, Pub #1310, Dec 2001-L

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.
- 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
- 4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

F1-HS-511-WT Water F1-O.Reg 153/04 (July 2011) E3398/CCME TIER 1-HS

Fraction F1 is determined by analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

**F2-F4-511-WT** Water F2-F4-O.Reg 153/04 (July 2011) EPA 3511/CCME Tier 1

Petroleum Hydrocarbons (F2-F4 fractions) are extracted from water using a hexane micro-extraction technique. Instrumental analysis is by GC-FID, as per the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Tier 1 Method, CCME, 2001.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

VOC-1,3-DCP-CALC-WT Water Regulation 153 VOCs SW8260B/SW8270C

VOC-511-HS-WT Water VOC by GCMS HS O.Reg 153/04 (July SW846 8260

2011)

Liquid samples are analyzed by headspace GC/MSD.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

XYLENES-SUM-CALC-WT Water Sum of Xylene Isomer Concentrations CALCULATION

L2165216 CONT'D....
Job Reference: SP18-306-20
PAGE 12 of 12
21-SEP-18 13:47 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference\*\*

Total xylenes represents the sum of o-xylene and m&p-xylene.

\*\*\*ALS test methods may incorporate modifications from specified reference methods to improve performance.

Chain of Custody Numbers:

17-638606

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location

#### **GLOSSARY OF REPORT TERMS**

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

WT

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.



Workorder: L2165216 Report Date: 21-SEP-18 Page 1 of 8

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                                   | Matrix                  | Reference                   | Result | Qualifier | Units | RPD | Limit  | Analyzed    |
|----------------------------------------|-------------------------|-----------------------------|--------|-----------|-------|-----|--------|-------------|
| F1-HS-511-WT                           | Water                   |                             |        |           |       |     |        |             |
| Batch R4                               | 225931                  |                             |        |           |       |     |        |             |
| <b>WG2873872-4</b><br>F1 (C6-C10)      | DUP                     | <b>WG2873872-3</b> <25      | <25    | RPD-NA    | ug/L  | N/A | 30     | 20-SEP-18   |
| <b>WG2873872-1</b><br>F1 (C6-C10)      | LCS                     |                             | 97.8   |           | %     |     | 80-120 | 20-SEP-18   |
| <b>WG2873872-2</b><br>F1 (C6-C10)      | МВ                      |                             | <25    |           | ug/L  |     | 25     | 20-SEP-18   |
| Surrogate: 3,4-D                       | Dichlorotoluene         |                             | 90.7   |           | %     |     | 60-140 | 20-SEP-18   |
| <b>WG2873872-5</b><br>F1 (C6-C10)      | MS                      | WG2873872-3                 |        |           | %     |     | 60-140 | 20-SEP-18   |
| Batch R4                               | 230668                  |                             |        |           |       |     |        |             |
| <b>WG2882669-1</b><br>F1 (C6-C10)      | LCS                     |                             | 103.2  |           | %     |     | 80-120 | 21-SEP-18   |
| <b>WG2882669-2</b><br>F1 (C6-C10)      | МВ                      |                             | <25    |           | ug/L  |     | 25     | 21-SEP-18   |
| Surrogate: 3,4-E                       | Dichlorotoluene         |                             | 87.3   |           | %     |     | 60-140 | 21-SEP-18   |
| F2-F4-511-WT                           | Water                   |                             |        |           |       |     |        | <del></del> |
|                                        | 222927                  |                             |        |           |       |     |        |             |
| <b>WG2879277-2</b><br>F2 (C10-C16)     | LCS                     |                             | 112.4  |           | %     |     | 70-130 | 18-SEP-18   |
| F3 (C16-C34)                           |                         |                             | 110.8  |           | %     |     | 70-130 | 18-SEP-18   |
| F4 (C34-C50)                           |                         |                             | 121.4  |           | %     |     | 70-130 | 18-SEP-18   |
| <b>WG2879277-3</b><br>F2 (C10-C16)     | LCSD                    | <b>WG2879277-2</b><br>112.4 | 101.3  |           | %     | 10  | 50     | 18-SEP-18   |
| F3 (C16-C34)                           |                         | 110.8                       | 100.9  |           | %     | 9.4 | 50     | 18-SEP-18   |
| F4 (C34-C50)                           |                         | 121.4                       | 108.1  |           | %     | 12  | 50     | 18-SEP-18   |
| <b>WG2879277-1</b><br>F2 (C10-C16)     | МВ                      |                             | <100   |           | ug/L  |     | 100    | 18-SEP-18   |
| F3 (C16-C34)                           |                         |                             | <250   |           | ug/L  |     | 250    | 18-SEP-18   |
| F4 (C34-C50)                           |                         |                             | <250   |           | ug/L  |     | 250    | 18-SEP-18   |
| Surrogate: 2-Bro                       | omobenzotrifluoride     |                             | 83.3   |           | %     |     | 60-140 | 18-SEP-18   |
| VOC-511-HS-WT                          | Water                   |                             |        |           |       |     |        |             |
| Batch R4                               | 225931                  |                             |        |           |       |     |        |             |
| <b>WG2873872-4</b><br>1,1,1,2-Tetrachl | <b>DUP</b><br>oroethane | <b>WG2873872-3</b> <0.50    | <0.50  | RPD-NA    | ug/L  | N/A | 30     | 20-SEP-18   |
| 1,1,2,2-Tetrachl                       | oroethane               | <0.50                       | <0.50  | RPD-NA    | ug/L  | N/A | 30     | 20-SEP-18   |
| 1,1,1-Trichloroe                       | thane                   | <0.50                       | <0.50  | RPD-NA    | ug/L  | N/A | 30     | 20-SEP-18   |



Workorder: L2165216 Report Date: 21-SEP-18 Page 2 of 8

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                                     | Matrix | Reference  | Result | Qualifier | Units | RPD  | Limit | Analyzed  |
|------------------------------------------|--------|------------|--------|-----------|-------|------|-------|-----------|
| VOC-511-HS-WT                            | Water  |            |        |           |       |      |       |           |
| Batch R4225931                           |        |            |        |           |       |      |       |           |
| WG2873872-4 DUP                          |        | WG2873872- |        | 555 114   | /1    | 11/0 | 00    |           |
| 1,1,2-Trichloroethane 1,1-Dichloroethane |        | <0.50      | <0.50  | RPD-NA    | ug/L  | N/A  | 30    | 20-SEP-18 |
| ·                                        |        | <0.50      | <0.50  | RPD-NA    | ug/L  | N/A  | 30    | 20-SEP-18 |
| 1,1-Dichloroethylene                     |        | <0.50      | <0.50  | RPD-NA    | ug/L  | N/A  | 30    | 20-SEP-18 |
| 1,2-Dibromoethane                        |        | <0.20      | <0.20  | RPD-NA    | ug/L  | N/A  | 30    | 20-SEP-18 |
| 1,2-Dichlorobenzene 1,2-Dichloroethane   |        | <0.50      | <0.50  | RPD-NA    | ug/L  | N/A  | 30    | 20-SEP-18 |
| ,                                        |        | <0.50      | <0.50  | RPD-NA    | ug/L  | N/A  | 30    | 20-SEP-18 |
| 1,2-Dichloropropane                      |        | <0.50      | <0.50  | RPD-NA    | ug/L  | N/A  | 30    | 20-SEP-18 |
| 1,3-Dichlorobenzene                      |        | <0.50      | <0.50  | RPD-NA    | ug/L  | N/A  | 30    | 20-SEP-18 |
| 1,4-Dichlorobenzene                      |        | <0.50      | <0.50  | RPD-NA    | ug/L  | N/A  | 30    | 20-SEP-18 |
| Acetone                                  |        | 33         | 34     |           | ug/L  | 0.5  | 30    | 20-SEP-18 |
| Benzene                                  |        | <0.50      | <0.50  | RPD-NA    | ug/L  | N/A  | 30    | 20-SEP-18 |
| Bromodichloromethane                     |        | <2.0       | <2.0   | RPD-NA    | ug/L  | N/A  | 30    | 20-SEP-18 |
| Bromoform                                |        | <5.0       | <5.0   | RPD-NA    | ug/L  | N/A  | 30    | 20-SEP-18 |
| Bromomethane                             |        | <0.50      | <0.50  | RPD-NA    | ug/L  | N/A  | 30    | 20-SEP-18 |
| Carbon tetrachloride                     |        | <0.20      | <0.20  | RPD-NA    | ug/L  | N/A  | 30    | 20-SEP-18 |
| Chlorobenzene                            |        | <0.50      | <0.50  | RPD-NA    | ug/L  | N/A  | 30    | 20-SEP-18 |
| Chloroform                               |        | <1.0       | <1.0   | RPD-NA    | ug/L  | N/A  | 30    | 20-SEP-18 |
| cis-1,2-Dichloroethylene                 |        | <0.50      | <0.50  | RPD-NA    | ug/L  | N/A  | 30    | 20-SEP-18 |
| cis-1,3-Dichloropropene                  |        | <0.30      | < 0.30 | RPD-NA    | ug/L  | N/A  | 30    | 20-SEP-18 |
| Dibromochloromethane                     |        | <2.0       | <2.0   | RPD-NA    | ug/L  | N/A  | 30    | 20-SEP-18 |
| Dichlorodifluoromethane                  | )      | <2.0       | <2.0   | RPD-NA    | ug/L  | N/A  | 30    | 20-SEP-18 |
| Ethylbenzene                             |        | <0.50      | < 0.50 | RPD-NA    | ug/L  | N/A  | 30    | 20-SEP-18 |
| n-Hexane                                 |        | <0.50      | < 0.50 | RPD-NA    | ug/L  | N/A  | 30    | 20-SEP-18 |
| m+p-Xylenes                              |        | <0.40      | < 0.40 | RPD-NA    | ug/L  | N/A  | 30    | 20-SEP-18 |
| Methyl Ethyl Ketone                      |        | <20        | <20    | RPD-NA    | ug/L  | N/A  | 30    | 20-SEP-18 |
| Methyl Isobutyl Ketone                   |        | <20        | <20    | RPD-NA    | ug/L  | N/A  | 30    | 20-SEP-18 |
| Methylene Chloride                       |        | <5.0       | <5.0   | RPD-NA    | ug/L  | N/A  | 30    | 20-SEP-18 |
| MTBE                                     |        | <2.0       | <2.0   | RPD-NA    | ug/L  | N/A  | 30    | 20-SEP-18 |
| o-Xylene                                 |        | <0.30      | <0.30  | RPD-NA    | ug/L  | N/A  | 30    | 20-SEP-18 |
| Styrene                                  |        | <0.50      | <0.50  | RPD-NA    | ug/L  | N/A  | 30    | 20-SEP-18 |
| Tetrachloroethylene                      |        | <0.50      | <0.50  | RPD-NA    | ug/L  | N/A  | 30    | 20-SEP-18 |
| Toluene                                  |        | 1.80       | 1.87   |           | ug/L  | 3.8  | 30    | 20-SEP-18 |
| trans-1,2-Dichloroethylei                | 20     | <0.50      | < 0.50 |           | ug/L  |      |       | 20-SEP-18 |



