Phase Two Environmental Site Assessment

1470 Williamsport Drive Mississauga, Ontario

Prepared For:

1470 Williamsport Holdings Inc.181 Eglinton Avenue East, Suite 204Mississauga, OntarioM4P 1J4

DS Project No: 24-300-100

Date: 2025-01-08

Executive Summary

DS Consultants Ltd. (DS) was retained by 1470 Williamsport Holdings Inc. (the "Client") to conduct a Phase Two Environmental Site Assessment (ESA) of the Property located at 1470 Williamsport Drive, Mississauga, Ontario, herein referred to as the "Phase Two Property" or "Site". DS understands that Phase Two ESA has been requested for due diligence purposes in association with the proposed redevelopment of the Property for residential purposes. It is further understood that the proposed development will consist of two (2), mid- to high-rise residential buildings, with a shared podium and underground parking.

The intended future residential property use is not considered to be a more sensitive property use as defined under O.Reg. 153/04 (as amended) than the current residential property use; therefore, the filing of a Record of Site Condition (RSC) with the Ontario Ministry of Environment, Conservation and Parks (MECP) is not mandated under O.Reg. 153/04.

The Phase Two ESA was completed in general accordance with the requirements, methodology and practices for a Phase Two ESA as described in Ontario Regulation 153/04 (as amended). The objective of this Phase Two ESA is to assess whether contaminants are present, and at what concentration are they present on the Phase Two Property, as related to the Areas of Potential Environmental Concern (APEC) identified in the Phase One ESA.

The Phase One Property is a rectangular shaped 0.59-hectare (1.46 acres) parcel of land situated within a mixed residential and commercial neighbourhood in the City of Mississauga, Ontario. The Phase One Property is located approximately 140 m northeast of the intersection of Bloor Street and Dixie Road. The Property currently includes a residential apartment building (Site Building) with a brick façade, consisting of 6 storeys with one level of basement and a building envelope approximately 850 m² in area. Adjoining the Site Building to the southwest is ground level parking extending into a one-level underground garage with an approximate footprint of 1,700 m². The Site Building was utilized by residential tenants at the time of this investigation, and has operated as an apartment building dating to at least 1954.

A total of twelve (12) Potentially Contaminating Activities (PCAs) were identified in the Phase One ESA, of which four (4) were considered to be contributing to four (4) APECs on the Phase Two Property. A summary of the APECs, associated PCAs, and contaminants of potential concern (COPC) identified is presented in the table below:

Table E-1: Summary of APECs Identified on Phase One Property

Area of Potential Environment al Concern	Location of Area of Potential Environment al Concern on Phase One Property	Potentially Contaminating Activity	Location of PCA (on-Site or off- site)	Contaminant s of Potential Concern	Media Potentially Impacted (Ground water, soil and/or sediment)
APEC-1	Northeastern portion of the Phase One Property	N/S: Operation of an Incinerator	On Site: PCA-1	PAHs, Dioxins and Furans	Soil and ground water
APEC-2	Entire Phase One Property	#30 - Importation of Fill Material of Unknown Quality	On Site: PCA-8	PHCs, VOCs, BTEX, Metals, As, Sb, Se, B- HWS, CN-, Cr (VI), Hg, low or high pH, PAHs	Soil
APEC-3	Southern portion of the Phase One Property	#N/S- Inferred application of de-icing agents	On Site: PCA-9	Electrical Conductivity, SAR Na, CI-	Soil Groundwater
APEC-4	Southwestern portion of the Property	#40 – Pesticides Manufacturing, Processing, Bulk Storage and Large-Scale Applications	On Site PCA-12	Metals, As, Sb, Se, CN-, Hg, OC Pesticides	Soil

Notes:

Note that the PCA numbers used are per Table 2, Schedule D of O.Reg. 153/04.

N/S: PCA Not Listed in Table 2, Schedule D of O. Reg 153/04.

PAHs: Polycyclic Aromatic Hydrocarbons

PHCs: Petroleum Hydrocarbons VOCs: Volatile Organic Compounds SAR: Sodium Adsorption Ratio

OC Pesticides: Organochlorine Pesticides

Based on the findings of the Phase One ESA it was concluded that a Phase Two ESA is warranted to assess the soil and groundwater conditions on the Phase Two Property.

The Phase Two ESA involved the advancement of five (5) boreholes (BH24-1 to BH24-4, MW24-5), which was completed between August 9, 2024. The boreholes were advanced to a maximum depth of 9.7 metres below ground surface (mbgs) under the supervision of DS personnel. Groundwater monitoring wells were installed in one (1) of the boreholes (MW24-5) to facilitate the collection of groundwater samples. Three (3) monitoring wells previously installed on the property by Terraprobe Inc. (2022) were utilized for the purposes of groundater monitoring and flow direction assessment. The borehole locations were determined based on the findings of the Phase One ESA. All APECs were investigated with boreholes and/or monitoring wells in accordance with the requirements of O.Reg. 153/04

(as amended). Soil and groundwater samples were collected and submitted for analysis of all COPCs as follows:

- Soil PHCs, VOCs, BTEX, Metals, As, Sb, Se, B-HWS, CN-, electrical conductivity, Cr (VI), Hg, low or high pH, SAR, PAHs, Dioxins and Furans, and OC Pesticides.
- Groundwater PAHs, Na, CI, Dioxins and Furans.

The soil and groundwater analytical results were compared to the "Table 2 SCS: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition for Residential/Parkland/Institutional Use" provided in the MECP document entitled, "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" dated April 15, 2011 (Table 2 Standards) for coarse-textured soils and residential/parkland/institutional property use.

Based on the results of the Phase Two ESA, DS presents the following findings:

- A surficial layer of topsoil approximately 100 to 150 mm in thickness was encountered in all the boreholes advanced. Fill material consisting of silty sand was encountered below the topsoil. The fill material was generally heterogeneous and ranged in thickness from 1.5 to 2.44 metres. No deleterious materials, staining or odours were observed. The native material encountered below the fill consisted of sand to silty sand for approximately 0.7 m, below this silty sand till was present for approximately 2.3 m, below which sandy silt was present to approximately 7.6 mbgs followed by silty sand till. The silty sand till unit extended to the full depth of the boreholes until maximum termination depth at 9.7 mbgs. Bedrock was not encountered;
- The depth to groundwater was measured in four (4) monitoring wells; one (1) installed during this investigation and two (2) pre-existing wells. The monitoring wells were screened to intercept the groundwater water table. The groundwater levels were found to range between 8.11 to 11.45 mbgs, with corresponding elevations of 131.05 to 129.06 metres above sea level (masl). Per the Terraprobe (2022) Hydrogeological Investigation completed at the Site, groundwater flow direction was considered to be southeast. The groundwater levels may be impacted by other factors such as historical infilling activities, subsurface utility trenches, and similar subsurface anomalies. The groundwater flow direction can only be confirmed through long term seasonal monitoring.
- Soil samples were collected from the boreholes advanced on the Phase Two Property and submitted for analysis of Metals, As, Sb, Se, B-HWS, CN, EC, Cr (VI), Hq, low or high

pH, SAR, PAHs, PHCs, VOCs, OCPs, PCBs, and dioxins and furans. The results of the chemical analyses conducted indicated the following exceedances of the Table 2 Standards:

Table E-2: Summary of Soil Impacts Identified

Sample ID	Sample Depth (mbgs)	Parameter	Units	Table 2 SCS	Reported Value
BH24-1 SS2	0-0.6	Electrical Conductivity	mS/cm	0.7	7.9*

- *Per Section 49.1 (1) of O.Reg. 153/04, "If an applicable site condition standard is exceeded at a property solely because of one of the following reasons, the applicable site condition standard is deemed not to be exceeded for the purpose of Part XV.1 of the Act":

 "...that a substance has been applied to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both". Based on this provision, the Site condition standards for EC and SAR are deemed not to be exceeded.
- Groundwater sample was collected from monitoring well MW24-5 installed on the Phase Two Property and submitted for analysis of PAHs and Dioxins and Furans. The results of the chemical analyses conducted indicated that all samples analyzed met the applicable Site Condition Standards.

Based on a review of the findings of this Phase Two ESA, DS presents the following conclusions and recommendations:

- The results of the chemical analyses conducted on soil and groundwater samples indicate that the applicable Site Condition Standards have been met. No further environmental site assessment is recommended at this time.
- Based on the findings of this Phase Two ESA, a Record of Site Condition may be filed for the Phase Two Property (if required);
- Note: further chemical testing of the soils on the property may be required in the future to support the export of excess soils generated by the proposed redevelopment. DS recommends completing this work prior to tendering the construction earthworks.
- All monitoring wells should be decommissioned in accordance with O.Reg. 903 when no longer required.

Table of Contents

Introduc	ction	9		
1.1	Site Description	9		
1.2	Property Ownership			
1.3	Current and Proposed Future Use			
1.4	Applicable Site Condition Standards			
2.0	Background Information			
2.1	Physical Setting	.11		
	2.1.1 Water Bodies and Areas of Natural Significance			
	2.1.2 Topography and Surface Water Draining Features	. 11		
2.2	Past Investigations	.12		
	2.2.1 Previous Report Summary			
3.0	Scope of the Investigation	14		
3.1	Overview of Site Investigation	.14		
3.2	Media Investigated	.15		
	3.2.1 Rationale for Inclusion or Exclusion of Media	. 15		
	3.2.2 Overview of Field Investigation of Media	. 15		
3.3	Phase One Conceptual Site Model	.16		
	3.3.1 Potentially Contaminating Activity Affecting the Phase One Property	. 16		
	3.3.2 Contaminants of Potential Concern	. 16		
	3.3.3 Underground Utilities and Contaminant Distribution and Transport	. 17		
	3.3.4 Geological and Hydrogeological Information	. 17		
	3.3.5 Uncertainty and Absence of Information	. 17		
3.4	Deviations from Sampling and Analysis Plan			
3.5	Impediments	.18		
4.0	Investigation Method	18		
4.1	General	.18		
4.2	Drilling and Excavating			
4.3	Soil Sampling			
4.4	Field Screening Measurements			
4.5 4.6	Groundwater Monitoring Well Installation			
4.6	Groundwater Field Measurement of Water Quality Parameters			
4.7	Sediment Sampling			
4.9	Analytical Testing			
4.10	Residue Management Procedures			
	4.10.1 Soil Cuttings From Drilling and Excavations			
	4.10.2 Water from Well Development and Purging			
	4.10.3 Fluids from Equipment Cleaning			
4.11	Elevation Surveying			

4.12	Quality Assurance and Quality Control Measures	23
	4.12.1 Sample containers, preservation, labelling, handling and cust	ody for
	samples submitted for laboratory analysis, including any deviations from	the SAP
	23	
	4.12.2 Description of equipment cleaning procedures followed du	ring all
	sampling	-
	4.12.3 Description of how the field quality control measures referre	
	subsection 3 (3) were carried out	
	4.12.4 Description of, and rational for, any deviations from the procedure	
	in the quality assurance and quality control program set out in the SAP	
5.0	Review and Evaluation	
5.1	Geology	24
5.2	Ground Water Elevations and Flow Direction	25
	5.2.1 Rationale for Monitoring Well Location and Well Screen Intervals.	25
	5.2.2 Results of Interface Probe Measurements	25
	5.2.3 Product Thickness and Free Flowing Product	25
	5.2.4 Groundwater Elevation	25
	5.2.5 Groundwater Flow Direction	26
	5.2.6 Assessment of Potential for Temporal Variability in Groundwat	er Flow
	Direction	26
	5.2.7 Evaluation of Potential Interaction Between Buried Utilities and th	ne Water
	Table 26	
5.3	Ground Water Hydraulic Gradients	27
	5.3.1 Horizontal Hydraulic Gradient	27
	5.3.2 Vertical Hydraulic Gradient	
5.4	Fine-Medium Soil Texture	
5.5 5.6	Soil Field ScreeningSoil Quality	
5.0	5.6.1 Metals and Other Regulated Parameters	
	5.6.2 Petroleum Hydrocarbons	
	5.6.3 Volatile Organic Compounds	
	5.6.4 Polycyclic Aromatic Hydrocarbons	
	5.6.1 Organochlorine Pesticides and Polychlorinated Biphenyls	
	5.6.2 Dioxins and Furans	
	5.6.3 Commentary on Soil Quality	
5.7	Ground Water Quality	
<i></i>	5.7.1 Dioxins and Furans	
		· · · · · · · · · · · · · · · · · · ·

	5.7.2 Polycyclic Aromatic Hydrocarbons	29
	5.7.3 Commentary on Groundwater Quality	29
5.8	Sediment Quality	30
5.9	Quality Assurance and Quality Control Results	
6.0	Conclusions	
6.1	Qualifications of the Assessors	
6.2	Signatures	
6.3	Limitations	
7.0	References	36
TABLE	S -1: Summary of APECs Identified on Phase One Property	1
	-2: Summary of Soil Impacts Identified	
	-1: Phase Two Property Information	
	-2: Phase Two Property Ownership	
	-1: Rationale of Sampling Media	
	-2: Field Investigation of Media	
	-	
	-3: Summary of PCAs Contributing to APECs	
	-1: Summary of Drilling Activities	
	-2: Field Screening Equipment	
	-3: Summary of Sample Bottle Preservatives	
	-1: Summary of Geologic Units Investigated	
	-2: Summary of Horizontal Hydraulic Gradient Calculations	
Table 5	-3: Summary of Metals and ORPs Exceedances in Soil	28
Table 5	-4: Summary of QA/QC Results	30

Enclosures

FIGURES

Figure 1 – Site Location Plan

Figure 2 – Phase One Property Site Plan

Figure 3 – Phase One Study Area

Figure 4 – PCA within Phase One Study Area

Figure 5 – Borehole/Monitoring Well Locations Plan with APECs

Figure 6 – Groundwater Flow Direction

Figure 7A – Soil Characterization – Metals and ORPs

Figure 7B – Soil Characterization – PHCs and BTEX

Figure 7C – Soil Characterization – VOCs

Figure 7D – Soil Characterization – PAHs

Figure 7E – Soil Characterization – OCPs and PCBs

Figure 7F – Soil Characterization – Dioxins and Furans

Figure 8A – Groundwater Characterization – PAHs

Figure 8B – Groundwater Characterization – Dioxins and Furans

ENCLOSED TABLES

Table 1: Summary of Monitoring Well Installation and Groundwater Data

Table 2: Summary of Soil Samples Submitted for Chemical Analysis

Table 3: Summary of Groundwater Samples Submitted for Chemical Analysis

Table 4: Summary of APECs Investigated

Table 5: Summary of Metals and ORPs in Soil

Table 6: Summary of PHCs & BTEX in Soil

Table 7: Summary of VOCs in Soil

Table 8: Summary of PAHs in Soil

Table 9: Summary of OCPs in Soil

Table 10: Summary of Dioxins and Furans in Soil

Table 11: Summary of Furans and Dioxins in Groundwater

Table 12: Summary of PAHs in Groundwater

Table 13: Summary of Maximum Concentrations in Soil

Table 14: Summary of Maximum Concentrations in Groundwater

Notes for Soil and Groundwater Summary Tables

APPENDICES

Appendix A – Sampling and Analysis Plan

Appendix B – Borehole Logs

Appendix C – Laboratory Certificates of Analysis

Introduction

DS Consultants Ltd. (DS) was retained by 1470 Williamsport Holdings Inc. to complete a Phase Two Environmental Site Assessment (ESA) of the Property located at 1470 Williamsport Drive, Mississauga, Ontario, herein referred to as the "Phase Two Property" or "Site". It is DS's understanding that this Phase Two ESA has been requested for due diligence purposes in association with the proposed redevelopment of the Property for residential purposes. It is further understood that the proposed development will consist of two (2), mid- to high-rise residential buildings, with a shared podium and underground parking.

The intended future residential property use is not considered to be a more sensitive property use as defined under O.Reg. 153/04 (as amended) than the current residential property use; therefore, the filing of a Record of Site Condition (RSC) with the Ontario Ministry of Environment, Conservation and Parks (MECP) is not mandated under O.Reg. 153/04.

The Phase Two ESA was completed in general accordance with the requirements, methodology and practices for a Phase Two ESA as described in Ontario Regulation 153/04 (as amended). The objective of this Phase Two ESA is to assess whether contaminants are present, and at what concentration are they present on the Phase Two Property, as related to the Areas of Potential Environmental Concern (APEC) identified in the Phase One ESA.

1.1 Site Description

The Phase Two Property is a rectangular-shaped 0.59-hectare (1.46 acres) parcel of land situated within a mixed residential and commercial neighbourhood in the City of Mississauga, Ontario. The Phase Two Property is located approximately 140 m northeast of the intersection of Bloor Street and Dixie. A Site Location Plan is provided in Figure 1.

For the purposes of this report, Bloor Street is assumed to be aligned in an east-west orientation, and Dixie Road in a north-south orientation.

The Property currently includes a residential apartment building (Site Building) with a brick façade, consisting of 6 storeys with one level of basement and a building envelope approximately 850 m² in area. A boiler room is located in the northeastern portion of the basement. Adjoining the Site Building to the southwest is ground level parking extending into a one-level underground garage with an approximate footprint of 1,700 m². A Site Plan depicting the orientation of the Site Building and parking area on-Site is provided in Figure 2.

Additional details regarding the Phase Two Property are provided in the table below.

Table 1-1: Phase Two Property Information

Criteria	Information	Source
Legal Description	PT BLK C PL 729 TORONTO AS IN VS108942; S/T TT184226 MISSISSAUGA	Ontario Land Registry
Property Identification Number (PIN)	13328-0037	Client Interview
Current Site Occupants	Residential Apartments	Site Reconnaissance
Site Area	0.59 hectares (1.46 acres)	Google Earth

1.2 Property Ownership

The ownership details for the Phase Two Property are provided in the table below.

Table 1-2: Phase Two Property Ownership

Property Owner	Address	Contact
1470 Williamsport Holdings Inc.	181 Eglinton Avenue East, Suite 204 Toronto, Ontario, M4P 1J4	Jack Greenberg 1470 Williamsport Holdings Inc. Phone: 416-485-8833 Email: jackgreenberg@greenberglawyers.ca

1.3 Current and Proposed Future Use

The Phase Two Property is currently occupied by a rectangular shaped six–storey residential apartment building, an adjoining ground level parking lot with one-level underground garage. The land use at the Site is residential, as defined in O.Reg. 153/04 (as amended). It is DS' understanding that the Client intends to redevelop the Site into two (2) mid- to high-rise residential buildings, with a shared podium and underground parking.

1.4 Applicable Site Condition Standards

The applicable Site Condition Standards (SCS) for the Phase Two Property are considered by the Qualified Person (QP) to be the Table 2 SCS: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition for Residential/Parkland/Institutional Use with coarse-textured soils as contained in the April 15, 2011 Ontario Ministry of Environment, Conservation and Parks (MECP) document entitled "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", herein referred to as the "Table 2 SCS".

The selection of the Table 2 SCS is considered appropriate based on the following rationale:

The City of Mississauga obtains its potable water from Lake Ontario, and does not rely on groundwater as a potable water source. However, permission for the application of non-

potable groundwater standards has not been sought nor granted from the City of Mississauga;

- The Site is not considered to be environmentally sensitive, as defined under O.Reg. 153/04 (as amended);
- The proposed future use of the Phase Two Property will be residential;
- The Site is not located within 30 m of a water body;
- The pH of the soils analyzed during this Phase Two ESA are within the accepted range specified under O.Reg. 153/04 (as amended); and
- Bedrock was not encountered within 2 metres of the ground surface

2.0 Background Information

2.1 Physical Setting

2.1.1 Water Bodies and Areas of Natural Significance

During the site visit, standing water was not observed on the Property. The nearest body of water to the Phase Two Property is Little Etobicoke Creek, located approximately 800 m to the south and southwest. Environmentally Significant Areas are natural areas that have been identified as significant and worthy of protection on three criteria – ecology, hydrology and geology. Municipalities have developed policies to protect natural heritage features. The Region uses Environmentally Significant Areas to protect natural areas like wetlands, fish habitat, woodlands, habitat of rare species, groundwater recharge and discharge areas, and Areas of Natural and Scientific Interest.

The Property includes no Areas of Natural Significance.

2.1.2 Topography and Surface Water Draining Features

The topography of the Phase Two Property is generally flat with a slight slope to the south. The surface elevation ranges from 138 to 141 metres above sea level (masl). The topography within the surrounding area generally slopes to the southwest, towards Little Etobicoke Creek, located approximately 800 m southwest of the Phase Two Property. Based on a review of the MECP well records, the depth to groundwater in the vicinity of the Phase Two Property is between 2.9 and 4.4 metres below ground surface (mbgs). The Terraprobe (2022) Hydrogeological Investigation quantified groundwater levels on the Site at depths of between 9.4 to 10.7 mbgs, and interpreted the groundwater flow direction as southeast in February 2022.

The Site is situated within a Till Plains physiographic region. The surficial geology within the surrounding area is described as "ice-contact stratified deposits" consisting of sand and

gravel, minor silt, clay and till, and the bedrock is described as "shale, limestone, dolostone, siltstone, Georgian Bay Formation; Blue Mountain Formation; Billings Formation; Collingwood Member; Eastview Member". Based on a review of the MECP well records, the bedrock in this area is anticipated to be encountered at an approximate depth of 18.3 mbgs.

2.2 Past Investigations

2.2.1 Previous Report Summary

DS reviewed the following environmental reports prepared for the Property. The reports were provided by the client to DS.

- "Phase One Environmental Site Assessment, 1470 Williamsport Drive, Mississauga, Ontario", prepared for c/o Law Offices of Jack Greenberg, prepared by McIntosh Perry Consulting Engineers Ltd., dated May 17, 2022 (McIntosh Perry 2022 Phase One ESA);
- ◆ "Geotechnical Investigation Residential Development, 1470 Williamsport Drive, Mississauga, Ontario", prepared for Compten Management Inc, prepared by Terraprobe Inc. dated March 11, 2022 (Terraprobe 2022 Geotechnical Investigation), and;
- "Hydrogeological Assessment, 1470 Williamsport Drive, Mississauga, Ontario", prepared for 1470 Williamsport Holdings Inc, prepared by Terraprobe Inc. dated May 17, 2022 (Terraprobe 2022 Hydrogeological Assessment).

These reports were reviewed to assess the presence of known or suspected PCAs and APECs, and to determine if there are known soil and/or groundwater impacts on the Phase Two Property or on Properties within the surrounding area.

Based on the information reviewed by DS, the location of the Phase One Property, and the proposed future land use (residential) the most applicable Site Condition Standards as defined by the Ministry of the Environment, Conservation, and Parks (MECP) in the document "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", dated April 15, 2011 are considered to be:

Table 2 SCS: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition for Residential/Parkland/Institutional Use with coarse-textured soils.

McIntosh Perry 2022 Phase One ESA

The McIntosh Perry 2022 Phase One ESA report was conducted in general accordance with Ontario Regulation 153/04, dated April 15, 2011 (as amended), and included a review of readily available historical records and reasonably ascertainable regulatory information, a

Site Reconnaissance, interviews, evaluation of information, and reporting. The following pertinent information was noted by DS:

- The Phase One Property is currently used for residential purposes as an apartment building with an underground parking lot.
- The Site was first developed with the current site building in 1968, and was used for agricultural purposes prior to 1966.
- The PCAs identified contributing to APECs include:
 - A decommissioned incinerator was located in the basement of the building on the Phase One Property;
 - o A transformer was identified on the northwest limit of the Site; and
 - Construction debris was found in the fill material during the 2022 geotechnical investigation.

Based on the findings of the Phase One ESA, McIntosh Perry recommended a Phase Two ESA be completed.

Terraprobe 2022 Geotechnical Investigation

The Terraprobe 2022 Geotechnical Investigation was conducted to investigate subsurface conditions and provide geotechnical design recommendations for the development plans at the Site. A total of 4 boreholes were advanced by Terraprobe on the Site, ranging from 4.6 to 12.3 mbgs.

The topsoil thickness ranged from 75 to 200 mm. The asphalt pavement structure consisted of 90 mm thick asphaltic concrete underlain by 100 mm thick granular base course was encountered in one borehole. Fill materials were encountered within all boreholes. The fill material consisted of sandy silt to silty sand, with trace amounts of clay, gravel and organics, extending to a depth of 2.3-2.5 mbgs. No deleterious materials were noted. Sand deposit with trace amounts of silt, clay and gravel were encountered beneath the earth fill zone in each borehole and extended to 12.2 mbgs. The till-shale complex/weathered shale (inferred Bedrock of Georgian Bay Formation) was identified in each borehole at 12.2 mbgs.

<u>Terraprobe 2022 Hydrogeological Assessment</u>

The Terraprobe 2022 Hydrogeological Assessment report was conducted based on the most updated design drawing for future development at the time. The following pertinent information was noted by DS:

- ◆ Two (2) local stratigraphic units were identified underneath the Site, impacting short-term construction efforts and long-term drainage flow rates. The units of the subsoil profile beneath the Site were fill and sand.
- ◆ The estimated hydraulic conductivity of 1.0x10-6 and 6.45 x10-6 m/sec, were established for the fill and clayey silt till units within which construction and excavation should take place.
- Groundwater levels on the Site were measured at depths of between 9.4 to 10.7 mbgs.
- Utilizing groundwater elevations measured in monitoring wells on February 3, 2022, the groundwater flow direction was calculated as southeast towards the Little Etobicoke Creek.

3.0 Scope of the Investigation

The scope of the Phase Two ESA was designed to investigate the portions of the Site determined in the Phase One ESA to be Areas of Potential Environmental Concern. This Phase Two ESA was conducted in general accordance with O.Reg. 153/04 (as amended). The scope of the investigation including the subsurface investigation, sampling, and laboratory analysis was based on the findings of the Phase One ESA and was limited to the portions of the Site which were accessible.

3.1 Overview of Site Investigation

The following tasks were completed as part of the Phase Two ESA:

- Preparation of a Health and Safety Plan to ensure that all work was executed safely;
- Clearance of public private underground utility services prior to commencement of subsurface investigative operations;
- Preparation of a Sampling and Analysis Plan (SAP);
- Retained a MECP licenced driller to advance a total of five (5) boreholes (BH24-1 to BH24-4, MW24-5) on the Phase Two Property, to depths ranging between 2.1 to 9.7 mbgs. One (1) of the boreholes was instrumented with a groundwater monitoring wells upon completion (MW24-5). The soil lithology was logged during drilling, and representative soil samples were collected at regular intervals. The soil samples were screened for organic vapours using a RKI Eagle 2 MultiGas Detector, and examined for visual and olfactory indications of soil impacts;
- Submitted "worst case" soil samples collected from the boreholes for laboratory analysis of relevant contaminants of potential concern (COPCs) as identified in the Phase One ESA;

- Conducted groundwater level measurements in the monitoring well installed as well as historic monitoring wells in order to determine the groundwater elevation, and to establish the local groundwater flow direction;
- Surveyed all monitoring wells to a geodetic benchmark;
- Developed and purged the newly installed monitoring well prior to sampling. Groundwater samples were collected for all COPCs identified in the Phase One ESA;
- Compared all soil and groundwater analytical data to the applicable MECP SCS; and
- Prepared a Phase Two ESA Report in general accordance with O.Reg. 153/04 (as amended).

3.2 Media Investigated

3.2.1 Rationale for Inclusion or Exclusion of Media

Table 3-1: Rationale of Sampling Media

Media	Included or Excluded	Rationale
Soil	Included	Soil was identified as a media of potential impact in the Phase One ESA, based on the historical operations conducted on-Site.
Groundwater	Included	Groundwater was identified as a media of potential impact in the Phase One ESA, based on the historical operations conducted on-Site.
Sediment	Excluded	Sediment is not present on the Phase Two Property and was not identified as a media of concern by the Phase One ESA.
Surface Water	Excluded	Surface water is not present on the Phase Two Property, and was not identified as a media of concern by the Phase One ESA.

3.2.2 Overview of Field Investigation of Media

Table 3-2: Field Investigation of Media

Media	Methodology of Investigation	
Soil	A total of five (5) boreholes were advanced on the Phase Two Property, to a maximum depth of 9.7 mbgs. Soil samples were collected and submitted for analysis of COPCs and general soil characterization, as follows: BH24-1: Metals, As, Sb, Se, SAR, pH, EC, Hg, B-HWS, CN-, Cr (VI), PHCs, VOCs,	
	BTEX, OC Pesticides BH24-2 and BH24-3: Metals, As, Sb, Se, SAR, pH, EC, Hg, B-HWS, CN-, Cr (VI), PHCs, VOCs, BTEX; BH24-4: PCBs and pH	
	MW24-5: Metals, As, Sb, Se, SAR, pH, EC, Hg, B-HWS, CN-, Cr (VI), PHCs, VOCs, BTEX, Dioxins and Furans	
Groundwater	A total of four (4) monitoring wells were present on the Phase Two Property at the time of the investigation. Representative groundwater samples were collected from MW24-5 and submitted for analysis of PAHs, Dioxins and Furans. The remaining monitoring wells were utilized for groundwater level monitoring only.	

3.3 Phase One Conceptual Site Model

A Conceptual Site Model was developed for the Phase One Property, located at 1470 Williamsport Drive, Mississauga, Ontario. The Phase One Conceptual Site Model is presented in Figures 2 to 5 and visually depict the following:

- Any existing buildings and structures
- Water bodies located in whole, or in part, on the Phase One Study Area
- Areas of natural significance located in whole, or in part, on the Phase One Study Area
- Water wells at the Phase One Property or within the Phase One Study Area
- Roads, including names, within the Phase One Study Area
- Uses of properties adjacent to the Phase One Property
- Areas where any PCAs have occurred, including location of any tanks
- Areas of Potential Environmental Concern.

3.3.1 Potentially Contaminating Activity Affecting the Phase One Property

All PCAs identified within the Phase One Study Area are presented on Figure 4. The PCAs which are considered to contribute to APECs on, in or under the Phase One Property are summarized in the table below:

Table 3-3: Summary of PCAs Contributing to APECs

PCA Item.	PCA Description (Per. Table 2, Schedule D of O.Reg. 153/04)	Description	APEC
PCA- 1	#58- Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners	A decommissioned incinerator, previously purposed for waste management, is in the basement of the Phase One Property.	Yes – APEC-1
PCA- 8	#30 - Importation of Fill Material of Unknown Quality	Fill material of unknown quality is inferred to have been used for grading purposes at the time of development.	Yes – APEC-2
PCA- 9	#N/S - Inferred application of de- icing agents	De-icing agents may have been utilized for road safety purposes on the Phase One Property's parking lot.	Yes – APEC-3
PCA- 12	#40 – Pesticides Manufacturing, Processing, Bulk Storage and Large-Scale Applications	A historical orchard was located on the west portion of the Site according to the 1946 aerial image.	Yes – APEC-4

N/S - not specified in Table 2, Schedule D, of O.Reg. 153/04

3.3.2 Contaminants of Potential Concern

The following contaminants of potential concern were identified for the Phase One Property:

- Soil PHCs, VOCs, BTEX, Metals, As, Sb, Se, B-HWS, CN-, electrical conductivity, Cr (VI), Hg, low or high pH, SAR, PAHs, Dioxins and Furans, and OC Pesticides.
- Groundwater PAHs, Na, CI, Dioxins and Furans.

3.3.3 Underground Utilities and Contaminant Distribution and Transport

Underground utilities can affect contaminant distribution and transport. Trenches excavated to install utility services, and the associated granular backfill may provide preferential pathways for horizontal contaminant migration in the shallow subsurface.

Plans were not available to confirm the depths of these utilities, however they are estimated to be installed at depths ranging from 2 to 3 metres below ground surface. Groundwater is reportedly present on the Site from 2.9 to 9.6 mbgs. As such utility corridors may act as preferential pathways for contaminant distribution and transport, in the event that shallow subsurface contaminants exist at the Phase One Property.

3.3.4 Geological and Hydrogeological Information

The topography of the Phase One Property is generally flat with a slight slope to the south. The surface elevation ranges from 138 to 141 metres above sea level (masl). The topography within the Phase One Study Area generally slopes to the southwest, towards Little Etobicoke Creek, located approximately 800 m southwest of the Phase One Property. Based on a review of the MECP well records, the depth to groundwater in the vicinity of the Phase One Property is between 2.9 and 4.4 m. The Terraprobe (2022) Hydrogeological Investigation quantified groundwater levels on the Site at depths of between 9.4 to 10.7 mbgs, and interpreted the groundwater flow direction as southeast in January 2022.

The Site is situated within a Till Plains physiographic region. The surficial geology within the Phase One Study area is described as "ice-contact stratified deposits" consisting of sand and gravel, minor silt, clay and till, and the bedrock is described as "shale, limestone, dolostone, siltstone, Georgian Bay Formation; Blue Mountain Formation; Billings Formation; Collingwood Member; Eastview Member". Based on a review of the MECP well records, the bedrock in the Phase One Study Area is anticipated to be encountered at an approximate depth range of 18.3 mbgs.

3.3.5 Uncertainty and Absence of Information

DS has relied upon information obtained from federal, provincial, municipal, and private databases, in addition to records and summaries provided by ERIS. All information obtained was reviewed and assessed for consistency, however the conclusions drawn by DS are subject to the nature and accuracy of the records reviewed.

All reasonable inquiries were made to obtain reasonably accessible information, as mandated by O.Reg.153/04 (as amended). All responses to database requests were received prior to completion of this report. This report reflects the best judgement of DS based on the information available at the time of the investigation.

Information used in this report was evaluated based on proximity to the Phase One Property, anticipated direction of local groundwater flow, and the potential environmental impact on the Phase One Property as a result of potentially contaminating activities.

The QP has determined that the uncertainty does not affect the validity of the Phase One ESA Conceptual Site Model or the conclusions of this report.

3.4 Deviations from Sampling and Analysis Plan

The Phase Two ESA was completed in accordance with the SAP.

3.5 Impediments

DS was granted complete access to the Phase Two Property throughout the course of the investigation. No impediments were encountered.

4.0 Investigation Method

4.1 General

The Phase Two ESA followed the methodology outlined in the following documents:

- Ontario Ministry of the Environment "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario" (December 1996);
- Ontario Ministry of the Environment "Guide for Completing Phase Two Environmental Site Assessments under Ontario regulation 153/04" (June 2011);
- Ontario Ministry of the Environment "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" (July 2011) (Analytical Protocol).

The methods used in the Phase Two ESA investigation did not differ from the associated standard operating procedures.

4.2 Drilling and Excavating

A Site visit was conducted prior to drilling to identify the borehole locations based on the APECs identified in the Phase One ESA. The selected borehole locations are presented on Figure 5. The borehole locations were cleared of underground public and private utility

services prior to commencement of drilling. A summary of the drilling activities is provided in the table below.

Table 4-1: Summary of Drilling Activities

Parameter	Details	
Drilling Contractor	Groundworks Drilling Inc.	
Drilling Dates	August 9, 2024	
Drilling Equipment Used	Track-mounted 6M2	
Measures taken to minimize the potential for cross contamination	 Soil sampling was conducted using a 50 mm stainless steel split spoon sampler. The split spoon sampler was brushed clean of soil, washed in municipal water containing phosphate free detergent, rinsed in municipal water, and then rinsed with distilled water for each sampling interval in order to reduce the potential for cross contamination Soil samples were extracted from the interior of the sampler rather than from areas in contact with the sampler sidewalls; Use of dedicated and disposable nitrile gloves for the handling of soil samples. A new set of gloves was used for each sample. 	
Sample collection frequency	Samples were collected at a frequency of every 0.6 m per 0.8 m from the ground surface to 3.1 mbgs, followed by one sample per 1.5 m to borehole termination depth.	

4.3 Soil Sampling

Soil samples were collected using stainless split spoon samplers. Discrete soil samples were collected from the split-spoon samplers by DS personnel using dedicated nitrile gloves.

A portion of each sample was placed in a resealable plastic bag for field screening, and the remaining portion was placed into laboratory supplied glass sampling jars. Samples intended for VOC and the F1 fraction of petroleum hydrocarbons analysis were collected using a laboratory-supplied soil core sampler, placed into the vials containing methanol for preservation purposes and sealed using Teflon lined septa lids. All sample jars were stored in dedicated coolers with ice for storage, pending transport to the analytical laboratory. A formal chain of custody was maintained for all samples submitted to the laboratory.

The subsurface soil conditions were logged by DS personnel at the time of drilling, and recorded on field borehole logs. The borehole logs are presented under Appendix B. Additional detail regarding the lithology encountered in the boreholes is presented under Section 5.1, and depicted visually in Figure 5.

4.4 Field Screening Measurements

All retrieved soil samples were screened in the field for visual and olfactory observations. No obvious visual or olfactory evidence of potential contamination were noted. No aesthetic impacts (e.g. cinders, slag, hydrocarbon odours) were encountered during this investigation. The soil sample headspace vapour concentrations for all soil samples recovered during the investigation were screened using portable organic vapour testing equipment in accordance with the procedure outlined in the MECP's 'Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario'.

The soil samples were inspected and examined to assess soil type, ground water conditions, and possible chemical contamination by visual and olfactory observations or by organic vapour screening. Samples submitted for chemical analysis were collected from locations judged by the assessor to be most likely to exhibit the highest concentrations of contaminants based on several factors including (i) visual or olfactory observations, (ii) sample location, depth, and soil type (iii) ground water conditions and headspace reading. A summary of the equipment used for field screening is provided below:

Table 4-2: Field Screening Equipment

Parameter	Details
Make and Model of Field Screening Instrument	RKI Eagle 2, Model 5101-P2
Chemicals the equipment can detect and associated detection limits	VOCs with dynamic range of 0 parts per million (ppm) to 2,000 ppm PHCs with range of 0 to 50, 000 ppm
Precision of the measurements	3 significant figures
Accuracy of the measurements	VOCs: ± 10% display reading + one digit Hydrocarbons: ± 5% display reading + one digit
Calibration reference standards	PID: Isobutylene CGD: Hexane
Procedures for checking calibration of equipment	In-field re-calibration of the CGI was conducted (using the gas standard in accordance with the operator's manual instructions) if the calibration check indicated that the calibration had drifted by more than +/- 10%.

A summary of the soil headspace measurements are provided in the borehole logs, provided under Appendix B.

4.5 Groundwater Monitoring Well Installation

A monitoring well was installed upon completion of one (1) of the boreholes advanced on the Phase Two Property. The monitoring wells were constructed of 51-millimetre (2-inch) inner diameter (ID) flush-threaded schedule 40 polyvinyl chloride (PVC) risers, equipped

with a 3.0 m length of No. 10 slot PVC screen. The well screens were sealed at the bottom using a threaded cap and at the top with a lockable J-plug.

Silica sand was placed around and up to 0.6 m above the well screen to act as a filter pack. Bentonite was placed from the ground surface to the top of the sand pack. The well was completed with protective flush mount casing.

Details regarding the monitoring well construction can be found in Table 1 (Enclosed), and on the borehole logs provided in Appendix B.

Disposable nitrile gloves were used to minimize the potential for cross-contamination during well installation. Dedicated equipment was used for well development and sampling for further minimize the risk of cross contamination.

In accordance with DS SOPs for monitoring well development, the wells were developed by removing a minimum of three standing water column volumes using dedicated inertial pumps comprised of Waterra polyethylene tubing and dedicated foot valves.

4.6 Groundwater Field Measurement of Water Quality Parameters

Field measurements of water quality parameters including temperature, specific conductivity, pH, turbidity, dissolved oxygen, oxidation-reduction potential and turbidity were collected using a flow-through cell and a YSI Water Quality Meter (YSI-556TM). The YSI Water Quality Meter was calibrated by Maxim Environmental and Safety in accordance with the manufacturer's specifications.

The measurements were conducted at regular intervals to determine whether stabilized geochemical conditions had been established in the monitoring well, indicating representative groundwater conditions.

The field measurements have been archived and can be provided upon request.

4.7 Groundwater Sampling

Groundwater samples were collected a minimum of 24 hours after the development of the monitoring wells. The wells were purged using a GeotechTM submersible bladder pump equipped with dedicated polyethylene tubing. A YSI Water Quality Meter equipped with a flow-through cell was used to monitor the geochemical conditions during purging to assess whether steady-state conditions were achieved prior to sampling.

Samples were collected upon stabilization of the water quality parameters. Groundwater samples for metals analysis were field filtered using dedicated 0.45 micro in-line filters. The groundwater was transferred directly into laboratory supplied containers, and preserved as

appropriate using the containers supplied by the analytical laboratory. The samples were placed in coolers upon completion of sampling and stored on ice for storage, pending transport to the analytical laboratory. A formal chain of custody was maintained for all samples submitted to the laboratory.

4.8 Sediment Sampling

No sediment as defined under O.Reg. 153/04 (as amended) was present on the Phase Two Property at the time of this investigation, and the Phase One ESA did not identify sediment as a media of concern. Sediment sampling was not conducted as a result.

4.9 Analytical Testing

The soil and groundwater samples collected were submitted to Bureau Veritas under chain of custody protocols. Bureau Veritas is an independent laboratory accredited by the Canadian Association for Laboratory Accreditation. Bureau Veritas conducted the analyses in accordance with the MECP document "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" dated March 9, 2004 (revised on July 1, 2011).

4.10 Residue Management Procedures

4.10.1 Soil Cuttings From Drilling and Excavations

The soil cuttings generated by the borehole drilling program were stored in 205 L drums, and left on-Site for disposal by a MECP approved waste-hauler for disposal at a MECP-approved waste management facility.

4.10.2 Water from Well Development and Purging

Excess water derived from well purging activities was stored in 20-L sealed plastic pails and temporarily stored on Site for disposal by a MECP approved waste-hauler for disposal at a MECP-approved waste management facility.

4.10.3 Fluids from Equipment Cleaning

Excess equipment cleaning fluids were stored in 20-L sealed plastic pails and temporarily stored on Site for disposal by a MECP approved waste-hauler for disposal at a MECP-approved waste management facility.

4.11 Elevation Surveying

The surface elevations at the borehole locations were surveyed by DS using a global navigation satellite system (GNSS) equipment (Sokkia GCX-2 GNSS RTK receiver) to determine the position and surface elevation of each borehole/monitoring well location

The ground surface elevations can be found on the borehole logs presented in Appendix B.

4.12 Quality Assurance and Quality Control Measures

4.12.1 Sample containers, preservation, labelling, handling and custody for samples submitted for laboratory analysis, including any deviations from the SAP

All soil and groundwater samples were stored in laboratory-supplied sample containers in accordance with the MECP Analytical Protocol. A summary of the preservatives supplied by the laboratory is provided in the table below.

Media	Parameter	Sample Container
	PHCs F1 VOCs	40 mL methanol preserved glass vial with septum lid.
Soil	PHCs F2-F4 metals and ORPs PAHs Dioxins/Furans OC Pesticides	120 mL or 250 mL unpreserved glass jar with Teflon™-lined lid.
Groundwater	PAHs	250 mL amber glass bottle (unpreserved)
	Dioxins/Furans	Two (2) 1L unpreserved amber glass bottle

Each sample container was labelled with a unique sample identification, the project number, and the sampling date. All samples were placed in an ice-filled cooler upon completion of sampling, and kept under refrigerated conditions until the time of delivery to the analytical laboratory. A formal chain of custody was maintained for all samples submitted to the laboratory.

4.12.2 Description of equipment cleaning procedures followed during all sampling

Dedicated, disposable nitrile gloves were used for each sampling event to reduce the potential for cross-contamination.

The split spoon sampler was brushed clean of soil, washed in municipal water containing phosphate free detergent, rinsed in municipal water, and then rinsed with distilled water for each sampling interval to reduce the potential for cross contamination. Dedicated equipment was used for well development and sampling for further minimize the

risk of cross contamination. Non-dedicated equipment (i.e. interface probe) was cleaned before initial use and between all measurement points with a solution of AlconoxTM and distilled water. The AlconoxTM solution was rinsed off using distilled water.

4.12.3 Description of how the field quality control measures referred to in subsection 3 (3) were carried out

Field duplicate samples were collected at the time of sampling. In accordance with O.Reg. 153/04, one duplicate sample was analyzed per ten samples submitted for analysis.

All field screening devices (i.e. RKI Eagle 2 MultiGas Detector, YSI Water Quality Meter) were calibrated prior to use by the supplier. Calibration checks were completed, and recalibrations were conducted as required.

4.12.4 Description of, and rational for, any deviations from the procedures set out in the quality assurance and quality control program set out in the SAP

There were no deviations from the QA/QC program described in the SAP.

5.0 Review and Evaluation

5.1 Geology

A summary of the subsurface conditions is presented below. Additional details may be found in the borehole logs appended in Appendix B. The boundaries of soil indicated on the borehole logs and described below are intended to reflect transition zones for the purpose of environmental assessment and should not be interpreted as exact planes of geological change.

A surficial layer of topsoil approximately 100 to 150 mm in thickness was encountered in all the boreholes advanced. Fill material consisting of silty sand was encountered below the topsoil. The fill material was generally heterogeneous and ranged in thickness from 1.5 to 2.44 metres. No deleterious materials, staining or odours were observed. The native material encountered below the fill consisted of sand to silty sand for approximately 0.7 m, below this silty sand till was present for approximately 2.3 m, below which sandy silt was present to approximately 7.6 mbgs followed by silty sand till. The silty sand till unit extended to the full depth of the boreholes until maximum termination depth at 9.7 mbgs. Bedrock was not encountered.

Table 5-1: Summary of Geologic Units Investigated

Geologic Unit	Inferred Thickness (m)	Top Elevation (masl)	Bottom Elevation (masl)	Properties
Fill Material	1.4-2.6	139	136.9	
Sand to Silty Sand	1.4-2.2	137.8	135.6	
Silty Clay Till to Silty Sand Till	0.8	136.2	135.4	Water table encountered
Sandy Silt	3.8	135.4	131.6	

5.2 Ground Water Elevations and Flow Direction

5.2.1 Rationale for Monitoring Well Location and Well Screen Intervals

A single monitoring well (MW24-5) was installed on the Phase Two Property in order to assess the groundwater quality in relation to APEC-1. The COPCs associated with this APEC was PAHs, furans and dioxins. Three (3) monitoring wells previously installed by others were present on the Phase One Property (BH1, BH2 and BH3S).

The monitoring wells were screened to intersect the first water bearing formation encountered, in order to allow for the assessment of LNAPL, and to provide information regarding the quality of the groundwater at the water table. The monitoring wells were screened within the sandy silt to silty clay till to silty sand unit encountered at an approximate depth of 3.8 to 9.7 mbgs. This unit is inferred to be a confined aquifer.

5.2.2 Results of Interface Probe Measurements

A summary of the groundwater level measurements is provided in Table 1 (Enclosed). The groundwater level measurements were collected using a (Solinst) interface probe. The depth to groundwater was found to be 8.11 to 11.45 mbgs on August 14, 2024. There was no indication of DNAPL or LNAPL in the monitoring wells at this time.

5.2.3 Product Thickness and Free Flowing Product

No evidence of product was observed in the monitoring wells at the time of the investigation.

5.2.4 Groundwater Elevation

The groundwater elevation was calculated by subtracting the depth to groundwater from the surface elevation determined by the surface elevation survey conducted as part of this investigation. A summary of the groundwater elevations calculated is presented in Table 1 (Enclosed). Generally, the groundwater elevation was found to be between 129.06 and 131.05 mbgs in the aquifer investigated.

5.2.5 Groundwater Flow Direction

The pre-existing monitoring well BH3S was found to be dry at the time of this assessment. BH3D could not be located. The remaining monitoring wells for which a water level was obtained were located positionally along the same axis, as such a determination of groundwater flow direction utilizing data collected by DS in 2024 was not possible. The groundwater flow direction was interpreted using the groundwater elevations calculated for the monitoring wells installed on the Phase Two Property based upon the January 13, 2022 water monitoring completed by Terraprobe (2022). Based on the groundwater elevations calculated, the groundwater flow direction is interpreted to be southeast. The groundwater elevation contours and flow direction are presented on Figure 6.

5.2.6 Assessment of Potential for Temporal Variability in Groundwater Flow Direction

The aquifer investigated is inferred to be a confined aquifer, based on the soil stratigraphy observed, and based on the groundwater levels measured on August 14, 2024. This confined aquifer is considered to be less susceptible to seasonal fluctuations in groundwater levels. It is possible that long-term changes in precipitation patterns to influence the groundwater levels on the Phase Two Property.

Several high-rise developments were observed in the immediate vicinity of the Phase Two Property at the time of the investigation, including the existing six-storey residential building on-Site. It is possible that local de-watering activities may be influencing the groundwater levels on the Phase Two Property.

Temporal variability in groundwater level has the ability to influence the groundwater flow direction. The degree of variation in groundwater levels on the Phase Two Property can only be confirmed with long-term monitoring.

5.2.7 Evaluation of Potential Interaction Between Buried Utilities and the Water Table

The groundwater table was encountered at depths ranging from 8.11 to 11.45 mbgs on the Phase Two Property. Buried utility services are present on the Phase Two Property, and are inferred to be situated at depths ranging between 2 and 3 mbgs. No groundwater impacts were identified, therefore the potential for preferential migration of contaminants is not of concern at this time.

5.3 Ground Water Hydraulic Gradients

5.3.1 Horizontal Hydraulic Gradient

The horizontal hydraulic gradient was calculated based on the groundwater levels recorded on August 14, 2024.

Table 5-2: Summary of Horizontal Hydraulic Gradient Calculations

Hydrogeological Unit	Calculated Horizontal Hydraulic Gradient
Overburden – (silty sand till)	Minimum: 0.015549613 Average: 0.020603379 Maximum: 0.036600463

5.3.2 Vertical Hydraulic Gradient

The vertical hydraulic gradient was not calculated, as no groundwater impacts were identified on the Phase Two Property.

5.4 Fine-Medium Soil Texture

Not Applicable – more than one-third of the soils encountered on the Phase Two Property are considered to be coarse textured. For the purposes of evaluating the SCS, all soils on the Phase Two Property are considered coarse textured.

5.5 Soil Field Screening

Soil vapour headspace readings were collected at the time of sample collection, the results of which are presented on the borehole logs (Appendix B). The soil vapour headspace readings were collected using a PID and CGD in methane elimination mode. The PID readings ranged between non-detect (0 ppm) and 35 ppm. The CGD readings ranged between non-detect (0 ppm) and 1 ppm.

The soil samples were also screened for visual and olfactory indicators of impacts (e.g. staining, odours). No indicators of impacts were observed.

5.6 Soil Quality

The results of the chemical analyses conducted are presented in Tables 5 through 9. A visual summary of the location of the sample locations is provided in Figures 7A through 7H. The laboratory certificates of analysis have been provided under Appendix C.

5.6.1 Metals and Other Regulated Parameters

A total of seven (7) samples, including two (2) field duplicates for QA/QC purposes were submitted for analysis of metals and Other Regulated Parameters (metals, As, Sb, Se and

ORPs (SAR, pH, EC, Hg, B-HWS, CN-, Cr (VI)). Five (5) soil samples were submitted for analysis of pH only. The results of the analyses are tabulated in Table 5 (Enclosed), and presented on Figures 7A and 7B. The results of the analyses indicated the following exceedances of the Table 2 SCS:

Table 5-3: Summary of Metals and ORPs Exceedances in Soil

Sample ID	Sample Depth (mbgs)	Parameter	Units	Table 2 SCS	Reported Value
BH24-1 SS2	0-0.6	EC	mS/cm	0.7	7.9*

Note:

5.6.2 Petroleum Hydrocarbons

A total of six (6) samples, including one (1) field duplicate for QA/QC purposes were submitted for analysis of PHCs (incl. BTEX). The results of the analyses are tabulated in Table 6 (Enclosed), and presented on Figure 7C. The results of the analyses indicated that all samples analyzed met the MECP Table 2 SCS.

5.6.3 Volatile Organic Compounds

A total of four (4) samples were submitted for analysis of VOCs. The results of the analyses are tabulated in Table 7 (Enclosed), and presented on Figure 7D. The results of the analyses indicated that all samples analyzed met the MECP Table 2 SCS.

5.6.4 Polycyclic Aromatic Hydrocarbons

A total of six (6) samples, including one (1) field duplicates for QA/QC purposes were submitted for analysis of PAHs. The results of the analyses are tabulated in Table 8 (Enclosed), and presented on Figure 7E. The results of the analyses indicated that all samples analyzed met the MECP Table 2 SCS.

5.6.1 Organochlorine Pesticides and Polychlorinated Biphenyls

A total of two (2) samples, including one (1) field duplicate for QA/QC purposes were submitted for analysis of PCBs. The results of the analyses are tabulated in Table 9 (Enclosed), and presented on Figure 7F. The results of the analyses indicated that all samples analyzed met the MECP Table 2 SCS.

A total of three (3) samples, including one (1) field duplicates for QA/QC purposes were submitted for analysis of PCBs. The results of the analyses are tabulated in Table 9 (Enclosed), and presented on Figures 7F and 7G. The results of the analyses indicated no exceedances.

^{#* -} Per Section 49.1 (1) of O.Reg. 153/04 the analytical results associated with the indicated samples are deemed not to exceed the applicable Site Condition Standards, due to the seasonal application of de-icing agents on the Site.

5.6.2 Dioxins and Furans

A total of two (2) samples, including one (1) field duplicate for QA/QC purposes were submitted for analysis of Dioxins and Furans. The results of the analyses are tabulated in Table 10, and presented on Figure 7H. The results of the analyses indicated that the samples analyzed met the MECP Table 2 SCS.

5.6.3 Commentary on Soil Quality

Electrical conductivity impacts in soil were present in BH24-1 SS2, located adjacent to the on-Site parking lot. Per Section 49.1 (1) of O.Reg. 153/04, "If an applicable site condition standard is exceeded at a property solely because of one of the following reasons, the applicable site condition standard is deemed not to be exceeded for the purpose of Part XV.1 of the Act": "...that a substance has been applied to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both". Based on this provision, the Site condition standards for EC are deemed not to be exceeded. It should be noted that soil disposal premiums may still be incurred for the off-Site disposal of the salt-impacted material.

5.7 Ground Water Quality

The results of the chemical analyses conducted are presented in Tables 11 and 12 (Enclosed). A visual summary of the location of the sample locations is provided in Figures 8A and 8B. The laboratory certificates of analysis have been provided under Appendix C.

5.7.1 Dioxins and Furans

A total of two (2) samples, including one (1) field duplicate for QA/QC purposes, were submitted for analysis of Dioxins and Furans. The results of the analyses are tabulated in Table 11 (Enclosed), and presented on Figure 8A. The results of the analyses indicated that all samples analyzed met the MECP Table 2 SCS.

5.7.2 Polycyclic Aromatic Hydrocarbons

A total of two (2) samples, including one (1) field duplicates for QA/QC purposes were submitted for analysis of PAHs. The results of the analyses are tabulated in Table 12 (Enclosed), and presented on Figure 8B. The results of the analyses indicated that all samples analyzed met the MECP Table 2 SCS.

5.7.3 Commentary on Groundwater Quality

No evidence of chemical or biological transformations of the parameters analyzed was observed.

No evidence of NAPL was observed in the samples recovered during the field investigation.

5.8 Sediment Quality

No sediment was present on the Phase Two Property at the time of the investigation.

5.9 Quality Assurance and Quality Control Results

Collection of soil and groundwater samples was conducted in general accordance with the MECP *Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario.* As described in Section 5.12, dedicated equipment was used where possible, and all non-dedicated equipment was decontaminated before and between sampling events. All soil and groundwater samples were transferred directly into laboratory-supplied containers. The laboratory containers were prepared by the laboratory with suitable preservative, as required. All samples were stored and transported under refrigerated conditions. Chain of custody protocols were maintained from the time of sampling to delivery to the analytical laboratory.

The field QA/QC program involved the collection of field duplicate soil and groundwater samples. In addition to the controls listed above, the analytical laboratory employed method blanks, internal laboratory duplicates, surrogate spike samples, matrix spike samples, and standard reference materials.

A summary of the field duplicate samples analyzed and an interpretation of the efficacy of the QA/QC program is provided in the table below.

Table 5-4: Summary of QA/QC Results

Sample ID	QA/QC duplicate	Medium	Parameter Analyzed	QA/QC Result
BH24-1 SS1	DUP1	Soil	Metals and ORPs	All results were within the analytical protocol criteria for RPD
MW24-5 SS1	DUP4	Soil	Metals and ORPs	All results were within the analytical protocol criteria for RPD
BH24-3 SS4	DUP3	Soil	PHCs	All results were within the analytical protocol criteria for RPD
BH24-1 SS2	DUP2	Soil	PAHs	All results were within the analytical protocol criteria for RPD
BH24-4 SS1	DUP5	Soil	OCPs and PCBs	All results were within the analytical protocol criteria for RPD
MW24-5 SS4	DUP6	Soil	Dioxins and Furans	All results were within the analytical protocol criteria for RPD
BH24-1 SS1	DUP7	Soil	OCPs	All results were within the analytical protocol criteria for RPD
MW24-5	DUP1	Groundwater	Dioxins and Furans	All results were within the analytical protocol criteria for RPD

Based on the interpretation of the laboratory results and the QA/QC program, it is the opinion of the QP that the laboratory analytical data can be relied upon.

All samples were handled in accordance with the MECP Analytical Protocol regarding sample holding time, preservation methods, storage requirements, and type of container.

Bureau Vitas routinely conducts internal QA/QC analyses to satisfy regulatory QA/QC requirements. The results of the Bureau Vitas QA/QC analyses for the submitted soil samples are summarized in the laboratory Certificates of Analyses provided in Appendix C.

With respect to subsection 47(3) of O.Reg 153/04 (as amended), all certificates of analysis or analytical reports pursuant to clause 47(2) (b) of the regulation comply with subsection 47(3). A certificate of analysis has been received for each sample submitted for analysis and have been provided (in full) in Appendix C.

A review of the QA/QC sample results indicated that no issues were identified with respect to both the field collection methodology and the laboratory reporting. It is the opinion of the QP that the analytical data obtained are representative of the soil and groundwater conditions at the Phase Two Property for the purpose of assessing whether the soil and groundwater at the Phase Property meets the applicable MECP SCS.

6.0 Conclusions

This Phase Two ESA involved that advancement of five (5) boreholes, the installation of one (1) monitoring well on the Phase Two Property, and the collection of soil and groundwater samples for analysis of the potential contaminants of concern, including:

- Soil PHCs, VOCs, BTEX, Metals, As, Sb, Se, B-HWS, CN-, electrical conductivity, Cr (VI), Hg, low or high pH, SAR, PAHs, Dioxins and Furans, and OC Pesticides.
- Groundwater PAHs, Na, CI, Dioxins and Furans.

Based on the results of the information gathered through the course of the investigation, DS presents the following conclusions:

A surficial layer of topsoil approximately 100 to 150 mm in thickness was encountered in all the boreholes advanced. Fill material consisting of silty sand was encountered below the topsoil. The fill material was generally heterogeneous and ranged in thickness from 1.5 to 2.44 metres. No deleterious materials, staining or odours were observed. The native material encountered below the fill consisted of sand to silty sand for approximately 0.7 m, below this silty sand till was present for approximately 2.3 m, below which sandy silt was present to approximately 7.6 mbgs

followed by silty sand till. The silty sand till unit extended to the full depth of the boreholes until maximum termination depth at 9.7 mbgs. Bedrock was not encountered.

- Per the Terraprobe (2022) Hydrogeological Investigation completed at the Site, groundwater flow direction was considered to be southeast. The groundwater levels may be impacted by other factors such as historical infilling activities, subsurface utility trenches, and similar subsurface anomalies. The groundwater flow direction can only be confirmed through long term seasonal monitoring.
- The groundwater levels may be impacted by other factors such as potential local dewatering activities, historical infilling activities, subsurface utility trenches, and similar subsurface anomalies. The groundwater flow direction can only be confirmed through long term monitoring.
- The results of the soil chemical analyses identified elevated levels of EC associated with BH24-1 SS2 between 0.8 and 1.4 mbgs. BH24-1 is located near the road (Williamsport Drive) and on-Site surface parking area. The elevated levels of EC are inferred to be linked to the application of de-icing agents during winter. Per Section 49.1 (1) of O.Reg. 407/19, published December 4, 2019 "If an applicable site condition standard is exceeded at a property solely because of one of the following reasons, the applicable site condition standard is deemed not to be exceeded for the purpose of Part XV.1 of the Act": "...that a substance has been applied to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both". Based on this provision, the Site Condition Standards (SCS) for EC are deemed not to be exceeded.
- The results of the chemical analyses conducted on soil and groundwater samples indicate that the applicable Site Condition Standards have been met. No further environmental site assessment is recommended at this time.
- Based on the findings of this Phase Two ESA, a Record of Site Condition may be filed for the Phase Two Property (if required);
- Note: further chemical testing of the soils on the property may be required in the future to support the export of excess soils generated by the proposed redevelopment. DS recommends completing this work prior to tendering the construction earthworks.
- All monitoring wells should be decommissioned in accordance with O.Reg. 903 when no longer required.

It is the opinion of the QP_{ESA} that the applicable SCS for the soil and groundwater at the Phase Two Property have been met as of the Certification Date of August 14, 2024. No further sub-

surface investigation is required regarding the environmental quality of the soil and groundwater at the Phase Two Property.

6.1 Qualifications of the Assessors

Dina Al-Shalah, B.Eng., MDP, EIT

Ms. Al-Shalah is an environmental EIT with DS Consultants Ltd. Dina holds a Bachelor of Engineering Degree from McMaster University and a Master of Development Practices from the University of Waterloo. Dina has an extensive background in manufacturing and sustainability as well as experience in conducting Phase One and Phase Two Environmental Site Assessments, soil/groundwater sampling, excess soil projects, and drilling supervision.

Kirstin Olsen, M.Sc., C.E.T., LET, QPESA

Ms. Olsen is a Senior Project Manager in the Environmental Services Department at DS Consultants Limited. Kirstin has a Master of Science Degree in Environmental Science, Ecology and Conservation from the University of the Witwatersrand, and 9 years of professional experience. Kirstin has personally completed hundreds of detailed environmental assessments across a wide array of scientific disciplines including: Phase One & Two Environmental Site Assessments, Remedial Excavation & Injection Oversight, Hydrogeological Investigations, EASR Registration/PTTW Application, Aquatic Ecological Delineation, Assessment & Planning, Toxicological, Soil & Water Impact and Risk Assessment, as well as Environmental Construction Monitoring & Performance Auditing. Kirstin is a Certified Engineering Technologist and holds a Limited Engineering License issued by the Professional Engineers of Ontario. Kirstin is considered a Qualified Person to conduct Environmental Site Assessments as defined by Ontario Regulation 153/04 (as amended) and manage Excess Soil as defined by Ontario Regulation 406/19.

Mr. Patrick (Rick) Fioravanti, B.Sc., P.Geo., QPesa

Mr. Fioravanti is the Vice President of Environmental Services with DS Consultants Limited. Patrick holds an Honours Bachelor of Science with distinction in Toxicology from the University of Guelph and is a practicing member of the Association of Professional Geoscientists of Ontario (APGO). Patrick has over a decade of environmental consulting experience and has conducted and/or managed hundreds of projects in his professional experience. Patrick has extensive experience conducting Phase One and Phase Two Environmental Site Assessments in support of brownfields redevelopment in urban settings, and been involved in numerous remediation projects, supported many risk assessments, and successfully filed Records of Site Condition with the Ministry of Environment, Conservation

and Parks. He has conducted work across southern and eastern Ontario, and Quebec in his professional experience. Patrick is considered a Qualified Person to conduct Environmental Site Assessments as defined by Ontario Regulation 153/04 (as amended).

6.2 Signatures

DS Consultants Ltd. conducted this Phase One Environmental Site Assessment and confirms the findings and conclusions contained within this report.

Yours truly,

DS Consultants Ltd.

Prepared by:

Dina Al-Shalah

Environmental EIT, B.Eng.

Reviewed by:

Kirstin Olsen – M.Sc., C.E.T., LET, QP_{ESA}

Senior Project Manager

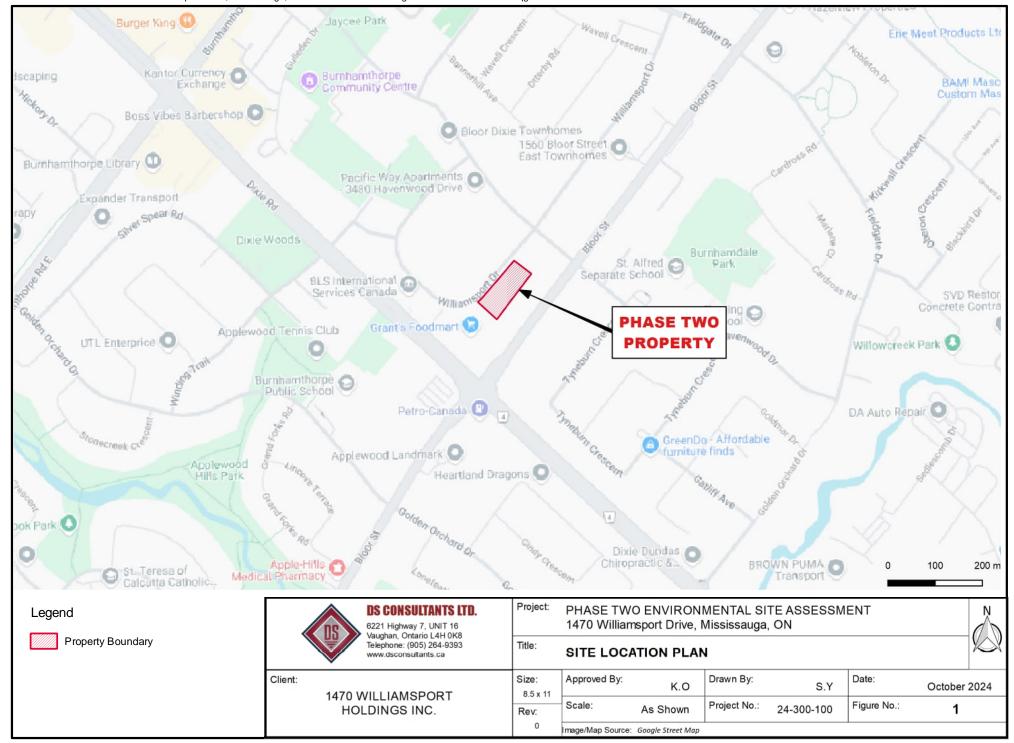
Patrick Fioravanti, B.Sc., P.Geo., QPESA

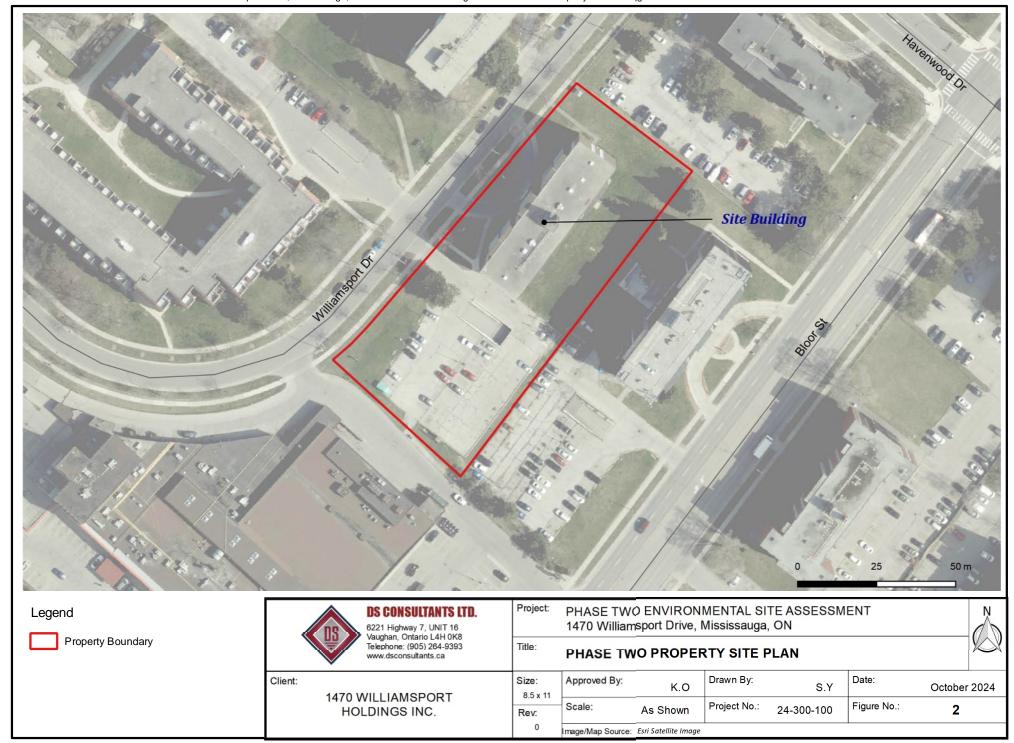
Vice President - Environmental

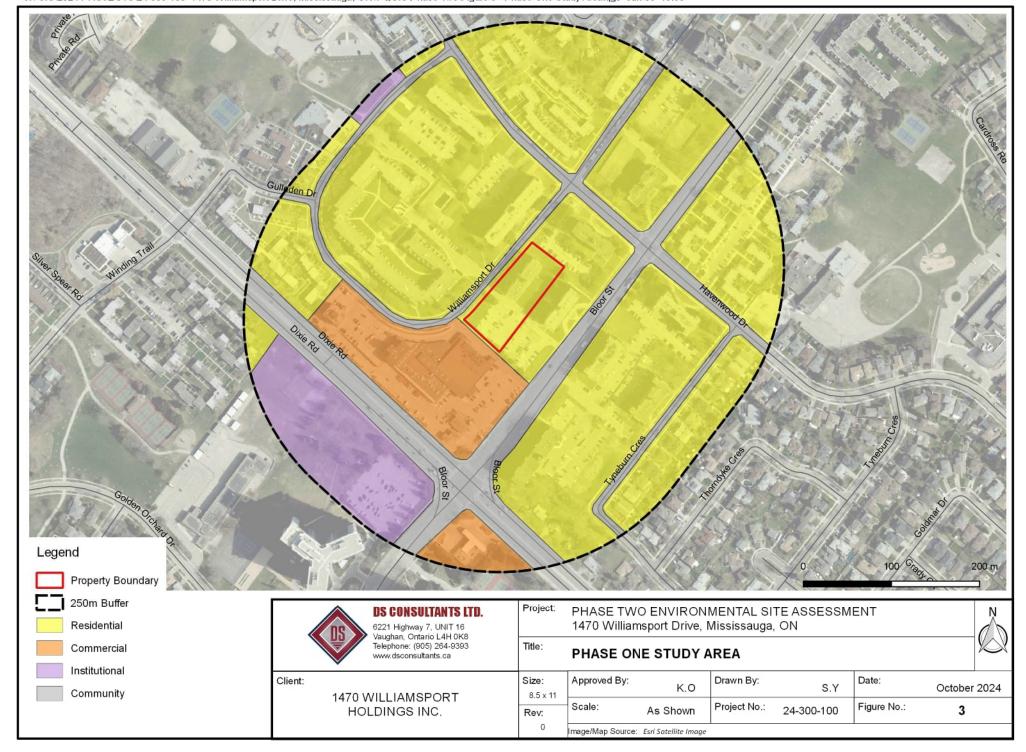
6.3 Limitations

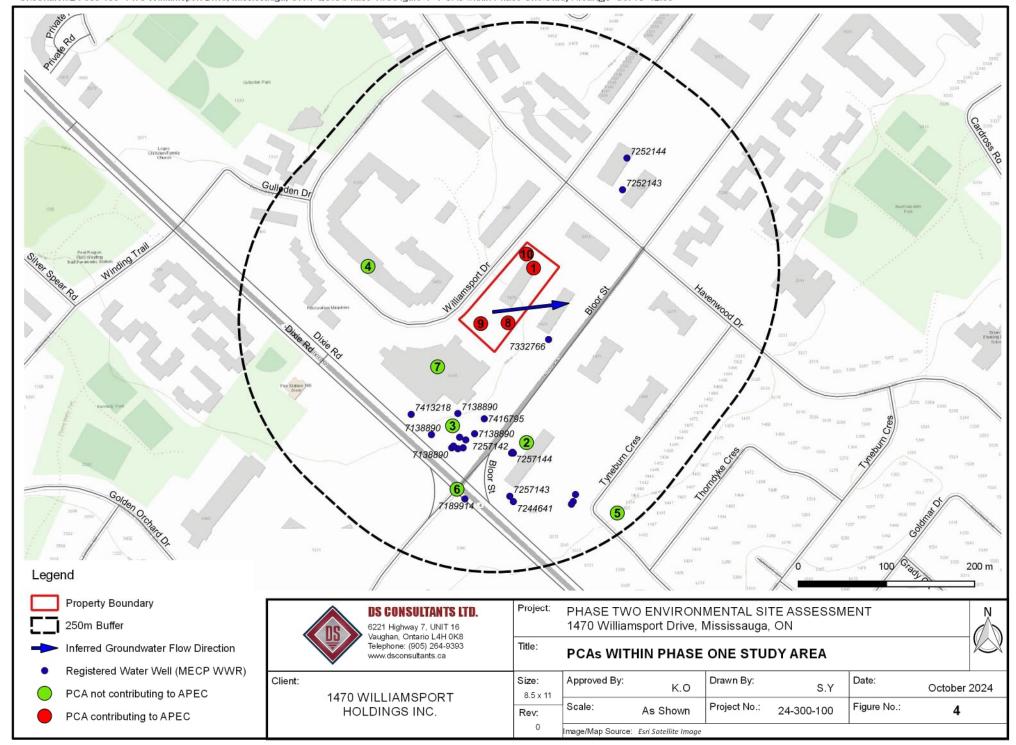
This report was prepared for the sole use of 1470 Williamsport Holdings Inc. and is intended to provide an assessment of the environmental condition on the property located at 1470 Williamsport Drive, Mississauga, Ontario. The information presented in this report is based on information collected during the completion of the Phase Two Environmental Site Assessment by DS Consultants Ltd. The material in this report reflects DS' judgment in light of the information available at the time of report preparation. This report may not be relied upon by any other person or entity without the written authorization of DS Consultants Ltd. The scope of services performed in the execution of this investigation may not be appropriate to satisfy the needs of other users, and any use or reuse of this documents or findings, conclusions and recommendations represented herein, is at the sole risk of said users.

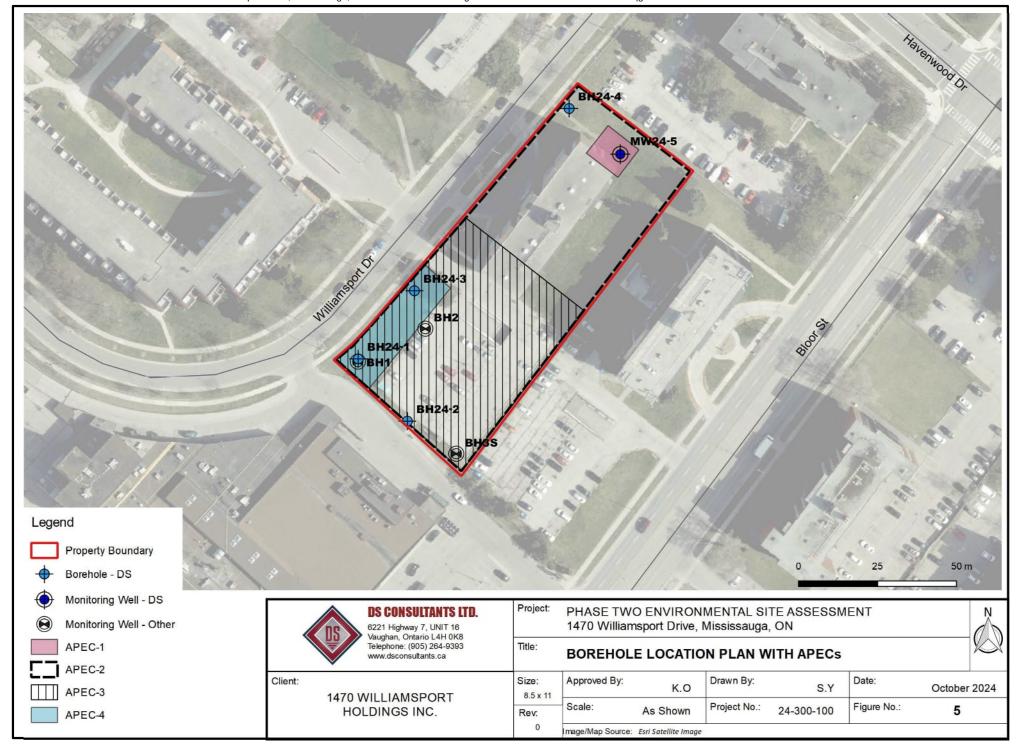
The conclusions drawn from the Phase Two ESA were based on information at selected observation and sampling locations. Conditions between and beyond these locations may become apparent during future investigations or on-Site work, which could not be detected or anticipated at the time of this investigation. The sampling locations were chosen based upon a cursory historical search, visual observations and limited information provided by persons knowledgeable about past and current activities on this Site during the Phase Two ESA activities. As such, DS Consultants Ltd. cannot be held responsible for environmental conditions at the Site that was not apparent from the available information.

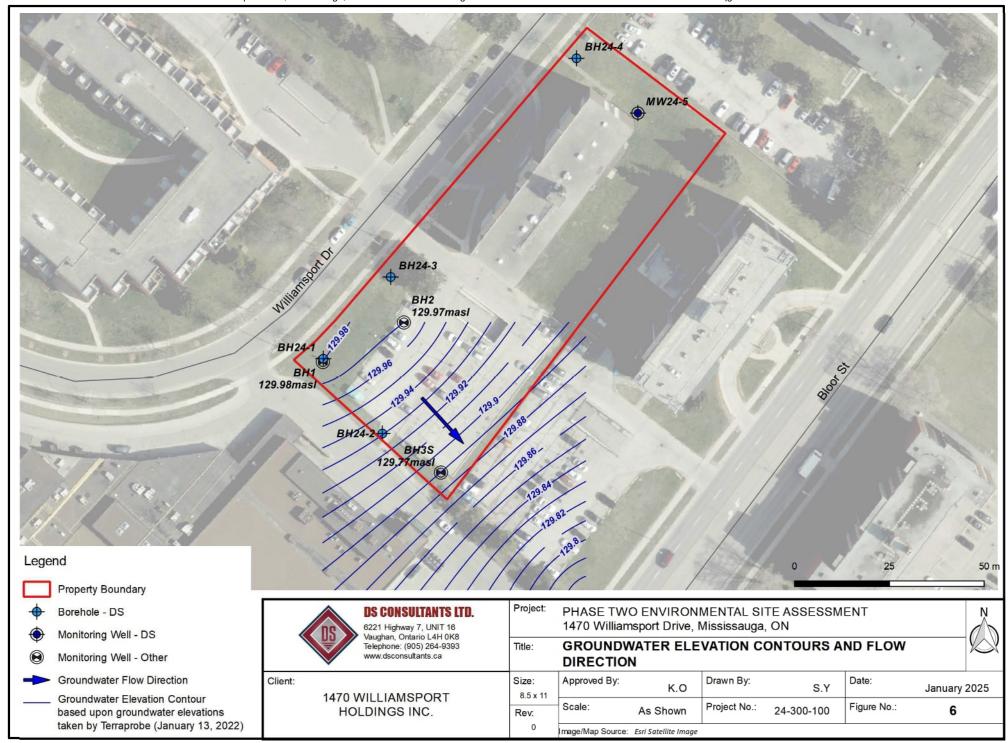

7.0 References

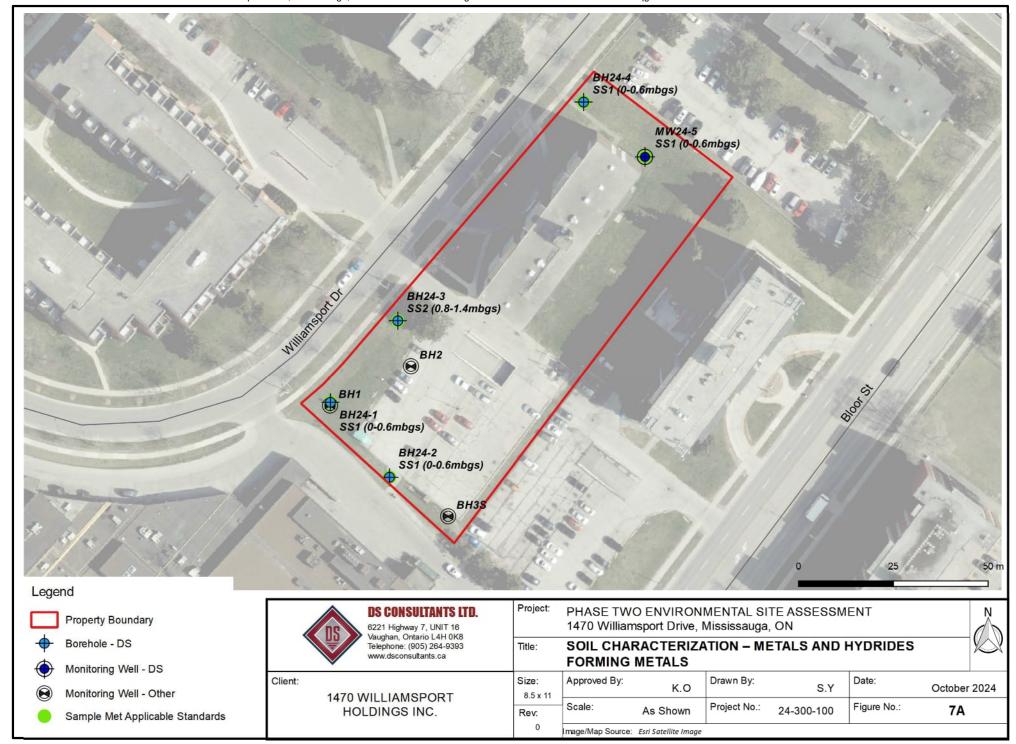

- Armstrong, D.K. and Dodge, J.E.P. Paleozoic Geology Map of Southern Ontario. Ontario Geological Survey, Miscellaneous Release--Data 219.
- Chapman, L.J. and Putnam, D.F. 2007. The Physiography of Southern Ontario. Ontario Geological Survey, Miscellaneous Release--Data 228.
- Freeze, R. Allen and Cherry, John A., 1979. *Ground water*. Page 29.
- Ontario Ministry of the Environment, December 1996. Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario.
- Ontario Ministry of Environment, 15 April 2011. Soil, Ground Water and Sediment Standards for use under part XV.10f the Environmental Protection Act.
- Ontario Ministry of the Environment, June 2011. Guide for Completing Phase Two Environmental Site Assessments under Ontario regulation 153/04.
- Ontario Ministry of the Environment, July 2011. Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act.
- The Ontario Geological Survey. 2003. Surficial Geology of Southern Ontario.
- "Phase One Environmental Site Assessment, 1470 Williamsport Drive, Mississauga, Ontario", prepared for c/o Law Offices of Jack Greenberg, prepared by McIntosh Perry Consulting Engineers Ltd., dated May 17, 2022 (McIntosh Perry 2022 Phase One ESA);
- ◆ "Geotechnical Investigation Residential Development, 1470 Williamsport Drive, Mississauga, Ontario", prepared for Compten Management Inc, prepared by Terraprobe Inc. dated March 11, 2022 (Terraprobe 2022 Geotechnical Investigation), and;
- "Hydrogeological Assessment, 1470 Williamsport Drive, Mississauga, Ontario", prepared for 1470 Williamsport Holdings Inc, prepared by Terraprobe Inc. dated May 17, 2022 (Terraprobe 2022 Hydrogeological Assessment).