Workorder: L2165216 Report Date: 21-SEP-18 Page 3 of 8

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test Matrix                                  | Reference  | Result | Qualifier | Units | RPD | Limit  | Analyzed  |
|----------------------------------------------|------------|--------|-----------|-------|-----|--------|-----------|
| VOC-511-HS-WT Water                          |            |        |           |       |     |        |           |
| Batch R4225931                               |            |        |           |       |     |        |           |
| WG2873872-4 DUP                              | WG2873872- |        |           |       |     |        |           |
| trans-1,2-Dichloroethylene                   | <0.50      | <0.50  | RPD-NA    | ug/L  | N/A | 30     | 20-SEP-18 |
| trans-1,3-Dichloropropene                    | <0.30      | <0.30  | RPD-NA    | ug/L  | N/A | 30     | 20-SEP-18 |
| Trichloroethylene                            | <0.50      | <0.50  | RPD-NA    | ug/L  | N/A | 30     | 20-SEP-18 |
| Trichlorofluoromethane                       | <5.0       | <5.0   | RPD-NA    | ug/L  | N/A | 30     | 20-SEP-18 |
| Vinyl chloride                               | <0.50      | <0.50  | RPD-NA    | ug/L  | N/A | 30     | 20-SEP-18 |
| WG2873872-1 LCS<br>1,1,1,2-Tetrachloroethane |            | 108.6  |           | %     |     | 70-130 | 20-SEP-18 |
| 1,1,2,2-Tetrachloroethane                    |            | 105.0  |           | %     |     | 70-130 | 20-SEP-18 |
| 1,1,1-Trichloroethane                        |            | 106.8  |           | %     |     | 70-130 | 20-SEP-18 |
| 1,1,2-Trichloroethane                        |            | 111.0  |           | %     |     | 70-130 | 20-SEP-18 |
| 1,1-Dichloroethane                           |            | 109.7  |           | %     |     | 70-130 | 20-SEP-18 |
| 1,1-Dichloroethylene                         |            | 102.4  |           | %     |     | 70-130 | 20-SEP-18 |
| 1,2-Dibromoethane                            |            | 110.7  |           | %     |     | 70-130 | 20-SEP-18 |
| 1,2-Dichlorobenzene                          |            | 112.4  |           | %     |     | 70-130 | 20-SEP-18 |
| 1,2-Dichloroethane                           |            | 111.9  |           | %     |     | 70-130 | 20-SEP-18 |
| 1,2-Dichloropropane                          |            | 107.6  |           | %     |     | 70-130 | 20-SEP-18 |
| 1,3-Dichlorobenzene                          |            | 109.5  |           | %     |     | 70-130 | 20-SEP-18 |
| 1,4-Dichlorobenzene                          |            | 109.8  |           | %     |     | 70-130 | 20-SEP-18 |
| Acetone                                      |            | 118.8  |           | %     |     | 60-140 | 20-SEP-18 |
| Benzene                                      |            | 108.1  |           | %     |     | 70-130 | 20-SEP-18 |
| Bromodichloromethane                         |            | 109.9  |           | %     |     | 70-130 | 20-SEP-18 |
| Bromoform                                    |            | 109.5  |           | %     |     | 70-130 | 20-SEP-18 |
| Bromomethane                                 |            | 86.0   |           | %     |     | 60-140 | 20-SEP-18 |
| Carbon tetrachloride                         |            | 106.1  |           | %     |     | 70-130 | 20-SEP-18 |
| Chlorobenzene                                |            | 108.1  |           | %     |     | 70-130 | 20-SEP-18 |
| Chloroform                                   |            | 108.7  |           | %     |     | 70-130 | 20-SEP-18 |
| cis-1,2-Dichloroethylene                     |            | 106.1  |           | %     |     | 70-130 | 20-SEP-18 |
| cis-1,3-Dichloropropene                      |            | 107.1  |           | %     |     | 70-130 | 20-SEP-18 |
| Dibromochloromethane                         |            | 110.3  |           | %     |     | 70-130 | 20-SEP-18 |
| Dichlorodifluoromethane                      |            | 143.6  | MES       | %     |     | 50-140 | 20-SEP-18 |
| Ethylbenzene                                 |            | 110.6  |           | %     |     | 70-130 | 20-SEP-18 |
| n-Hexane                                     |            | 128.5  |           | %     |     | 70-130 | 20-SEP-18 |
| m+p-Xylenes                                  |            | 110.7  |           | %     |     | 70-130 | 20-SEP-18 |