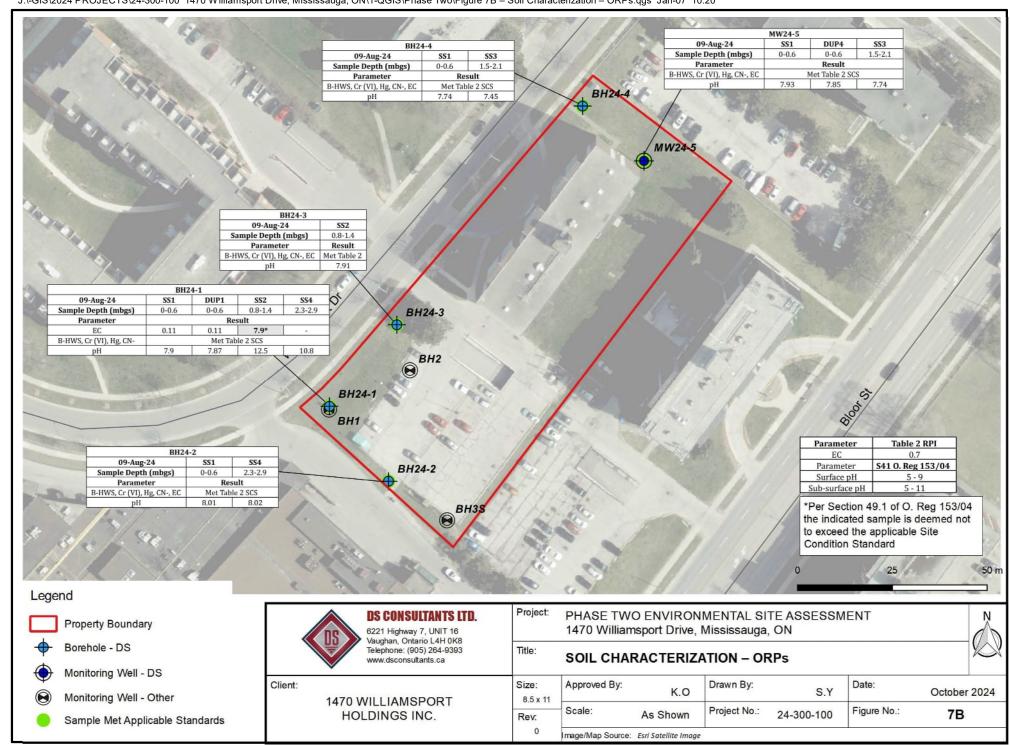

DS Consultants Ltd. 2025-01-08

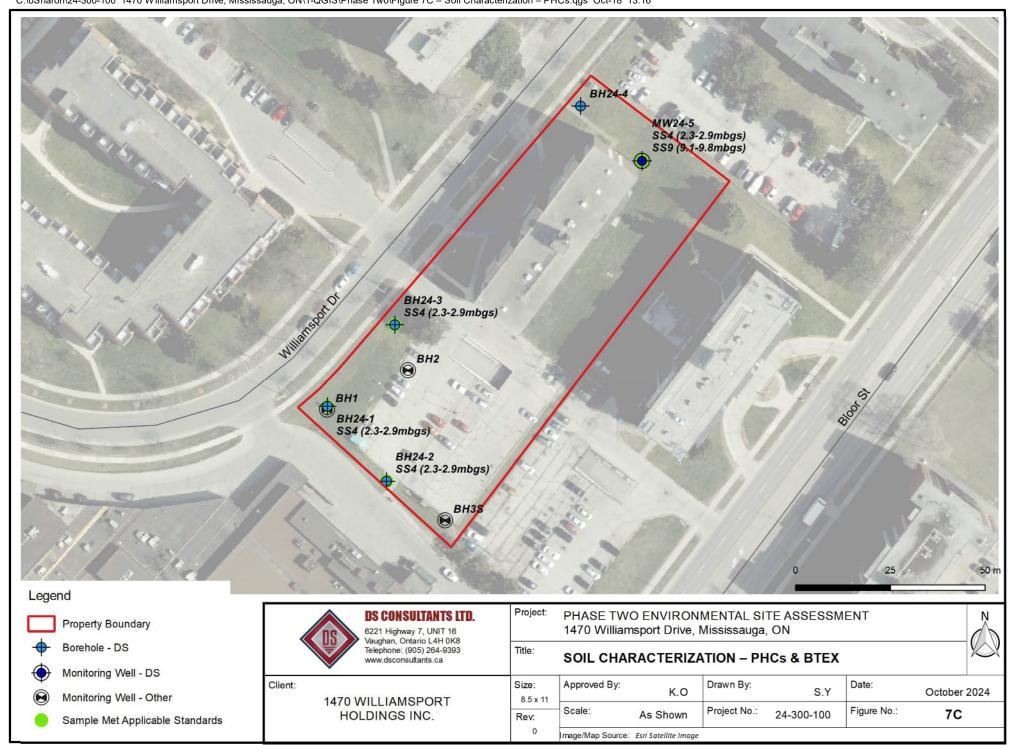


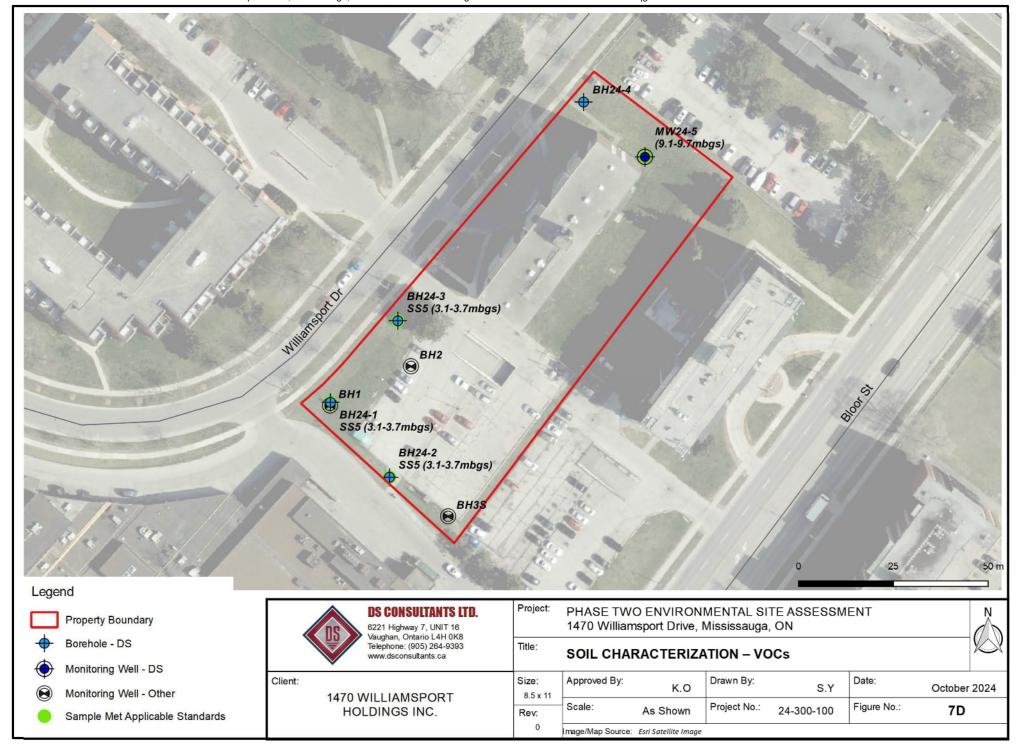

Figures

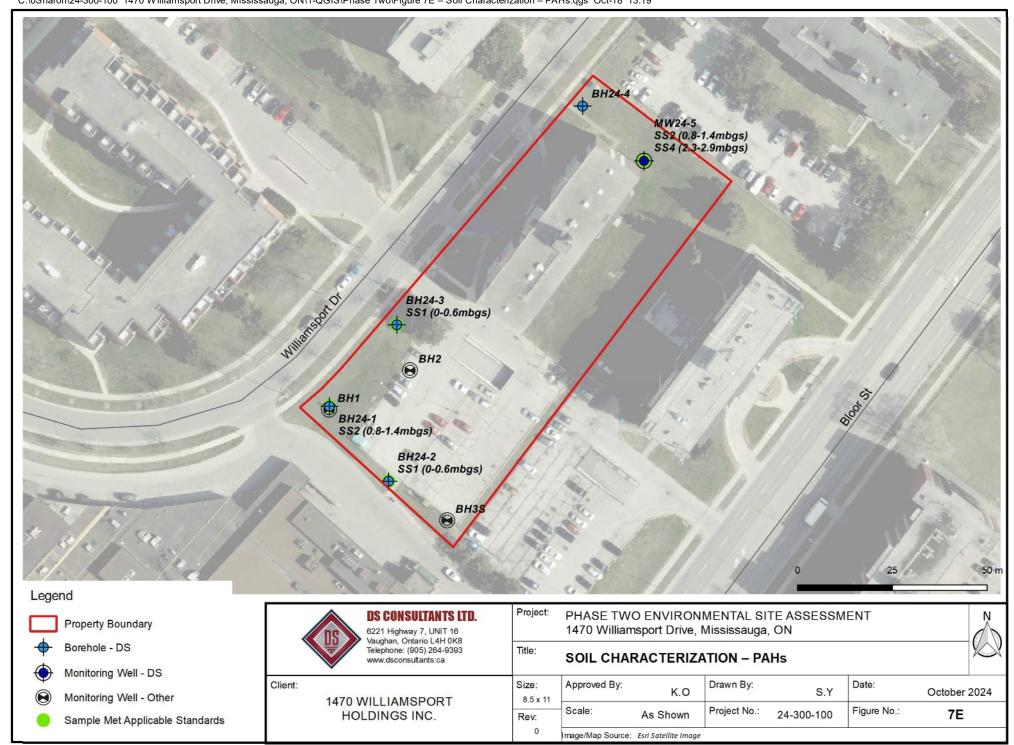


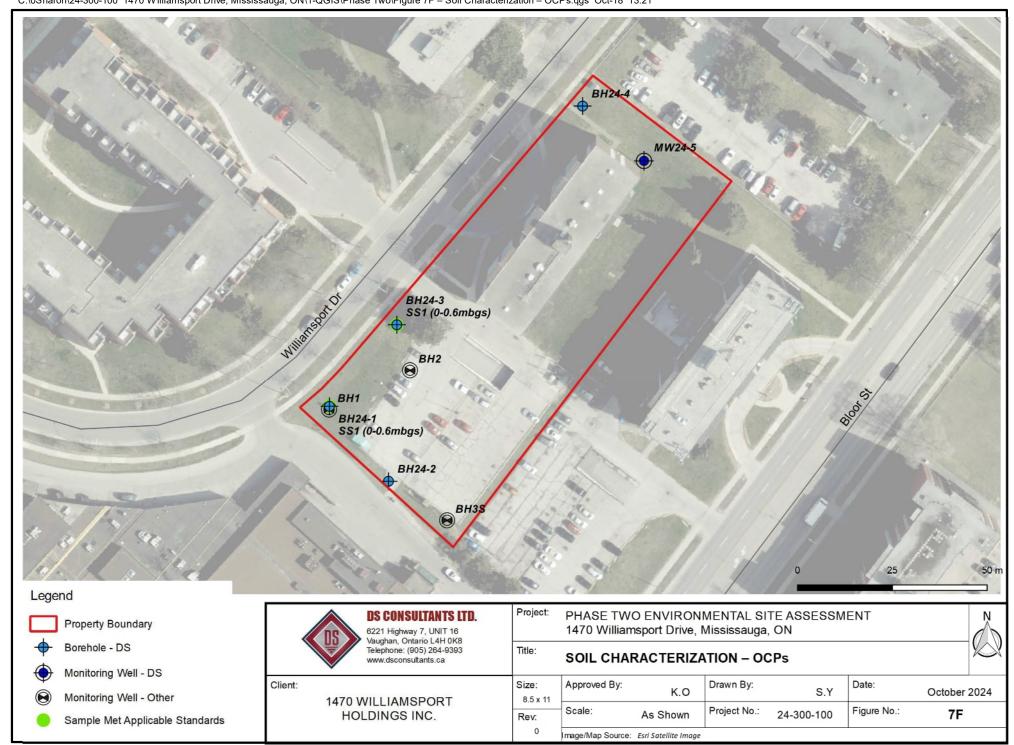


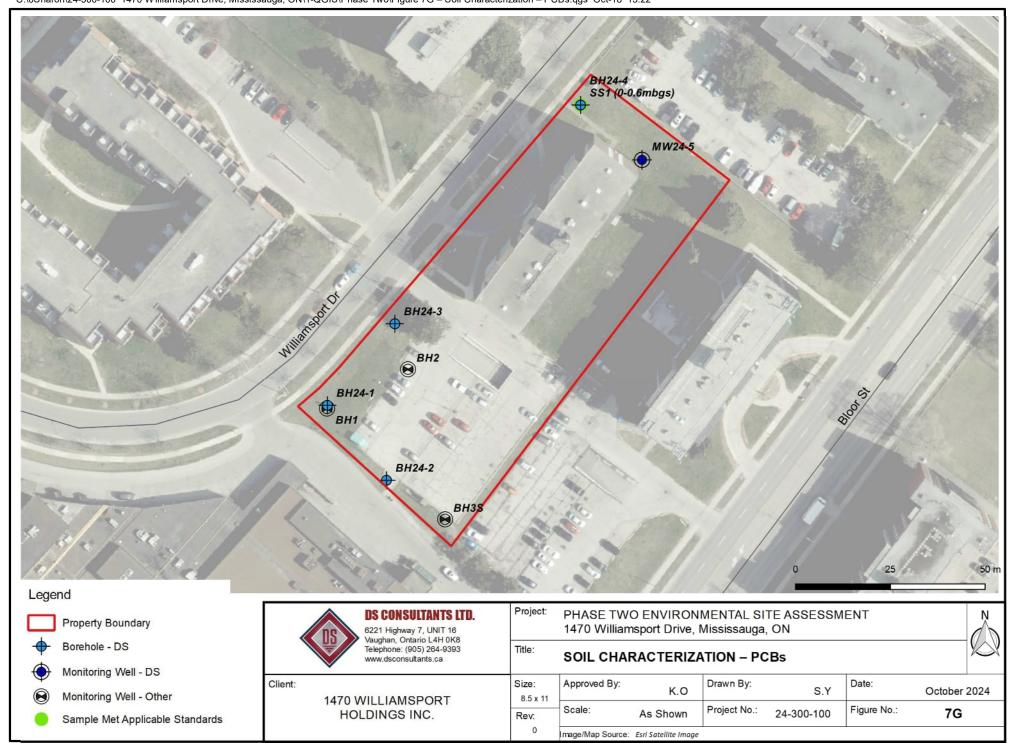


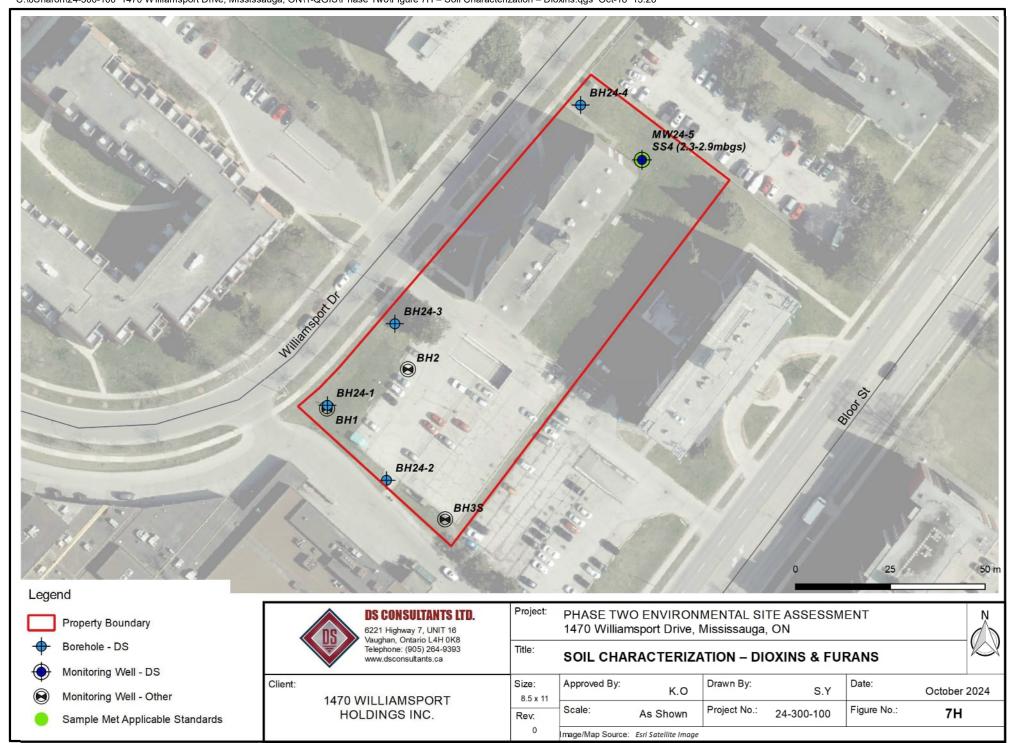


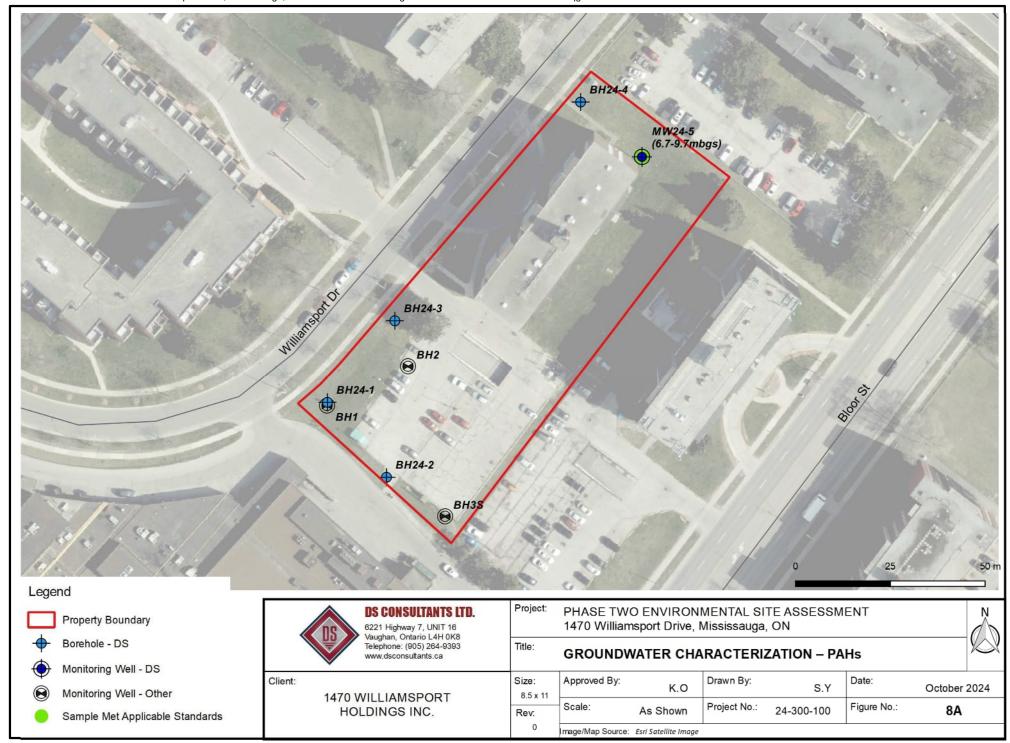


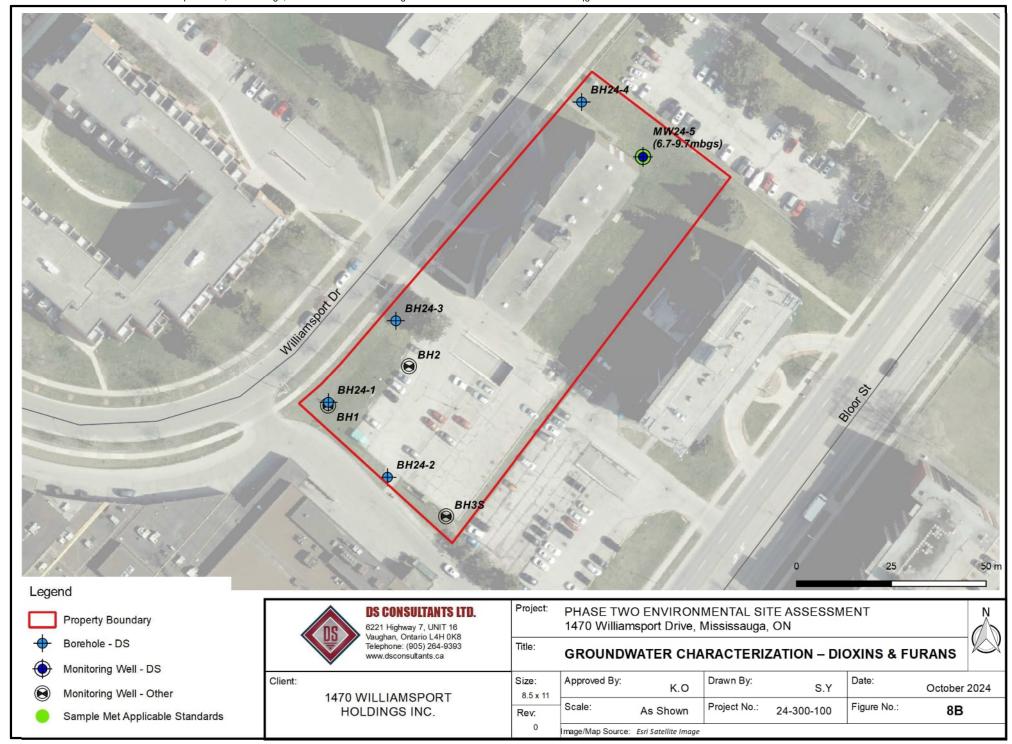












Tables

<u>Table 1: Summary of Monitoring Well Installation and Groundwater Data</u>

	Well ID		MW24-5	BH1	вн2	BH3S	BH3D
	Installed By:		DS	Terraprobe	Terraprobe	Terraprobe	Terraprobe
1	Installation Date:		9-Aug-24	7-Jan-22	6-Jan-22	6-Jan-22	6-Jan-22
	Well Status:		Active	Active	Active	Active	Not Found
	EastUTM17		613491	613407.89	613429.258	613477.208	613477.208
	NorthUTM17		4830524	4830459.144	4830469.557	4830397.816	4830397.82
Inner Diameter		mm	50	50	50	50	50
Surface Elevation	n	masl	139.16	140.51	139.52	139.18	139.18
Bottom of Concr	ete Seal/Top of	mbgs	0.30	0.30	0.30	0.30	0.30
Bentonite Seal		masl	138.86	140.21	139.22	138.88	138.88
Bottom of Bento	nite Seal/Top of	mbgs	2.50	2.50	2.50	2.50	2.50
Sand Pack		masl	136.66	138.01	137.02	136.68	136.68
Top of Well Scre	on	mbgs	6.70	9.10	9.10	3.10	3.10
Top of Well Scre	en	masl	132.46	131.41	130.42	136.08	136.08
Well Screen Len	gth	m	3.00	3.00	3.00	3.00	3.00
Bottom of Well S	graan	mbgs	9.70	12.20	12.20	4.60	4.60
Bottom of Well S	creen	masl	129.46	128.31	127.32	134.58	134.58
	Groundwater (GW) Monitoring						
14-Aug-24	Depth to GW	mbgs	8.11	11.45	9.60	Dry	Not Found
14-Aug-24	GW Elevation	masl	131.05	129.06	129.92	-	-

<u>Table 2: Summary of Soil Samples Submitted for Chemical Analysis</u>

Borehole ID	Sample No.	Sample Depth (mbgs)	Soil Description	Parameter Analyzed	APEC Investigated
	SS1			Metals and ORPs, OCPs	APEC-3, APEC-4
	DUP1	0-0.6	Silty sand	Metals and ORPs	711 EG 5,711 EG 1
	DUP7			OCPs	APEC-4
D.V.O.4.4	SS2	0.8-1.4	Silty sand	PAHs, Metals and ORPs	APEC-2
BH24-1	DUP2	1	,	PAHs	
	SS4	2.3-2.9	Sand	PHCs, BTEX, pH	APEC-2, General Soil Characterization
	DUP3			PHCs, BTEX	APEC-2
	SS5	3.1-3.7	Sand	VOCs	M EC-2
	SS1	0-0.6	Silty sand	PAHs, Metals and ORPs	APEC-2, APEC-3
BH24-2	SS4	2.3-2.9	Sand	PHCs, BTEX, pH	APEC-2, General Soil Characterization
	SS5	3.1-3.7	Sand	VOCs	APEC-2
	SS1	0-0.6	Silty sand	PAHs	APEC-2
BH24-3	SS2	0.8-1.4	Silty sand	Metals and ORPs	APEC-3
B1124-3	SS4	2.3-2.9	Silty sand	PHCs, BTEX	APEC-2
	SS5	3.1-3.7	Silty sand	VOCs	AI EC-2
	SS1	0-0.6	Silty sand	PCBs, pH	General Soil
BH24-4	DUP5	0-0.6	Silty sand	PCBs	Characterization
	SS3	1.5-2.1	Sandy silt	рН	
	SS1	0-0.6	Silty sand	Metals and ORPs	General Soil
	DUP4	0-0.6	Silty sand	Metals and ORPs	Characterization
	SS2	0.8-1.4	Silty clay	PAHs	APEC-1
	SS3	1.5-2.1	Silty sand	рН	General Soil Characterization
MW24-5	SS4	2.3-2.9	Silty sand	Dioxins and Furans, PAHs, PHCs, BTEX	APEC-1, General Soil Characterization
	DUP6		Silty sand	Dioxins and Furans	APEC-1
	SS9	9.1-9.8	Silty sand	PHCs, BTEX, VOCs	General Soil Characterization

24-300-100 Phase Two ESA 1470 Williamsport Drive, Mississauga, Ontario

<u>Table 3: Summary of Groundwater Samples Submitted for Chemical Analysis</u>

Well ID	Well Screen Interval (masl)			Sample Date	Parameter Analyzed	APEC Investigated	
MW24-5	129.46	-	132.46	14-Aug-24	PAHs, Dioxins and Furans	APEC-1	

Table 4: Summary of APECs Investigated

APEC	Description	COPCs	Media	Boreholes Within APEC	Samples Analysed	Parameter Analyzed
					SS2	PAHs
	The Site has a decommissioned	Dioxins, Furans	Soil	MW24-5	SS4	Dioxins and Furans, PAHs
APEC-1	incinerator.	and PAHs			DUP5	Dioxins and Furans
			Groundwater	MW24-5	MW24-5	Dioxins and Furans, PAHs
					SS1	Metals, As, Sb, Se, B- HWS, CN-, , Cr (VI), Hg
					DUP1	Metals, As, Sb, Se, B- HWS, CN-, , Cr (VI), Hg
				BH24-1	SS2	Metals, As, Sb, Se, B- HWS, CN-, , Cr (VI), Hg, PAHs
		PHCs, VOCs,			DUP2	PAHs
					SS4	PHCs, BTEX, pH
	Inferred importation of fill material for	BTEX, Metals, As,			DUP3	PHCs, BTEX
APEC-2	grading purposes at the time of	Sb, Se, B-HWS, CN-, , Cr (VI), Hg,	Soil		SS5	VOCs
	development of the Site.	low or high pH, PAHs		DV24-2	SS1	PAHs, Metals, As, Sb, Se, B-HWS, CN-, , Cr (VI), Hg
				BH24-2	SS4	PHCs, BTEX, pH
					SS5	VOCs
					SS1	PAHs
				ВН24-3	SS2	Metals, As, Sb, Se, B- HWS, CN-, , Cr (VI), Hg
					SS4	PHCs, BTEX
					SS5	VOCs
					SS1	EC, SAR
				BH24-1	DUP1	EC, SAR
APEC-3	Inferred application of de-icing agents in the Site's tenant parking lot during winter.	EC, SAR	Soil		SS2	EC, SAR
	9 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			BH24-2	SS1	EC, SAR
				BH24-3	SS2	EC, SAR
	A historical orchard was identified in the	Metals, As, Sb, Se,		BH24-1	SS1	Metals, As, Sb, Se, CN-, Hg, OC Pesticides
APEC-4	1946 aerial image suggesting large-scale application of pesticides on the Site.	CN-, Hg, OC Pesticides	Soil	2	DUP7	Metals, As, Sb, Se, CN-, Hg, OC Pesticides
				BH24-3	SS1	OC Pesticides

Table 5: Summary of Metals and ORPs in Soil

Parameter		BH24-1 SS1	DUP1 (BH24-1 SS1)	BH24-1 SS4	BH24-2 SS1	BH24-2 SS4	BH24-3 SS2	BH24-4 SS1
Date of Collection	MECP Table	9-Aug-24	9-Aug-24	9-Aug-24	9-Aug-24	9-Aug-24	9-Aug-24	9-Aug-24
Date Reported	2 SCS	11-Sep-24	11-Sep-24	11-Sep-24	11-Sep-24	11-Sep-24	11-Sep-24	11-Sep-24
Sampling Depth (mbgs)	1	0-0.6	0-0.6	2.3-2.9	0-0.6	2.3-2.9	0.8-1.4	0-0.6
Analytical Report Reference No.		C406235	C406235	C406235	C406235	C406235	C406235	C406235
Antimony	7.5	< 0.20	<0.20	-	<0.20	-	<0.20	ı
Arsenic	18	1.7	1.7	-	1.7	-	1.7	-
Barium	390	22	21	-	14	-	14	-
Beryllium	4	0.21	0.28	-	<0.20	-	<0.20	-
Boron	120	<5.0	<5.0	-	<5.0	-	<5.0	-
Boron (Hot Water Soluble)	1.5	0.086	0.09	-	< 0.050	-	0.07	-
Cadmium	1.2	<0.10	<0.10	-	<0.10	-	<0.10	-
Chromium	160	7.4	7.5	-	8.8	-	5.6	-
Chromium VI	8	<0.18	<0.18	-	<0.18	-	<0.18	-
Cobalt	22	3.4	3.1	-	4.7	-	2.5	-
Copper	140	8.1	7.5	-	9.6	-	5	-
Cyanide	0.051	< 0.01	<0.01	-	<0.01	-	< 0.01	-
Lead	120	6.5	7.2	-	8.7	-	3.2	-
Mercury	0.27	< 0.050	<0.050	-	< 0.050	-	< 0.050	-
Molybdenum	6.9	<0.50	<0.50	-	<0.50	-	<0.50	-
Nickel	100	6.8	6	-	7.5	-	4.8	-
Selenium	2.4	<0.50	<0.50	-	< 0.50	-	<0.50	-
Silver	20	<0.20	<0.20	-	<0.20	-	<0.20	-
Thallium	1	0.053	<0.050	-	< 0.050	-	< 0.050	-
Uranium	23	0.53	0.38	-	0.36	-	0.28	-
Vanadium	86	17	17	-	25	-	13	-
Zinc	340	24	23	-	26	-	13	-
Electrical Conductivity (2:1)	0.7	0.11	0.11	-	0.073	-	0.1	-
Sodium Adsorption Ratio	5	0.31	0.32	-	0.43	-	0.36	-
pH, 2:1 CaCl2 Extraction	NV	7.9	7.87	10.8	8.01	8.02	7.91	7.74

115

Table 5: Summary of Metals and ORPs in Soil

Date Reported 2 SCS 11-Sep-24 11-Sep-24 <t< th=""><th>Parameter</th><th></th><th>BH24-4 SS3</th><th>MW24-5 SS1</th><th>DUP4 (MW24-5 SS1)</th><th>MW24-5 SS3</th><th>BH24-1 SS2</th></t<>	Parameter		BH24-4 SS3	MW24-5 SS1	DUP4 (MW24-5 SS1)	MW24-5 SS3	BH24-1 SS2
Sampling Depth (mbgs)	Date of Collection	MECP Table	9-Aug-24	9-Aug-24	9-Aug-24	9-Aug-24	9-Aug-24
Analytical Report Reference No. C406235 C406235 <th< td=""><td>Date Reported</td><td>2 SCS</td><td>11-Sep-24</td><td>11-Sep-24</td><td>11-Sep-24</td><td>11-Sep-24</td><td>11-Sep-24</td></th<>	Date Reported	2 SCS	11-Sep-24	11-Sep-24	11-Sep-24	11-Sep-24	11-Sep-24
Antimony 7.5 - <0.20 <0.20 - <0.20 Arsenic 18 - 1.5 2 - 1.8 Barium 390 - 16 22 - 32 Beryllium 4 - <0.20	Sampling Depth (mbgs)		1.5-2.1	0-0.6	0-0.6	1.5-2.1	0.8-1.4
Arsenic 18 - 1.5 2 - 1.8 Barium 390 - 16 22 - 32 Beryllium 4 - <0.20	Analytical Report Reference No.		C406235	C406235	C406235	C406235	C406235
Barium 390 - 16 22 - 32 Beryllium 4 - <0.20	Antimony	7.5	-	<0.20	< 0.20	-	< 0.20
Beryllium 4 - <0.20 0.21 - 0.42 Boron 120 - <5.0	Arsenic	18	-	1.5	2	-	1.8
Boron 120 -	Barium	390	-	16	22	-	32
Boron (Hot Water Soluble) 1.5 - 0.07 0.073 - 0.34 Cadmium 1.2 - <0.10	Beryllium	4	-	<0.20	0.21	-	0.42
Cadmium 1.2 - <0.10 <0.10 - <0.10 Chromium 160 - 7.1 8.4 - 9.8 Chromium VI 8 - <0.18	Boron	120	-	<5.0	<5.0	-	7.3
Chromium 160 - 7.1 8.4 - 9.8 Chromium VI 8 - <0.18 <0.18 - <0.18 Cobalt 22 - 2.8 3.6 - 3.8 Copper 140 - 6.8 9.1 - 12 Cyanide 0.051 - <0.01 <0.01 - 0.05 Lead 120 - 9.4 13 - 5.9 Mercury 0.27 - <0.050 <0.050 - <0.05 Molybdenum 6.9 - <0.50 <0.50 <0.50 - <0.05 Mickel 100 - 5.4 7.4 - 8.4 Selenium 2.4 - <0.50 <0.50 <0.50 - <0.50 Silver 20 - <0.20 <0.20 <0.20 - <0.20 Turnium 23 - <0.32 0.35<	Boron (Hot Water Soluble)	1.5	-	0.07	0.073	-	0.34
Chromium VI 8 - <0.18 <0.18 - <0.18 Cobalt 22 - 2.8 3.6 - 3.8 Copper 140 - 6.8 9.1 - 12 Cyanide 0.051 - <0.01	Cadmium	1.2	-	<0.10	<0.10	-	<0.10
Cobalt 22 - 2.8 3.6 - 3.8 Copper 140 - 6.8 9.1 - 12 Cyanide 0.051 - <0.01	Chromium	160	-	7.1	8.4	-	9.8
Copper 140 - 6.8 9.1 - 12 Cyanide 0.051 - <0.01	Chromium VI	8	-	<0.18	<0.18	-	<0.18
Cyanide 0.051 - <0.01 <0.01 - 0.05 Lead 120 - 9.4 13 - 5.9 Mercury 0.27 - <0.050	Cobalt	22	-	2.8	3.6	-	3.8
Lead 120 - 9.4 13 - 5.9 Mercury 0.27 - <0.050	Copper	140	-	6.8	9.1	-	12
Mercury 0.27 - <0.050 <0.050 - <0.05 Molybdenum 6.9 - <0.50	Cyanide	0.051	-	<0.01	<0.01	ı	0.05
Molybdenum 6.9 - <0.50 <0.50 - <0.50 Nickel 100 - 5.4 7.4 - 8.4 Selenium 2.4 - <0.50	Lead	120	-	9.4	13	1	5.9
Nickel 100 - 5.4 7.4 - 8.4 Selenium 2.4 - <0.50	Mercury	0.27	-	<0.050	< 0.050	-	<0.05
Selenium 2.4 - <0.50 <0.50 - <0.50 Silver 20 - <0.20	Molybdenum	6.9	-	<0.50	<0.50	-	<0.50
Silver 20 - <0.20 <0.20 - <0.20 Thallium 1 - <0.050	Nickel	100	-	5.4	7.4	-	8.4
Thallium 1 - <0.050 0.054 - 0.057 Uranium 23 - 0.32 0.35 - 0.64 Vanadium 86 - 16 19 - 17 Zinc 340 - 20 24 - 27 Electrical Conductivity (2:1) 0.7 - 0.1 0.11 - 7.9*	Selenium	2.4	-	<0.50	<0.50	-	<0.50
Uranium 23 - 0.32 0.35 - 0.64 Vanadium 86 - 16 19 - 17 Zinc 340 - 20 24 - 27 Electrical Conductivity (2:1) 0.7 - 0.1 0.11 - 7.9*	Silver	20	-	<0.20	<0.20	-	<0.20
Vanadium 86 - 16 19 - 17 Zinc 340 - 20 24 - 27 Electrical Conductivity (2:1) 0.7 - 0.1 0.11 - 7.9*	Thallium	1	-	< 0.050	0.054	-	0.057
Zinc 340 - 20 24 - 27 Electrical Conductivity (2:1) 0.7 - 0.1 0.11 - 7.9*	Uranium	23	-	0.32	0.35	-	0.64
Electrical Conductivity (2:1) 0.7 - 0.1 0.11 - 7.9*	Vanadium	86	-	16	19	-	17
	Zinc	340	-	20	24	-	27
Sodium Adsorption Ratio 5 - 0.33 0.33 - 0.33	Electrical Conductivity (2:1)	0.7	-	0.1	0.11	-	7.9*
	Sodium Adsorption Ratio	5	-	0.33	0.33	-	0.33
pH, 2:1 CaCl2 Extraction NV 7.45 7.93 7.85 7.74 12.5	pH, 2:1 CaCl2 Extraction	NV	7.45	7.93	7.85	7.74	12.5

For Table Notes see **Notes for Soil and Groundw**

Table 6: Summary of PHCs in Soil

Parameter		BH24-1 SS4	BH24-2 SS4	BH24-3 SS4	DUP3 (BH24-3 SS4)	MW24-5 SS4	MW24-5 SS9
Date of Collection	MECP Table	9-Aug-24	9-Aug-24	9-Aug-24	9-Aug-24	9-Aug-24	9-Aug-24
Date Reported	2 SCS	11-Sep-24	11-Sep-24	11-Sep-24	11-Sep-24	11-Sep-24	11-Sep-24
Sampling Depth (mbgs)		2.3-2.9	2.3-2.9	2.3-2.9	2.3-2.9	2.3-2.9	9.1-9.8
Analytical Report Reference No.		C406235	C406235	C406235	C406235	C406235	C406235
Benzene	0.21	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.0060
Ethylbenzene	1.1	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.010
Toluene	2.3	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.020
Xylenes (Total)	3.1	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	<0.020
F1 (C6-C10) -BTEX	55	< 10	< 10	< 10	< 10	< 10	< 10
F2 (C10-C16)	98	<10	< 10	< 10	< 10	< 10	< 10
F3 (C16-C34)	300	<50	< 50	< 50	< 50	< 50	< 50
F4 (C34-C50)	2800	<50	< 50	< 50	< 50	< 50	< 50

Table 7: Summary of VOCs in Soil

Parameter		BH24-1 SS5	BH24-2 SS5	BH24-3 SS5	MW24-5 SS9
Date of Collection	MECP	9-Aug-24	9-Aug-24	9-Aug-24	9-Aug-24
Date Reported	Table 2	11-Sep-24	11-Sep-24	11-Sep-24	11-Sep-24
Sampling Depth (mbgs)	SCS	3.1-3.7	3.1-3.7	3.1-3.7	9.1-9.8
Analytical Report Reference No.		C406235	C406235	C406235	C406235
Acetone	16	< 0.49	< 0.49	< 0.49	< 0.49
Bromomethane	0.05	< 0.04	< 0.04	< 0.04	< 0.04
Carbon Tetrachloride	0.05	< 0.04	< 0.04	< 0.04	< 0.04
Chlorobenzene	2.4	< 0.04	< 0.04	< 0.04	< 0.04
Chloroform	0.05	< 0.04	< 0.04	< 0.04	< 0.04
Dichlorobenzene, 1,2-	1.2	< 0.04	< 0.04	< 0.04	< 0.04
Dichlorobenzene, 1,3-	4.8	< 0.04	< 0.04	< 0.04	< 0.04
Dichlorobenzene, 1,4-	0.083	< 0.04	< 0.04	< 0.04	< 0.04
Dichlorodifluoromethane	16	< 0.04	< 0.04	< 0.04	< 0.04
Dichloroethane, 1,1-	0.05	< 0.04	< 0.04	< 0.04	< 0.04
Dichloroethane, 1,2-	0.05	< 0.049	< 0.049	< 0.049	< 0.049
Dichloroethylene, 1,1-	0.05	< 0.04	< 0.04	< 0.04	< 0.04
Dichloroethylene, 1,2-cis-	1.9	< 0.04	< 0.04	< 0.04	< 0.04
Dichloroethylene, 1,2-trans-	0.084	< 0.04	< 0.04	< 0.04	< 0.04
Dichloropropane, 1,2-	0.05	< 0.04	< 0.04	< 0.04	< 0.04
Dichloropropene, 1,3-	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Ethylene dibromide	0.05	< 0.04	< 0.04	< 0.04	< 0.04
Hexane (n)	2.8	< 0.04	< 0.04	< 0.04	< 0.04
Methyl Ethyl Ketone	16	< 0.4	< 0.4	< 0.4	< 0.4
Methyl Isobutyl Ketone	1.7	< 0.04	< 0.04	< 0.04	< 0.04
Methyl tert-Butyl Ether (MTBE)	0.75	< 0.04	< 0.04	< 0.04	< 0.04
Methylene Chloride	0.1	< 0.049	< 0.049	< 0.049	< 0.049
Styrene	0.7	< 0.04	< 0.04	< 0.04	< 0.04
Tetrachloroethane, 1,1,1,2-	0.058	< 0.04	< 0.04	< 0.04	< 0.04
Tetrachloroethane, 1,1,2,2-	0.05	< 0.04	< 0.04	< 0.04	< 0.04
Tetrachloroethylene	0.28	< 0.04	< 0.04	< 0.04	< 0.04
Trichloroethane, 1,1,1-	0.38	< 0.04	< 0.04	< 0.04	< 0.04
Trichloroethane, 1,1,2-	0.05	< 0.04	< 0.04	< 0.04	< 0.04
Trichloroethylene	0.28	< 0.01	< 0.01	< 0.01	< 0.01
Trichlorofluoromethane	4	< 0.04	< 0.04	< 0.04	< 0.04
Vinyl Chloride	0.019	< 0.019	< 0.019	< 0.019	< 0.019

Table 8: Summary of PAHs in Soil

Parameter		BH24-1 SS2	DUP2 (BH24-1 SS2)	BH24-2 SS1	BH24-3 SS1	MW24-5 SS2	MW24-5 SS4
Date of Collection	MECP Table	9-Aug-24	9-Aug-24	9-Aug-24	9-Aug-24	9-Aug-24	9-Aug-24
Date Reported	2 SCS	11-Sep-24	11-Sep-24	11-Sep-24	11-Sep-24	11-Sep-24	11-Sep-24
Sampling Depth (mbgs)		0.8-1.4	0.8-1.4	0-0.6	0-0.6	0.8-1.4	2.3-2.9
Analytical Report Reference No.		C406235	C406235	C406235	C406235	C406235	C406235
Methylnaphthalene, 2-(1-)	0.99	< 0.0071	<0.0071	< 0.0071	<0.0071	<0.0071	< 0.0071
Acenaphthene	7.9	< 0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	< 0.0050
Acenaphthylene	0.15	<0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	< 0.0050
Anthracene	0.67	<0.0050	<0.0050	< 0.0050	<0.0050	< 0.0050	< 0.0050
Benz(a)anthracene	0.5	< 0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	< 0.0050
Benzo(a)pyrene	0.3	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Benzo(b+j)fluoranthene	0.78	< 0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	< 0.0050
Benzo(g,h,i)perylene	6.6	< 0.0050	<0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Benzo(k)fluoranthene	0.78	<0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	<0.0050
Chrysene	7	< 0.0050	<0.0050	< 0.0050	<0.0050	< 0.0050	< 0.0050
Dibenz(a,h)anthracene	0.1	< 0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	< 0.0050
Fluoranthene	0.69	<0.0050	<0.0050	< 0.0050	0.0078	< 0.0050	< 0.0050
Fluorene	62	< 0.0050	<0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Indeno(1,2,3-cd)pyrene	0.38	<0.0050	<0.0050	< 0.0050	<0.0050	< 0.0050	<0.0050
Naphthalene	0.6	<0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	<0.0050
Phenanthrene	6.2	<0.0050	<0.0050	< 0.0050	0.006	< 0.0050	<0.0050
Pyrene	78	< 0.0050	<0.0050	< 0.0050	0.0059	< 0.0050	< 0.0050

DS

Table 9: Summary of OCPs and PCBs in Soil

Parameter		BH24-4 SS1	DUP5 (BH24-4 SS1)	BH24-1 SS1	BH24-3 SS1	DUP7 (BH24-3 SS1)
Date of Collection	MECP	9-Aug-24	9-Aug-24	9-Aug-24	9-Aug-24	9-Aug-24
Date Reported	Table 2 SCS	11-Sep-24	11-Sep-24	11-Sep-24	11-Sep-24	11-Sep-24
Sampling Depth (mbgs)	Dub	0-0.6	0-0.6	0-0.6	0-0.6	0-0.6
Analytical Report Reference No.		C406235	C406235	C406235	C406235	C406235
Aldrin	0.05	-	-	<0.002	< 0.002	<0.002
Chlordane	0.05	-	-	<0.002	< 0.002	<0.002
DDD	3.3	-	-	< 0.002	< 0.002	<0.002
DDE	0.26	-	-	0.0093	0.022	0.0089
DDT	1.4	-	-	0.0023	0.0068	0.0026
Dieldrin	0.05	-	-	< 0.002	< 0.002	<0.002
Endosulfan	0.04	-	-	< 0.002	<0.002	<0.002
Endrin	0.04	-	-	< 0.002	<0.002	<0.002
Heptachlor	0.15	-	-	< 0.002	<0.002	<0.002
Heptachlor Epoxide	0.05	-	-	< 0.002	< 0.002	< 0.002
Hexachlorobenzene	0.52	-	-	< 0.002	< 0.002	<0.002
Hexachlorobutadiene	0.012	-	-	<0.002	<0.002	<0.002
Hexachloroethane	0.089	-	-	<0.002	<0.002	<0.002
Total PCBs	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Methoxychlor	0.13	-	-	<0.005	< 0.005	< 0.005

 $For Table\ Notes\ see\ \textbf{Notes}\ for\ \textbf{Soil}\ and\ \textbf{Groundwater}\ \textbf{Summary}\ \textbf{Tables}, included\ at\ the\ end\ of\ this\ Section.$

Table 10: Summary of Dioxins and Furans in Soil

Parameter		MW24-5 SS4	DUP6 (MW24-5 SS4)
Date of Collection	MECP	9-Aug-24	9-Aug-24
Date Reported	Table 2 SCS	11-Sep-24	11-Sep-24
Sampling Depth (mbgs)	SUS	2.3-2.9	2.3-2.9
Analytical Report Reference No.		C406235	C406235
Dioxin/Furan (TEQ)	0.000013	0.00000101	0.000000459

Table 11: Summary of Dioxins and Furans in Groundwater

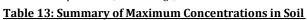

Parameter		MW24-5	DUP1 (MW24-5)
Date of Collection		14-Aug-24	14-Aug-24
Date Reported	Table 2 SCS	20-Sep-24	20-Sep-24
Screen Interval (mbgs)		6.7-9.7	6.7-9.7
Analytical Report Reference No.		C406235	C406235
Dioxin/Furan (TEQ)	0.000007	0.00000439	0.0000124

Table 12: Summary of PAHs in Groundwater

Parameter		MW24-5	DUP1 (MW24-5)	
Date of Collection	MECP	14-Aug-24	14-Aug-24	
Date Reported	Table 2 SCS	20-Sep-24	20-Sep-24	
Screen Interval (mbgs)	363	6.7-9.7	6.7-9.7	
Analytical Report Reference No.		C4P1529	C4P1529	
Acenaphthene	4.1	< 30	< 30	
Acenaphthylene	1	< 0.5	< 0.5	
Anthracene	2.4	< 0.2	< 0.2	
Benzo(a)anthracene	1	< 0.5	< 0.5	
Benzo(a)pyrene	0.01	< 0.5	< 0.5	
Benzo(b/j)fluoranthene	0.1	< 0.5	< 0.5	
Benzo(ghi)perylene	0.2	< 0.5	< 0.5	
Benzo(k)fluoranthene	0.1	< 0.5	< 0.5	
Chrysene	0.1	< 2	< 2	
Dibenzo(a,h)anthracene	0.2	< 0.5	< 0.5	
Fluoranthene	0.41	< 0.5	< 0.5	
Fluorene	120	< 0.5	< 0.5	
Indeno(1,2,3-cd)pyrene	0.2	< 0.5	< 0.5	
Naphthalene	11	< 0.5	< 0.5	
Phenanthrene	1	< 0.5	< 0.5	
Pyrene	4.1	< 0.5	< 0.5	
Methylnaphthalene, 2-(1-)	3.2	< 0.71	< 0.71	

 $For Table\ Notes\ see\ \textbf{Notes}\ for\ \textbf{Soil}\ and\ \textbf{Groundwater}\ \textbf{Summary}\ \textbf{Tables}\ ,\ included\ at\ the\ end\ of\ this\ Section.$

Agriculty 7.5 -0.20 Mal Samples Ar Senic 1.8 2 DUP4 (MW24-SSI) Barrum 390 32 BR24-1 SS2 Beryllium 4 0.42 BR24-1 SS2 Beryllium 1.2 -0.10 All Samples Borno (Ilot Water Soluble) 1.5 0.034 BIZ4-1 SS2 Cadmium 1.2 -0.10 All Samples Cadmium 1.2 -0.10 All Samples Cobalt 2.2 4.7 BIZ4-1 SS2 Cobalt 2.2 4.7 BIZ4-2 SS1 Copper 1.40 1.2 BIZ4-1 SS2 Cymide 0.051 0.05 BR24-1 SS2 Copper 1.40 1.2 BIZ4-1 SS2 Bead 1.20 1.3 DUP4 (MW24-5 SS1) Bizer 1.2		Parameter	Standard	Maximum Concentration	Location
Barium		Antimony	7.5	<0.20	All Samples
Beryllium		Arsenic	18	2	DUP4 (MW24-5 SS1)
Boron 120		Barium	390	32	BH24-1 SS2
Borno (Not Water Soluble)		Beryllium	4	0.42	BH24-1 SS2
Cadmium		Boron	120	7.3	BH24-1 SS2
Chromium 160		Boron (Hot Water Soluble)	1.5	0.34	BH24-1 SS2
Chromium VI		Cadmium	1.2	<0.10	All Samples
Cobalt		Chromium	160	9.8	BH24-1 SS2
Copper		Chromium VI	8	<0.18	All Samples
Nickel 100		Cobalt	22	4.7	BH24-2 SS1
Nickel 100	{Ps	Copper	140	12	BH24-1 SS2
Nickel 100	101	Cyanide	0.051	0.05	BH24-1 SS2
Nickel 100	ano	Lead	120	13	DUP4 (MW24-5 SS1)
Nickel 100	tals	Mercury	0.27	<0.050	All Samples
Selenium 2.4 <0.50	Me	Molybdenum	6.9	<0.50	All Samples
Silver 20		Nickel	100	8.4	BH24-1 SS2
Thallium		Selenium	2.4	<0.50	All Samples
Uranium		Silver	20	<0.20	All Samples
Vanadium		Thallium	1	0.057	BH24-1 SS2
Zinc 340 27 BH24-1 SS2		Uranium	23	0.64	BH24-1 SS2
Electrical Conductivity (2:1) 0.7 7.9* BH24-1 SS2 Sodium Adsorption Ratio 5 0.43 BH24-2 SS1 pH, 2:1 CaCl2 Extraction NV 12.5 BH24-1 SS2 Benzene 0.21 < 0.02 All Samples Ethylbenzene 1.1 < 0.02 All Samples Ethylbenzene 1.1 < 0.02 All Samples Toluene 2.3 < 0.02 All Samples Toluene 2.3 < 0.02 All Samples F1 (C6-C10) - BTEX 55 < 10 All Samples F2 (C10-C16) 98 < 10 All Samples F3 (C16-C34) 300 <50 All Samples F4 (C34-C50) 2800 <50 All Samples F4 (C34-C50) 2800 <50 All Samples Bromomethane 0.05 < 0.04 All Samples Carbon Tetrachloride 0.05 < 0.04 All Samples Chlorobenzene 2.4 < 0.04 All Samples Chloroform 0.05 < 0.04 All Samples Chloroform 0.05 < 0.04 All Samples Dichlorobenzene, 1,2- 1.2 < 0.04 All Samples Dichlorobenzene, 1,4- 0.083 < 0.04 All Samples Dichlorodifluoromethane 16 < 0.04 All Samples Dichlorodifluoromethane 16 < 0.04 All Samples Dichlorotane, 1,1- 0.05 < 0.04 All Samples Dichlorotane, 1,2- 0.05 0.04 All Samples Dichlorotane, 1,2- 0.05 0.04 All Samples Dichlorotane, 1,2- 0.05		Vanadium	86	25	BH24-2 SS1
Sodium Adsorption Ratio 5 0.43 BH24-2 SS1 pH, 2:1 CaCl2 Extraction NV 12.5 BH24-1 SS2 Benzene 0.21 < 0.02 All Samples Ethylbenzene 1.1 < 0.02 All Samples Toluene 2.3 < 0.02 All Samples Toluene 2.3 < 0.02 All Samples Toluene 2.3 < 0.04 All Samples F1 (C6-C10) - BTEX 55 < 10 All Samples F2 (C10-C16) 98 < 10 All Samples F3 (C16-C34) 300 <50 All Samples F4 (C34-C50) 2800 <50 All Samples F4 (C34-C50) 2800 <50 All Samples Bromomethane 0.05 < 0.04 All Samples Carbon Tetrachloride 0.05 < 0.04 All Samples Chlorobenzene 2.4 < 0.04 All Samples Chloroform 0.05 < 0.04 All Samples Chlorobenzene, 1,2- 1.2 < 0.04 All Samples Dichlorobenzene, 1,4- 0.083 < 0.04 All Samples Dichlorodifluoromethane 16 < 0.04 All Samples Dichlorodifluoromethane 16 < 0.04 All Samples Dichlorothane, 1,1- 0.05 < 0.04 All Samples Dichlorothane, 1,2- 0.05 0.04 All Samples Dichlorothane, 1,2- 0.05 0.04 All Samples Dichlorothan		Zinc	340	27	BH24-1 SS2
PH, 2:1 CaCl2 Extraction NV 12.5 BH24-1 SS2		Electrical Conductivity (2:1)	0.7	7.9*	BH24-1 SS2
Benzene 0.21 < 0.02 All Samples		Sodium Adsorption Ratio	5	0.43	BH24-2 SS1
Ethylbenzene 1.1 < 0.02 All Samples Toluene 2.3 < 0.02 All Samples Xylenes (Total) 3.1 < 0.04 All Samples F1 (C6-C10) -BTEX 55 < 10 All Samples F2 (C10-C16) 98 <10 All Samples F3 (C16-C34) 300 < 50 All Samples F4 (C34-C50) 2800 < 50 All Samples Acetone 16 < 0.49 All Samples Bromomethane 0.05 < 0.04 All Samples Carbon Tetrachloride 0.05 < 0.04 All Samples Chlorobenzene 2.4 < 0.04 All Samples Chlorobenzene 0.05 < 0.04 All Samples Chlorobenzene 1.2- Dichlorobenzene, 1,2- Dichlorobenzene, 1,4- Dichlorodifluoromethane 16 < 0.04 All Samples Dichlorotethane, 1,1- Dichlorotethane, 1,1- Dichlorotethane, 1,2- Di		pH, 2:1 CaCl2 Extraction	NV	12.5	BH24-1 SS2
Toluene 2.3 0.02 All Samples		Benzene	0.21	< 0.02	All Samples
Sylenes (Total) 3.1 < 0.04 All Samples		Ethylbenzene	1.1	< 0.02	All Samples
F1 (C6-C10) -BTEX 55	EX	Toluene	2.3	< 0.02	All Samples
F1 (C6-C10) -BTEX 55	& BT	Xylenes (Total)	3.1	< 0.04	All Samples
F3 (C16-C34) 300 <50 All Samples F4 (C34-C50) 2800 <50 All Samples Acetone 16 <0.49 All Samples Bromomethane 0.05 <0.04 All Samples Carbon Tetrachloride 0.05 <0.04 All Samples Chlorobenzene 2.4 <0.04 All Samples Chloroform 0.05 <0.04 All Samples Chlorobenzene, 1,2- 1.2 <0.04 All Samples Dichlorobenzene, 1,3- 4.8 <0.04 All Samples Dichlorobenzene, 1,4- 0.083 <0.04 All Samples Dichlorodifluoromethane 16 <0.04 All Samples Dichloroethane, 1,1- 0.05 <0.049 All Samples Dichloroethane, 1,2- 0.05 <0.049 All Samples	HCs 8	F1 (C6-C10) -BTEX	55	< 10	All Samples
F4 (C34-C50) 2800 <50 All Samples	PI	F2 (C10-C16)	98	<10	All Samples
Acetone 16 < 0.49 All Samples Bromomethane 0.05 < 0.04 All Samples Carbon Tetrachloride 0.05 < 0.04 All Samples Chlorobenzene 2.4 < 0.04 All Samples Chloroform 0.05 < 0.04 All Samples Chloroform 0.05 < 0.04 All Samples Dichlorobenzene, 1,2- 1.2 < 0.04 All Samples Dichlorobenzene, 1,3- 4.8 < 0.04 All Samples Dichlorobenzene, 1,4- 0.083 < 0.04 All Samples Dichlorodifluoromethane 16 < 0.04 All Samples Dichloroethane, 1,1- 0.05 < 0.04 All Samples Dichloroethane, 1,2- 0.05 < 0.049 All Samples		F3 (C16-C34)	300	<50	All Samples
Bromomethane		F4 (C34-C50)	2800	<50	All Samples
Carbon Tetrachloride 0.05 < 0.04 All Samples Chlorobenzene 2.4 < 0.04		Acetone	16	< 0.49	All Samples
Chlorobenzene 2.4 < 0.04 All Samples		Bromomethane			
Chloroform 0.05 < 0.04 All Samples		Carbon Tetrachloride	0.05	< 0.04	All Samples
Dichlorobenzene, 1,2- 1.2 < 0.04 All Samples		Chlorobenzene	2.4	< 0.04	All Samples
Dichlorobenzene, 1,3- 4.8 < 0.04 All Samples Dichlorobenzene, 1,4- 0.083 < 0.04		Chloroform	0.05	< 0.04	All Samples
Dichlorobenzene, 1,4- Dichlorodifluoromethane Dichloroethane, 1,1- Dichloroethane, 1,2-	CS				All Samples
Dichlorodifluoromethane16< 0.04All SamplesDichloroethane, 1,1-0.05< 0.04	Ĭ	Dichlorobenzene, 1,3-	4.8	< 0.04	
Dichloroethane, 1,1-0.05< 0.04All SamplesDichloroethane, 1,2-0.05< 0.049		Dichlorobenzene, 1,4-	0.083	< 0.04	All Samples
Dichloroethane, 1,2- 0.05 < 0.049 All Samples		Dichlorodifluoromethane	16	< 0.04	_
		Dichloroethane, 1,1-	0.05	< 0.04	All Samples
Dichloroethylene, 1,1- 0.05 < 0.04 All Samples			0.05	< 0.049	-
		Dichloroethylene, 1,1-	0.05	< 0.04	All Samples

Table 13: Summary of Maximum Concentrations in Soil

	Parameter	Standard	Maximum Concentration	Location
	Dichloroethylene, 1,2-cis-	1.9	< 0.04	All Samples
	Dichloroethylene, 1,2-trans-	0.084	< 0.04	All Samples
	Dichloropropane, 1,2-	0.05	< 0.04	All Samples
	Dichloropropene, 1,3-	0.05	< 0.05	All Samples
	Ethylene dibromide	0.05	< 0.04	All Samples
	Hexane (n)	2.8	< 0.04	All Samples
	Methyl Ethyl Ketone	16	< 0.4	All Samples
	Methyl Isobutyl Ketone	1.7	< 0.04	All Samples
	Methyl tert-Butyl Ether (MTBE)	0.75	< 0.04	All Samples
VOCs	Methylene Chloride	0.1	< 0.049	All Samples
Š	Styrene	0.7	< 0.04	All Samples
	Tetrachloroethane, 1,1,1,2-	0.058	< 0.04	All Samples
	Tetrachloroethane, 1,1,2,2-	0.05	< 0.04	All Samples
	Tetrachloroethylene	0.28	< 0.04	All Samples
	Trichloroethane, 1,1,1-	0.38	< 0.04	All Samples
	Trichloroethane, 1,1,2-	0.05	< 0.04	All Samples
	Trichloroethylene	0.28	< 0.01	All Samples
	Trichlorofluoromethane	4	< 0.04	All Samples
	Vinyl Chloride	0.019	< 0.019	All Samples
	Methylnaphthalene, 2-(1-)	0.99	<0.0071	All Samples
		7.9	<0.0071	•
	Acenaphthene	0.15	<0.0050	All Samples All Samples
	Acenaphthylene	0.13		
	Anthracene		<0.0050	All Samples
	Benz(a)anthracene	0.5	<0.0050	All Samples
	Benzo(a)pyrene	0.3	<0.0050	All Samples
	Benzo(b+j)fluoranthene	0.78	<0.0050	All Samples
Hs	Benzo(g,h,i)perylene	6.6	<0.0050	All Samples
PAHs	Benzo(k)fluoranthene	0.78	<0.0050	All Samples
	Chrysene	7	<0.0050	All Samples
	Dibenz(a,h)anthracene	0.1	<0.0050	All Samples
	Fluoranthene	0.69	0.0078	BH24-3 SS1
	Fluorene	62	<0.0050	All Samples
	Indeno(1,2,3-cd)pyrene	0.38	<0.0050	All Samples
	Naphthalene	0.6	<0.0050	All Samples
	Phenanthrene	6.2	0.006	BH24-3 SS1
	Pyrene	78	0.0059	BH24-3 SS1
	Aldrin	0.05	-	All Samples
	Chlordane	0.05	-	All Samples
	DDD	3.3	-	All Samples
Sc	DDE	0.26	0.022	BH24-3 SS1
OCPs	DDT	1.4	0.0068	BH24-3 SS1
	Dieldrin	0.05	-	All Samples
	Endosulfan	0.04	-	All Samples
	Endrin	0.04	-	All Samples
	Heptachlor	0.15	-	All Samples

Table 13: Summary of Maximum Concentrations in Soil

Parameter		Standard Maximum Concentration		Location	
	Heptachlor Epoxide	0.05	-	All Samples	
Ps	Hexachlorobenzene	0.52	-	All Samples	
OCPs	Hexachlorobutadiene	0.012	-	All Samples	
	Hexachloroethane	0.089	-	All Samples	
	Methoxychlor	0.13	-	All Samples	
Dioxins/Furans	Dioxin/Furan (TEQ)	0.000013	0.0000101	MW24-5 SS4	

<u>Table 14: Summary of Maximum Concentrations in Groundwater</u>

	Parameter	Standard	Maximum Concentration	Location
Dioxins/Furans	Dioxin/Furan (TEQ)	0.000007	0.0000124	DUP1 (MW24-5)
	Acenaphthene	4.1	< 30	All Samples
	Acenaphthylene	1	< 0.5	All Samples
	Anthracene	2.4	< 0.2	All Samples
	Benzo(a)anthracene	1	< 0.5	All Samples
	Benzo(a)pyrene	0.01	< 0.5	All Samples
	Benzo(b/j)fluoranthene	0.1	< 0.5	All Samples
	Benzo(ghi)perylene	0.2	< 0.5	All Samples
۰,	Benzo(k)fluoranthene	0.1	< 0.5	All Samples
PAHs	Chrysene	0.1	< 2	All Samples
	Dibenzo(a,h)anthracene	0.2	< 0.5	All Samples
	Fluoranthene	0.41	< 0.5	All Samples
	Fluorene	120	< 0.5	All Samples
	Indeno(1,2,3-cd)pyrene	0.2	< 0.5	All Samples
	Naphthalene	11	< 0.5	All Samples
	Phenanthrene	1	< 0.5	All Samples
	Pyrene	4.1	< 0.5	All Samples
	Methylnaphthalene, 2-(1-)	3.2	<0.71	All Samples

Notes for Soil and Groundwater Summary Tables

	For soil and groundwater analytical results, concentration exceeds the applicable Standards.
	For soil and groundwater analytical results, laboratory detection limits exceed the applicable Standards.
BTEX	Benzene, Toluene, Ethylbenzene, Xylene
masl	Meters above sea level
MECP Table 2 SCS	Generic Condition Standards in a Potable Groundwater Condition for Residential/Parkland/Institutional Use and coarse textured soils as contained in Table 2 of the "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", published by the MECP on April 15, 2011.
mbgs	Meters below ground surface
NM	Not Monitored
NA	Not Available
OCPs	Organochlorine Pesticides
РАН	Polycyclic Aromatic Hydrocarbons
PHC	Petroleum Hydrocarbon
Metals and ORPs	Metals and Other Regulated Parameters:
Units	Units for all soil analyses are in µg/g (ppm) unless otherwise indicated
Units	Units for all groundwater analyses are in μg/L (ppb) unless otherwise indicated

Appendix A

Project Number: 24-300-100 2024-07-11

Williamsport Holdings Inc. 181 Eglinton Avenue East, Suite # 204 Toronto, Ontario M4P, 1J4

Attention: Jack Greenberg

Sent via email: jackgreenberg@greenberglawyers.ca

RE: Sampling and Analysis Plan

Phase Two Environmental Site Assessment 1470 Williamsport Drive, Mississauga, Ontario

Dear: Jack Greenberg

1. Introduction

DS Consultants Limited (DS) is pleased to present the Sampling and Analysis Plan (SAP) for the proposed Phase Two Environmental Site Assessment of 1470 Williamsport Drive, Mississauga, Ontario, (the Site). The purpose of the proposed Phase Two ESA program is to assess the current subsurface environmental conditions in support of the proposed redevelopment of the Site.

The Phase Two ESA will involve intrusive investigation in the areas determined in the Site visit to be Areas of Potential Environmental Concern (APECs), and will be completed in general accordance with O.Reg 153/04. Based on the findings of the field and laboratory analyses, a Phase Two ESA report will be prepared.

2. Background

Based on the Phase One Environmental Site Assessment completed by DS in June, 2024, it is DS's understanding that the Site is a 0.58- hectare (1.43 acres) parcel of land which is currently used for mixed residential and commercial purposes. The first developed use of the Site is interpreted to be Residential based on the findings of the Phase One ESA. A total of twelve (12) potentially contaminating activities were identified on the Phase One Property or on neighbouring properties within the Phase One Study Area, of which four (4) are contributing to Areas of Potential Environmental Concern (APECs) on the Phase Two Property. A summary of the APECs identified, the potential contaminants of concern, and the media potentially impacted is presented in Table 1 below:

Table 1: Areas of Potential Environmental Concern

Area of Potential Environment al Concern	Location of Area of Potential Environment al Concern on Phase One Property	Potentially Contaminating Activity	Location of PCA (on-Site or off- site)	Contaminant s of Potential Concern	Media Potentially Impacted (Ground water, soil and/or sediment)
APEC-1	Northeastern portion of the Phase One Property	N/S: Operation of an Incinerator	On Site: PCA-1	PAHs, Dioxins and Furans	Soil and ground water
APEC-2	Entire Phase One Property	#30 - Importation of Fill Material of Unknown Quality	On Site: PCA-8	PHCs, VOCs, BTEX, Metals, As, Sb, Se, B- HWS, CN-, Cr (VI), Hg, Iow or high pH, PAHs	Soil
APEC-3	Southern portion of the Phase One Property	#N/S- Inferred application of de-icing agents	On Site: PCA-9	Electrical Conductivity, SAR Na, CI-	Soil Groundwater
APEC-4	Southwestern portion of the Property	#40 – Pesticides Manufacturing, Processing, Bulk Storage and Large-Scale Applications	On Site PCA-12	Metals, As, Sb, Se, CN-, Hg, OC Pesticides	Soil

Notes:

- 1. PHC (F1-F4) = Petroleum Hydrocarbons in the F1-F4 fraction ranges
- 2. VOCs = Volatile Organic Compounds
- 3. PAHs = Polycyclic Aromatic Hydrocarbons
- 1. PCBs = Polychlorinated Biphenyls

3. Site_Investigation_Program

The Site Investigation Program will be completed as follows:

- Public and private underground utilities and services will be cleared prior to commencement of intrusive investigation activities;
- A Health and Safety Plan will be prepared and all work will be executed safely;
- Five (5) boreholes will be advanced on the Phase Two Property, to an approximate maximum depth of 9.8 mbgs, or until sample refusal depth, or until groundwater is encountered, using a track-mounted 6M2 drill rig. The soil profile from each borehole will be logged in the field and samples will be screened for total organic vapours (TOV) with a photoionization detector (PID) and combustible gas detector (CGD). The location of the boreholes will be selected to investigate any APECs identified during the Phase One ESA,

as well as to delineate the horizontal and vertical extents of relevant parameters of concern.

- A groundwater monitoring well will be installed within one (1) of the boreholes advanced in order to facilitate the collection of groundwater samples to assess the groundwater quality below the Site and to establish the direction of groundwater flow;
- Based on field screening and visual/olfactory observations, worst-case/representative soil samples from the boreholes will be submitted for laboratory testing of relevant parameters of concern;
- The groundwater levels in the wells will be measured at least 24 hours after well development has been completed, to determine the groundwater elevation. The wells will be surveyed to a geodetic benchmark to determine groundwater flow direction;
- The groundwater wells will be purged to remove stagnant water and sampled for laboratory testing of relevant parameters of concern;
- Both soil and groundwater samples will be submitted for chemical analysis by a CALA laboratory in accordance with the Ontario MOECC standards and requirements of O.Reg. 153/04 under the Environmental Protection Act.

All field equipment is to be calibrated at the start of each field day, in accordance with DS's Standard Operating Procedures (SOPs). Clean, disposable Nitrile™ gloves will be used at each sampling interval to reduce the risk of cross contamination. All non-dedicated equipment (e.g. split spoon sampler, interface probe, etc.) will be decontaminated between each borehole. The equipment will be brushed free of debris, washed with phosphate-free detergent, and then rinsed with analyte free water.

The proposed monitoring wells will be installed using 50 mm inner diameter Schedule 40 polyvinyl chloride (PVC), equipped with 50 mm inner diameter Schedule 40 PVC with #10 slot well screens. A silica sand filter pack will be placed around the well screen and up to 0.61 metres above the top of the well screen. The well annulus will be sealed with hydrated bentonite. All wells will be protected with either a flush mount well casing, or a locked monument style casing.

The proposed analytical program is outlined below (proposed program subject to change as a result of site observations/findings). All soil and groundwater sampling will be carried out in accordance with DS's SOPs.

Soils:

• Eleven (11) soil samples for analysis of metals and inorganics, six (6) samples for petroleum hydrocarbons (PHCs) (F1-F4) and BTEX, four (4) samples for volatile organic compounds (VOCs), six (6) polycyclic aromatic hydrocarbons (PAHs), one (1) for Organochlorine Pesticides and Polychlorinated Biphenyls (OCPs and PCBs), and one (1) for dioxins and furans. Seven (7) samples will be submitted for QA/QC purposes.

One quality control/quality assurance (QAQC) sample will be submitted for analysis per ten (10) samples analyzed in accordance with O.Reg. 153/04.

One (1) representative composite soil sample collected from the soil cuttings generated by the proposed drilling activities will be submitted for analysis of leachate concentrations of inorganics, VOCs, benzo(a)pyrene, and PCBs in accordance with the Toxicity Characteristic Leaching Procedure as described under O.Reg. 347/90 (as amended). This analysis will be used to characterize the soil cuttings and on-site soils for off-dSite disposal purposes.

Groundwater:

• One (1) groundwater sample for analysis of metals and inorganics, and one (1) sample for PAHs. One (1) field sample will be submitted for QA/QC purposes.

One quality control/quality assurance (QAQC) sample will be submitted for analysis per ten (10) samples analyzed in accordance with O.Reg. 153/04. One laboratory supplied trip blank will be submitted as part of each sample submission event for analysis of volatile parameters (i.e. VOCs, BTEX, PHCs F1-BTEX).

Following receipt of all of the results, a report in accordance with O.Reg. 153/04 will be prepared.

It is noted that if the Phase Two ESA reveals parameter concentrations greater than the applicable standards set out in *Ontario Regulation 153/04*, then additional work (i.e., supplemental delineation, additional drilling, sampling, analysis, and/or site remediation activities) will be deemed necessary prior to RSC filing, should an RSC be required. The costs for any additional work, if necessary, are beyond the current scope of work.

The SAP was created based on the request to complete a Phase Two ESA in support of the proposed redevelopment of the Site. The SAP was compiled to collect data to provide information on soil and/or groundwater quality in each APEC.

Additional delineation may be required following the implementation of this SAP to meet the requirements of O.Reg. 153/04 which requires delineation of all areas where concentrations are above the applicable SCS such as in the following conditions:

- Unexpected contamination not previously discovered, or not related to identified APECs, is discovered which will require further delineation to identify source(s); and
- If the sampling results indicate that the soil and/or groundwater impacts are deeper than initially expected.

We trust that this Sampling and Analysis Plan meets the objectives of the Client. If further assistance is required on this matter please do not hesitate to contact the undersigned.

Yours Very Truly,

DS Consultants Ltd.

Kirstin Olsen, M.Sc., C.E.T., LET, QP_{ESA} Senior Project Manager – Environmental Services

Appendix B

PROJECT: Williamsport Phase Two ESA

CLIENT: 1470 Williamsport Holdings Inc.

PROJECT LOCATION: 1470 Williamsport Drive, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger / Mud Rotary

Diameter: 150 mm REF. NO.: 24-300-100

Date: Aug/09/2024 ENCL NO.: 1

BHLC	OCATION: Refer to Figure 5 N 4830460	E 61	3408	3																	
	SOIL PROFILE		s	AMPL	.ES	· ·					lead S	Spac			PI A	STIC NA	TURAL	LIQUIE		₽	REMARKS
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	10	(pr	PID pm)) 40	1	(•	CGD ppm	W _P	ATER C	W O ONTEN	WL	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZE DISTRIBUTION (%) GR SA SI CL
13 9. 9	TOPSOIL: 106 mm FILL: silty sand, trace gravel, trace	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1	SS			1	-				•									Metals and ORPs, OCPs
-	organic, brown, loose, moist. At 0.8 m, trace rock fragments,	\bigotimes					139														(DUP1, DUP7)
<u>1</u> - -	brownish grey, very dense. At 1.5 m, cobble/boulder, trace clay.		2	SS			100					•									Metals and ORPs, PAHs (DUP2)
- - - - - - 2			3	SS			138	- - - -				<u> </u>									,
137.5		\otimes																			
2.3	SAND: trace gravel, trace clay, trace silt, brown, moist, dense.		4	SS			137	- -				•									PHCs, BTEX, pH (DUP3)
<u>3</u> - - -			5	SS																	VOCs
- 136.1 3.7	END OF BOREHOLE:														_						
	Notes: 1) Borehole backfilled with bentonite upon completion.																				

DS ENVIRO 0~50 PPM-2021 24-300-100 ENV.GPJ DS.GDT 1/8/25

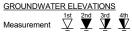
LOG OF BOREHOLE BH24-2

PROJECT: Williamsport Phase Two ESA

CLIENT: 1470 Williamsport Holdings Inc.

PROJECT LOCATION: 1470 Williamsport Drive, Mississauga, ON

DATUM: Geodetic


DRILLING DATA

Method: Hollow Stem Auger / Mud Rotary

Diameter: 150 mm REF. NO.: 24-300-100

Date: Aug/09/2024 ENCL NO.: 2

	SOIL PROFILE		s	AMPL	ES				Soil		d Sp	pace					ASTIC	NATU	RAL I	LIQUIN		ΛΤ	REMARKS
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	e:		BLOWS 0.3 m	GROUND WATER CONDITIONS	NOIL	1	PIE (ppn	n)			(t	CGD opm →)	LIN W _F	ASTIC N	OIST CONT W	URE '	LIQUID LIMIT W _L (%)	OCKET PEN. Cu) (kPa)	JRAL UNIT W (KN/m³)	AND GRAIN SIZ DISTRIBUTIO
39.3		STRAT	NUMBER	TYPE	IN IN	GROUN	ELEVATION	10	20 3	×	- 1	1(0 20		40	,	NATEF		NTENT	Γ (%) Ο	PC ()	NATI	(%) GR SA SI
3 9.2	TOPSOIL: 106 mm FILL: silty sand, trace gravel, trace organic, brown, loose, moist.		1	SS			1392	- -			⊸					-		_					Metals and ORPs, PAI
	At 0.8 m, compact sand.																						
			2	SS			138				•												
37.8 1.5	SAND: trace silt, brown, native, moist, compact.	XX	3	SS				- - - 3															
	At 2.3 m, trace gravel.						137																
			4	SS			137	- - -			4												PHCs, BTE pH
						-																	
35.6			5	SS			136	4			4												VOCs
	Borehole backfilled with bentonite upon completion.																						

GRAPH NOTES

LOG OF BOREHOLE BH24-3

PROJECT: Williamsport Phase Two ESA

CLIENT: 1470 Williamsport Holdings Inc.

PROJECT LOCATION: 1470 Williamsport Drive, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger / Mud Rotary

Diameter: 150 mm REF. NO.: 24-300-100

Date: Aug/09/2024 ENCL NO.: 3

DH LC	OCATION: Refer to Figure 5 N 4830481	E 01			-				<u> </u>				```									
	SOIL PROFILE	Ι.	S	AMPL	.ES	Ä			Soil PIE		d Sp	pace		pors GD		PLAST LIMIT	TC NAT	URAL STURE	LIQUID LIMIT	z.	TWT	REMARKS AND
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	NUMBER	Ш	BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION		(ppn				(p	ppm) →	•	W _P	TER CO	N 0	W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GRAIN SIZ DISTRIBUTI (%)
139.7			Ž	TYPE	ż	GR	EE	10	20 3	30 4	0	10	20	30	40		10 2	20 3	30			GR SA SI
13 9.9	TOPSOIL: 127 mm FILL: silty sand, trace gravel, trace organic, brown, loose, moist.		1	SS				-		7		ř										PAHs, OCF
	At 1.5 m, trace concrete fragments, trace organic.		2	SS		-	139					,										Metals and ORPs
						-	138															O O
			3	SS					*			•										
37.0 2.7	SILTY SAND TILL: trace gravel,		4	SS			137			\	•	•										PHCs, BTE
	trace clay, brown, very moist.		5	SS		-				×	•	,										VOCs
36.0	END OF BOREHOLE:	i¦i.					136															
	upon completion.																					

LOG OF BOREHOLE BH24-4

PROJECT: Williamsport Phase Two ESA

CLIENT: 1470 Williamsport Holdings Inc.

PROJECT LOCATION: 1470 Williamsport Drive, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger / Mud Rotary

Diameter: 150 mm REF. NO.: 24-300-100

Date: Aug/09/2024 ENCL NO.: 4

BHI	JM: Geodetic DCATION: Refer to Figure 5 N 4830539	F 61	13474	1				Date	e: Aug	3/09/.	2024							EN	CL NO	J.: 4		
	SOIL PROFILE	_ 01		AMPL	ES				Soi	l He	ad S	pac	e Va	apors		L	NAT	URAI			<u></u>	REMARKS
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	ER		BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION		PI (pp	D m)			(CGD opm)		W _P	,	w •——	LIQUID LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZ DISTRIBUTI (%)
138.0		STRA	NUMBER	TYPE	<u></u>	GROU	ELEV/	10	20		4 0	1	0 2	0 30	40		TER Co			п.	¥	GR SA SI
13 8.9	TOPSOIL: 106mm FILL: silty sand, trace gravel, trace organic, trace clay, brown, moist, loose.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1	SS			Į.	-														PCBs, pH (DUP5)
		$\overset{\times}{\otimes}$	2	SS			137	- - -				•										
136.5 1.5 135.9	SANDY SILT TILL: trace gravel, trace clay, brown, moist.	\bigotimes_{i}	3	SS			136	-				•										рН
2.1	END OF BOREHOLE: Notes: 1) Borehole backfilled with bentonite upon completion.																					

LOG OF BOREHOLE MW24-5

PROJECT: Williamsport Phase Two ESA

CLIENT: 1470 Williamsport Holdings Inc.

PROJECT LOCATION: 1470 Williamsport Drive, Mississauga, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger / Mud Rotary

Diameter: 150 mm REF. NO.: 24-300-100

Date: Aug/09/2024 ENCL NO.: 5

BH LOCATION: Refer to Figure 5 N 4830524 E 613491

	SOIL PROFILE		S	AMPL	ES.	œ		Soil		Space				— PL	ASTIC.	NATU	URAL	LIQUID		M	REMARKS
(m) ELEV	DESCRIPTION	\ PLOT	<u>~</u>		BLOWS 0.3 m	GROUND WATER CONDITIONS	NOL	PID (ppn				CGI		LII W₁		MOIS CON V	URAL TURE TENT V	LIMIT	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZE DISTRIBUTION
139.2	DESCRIP HON	STRATA PLOT	NUMBER	TYPE	"N" 0.	GROUN	ELEVATION	10 20 3	■ 30 40		10	20 3	9 40		WATE		NTEN		PO	NATU	(%) GR SA SI C
138.9	TOPSOIL: 152 mm FILL: silty sand, trace gravel, trace organic, brown, moist.		1	SS			139			•											Metals and ORPs (DUP
1	At 0.8m, silty clay, trace sand, trace silt, trace fragmented rock.		2	SS			100														PAHs
			3	SS			138														рН
136.9							137														
2.3	SILTY SAND: silty sand, trace clay, trace gravel, brown, moist.		4	SS			*														Dioxins/Fura PAHs, PHC BTEX (DUP
-			5	SS			136														
4			6	SS			135														
- - - - - - - - -							-	-													
: : : :							134														
. <u>6</u>			7	SS			133			•											
<u>7</u>							132														
7.6	SILTY CLAY TILL: silty clay till, trace gravel, trace sand, grey, very moist.		8	SS																	
130.1 9.1							Aug 12 Aug 14	31.3 masl 2024 _{1asl} — 2024													
130.1 9.1 129.5	SILTY SAND TILL: silty sand, grey, wet.		9	SS			130														PHCs, VOC
9.7	END OF BOREHOLE: Notes: 1) Monitoring well installed upon completion. 2) Water levels (mbgs): August 12, 2024 7.93 August 14, 2024 8.11	1.: 1.:																			

ABBREVIATIONS AND TERMINOLOGY

SAMPLING METHODS PENETRATION RESISTANCE

AS auger sample CORE cored sample DP direct push F۷ field vane GS grab sample SS split spoon ST shelby tube WS wash sample

Standard Penetration Test (SPT) resistance ('N' values) is defined as the number of blows by a hammer weighing 63.6 kg (140 lb.) falling freely for a distance of 0.76 m (30 in.) required to advance a standard 50 mm (2 in.) diameter split spoon sampler for a distance of 0.3 m (12 in.).

Dynamic Cone Test (DCT) resistance is defined as the number of blows by a hammer weighing 63.6 kg (140 lb.) falling freely for a distance of 0.76 m (30 in.) required to advance a conical steel point of 50 mm (2 in.) diameter and with 60° sides on 'A' size drill rods for a distance of 0.3 m (12 in.)."

COHESIONLE	SS SOILS	COHESIVE S	OILS		COMPOSITIO	N
Compactness	'N' value	Consistency	'N' value	Undrained Shear Strength (kPa)	Term (e.g)	% by weight
very loose loose compact dense very dense	< 4 4 – 10 10 – 30 30 – 50 > 50	very soft soft firm stiff very stiff hard	< 2 2 - 4 4 - 8 8 - 15 15 - 30 > 30	< 12 12 - 25 25 - 50 50 - 100 100 - 200 > 200	trace silt some silt silty sand and silt	< 10 10 – 20 20 – 35 > 35

TESTS AND SYMBOLS

МН	mechanical sieve and hydrometer analysis	Ā	Unstabilized water level
W, Wc	water content	$oldsymbol{\underline{V}}$	1 st water level measurement
w _L , LL	liquid limit	$ar{oldsymbol{\Lambda}}$	2 nd water level measurement
w _P , PL	plastic limit	<u>▼</u>	Most recent water level measurement
I _P , PI	plasticity index		
k	coefficient of permeability	3.0+	Undrained shear strength from field vane (with sensitivity)
Υ	soil unit weight, bulk	Cc	compression index
Gs	specific gravity	Cv	coefficient of consolidation
φ'	internal friction angle	m _v	coefficient of compressibility
c'	effective cohesion	е	void ratio
Cu	undrained shear strength	PID	photoionization detector
		FID	flame ionization detector

FIELD MOISTURE DESCRIPTIONS

Damp refers to a soil sample that does not exhibit any observable pore water from field/hand inspection.