Workorder: L2165216 Report Date: 21-SEP-18 Page 4 of 8

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Satch   R422931   W023733724   LCS   Methyl Ethyl Ketone   108.1   %   60-140   20-SEP-18   Methyl Ethyl Ketone   108.1   %   60-140   20-SEP-18   Methyl Ethyl Ketone   108.5   %   70-130   20-SEP-18   Methyl Isobutyl Ketone   108.5   %   70-130   20-SEP-18   MTBE   109.6   %   70-130   20-SEP-18   MTBE   109.6   %   70-130   20-SEP-18   MTBE   109.9   %   70-130   20-SEP-18   MTBE   109.9   %   70-130   20-SEP-18   MTBE   109.9   %   70-130   20-SEP-18   MTBE   109.9   %   70-130   20-SEP-18   MTBE   109.9   %   70-130   20-SEP-18   MTBE   109.2   %   70-130   20-SEP-18   MTBE   109.2   %   70-130   20-SEP-18   MTBE   109.2   %   70-130   20-SEP-18   MTBE   109.2   %   70-130   20-SEP-18   MTBE   109.2   %   70-130   20-SEP-18   MTBE   10-SEP-18   MTBE   109.2   %   70-130   20-SEP-18   MTBE   10-SEP-18   MTBE   10- | Test                    | Matrix | Reference | Result | Qualifier | Units | RPD | Limit  | Analyzed  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------|-----------|--------|-----------|-------|-----|--------|-----------|
| WG2873872-1         LCS           Methyl Ethyl Ketone         116.1         %         60-140         20-SEP-18           Methyl Isobutyl Ketone         108.1         %         60-140         20-SEP-18           MTBE         109.6         %         70-130         20-SEP-18           O-Xylene         109.9         %         70-130         20-SEP-18           Styrene         111.2         %         70-130         20-SEP-18           Tetrachloroethylene         106.2         %         70-130         20-SEP-18           Toluene         109.2         %         70-130         20-SEP-18           trans-1,2-Dichloroethylene         104.6         %         70-130         20-SEP-18           trans-1,2-Dichloropropene         106.5         %         70-130         20-SEP-18           trans-1,2-Dichloropropene         106.5         %         70-130         20-SEP-18           Trichlorofluoromethane         108.8         %         70-130         20-SEP-18           Trichlorofluoromethane         114.9         %         60-140         20-SEP-18           Trichlorofluoromethane         105.7         %         60-140         20-SEP-18           1,1,1,2-Ertrachlorocethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VOC-511-HS-WT           | Water  |           |        |           |       |     |        |           |
| Methyl Ethyl Ketone         116.1         %         60-140         20-SEP-18           Methyl Isobutyl Katone         108.1         %         60-140         20-SEP-18           Methylen Chloride         108.5         %         67-130         20-SEP-18           MTBE         109.6         %         70-130         20-SEP-18           o-Xylene         109.9         %         70-130         20-SEP-18           Styrene         111.2         %         70-130         20-SEP-18           Tetrachlorethylene         106.2         %         70-130         20-SEP-18           Toluane         109.2         %         70-130         20-SEP-18           trans-1,2-Dichloroethylene         106.5         %         70-130         20-SEP-18           trans-1,2-Dichloropropene         106.5         %         70-130         20-SEP-18           Trichloroethylene         108.8         %         70-130         20-SEP-18           Trichloroethylene         108.8         %         70-130         20-SEP-18           Trichloroethylene         114.9         %         60-140         20-SEP-18           Viny cholride         10-7         %         60-140         20-SEP-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |        |           |        |           |       |     |        |           |
| Methyl Isobutyl Ketone         108.1         %         60-140         20-SEP-18           Methylene Chloride         108.5         %         70-130         20-SEP-18           MTBE         109.6         %         70-130         20-SEP-18           O-Xylene         109.9         %         70-130         20-SEP-18           Styrene         111.2         %         70-130         20-SEP-18           Tetrachloroethylene         106.2         %         70-130         20-SEP-18           Toluene         109.2         %         70-130         20-SEP-18           trans-1,3-Dichloroethylene         106.5         %         70-130         20-SEP-18           trans-1,3-Dichloropropene         106.5         %         70-130         20-SEP-18           trans-1,3-Dichloropropene         106.5         %         70-130         20-SEP-18           trans-1,3-Dichloropropene         106.5         %         70-130         20-SEP-18           trichloroethylene         105.7         %         60-140         20-SEP-18           Trichloroethylene         105.7         %         60-140         20-SEP-18           1,1,1-Z-Tetrachloroethane         <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |        |           | 116 1  |           | 0/_   |     | 60.440 | 00 CED 40 |
| Methylene Chloride         108.5         %         70-130         20-SEP-18           MTBE         109.6         %         70-130         20-SEP-18           o-Xylene         109.9         %         70-130         20-SEP-18           Styrene         111.2         %         70-130         20-SEP-18           Tetrachloroethylene         106.2         %         70-130         20-SEP-18           Toluene         109.2         %         70-130         20-SEP-18           trans-1,2-Dichloroethylene         104.6         %         70-130         20-SEP-18           trans-1,3-Dichloropropene         106.5         %         70-130         20-SEP-18           trans-1,3-Dichloropropene         106.5         %         70-130         20-SEP-18           Trichloroethylene         108.8         %         70-130         20-SEP-18           Trichloroethylene         105.7         %         60-140         20-SEP-18           WG2873872-2         MB         70-130         20-SEP-18           1,1,1,2-Tetrachloroethane         <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |        |           |        |           |       |     |        |           |
| MTBE         109.6         %         70-130         20-SEP-18           o-Xylene         109.9         %         70-130         20-SEP-18           Styrene         111.2         %         70-130         20-SEP-18           Tetrachloroethylene         106.2         %         70-130         20-SEP-18           Toluene         109.2         %         70-130         20-SEP-18           trans-1,2-Dichloroethylene         106.5         %         70-130         20-SEP-18           trans-1,3-Dichloropropene         106.5         %         70-130         20-SEP-18           Trichloroethylene         108.8         %         70-130         20-SEP-18           Trichloroethylene         105.7         %         60-140         20-SEP-18           Trichlorofluoromethane         114.9         %         60-140         20-SEP-18           Vinyl chloride         105.7         %         60-140         20-SEP-18           WG2873872-2         MB         11.1.1.2 Fitzachloroethane         <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |        |           |        |           |       |     |        |           |
| o-Xylene         109.9         %         70-130         20-SEP-18           Styrene         111.2         %         70-130         20-SEP-18           Tetrachloroethylene         106.2         %         70-130         20-SEP-18           Toluene         109.2         %         70-130         20-SEP-18           trans-1,2-Dichloroethylene         104.6         %         70-130         20-SEP-18           trans-1,3-Dichloropropene         106.5         %         70-130         20-SEP-18           Trichloroethylene         108.8         %         70-130         20-SEP-18           Trichloroethylene         105.7         %         60-140         20-SEP-18           Trichloroethylene         105.7         %         60-140         20-SEP-18           Trichloroethylene         105.7         %         60-140         20-SEP-18           Trichloroethane         -0.50         ug/L         0.5         20-SEP-18           1,1,2-Trichloroethane         -0.50         ug/L         0.5         20-SEP-18           1,1-Dichloroethane         -0.50         ug/L         0.5         20-SEP-18           1,1-Dichloroethane         -0.50         ug/L         0.5         20-SEP-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                       |        |           |        |           |       |     |        |           |
| Styrene         111.2         %         70-130         20-SEP-18           Tetrachloroethylene         106.2         %         70-130         20-SEP-18           Toluene         109.2         %         70-130         20-SEP-18           trans-1,2-Dichloroethylene         104.6         %         70-130         20-SEP-18           trans-1,3-Dichloropropene         106.5         %         70-130         20-SEP-18           Trichloroethylene         108.8         %         70-130         20-SEP-18           Trichlorofluoromethane         114.9         %         60-140         20-SEP-18           Vinyl chloride         105.7         %         60-140         20-SEP-18           WG287387-2         MB         4         60-140         20-SEP-18           1,1,12-Tetrachloroethane          0.50         ug/L         0.5         20-SEP-18           1,1,12-Trichloroethane          0.50         ug/L         0.5         20-SEP-18           1,1,12-Trichloroethane          0.50         ug/L         0.5         20-SEP-18           1,1-Dichloroethane          0.50         ug/L         0.5         20-SEP-18           1,2-Dichloroethane <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |        |           |        |           |       |     |        |           |
| Tetrachloroethylene 106.2 % 70-130 20-SEP-18 Toluene 109.2 % 70-130 20-SEP-18 trans-1,2-Dichloroethylene 104.6 % 70-130 20-SEP-18 trans-1,3-Dichloropropene 106.5 % 70-130 20-SEP-18 trans-1,3-Dichloropropene 106.5 % 70-130 20-SEP-18 trans-1,3-Dichloroethylene 108.8 % 70-130 20-SEP-18 Trichloroethylene 108.8 % 70-130 20-SEP-18 Trichloroethylene 108.8 % 70-130 20-SEP-18 Trichlorofluoromethane 114.9 % 60-140 20-SEP-18 Trichlorofluoromethane 105.7 % 60-140 20-SEP-18  WG2873872-2 MB 1,1,1,2-Tetrachloroethane <0.50 ug/L 0.5 20-SEP-18 1,1,1,2-Tetrachloroethane <0.50 ug/L 0.5 20-SEP-18 1,1,1,2-Tichloroethane <0.50 ug/L 0.5 20-SEP-18 1,1,2-Tichloroethane <0.50 ug/L 0.5 20-SEP-18 1,1-Dichloroethane <0.50 ug/L 0.5 20-SEP-18 1,1-Dichloroethane <0.50 ug/L 0.5 20-SEP-18 1,1-Dichloroethylene <0.50 ug/L 0.5 20-SEP-18 1,1-Dichloroethane <0.50 ug/L 0.5 20-SEP-18 1,2-Dichloroethane <0.50 ug/L 0.5 20-SEP-18 1,3-Dichlorobenzene <0.50 ug/L 0.5 20-SEP-18 1,3-Dichlorobenzene <0.50 ug/L 0.5 20-SEP-18 1,3-Dichlorobenzene <0.50 ug/L 0.5 20-SEP-18 1,3-Dichlorobenzene <0.50 ug/L 0.5 20-SEP-18 1,3-Dichlorobenzene <0.50 ug/L 0.5 20-SEP-18 Bromodichloromethane <2.0 ug/L 0.5 20-SEP-18 Bromodichloromethane <2.0 ug/L 0.5 20-SEP-18 Bromodichloromethane <2.0 ug/L 0.5 20-SEP-18 Bromodichloromethane <2.0 ug/L 0.5 20-SEP-18 Bromodichloromethane <2.0 ug/L 0.5 20-SEP-18 Bromodichloromethane <2.0 ug/L 0.5 20-SEP-18 Bromodichloromethane <2.0 ug/L 0.5 20-SEP-18 Bromodichloromethane <2.0 ug/L 0.5 20-SEP-18 Bromodichloromethane <2.0 ug/L 0.5 20-SEP-18 Bromodichloromethane <2.0 ug/L 0.5 20-SEP-18 Bromodichloromethane <2.0 ug/L 0.5 20-SEP-18 Bromodichloromethane <2.0 ug/L 0.5 20-SEP-18                                                                         | -                       |        |           |        |           |       |     |        |           |
| Toluene         109.2         %         70-130         20-SEP-18           trans-1,2-Dichloroethylene         104.6         %         70-130         20-SEP-18           trans-1,3-Dichloropropene         106.5         %         70-130         20-SEP-18           Trichloroethylene         108.8         %         70-130         20-SEP-18           Trichlorofluoromethane         114.9         %         60-140         20-SEP-18           Vinyl chloride         105.7         %         60-140         20-SEP-18           WG2873872-2         MB         MB         MB         MB         AB         AB<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                       |        |           |        |           |       |     |        |           |
| trans-1,2-Dichloroethylene         104.6         %         70-130         20-SEP-18           trans-1,3-Dichloropropene         106.5         %         70-130         20-SEP-18           Trichloroethylene         108.8         %         70-130         20-SEP-18           Trichloroethylene         114.9         %         60-140         20-SEP-18           Vinyl chloride         105.7         %         60-140         20-SEP-18           WG2873872-2         MB         MB         70-130         20-SEP-18           1,1,1,2-Tetrachloroethane         <0.50         Ug/L         0.5         20-SEP-18           1,1,2-Tetrachloroethane         <0.50         Ug/L         0.5         20-SEP-18           1,1,1-Trichloroethane         <0.50         Ug/L         0.5         20-SEP-18           1,1-Pichloroethane         <0.50         Ug/L         0.5         20-SEP-18           1,1-Dichloroethane         <0.50         Ug/L         0.5         20-SEP-18           1,2-Dichloroethane         <0.50         Ug/L         0.5         20-SEP-18           1,2-Dichloroethane         <0.50         Ug/L         0.5         20-SEP-18           1,2-Dichloroethane         <0.50         Ug/L         0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                       |        |           |        |           |       |     |        |           |
| trans-1,3-Dichloropropene         106.5         %         70-130         20-SEP-18           Trichloroethylene         108.8         %         70-130         20-SEP-18           Trichloroftuoromethane         114.9         %         60-140         20-SEP-18           Viryl chloride         105.7         %         60-140         20-SEP-18           WG2873872-2         MB           1.1,12-Tetrachloroethane         <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | ine.   |           |        |           |       |     |        |           |
| Trichloroethylene         108.8         %         70-130         20-SEP-18           Trichloroffluoromethane         114.9         %         60-140         20-SEP-18           Vinyl chloride         105.7         %         60-140         20-SEP-18           WG2873872-2         MB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                       |        |           |        |           |       |     |        |           |
| Trichlorofluoromethane         114.9         %         60-140         20-SEP-18           Vinyl chloride         105.7         %         60-140         20-SEP-18           WG2873872-2         MB              1,1,1,2-Tetrachloroethane         <0.50         ug/L         0.5         20-SEP-18           1,1,2-Tetrachloroethane         <0.50         ug/L         0.5         20-SEP-18           1,1,1-Trichloroethane         <0.50         ug/L         0.5         20-SEP-18           1,1,2-Trichloroethane         <0.50         ug/L         0.5         20-SEP-18           1,1-Dichloroethane         <0.50         ug/L         0.5         20-SEP-18           1,1-Dichloroethylene         <0.50         ug/L         0.5         20-SEP-18           1,2-Dibromoethane         <0.50         ug/L         0.5         20-SEP-18           1,2-Dichlorobenzene         <0.50         ug/L         0.5         20-SEP-18           1,2-Dichloropenae         <0.50         ug/L         0.5         20-SEP-18           1,2-Dichloropenae         <0.50         ug/L         0.5         20-SEP-18           1,3-Dichloropenae         <0.50         ug/L         0.5         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         | 116    |           |        |           |       |     |        |           |
| Winyl chloride         105.7         %         60-140         20-SEP-18           WG2873872-2 MB         1,1,1,2-Tetrachloroethane         <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                       |        |           |        |           |       |     |        |           |
| W02873872-2         MB           1,1,1,2-Tetrachloroethane         <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |        |           |        |           |       |     |        |           |
| 1,1,1,2-Tetrachloroethane       <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                       |        |           | 105.7  |           | 70    |     | 60-140 | 20-SEP-16 |
| 1,1,2,2-Tetrachloroethane       <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | ne     |           | <0.50  |           | ug/L  |     | 0.5    | 20-SEP-18 |
| 1,1,1-Trichloroethane       <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,1,2,2-Tetrachloroetha | ne     |           | <0.50  |           | ug/L  |     | 0.5    |           |
| 1,1,2-Trichloroethane       <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,1,1-Trichloroethane   |        |           | <0.50  |           |       |     | 0.5    |           |
| 1,1-Dichloroethane       <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,1,2-Trichloroethane   |        |           | <0.50  |           | ug/L  |     | 0.5    |           |
| 1,2-Dibromoethane       <0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,1-Dichloroethane      |        |           | <0.50  |           | ug/L  |     | 0.5    |           |
| 1,2-Dichlorobenzene       <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,1-Dichloroethylene    |        |           | <0.50  |           | ug/L  |     | 0.5    | 20-SEP-18 |
| 1,2-Dichloroethane       <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,2-Dibromoethane       |        |           | <0.20  |           | ug/L  |     | 0.2    |           |
| 1,2-Dichloropropane       <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,2-Dichlorobenzene     |        |           | <0.50  |           | ug/L  |     | 0.5    | 20-SEP-18 |
| 1,3-Dichlorobenzene       <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,2-Dichloroethane      |        |           | <0.50  |           | ug/L  |     | 0.5    | 20-SEP-18 |
| 1,4-Dichlorobenzene       <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,2-Dichloropropane     |        |           | <0.50  |           | ug/L  |     | 0.5    | 20-SEP-18 |
| Acetone       <30       ug/L       30       20-SEP-18         Benzene       <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,3-Dichlorobenzene     |        |           | <0.50  |           | ug/L  |     | 0.5    | 20-SEP-18 |
| Benzene       <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,4-Dichlorobenzene     |        |           | <0.50  |           | ug/L  |     | 0.5    | 20-SEP-18 |
| Bromodichloromethane         <2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Acetone                 |        |           | <30    |           | ug/L  |     | 30     | 20-SEP-18 |
| Bromoform         <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Benzene                 |        |           | <0.50  |           | ug/L  |     | 0.5    | 20-SEP-18 |
| Bromomethane         <0.50         ug/L         0.5         20-SEP-18           Carbon tetrachloride         <0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bromodichloromethane    |        |           | <2.0   |           | ug/L  |     | 2      | 20-SEP-18 |
| Carbon tetrachloride         <0.20         ug/L         0.2         20-SEP-18           Chlorobenzene         <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bromoform               |        |           | <5.0   |           | ug/L  |     | 5      | 20-SEP-18 |
| Chlorobenzene <0.50 ug/L 0.5 20-SEP-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bromomethane            |        |           | <0.50  |           | ug/L  |     | 0.5    | 20-SEP-18 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Carbon tetrachloride    |        |           | <0.20  |           | ug/L  |     | 0.2    | 20-SEP-18 |
| Chloroform <1.0 ug/L 1 20-SEP-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Chlorobenzene           |        |           | <0.50  |           | ug/L  |     | 0.5    | 20-SEP-18 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Chloroform              |        |           | <1.0   |           | ug/L  |     | 1      | 20-SEP-18 |