Moist refers to a soil sample that exhibits evidence of existing pore water (e.g. sample feels cool, cohesive soil is at plastic limit) but does not have visible pore water

Wet refers to a soil sample that has visible pore water

Project No. : 1-21-0802-01 Client : 1470 Williamsport Holdings Inc Originated by : BR

Date started : January 7, 2022 Project : 1470 Williamsport Drive

Compiled by: HR

Sheet No. : 1 of 2 Location : Mississauga, Ontario Checked by : AR

Posi	tion	: E: 613408, N: 4830459 (UTM 17T)			I	Elevati	on Datui	m : Geode	ic							
Rig		: Truck-mounted					Method			gers						
Ê		SOIL PROFILE		;	SAMPL		ale	Penetration To (Blows / 0.3m	est Value	es		Moisture	/ Plasticity	e e	±	Lab Data
T O Depth Scale (m)	<u>Elev</u> Depth (m) 140.7	Description	၂ ပ	Number	Туре	SPT 'N' Value	Elevation Scale (m)	X Dynamic C 1,0 Undrained Sh O Unconfine • Pocket Pe	one 20 (ear Strei ed enetromet	30 40 ngth (kPa) ♣ Field \	ane	Plastic Na Limit Water	tural Liquid Content Limit	Headspace Vapour (ppm)	Instrument Details	Onstappilized Comments Mater Level GRAIN SIZE GMIT) (MIT) GR SA SI CL
-		150mm TOPSOIL FILL, sandy silt to silty sand, trace clay, trace gravel, trace organics, trace construction debris, compact to very dense, dark brown to brown, moist		1	SS	24	140 –		/		/	0				
-1				2	、SS ,	50 / (75mm)	-				<i>></i>		0			
				3	SS	20	139 –		<			0				
-2	138.4						-									
-		SAND, trace silt, trace clay, very dense, brown, moist		4	SS	66	138 –					0				
-3				5	SS	61	-					0				
_4							137 –									
-							136 –									
-5				6	SS	52	-					0				
-							135 –									
-6 -		trace gravel		7	SS	84	-					0				
-7							134 - -									
- -8				8	SS	50 / 150mm	133 –					0				
-							132 –									
bh logs.gpj 		trace gravel		9	SS	01	-					0				
file: 1-21-0802-01 bh logs.gpj				Э	33	81	131 –							_		
≝ − 10																

Project No. : 1-21-0802-01 Client : 1470 Williamsport Holdings Inc Originated by: BR

Date started : January 7, 2022 Project : 1470 Williamsport Drive Compiled by: HR

Sheet No. :2 of 2 Checked by: AR Location: Mississauga, Ontario

: Truck-mounted Drilling Method : Solid stem augers Rig type

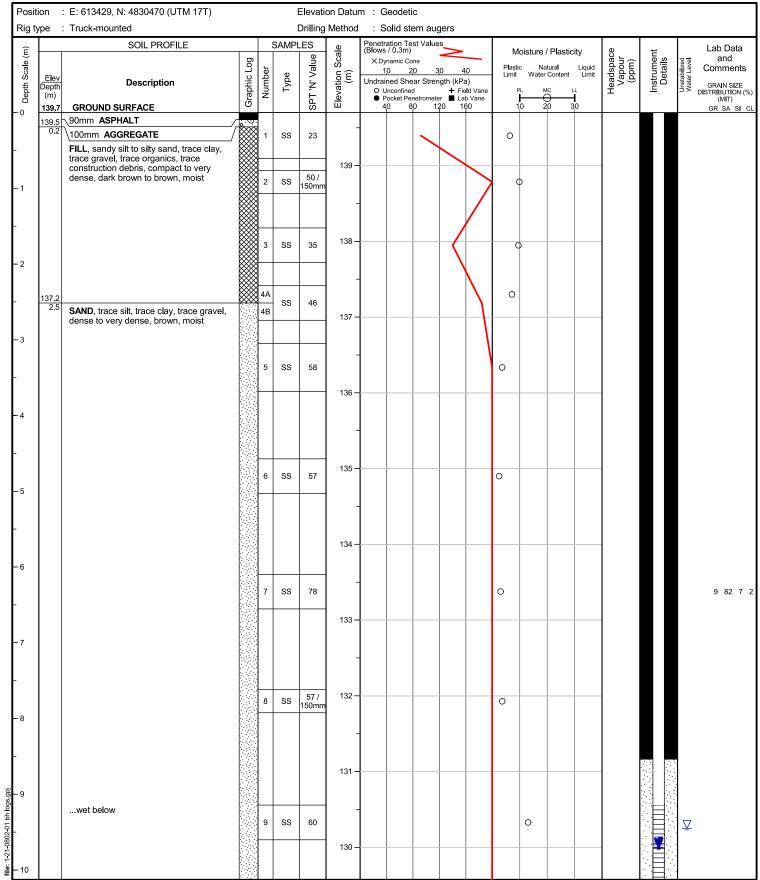
		SOIL PROFILE		(SAMPL	FS	4)	Penetration Test Values				Lab Data
Depth Scale (m)	Elev Depth (m)	Description (continued)	Graphic Log	Number	Туре	SPT 'N' Value	Elevation Scale (m)	(Blows / 0.3m) X Dynamic Cone 10 20 30 40 Undrained Shear Strength (kPa) O Unconfined + Field Vane Pocket Penetrometr ■ Lab Vane 40 80 120 160	Moisture / Plasticity Plastic Natural Liquid Limit Water Content Limit PL MC LL 10 20 30	Headspace Vapour (ppm)	Instrument Details	Lab Data and Comments Replace GRAIN SIZE DISTRIBUTION (%) (MIT) GR SA SI CL
-		SAND , trace silt, trace clay, very dense, brown, moist (continued)					-					Ā
- 11 -		wet		10	SS	61	130 –		0			
- 12	128.5 128.4	letered bade all weathered to a stick.	\bigvee	11	SS	50 /	129 -		0			
	12.3	Interred bedrock, weathered to partially unweathered shale with intermittent limestone/dolostone stringers, grey (GEORGIAN BAY FORMATION)	N V Z			125mm			EVEL READINGS	-\		

END OF BOREHOLE

Unstabilized water level measured at 10.4 m below ground surface; borehole caved to 11.9 m below ground surface upon completion of drilling.

50 mm dia. monitoring well installed.

WATER LEVEL READINGS Water Depth (m) Elevation (m)


Date	Water Deptil (III)	Lievation (III)
Jan 13, 2022	10.7	130.0
Jan 24, 2022	10.7	130.0
Feb 3, 2022	10.7	130.0
Feb 15, 2022	10.7	130.0

Project No. : 1-21-0802-01 Client : 1470 Williamsport Holdings Inc Originated by : BR

Date started : January 6, 2022 Project : 1470 Williamsport Drive Compiled by : HR

Sheet No. : 1 of 2 Location : Mississauga, Ontario Checked by : AR

Project No. : 1-21-0802-01 Client : 1470 Williamsport Holdings Inc Originated by : BR

Date started : January 6, 2022 Project : 1470 Williamsport Drive Compiled by : HR

Sheet No. : 2 of 2 Location : Mississauga, Ontario Checked by : AR

Rig type : Truck-mounted Drilling Method : Solid stem augers

				_							
<u>۽</u> [SOIL PROFILE			SAMPI		cale	Penetration Test Values (Blows / 0.3m)	Moisture / Plasticity	ہے ا	Lab Data
Depth Scale (m)	<u>Elev</u> Depth (m)	Description (continued)	Graphic Log	Number	Туре	SPT 'N' Value	Elevation Sca (m)	X Dynamic Cone	Plastic Natural Liquid Limit Water Content Limit PL MC LL 10 20 30	Headspace Vapour (ppm) Instrument	and Comments 1
-		SAND , trace silt, trace clay, trace gravel, dense to very dense, brown, moist (continued)					129 -				
- 11 -				10	SS	77	-		0		
- 12	127.5 127.4 12.3			11	SS	. 50 /	128 -		0		
	12.3	Interred bedrock, weathered to partially unweathered shale with intermittent limestone/dolostone stringers		~		75mm		WATER I	EVEL READINGS		

END OF BOREHOLE

Unstabilized water level measured at 9.4 m below ground surface; borehole caved to 11.9 m below ground surface upon completion of drilling.

50 mm dia. monitoring well installed.

WATER LEVEL READINGS Water Depth (m) Elevation (m)

Date	water beptir (iii)	Elevation (III)
Jan 13, 2022	9.7	130.0
Jan 24, 2022	9.7	130.0
Feb 3, 2022	9.7	130.0
Feb 15, 2022	9.7	130.0

Project No. : 1-21-0802-01 Client : 1470 Williamsport Holdings Inc Originated by : BR

Date started : January 6, 2022 Project : 1470 Williamsport Drive Compiled by : HR

Sheet No. : 1 of 2 Location : Mississauga, Ontario Checked by : AR

Р	ositi	on	: E: 613437, N: 4830430 (UTM 17T)			ı	Elevati	on Datu	n : Ge	eodeti	С										
R	ig ty	фе	: Truck-mounted			I	Drilling	Method			em auç										
	Det	Elev Depth (m) 139.2	Description	Graphic Log	Number	Type Type	SPT 'N' Value	Elevation Scale (m)	1,0 Undrain O Ur	namic Co 2 1ed She 1confined 1cket Per	ne 0 3 ar Strend d netromete	0 4 gth (kPa + Fie er ■ La	d Vane	P l asti Limit	c Nate	/ Plastic atural r Content	Liquid Limit	Headspace Vapour (ppm)	Instrument Details	Unstabilized Water Level	Lab Data and Comments GRAIN SIZE DISTRIBUTION (%) (MIT) GR SA SI CL
- 0 -)	139.2	75mm TOPSOIL FILL, sandy silt to silty sand, trace clay, trace gravel, trace organics, trace construction debris, very loose to loose, dark brown to brown, moist		1	SS	4	139 –)						GR SA SI CL
-1			dank blown to blown, most		2	SS	7	138 –						0							
-					3	SS	4	-						0							
-2	?	136.9						137 –													
-		2.3	SAND , trace silt, trace clay, dense to very dense, brown, moist	××××	4	SS	32	-						0							
-3 -	3		trace gravel		5	SS	42	136 –				\		0							
-4	ļ							135 –													
- -5	j		trace gravel		6	SS	47	-						0							
-6								134 - -													
-					7	SS	50 / 150mm	133 -						0							
-7 -	,							132 –													
-8	3				8	SS	50 / 125mm	131 –						0							
h logs.gpj)		wet below					130 –												<u> </u>	
file: 1-21-0802-01 bh logs.gpj	0				9	SS	75	-						0							0 93 6 1

Project No. : 1-21-0802-01 Client : 1470 Williamsport Holdings Inc Originated by : BR

Date started : January 6, 2022 Project : 1470 Williamsport Drive Compiled by : HR

Sheet No. : 2 of 2 Location : Mississauga, Ontario Checked by : AR

Position : E: 613437, N: 4830430 (UTM 17T) Elevation Datum : Geodetic

Rig type : Truck-mounted Drilling Method : Solid stem augers

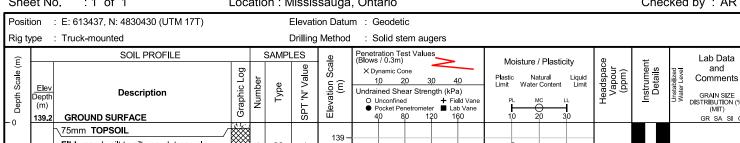
rtigit	урс	. Truck-mounted				Jilling	Mictriod	. Oolid sterri adgers			
<u> </u>		SOIL PROFILE			SAMPL		cale	Penetration Test Values (Blows / 0.3m)	Moisture / Plasticity	e t	Lab Data
Depth Scale (m)	<u>Elev</u> Depth (m)	Description (continued)	Graphic Log	Number	Type	SPT 'N' Value	Elevation S (m)	X Dynamic Cone 10 20 30 40 Undrained Shear Strength (kPa) ○ Unconfined + Field Vane ● Pocket Penetrometer ■ Lab Vane 40 80 120 160	Plastic Natural Liquid Limit Water Content Limit PL MC LL PL MC LL 10 20 30	Headspace Vapour (ppm) Instrument	e and Comments Second Sec
		SAND, trace silt, trace clay, dense to very dense, brown, moist (continued)					129 -				
- 11		trace gravel		10	SS	90	128 –		0		
- - 12	127.0	l No.				50/	127 -				
	126.9 12.3	SILTY SAND, trace gravel/rock fragments, very dense, grey, moist	131	11	SS	50 / 125mm			Φ		

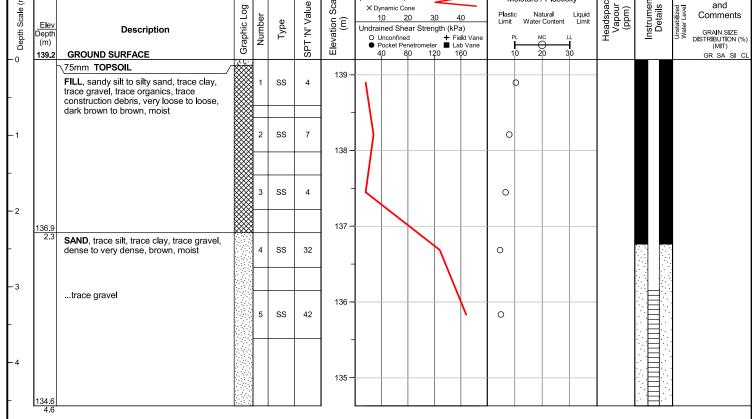
END OF BOREHOLE

Unstabilized water level measured at 9.1 m below ground surface; borehole was open upon completion of drilling.

50 mm dia. monitoring well installed.

WATER LEVEL READINGS Date Water Depth (m) Elevation (m)

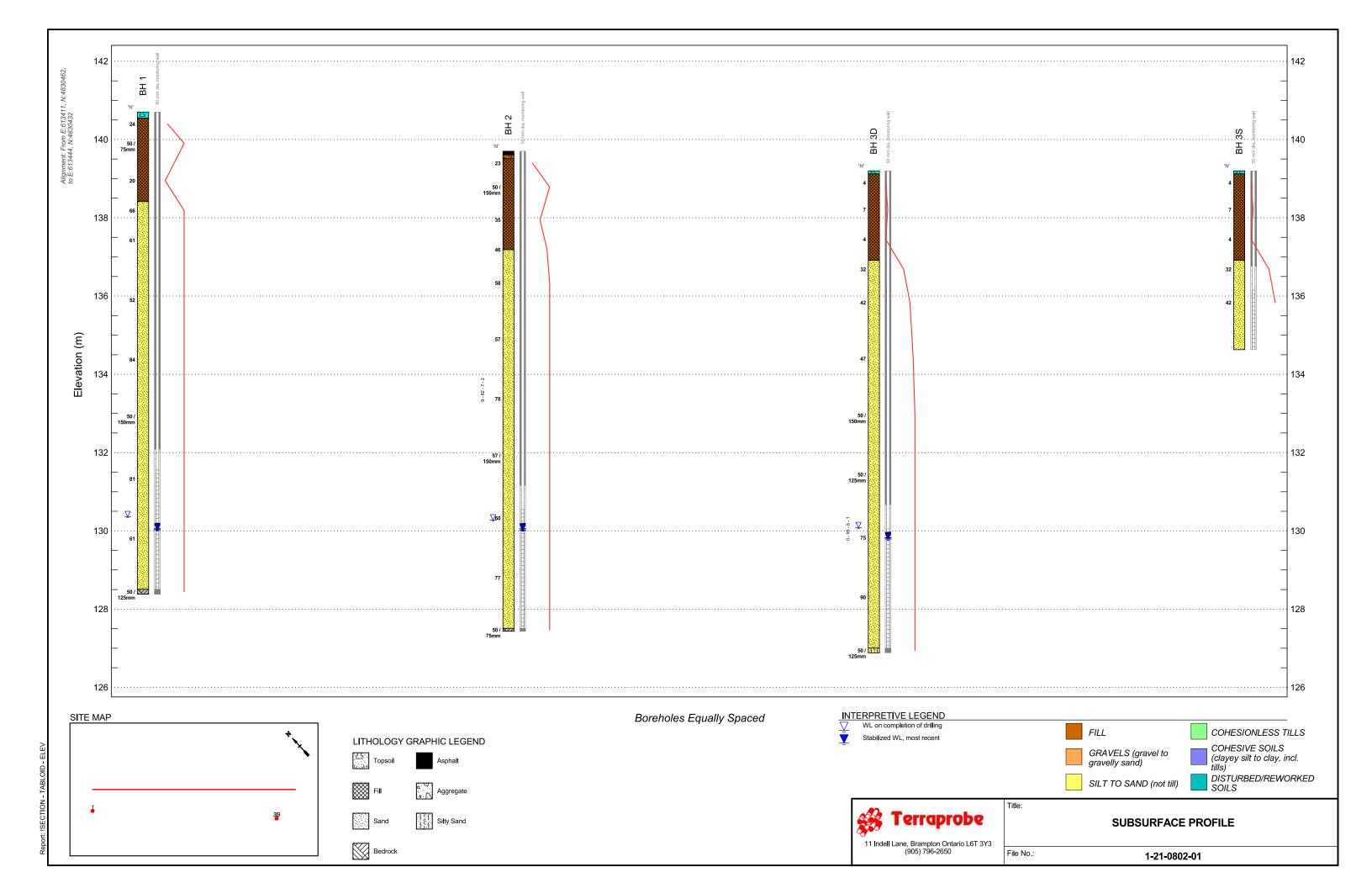

Date	<u>water Depth (m)</u>	Elevation (m)
Jan 13, 2022	9.4	129.8
Jan 24, 2022	9.4	129.8
Feb 3, 2022	9.4	129.8
Feb 15, 2022	9.4	129.8



: 1470 Williamsport Holdings Inc Originated by: BR Project No. : 1-21-0802-01 Client

Date started : January 6, 2022 Project : 1470 Williamsport Drive Compiled by: HR

Checked by: AR Sheet No. : 1 of 1 Location: Mississauga, Ontario


END OF BOREHOLE

Borehole was dry and open upon completion of drilling.

50 mm dia. monitoring well installed.

WATER LEVEL READINGS

<u>Date</u>	<u>water Depth (m)</u>	<u>Elevation (m</u>
Jan 13, 2022	dry	n/a
Jan 24, 2022	dry	n/a
Feb 3, 2022	dry	n/a
Feb 15, 2022	dry	n/a

Appendix C

Your Project #: 24-300-100

Your C.O.C. #: N/A

Attention: Bindu Goel

DS Consultants Limited 6221 Highway 7, Unit 16 Vaughan, ON CANADA L4H 0K8

Report Date: 2024/09/11

Report #: R8315569 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C4O6235 Received: 2024/08/10, 08:30

Sample Matrix: Soil # Samples Received: 24

# Jumples Received. 24					
		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Methylnaphthalene Sum	6	N/A	2024/08/15	CAM SOP-00301	EPA 8270D m
Hot Water Extractable Boron	6	2024/08/15	2024/08/16	CAM SOP-00408	R153 Ana. Prot. 2011
1,3-Dichloropropene Sum	4	N/A	2024/08/13		EPA 8260C m
Free (WAD) Cyanide	1	2024/08/13	2024/08/13	CAM SOP-00457	OMOE E3015 m
Free (WAD) Cyanide	5	2024/08/14	2024/08/14	CAM SOP-00457	OMOE E3015 m
Conductivity	6	2024/08/14	2024/08/14	CAM SOP-00414	OMOE E3530 v1 m
Hexavalent Chromium in Soil by IC (1)	6	2024/08/17	2024/08/19	CAM SOP-00436	EPA 3060A/7199 m
Dioxins/Furans in Soil (1613B) (2)	1	2024/08/20	2024/09/10	BRL SOP-00410;BRL SOP-	EPA 1613B m
				00407 & 405	
Dioxins/Furans in Soil (1613B) (2)	1	2024/08/20	2024/09/09	BRL SOP-00410;BRL SOP-	EPA 1613B m
				00407 & 405	
Petroleum Hydro. CCME F1 & BTEX in Soil (3)	5	N/A	2024/08/14	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Soil (4)	6	2024/08/14	2024/08/15	CAM SOP-00316	CCME CWS m
Acid Extractable Metals by ICPMS	6	2024/08/16	2024/08/16	CAM SOP-00447	EPA 6020B m
Moisture	21	N/A	2024/08/10	CAM SOP-00445	Carter 2nd ed 70.2 m
PAH Compounds in Soil by GC/MS (SIM)	6	2024/08/13	2024/08/14	CAM SOP-00318	EPA 8270E
Polychlorinated Biphenyl in Soil	2	2024/08/12	2024/08/13	CAM SOP-00309	EPA 8082A m
pH CaCl2 EXTRACT	11	2024/08/14	2024/08/14	CAM SOP-00413	EPA 9045 D m
Sodium Adsorption Ratio (SAR)	6	N/A	2024/08/15	CAM SOP-00102	EPA 6010C
Volatile Organic Compounds and F1 PHCs	1	N/A	2024/08/12	CAM SOP-00230	EPA 8260C m
Volatile Organic Compounds in Soil	3	N/A	2024/08/12	CAM SOP-00228	EPA 8260D

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, EPA, APHA or the Quebec Ministry of Environment.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Your Project #: 24-300-100

Your C.O.C. #: N/A

Attention: Bindu Goel

DS Consultants Limited 6221 Highway 7, Unit 16 Vaughan, ON CANADA L4H 0K8

Report Date: 2024/09/11

Report #: R8315569 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C406235

Received: 2024/08/10, 08:30

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Soils are reported on a dry weight basis unless otherwise specified.
- (2) Soils are reported on a dry weight basis unless otherwise specified.

Confirmatory runs for 2,3,7,8-TCDF are performed only if the primary result is greater than the RDL.

- (3) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is the date sampled unless otherwise stated.
- (4) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Bureau Veritas

11 Sep 2024 19:11:05

Please direct all questions regarding this Certificate of Analysis to:

Ashton Gibson, Project Manager

Email: ashton.gibson@bureauveritas.com

Phone# (905)817-5765

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Total Cover Pages : 2 Page 2 of 38

Report Date: 2024/09/11

DS Consultants Limited Client Project #: 24-300-100 Sampler Initials: DAS

O.REG 153 METALS & INORGANICS PKG (SOIL)

-										
Bureau Veritas ID			ZYT608	ZYT610		ZYT614		ZYT618		
Sampling Date			2024/08/09	2024/08/09		2024/08/09		2024/08/09		
COC Number			N/A	N/A		N/A		N/A		
	UNITS	Criteria	BH24-1 SS1	DUP1	QC Batch	BH24-2 SS1	QC Batch	BH24-3 SS2	RDL	QC Batch
Calculated Parameters										
Sodium Adsorption Ratio	N/A	5.0	0.31 (1)	0.32 (1)	9568697	0.43 (1)	9568697	0.36 (1)		9568697
Inorganics	_									
Conductivity	mS/cm	0.7	0.11	0.11	9575958	0.073	9575958	0.10	0.002	9575958
Available (CaCl2) pH	рН	-	7.90	7.87	9575290	8.01	9575290	7.91		9575290
WAD Cyanide (Free)	ug/g	0.051	<0.01	<0.01	9574762	<0.01	9572053	<0.01	0.01	9574762
Chromium (VI)	ug/g	8	<0.18	<0.18	9582926	<0.18	9582926	<0.18	0.18	9582926
Metals	•									
Hot Water Ext. Boron (B)	ug/g	1.5	0.086	0.090	9579186	<0.050	9579186	0.054	0.050	9579186
Acid Extractable Antimony (Sb)	ug/g	7.5	<0.20	<0.20	9580628	<0.20	9580628	<0.20	0.20	9580628
Acid Extractable Arsenic (As)	ug/g	18	1.7	1.7	9580628	1.7	9580628	<1.0	1.0	9580628
Acid Extractable Barium (Ba)	ug/g	390	22	21	9580628	14	9580628	14	0.50	9580628
Acid Extractable Beryllium (Be)	ug/g	4	0.21	0.28	9580628	<0.20	9580628	<0.20	0.20	9580628
Acid Extractable Boron (B)	ug/g	120	<5.0	<5.0	9580628	<5.0	9580628	<5.0	5.0	9580628
Acid Extractable Cadmium (Cd)	ug/g	1.2	<0.10	<0.10	9580628	<0.10	9580628	<0.10	0.10	9580628
Acid Extractable Chromium (Cr)	ug/g	160	7.4	7.5	9580628	8.8	9580628	5.6	1.0	9580628
Acid Extractable Cobalt (Co)	ug/g	22	3.4	3.1	9580628	4.7	9580628	2.5	0.10	9580628
Acid Extractable Copper (Cu)	ug/g	140	8.1	7.5	9580628	9.6	9580628	5.0	0.50	9580628
Acid Extractable Lead (Pb)	ug/g	120	6.5	7.2	9580628	8.7	9580628	3.2	1.0	9580628
Acid Extractable Molybdenum (Mo)	ug/g	6.9	<0.50	<0.50	9580628	<0.50	9580628	<0.50	0.50	9580628
Acid Extractable Nickel (Ni)	ug/g	100	6.8	6.0	9580628	7.5	9580628	4.8	0.50	9580628
Acid Extractable Selenium (Se)	ug/g	2.4	<0.50	<0.50	9580628	<0.50	9580628	<0.50	0.50	9580628
Acid Extractable Silver (Ag)	ug/g	20	<0.20	<0.20	9580628	<0.20	9580628	<0.20	0.20	9580628
Acid Extractable Thallium (TI)	ug/g	1	0.053	<0.050	9580628	<0.050	9580628	<0.050	0.050	9580628
Acid Extractable Uranium (U)	ug/g	23	0.53	0.38	9580628	0.36	9580628	0.28	0.050	9580628
Acid Extractable Vanadium (V)	ug/g	86	17	17	9580628	25	9580628	13	5.0	9580628
Acid Extractable Zinc (Zn)	ug/g	340	24	23	9580628	26	9580628	13	5.0	9580628
Acid Extractable Mercury (Hg)	ug/g	0.27	<0.050	<0.050	9580628	<0.050	9580628	<0.050	0.050	9580628

No Fill Grey Black

No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil

(1) Sodium was not detected. To report SAR the sodium detection limit was used in the calculation. This value represents a maximum ratio.

O.REG 153 METALS & INORGANICS PKG (SOIL)

Bureau Veritas ID			ZYT625	ZYT626		
Sampling Date			2024/08/09	2024/08/09		
COC Number			N/A	N/A		
	UNITS	Criteria	MW24-5 SS1	DUP4	RDL	QC Batch
Calculated Parameters						
Sodium Adsorption Ratio	N/A	5.0	0.33 (1)	0.33 (1)		9568697
Inorganics						
Conductivity	mS/cm	0.7	0.10	0.11	0.002	9575958
Available (CaCl2) pH	рН	-	7.93	7.85		9575290
WAD Cyanide (Free)	ug/g	0.051	<0.01	<0.01	0.01	9574762
Chromium (VI)	ug/g	8	<0.18	<0.18	0.18	9582926
Metals						
Hot Water Ext. Boron (B)	ug/g	1.5	0.070	0.073	0.050	9579186
Acid Extractable Antimony (Sb)	ug/g	7.5	<0.20	<0.20	0.20	9580628
Acid Extractable Arsenic (As)	ug/g	18	1.5	2.0	1.0	9580628
Acid Extractable Barium (Ba)	ug/g	390	16	22	0.50	9580628
Acid Extractable Beryllium (Be)	ug/g	4	<0.20	0.21	0.20	9580628
Acid Extractable Boron (B)	ug/g	120	<5.0	<5.0	5.0	9580628
Acid Extractable Cadmium (Cd)	ug/g	1.2	<0.10	<0.10	0.10	9580628
Acid Extractable Chromium (Cr)	ug/g	160	7.1	8.4	1.0	9580628
Acid Extractable Cobalt (Co)	ug/g	22	2.8	3.6	0.10	9580628
Acid Extractable Copper (Cu)	ug/g	140	6.8	9.1	0.50	9580628
Acid Extractable Lead (Pb)	ug/g	120	9.4	13	1.0	9580628
Acid Extractable Molybdenum (Mo)	ug/g	6.9	<0.50	<0.50	0.50	9580628
Acid Extractable Nickel (Ni)	ug/g	100	5.4	7.4	0.50	9580628
Acid Extractable Selenium (Se)	ug/g	2.4	<0.50	<0.50	0.50	9580628
Acid Extractable Silver (Ag)	ug/g	20	<0.20	<0.20	0.20	9580628
Acid Extractable Thallium (Tl)	ug/g	1	<0.050	0.054	0.050	9580628
Acid Extractable Uranium (U)	ug/g	23	0.32	0.35	0.050	9580628
Acid Extractable Vanadium (V)	ug/g	86	16	19	5.0	9580628
Acid Extractable Zinc (Zn)	ug/g	340	20	24	5.0	9580628
Acid Extractable Mercury (Hg)	ug/g	0.27	<0.050	<0.050	0.050	9580628

No Fill

No Exceedance

Grey Black Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil

(1) Sodium was not detected. To report SAR the sodium detection limit was used in the calculation.

This value represents a maximum ratio.

Report Date: 2024/09/11

DS Consultants Limited Client Project #: 24-300-100 Sampler Initials: DAS

O.REG 153 PAHS (SOIL)

Bureau Veritas ID			ZYT609	ZYT611	ZYT614			ZYT614		
Sampling Date			2024/08/09	2024/08/09	2024/08/09			2024/08/09		
COC Number			N/A	N/A	N/A			N/A		
	UNITS	Criteria	BH24-1 SS2	DUP2	BH24-2 SS1	RDL	QC Batch	BH24-2 SS1 Lab-Dup	RDL	QC Batch
Calculated Parameters										
Methylnaphthalene, 2-(1-)	ug/g	-	<0.0071	<0.0071	<0.0071	0.0071	9568698			
Polyaromatic Hydrocarbons						•				
Acenaphthene	ug/g	7.9	<0.0050	<0.0050	<0.0050	0.0050	9574798	<0.0050	0.0050	9574798
Acenaphthylene	ug/g	0.15	<0.0050	<0.0050	<0.0050	0.0050	9574798	<0.0050	0.0050	9574798
Anthracene	ug/g	0.67	<0.0050	<0.0050	<0.0050	0.0050	9574798	<0.0050	0.0050	9574798
Benzo(a)anthracene	ug/g	0.5	<0.0050	<0.0050	<0.0050	0.0050	9574798	<0.0050	0.0050	9574798
Benzo(a)pyrene	ug/g	0.3	<0.0050	<0.0050	<0.0050	0.0050	9574798	<0.0050	0.0050	9574798
Benzo(b/j)fluoranthene	ug/g	0.78	<0.0050	<0.0050	<0.0050	0.0050	9574798	<0.0050	0.0050	9574798
Benzo(g,h,i)perylene	ug/g	6.6	<0.0050	<0.0050	<0.0050	0.0050	9574798	<0.0050	0.0050	9574798
Benzo(k)fluoranthene	ug/g	0.78	<0.0050	<0.0050	<0.0050	0.0050	9574798	<0.0050	0.0050	9574798
Chrysene	ug/g	7	<0.0050	<0.0050	<0.0050	0.0050	9574798	<0.0050	0.0050	9574798
Dibenzo(a,h)anthracene	ug/g	0.1	<0.0050	<0.0050	<0.0050	0.0050	9574798	<0.0050	0.0050	9574798
Fluoranthene	ug/g	0.69	<0.0050	<0.0050	<0.0050	0.0050	9574798	<0.0050	0.0050	9574798
Fluorene	ug/g	62	<0.0050	<0.0050	<0.0050	0.0050	9574798	<0.0050	0.0050	9574798
Indeno(1,2,3-cd)pyrene	ug/g	0.38	<0.0050	<0.0050	<0.0050	0.0050	9574798	<0.0050	0.0050	9574798
1-Methylnaphthalene	ug/g	0.99	<0.0050	<0.0050	<0.0050	0.0050	9574798	<0.0050	0.0050	9574798
2-Methylnaphthalene	ug/g	0.99	<0.0050	<0.0050	<0.0050	0.0050	9574798	<0.0050	0.0050	9574798
Naphthalene	ug/g	0.6	<0.0050	<0.0050	<0.0050	0.0050	9574798	<0.0050	0.0050	9574798
Phenanthrene	ug/g	6.2	<0.0050	<0.0050	<0.0050	0.0050	9574798	<0.0050	0.0050	9574798
Pyrene	ug/g	78	<0.0050	<0.0050	<0.0050	0.0050	9574798	<0.0050	0.0050	9574798
Surrogate Recovery (%)										
D10-Anthracene	%	-	92	87	76		9574798	103		9574798
D14-Terphenyl (FS)	%	-	89	82	64		9574798	97		9574798
D8-Acenaphthylene	%	-	82	79	66		9574798	88		9574798

No Fill Grey Black

No Exceedance Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

O.REG 153 PAHS (SOIL)

Bureau Veritas ID			ZYT617	ZYT627	ZYT629		
Sampling Date			2024/08/09	2024/08/09	2024/08/09		
COC Number			N/A	N/A	N/A		
	UNITS	Criteria	BH24-3 SS1	MW24-5 SS2	MW24-5 SS4	RDL	QC Batch
Calculated Parameters							
Methylnaphthalene, 2-(1-)	ug/g	-	<0.0071	<0.0071	<0.0071	0.0071	9568698
Polyaromatic Hydrocarbons	•					•	•
Acenaphthene	ug/g	7.9	<0.0050	<0.0050	<0.0050	0.0050	9574798
Acenaphthylene	ug/g	0.15	<0.0050	<0.0050	<0.0050	0.0050	9574798
Anthracene	ug/g	0.67	<0.0050	<0.0050	<0.0050	0.0050	9574798
Benzo(a)anthracene	ug/g	0.5	<0.0050	<0.0050	<0.0050	0.0050	9574798
Benzo(a)pyrene	ug/g	0.3	<0.0050	<0.0050	<0.0050	0.0050	9574798
Benzo(b/j)fluoranthene	ug/g	0.78	<0.0050	<0.0050	<0.0050	0.0050	9574798
Benzo(g,h,i)perylene	ug/g	6.6	<0.0050	<0.0050	<0.0050	0.0050	9574798
Benzo(k)fluoranthene	ug/g	0.78	<0.0050	<0.0050	<0.0050	0.0050	9574798
Chrysene	ug/g	7	<0.0050	<0.0050	<0.0050	0.0050	9574798
Dibenzo(a,h)anthracene	ug/g	0.1	<0.0050	<0.0050	<0.0050	0.0050	9574798
Fluoranthene	ug/g	0.69	0.0078	<0.0050	<0.0050	0.0050	9574798
Fluorene	ug/g	62	<0.0050	<0.0050	<0.0050	0.0050	9574798
Indeno(1,2,3-cd)pyrene	ug/g	0.38	<0.0050	<0.0050	<0.0050	0.0050	9574798
1-Methylnaphthalene	ug/g	0.99	<0.0050	<0.0050	<0.0050	0.0050	9574798
2-Methylnaphthalene	ug/g	0.99	<0.0050	<0.0050	<0.0050	0.0050	9574798
Naphthalene	ug/g	0.6	<0.0050	<0.0050	<0.0050	0.0050	9574798
Phenanthrene	ug/g	6.2	0.0060	<0.0050	<0.0050	0.0050	9574798
Pyrene	ug/g	78	0.0059	<0.0050	<0.0050	0.0050	9574798
Surrogate Recovery (%)							
D10-Anthracene	%	-	107	99	104		9574798
D14-Terphenyl (FS)	%	-	100	96	98		9574798
D8-Acenaphthylene	%	-	89	86	81		9574798
							•

No Fill Grey No Exceedance

Exceeds 1 criteria policy/level

Black Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

O.REG 153 PCBS (SOIL)

-									
Bureau Veritas ID			ZYT621	ZYT624					
Sampling Date			2024/08/09	2024/08/09					
COC Number			N/A	N/A					
	UNITS	Criteria	BH24-4 SS1	DUP5	RDL	QC Batch			
PCBs									
Aroclor 1242	ug/g	-	<0.010	<0.010	0.010	9571819			
Aroclor 1248	ug/g	-	<0.010	<0.010	0.010	9571819			
Aroclor 1254	ug/g	-	<0.010	<0.010	0.010	9571819			
Aroclor 1260	ug/g	-	<0.010	<0.010	0.010	9571819			
Total PCB	ug/g	0.35	<0.010	<0.010	0.010	9571819			
Surrogate Recovery (%)									
Decachlorobiphenyl	%	-	96	87		9571819			

No Fill

No Exceedance

Grey Black Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

O.REG 153 PHCS, BTEX/F1-F4 (SOIL)

Bureau Veritas ID			ZYT612	ZYT615	ZYT619	ZYT623	ZYT629				
Sampling Date			2024/08/09	2024/08/09	2024/08/09	2024/08/09	2024/08/09				
COC Number			N/A	N/A	N/A	N/A	N/A				
	UNITS	Criteria	BH24-1 SS4	BH24-2 SS4	BH24-3 SS4	DUP3	MW24-5 SS4	RDL	QC Batch		
BTEX & F1 Hydrocarbons											
Benzene	ug/g	0.21	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	9573977		
Toluene	ug/g	2.3	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	9573977		
Ethylbenzene	ug/g	1.1	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	9573977		
o-Xylene	ug/g	-	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	9573977		
p+m-Xylene	ug/g	1	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	9573977		
Total Xylenes	ug/g	3.1	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	9573977		
F1 (C6-C10)	ug/g	55	<10	<10	<10	<10	<10	10	9573977		
F1 (C6-C10) - BTEX	ug/g	55	<10	<10	<10	<10	<10	10	9573977		
F2-F4 Hydrocarbons											
F2 (C10-C16 Hydrocarbons)	ug/g	98	<10	<10	<10	<10	<10	10	9576187		
F3 (C16-C34 Hydrocarbons)	ug/g	300	<50	<50	<50	<50	<50	50	9576187		
F4 (C34-C50 Hydrocarbons)	ug/g	2800	<50	<50	<50	<50	<50	50	9576187		
Reached Baseline at C50	ug/g	ı	Yes	Yes	Yes	Yes	Yes		9576187		
Surrogate Recovery (%)											
1,4-Difluorobenzene	%	1	120	120	119	115	111		9573977		
4-Bromofluorobenzene	%	ı	95	86	97	86	100		9573977		
D10-o-Xylene	%	-	93	96	107	101	104		9573977		
D4-1,2-Dichloroethane	%	-	115	118	112	106	125		9573977		
o-Terphenyl	%	-	102	103	107	104	107		9576187		

No Fill Grey

Black

No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Bureau Veritas ID			ZYT630			ZYT630		
Sampling Date			2024/08/09			2024/08/09		
COC Number			N/A			N/A		
						MW24-5		
	UNITS	Criteria	MW24-5 SS9	RDL	QC Batch	SS9 Lab-Dup	RDL	QC Batch
Calculated Parameters		I				•		
1,3-Dichloropropene (cis+trans)	ug/g	0.05	<0.050	0.050	9568401			
Volatile Organics		l	ı					
Acetone (2-Propanone)	ug/g	16	<0.49	0.49	9569568			
Benzene	ug/g	0.21	<0.0060	0.0060	9569568			
Bromodichloromethane	ug/g	1.5	<0.040	0.040	9569568			
Bromoform	ug/g	0.27	<0.040	0.040	9569568			
Bromomethane	ug/g	0.05	<0.040	0.040	9569568			
Carbon Tetrachloride	ug/g	0.05	<0.040	0.040	9569568			
Chlorobenzene	ug/g	2.4	<0.040	0.040	9569568			
Chloroform	ug/g	0.05	<0.040	0.040	9569568			
Dibromochloromethane	ug/g	2.3	<0.040	0.040	9569568			
1,2-Dichlorobenzene	ug/g	1.2	<0.040	0.040	9569568			
1,3-Dichlorobenzene	ug/g	4.8	<0.040	0.040	9569568			
1,4-Dichlorobenzene	ug/g	0.083	<0.040	0.040	9569568			
Dichlorodifluoromethane (FREON 12)	ug/g	16	<0.040	0.040	9569568			
1,1-Dichloroethane	ug/g	0.47	<0.040	0.040	9569568			
1,2-Dichloroethane	ug/g	0.05	<0.049	0.049	9569568			
1,1-Dichloroethylene	ug/g	0.05	<0.040	0.040	9569568			
cis-1,2-Dichloroethylene	ug/g	1.9	<0.040	0.040	9569568			
trans-1,2-Dichloroethylene	ug/g	0.084	<0.040	0.040	9569568			
1,2-Dichloropropane	ug/g	0.05	<0.040	0.040	9569568			
cis-1,3-Dichloropropene	ug/g	0.05	<0.030	0.030	9569568			
trans-1,3-Dichloropropene	ug/g	0.05	<0.040	0.040	9569568			
Ethylbenzene	ug/g	1.1	<0.010	0.010	9569568			
Ethylene Dibromide	ug/g	0.05	<0.040	0.040	9569568			
Hexane	ug/g	2.8	<0.040	0.040	9569568			
Methylene Chloride(Dichloromethane)	ug/g	0.1	<0.049	0.049	9569568			