Workorder: L2165216 Report Date: 21-SEP-18 Page 5 of 8

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                                                | Matrix    | Reference   | Result         | Qualifier | Units | RPD | Limit  | Analyzed  |
|-----------------------------------------------------|-----------|-------------|----------------|-----------|-------|-----|--------|-----------|
| VOC-511-HS-WT                                       | Water     |             |                |           |       |     |        |           |
| Batch R4225931                                      |           |             |                |           |       |     |        |           |
| WG2873872-2 MB                                      |           |             | -0.F0          |           | ua/l  |     | 0.5    | 00.050.40 |
| cis-1,2-Dichloroethylene<br>cis-1,3-Dichloropropene |           |             | <0.50<br><0.30 |           | ug/L  |     | 0.3    | 20-SEP-18 |
| Dibromochloromethane                                | •         |             | <2.0           |           | ug/L  |     | 2      | 20-SEP-18 |
| Dichlorodifluoromethane                             | ,         |             | <2.0           |           | ug/L  |     | 2      | 20-SEP-18 |
| Ethylbenzene                                        | =         |             |                |           | ug/L  |     | 0.5    | 20-SEP-18 |
| n-Hexane                                            |           |             | <0.50          |           | ug/L  |     | 0.5    | 20-SEP-18 |
|                                                     |           |             | <0.50          |           | ug/L  |     |        | 20-SEP-18 |
| m+p-Xylenes                                         |           |             | <0.40          |           | ug/L  |     | 0.4    | 20-SEP-18 |
| Methyl Ethyl Ketone                                 |           |             | <20            |           | ug/L  |     | 20     | 20-SEP-18 |
| Methyl Isobutyl Ketone                              |           |             | <20            |           | ug/L  |     | 20     | 20-SEP-18 |
| Methylene Chloride                                  |           |             | <5.0           |           | ug/L  |     | 5      | 20-SEP-18 |
| MTBE                                                |           |             | <2.0           |           | ug/L  |     | 2      | 20-SEP-18 |
| o-Xylene                                            |           |             | <0.30          |           | ug/L  |     | 0.3    | 20-SEP-18 |
| Styrene                                             |           |             | <0.50          |           | ug/L  |     | 0.5    | 20-SEP-18 |
| Tetrachloroethylene                                 |           |             | <0.50          |           | ug/L  |     | 0.5    | 20-SEP-18 |
| Toluene                                             |           |             | <0.50          |           | ug/L  |     | 0.5    | 20-SEP-18 |
| trans-1,2-Dichloroethyle                            |           |             | <0.50          |           | ug/L  |     | 0.5    | 20-SEP-18 |
| trans-1,3-Dichloroprope                             | ne        |             | <0.30          |           | ug/L  |     | 0.3    | 20-SEP-18 |
| Trichloroethylene                                   |           |             | <0.50          |           | ug/L  |     | 0.5    | 20-SEP-18 |
| Trichlorofluoromethane                              |           |             | <5.0           |           | ug/L  |     | 5      | 20-SEP-18 |
| Vinyl chloride                                      |           |             | <0.50          |           | ug/L  |     | 0.5    | 20-SEP-18 |
| Surrogate: 1,4-Difluorob                            |           |             | 99.0           |           | %     |     | 70-130 | 20-SEP-18 |
| Surrogate: 4-Bromofluo                              | robenzene |             | 97.3           |           | %     |     | 70-130 | 20-SEP-18 |
| WG2873872-5 MS<br>1,1,1,2-Tetrachloroetha           | ne        | WG2873872-3 | 105.6          |           | %     |     | 50-140 | 20-SEP-18 |
| 1,1,2,2-Tetrachloroetha                             | ne        |             | 101.8          |           | %     |     | 50-140 | 20-SEP-18 |
| 1,1,1-Trichloroethane                               |           |             | 104.9          |           | %     |     | 50-140 | 20-SEP-18 |
| 1,1,2-Trichloroethane                               |           |             | 104.3          |           | %     |     | 50-140 | 20-SEP-18 |
| 1,1-Dichloroethane                                  |           |             | 104.0          |           | %     |     | 50-140 | 20-SEP-18 |
| 1,1-Dichloroethylene                                |           |             | 98.5           |           | %     |     | 50-140 | 20-SEP-18 |
| 1,2-Dibromoethane                                   |           |             | 102.2          |           | %     |     | 50-140 | 20-SEP-18 |
| 1,2-Dichlorobenzene                                 |           |             | 110.9          |           | %     |     | 50-140 | 20-SEP-18 |
| 1,2-Dichloroethane                                  |           |             | 105.8          |           | %     |     | 50-140 | 20-SEP-18 |
| 1,2-Dichloropropane                                 |           |             | 104.5          |           | %     |     | 50-140 | 20-SEP-18 |
| 1,3-Dichlorobenzene                                 |           |             | 114.5          |           | %     |     | 50-140 | 20-SEP-18 |
| ,                                                   |           |             | -              |           |       |     | 55 115 |           |



Workorder: L2165216 Report Date: 21-SEP-18

Page 6 of 8

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                      | Matrix | Reference   | Result | Qualifier | Units | RPD | Limit  | Analyzed  |
|---------------------------|--------|-------------|--------|-----------|-------|-----|--------|-----------|
| VOC-511-HS-WT             | Water  |             |        |           |       |     |        |           |
| Batch R4225931            |        |             |        |           |       |     |        |           |
| WG2873872-5 MS            |        | WG2873872-3 |        |           | 0.4   |     |        |           |
| 1,4-Dichlorobenzene       |        |             | 116.7  |           | %     |     | 50-140 | 20-SEP-18 |
| Acetone                   |        |             | 96.3   |           | %     |     | 50-140 | 20-SEP-18 |
| Benzene                   |        |             | 106.5  |           | %     |     | 50-140 | 20-SEP-18 |
| Bromodichloromethane      |        |             | 106.7  |           | %     |     | 50-140 | 20-SEP-18 |
| Bromoform                 |        |             | 102.4  |           | %     |     | 50-140 | 20-SEP-18 |
| Bromomethane              |        |             | 76.9   |           | %     |     | 50-140 | 20-SEP-18 |
| Carbon tetrachloride      |        |             | 105.4  |           | %     |     | 50-140 | 20-SEP-18 |
| Chlorobenzene             |        |             | 109.9  |           | %     |     | 50-140 | 20-SEP-18 |
| Chloroform                |        |             | 105.9  |           | %     |     | 50-140 | 20-SEP-18 |
| cis-1,2-Dichloroethylene  |        |             | 105.3  |           | %     |     | 50-140 | 20-SEP-18 |
| cis-1,3-Dichloropropene   |        |             | 121.9  |           | %     |     | 50-140 | 20-SEP-18 |
| Dibromochloromethane      |        |             | 104.4  |           | %     |     | 50-140 | 20-SEP-18 |
| Dichlorodifluoromethane   |        |             | 71.8   |           | %     |     | 50-140 | 20-SEP-18 |
| Ethylbenzene              |        |             | 114.5  |           | %     |     | 50-140 | 20-SEP-18 |
| n-Hexane                  |        |             | 118.3  |           | %     |     | 50-140 | 20-SEP-18 |
| m+p-Xylenes               |        |             | 116.7  |           | %     |     | 50-140 | 20-SEP-18 |
| Methyl Ethyl Ketone       |        |             | 100.6  |           | %     |     | 50-140 | 20-SEP-18 |
| Methyl Isobutyl Ketone    |        |             | 98.6   |           | %     |     | 50-140 | 20-SEP-18 |
| Methylene Chloride        |        |             | 103.1  |           | %     |     | 50-140 | 20-SEP-18 |
| MTBE                      |        |             | 109.0  |           | %     |     | 50-140 | 20-SEP-18 |
| o-Xylene                  |        |             | 112.5  |           | %     |     | 50-140 | 20-SEP-18 |
| Styrene                   |        |             | 114.9  |           | %     |     | 50-140 | 20-SEP-18 |
| Tetrachloroethylene       |        |             | 114.3  |           | %     |     | 50-140 | 20-SEP-18 |
| Toluene                   |        |             | 109.9  |           | %     |     | 50-140 | 20-SEP-18 |
| trans-1,2-Dichloroethyler | ie     |             | 110.4  |           | %     |     | 50-140 | 20-SEP-18 |
| trans-1,3-Dichloropropen  | е      |             | 121.7  |           | %     |     | 50-140 | 20-SEP-18 |
| Trichloroethylene         |        |             | 113.8  |           | %     |     | 50-140 | 20-SEP-18 |
| Trichlorofluoromethane    |        |             | 103.4  |           | %     |     | 50-140 | 20-SEP-18 |
| Vinyl chloride            |        |             | 86.1   |           | %     |     | 50-140 | 20-SEP-18 |
| Batch R4229753            |        |             |        |           |       |     |        |           |
| WG2881571-1 LCS           |        |             | 400.0  |           | 0/    |     |        |           |
| Benzene                   |        |             | 106.9  |           | %     |     | 70-130 | 20-SEP-18 |
| m+p-Xylenes               |        |             | 119.9  |           | %     |     | 70-130 | 20-SEP-18 |
| o-Xylene                  |        |             | 113.6  |           | %     |     | 70-130 | 20-SEP-18 |



Page 7 of 8

Workorder: L2165216 Report Date: 21-SEP-18

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

| Test                          |              | Matrix | Reference | Result | Qualifier | Units | RPD | Limit  | Analyzed  |
|-------------------------------|--------------|--------|-----------|--------|-----------|-------|-----|--------|-----------|
| VOC-511-HS-WT                 |              | Water  |           |        |           |       |     |        |           |
|                               | 29753<br>LCS |        |           | 117.1  |           | %     |     | 70-130 | 20-SEP-18 |
| <b>WG2881571-2</b><br>Benzene | МВ           |        |           | <0.50  |           | ug/L  |     | 0.5    | 21-SEP-18 |
| m+p-Xylenes                   |              |        |           | <0.40  |           | ug/L  |     | 0.4    | 21-SEP-18 |
| o-Xylene                      |              |        |           | < 0.30 |           | ug/L  |     | 0.3    | 21-SEP-18 |
| Trichloroethylene             | )            |        |           | <0.50  |           | ug/L  |     | 0.5    | 21-SEP-18 |
|                               | 30668<br>LCS |        |           |        |           |       |     |        |           |
| Benzene                       |              |        |           | 111.0  |           | %     |     | 70-130 | 21-SEP-18 |
| Ethylbenzene                  |              |        |           | 105.5  |           | %     |     | 70-130 | 21-SEP-18 |
| m+p-Xylenes                   |              |        |           | 109.4  |           | %     |     | 70-130 | 21-SEP-18 |
| o-Xylene                      |              |        |           | 103.9  |           | %     |     | 70-130 | 21-SEP-18 |
| Toluene                       |              |        |           | 108.1  |           | %     |     | 70-130 | 21-SEP-18 |
| <b>WG2882669-2</b><br>Benzene | МВ           |        |           | <0.50  |           | ug/L  |     | 0.5    | 21-SEP-18 |
| Ethylbenzene                  |              |        |           | <0.50  |           | ug/L  |     | 0.5    | 21-SEP-18 |
| m+p-Xylenes                   |              |        |           | <0.40  |           | ug/L  |     | 0.4    | 21-SEP-18 |
| o-Xylene                      |              |        |           | < 0.30 |           | ug/L  |     | 0.3    | 21-SEP-18 |
| Toluene                       |              |        |           | <0.50  |           | ug/L  |     | 0.5    | 21-SEP-18 |

Page 8 of 8

Workorder: L2165216 Report Date: 21-SEP-18

Client: Sirati & Partners Consultants Ltd. (Concord)

12700 Keele St

King City ON L7B 1H5

Contact: Chaoran Li

#### Legend:

ALS Control Limit (Data Quality Objectives) DUP Duplicate RPD Relative Percent Difference N/A Not Available LCS Laboratory Control Sample SRM Standard Reference Material MS Matrix Spike **MSD** Matrix Spike Duplicate Average Desorption Efficiency ADE Method Blank MB

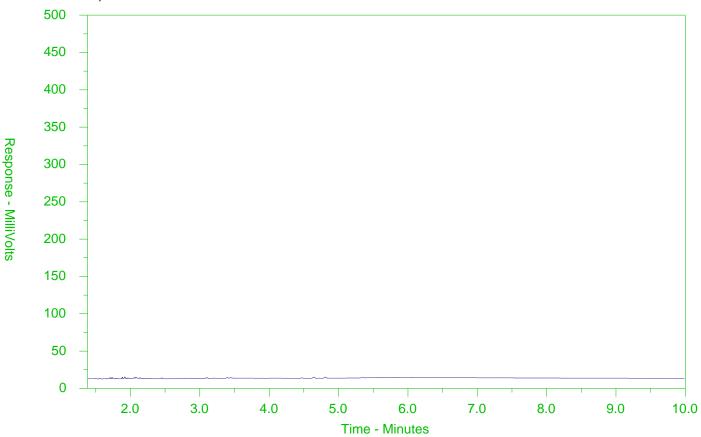
IRM Internal Reference Material
CRM Certified Reference Material
CCV Continuing Calibration Verification
CVS Calibration Verification Standard
LCSD Laboratory Control Sample Duplicate

#### **Sample Parameter Qualifier Definitions:**

| Qualifier | Description                                                                                                                                                                         |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MES       | Data Quality Objective was marginally exceeded (by < 10% absolute) for < 10% of analytes in a Multi-Element Scan / Multi-Parameter Scan (considered acceptable as per OMOE & CCME). |
| RPD-NA    | Relative Percent Difference Not Available due to result(s) being less than detection limit.                                                                                         |

#### **Hold Time Exceedances:**

All test results reported with this submission were conducted within ALS recommended hold times.


ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

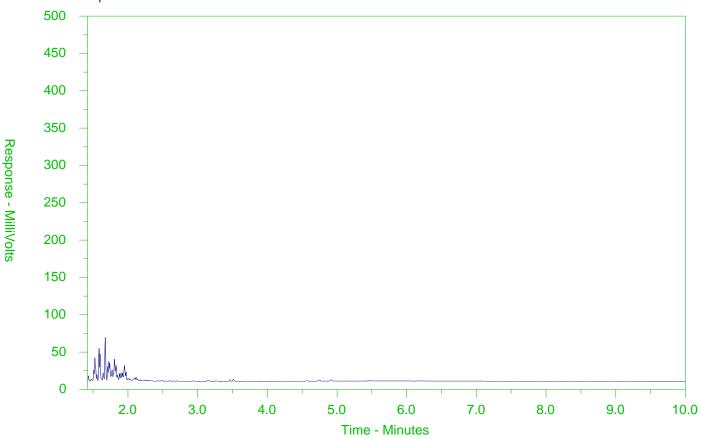
Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.