No Fill Grey

Black

No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Bureau Veritas ID			ZYT630			ZYT630		
Sampling Date			2024/08/09			2024/08/09		
COC Number			N/A			N/A		
	UNITS	Criteria	MW24-5 SS9	RDL	QC Batch	MW24-5 SS9 Lab-Dup	RDL	QC Batch
Methyl Ethyl Ketone (2-Butanone)	ug/g	16	<0.40	0.40	9569568			
Methyl Isobutyl Ketone	ug/g	1.7	<0.40	0.40	9569568			
Methyl t-butyl ether (MTBE)	ug/g	0.75	<0.040	0.040	9569568			
Styrene	ug/g	0.7	<0.040	0.040	9569568			
1,1,1,2-Tetrachloroethane	ug/g	0.058	<0.040	0.040	9569568			
1,1,2,2-Tetrachloroethane	ug/g	0.05	<0.040	0.040	9569568			
Tetrachloroethylene	ug/g	0.28	<0.040	0.040	9569568			
Toluene	ug/g	2.3	<0.020	0.020	9569568			
1,1,1-Trichloroethane	ug/g	0.38	<0.040	0.040	9569568			
1,1,2-Trichloroethane	ug/g	0.05	<0.040	0.040	9569568			
Trichloroethylene	ug/g	0.061	<0.010	0.010	9569568			
Trichlorofluoromethane (FREON 11)	ug/g	4	<0.040	0.040	9569568			
Vinyl Chloride	ug/g	0.02	<0.019	0.019	9569568			
p+m-Xylene	ug/g	-	<0.020	0.020	9569568			
o-Xylene	ug/g	-	<0.020	0.020	9569568			
Total Xylenes	ug/g	3.1	<0.020	0.020	9569568			
F1 (C6-C10)	ug/g	55	<10	10	9569568			
F1 (C6-C10) - BTEX	ug/g	55	<10	10	9569568			
F2-F4 Hydrocarbons	•	·	•		•		•	
F2 (C10-C16 Hydrocarbons)	ug/g	98	<10	10	9576187	<10	10	9576187
F3 (C16-C34 Hydrocarbons)	ug/g	300	<50	50	9576187	<50	50	9576187
F4 (C34-C50 Hydrocarbons)	ug/g	2800	<50	50	9576187	<50	50	9576187
Reached Baseline at C50	ug/g	-	Yes		9576187	Yes		9576187
Surrogate Recovery (%)								
o-Terphenyl	%	_	105		9576187	106		9576187
4-Bromofluorobenzene	%	-	99		9569568			
D10-o-Xylene	%	-	86		9569568			
D4-1,2-Dichloroethane	%	-	102		9569568			

No Fill
Grey
Black

No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Bureau Veritas ID			ZYT630			ZYT630		
Sampling Date			2024/08/09			2024/08/09		
COC Number			N/A			N/A		
	UNITS	Criteria	MW24-5 SS9	RDL	QC Batch	MW24-5 SS9 Lab-Dup	RDL	QC Batch
D8-Toluene	%	-	95		9569568			

No Fill Grey

Black

No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

O.REG 153 VOCS BY HS (SOIL)

		ı		i		1	
Bureau Veritas ID			ZYT613	ZYT616	ZYT620		
Sampling Date			2024/08/09	2024/08/09	2024/08/09		
COC Number			N/A	N/A	N/A		
	UNITS	Criteria	BH24-1 SS5	BH24-2 SS5	BH24-3 SS5	RDL	QC Batch
Calculated Parameters							
1,3-Dichloropropene (cis+trans)	ug/g	0.05	<0.050	<0.050	<0.050	0.050	9568401
Volatile Organics	•						
Acetone (2-Propanone)	ug/g	16	<0.49	<0.49	<0.49	0.49	9569599
Benzene	ug/g	0.21	<0.0060	<0.0060	<0.0060	0.0060	9569599
Bromodichloromethane	ug/g	1.5	<0.040	<0.040	<0.040	0.040	9569599
Bromoform	ug/g	0.27	<0.040	<0.040	<0.040	0.040	9569599
Bromomethane	ug/g	0.05	<0.040	<0.040	<0.040	0.040	9569599
Carbon Tetrachloride	ug/g	0.05	<0.040	<0.040	<0.040	0.040	9569599
Chlorobenzene	ug/g	2.4	<0.040	<0.040	<0.040	0.040	9569599
Chloroform	ug/g	0.05	<0.040	<0.040	<0.040	0.040	9569599
Dibromochloromethane	ug/g	2.3	<0.040	<0.040	<0.040	0.040	9569599
1,2-Dichlorobenzene	ug/g	1.2	<0.040	<0.040	<0.040	0.040	9569599
1,3-Dichlorobenzene	ug/g	4.8	<0.040	<0.040	<0.040	0.040	9569599
1,4-Dichlorobenzene	ug/g	0.083	<0.040	<0.040	<0.040	0.040	9569599
Dichlorodifluoromethane (FREON 12)	ug/g	16	<0.040	<0.040	<0.040	0.040	9569599
1,1-Dichloroethane	ug/g	0.47	<0.040	<0.040	<0.040	0.040	9569599
1,2-Dichloroethane	ug/g	0.05	<0.049	<0.049	<0.049	0.049	9569599
1,1-Dichloroethylene	ug/g	0.05	<0.040	<0.040	<0.040	0.040	9569599
cis-1,2-Dichloroethylene	ug/g	1.9	<0.040	<0.040	<0.040	0.040	9569599
trans-1,2-Dichloroethylene	ug/g	0.084	<0.040	<0.040	<0.040	0.040	9569599
1,2-Dichloropropane	ug/g	0.05	<0.040	<0.040	<0.040	0.040	9569599
cis-1,3-Dichloropropene	ug/g	0.05	<0.030	<0.030	<0.030	0.030	9569599
trans-1,3-Dichloropropene	ug/g	0.05	<0.040	<0.040	<0.040	0.040	9569599
Ethylbenzene	ug/g	1.1	<0.010	<0.010	<0.010	0.010	9569599
Ethylene Dibromide	ug/g	0.05	<0.040	<0.040	<0.040	0.040	9569599
Hexane	ug/g	2.8	<0.040	<0.040	<0.040	0.040	9569599
Methylene Chloride(Dichloromethane)	ug/g	0.1	<0.049	<0.049	<0.049	0.049	9569599
Methyl Ethyl Ketone (2-Butanone)	ug/g	16	<0.40	<0.40	<0.40	0.40	9569599
Methyl Isobutyl Ketone	ug/g	1.7	<0.40	<0.40	<0.40	0.40	9569599
Methyl t-butyl ether (MTBE)	ug/g	0.75	<0.040	<0.040	<0.040	0.040	9569599
No Fyreedance							

No Fill Grey

Black

No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

O.REG 153 VOCS BY HS (SOIL)

Bureau Veritas ID			ZYT613	ZYT616	ZYT620		
Sampling Date			2024/08/09	2024/08/09	2024/08/09		
COC Number			N/A	N/A	N/A		
	UNITS	Criteria	BH24-1 SS5	BH24-2 SS5	BH24-3 SS5	RDL	QC Batch
Styrene	ug/g	0.7	<0.040	<0.040	<0.040	0.040	9569599
1,1,1,2-Tetrachloroethane	ug/g	0.058	<0.040	<0.040	<0.040	0.040	9569599
1,1,2,2-Tetrachloroethane	ug/g	0.05	<0.040	<0.040	<0.040	0.040	9569599
Tetrachloroethylene	ug/g	0.28	<0.040	<0.040	<0.040	0.040	9569599
Toluene	ug/g	2.3	<0.020	<0.020	<0.020	0.020	9569599
1,1,1-Trichloroethane	ug/g	0.38	<0.040	<0.040	<0.040	0.040	9569599
1,1,2-Trichloroethane	ug/g	0.05	<0.040	<0.040	<0.040	0.040	9569599
Trichloroethylene	ug/g	0.061	<0.010	<0.010	<0.010	0.010	9569599
Trichlorofluoromethane (FREON 11)	ug/g	4	<0.040	<0.040	<0.040	0.040	9569599
Vinyl Chloride	ug/g	0.02	<0.019	<0.019	<0.019	0.019	9569599
p+m-Xylene	ug/g	-	<0.020	<0.020	<0.020	0.020	9569599
o-Xylene	ug/g	-	<0.020	<0.020	<0.020	0.020	9569599
Total Xylenes	ug/g	3.1	<0.020	<0.020	<0.020	0.020	9569599
Surrogate Recovery (%)							
4-Bromofluorobenzene	%	-	96	96	95		9569599
D10-o-Xylene	%	-	97	96	97		9569599
D4-1,2-Dichloroethane	%	-	108	108	109		9569599
D8-Toluene	%	-	93	93	93		9569599

No Fill
Grey
Black

No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

RESULTS OF ANALYSES OF SOIL

Bureau Veritas ID		ZYT608		ZYT609		ZYT610	ZYT610		ZYT611		
Sampling Date		2024/08/09		2024/08/09		2024/08/09	2024/08/09		2024/08/09		
COC Number		N/A		N/A		N/A	N/A		N/A		
	UNITS	BH24-1 SS1	QC Batch	BH24-1 SS2	QC Batch	DUP1	DUP1 Lab-Dup	QC Batch	DUP2	RDL	QC Batch
Inorganics											
Moisture	%	8.9	9569080	17	9569056	9.6	9.6	9569080	19	1.0	9569056

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Bureau Veritas ID		ZYT612		ZYT613		ZYT614		ZYT615		
Sampling Date		2024/08/09		2024/08/09		2024/08/09		2024/08/09		
COC Number		N/A		N/A		N/A		N/A		
	UNITS	BH24-1 SS4	QC Batch	BH24-1 SS5	QC Batch	BH24-2 SS1	QC Batch	BH24-2 SS4	RDL	QC Batch
Inorganics	•									
Moisture	%	5.0	9569056	4.0	9569080	5.9	9569056	5.4	1.0	9569056
Available (CaCl2) pH	рН	10.8	9575275					8.02		9575275
RDL = Reportable Detection Limit										
QC Batch = Quality Contro	ol Batch									

Bureau Veritas ID		ZYT616		ZYT617		ZYT618		ZYT619		
Sampling Date		2024/08/09		2024/08/09		2024/08/09		2024/08/09		
COC Number		N/A		N/A		N/A		N/A		
	UNITS	BH24-2 SS5	QC Batch	BH24-3 SS1	QC Batch	BH24-3 SS2	QC Batch	BH24-3 SS4	RDL	QC Batch
Inorganics										
Moisture	%	4.1	9569080	13	9569056	7.8	9569080	15	1.0	9569056
RDL = Reportable Detection Limit										

QC Batch = Quality Control Batch

RESULTS OF ANALYSES OF SOIL

Bureau Veritas ID		ZYT620		ZYT621			ZYT622		ZYT623		
Sampling Date		2024/08/09		2024/08/09			2024/08/09		2024/08/09		
COC Number		N/A		N/A			N/A		N/A		
	UNITS	BH24-3 SS5	QC Batch	BH24-4 SS1	RDL	QC Batch	BH24-4 SS3	QC Batch	DUP3	RDL	QC Batch
Inorganics											
Moisture	%	9.6	9569080	8.6	1.0	9569056			3.3	1.0	9569056
Available (CaCl2) pH	рН			7.74		9575290	7.45	9575290			
RDL = Reportable Detecti QC Batch = Quality Contro			•								

Bureau Veritas ID		ZYT623	ZYT624		ZYT625	ZYT626		ZYT627		
Sampling Date		2024/08/09	2024/08/09		2024/08/09	2024/08/09		2024/08/09		
COC Number		N/A	N/A		N/A	N/A		N/A		
	UNITS	DUP3 Lab-Dup	DUP5	QC Batch	MW24-5 SS1	DUP4	QC Batch	MW24-5 SS2	RDL	QC Batch
Inorganics										
Moisture	%	3.4	7.5	9569056	8.3	7.6	9569080	12	1.0	9569056

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Bureau Veritas ID		ZYT628	ZYT628		ZYT629	ZYT630		
Sampling Date		2024/08/09	2024/08/09		2024/08/09	2024/08/09		
COC Number		N/A	N/A		N/A	N/A		
	UNITS	MW24-5 SS3	MW24-5 SS3 Lab-Dup	QC Batch	MW24-5 SS4	MW24-5 SS9	RDL	QC Batch
Inorganics								
Moisture	%				15	20	1.0	9569056
Available (CaCl2) pH	рН	7.74	7.74	9575290				

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

DIOXINS AND FURANS BY HRMS (SOIL)

Bureau Veritas ID		ZYT629						
Sampling Date		2024/08/09						
COC Number		N/A			TOXIC EQU	IVALENCY	# of	
	UNITS	MW24-5 SS4	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
Dioxins & Furans								
2,3,7,8-Tetra CDD *	pg/g	<0.253 (1)	0.253	1.00	1.00	0.253	0	9587136
1,2,3,7,8-Penta CDD *	pg/g	0.233	0.136	5.00	1.00	0.233	1	9587136
1,2,3,4,7,8-Hexa CDD *	pg/g	<0.193 (1)	0.193	5.00	0.100	0.0193	0	9587136
1,2,3,6,7,8-Hexa CDD *	pg/g	0.634	0.143	5.00	0.100	0.0634	1	9587136
1,2,3,7,8,9-Hexa CDD *	pg/g	0.837	0.147	5.00	0.100	0.0837	1	9587136
1,2,3,4,6,7,8-Hepta CDD *	pg/g	1.51	0.124	5.00	0.0100	0.0151	1	9587136
Octa CDD *	pg/g	7.92	0.140	10.0	0.000300	0.00238	1	9587136
Total Tetra CDD *	pg/g	<0.253	0.253	1.00			0	9587136
Total Penta CDD *	pg/g	0.233	0.136	5.00			1	9587136
Total Hexa CDD *	pg/g	1.96	0.150	5.00			4	9587136
Total Hepta CDD *	pg/g	2.57	0.124	5.00			2	9587136
2,3,7,8-Tetra CDF **	pg/g	0.191	0.113	1.00	0.100	0.0191	1	9587136
1,2,3,7,8-Penta CDF **	pg/g	0.390	0.138	5.00	0.0300	0.0117	1	9587136
2,3,4,7,8-Penta CDF **	pg/g	0.347	0.127	5.00	0.300	0.104	1	9587136
1,2,3,4,7,8-Hexa CDF **	pg/g	0.418	0.123	5.00	0.100	0.0418	1	9587136
1,2,3,6,7,8-Hexa CDF **	pg/g	<0.343 (1)	0.343	5.00	0.100	0.0343	0	9587136
2,3,4,6,7,8-Hexa CDF **	pg/g	0.822	0.117	5.00	0.100	0.0822	1	9587136
1,2,3,7,8,9-Hexa CDF **	pg/g	0.296	0.140	5.00	0.100	0.0296	1	9587136
1,2,3,4,6,7,8-Hepta CDF **	pg/g	1.48	0.128	5.00	0.0100	0.0148	1	9587136
1,2,3,4,7,8,9-Hepta CDF **	pg/g	0.469	0.142	5.00	0.0100	0.00469	1	9587136
Octa CDF **	pg/g	1.08	0.137	10.0	0.000300	0.000324	1	9587136
Total Tetra CDF **	pg/g	0.191	0.113	1.00			1	9587136
Total Penta CDF **	pg/g	0.737	0.132	5.00			2	9587136
Total Hexa CDF **	pg/g	2.44	0.124	5.00			5	9587136

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin

** CDF = Chloro Dibenzo-p-Furan

(1) EMPC / NDR - Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.

DIOXINS AND FURANS BY HRMS (SOIL)

Bureau Veritas ID		ZYT629						
Sampling Date		2024/08/09						
COC Number		N/A			TOXIC EQU	IVALENCY	# of	
	UNITS	MW24-5 SS4	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
Total Hepta CDF **	pg/g	2.96	0.135	5.00			3	9587136
TOTAL TOXIC EQUIVALENCY	pg/g					1.01		
Surrogate Recovery (%)	•						•	
37CL4 2378 Tetra CDD *	%	64						9587136
C13-1234678 HeptaCDD *	%	73						9587136
C13-1234678 HeptaCDF **	%	69						9587136
C13-123478 HexaCDD *	%	75						9587136
C13-123478 HexaCDF **	%	67						9587136
C13-1234789 HeptaCDF **	%	74						9587136
C13-123678 HexaCDD *	%	85						9587136
C13-123678 HexaCDF **	%	70						9587136
C13-12378 PentaCDD *	%	69						9587136
C13-12378 PentaCDF **	%	60						9587136
C13-123789 HexaCDF **	%	72						9587136
C13-234678 HexaCDF **	%	71						9587136
C13-23478 PentaCDF **	%	61						9587136
C13-2378 TetraCDD *	%	67						9587136
C13-2378 TetraCDF **	%	67						9587136
C13-OCDD *	%	76						9587136

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

** CDF = Chloro Dibenzo-p-Furan

* CDD = Chloro Dibenzo-p-Dioxin

DIOXINS AND FURANS BY HRMS (SOIL)

Bureau Veritas ID		ZYT631						
Sampling Date		2024/08/09						
COC Number		N/A			TOXIC EQU	IVALENCY	# of	
	UNITS	DUP6	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
Dioxins & Furans								
2,3,7,8-Tetra CDD *	pg/g	<0.134	0.134	1.00	1.00	0.134	0	9587136
1,2,3,7,8-Penta CDD *	pg/g	<0.139	0.139	5.00	1.00	0.139	0	9587136
1,2,3,4,7,8-Hexa CDD *	pg/g	<0.160	0.160	5.00	0.100	0.0160	0	9587136
1,2,3,6,7,8-Hexa CDD *	pg/g	<0.183 (1)	0.183	5.00	0.100	0.0183	0	9587136
1,2,3,7,8,9-Hexa CDD *	pg/g	<0.157 (1)	0.157	5.00	0.100	0.0157	0	9587136
1,2,3,4,6,7,8-Hepta CDD *	pg/g	1.54	0.124	5.00	0.0100	0.0154	1	9587136
Octa CDD *	pg/g	9.07	0.151	10.0	0.000300	0.00272	1	9587136
Total Tetra CDD *	pg/g	<0.134	0.134	1.00			0	9587136
Total Penta CDD *	pg/g	<0.139	0.139	5.00			0	9587136
Total Hexa CDD *	pg/g	0.804	0.160	5.00			2	9587136
Total Hepta CDD *	pg/g	2.98	0.124	5.00			2	9587136
2,3,7,8-Tetra CDF **	pg/g	<0.141	0.141	1.00	0.100	0.0141	0	9587136
1,2,3,7,8-Penta CDF **	pg/g	<0.129	0.129	5.00	0.0300	0.00387	0	9587136
2,3,4,7,8-Penta CDF **	pg/g	<0.116	0.116	5.00	0.300	0.0348	0	9587136
1,2,3,4,7,8-Hexa CDF **	pg/g	<0.128	0.128	5.00	0.100	0.0128	0	9587136
1,2,3,6,7,8-Hexa CDF **	pg/g	<0.125	0.125	5.00	0.100	0.0125	0	9587136
2,3,4,6,7,8-Hexa CDF **	pg/g	<0.122	0.122	5.00	0.100	0.0122	0	9587136
1,2,3,7,8,9-Hexa CDF **	pg/g	<0.161	0.161	5.00	0.100	0.0161	0	9587136
1,2,3,4,6,7,8-Hepta CDF **	pg/g	0.975	0.142	5.00	0.0100	0.00975	1	9587136
1,2,3,4,7,8,9-Hepta CDF **	pg/g	<0.181	0.181	5.00	0.0100	0.00181	0	9587136
Octa CDF **	pg/g	0.629	0.129	10.0	0.000300	0.000189	1	9587136
Total Tetra CDF **	pg/g	<0.141	0.141	1.00			0	9587136
Total Penta CDF **	pg/g	0.558	0.122	5.00			1	9587136
Total Hexa CDF **	pg/g	1.28	0.133	5.00			2	9587136

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin

** CDF = Chloro Dibenzo-p-Furan

(1) EMPC / NDR - Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.

DIOXINS AND FURANS BY HRMS (SOIL)

Bureau Veritas ID		ZYT631						
Sampling Date		2024/08/09						
COC Number		N/A			TOXIC EQU	IVALENCY	# of	
	UNITS	DUP6	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
Total Hepta CDF **	pg/g	2.21	0.159	5.00			2	9587136
TOTAL TOXIC EQUIVALENCY	pg/g					0.459		
Surrogate Recovery (%)	•							
37CL4 2378 Tetra CDD *	%	84						9587136
C13-1234678 HeptaCDD *	%	87						9587136
C13-1234678 HeptaCDF **	%	83						9587136
C13-123478 HexaCDD *	%	98						9587136
C13-123478 HexaCDF **	%	91						9587136
C13-1234789 HeptaCDF **	%	77						9587136
C13-123678 HexaCDD *	%	96						9587136
C13-123678 HexaCDF **	%	93						9587136
C13-12378 PentaCDD *	%	106						9587136
C13-12378 PentaCDF **	%	103						9587136
C13-123789 HexaCDF **	%	88						9587136
C13-234678 HexaCDF **	%	96						9587136
C13-23478 PentaCDF **	%	107						9587136
C13-2378 TetraCDD *	%	74						9587136
C13-2378 TetraCDF **	%	85						9587136
C13-OCDD *	%	71						9587136

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

** CDF = Chloro Dibenzo-p-Furan

* CDD = Chloro Dibenzo-p-Dioxin

DS Consultants Limited Report Date: 2024/09/11 Client Project #: 24-300-100 Sampler Initials: DAS

TEST SUMMARY

Bureau Veritas ID: ZYT608

Sample ID: BH24-1 SS1

Collected: Shipped:

2024/08/09

Matrix: Soil

Received: 2024/08/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	9579186	2024/08/15	2024/08/16	Medhat Nasr
Free (WAD) Cyanide	TECH	9574762	2024/08/14	2024/08/14	Prgya Panchal
Conductivity	AT	9575958	2024/08/14	2024/08/14	Gurparteek KAUR
Hexavalent Chromium in Soil by IC	IC/SPEC	9582926	2024/08/17	2024/08/19	Violeta Porcila
Acid Extractable Metals by ICPMS	ICP/MS	9580628	2024/08/16	2024/08/16	Jaswinder Kaur
Moisture	BAL	9569080	N/A	2024/08/10	Muhammad Chhaidan
pH CaCl2 EXTRACT	AT	9575290	2024/08/14	2024/08/14	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9568697	N/A	2024/08/15	Automated Statchk

Bureau Veritas ID: ZYT609

Sample ID: BH24-1 SS2

Matrix: Soil

Collected: Shipped:

2024/08/09

2024/08/10 Received:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	9568698	N/A	2024/08/15	Automated Statchk
Moisture	BAL	9569056	N/A	2024/08/10	Jeremy Apoon
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	9574798	2024/08/13	2024/08/14	Joan Jin

Bureau Veritas ID: ZYT610

Sample ID: DUP1

Matrix: Soil

Collected: Shipped:

2024/08/09

Received: 2024/08/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	9579186	2024/08/15	2024/08/16	Medhat Nasr
Free (WAD) Cyanide	TECH	9574762	2024/08/14	2024/08/14	Prgya Panchal
Conductivity	AT	9575958	2024/08/14	2024/08/14	Gurparteek KAUR
Hexavalent Chromium in Soil by IC	IC/SPEC	9582926	2024/08/17	2024/08/19	Violeta Porcila
Acid Extractable Metals by ICPMS	ICP/MS	9580628	2024/08/16	2024/08/16	Jaswinder Kaur
Moisture	BAL	9569080	N/A	2024/08/10	Muhammad Chhaidan
pH CaCl2 EXTRACT	AT	9575290	2024/08/14	2024/08/14	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9568697	N/A	2024/08/15	Automated Statchk

Bureau Veritas ID: ZYT610 Dup

Sample ID: DUP1

Matrix: Soil

Collected: 2024/08/09

Shipped: Received: 2024/08/10

2024/08/09

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Moisture	BAL	9569080	N/A	2024/08/10	Muhammad Chhaidan

Bureau Veritas ID: ZYT611

Sample ID: DUP2 Matrix: Soil

Shipped:

Received: 2024/08/10

Collected:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	9568698	N/A	2024/08/15	Automated Statchk
Moisture	BAL	9569056	N/A	2024/08/10	Jeremy Apoon

Report Date: 2024/09/11

DS Consultants Limited Client Project #: 24-300-100 Sampler Initials: DAS

TEST SUMMARY

Bureau Veritas ID: ZYT611 Sample ID: DUP2

Collected:

2024/08/09 Shipped:

Matrix: Soil

Received: 2024/08/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	9574798	2024/08/13	2024/08/14	Joan Jin

Bureau Veritas ID: ZYT612

Collected: 2024/08/09

Shipped:

Received: 2024/08/10

Sample ID: BH24-1 SS4 Matrix: Soil

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	9573977	N/A	2024/08/14	Abdikarim Ali
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9576187	2024/08/14	2024/08/15	Mohammed Abdul Nafay Shoeb
Moisture	BAL	9569056	N/A	2024/08/10	Jeremy Apoon
pH CaCl2 EXTRACT	AT	9575275	2024/08/14	2024/08/14	Kien Tran

Bureau Veritas ID: ZYT613

Collected: 2024/08/09

Sample ID: BH24-1 SS5 Matrix: Soil

Shipped:

Received: 2024/08/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	9568401	N/A	2024/08/13	Automated Statchk
Moisture	BAL	9569080	N/A	2024/08/10	Muhammad Chhaidan
Volatile Organic Compounds in Soil	GC/MS	9569599	N/A	2024/08/12	Gabriella Morrone

Bureau Veritas ID: ZYT614

Collected: 2024/08/09

Sample ID: BH24-2 SS1 Matrix: Soil

Shipped:

Received: 2024/08/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	9568698	N/A	2024/08/15	Automated Statchk
Hot Water Extractable Boron	ICP	9579186	2024/08/15	2024/08/16	Medhat Nasr
Free (WAD) Cyanide	TECH	9572053	2024/08/13	2024/08/13	Prgya Panchal
Conductivity	AT	9575958	2024/08/14	2024/08/14	Gurparteek KAUR
Hexavalent Chromium in Soil by IC	IC/SPEC	9582926	2024/08/17	2024/08/19	Violeta Porcila
Acid Extractable Metals by ICPMS	ICP/MS	9580628	2024/08/16	2024/08/16	Jaswinder Kaur
Moisture	BAL	9569056	N/A	2024/08/10	Jeremy Apoon
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	9574798	2024/08/13	2024/08/14	Joan Jin
pH CaCl2 EXTRACT	AT	9575290	2024/08/14	2024/08/14	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9568697	N/A	2024/08/15	Automated Statchk

Bureau Veritas ID: ZYT614 Dup Collected: 2024/08/09 Shipped:

Sample ID: BH24-2 SS1 Matrix: Soil

Received: 2024/08/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	9574798	2024/08/13	2024/08/14	Joan Jin

Report Date: 2024/09/11

DS Consultants Limited Client Project #: 24-300-100 Sampler Initials: DAS

TEST SUMMARY

Bureau Veritas ID: ZYT615

Sample ID: BH24-2 SS4

Matrix: Soil

Collected:

2024/08/09

Shipped:

Received: 2024/08/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	9573977	N/A	2024/08/14	Abdikarim Ali
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9576187	2024/08/14	2024/08/15	Mohammed Abdul Nafay Shoeb
Moisture	BAL	9569056	N/A	2024/08/10	Jeremy Apoon
pH CaCl2 EXTRACT	AT	9575275	2024/08/14	2024/08/14	Kien Tran

Bureau Veritas ID: ZYT616

Sample ID: BH24-2 SS5

Matrix: Soil

Collected: 2024/08/09

Shipped:

Received: 2024/08/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	9568401	N/A	2024/08/13	Automated Statchk
Moisture	BAL	9569080	N/A	2024/08/10	Muhammad Chhaidan
Volatile Organic Compounds in Soil	GC/MS	9569599	N/A	2024/08/12	Gabriella Morrone

Bureau Veritas ID: ZYT617

Sample ID: BH24-3 SS1

Matrix: Soil

Collected: 2024/08/09

Shipped:

Received: 2024/08/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	9568698	N/A	2024/08/15	Automated Statchk
Moisture	BAL	9569056	N/A	2024/08/10	Jeremy Apoon
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	9574798	2024/08/13	2024/08/14	Joan Jin

Bureau Veritas ID: ZYT618

Sample ID: BH24-3 SS2

Matrix: Soil

Collected: 2024/08/09

Shipped:

Received: 2024/08/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	9579186	2024/08/15	2024/08/16	Medhat Nasr
Free (WAD) Cyanide	TECH	9574762	2024/08/14	2024/08/14	Prgya Panchal
Conductivity	AT	9575958	2024/08/14	2024/08/14	Gurparteek KAUR
Hexavalent Chromium in Soil by IC	IC/SPEC	9582926	2024/08/17	2024/08/19	Violeta Porcila
Acid Extractable Metals by ICPMS	ICP/MS	9580628	2024/08/16	2024/08/16	Jaswinder Kaur
Moisture	BAL	9569080	N/A	2024/08/10	Muhammad Chhaidan
pH CaCl2 EXTRACT	AT	9575290	2024/08/14	2024/08/14	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9568697	N/A	2024/08/15	Automated Statchk

Bureau Veritas ID: ZYT619

Sample ID: BH24-3 SS4

Matrix: Soil

Collected: 2024/08/09

Shipped:

Received: 2024/08/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	9573977	N/A	2024/08/14	Abdikarim Ali
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9576187	2024/08/14	2024/08/15	Mohammed Abdul Nafay Shoeb
Moisture	BAL	9569056	N/A	2024/08/10	Jeremy Apoon

Sampler Initials: DAS

TEST SUMMARY

Bureau Veritas ID: ZYT620

Sample ID: BH24-3 SS5

Matrix: Soil

Collected: 2

2024/08/09

Shipped:

Received: 2024/08/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	9568401	N/A	2024/08/13	Automated Statchk
Moisture	BAL	9569080	N/A	2024/08/10	Muhammad Chhaidan
Volatile Organic Compounds in Soil	GC/MS	9569599	N/A	2024/08/12	Gabriella Morrone

Bureau Veritas ID: ZYT621

Sample ID: BH24-4 SS1

Matrix: Soil

Collected:

2024/08/09

Shipped: Received: 2

d: 2024/08/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Moisture	BAL	9569056	N/A	2024/08/10	Jeremy Apoon
Polychlorinated Biphenyl in Soil	GC/ECD	9571819	2024/08/12	2024/08/13	Svitlana Shaula
pH CaCl2 EXTRACT	AT	9575290	2024/08/14	2024/08/14	Kien Tran

Bureau Veritas ID: ZYT622

Sample ID: BH24-4 SS3

Matrix: Soil

Collected: 20

2024/08/09

Shipped: Received: 2024/08/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
pH CaCl2 EXTRACT	AT	9575290	2024/08/14	2024/08/14	Kien Tran

Bureau Veritas ID: ZYT623

Sample ID: DUP3

Matrix: Soil

Collected: Shipped:

2024/08/09

Received: 2024/08/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	9573977	N/A	2024/08/14	Abdikarim Ali
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9576187	2024/08/14	2024/08/15	Mohammed Abdul Nafay Shoeb
Moisture	BAL	9569056	N/A	2024/08/10	Jeremy Apoon

Bureau Veritas ID: ZYT623 Dup

Sample ID: DUP3

Matrix: Soil

Collected: Shipped:

2024/08/09

Received: 2024/08/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Moisture	BAL	9569056	N/A	2024/08/10	Jeremy Apoon

Bureau Veritas ID: ZYT624

Sample ID: DUP5

Matrix: Soil

Collected: 2024/08/09 **Shipped:**

Received: 2024/08/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Moisture	BAL	9569056	N/A	2024/08/10	Jeremy Apoon
Polychlorinated Biphenyl in Soil	GC/ECD	9571819	2024/08/12	2024/08/13	Svitlana Shaula

TEST SUMMARY

Bureau Veritas ID: ZYT625 Sample ID: MW24-5 SS1

Matrix: Soil

Collected: Shipped:

2024/08/09

Received: 2024/08/10

Test Description	Instrumentation	Batch	Extracted	Data Analyzad	Analyst
Test Description	instrumentation	Daten	Extracted	Date Analyzed	Anaiyst
Hot Water Extractable Boron	ICP	9579186	2024/08/15	2024/08/16	Medhat Nasr
Free (WAD) Cyanide	TECH	9574762	2024/08/14	2024/08/14	Prgya Panchal
Conductivity	AT	9575958	2024/08/14	2024/08/14	Gurparteek KAUR
Hexavalent Chromium in Soil by IC	IC/SPEC	9582926	2024/08/17	2024/08/19	Violeta Porcila
Acid Extractable Metals by ICPMS	ICP/MS	9580628	2024/08/16	2024/08/16	Jaswinder Kaur
Moisture	BAL	9569080	N/A	2024/08/10	Muhammad Chhaidan
pH CaCl2 EXTRACT	AT	9575290	2024/08/14	2024/08/14	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9568697	N/A	2024/08/15	Automated Statchk

Bureau Veritas ID: ZYT626 Sample ID: DUP4

Matrix: Soil

Collected:

2024/08/09

Shipped: Received:

2024/08/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	9579186	2024/08/15	2024/08/16	Medhat Nasr
Free (WAD) Cyanide	TECH	9574762	2024/08/14	2024/08/14	Prgya Panchal
Conductivity	AT	9575958	2024/08/14	2024/08/14	Gurparteek KAUR
Hexavalent Chromium in Soil by IC	IC/SPEC	9582926	2024/08/17	2024/08/19	Violeta Porcila
Acid Extractable Metals by ICPMS	ICP/MS	9580628	2024/08/16	2024/08/16	Jaswinder Kaur
Moisture	BAL	9569080	N/A	2024/08/10	Muhammad Chhaidan
pH CaCl2 EXTRACT	AT	9575290	2024/08/14	2024/08/14	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9568697	N/A	2024/08/15	Automated Statchk

Bureau Veritas ID: ZYT627

Sample ID: MW24-5 SS2

. Matrix: Soil Collected: Shipped:

2024/08/09

Received: 2024/08/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	9568698	N/A	2024/08/15	Automated Statchk
Moisture	BAL	9569056	N/A	2024/08/10	Jeremy Apoon
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	9574798	2024/08/13	2024/08/14	Joan Jin

Bureau Veritas ID: ZYT628

MW24-5 SS3

Sample ID: Matrix: Soil Collected: Shipped:

2024/08/09

Received: 2024/08/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
pH CaCl2 EXTRACT	AT	9575290	2024/08/14	2024/08/14	Kien Tran

Bureau Veritas ID: ZYT628 Dup

Sample ID: MW24-5 SS3

Matrix: Soil

Collected: Shipped:

2024/08/09

Received: 2024/08/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
pH CaCl2 EXTRACT	AT	9575290	2024/08/14	2024/08/14	Kien Tran

TEST SUMMARY

Bureau Veritas ID: ZYT629

Matrix: Soil

Collected: Sample ID: MW24-5 SS4

Shipped:

Received: 2024/08/10

2024/08/09

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	9568698	N/A	2024/08/15	Automated Statchk
Dioxins/Furans in Soil (1613B)	HRMS/MS	9587136	2024/08/20	2024/09/10	Yan Qin
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	9573977	N/A	2024/08/14	Abdikarim Ali
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9576187	2024/08/14	2024/08/15	Mohammed Abdul Nafay Shoeb
Moisture	BAL	9569056	N/A	2024/08/10	Jeremy Apoon
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	9574798	2024/08/13	2024/08/14	Joan Jin

Bureau Veritas ID: ZYT630 Sample ID: MW24-5 SS9 Matrix:

. Matrix:

Soil

MW24-5 SS9

Soil

2024/08/09 Collected: Shipped:

Received: 2024/08/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	9568401	N/A	2024/08/13	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9576187	2024/08/14	2024/08/15	Mohammed Abdul Nafay Shoeb
Moisture	BAL	9569056	N/A	2024/08/10	Jeremy Apoon
Volatile Organic Compounds and F1 PHCs	GC/MSFD	9569568	N/A	2024/08/12	Xueming Jiang

Bureau Veritas ID: ZYT630 Dup Sample ID:

Collected: 2024/08/09

Shipped:

Received: 2024/08/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9576187	2024/08/14	2024/08/15	Mohammed Abdul Nafay Shoeb

Bureau Veritas ID: ZYT631 Collected: 2024/08/09

Sample ID: DUP6 Shipped:

Matrix: Soil Received: 2024/08/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Dioxins/Furans in Soil (1613B)	HRMS/MS	9587136	2024/08/20	2024/09/09	Yan Qin

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	6.3°C
-----------	-------

Sample ZYT630 [MW24-5 SS9]: VOC/F1 Analysis: Soil weight exceeds the protocol specification of approximately 5g in the field preserved vial. Additional methanol was added to the vial to ensure extraction efficiency.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

DS Consultants Limited Client Project #: 24-300-100

Sampler Initials: DAS

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9569568	4-Bromofluorobenzene	2024/08/12	99	60 - 140	100	60 - 140	97	%		
9569568	D10-o-Xylene	2024/08/12	105	60 - 130	93	60 - 130	84	%		
9569568	D4-1,2-Dichloroethane	2024/08/12	105	60 - 140	103	60 - 140	104	%		
9569568	D8-Toluene	2024/08/12	102	60 - 140	102	60 - 140	94	%		
9569599	4-Bromofluorobenzene	2024/08/12	100	60 - 140	100	60 - 140	97	%		
9569599	D10-o-Xylene	2024/08/12	107	60 - 130	90	60 - 130	96	%		
9569599	D4-1,2-Dichloroethane	2024/08/12	103	60 - 140	107	60 - 140	105	%		
9569599	D8-Toluene	2024/08/12	103	60 - 140	101	60 - 140	94	%		
9571819	Decachlorobiphenyl	2024/08/13	108	60 - 130	108	60 - 130	105	%		
9573977	1,4-Difluorobenzene	2024/08/14	111	60 - 140	114	60 - 140	99	%		
9573977	4-Bromofluorobenzene	2024/08/14	91	60 - 140	92	60 - 140	96	%		
9573977	D10-o-Xylene	2024/08/14	121	60 - 140	103	60 - 140	97	%		
9573977	D4-1,2-Dichloroethane	2024/08/14	101	60 - 140	112	60 - 140	101	%		
9574798	D10-Anthracene	2024/08/14	89	50 - 130	103	50 - 130	108	%		
9574798	D14-Terphenyl (FS)	2024/08/14	84	50 - 130	96	50 - 130	100	%		
9574798	D8-Acenaphthylene	2024/08/14	84	50 - 130	95	50 - 130	89	%		
9576187	o-Terphenyl	2024/08/14	105	60 - 140	106	60 - 140	109	%		
9587136	37CL4 2378 Tetra CDD	2024/09/08	80	35 - 197	69	35 - 197	60	%		
9587136	C13-1234678 HeptaCDD	2024/09/08	63	23 - 140	73	23 - 140	88	%		
9587136	C13-1234678 HeptaCDF	2024/09/08	70	28 - 143	77	28 - 143	86	%		
9587136	C13-123478 HexaCDD	2024/09/08	76	32 - 141	91	32 - 141	104	%		
9587136	C13-123478 HexaCDF	2024/09/08	88	26 - 152	91	26 - 152	89	%		
9587136	C13-1234789 HeptaCDF	2024/09/08	56	26 - 138	68	26 - 138	87	%		
9587136	C13-123678 HexaCDD	2024/09/08	100	28 - 130	96	28 - 130	103	%		
9587136	C13-123678 HexaCDF	2024/09/08	102	26 - 123	98	26 - 123	101	%		
9587136	C13-12378 PentaCDD	2024/09/08	72	25 - 181	73	25 - 181	87	%		
9587136	C13-12378 PentaCDF	2024/09/08	75	24 - 185	69	24 - 185	70	%		
9587136	C13-123789 HexaCDF	2024/09/08	79	29 - 147	87	29 - 147	101	%		
9587136	C13-234678 HexaCDF	2024/09/08	85	28 - 136	100	28 - 136	99	%		
9587136	C13-23478 PentaCDF	2024/09/08	70	21 - 178	73	21 - 178	81	%		
9587136	C13-2378 TetraCDD	2024/09/08	86	25 - 164	71	25 - 164	59	%		

Page 27 of 38

DS Consultants Limited Client Project #: 24-300-100

Sampler Initials: DAS

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9587136	C13-2378 TetraCDF	2024/09/08	90	24 - 169	71	24 - 169	74	%		
9587136	C13-OCDD	2024/09/08	43	17 - 157	52	17 - 157	83	%		
9569056	Moisture	2024/08/10							3.0	20
9569080	Moisture	2024/08/10							0	20
9569568	1,1,1,2-Tetrachloroethane	2024/08/12	122	60 - 140	107	60 - 130	<0.040	ug/g	NC	50
9569568	1,1,1-Trichloroethane	2024/08/12	111	60 - 140	98	60 - 130	<0.040	ug/g	NC	50
9569568	1,1,2,2-Tetrachloroethane	2024/08/12	106	60 - 140	94	60 - 130	<0.040	ug/g	NC	50
9569568	1,1,2-Trichloroethane	2024/08/12	113	60 - 140	99	60 - 130	<0.040	ug/g	NC	50
9569568	1,1-Dichloroethane	2024/08/12	108	60 - 140	94	60 - 130	<0.040	ug/g	NC	50
9569568	1,1-Dichloroethylene	2024/08/12	110	60 - 140	98	60 - 130	<0.040	ug/g	NC	50
9569568	1,2-Dichlorobenzene	2024/08/12	110	60 - 140	98	60 - 130	<0.040	ug/g	NC	50
9569568	1,2-Dichloroethane	2024/08/12	113	60 - 140	99	60 - 130	<0.049	ug/g	NC	50
9569568	1,2-Dichloropropane	2024/08/12	110	60 - 140	97	60 - 130	<0.040	ug/g	NC	50
9569568	1,3-Dichlorobenzene	2024/08/12	111	60 - 140	99	60 - 130	<0.040	ug/g	NC	50
9569568	1,4-Dichlorobenzene	2024/08/12	110	60 - 140	98	60 - 130	<0.040	ug/g	NC	50
9569568	Acetone (2-Propanone)	2024/08/12	108	60 - 140	96	60 - 140	<0.49	ug/g	NC	50
9569568	Benzene	2024/08/12	109	60 - 140	97	60 - 130	<0.0060	ug/g	NC	50
9569568	Bromodichloromethane	2024/08/12	110	60 - 140	97	60 - 130	<0.040	ug/g	NC	50
9569568	Bromoform	2024/08/12	111	60 - 140	103	60 - 130	<0.040	ug/g	NC	50
9569568	Bromomethane	2024/08/12	95	60 - 140	83	60 - 140	<0.040	ug/g	NC	50
9569568	Carbon Tetrachloride	2024/08/12	122	60 - 140	108	60 - 130	<0.040	ug/g	NC	50
9569568	Chlorobenzene	2024/08/12	100	60 - 140	90	60 - 130	<0.040	ug/g	NC	50
9569568	Chloroform	2024/08/12	114	60 - 140	96	60 - 130	<0.040	ug/g	NC	50
9569568	cis-1,2-Dichloroethylene	2024/08/12	115	60 - 140	101	60 - 130	<0.040	ug/g	NC	50
9569568	cis-1,3-Dichloropropene	2024/08/12	99	60 - 140	87	60 - 130	<0.030	ug/g	NC	50
9569568	Dibromochloromethane	2024/08/12	116	60 - 140	102	60 - 130	<0.040	ug/g	NC	50
9569568	Dichlorodifluoromethane (FREON 12)	2024/08/12	73	60 - 140	69	60 - 140	<0.040	ug/g	NC	50
9569568	Ethylbenzene	2024/08/12	98	60 - 140	89	60 - 130	<0.010	ug/g	NC	50
9569568	Ethylene Dibromide	2024/08/12	110	60 - 140	98	60 - 130	<0.040	ug/g	NC	50
9569568	F1 (C6-C10) - BTEX	2024/08/12					<10	ug/g	NC	30
9569568	F1 (C6-C10)	2024/08/12	91	60 - 140	101	80 - 120	<10	ug/g	NC	30

DS Consultants Limited Client Project #: 24-300-100 Sampler Initials: DAS

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9569568	Hexane	2024/08/12	111	60 - 140	105	60 - 130	<0.040	ug/g	NC	50
9569568	Methyl Ethyl Ketone (2-Butanone)	2024/08/12	111	60 - 140	100	60 - 140	<0.40	ug/g	NC	50
9569568	Methyl Isobutyl Ketone	2024/08/12	99	60 - 140	90	60 - 130	<0.40	ug/g	NC	50
9569568	Methyl t-butyl ether (MTBE)	2024/08/12	102	60 - 140	91	60 - 130	<0.040	ug/g	NC	50
9569568	Methylene Chloride(Dichloromethane)	2024/08/12	118	60 - 140	102	60 - 130	<0.049	ug/g	NC	50
9569568	o-Xylene	2024/08/12	105	60 - 140	95	60 - 130	<0.020	ug/g	NC	50
9569568	p+m-Xylene	2024/08/12	97	60 - 140	88	60 - 130	<0.020	ug/g	NC	50
9569568	Styrene	2024/08/12	99	60 - 140	90	60 - 130	<0.040	ug/g	NC	50
9569568	Tetrachloroethylene	2024/08/12	112	60 - 140	99	60 - 130	<0.040	ug/g	NC	50
9569568	Toluene	2024/08/12	106	60 - 140	95	60 - 130	<0.020	ug/g	NC	50
9569568	Total Xylenes	2024/08/12					<0.020	ug/g	NC	50
9569568	trans-1,2-Dichloroethylene	2024/08/12	120	60 - 140	105	60 - 130	<0.040	ug/g	NC	50
9569568	trans-1,3-Dichloropropene	2024/08/12	109	60 - 140	95	60 - 130	<0.040	ug/g	NC	50
9569568	Trichloroethylene	2024/08/12	113	60 - 140	100	60 - 130	<0.010	ug/g	NC	50
9569568	Trichlorofluoromethane (FREON 11)	2024/08/12	111	60 - 140	98	60 - 130	<0.040	ug/g	NC	50
9569568	Vinyl Chloride	2024/08/12	102	60 - 140	91	60 - 130	<0.019	ug/g	NC	50
9569599	1,1,1,2-Tetrachloroethane	2024/08/12	127	60 - 140	123	60 - 130	<0.040	ug/g	NC	50
9569599	1,1,1-Trichloroethane	2024/08/12	113	60 - 140	107	60 - 130	<0.040	ug/g	NC	50
9569599	1,1,2,2-Tetrachloroethane	2024/08/12	100	60 - 140	107	60 - 130	<0.040	ug/g	NC	50
9569599	1,1,2-Trichloroethane	2024/08/12	115	60 - 140	115	60 - 130	<0.040	ug/g	NC	50
9569599	1,1-Dichloroethane	2024/08/12	113	60 - 140	108	60 - 130	<0.040	ug/g	NC	50
9569599	1,1-Dichloroethylene	2024/08/12	122	60 - 140	112	60 - 130	<0.040	ug/g	NC	50
9569599	1,2-Dichlorobenzene	2024/08/12	117	60 - 140	110	60 - 130	<0.040	ug/g	NC	50
9569599	1,2-Dichloroethane	2024/08/12	117	60 - 140	118	60 - 130	<0.049	ug/g	NC	50
9569599	1,2-Dichloropropane	2024/08/12	115	60 - 140	114	60 - 130	<0.040	ug/g	NC	50
9569599	1,3-Dichlorobenzene	2024/08/12	118	60 - 140	110	60 - 130	<0.040	ug/g	NC	50
9569599	1,4-Dichlorobenzene	2024/08/12	119	60 - 140	111	60 - 130	<0.040	ug/g	NC	50
9569599	Acetone (2-Propanone)	2024/08/12	120	60 - 140	127	60 - 140	<0.49	ug/g	NC	50
9569599	Benzene	2024/08/12	114	60 - 140	108	60 - 130	<0.0060	ug/g	NC	50
9569599	Bromodichloromethane	2024/08/12	108	60 - 140	111	60 - 130	<0.040	ug/g	NC	50
9569599	Bromoform	2024/08/12	109	60 - 140	120	60 - 130	<0.040	ug/g	NC	50

DS Consultants Limited Client Project #: 24-300-100

Sampler Initials: DAS

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9569599	Bromomethane	2024/08/12	99	60 - 140	92	60 - 140	<0.040	ug/g	NC	50
9569599	Carbon Tetrachloride	2024/08/12	123	60 - 140	115	60 - 130	<0.040	ug/g	NC	50
9569599	Chlorobenzene	2024/08/12	107	60 - 140	103	60 - 130	<0.040	ug/g	NC	50
9569599	Chloroform	2024/08/12	114	60 - 140	110	60 - 130	<0.040	ug/g	NC	50
9569599	cis-1,2-Dichloroethylene	2024/08/12	118	60 - 140	115	60 - 130	<0.040	ug/g	NC	50
9569599	cis-1,3-Dichloropropene	2024/08/12	105	60 - 140	109	60 - 130	<0.030	ug/g	NC	50
9569599	Dibromochloromethane	2024/08/12	114	60 - 140	120	60 - 130	<0.040	ug/g	NC	50
9569599	Dichlorodifluoromethane (FREON 12)	2024/08/12	86	60 - 140	81	60 - 140	<0.040	ug/g	NC	50
9569599	Ethylbenzene	2024/08/12	118	60 - 140	109	60 - 130	<0.010	ug/g	NC	50
9569599	Ethylene Dibromide	2024/08/12	110	60 - 140	114	60 - 130	<0.040	ug/g	NC	50
9569599	Hexane	2024/08/12	135	60 - 140	123	60 - 130	<0.040	ug/g	NC	50
9569599	Methyl Ethyl Ketone (2-Butanone)	2024/08/12	113	60 - 140	126	60 - 140	<0.40	ug/g	NC	50
9569599	Methyl Isobutyl Ketone	2024/08/12	108	60 - 140	124	60 - 130	<0.40	ug/g	NC	50
9569599	Methyl t-butyl ether (MTBE)	2024/08/12	109	60 - 140	111	60 - 130	<0.040	ug/g	NC	50
9569599	Methylene Chloride(Dichloromethane)	2024/08/12	111	60 - 140	108	60 - 130	<0.049	ug/g	NC	50
9569599	o-Xylene	2024/08/12	124	60 - 140	116	60 - 130	<0.020	ug/g	NC	50
9569599	p+m-Xylene	2024/08/12	115	60 - 140	107	60 - 130	<0.020	ug/g	NC	50
9569599	Styrene	2024/08/12	120	60 - 140	116	60 - 130	<0.040	ug/g	NC	50
9569599	Tetrachloroethylene	2024/08/12	117	60 - 140	103	60 - 130	<0.040	ug/g	NC	50
9569599	Toluene	2024/08/12	114	60 - 140	106	60 - 130	<0.020	ug/g	NC	50
9569599	Total Xylenes	2024/08/12					<0.020	ug/g	NC	50
9569599	trans-1,2-Dichloroethylene	2024/08/12	122	60 - 140	114	60 - 130	<0.040	ug/g	NC	50
9569599	trans-1,3-Dichloropropene	2024/08/12	116	60 - 140	120	60 - 130	<0.040	ug/g	NC	50
9569599	Trichloroethylene	2024/08/12	120	60 - 140	113	60 - 130	<0.010	ug/g	NC	50
9569599	Trichlorofluoromethane (FREON 11)	2024/08/12	117	60 - 140	106	60 - 130	<0.040	ug/g	NC	50
9569599	Vinyl Chloride	2024/08/12	110	60 - 140	103	60 - 130	<0.019	ug/g	NC	50
9571819	Aroclor 1242	2024/08/13					<0.010	ug/g	NC	50
9571819	Aroclor 1248	2024/08/13					<0.010	ug/g	NC	50
9571819	Aroclor 1254	2024/08/13					<0.010	ug/g	NC	50
9571819	Aroclor 1260	2024/08/13	122	30 - 130	123	30 - 130	<0.010	ug/g	NC	50
9571819	Total PCB	2024/08/13	122	30 - 130	123	30 - 130	<0.010	ug/g	NC	50

DS Consultants Limited Client Project #: 24-300-100

Sampler Initials: DAS

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9572053	WAD Cyanide (Free)	2024/08/13	98	75 - 125	101	80 - 120	<0.01	ug/g	NC	35
9573977	Benzene	2024/08/14	106	50 - 140	95	50 - 140	<0.020	ug/g	NC	50
9573977	Ethylbenzene	2024/08/14	114	50 - 140	93	50 - 140	<0.020	ug/g	NC	50
9573977	F1 (C6-C10) - BTEX	2024/08/14					<10	ug/g	NC	30
9573977	F1 (C6-C10)	2024/08/14	108	60 - 140	87	80 - 120	<10	ug/g	NC	30
9573977	o-Xylene	2024/08/14	106	50 - 140	86	50 - 140	<0.020	ug/g	6.9	50
9573977	p+m-Xylene	2024/08/14	110	50 - 140	90	50 - 140	<0.040	ug/g	NC	50
9573977	Toluene	2024/08/14	93	50 - 140	77	50 - 140	<0.020	ug/g	3.4	50
9573977	Total Xylenes	2024/08/14					<0.040	ug/g	NC	50
9574762	WAD Cyanide (Free)	2024/08/14	99	75 - 125	100	80 - 120	<0.01	ug/g	NC	35
9574798	1-Methylnaphthalene	2024/08/14	87	50 - 130	97	50 - 130	<0.0050	ug/g	NC	40
9574798	2-Methylnaphthalene	2024/08/14	84	50 - 130	95	50 - 130	<0.0050	ug/g	NC	40
9574798	Acenaphthene	2024/08/14	85	50 - 130	93	50 - 130	<0.0050	ug/g	NC	40
9574798	Acenaphthylene	2024/08/14	82	50 - 130	92	50 - 130	<0.0050	ug/g	NC	40
9574798	Anthracene	2024/08/14	85	50 - 130	94	50 - 130	<0.0050	ug/g	NC	40
9574798	Benzo(a)anthracene	2024/08/14	89	50 - 130	99	50 - 130	<0.0050	ug/g	NC	40
9574798	Benzo(a)pyrene	2024/08/14	88	50 - 130	99	50 - 130	<0.0050	ug/g	NC	40
9574798	Benzo(b/j)fluoranthene	2024/08/14	86	50 - 130	100	50 - 130	<0.0050	ug/g	NC	40
9574798	Benzo(g,h,i)perylene	2024/08/14	88	50 - 130	101	50 - 130	<0.0050	ug/g	NC	40
9574798	Benzo(k)fluoranthene	2024/08/14	92	50 - 130	98	50 - 130	<0.0050	ug/g	NC	40
9574798	Chrysene	2024/08/14	87	50 - 130	97	50 - 130	<0.0050	ug/g	NC	40
9574798	Dibenzo(a,h)anthracene	2024/08/14	94	50 - 130	104	50 - 130	<0.0050	ug/g	NC	40
9574798	Fluoranthene	2024/08/14	87	50 - 130	96	50 - 130	<0.0050	ug/g	NC	40
9574798	Fluorene	2024/08/14	87	50 - 130	96	50 - 130	<0.0050	ug/g	NC	40
9574798	Indeno(1,2,3-cd)pyrene	2024/08/14	88	50 - 130	100	50 - 130	<0.0050	ug/g	NC	40
9574798	Naphthalene	2024/08/14	78	50 - 130	92	50 - 130	<0.0050	ug/g	NC	40
9574798	Phenanthrene	2024/08/14	85	50 - 130	94	50 - 130	<0.0050	ug/g	NC	40
9574798	Pyrene	2024/08/14	85	50 - 130	94	50 - 130	<0.0050	ug/g	NC	40
9575275	Available (CaCl2) pH	2024/08/14			100	97 - 103			1.5	N/A
9575290	Available (CaCl2) pH	2024/08/14			100	97 - 103			0.031	N/A
9575958	Conductivity	2024/08/14			105	90 - 110	<0.002	mS/cm	2.2	10

Page 31 of 38

DS Consultants Limited Client Project #: 24-300-100 Sampler Initials: DAS

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RPI)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9576187	F2 (C10-C16 Hydrocarbons)	2024/08/15	106	60 - 140	107	80 - 120	<10	ug/g	NC	30
9576187	F3 (C16-C34 Hydrocarbons)	2024/08/15	103	60 - 140	104	80 - 120	<50	ug/g	NC	30
9576187	F4 (C34-C50 Hydrocarbons)	2024/08/15	88	60 - 140	86	80 - 120	<50	ug/g	NC	30
9579186	Hot Water Ext. Boron (B)	2024/08/16	106	75 - 125	111	75 - 125	<0.050	ug/g	0.45	40
9580628	Acid Extractable Antimony (Sb)	2024/08/16	113	75 - 125	116	80 - 120	<0.20	ug/g	NC	30
9580628	Acid Extractable Arsenic (As)	2024/08/16	97	75 - 125	99	80 - 120	<1.0	ug/g	NC	30
9580628	Acid Extractable Barium (Ba)	2024/08/16	92	75 - 125	102	80 - 120	<0.50	ug/g	8.5	30
9580628	Acid Extractable Beryllium (Be)	2024/08/16	96	75 - 125	97	80 - 120	<0.20	ug/g	NC	30
9580628	Acid Extractable Boron (B)	2024/08/16	94	75 - 125	95	80 - 120	<5.0	ug/g	NC	30
9580628	Acid Extractable Cadmium (Cd)	2024/08/16	97	75 - 125	98	80 - 120	<0.10	ug/g	NC	30
9580628	Acid Extractable Chromium (Cr)	2024/08/16	97	75 - 125	99	80 - 120	<1.0	ug/g	7.6	30
9580628	Acid Extractable Cobalt (Co)	2024/08/16	100	75 - 125	103	80 - 120	<0.10	ug/g	1.6	30
9580628	Acid Extractable Copper (Cu)	2024/08/16	105	75 - 125	101	80 - 120	<0.50	ug/g	2.6	30
9580628	Acid Extractable Lead (Pb)	2024/08/16	96	75 - 125	100	80 - 120	<1.0	ug/g	1.5	30
9580628	Acid Extractable Mercury (Hg)	2024/08/16	94	75 - 125	100	80 - 120	<0.050	ug/g	NC	30
9580628	Acid Extractable Molybdenum (Mo)	2024/08/16	99	75 - 125	99	80 - 120	<0.50	ug/g	NC	30
9580628	Acid Extractable Nickel (Ni)	2024/08/16	102	75 - 125	104	80 - 120	<0.50	ug/g	5.5	30
9580628	Acid Extractable Selenium (Se)	2024/08/16	100	75 - 125	101	80 - 120	<0.50	ug/g	NC	30
9580628	Acid Extractable Silver (Ag)	2024/08/16	98	75 - 125	100	80 - 120	<0.20	ug/g	NC	30
9580628	Acid Extractable Thallium (TI)	2024/08/16	96	75 - 125	98	80 - 120	<0.050	ug/g	NC	30
9580628	Acid Extractable Uranium (U)	2024/08/16	100	75 - 125	102	80 - 120	<0.050	ug/g	7.7	30
9580628	Acid Extractable Vanadium (V)	2024/08/16	94	75 - 125	104	80 - 120	<5.0	ug/g	1.9	30
9580628	Acid Extractable Zinc (Zn)	2024/08/16	NC	75 - 125	102	80 - 120	<5.0	ug/g	16	30
9582926	Chromium (VI)	2024/08/19	92	70 - 130	94	80 - 120	<0.18	ug/g	NC	35
9587136	1,2,3,4,6,7,8-Hepta CDD	2024/09/08	139	70 - 140	112	70 - 140	0.666, EDL=0.122	pg/g	4.9	25
9587136	1,2,3,4,6,7,8-Hepta CDF	2024/09/08	106	82 - 122	117	82 - 122	0.436, EDL=0.109	pg/g	11	25
9587136	1,2,3,4,7,8,9-Hepta CDF	2024/09/08	102	78 - 138	111	78 - 138	0.186, EDL=0.129	pg/g	NC (4)	25

DS Consultants Limited Client Project #: 24-300-100

Sampler Initials: DAS

			Matrix	Spike	SPIKED	BLANK	Method Bl	ank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9587136	1,2,3,4,7,8-Hexa CDD	2024/09/08	99	70 - 164	108	70 - 164	<0.155, EDL=0.155	pg/g	NC	25
9587136	1,2,3,4,7,8-Hexa CDF	2024/09/08	105	72 - 134	110	72 - 134	<0.158, EDL=0.158	pg/g	NC	25
9587136	1,2,3,6,7,8-Hexa CDD	2024/09/08	100	76 - 134	111	76 - 134	<0.157, EDL=0.157	pg/g	NC	25
9587136	1,2,3,6,7,8-Hexa CDF	2024/09/08	102	84 - 130	110	84 - 130	<0.139, EDL=0.139	pg/g	NC	25
9587136	1,2,3,7,8,9-Hexa CDD	2024/09/08	100	64 - 162	109	64 - 162	<0.151, EDL=0.151	pg/g	NC	25
9587136	1,2,3,7,8,9-Hexa CDF	2024/09/08	98	78 - 130	109	78 - 130	<0.169, EDL=0.169	pg/g	NC	25
9587136	1,2,3,7,8-Penta CDD	2024/09/08	98	25 - 181	104	25 - 181	<0.155, EDL=0.155	pg/g	NC	25
9587136	1,2,3,7,8-Penta CDF	2024/09/08	106	80 - 134	109	80 - 134	<0.141, EDL=0.141	pg/g	NC	25
9587136	2,3,4,6,7,8-Hexa CDF	2024/09/08	108	70 - 156	107	70 - 156	<0.142, EDL=0.142	pg/g	NC	25
9587136	2,3,4,7,8-Penta CDF	2024/09/08	101	68 - 160	107	68 - 160	<0.113, EDL=0.113	pg/g	NC	25
9587136	2,3,7,8-Tetra CDD	2024/09/08	102	67 - 158	112	67 - 158	<0.126, EDL=0.126	pg/g	NC	25
9587136	2,3,7,8-Tetra CDF	2024/09/08	200 (1)	75 - 158	110	75 - 158	<0.114, EDL=0.114	pg/g	NC (3)	25
9587136	Octa CDD	2024/09/08	110	78 - 144	113	78 - 144	2.48, EDL=0.150	pg/g	8.7	25
9587136	Octa CDF	2024/09/08	92	63 - 170	102	63 - 170	<0.783, EDL=0.783 (2)	pg/g	NC	25
9587136	Total Hepta CDD	2024/09/08					0.666, EDL=0.122	pg/g	2.7	25
9587136	Total Hepta CDF	2024/09/08					1.11, EDL=0.118	pg/g	3.6	25
9587136	Total Hexa CDD	2024/09/08					<0.154, EDL=0.154	pg/g	4.8	25

DS Consultants Limited Client Project #: 24-300-100

Sampler Initials: DAS

			Matrix	Spike	SPIKED BLANK		Method Blank		RPE)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9587136	Total Hexa CDF	2024/09/08					0.188, EDL=0.151	pg/g	14	25
9587136	Total Penta CDD	2024/09/08					<0.155, EDL=0.155	pg/g	NC	25
9587136	Total Penta CDF	2024/09/08					<0.126, EDL=0.126	pg/g	2.6	25
9587136	Total Tetra CDD	2024/09/08					<0.126, EDL=0.126	pg/g	NC	25
9587136	Total Tetra CDF	2024/09/08					<0.114, EDL=0.114	pg/g	NC	25

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

- (1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.
- (2) RT>2 seconds PCDD/DF analysis-Peak maxima of monitored ions exceeds 2 seconds
- (3) RT > 3 seconds PCDD/DF analysis Peak detected exceeds expected retention time (from internal standard) by greater than 3 seconds.RT>2 seconds PCDD/DF analysis Peak maxima of monitored ions exceeds 2 seconds
- (4) EMPC / NDR Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

program
Angel Guerrero, Supervisor, Ultra Trace Analysis, HRMS and SVOC
Cristina Carriere
Cristina Carriere, Senior Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

www.BVNA.com

6740 Campobello Road, Missisaauga, Ontario L5N 2L8 Phone: 905-817-5700 Fax: 905-817-5779 Toli Free: 800-563-6266

CHAIN OF CUSTODY RECORD ENV COC - 00014v5

Page ____ of ____

						_					_	_	_	-	_			20.15				-		_					
Involce Inform	mation Invoice to (requires report)		-	Report	Inform	atlon (i	f differs from inv	oice)			_					Project I	nforma	tion	_	-									
Company :	DS Consultants	Company:			_				-		_	Quot	ation f	:							_								
Name:	Binky Goel	Name:	K	(3)	In	0)(see)				P.O, #	#/ AFE	Ų:									16	٠	i				
Street Address:	6021 Highway 7	Street Address:								-1177		Proje	ct #:		74	-300	3-	100	S		7	5	15	1.					
	wigh Caso Provi ON Code:	City:					Prov:	Post			100	Site #	n	-	-					25 - 100 111	-	10	100	9	1	10N.	r-202	4-08-	2165
Phone:	To the state of th	Phone:		Marin .				1200	-			Site L	ocatio	n:							_		1	ž.	Д,				
Email:	accounting & sonsultants	Email:	10	3/5	RX	10	decons	ult	781/1	3.0	ON	Site L Provi	ocatio	n			^				_) (7	ш				
Copies:	JC USAS - III - S	Coples:	Cs	dir	COL	00	DECONSU	1201	1/3	.0	0		nce: oled By		Ot	NOT	17	(-Sh	od (de	\neg								1
	Regulatory Crit	eria .						1	2	3	4		6			10 11	12	13 14	15	16 17	16	19 20	21	22		Regular	Furnarou	d Time (TA	1)
SideT Side	2 Res/Park Med/Fine 2 Ind/Comm Coarse #	CCME Reg 558		Reg		ible: wer Byl	law	1						1		Ш	1				П				EZ/S	to 7 Day	110	10 Day	
Table Table	3 Agri/other For RSC 差	min 3 day	TAT	Stor	m Sew	er Bylas Ipality				1					ī				H					١.		Rush T	rnaround	Time (TAT)	
az Tubic	include Criteria on Cortificate of	PWQO	ali leva	Oth	er:	apainty.								Sign .	1		1						E			_	urcharges		
1.50	the state of the s					:-	24			UIREI				egiou.		1					ΙI	1	BMIT	世	☐ Sa	me Day	100	1 Day	
5/	AMPLES MUST BE KEPT COOL (<10°C) FROM TIME OF SAMP	LING UNTIL	DELIVER	Y TO BL	UREAU	VERITA	5		۵	REC				gpue	The Car	· ~							SS SU	ANA	☐ 2	Day	7	☐ 3 Day	
	2 1000 1000 1000 1000	Da	te Samp	oled		inte thr)		ERED	HELD PRESERVED	LAB FILTRATION REQUIRED	- 1			Reg 153 metals and inorganics	Reg 153 ICPMS metals Reg 153 metals	-				1			# OF CONTAINERS SUBMITTED	DO NOT ANALYZE	□4	Day			
	Sample Identification (Please print or Type)	-	100		1		Matrix	FIELD FILTERED	PRE	HLT.R.	E	7		ES II	Reg 153 ICPMS Reg 153 metals	24	+ 1						8		Date Require	-	YYYY	MM	DD
	(, -a), and an 1, 7, p-1	YYYY	MM	DD	НН	MM		FELC	HELD	S.	BTEX/F1	F2 - F2	NOG	Reg 1	Reg 1	and	1	1	1		1 1		10	HOLD-	nequire	uk	Commer	nts	-
1	BH24-1 551	2024	03	59	A	M	1102							/									١			election of the second		4	
2	RH24-1 552	11	1	1			1								\Box	/					П		¥						S. S. Brand
3	NURI							750		\neg				1	_			-		_		-							
4	0000	11	1	11	11			\vdash			-	1	\neg	*		1	H			+-	-	-	r		-		_		-
5	0124-1 SC 4	1	1	1	H	\Box		T			V	V	_		-		+		\vdash	+	H	-	4	H			-	-	
6	RHZU-1 SSS		-	1	††		-	-		+	Y				_	- V		\vdash		+	-	+	3		_	_			$\overline{}$
7	RH24-2 SSI	$\pm\pm$	-	+	11	\vdash	-	-	Н		-	-	Y	1	-			$\vdash\vdash$	+	+	-	+	2		_				_
8	BH24-2 SS4.	++	╁	++	$\dagger\dagger$	1		\vdash		+	1	V	-	-	-	V /	+		H		1	-	10	+	-	_			
9	2424 7 355	++	+	+	+	Н		1	-	\dashv	•	V	V	-		1	-		H		H		73	\vdash					
10	011011-3 001	+	1	H	H	+		\vdash			\dashv	-1	•				-	-	\vdash		-	+	ځ	-	<u> </u>				-
11	SH24-3 351	, 1/	1	11	₽		_				-		-	-			H		H	-	-		1	_	<u> </u>				
	BH24-3552	-	W	#	1.1		1	-			-			V	_	-		1		_	Н	_	1		-				
12	BH24-3 35	A A	4	4			_ ~	1		75	V	V		v,	Ĺ.		L						3						
*UNLESS OTH	ERWISE AGREED TO IN WRITING, WORK SUBMITTED ON THE	S CHAIN OF	CUSTOD	Y IS SU	BJECT T	O BURE	AU VERITAS STAI V.BVNA.COM/TE	DARD	TERM	SAND	CON	DITIO	NS. SI	SNIN	G OF THIS	CHAIN OF	CUSTO	DY DOCUM	ENT IS	ACKNOW	EDGME	NT AND	ACCE	PTANC	E OF OU	RTERMS	AND CON	DITIONS WE	ICH ARE
LABIL	SE ONLY Yes No			LAR USE				No	10-00		Cido C		CALLER		IE LAGUIN	HORT LIST		USE ONLY			-		-					Temp	erature
Seal present	·c 8 7	14	Seal pr		UNE		165		٠,							Cond-		USE ONLY		γ	es	No	١.,		l				Ing by:
Seal Intact		1	Seal In	tact					1			- 1				Seal presi			C5007		-		1	°C		1	1		1
Cooling media		ate 3	Cooling		preser	it					1		2		3	Cooling n	nedla p			17.	_1	Time	1		1	2	3		
	andorshed by: (signature/ Frant)	MM D		нн	IN	IM				y: (Sig						YYY		Date MM		DD	HH		MM.		*****	speci	al instructi	ons	
1 DING	a At-Shedah Thus 7224 C	8 00	10	7:4	PP	n	151	_5	ul	A	~	-3	AL	4	AM	201	34	08	3	10	08	3 3	0						CONTRACT OF THE PARTY OF THE PA
2							1								-1032		-			****		Τ.	52	1					
			-		_			_	_		_	_				Maria .						_	_		_	_			

www,BVNA.com

6740 Campobello Road, Mississauga, Ontario LSN 2L8 Phone: 905-817-5700 Fax: 905-817-5779 Toll Free: 800-563-6266

CHAIN OF CUSTODY RECORD ENV COC - 00014v5

Page 2 of 2

Invoice information Invoice to (requires report)	Report Information (If differs from Invoke)	Project information
	Company: Quotation #:	Project (normation
Contact DS Contest VIVI		
Name: Biom (2001)	Contact COBTIN 018CD P.O. 0/ AFEH: Street	LAB USE ONLY - PLACE STICKER HERE
Street 22 Advancy 7	Address: Project #:	
City: Kens han Prov. Officero:	Code: Site #:	(~300 ~ ())O
Phone: accounting & Brown sufface	Phone: Site Location:	Rush Confirmation #:
Email: COCOUNTIANDE 03001 1711	email. Colsen & 3 consultants. Stylocation Province: Copies: abthar & 3 consultants. con Sampled By:	Tax Al-Shalah
Copies:		
Table 1 URes/Park Med/Fine Coarse UR Table 3 Agri/other For RSC	CCME Reg 406, Table: Reg 558* Sanitary Sewer Bylaw min 3 day TAT Storm Sewer Bylaw MisA Municipality M	Rush Turnaround Time (TAT)
Include Criteria on Certificate of A	nalysis (check if yes):	Same Day 10ay
SAMPLES MUST BE KEPT COOL (<10°C) FROM TIME OF SAMPL		GELLINGUES SPORT STRINGUES SPORT SPORT STRINGUES SPORT STRINGUES SPORT STRINGUES SPORT SPO
	Pieto Percentage Pieto Perce	SULVE DATE OF SULVEY SU
Sample Identification (Please print or Type)	Matrix Mee 153 m	Date YYYY MM DD Required: Comments
11 RH24-3 SSS	224 08 69 BM Soil	3
2 RHTU-4 8C1		
3 04011-14 550		
WAZA. 7 223		
1 00b3		3
5 NUPS		\forall
6 MAW24-8 SSI		
2 2004		
8 1011211-5 550		
NAME OF SECOND		
1º MW 24-5 553		
10 MW24-5 88		
11 AMM24-5 550		3
12 0006		
000	CHAIN OF CUSTODY IS SUBJECT TO BUREAU VERITAS STANDARD TERMS AND CONDITIONS. SIGNING OF THIS I	CHAIN OF CUSTODY DOCUMENT IS ACKNOWLEDGMENT AND ACCEPTANCE OF OUR TERMS AND CONDITIONS WHICH ARE
	AVAILABLE FOR VIEWING AT WWW.BVNA.COM/TERMS-AND-CONDITIONS OR BY CALLING THE LABORA	TORY LISTED ABOVE TO OBTAIN A COPY
LAB USE ONLY Yes No	LAB USE ONLY Yes No	LAB USE ONLY Yes No Temperature reading by:
Seal present *C	Seal present °C	Seal present C
Seal Intact Cooling media present 1 2	Seel Intact 3 Cooling media present 1 2 3	Seal Intact Cooling media present 1 2 3
Relinquished by: (Signature/Print) Da	e Time Received by: (Signature/ Print)	Date Time Special Instructions YYYY MM DD HH MM
1 Dina Al-Shalah 7 w way	8 69 9-45PM SEE PICE 1	
	1 /50	
]2		THE STATE OF THE S

Exceedance Summary Table – Reg153/04 T2-Soil/Res-C Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
No Exceedances						

The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to applicable regulatory guidelines.

Your Project #: 24-300-100

Your C.O.C. #: N/A

Attention: Kirstin Olsen

DS Consultants Limited 6221 Highway 7, Unit 16 Vaughan, ON CANADA L4H 0K8

Report Date: 2024/10/11

Report #: R8358953 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C4O6235 Received: 2024/08/10, 08:30

Sample Matrix: Soil # Samples Received: 25

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Methylnaphthalene Sum	6	N/A	2024/08/15	CAM SOP-00301	EPA 8270D m
Hot Water Extractable Boron	1	2024/10/09	2024/10/10	CAM SOP-00408	R153 Ana. Prot. 2011
Hot Water Extractable Boron	6	2024/08/15	2024/08/16	CAM SOP-00408	R153 Ana. Prot. 2011
1,3-Dichloropropene Sum	4	N/A	2024/08/13		EPA 8260C m
Free (WAD) Cyanide	1	2024/10/09	2024/10/10	CAM SOP-00457	OMOE E3015 m
Free (WAD) Cyanide	1	2024/08/13	2024/08/13	CAM SOP-00457	OMOE E3015 m
Free (WAD) Cyanide	5	2024/08/14	2024/08/14	CAM SOP-00457	OMOE E3015 m
Conductivity	1	2024/10/10	2024/10/10	CAM SOP-00414	OMOE E3530 v1 m
Conductivity	6	2024/08/14	2024/08/14	CAM SOP-00414	OMOE E3530 v1 m
Hexavalent Chromium in Soil by IC (1)	1	2024/10/09	2024/10/09	CAM SOP-00436	EPA 3060A/7199 m
Hexavalent Chromium in Soil by IC (1)	6	2024/08/17	2024/08/19	CAM SOP-00436	EPA 3060A/7199 m
Dioxins/Furans in Soil (1613B) (2)	1	2024/08/20	2024/09/10	BRL SOP-00410;BRL SOP-	EPA 1613B m
				00407 & 405	
Dioxins/Furans in Soil (1613B) (2)	1	2024/08/20	2024/09/09	BRL SOP-00410;BRL SOP- 00407 & 405	EPA 1613B m
Petroleum Hydro. CCME F1 & BTEX in Soil (3)	5	N/A	2024/08/14	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Soil (4)	6	2024/08/14	2024/08/15	CAM SOP-00316	CCME CWS m
Acid Extractable Metals by ICPMS	1	2024/10/09	2024/10/10	CAM SOP-00447	EPA 6020B m
Acid Extractable Metals by ICPMS	6	2024/08/16	2024/08/16	CAM SOP-00447	EPA 6020B m
Moisture	1	N/A	2024/10/08	CAM SOP-00445	Carter 2nd ed 70.2 m
Moisture	21	N/A	2024/08/10	CAM SOP-00445	Carter 2nd ed 70.2 m
OC Pesticides (Selected) & PCB (5)	1	2024/10/08	2024/10/10	CAM SOP-00307	EPA 8081B/ 8082A
OC Pesticides (Selected) & PCB (5)	1	2024/10/08	2024/10/08	CAM SOP-00307	EPA 8081B/ 8082A
OC Pesticides (Selected) & PCB (5)	1	2024/10/08	2024/10/09	CAM SOP-00307	EPA 8081B/ 8082A
OC Pesticides Summed Parameters	1	N/A	2024/10/10	CAM SOP-00307	EPA 8081B/ 8082A
OC Pesticides Summed Parameters	1	N/A	2024/10/08	CAM SOP-00307	EPA 8081B/ 8082A
OC Pesticides Summed Parameters	1	N/A	2024/10/09	CAM SOP-00307	EPA 8081B/ 8082A
PAH Compounds in Soil by GC/MS (SIM)	6	2024/08/13	2024/08/14	CAM SOP-00318	EPA 8270E
Polychlorinated Biphenyl in Soil	2	2024/08/12	2024/08/13	CAM SOP-00309	EPA 8082A m
pH CaCl2 EXTRACT	1	2024/10/09	2024/10/09	CAM SOP-00413	EPA 9045 D m
pH CaCl2 EXTRACT	11	2024/08/14	2024/08/14	CAM SOP-00413	EPA 9045 D m

Your Project #: 24-300-100

Your C.O.C. #: N/A

Attention: Kirstin Olsen

DS Consultants Limited 6221 Highway 7, Unit 16 Vaughan, ON CANADA L4H 0K8

Report Date: 2024/10/11

Report #: R8358953 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C4O6235 Received: 2024/08/10, 08:30

Sample Matrix: Soil # Samples Received: 25

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Sodium Adsorption Ratio (SAR)	1	N/A	2024/10/11	CAM SOP-00102	EPA 6010C
Sodium Adsorption Ratio (SAR)	6	N/A	2024/08/15	CAM SOP-00102	EPA 6010C
Volatile Organic Compounds and F1 PHCs	1	N/A	2024/08/12	CAM SOP-00230	EPA 8260C m
Volatile Organic Compounds in Soil	3	N/A	2024/08/12	CAM SOP-00228	EPA 8260D

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, EPA, APHA or the Quebec Ministry of Environment.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

 $Reference\ Method\ suffix\ "m"\ indicates\ test\ methods\ incorporate\ validated\ modifications\ from\ specific\ reference\ methods\ to\ improve\ performance.$

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Soils are reported on a dry weight basis unless otherwise specified.
- (2) Soils are reported on a dry weight basis unless otherwise specified.

Confirmatory runs for 2,3,7,8-TCDF are performed only if the primary result is greater than the RDL.

- (3) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is the date sampled unless otherwise stated.
- (4) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003".

Your Project #: 24-300-100

Your C.O.C. #: N/A

Attention: Kirstin Olsen

DS Consultants Limited 6221 Highway 7, Unit 16 Vaughan, ON CANADA L4H 0K8

Report Date: 2024/10/11

Report #: R8358953 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C4O6235

Received: 2024/08/10, 08:30

Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

(5) Chlordane (Total) = Alpha Chlordane + Gamma Chlordane

Encryption Key

Ashton Gibson Project Manager 11 Oct 2024 19:15:33

Please direct all questions regarding this Certificate of Analysis to:

Ashton Gibson, Project Manager

Email: ashton.gibson@bureauveritas.com

Phone# (905)817-5765

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Report Date: 2024/10/11

DS Consultants Limited Client Project #: 24-300-100 Sampler Initials: DAS

O.REG 153 METALS & INORGANICS PKG (SOIL)

Bureau Veritas ID			ZYT608		ZYT609		ZYT610			
Sampling Date			2024/08/09		2024/08/09		2024/08/09			
COC Number			N/A		N/A		N/A			
	UNITS	Criteria	BH24-1 SS1	QC Batch	BH24-1 SS2	QC Batch	DUP1	RDL	MDL	QC Batch
Calculated Parameters										
Sodium Adsorption Ratio	N/A	5.0	0.31 (1)	9568697	0.33	9687213	0.32 (1)			9568697
Inorganics									•	
Conductivity	mS/cm	0.7	0.11	9575958	7.9	9693432	0.11	0.002	0.0005	9575958
Available (CaCl2) pH	рН	-	7.90	9575290	12.5	9690624	7.87			9575290
WAD Cyanide (Free)	ug/g	0.051	<0.01	9574762	0.05	9690412	<0.01	0.01	0.0019	9574762
Chromium (VI)	ug/g	8	<0.18	9582926	<0.18	9690668	<0.18	0.18	0.050	9582926
Metals	•							•		
Hot Water Ext. Boron (B)	ug/g	1.5	0.086	9579186	0.34	9691843	0.090	0.050	0.030	9579186
Acid Extractable Antimony (Sb)	ug/g	7.5	<0.20	9580628	<0.20	9691645	<0.20	0.20	0.10	9580628
Acid Extractable Arsenic (As)	ug/g	18	1.7	9580628	1.8	9691645	1.7	1.0	0.10	9580628
Acid Extractable Barium (Ba)	ug/g	390	22	9580628	32	9691645	21	0.50	0.30	9580628
Acid Extractable Beryllium (Be)	ug/g	4	0.21	9580628	0.42	9691645	0.28	0.20	0.020	9580628
Acid Extractable Boron (B)	ug/g	120	<5.0	9580628	7.3	9691645	<5.0	5.0	1.0	9580628
Acid Extractable Cadmium (Cd)	ug/g	1.2	<0.10	9580628	<0.10	9691645	<0.10	0.10	0.030	9580628
Acid Extractable Chromium (Cr)	ug/g	160	7.4	9580628	9.8	9691645	7.5	1.0	0.20	9580628
Acid Extractable Cobalt (Co)	ug/g	22	3.4	9580628	3.8	9691645	3.1	0.10	0.020	9580628
Acid Extractable Copper (Cu)	ug/g	140	8.1	9580628	12	9691645	7.5	0.50	0.20	9580628
Acid Extractable Lead (Pb)	ug/g	120	6.5	9580628	5.9	9691645	7.2	1.0	0.10	9580628
Acid Extractable Molybdenum (Mo)	ug/g	6.9	<0.50	9580628	<0.50	9691645	<0.50	0.50	0.10	9580628
Acid Extractable Nickel (Ni)	ug/g	100	6.8	9580628	8.4	9691645	6.0	0.50	0.20	9580628
Acid Extractable Selenium (Se)	ug/g	2.4	<0.50	9580628	<0.50	9691645	<0.50	0.50	0.10	9580628
Acid Extractable Silver (Ag)	ug/g	20	<0.20	9580628	<0.20	9691645	<0.20	0.20	0.040	9580628
Acid Extractable Thallium (TI)	ug/g	1	0.053	9580628	0.057	9691645	<0.050	0.050	0.010	9580628
Acid Extractable Uranium (U)	ug/g	23	0.53	9580628	0.64	9691645	0.38	0.050	0.030	9580628
Acid Extractable Vanadium (V)	ug/g	86	17	9580628	17	9691645	17	5.0	0.50	9580628
Acid Extractable Zinc (Zn)	ug/g	340	24	9580628	27	9691645	23	5.0	0.50	9580628
Acid Extractable Mercury (Hg)	ug/g	0.27	<0.050	9580628	<0.050	9691645	<0.050	0.050	0.030	9580628

No Fill Grey Black

No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil

(1) Sodium was not detected. To report SAR the sodium detection limit was used in the calculation. This value represents a maximum ratio.