ALS Sample ID: L2165216-1 Client Sample ID: MW201



| <b>←</b> -F2- | → ←                                     | —F3—→ <b>←</b> —F4— | <b>→</b> |  |  |  |  |  |  |
|---------------|-----------------------------------------|---------------------|----------|--|--|--|--|--|--|
| nC10          | nC16                                    | nC34                | nC50     |  |  |  |  |  |  |
| 174°C         | 287°C                                   | 481°C               | 575°C    |  |  |  |  |  |  |
| 346°F         | 549°F                                   | 898°F               | 1067°F   |  |  |  |  |  |  |
| Gasolin       | Gasoline → Motor Oils/Lube Oils/Grease- |                     |          |  |  |  |  |  |  |
| <b>←</b>      | ← Diesel/Jet Fuels →                    |                     |          |  |  |  |  |  |  |


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

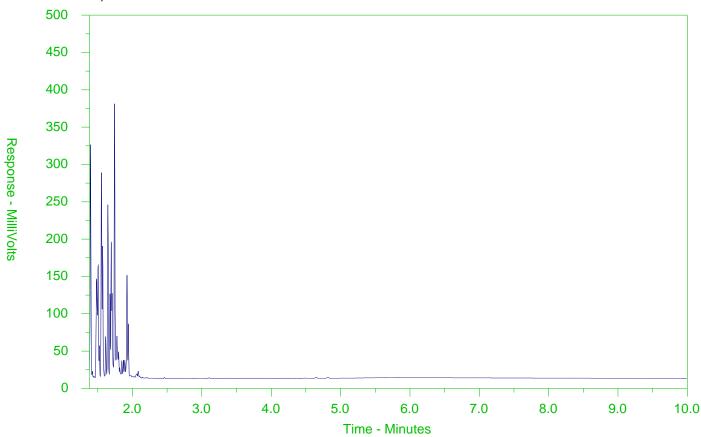
Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.



ALS Sample ID: L2165216-2 Client Sample ID: MW202



| <b>←</b> -F2-    | → ←                  | —F3—→ <b>←</b> F4— | •                         |  |  |  |  |
|------------------|----------------------|--------------------|---------------------------|--|--|--|--|
| nC10             | nC16                 | nC34               | nC50                      |  |  |  |  |
| 174°C            | 287°C                | 481°C              | 575°C                     |  |  |  |  |
| 346°F            | 549°F                | 898°F              | 1067°F                    |  |  |  |  |
| Gasoline → ← Mot |                      |                    | or Oils/Lube Oils/Grease- |  |  |  |  |
| <b>←</b>         | ← Diesel/Jet Fuels → |                    |                           |  |  |  |  |


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

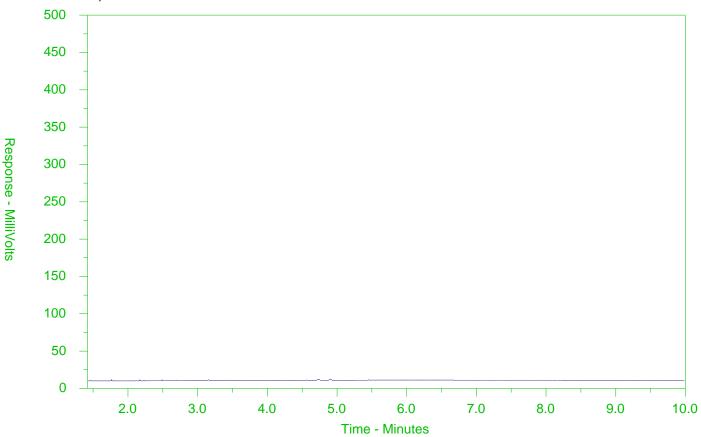
Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.



ALS Sample ID: L2165216-3 Client Sample ID: MW204



| <b>←</b> -F2-   | →-    | —F3—→←—F4— | <b>&gt;</b>               |
|-----------------|-------|------------|---------------------------|
| nC10            | nC16  | nC34       | nC50                      |
| 174°C           | 287°C | 481°C      | 575°C                     |
| 346°F           | 549°F | 898°F      | 1067⁰F                    |
| Gasoline → ← Mo |       | ← Mot      | or Oils/Lube Oils/Grease- |
| <b>←</b>        |       |            |                           |


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

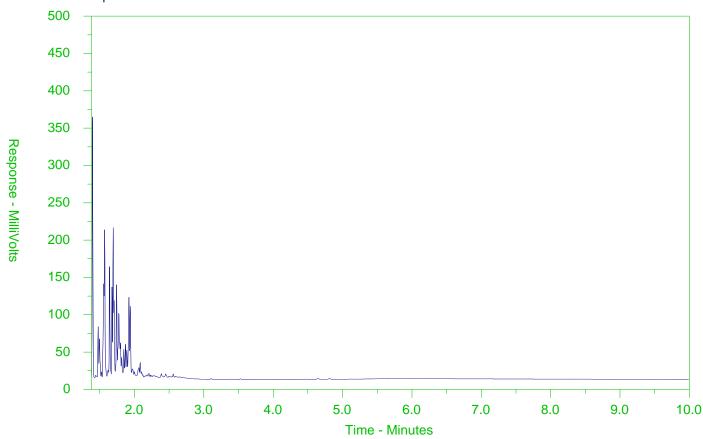
Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.



ALS Sample ID: L2165216-4 Client Sample ID: MW206



| <b>←</b> -F2-    | → ←                  | —F3—→ <b>←</b> —F4— | <b>→</b>                   |  |  |  |  |
|------------------|----------------------|---------------------|----------------------------|--|--|--|--|
| nC10             | nC16                 | nC34                | nC50                       |  |  |  |  |
| 174°C            | 287°C                | 481°C               | 575°C                      |  |  |  |  |
| 346°F            | 549°F                | 898°F               | 1067°F                     |  |  |  |  |
| Gasoline → ← Mot |                      |                     | or Oils/Lube Oils/Grease—— |  |  |  |  |
| <b>←</b>         | ← Diesel/Jet Fuels → |                     |                            |  |  |  |  |


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

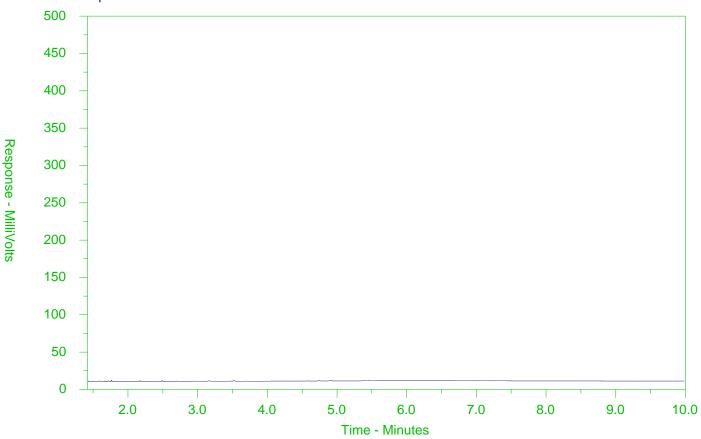
Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.



ALS Sample ID: L2165216-5 Client Sample ID: MW207



| <b>←</b> -F2-   | →-    | —F3—→←—F4— | <b>&gt;</b>               |
|-----------------|-------|------------|---------------------------|
| nC10            | nC16  | nC34       | nC50                      |
| 174°C           | 287°C | 481°C      | 575°C                     |
| 346°F           | 549°F | 898°F      | 1067⁰F                    |
| Gasoline → ← Mo |       | ← Mot      | or Oils/Lube Oils/Grease- |
| <b>←</b>        |       |            |                           |


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

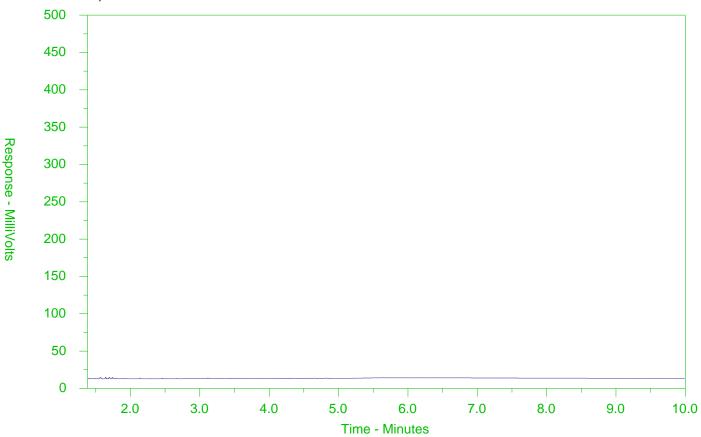
Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.



ALS Sample ID: L2165216-6 Client Sample ID: MW208



| <b>←</b> -F2-    | → ←                  | —F3—→ <b>←</b> F4— | •                         |  |  |  |  |
|------------------|----------------------|--------------------|---------------------------|--|--|--|--|
| nC10             | nC16                 | nC34               | nC50                      |  |  |  |  |
| 174°C            | 287°C                | 481°C              | 575°C                     |  |  |  |  |
| 346°F            | 549°F                | 898°F              | 1067°F                    |  |  |  |  |
| Gasoline → ← Mot |                      |                    | or Oils/Lube Oils/Grease- |  |  |  |  |
| <b>←</b>         | ← Diesel/Jet Fuels → |                    |                           |  |  |  |  |


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

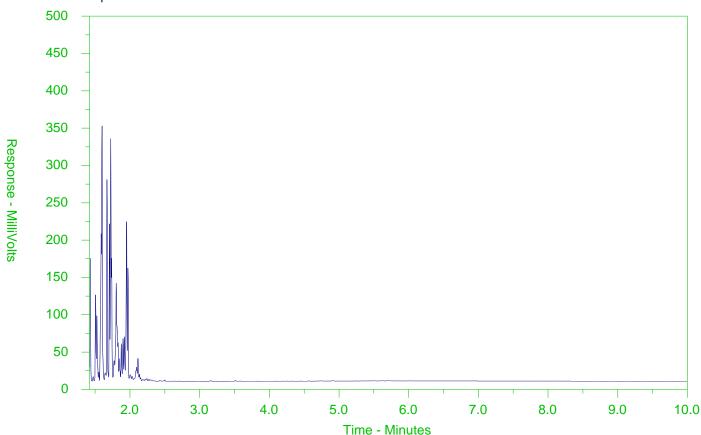
Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.



ALS Sample ID: L2165216-7 Client Sample ID: MW209



| <b>←</b> -F2-    | →←         | —F3—→ <b>←</b> —F4— | <b>&gt;</b>              |
|------------------|------------|---------------------|--------------------------|
| nC10             | nC16       | nC34                | nC50                     |
| 174°C            | 287°C      | 481°C               | 575°C                    |
| 346°F            | 549°F      | 898°F               | 1067⁰F                   |
| Gasoline → ← Mot |            | ← Mot               | or Oils/Lube Oils/Grease |
| <b>←</b>         | -Diesel/Je |                     |                          |


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

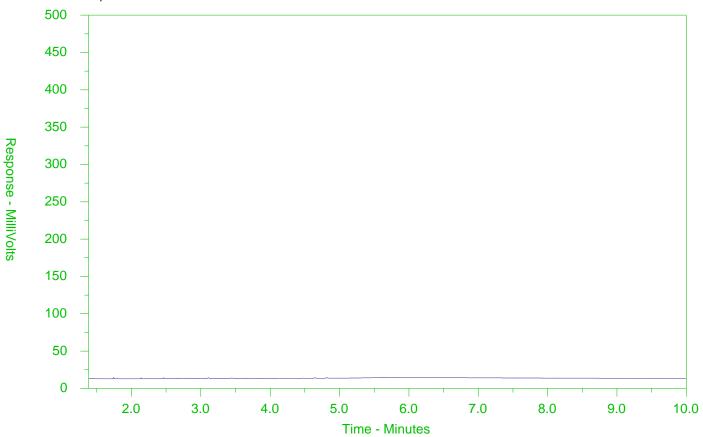
Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.



ALS Sample ID: L2165216-8 Client Sample ID: MW210



| <b>←</b> -F2-    | →←         | —F3—→ <b>←</b> —F4— | <b>&gt;</b>              |
|------------------|------------|---------------------|--------------------------|
| nC10             | nC16       | nC34                | nC50                     |
| 174°C            | 287°C      | 481°C               | 575°C                    |
| 346°F            | 549°F      | 898°F               | 1067⁰F                   |
| Gasoline → ← Mot |            | ← Mot               | or Oils/Lube Oils/Grease |
| <b>←</b>         | -Diesel/Je |                     |                          |


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.



ALS Sample ID: L2165216-9
Client Sample ID: DUP-W201



| <b>←</b> -F2-   | →-    | —F3—→←—F4— | <b>&gt;</b>               |
|-----------------|-------|------------|---------------------------|
| nC10            | nC16  | nC34       | nC50                      |
| 174°C           | 287°C | 481°C      | 575°C                     |
| 346°F           | 549°F | 898°F      | 1067⁰F                    |
| Gasoline → ← Mo |       | ← Mot      | or Oils/Lube Oils/Grease- |
| <b>←</b>        |       |            |                           |

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

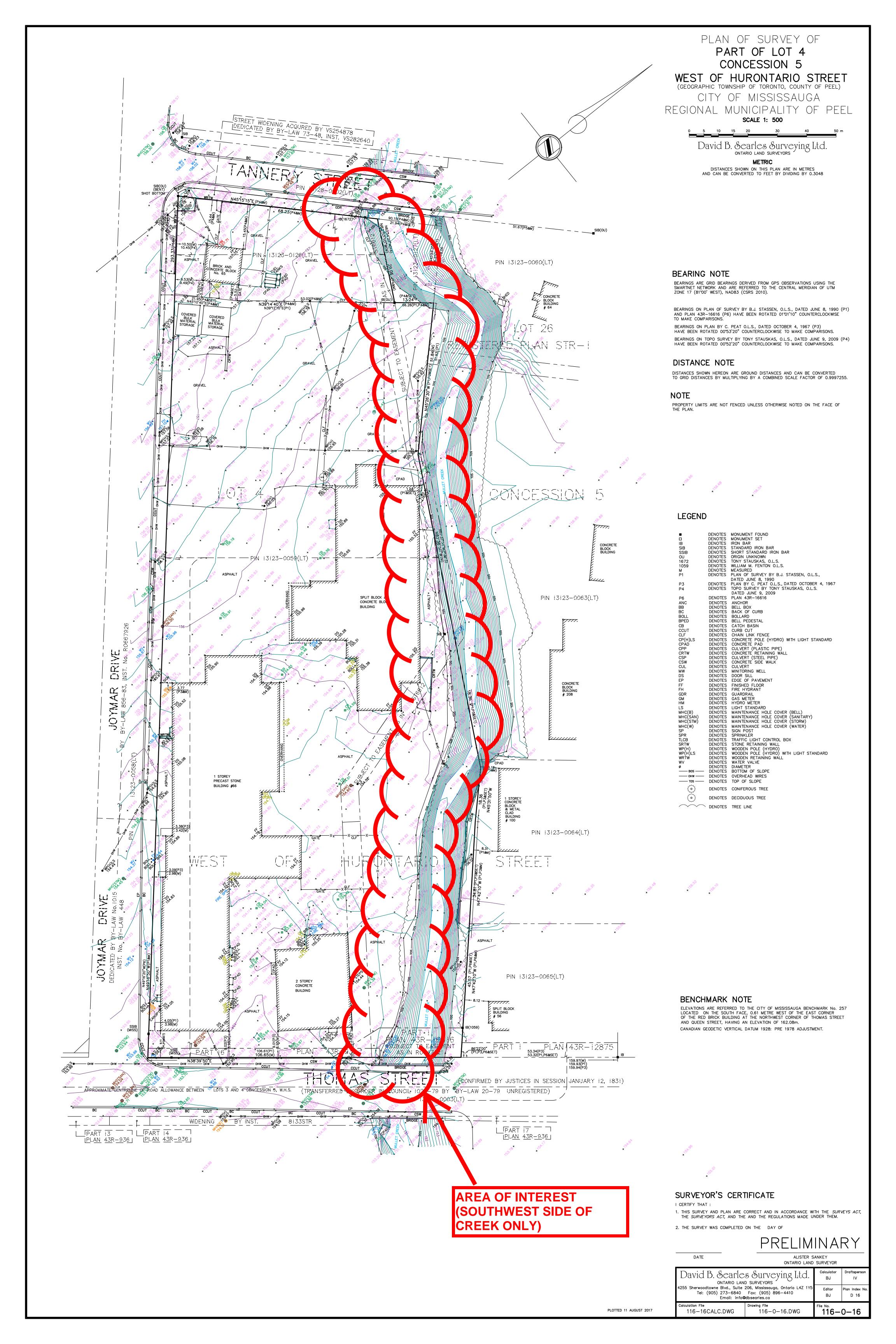
# ALS Environmental

# Chain of Custody (COC) / Analytical Request Form

Canada Toll Free: 1 800 668 9878

L2165216-COFC

COC Number: 17 - 638606


Page

of

|                                               | www.alsglobal.com                                                                           |                          |                                                                              |                                                  | <u> </u>                                                                                                       |                                                                                             |                                                                            |                                                                                    |                         |               |         |             |        |             |          |                |         |              |                      |
|-----------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------|---------------|---------|-------------|--------|-------------|----------|----------------|---------|--------------|----------------------|
| Report To                                     | Contact and company name below will appear on the final report Report Format / Distribution |                          |                                                                              |                                                  |                                                                                                                | Select Service Level Below - Contact your AM to confirm all E&P TATs (surcharges may apply) |                                                                            |                                                                                    |                         |               |         |             |        |             |          |                |         |              |                      |
| Company:                                      | SIRATI & PARTRIELS                                                                          |                          | Select Report Format: PDF DF SXCEL   EDD (DIGITAL)                           |                                                  |                                                                                                                |                                                                                             |                                                                            | Regular [R] Standard TAT if received by 3 pm - business days - no surcharges apply |                         |               |         |             |        |             |          |                |         |              |                      |
| Contact:                                      | CHaoran Li                                                                                  |                          | Quality Control (QC) Report with Report YES NO                               |                                                  |                                                                                                                |                                                                                             |                                                                            |                                                                                    | 1 Business day [E-100%] |               |         |             |        |             |          |                |         |              |                      |
| Phone:                                        | Company address below will appear on the final re                                           |                          | Compare Results to Criteria on Report - provide details below if box checked |                                                  |                                                                                                                |                                                                                             |                                                                            | Same Day, Weekend or Statutory holiday [E2-200%                                    |                         |               |         |             |        |             |          |                | _       |              |                      |
| L                                             | Company address below will appear on the final re-                                          | port                     | Select Distribution: EMAIL   MAIL FAX                                        |                                                  |                                                                                                                |                                                                                             |                                                                            | (Laboratory opening fees may apply) ]                                              |                         |               |         |             |        |             |          |                | . L     |              |                      |
| Street:                                       | 12700 Keele St.                                                                             |                          | Email 1 or Fax                                                               | Chaora                                           | nOsiv                                                                                                          | atrica                                                                                      | Date and Time Required for all E&P TATs: dd-minm-yy hh:mm                  |                                                                                    |                         |               |         |             |        |             |          |                |         |              |                      |
| City/Province:                                | King city ON                                                                                |                          | Email 2                                                                      | GOVATO                                           | O Cir                                                                                                          | attica                                                                                      |                                                                            |                                                                                    |                         |               |         |             |        |             |          |                |         |              |                      |
| Postal Code:                                  | L3K1H5                                                                                      |                          | Email 3                                                                      | Jeite (                                          | PSTray                                                                                                         | 3CQ                                                                                         | Analysis Request                                                           |                                                                                    |                         |               |         |             |        |             |          |                |         |              |                      |
| Invoice To                                    | Same as Report To                                                                           | NO                       |                                                                              | Invoice Di                                       | stribution                                                                                                     | <u>-</u>                                                                                    | Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below |                                                                                    |                         |               |         |             |        |             |          |                |         |              |                      |
|                                               | Copy of Invoice with Report YES                                                             | NO                       | Select Invoice Di                                                            | stribution: 🛭 E                                  | MAIL MAIL                                                                                                      | FAX                                                                                         |                                                                            | Ī                                                                                  |                         |               |         |             |        | $\neg \top$ |          | T -            | 1       | g l          | 1                    |
| Company:                                      |                                                                                             |                          | Email 1 or Fax                                                               |                                                  |                                                                                                                | <del>-</del>                                                                                |                                                                            |                                                                                    |                         | <u> </u>      |         |             |        |             |          |                | 1       | <del> </del> | 1                    |
| Contact:                                      |                                                                                             |                          | Email 2                                                                      |                                                  |                                                                                                                |                                                                                             | 1                                                                          |                                                                                    | 1                       |               |         |             |        | -           |          | -              |         | ੈ            | 1                    |
|                                               | Project Information                                                                         |                          | C                                                                            | il and Gas Require                               | d Fields (client u                                                                                             | ise)                                                                                        | 1                                                                          |                                                                                    |                         |               |         |             | -      |             |          | .   - •        |         | š            |                      |
| ALS Account # /                               | Quote #: (2-6337)                                                                           |                          | AFE/Cost Center:                                                             |                                                  | PO#                                                                                                            |                                                                                             | 1                                                                          |                                                                                    |                         |               |         | -           |        |             | .        |                |         | 8            |                      |
| Job#:                                         | SP 5018-306-20                                                                              |                          | Major/Minor Code:                                                            |                                                  | Routing Code:                                                                                                  |                                                                                             | ا ال. ا                                                                    |                                                                                    | 1                       |               |         |             |        | ٠.          |          |                |         | ase          | 8                    |
| PO / AFE:                                     | <del></del>                                                                                 |                          | Requisitioner:                                                               |                                                  |                                                                                                                |                                                                                             | ľůl                                                                        |                                                                                    |                         |               |         |             | 1 1    |             |          |                |         | 횰            | Į.                   |
| LSD:                                          |                                                                                             |                          | Location:                                                                    | -                                                |                                                                                                                |                                                                                             | 8 8                                                                        |                                                                                    |                         |               |         | •           |        |             |          |                | 9       | g            | ¥                    |
| ALS Lab Wo                                    | rk Order # (lab use only): (2)                                                              | (x5216)                  | ALS Contact:                                                                 |                                                  | Sampler: C                                                                                                     | <u>e</u> le                                                                                 | ଧାରୀ                                                                       |                                                                                    |                         |               |         | -           |        |             |          |                | ES ON H | is hazar     | NUMBER OF CONTAINERS |
| ALS Sample #<br>(lab use only)                | Sample Identification an<br>(This description will app                                      |                          |                                                                              | Date (dd-mmm-yy)                                 | Time<br>(hh:mm)                                                                                                | Sample Type                                                                                 | TE N                                                                       |                                                                                    |                         |               |         |             |        |             |          |                | SAMPLI  | Sample       | NUMBE                |
|                                               | MW 201                                                                                      | •                        |                                                                              | SCP 14.18                                        | 18·M                                                                                                           | water                                                                                       | R                                                                          |                                                                                    |                         |               |         |             |        |             |          |                |         |              | 4                    |
|                                               | MW 202                                                                                      |                          | -                                                                            | 1 1 1 1 1                                        | 1                                                                                                              |                                                                                             | R                                                                          | <u> </u>                                                                           |                         |               |         |             |        |             |          |                |         |              | 4                    |
|                                               | MN1204                                                                                      |                          |                                                                              |                                                  |                                                                                                                |                                                                                             | R                                                                          | <u> </u>                                                                           |                         |               |         | -           |        |             |          | +              |         |              | 4                    |
|                                               | MW 206                                                                                      |                          |                                                                              | <b></b>                                          |                                                                                                                | 1 1                                                                                         | R T                                                                        |                                                                                    | 1                       |               |         | . •         |        | _           | $\neg$   |                |         |              | 4                    |
|                                               | MWZ                                                                                         |                          |                                                                              | 1                                                | <del>                                     </del>                                                               | <del></del>                                                                                 | 10                                                                         |                                                                                    | + + +                   |               |         |             | +-+    | _           | +        | +-             |         |              | 4                    |
|                                               |                                                                                             |                          |                                                                              | <del>   </del>                                   | <del>                                     </del>                                                               | 1 1                                                                                         |                                                                            | _                                                                                  | +                       |               | -       | -           | +      |             | -        | +              | -       | H            | _                    |
|                                               | <u> </u>                                                                                    | ,                        |                                                                              | <del>                                     </del> | <u></u>                                                                                                        |                                                                                             | R.                                                                         |                                                                                    | 1                       |               |         |             | 4 4    |             |          | <del>-  </del> |         |              | 4                    |
|                                               | MW 209                                                                                      |                          |                                                                              |                                                  |                                                                                                                |                                                                                             | 2                                                                          |                                                                                    | ļ. ".l_                 |               |         |             | 11     |             |          |                | L       |              | 4                    |
| 1 -                                           | MIN 810                                                                                     |                          |                                                                              |                                                  |                                                                                                                | <u> </u>                                                                                    | M-1                                                                        |                                                                                    |                         |               |         |             |        |             |          |                |         |              | 4                    |
|                                               | Masky-gup was                                                                               |                          |                                                                              |                                                  |                                                                                                                | T - 1                                                                                       | P                                                                          |                                                                                    |                         |               |         |             |        |             |          |                |         |              | 4                    |
|                                               | * Dup-11202                                                                                 | -> HOID IT T             | Ky leak                                                                      |                                                  |                                                                                                                |                                                                                             | 2                                                                          |                                                                                    |                         |               |         | $\top$      |        |             |          |                | X       |              | 4                    |
|                                               | Trip plan                                                                                   | ar de                    | · <del>V. NOW</del>                                                          | <del>- 1</del> , -                               |                                                                                                                | <del>                                     </del>                                            | <del>                                     </del>                           |                                                                                    | + +                     |               |         | +           | + +    |             |          | _              | -       |              | i                    |
|                                               | TV PIG                                                                                      | -                        |                                                                              |                                                  | <del>\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ </del>                                                              | <u> </u>                                                                                    | 1                                                                          |                                                                                    |                         | -             | ·       | <del></del> | ╁┼     |             |          | -              | -       |              | <del>-`-</del>       |
|                                               | · · · · · · · · · · · · · · · · · · ·                                                       | Special Instructions (4  | Paratte Galtania de                                                          | <u> </u>                                         | <u> </u>                                                                                                       |                                                                                             | <u> </u>                                                                   |                                                                                    | SAM                     | PLE CON       | IDITION | AS DEC      | ENED   | (lab usa    | i nalui  |                | L       | Щ.           | ــــــا              |
| .d.Drinkin                                    | g Water (DW) Samples¹ (client use)                                                          | Special Instructions / 5 | specify Criteria to<br>elei)                                                 | add on report by clic<br>stronic COC only)       | king on the drop-d                                                                                             | lown list below                                                                             | Frozen                                                                     |                                                                                    | SAM                     |               |         |             | Yes    | (IZD USE    | Offig    | No             |         |              | _                    |
| Are samples taken from a Regulated DW System? |                                                                                             | 1 Pa RPI                 |                                                                              |                                                  | J 200 00000 100000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 1 |                                                                                             |                                                                            |                                                                                    |                         |               |         |             |        |             | <u> </u> |                |         |              |                      |
| Are samples for human consumption/ use?       |                                                                                             |                          | ' 1                                                                          | a r                                              |                                                                                                                |                                                                                             | ll ll                                                                      |                                                                                    | LER TEMPE               | RATURES °     | c       | Т.          | _      | FINAL CO    | OLER TE  | EMPERATU       | IRES °C |              |                      |
| YES   V NO                                    |                                                                                             |                          |                                                                              |                                                  | <b>,</b>                                                                                                       |                                                                                             | 11.8                                                                       |                                                                                    | T                       |               |         | 7           | 7      | 0           | ,        | $\top$         |         |              |                      |
|                                               | SHIPMENT RELEASE (client use)                                                               | 7                        |                                                                              | INITIAL SHIPMEN                                  | T RECEPTION (I                                                                                                 | lab use only)                                                                               | 1333                                                                       |                                                                                    |                         | FINA          | L SHIPM | ENT RE      | CEPTIC | ON (lab     | use on   | ly)            |         |              |                      |
| Released by:                                  | Fecic Date: Sup.14,                                                                         | 12 Time:                 | Received by:                                                                 | SF                                               | Date: Sen                                                                                                      | FIA Zerx                                                                                    | Time:                                                                      | Received                                                                           | by:                     | 27            |         | late:       |        | Sept        |          | &              | Time    | ک            | 45                   |
| REFER TO BACK                                 | PAGE FOR ALS LOCATIONS AND SAMPLING INFOR                                                   | PARTION                  |                                                                              |                                                  |                                                                                                                |                                                                                             |                                                                            |                                                                                    |                         | $\overline{}$ |         |             |        |             |          |                |         |              | ALT FROM             |

# APPENDIX E