Report Date: 2024/10/11

DS Consultants Limited Client Project #: 24-300-100 Sampler Initials: DAS

O.REG 153 METALS & INORGANICS PKG (SOIL)

	1	1	1	1	1	1	1		1	
Bureau Veritas ID			ZYT614		ZYT618	ZYT625	ZYT626			
Sampling Date			2024/08/09		2024/08/09	2024/08/09	2024/08/09			
COC Number			N/A		N/A	N/A	N/A			
	UNITS	Criteria	BH24-2 SS1	QC Batch	BH24-3 SS2	MW24-5 SS1	DUP4	RDL	MDL	QC Batch
Calculated Parameters										
Sodium Adsorption Ratio	N/A	5.0	0.43 (1)	9568697	0.36 (1)	0.33 (1)	0.33 (1)			9568697
Inorganics										
Conductivity	mS/cm	0.7	0.073	9575958	0.10	0.10	0.11	0.002	0.0005	9575958
Available (CaCl2) pH	рН	-	8.01	9575290	7.91	7.93	7.85			9575290
WAD Cyanide (Free)	ug/g	0.051	<0.01	9572053	<0.01	<0.01	<0.01	0.01	0.0019	9574762
Chromium (VI)	ug/g	8	<0.18	9582926	<0.18	<0.18	<0.18	0.18	0.050	9582926
Metals	•	•	•	•	•	•	•	•	=	
Hot Water Ext. Boron (B)	ug/g	1.5	<0.050	9579186	0.054	0.070	0.073	0.050	0.030	9579186
Acid Extractable Antimony (Sb)	ug/g	7.5	<0.20	9580628	<0.20	<0.20	<0.20	0.20	0.10	9580628
Acid Extractable Arsenic (As)	ug/g	18	1.7	9580628	<1.0	1.5	2.0	1.0	0.10	9580628
Acid Extractable Barium (Ba)	ug/g	390	14	9580628	14	16	22	0.50	0.30	9580628
Acid Extractable Beryllium (Be)	ug/g	4	<0.20	9580628	<0.20	<0.20	0.21	0.20	0.020	9580628
Acid Extractable Boron (B)	ug/g	120	<5.0	9580628	<5.0	<5.0	<5.0	5.0	1.0	9580628
Acid Extractable Cadmium (Cd)	ug/g	1.2	<0.10	9580628	<0.10	<0.10	<0.10	0.10	0.030	9580628
Acid Extractable Chromium (Cr)	ug/g	160	8.8	9580628	5.6	7.1	8.4	1.0	0.20	9580628
Acid Extractable Cobalt (Co)	ug/g	22	4.7	9580628	2.5	2.8	3.6	0.10	0.020	9580628
Acid Extractable Copper (Cu)	ug/g	140	9.6	9580628	5.0	6.8	9.1	0.50	0.20	9580628
Acid Extractable Lead (Pb)	ug/g	120	8.7	9580628	3.2	9.4	13	1.0	0.10	9580628
Acid Extractable Molybdenum (Mo)	ug/g	6.9	<0.50	9580628	<0.50	<0.50	<0.50	0.50	0.10	9580628
Acid Extractable Nickel (Ni)	ug/g	100	7.5	9580628	4.8	5.4	7.4	0.50	0.20	9580628
Acid Extractable Selenium (Se)	ug/g	2.4	<0.50	9580628	<0.50	<0.50	<0.50	0.50	0.10	9580628
Acid Extractable Silver (Ag)	ug/g	20	<0.20	9580628	<0.20	<0.20	<0.20	0.20	0.040	9580628
Acid Extractable Thallium (Tl)	ug/g	1	<0.050	9580628	<0.050	<0.050	0.054	0.050	0.010	9580628
Acid Extractable Uranium (U)	ug/g	23	0.36	9580628	0.28	0.32	0.35	0.050	0.030	9580628
Acid Extractable Vanadium (V)	ug/g	86	25	9580628	13	16	19	5.0	0.50	9580628
Acid Extractable Zinc (Zn)	ug/g	340	26	9580628	13	20	24	5.0	0.50	9580628
Acid Extractable Mercury (Hg)	ug/g	0.27	<0.050	9580628	<0.050	<0.050	<0.050	0.050	0.030	9580628
					·	·				

No Fill Grey Black

No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil

(1) Sodium was not detected. To report SAR the sodium detection limit was used in the calculation. This value represents a maximum ratio.

DS Consultants Limited Client Project #: 24-300-100

Sampler Initials: DAS

O.REG 153 OC PESTICIDES (SOIL)

Bureau Veritas ID			AFBK01	ZYT608		ZYT617			
Sampling Date			2024/08/09	2024/08/09		2024/08/09			
COC Number			N/A	N/A		N/A			
	UNITS	Criteria	DUP 7	BH24-1 SS1	QC Batch	BH24-3 SS1	RDL	MDL	QC Batch
Calculated Parameters									
Chlordane (Total)	ug/g	0.05	<0.0020	<0.0020	9685873	<0.0020	0.0020	N/A	9681597
o,p-DDD + p,p-DDD	ug/g	3.3	<0.0020	<0.0020	9685873	<0.0020	0.0020	N/A	9681597
o,p-DDE + p,p-DDE	ug/g	0.26	0.0089	0.0093	9685873	0.022	0.0020	N/A	9681597
o,p-DDT + p,p-DDT	ug/g	1.4	0.0026	0.0023	9685873	0.0095	0.0020	N/A	9681597
Total Endosulfan	ug/g	0.05	<0.0020	<0.0020	9685873	<0.0020	0.0020	N/A	9681597
Total PCB	ug/g	0.35	<0.015	<0.015	9685873	<0.015	0.015	N/A	9681597
Pesticides & Herbicides	•								
Aldrin	ug/g	0.05	<0.0020	<0.0020	9687663	<0.0020	0.0020	0.00040	9690075
a-Chlordane	ug/g	0.05	<0.0020	<0.0020	9687663	<0.0020	0.0020	0.00040	9690075
g-Chlordane	ug/g	0.05	<0.0020	<0.0020	9687663	<0.0020	0.0020	0.00040	9690075
o,p-DDD	ug/g	3.3	<0.0020	<0.0020	9687663	<0.0020	0.0020	0.00040	9690075
p,p-DDD	ug/g	3.3	<0.0020	<0.0020	9687663	<0.0020	0.0020	0.00040	9690075
o,p-DDE	ug/g	0.26	<0.0020	<0.0020	9687663	<0.0020	0.0020	0.00040	9690075
p,p-DDE	ug/g	0.26	0.0089	0.0093	9687663	0.022	0.0020	0.00040	9690075
o,p-DDT	ug/g	1.4	<0.0020	<0.0020	9687663	0.0028	0.0020	0.00040	9690075
p,p-DDT	ug/g	1.4	0.0026	0.0023	9687663	0.0068	0.0020	0.00040	9690075
Dieldrin	ug/g	0.05	<0.0020	<0.0020	9687663	<0.0020	0.0020	0.00040	9690075
Lindane	ug/g	0.056	<0.0020	<0.0020	9687663	<0.0020	0.0020	0.00040	9690075
Endosulfan I (alpha)	ug/g	0.04	<0.0020	<0.0020	9687663	<0.0020	0.0020	0.00040	9690075
Endosulfan II (beta)	ug/g	0.04	<0.0020	<0.0020	9687663	<0.0020	0.0020	0.00040	9690075
Endrin	ug/g	0.04	<0.0020	<0.0020	9687663	<0.0020	0.0020	0.00040	9690075
Heptachlor	ug/g	0.15	<0.0020	<0.0020	9687663	<0.0020	0.0020	0.00040	9690075
Heptachlor epoxide	ug/g	0.05	<0.0020	<0.0020	9687663	<0.0020	0.0020	0.00040	9690075
Hexachlorobenzene	ug/g	0.52	<0.0020	<0.0020	9687663	<0.0020	0.0020	0.00040	9690075
Hexachlorobutadiene	ug/g	0.012	<0.0020	<0.0020	9687663	<0.0020	0.0020	N/A	9690075
Hexachloroethane	ug/g	0.089	<0.0020	<0.0020	9687663	<0.0020	0.0020	N/A	9690075
Methoxychlor	ug/g	0.13	<0.0050	<0.0050	9687663	<0.0050	0.0050	0.0016	9690075
Aroclor 1242	ug/g	-	<0.015	<0.015	9687663	<0.015	0.015	0.0030	9690075
Aroclor 1248	ug/g	-	<0.015	<0.015	9687663	<0.015	0.015	0.0030	9690075
	,				•		•		

No Fill Grey Black

No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil

Report Date: 2024/10/11

DS Consultants Limited Client Project #: 24-300-100 Sampler Initials: DAS

O.REG 153 OC PESTICIDES (SOIL)

-									
Bureau Veritas ID			AFBK01	ZYT608		ZYT617			
Sampling Date			2024/08/09	2024/08/09		2024/08/09			
COC Number			N/A	N/A		N/A			
	UNITS	Criteria	DUP 7	BH24-1 SS1	QC Batch	BH24-3 SS1	RDL	MDL	QC Batch
Aroclor 1254	ug/g	-	<0.015	<0.015	9687663	<0.015	0.015	0.0030	9690075
Aroclor 1260	ug/g	-	<0.015	<0.015	9687663	<0.015	0.015	0.0030	9690075
Surrogate Recovery (%)									
2,4,5,6-Tetrachloro-m-xylene	%	-	74	58	9687663	82			9690075
Decachlorobiphenyl	%	-	83	70	9687663	79			9690075

No Fill Grey

Black

No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil

O.REG 153 PAHS (SOIL)

Bureau Veritas ID			ZYT609	ZYT611	ZYT614			
Sampling Date			2024/08/09	2024/08/09	2024/08/09			
COC Number			N/A	N/A	N/A			
	UNITS	Criteria	BH24-1 SS2	DUP2	BH24-2 SS1	RDL	MDL	QC Batch
Calculated Parameters								
Methylnaphthalene, 2-(1-)	ug/g	-	<0.0071	<0.0071	<0.0071	0.0071	N/A	9568698
Polyaromatic Hydrocarbons	•	•				•		
Acenaphthene	ug/g	7.9	<0.0050	<0.0050	<0.0050	0.0050	0.0020	9574798
Acenaphthylene	ug/g	0.15	<0.0050	<0.0050	<0.0050	0.0050	0.0010	9574798
Anthracene	ug/g	0.67	<0.0050	<0.0050	<0.0050	0.0050	0.0010	9574798
Benzo(a)anthracene	ug/g	0.5	<0.0050	<0.0050	<0.0050	0.0050	0.0020	9574798
Benzo(a)pyrene	ug/g	0.3	<0.0050	<0.0050	<0.0050	0.0050	0.0010	9574798
Benzo(b/j)fluoranthene	ug/g	0.78	<0.0050	<0.0050	<0.0050	0.0050	0.0020	9574798
Benzo(g,h,i)perylene	ug/g	6.6	<0.0050	<0.0050	<0.0050	0.0050	0.0040	9574798
Benzo(k)fluoranthene	ug/g	0.78	<0.0050	<0.0050	<0.0050	0.0050	0.0020	9574798
Chrysene	ug/g	7	<0.0050	<0.0050	<0.0050	0.0050	0.0020	9574798
Dibenzo(a,h)anthracene	ug/g	0.1	<0.0050	<0.0050	<0.0050	0.0050	0.0040	9574798
Fluoranthene	ug/g	0.69	<0.0050	<0.0050	<0.0050	0.0050	0.0010	9574798
Fluorene	ug/g	62	<0.0050	<0.0050	<0.0050	0.0050	0.0010	9574798
Indeno(1,2,3-cd)pyrene	ug/g	0.38	<0.0050	<0.0050	<0.0050	0.0050	0.0040	9574798
1-Methylnaphthalene	ug/g	0.99	<0.0050	<0.0050	<0.0050	0.0050	0.0010	9574798
2-Methylnaphthalene	ug/g	0.99	<0.0050	<0.0050	<0.0050	0.0050	0.0010	9574798
Naphthalene	ug/g	0.6	<0.0050	<0.0050	<0.0050	0.0050	0.0010	9574798
Phenanthrene	ug/g	6.2	<0.0050	<0.0050	<0.0050	0.0050	0.0010	9574798
Pyrene	ug/g	78	<0.0050	<0.0050	<0.0050	0.0050	0.0010	9574798
Surrogate Recovery (%)								
D10-Anthracene	%	-	92	87	76			9574798
D14-Terphenyl (FS)	%	-	89	82	64			9574798
D8-Acenaphthylene	%	-	82	79	66			9574798

No Fill Grey

Black

No Exceedance

Exceeds 1 criteria policy/level Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil

Report Date: 2024/10/11

DS Consultants Limited Client Project #: 24-300-100 Sampler Initials: DAS

O.REG 153 PAHS (SOIL)

Bureau Veritas ID			ZYT614				ZYT617	ZYT627			
Sampling Date			2024/08/09				2024/08/09	2024/08/09			
COC Number			N/A				N/A	N/A			
	UNITS	Criteria	BH24-2 SS1 Lab-Dup	RDL	MDL	QC Batch	BH24-3 SS1	MW24-5 SS2	RDL	MDL	QC Batch
Calculated Parameters											
Methylnaphthalene, 2-(1-)	ug/g	-					<0.0071	<0.0071	0.0071	N/A	9568698
Polyaromatic Hydrocarbons											
Acenaphthene	ug/g	7.9	<0.0050	0.0050	0.0020	9574798	<0.0050	<0.0050	0.0050	0.0020	9574798
Acenaphthylene	ug/g	0.15	<0.0050	0.0050	0.0010	9574798	<0.0050	<0.0050	0.0050	0.0010	9574798
Anthracene	ug/g	0.67	<0.0050	0.0050	0.0010	9574798	<0.0050	<0.0050	0.0050	0.0010	9574798
Benzo(a)anthracene	ug/g	0.5	<0.0050	0.0050	0.0020	9574798	<0.0050	<0.0050	0.0050	0.0020	9574798
Benzo(a)pyrene	ug/g	0.3	<0.0050	0.0050	0.0010	9574798	<0.0050	<0.0050	0.0050	0.0010	9574798
Benzo(b/j)fluoranthene	ug/g	0.78	<0.0050	0.0050	0.0020	9574798	<0.0050	<0.0050	0.0050	0.0020	9574798
Benzo(g,h,i)perylene	ug/g	6.6	<0.0050	0.0050	0.0040	9574798	<0.0050	<0.0050	0.0050	0.0040	9574798
Benzo(k)fluoranthene	ug/g	0.78	<0.0050	0.0050	0.0020	9574798	<0.0050	<0.0050	0.0050	0.0020	9574798
Chrysene	ug/g	7	<0.0050	0.0050	0.0020	9574798	<0.0050	<0.0050	0.0050	0.0020	9574798
Dibenzo(a,h)anthracene	ug/g	0.1	<0.0050	0.0050	0.0040	9574798	<0.0050	<0.0050	0.0050	0.0040	9574798
Fluoranthene	ug/g	0.69	<0.0050	0.0050	0.0010	9574798	0.0078	<0.0050	0.0050	0.0010	9574798
Fluorene	ug/g	62	<0.0050	0.0050	0.0010	9574798	<0.0050	<0.0050	0.0050	0.0010	9574798
Indeno(1,2,3-cd)pyrene	ug/g	0.38	<0.0050	0.0050	0.0040	9574798	<0.0050	<0.0050	0.0050	0.0040	9574798
1-Methylnaphthalene	ug/g	0.99	<0.0050	0.0050	0.0010	9574798	<0.0050	<0.0050	0.0050	0.0010	9574798
2-Methylnaphthalene	ug/g	0.99	<0.0050	0.0050	0.0010	9574798	<0.0050	<0.0050	0.0050	0.0010	9574798
Naphthalene	ug/g	0.6	<0.0050	0.0050	0.0010	9574798	<0.0050	<0.0050	0.0050	0.0010	9574798
Phenanthrene	ug/g	6.2	<0.0050	0.0050	0.0010	9574798	0.0060	<0.0050	0.0050	0.0010	9574798
Pyrene	ug/g	78	<0.0050	0.0050	0.0010	9574798	0.0059	<0.0050	0.0050	0.0010	9574798
Surrogate Recovery (%)											
D10-Anthracene	%	-	103			9574798	107	99			9574798
D14-Terphenyl (FS)	%	-	97			9574798	100	96			9574798
D8-Acenaphthylene	%	-	88			9574798	89	86			9574798

No Fill Grey Black

No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil

O.REG 153 PAHS (SOIL)

Bureau Veritas ID				ZYT629				
Sampling Date				2024/08/09				
COC Number				N/A				
		UNITS	Criteria	MW24-5 SS4	RDL	MDL	QC Batch	
Calculated Parameters								
Methylnaphthalene, 2-(1-)		ug/g	-	<0.0071	0.0071	N/A	9568698	
Polyaromatic Hydrocarbons								
Acenaphthene		ug/g	7.9	<0.0050	0.0050	0.0020	9574798	
Acenaphthylen	Acenaphthylene		0.15	<0.0050	0.0050	0.0010	9574798	
Anthracene		ug/g	0.67	<0.0050			9574798	
Benzo(a)anthracene		ug/g	0.5	<0.0050	0.0050	0.0020	9574798	
Benzo(a)pyrene		ug/g	0.3	<0.0050	0.0050	0.0010	9574798	
Benzo(b/j)fluor	Benzo(b/j)fluoranthene		0.78	<0.0050	0.0050	0.0020	9574798	
Benzo(g,h,i)per	Benzo(g,h,i)perylene		6.6	<0.0050	0.0050	0.0040	9574798	
Benzo(k)fluoranthene		ug/g	0.78	<0.0050	0.0050	0.0020	9574798	
Chrysene		ug/g	7	<0.0050	0.0050	0.0020	9574798	
Dibenzo(a,h)anthracene		ug/g	0.1	<0.0050	0.0050	0.0040	9574798	
Fluoranthene		ug/g	0.69	<0.0050	0.0050	0.0010	9574798	
Fluorene		ug/g	62	<0.0050	0.0050	0.0010	9574798	
Indeno(1,2,3-cd)pyrene		ug/g	0.38	<0.0050	0.0050	0.0040	9574798	
1-Methylnaphthalene		ug/g	0.99	<0.0050	0.0050	0.0010	9574798	
2-Methylnaphthalene		ug/g	0.99	<0.0050	0.0050	0.0010	9574798	
Naphthalene		ug/g	0.6	<0.0050	0.0050	0.0010	9574798	
Phenanthrene		ug/g	6.2	<0.0050	0.0050	0.0010	9574798	
Pyrene		ug/g	78	<0.0050	0.0050	0.0010	9574798	
Surrogate Recovery (%)								
D10-Anthracene		%	-	104			9574798	
D14-Terphenyl (FS)		%	-	98			9574798	
D8-Acenaphthylene		%	-	81			9574798	
No Fill	No Exceedar	ince						

Grey

Black

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water

Condition

Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil

Bureau Veritas Job #: C4O6235

Report Date: 2024/10/11

Client Project #: 24-300-100

Sampler Initials: DAS

. .

O.REG 153 PCBS (SOIL)

	-				_		_			
Bureau Veritas ID			ZYT621	ZYT624						
Sampling Date			2024/08/09	2024/08/09						
COC Number			N/A	N/A						
	UNITS	Criteria	BH24-4 SS1	DUP5	RDL	MDL	QC Batch			
PCBs										
Aroclor 1242	ug/g	-	<0.010	<0.010	0.010	0.0070	9571819			
Aroclor 1248	ug/g	-	<0.010	<0.010	0.010	0.0070	9571819			
Aroclor 1254	ug/g	-	<0.010	<0.010	0.010	0.0070	9571819			
Aroclor 1260	ug/g	-	<0.010	<0.010	0.010	0.0070	9571819			
Total PCB	ug/g	0.35	<0.010	<0.010	0.010	0.0070	9571819			
Surrogate Recovery (%)										
Decachlorobiphenyl	%	-	96	87			9571819			

No Fill

No Exceedance

Grey Black Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil

O.REG 153 PHCS, BTEX/F1-F4 (SOIL)

Bureau Veritas ID			ZYT612	ZYT615	ZYT619	ZYT623	ZYT629			
Sampling Date			2024/08/09	2024/08/09	2024/08/09	2024/08/09	2024/08/09			
COC Number			N/A	N/A	N/A	N/A	N/A			
	UNITS	Criteria	BH24-1 SS4	BH24-2 SS4	BH24-3 SS4	DUP3	MW24-5 SS4	RDL	MDL	QC Batch
BTEX & F1 Hydrocarbons										
Benzene	ug/g	0.21	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	0.020	9573977
Toluene	ug/g	2.3	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	0.020	9573977
Ethylbenzene	ug/g	1.1	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	0.020	9573977
o-Xylene	ug/g	-	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	0.020	9573977
p+m-Xylene	ug/g	-	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	0.040	9573977
Total Xylenes	ug/g	3.1	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	0.040	9573977
F1 (C6-C10)	ug/g	55	<10	<10	<10	<10	<10	10	5.0	9573977
F1 (C6-C10) - BTEX	ug/g	55	<10	<10	<10	<10	<10	10	5.0	9573977
F2-F4 Hydrocarbons										
F2 (C10-C16 Hydrocarbons)	ug/g	98	<10	<10	<10	<10	<10	10	7.1	9576187
F3 (C16-C34 Hydrocarbons)	ug/g	300	<50	<50	<50	<50	<50	50	5.0	9576187
F4 (C34-C50 Hydrocarbons)	ug/g	2800	<50	<50	<50	<50	<50	50	10	9576187
Reached Baseline at C50	ug/g	-	Yes	Yes	Yes	Yes	Yes			9576187
Surrogate Recovery (%)										
1,4-Difluorobenzene	%	-	120	120	119	115	111			9573977
4-Bromofluorobenzene	%	-	95	86	97	86	100			9573977
D10-o-Xylene	%	-	93	96	107	101	104			9573977
D4-1,2-Dichloroethane	%	-	115	118	112	106	125			9573977
o-Terphenyl	%	-	102	103	107	104	107			9576187

No Fill Grey

Black

No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Bureau Veritas ID			ZYT630				ZYT630			
Sampling Date			2024/08/09				2024/08/09			
COC Number			N/A				N/A			
	UNITS	Criteria	MW24-5 SS9	RDL	MDL	QC Batch	MW24-5 SS9 Lab-Dup	RDL	MDL	QC Batch
Calculated Parameters										
1,3-Dichloropropene (cis+trans)	ug/g	0.05	<0.050	0.050	0.010	9568401				
Volatile Organics										
Acetone (2-Propanone)	ug/g	16	<0.49	0.49	0.49	9569568				
Benzene	ug/g	0.21	<0.0060	0.0060	0.0060	9569568				
Bromodichloromethane	ug/g	1.5	<0.040	0.040	0.040	9569568				
Bromoform	ug/g	0.27	<0.040	0.040	0.040	9569568				
Bromomethane	ug/g	0.05	<0.040	0.040	0.040	9569568				
Carbon Tetrachloride	ug/g	0.05	<0.040	0.040	0.040	9569568				
Chlorobenzene	ug/g	2.4	<0.040	0.040	0.040	9569568				
Chloroform	ug/g	0.05	<0.040	0.040	0.040	9569568				
Dibromochloromethane	ug/g	2.3	<0.040	0.040	0.040	9569568				
1,2-Dichlorobenzene	ug/g	1.2	<0.040	0.040	0.040	9569568				
1,3-Dichlorobenzene	ug/g	4.8	<0.040	0.040	0.040	9569568				
1,4-Dichlorobenzene	ug/g	0.083	<0.040	0.040	0.040	9569568				
Dichlorodifluoromethane (FREON 12)	ug/g	16	<0.040	0.040	0.040	9569568				
1,1-Dichloroethane	ug/g	0.47	<0.040	0.040	0.040	9569568				
1,2-Dichloroethane	ug/g	0.05	<0.049	0.049	0.049	9569568				
1,1-Dichloroethylene	ug/g	0.05	<0.040	0.040	0.040	9569568				
cis-1,2-Dichloroethylene	ug/g	1.9	<0.040	0.040	0.040	9569568				
trans-1,2-Dichloroethylene	ug/g	0.084	<0.040	0.040	0.040	9569568				
1,2-Dichloropropane	ug/g	0.05	<0.040	0.040	0.040	9569568				
cis-1,3-Dichloropropene	ug/g	0.05	<0.030	0.030	0.030	9569568				
trans-1,3-Dichloropropene	ug/g	0.05	<0.040	0.040	0.040	9569568				
Ethylbenzene	ug/g	1.1	<0.010	0.010	0.010	9569568				
Ethylene Dibromide	ug/g	0.05	<0.040	0.040	0.040	9569568				_
Hexane	ug/g	2.8	<0.040	0.040	0.040	9569568				
Methylene Chloride(Dichloromethane)	ug/g	0.1	<0.049	0.049	0.049	9569568				

No Fill

Grey

Exceeds 1 criteria policy/level

Black

Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Bureau Veritas Job #: C4O6235

Report Date: 2024/10/11

Client Project #: 24-300-100

Sampler Initials: DAS

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Bureau Veritas ID			ZYT630				ZYT630			
Sampling Date			2024/08/09				2024/08/09			
COC Number			N/A				N/A			
	UNITS	Criteria	MW24-5 SS9	RDL	MDL	QC Batch	MW24-5 SS9 Lab-Dup	RDL	MDL	QC Batch
Methyl Ethyl Ketone (2-Butanone)	ug/g	16	<0.40	0.40	0.40	9569568				
Methyl Isobutyl Ketone	ug/g	1.7	<0.40	0.40	0.40	9569568				
Methyl t-butyl ether (MTBE)	ug/g	0.75	<0.040	0.040	0.040	9569568				
Styrene	ug/g	0.7	<0.040	0.040	0.040	9569568				
1,1,1,2-Tetrachloroethane	ug/g	0.058	<0.040	0.040	0.040	9569568				
1,1,2,2-Tetrachloroethane	ug/g	0.05	<0.040	0.040	0.040	9569568				
Tetrachloroethylene	ug/g	0.28	<0.040	0.040	0.040	9569568				
Toluene	ug/g	2.3	<0.020	0.020	0.020	9569568				
1,1,1-Trichloroethane	ug/g	0.38	<0.040	0.040	0.040	9569568				
1,1,2-Trichloroethane	ug/g	0.05	<0.040	0.040	0.040	9569568				
Trichloroethylene	ug/g	0.061	<0.010	0.010	0.010	9569568				
Trichlorofluoromethane (FREON 11)	ug/g	4	<0.040	0.040	0.040	9569568				
Vinyl Chloride	ug/g	0.02	<0.019	0.019	0.019	9569568				
p+m-Xylene	ug/g	-	<0.020	0.020	0.020	9569568				
o-Xylene	ug/g	-	<0.020	0.020	0.020	9569568				
Total Xylenes	ug/g	3.1	<0.020	0.020	0.020	9569568				
F1 (C6-C10)	ug/g	55	<10	10	2.0	9569568				
F1 (C6-C10) - BTEX	ug/g	55	<10	10	2.0	9569568				
F2-F4 Hydrocarbons		·	•			-				
F2 (C10-C16 Hydrocarbons)	ug/g	98	<10	10	7.1	9576187	<10	10	7.1	9576187
F3 (C16-C34 Hydrocarbons)	ug/g	300	<50	50	5.0	9576187	<50	50	5.0	9576187
F4 (C34-C50 Hydrocarbons)	ug/g	2800	<50	50	10	9576187	<50	50	10	9576187
Reached Baseline at C50	ug/g	-	Yes			9576187	Yes			9576187
Surrogate Recovery (%)										
o-Terphenyl	%	-	105			9576187	106			9576187
4-Bromofluorobenzene	%	-	99			9569568				
D10-o-Xylene	%	-	86			9569568				
D4-1,2-Dichloroethane	%	-	102			9569568				

No Fill
Grey
Black

No Exceedance

Exceeds 1 criteria policy/level Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Lab-Dup - Laboratory initiated Duplicate

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Report Date: 2024/10/11

DS Consultants Limited Client Project #: 24-300-100 Sampler Initials: DAS

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Bureau Veritas ID			ZYT630				ZYT630			
Sampling Date			2024/08/09				2024/08/09			
COC Number			N/A				N/A			
	UNITS	Criteria	MW24-5 SS9	RDL	MDL	QC Batch		RDL	MDL	QC Batch
							Lab-Dup			

No Fill

Grey

Exceeds 1 criteria policy/level

Black

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

O.REG 153 VOCS BY HS (SOIL)

Calculated Parameters 1,3-Dichloropropene (cis+trans) Volatile Organics Acetone (2-Propanone) Benzene Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene Uthorobenzene 1,4-Dichlorobenzene Uthorodifluoromethane 1,2-Dichlorobenzene 1,4-Dichlorobenzene Uthorodifluoromethane 1,4-Dichlorobenzene Uthorodifluoromethane Uthorodifluoromethane Uthorodifluoromethane Uthorodifluoromethane Uthorodifluoromethane Uthorodifluoromethane Uthorodifluoromethane	NITS BIG/G BIG	0.05 16 0.21 1.5 0.27 0.05 0.05 2.4	2024/08/09 N/A BH24-1 SS5 <0.050 <0.49 <0.0060 <0.040 <0.040 <0.040	2024/08/09 N/A BH24-2 SS5 <0.050 <0.49 <0.0060 <0.040 <0.040 <0.040	2024/08/09 N/A BH24-3 SS5 <0.050 <0.49 <0.0060 <0.040 <0.040	0.050 0.49 0.0060 0.040 0.040	0.010 0.49 0.0060 0.040	9569599 9569599 9569599 9569599
Calculated Parameters 1,3-Dichloropropene (cis+trans) Volatile Organics Acetone (2-Propanone) Benzene Bromodichloromethane Bromoform UBromomethane Carbon Tetrachloride Chlorobenzene Chloroform UDibromochloromethane 1,2-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane (FREON 12) 1,1-Dichloroethane 1,2-Dichloroethane UIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	1g/g 1g/g 1g/g 1g/g 1g/g 1g/g 1g/g	0.05 16 0.21 1.5 0.27 0.05 0.05 2.4	<0.050 <0.49 <0.0060 <0.040 <0.040 <0.040 <0.040	<0.050 <0.49 <0.0060 <0.040 <0.040 <0.040	<0.050 <0.49 <0.0060 <0.040 <0.040	0.050 0.49 0.0060 0.040 0.040	0.010 0.49 0.0060 0.040 0.040	9569599 9569599 9569599 9569599
Calculated Parameters 1,3-Dichloropropene (cis+trans) Volatile Organics Acetone (2-Propanone) Benzene Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane (FREON 12) 1,1-Dichloroethane 1,2-Dichloroethane U 1,2-Dichloroethane U 1,1-Dichloroethane	1g/g 1g/g 1g/g 1g/g 1g/g 1g/g 1g/g	0.05 16 0.21 1.5 0.27 0.05 0.05 2.4	<0.050 <0.49 <0.0060 <0.040 <0.040 <0.040	<0.050 <0.49 <0.0060 <0.040 <0.040	<0.050 <0.49 <0.0060 <0.040 <0.040	0.050 0.49 0.0060 0.040 0.040	0.010 0.49 0.0060 0.040 0.040	9569599 9569599 9569599 9569599
1,3-Dichloropropene (cis+trans) Volatile Organics Acetone (2-Propanone) Benzene Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene Under the transport of trans	1g/g 1g/g 1g/g 1g/g 1g/g 1g/g 1g/g	16 0.21 1.5 0.27 0.05 0.05 2.4	<0.49 <0.0060 <0.040 <0.040 <0.040 <0.040	<0.49 <0.0060 <0.040 <0.040 <0.040	<0.49 <0.0060 <0.040 <0.040 <0.040	0.49 0.0060 0.040 0.040	0.49 0.0060 0.040 0.040	9569599 9569599 9569599 9569599
Volatile Organics Acetone (2-Propanone) Benzene Bromodichloromethane Bromoform UBromomethane Carbon Tetrachloride Chlorobenzene Chloroform Ubiromochloromethane 1,2-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane (FREON 12) 1,1-Dichloroethane 1,2-Dichloroethane UDichloroethane UDichloroethane UDichloroethane UDichloroethane UDichloroethane UDichloroethane UDichloroethane UDichloroethane UDichloroethane	1g/g 1g/g 1g/g 1g/g 1g/g 1g/g 1g/g	16 0.21 1.5 0.27 0.05 0.05 2.4	<0.49 <0.0060 <0.040 <0.040 <0.040 <0.040	<0.49 <0.0060 <0.040 <0.040 <0.040	<0.49 <0.0060 <0.040 <0.040 <0.040	0.49 0.0060 0.040 0.040	0.49 0.0060 0.040 0.040	9569599 9569599 9569599 9569599
Acetone (2-Propanone) Benzene Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene Under the chloromethane Under	ig/g ig/g ig/g ig/g ig/g ig/g	0.21 1.5 0.27 0.05 0.05	<0.0060 <0.040 <0.040 <0.040 <0.040	<0.0060 <0.040 <0.040 <0.040	<0.0060 <0.040 <0.040 <0.040	0.0060 0.040 0.040	0.0060 0.040 0.040	9569599 9569599 9569599
Benzene u Bromodichloromethane u Bromoform u Bromomethane u Carbon Tetrachloride u Chlorobenzene u Chloroform u Dibromochloromethane u 1,2-Dichlorobenzene u 1,3-Dichlorobenzene u 1,4-Dichlorobenzene u 2,4-Dichlorobenzene u 1,4-Dichlorodifluoromethane (FREON 12) u 1,1-Dichloroethane u 1,2-Dichloroethane u 1,2-Dichloroethane u 1,2-Dichloroethane u	ig/g ig/g ig/g ig/g ig/g ig/g	0.21 1.5 0.27 0.05 0.05	<0.0060 <0.040 <0.040 <0.040 <0.040	<0.0060 <0.040 <0.040 <0.040	<0.0060 <0.040 <0.040 <0.040	0.0060 0.040 0.040	0.0060 0.040 0.040	9569599 9569599 9569599
Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dichlorobenzene u 1,3-Dichlorobenzene u 1,4-Dichlorobenzene Dichlorodifluoromethane (FREON 12) 1,1-Dichloroethane u 1,2-Dichloroethane u 1,2-Dichloroethane	ig/g ig/g ig/g ig/g ig/g	1.5 0.27 0.05 0.05 2.4	<0.040 <0.040 <0.040 <0.040	<0.040 <0.040 <0.040	<0.040 <0.040 <0.040	0.040	0.040	9569599 9569599
Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dichlorobenzene u 1,3-Dichlorobenzene u 1,4-Dichlorobenzene Dichlorodifluoromethane (FREON 12) 1,1-Dichloroethane u 1,2-Dichloroethane u 1,2-Dichloroethane	ig/g ig/g ig/g ig/g	0.27 0.05 0.05 2.4	<0.040 <0.040 <0.040	<0.040 <0.040	<0.040 <0.040	0.040	0.040	9569599
Bromomethane u Carbon Tetrachloride u Chlorobenzene u Chloroform u Dibromochloromethane u 1,2-Dichlorobenzene u 1,3-Dichlorobenzene u 1,4-Dichlorobenzene u Dichlorodifluoromethane (FREON 12) u 1,1-Dichloroethane u 1,2-Dichloroethane u 1,2-Dichloroethane u	ig/g ig/g ig/g ig/g	0.05 0.05 2.4	<0.040 <0.040	<0.040	<0.040			
Carbon Tetrachloride u Chlorobenzene u Chloroform u Dibromochloromethane u 1,2-Dichlorobenzene u 1,3-Dichlorobenzene u 1,4-Dichlorobenzene u Dichlorodifluoromethane (FREON 12) u 1,1-Dichloroethane u 1,2-Dichloroethane u	ig/g ig/g ig/g	0.05 2.4	<0.040			0.040	0.010	
Chlorobenzene u Chloroform u Dibromochloromethane u 1,2-Dichlorobenzene u 1,3-Dichlorobenzene u 1,4-Dichlorobenzene u Dichlorodifluoromethane (FREON 12) u 1,1-Dichloroethane u 1,2-Dichloroethane u 1,2-Dichloroethane u	ıg/g ıg/g	2.4		<0.040	<0.040		0.040	9569599
Chloroform u Dibromochloromethane u 1,2-Dichlorobenzene u 1,3-Dichlorobenzene u 1,4-Dichlorobenzene u Dichlorodifluoromethane (FREON 12) u 1,1-Dichloroethane u 1,2-Dichloroethane u	ıg/g		<0.040		-0.0-0	0.040	0.040	9569599
Dibromochloromethane u 1,2-Dichlorobenzene u 1,3-Dichlorobenzene u 1,4-Dichlorobenzene u Dichlorodifluoromethane (FREON 12) u 1,1-Dichloroethane u 1,2-Dichloroethane u		0.05	\0.040	<0.040	<0.040	0.040	0.040	9569599
1,2-Dichlorobenzene u 1,3-Dichlorobenzene u 1,4-Dichlorobenzene u Dichlorodifluoromethane (FREON 12) u 1,1-Dichloroethane u 1,2-Dichloroethane u	10/0	0.05	<0.040	<0.040	<0.040	0.040	0.040	9569599
1,3-Dichlorobenzene u 1,4-Dichlorobenzene u Dichlorodifluoromethane (FREON 12) u 1,1-Dichloroethane u 1,2-Dichloroethane u	ıg/g	2.3	<0.040	<0.040	<0.040	0.040	0.040	9569599
1,4-Dichlorobenzene u Dichlorodifluoromethane (FREON 12) u 1,1-Dichloroethane u 1,2-Dichloroethane u	ıg/g	1.2	<0.040	<0.040	<0.040	0.040	0.040	9569599
Dichlorodifluoromethane (FREON 12) u 1,1-Dichloroethane u 1,2-Dichloroethane u	ıg/g	4.8	<0.040	<0.040	<0.040	0.040	0.040	9569599
1,1-Dichloroethane u 1,2-Dichloroethane u	ıg/g	0.083	<0.040	<0.040	<0.040	0.040	0.040	9569599
1,2-Dichloroethane u	ıg/g	16	<0.040	<0.040	<0.040	0.040	0.050	9569599
<u> </u>	ıg/g	0.47	<0.040	<0.040	<0.040	0.040	0.040	9569599
1.1-Dichloroethylene	ıg/g	0.05	<0.049	<0.049	<0.049	0.049	0.040	9569599
	ıg/g	0.05	<0.040	<0.040	<0.040	0.040	0.040	9569599
cis-1,2-Dichloroethylene u	ıg/g	1.9	<0.040	<0.040	<0.040	0.040	0.040	9569599
trans-1,2-Dichloroethylene u	ıg/g	0.084	<0.040	<0.040	<0.040	0.040	0.040	9569599
1,2-Dichloropropane u	ıg/g	0.05	<0.040	<0.040	<0.040	0.040	0.040	9569599
cis-1,3-Dichloropropene u	ıg/g	0.05	<0.030	<0.030	<0.030	0.030	0.030	9569599
trans-1,3-Dichloropropene u	ıg/g	0.05	<0.040	<0.040	<0.040	0.040	0.040	9569599
Ethylbenzene u	ıg/g	1.1	<0.010	<0.010	<0.010	0.010	0.010	9569599
Ethylene Dibromide u	ıg/g	0.05	<0.040	<0.040	<0.040	0.040	0.040	9569599
Hexane u	ıg/g	2.8	<0.040	<0.040	<0.040	0.040	0.040	9569599
Methylene Chloride(Dichloromethane) u	ıg/g	0.1	<0.049	<0.049	<0.049	0.049	0.049	9569599
Methyl Ethyl Ketone (2-Butanone) u	ıg/g	16	<0.40	<0.40	<0.40	0.40	0.40	9569599
Methyl Isobutyl Ketone u	ıg/g	1.7	<0.40	<0.40	<0.40	0.40	0.40	9569599
Methyl t-butyl ether (MTBE) u	ıg/g	0.75	<0.040	<0.040	<0.040	0.040	0.040	9569599

No Fill Grey

Black

No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

O.REG 153 VOCS BY HS (SOIL)

Bureau Veritas ID			ZYT613	ZYT616	ZYT620			
Sampling Date			2024/08/09	2024/08/09	2024/08/09			
COC Number			N/A	N/A	N/A			
	UNITS	Criteria	BH24-1 SS5	BH24-2 SS5	BH24-3 SS5	RDL	MDL	QC Batch
Styrene	ug/g	0.7	<0.040	<0.040	<0.040	0.040	0.040	9569599
1,1,1,2-Tetrachloroethane	ug/g	0.058	<0.040	<0.040	<0.040	0.040	0.040	9569599
1,1,2,2-Tetrachloroethane	ug/g	0.05	<0.040	<0.040	<0.040	0.040	0.040	9569599
Tetrachloroethylene	ug/g	0.28	<0.040	<0.040	<0.040	0.040	0.040	9569599
Toluene	ug/g	2.3	<0.020	<0.020	<0.020	0.020	0.020	9569599
1,1,1-Trichloroethane	ug/g	0.38	<0.040	<0.040	<0.040	0.040	0.040	9569599
1,1,2-Trichloroethane	ug/g	0.05	<0.040	<0.040	<0.040	0.040	0.040	9569599
Trichloroethylene	ug/g	0.061	<0.010	<0.010	<0.010	0.010	0.010	9569599
Trichlorofluoromethane (FREON 11)	ug/g	4	<0.040	<0.040	<0.040	0.040	0.040	9569599
Vinyl Chloride	ug/g	0.02	<0.019	<0.019	<0.019	0.019	0.019	9569599
p+m-Xylene	ug/g	-	<0.020	<0.020	<0.020	0.020	0.020	9569599
o-Xylene	ug/g	-	<0.020	<0.020	<0.020	0.020	0.020	9569599
Total Xylenes	ug/g	3.1	<0.020	<0.020	<0.020	0.020	0.020	9569599
Surrogate Recovery (%)								
4-Bromofluorobenzene	%	-	96	96	95			9569599
D10-o-Xylene	%	-	97	96	97			9569599
D4-1,2-Dichloroethane	%	-	108	108	109			9569599
D8-Toluene	%	-	93	93	93			9569599

No Fill Grey Black No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

RESULTS OF ANALYSES OF SOIL

Bureau Veritas ID		AFBK01		ZYT608		ZYT609		ZYT610			
Sampling Date		2024/08/09		2024/08/09		2024/08/09		2024/08/09			
COC Number		N/A		N/A		N/A		N/A			
	UNITS	DUP 7	QC Batch	BH24-1 SS1	QC Batch	BH24-1 SS2	QC Batch	DUP1	RDL	MDL	QC Batch
Inorganics											
Inorganics Moisture	%	7.4	9687851	8.9	9569080	17	9569056	9.6	1.0	0.50	9569080

Bureau Veritas ID ZYT610 ZYT611 ZYT612 ZYT613 2024/08/09 2024/08/09 2024/08/09 2024/08/09 Sampling Date **COC Number** N/A N/A N/A N/A DUP1 UNITS QC Batch DUP2 QC Batch BH24-1 SS4 QC Batch BH24-1 SS5 RDL MDL QC Batch Lab-Dup Inorganics Moisture 9569080 9569056 9569056 4.0 1.0 0.50 9569080 % 9.6 19 5.0 Available (CaCl2) pH 10.8 9575275

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Bureau Veritas ID		ZYT614		ZYT615		ZYT616		ZYT617			
Sampling Date		2024/08/09		2024/08/09		2024/08/09		2024/08/09			
COC Number		N/A		N/A		N/A		N/A			
	UNITS	BH24-2 SS1	QC Batch	BH24-2 SS4	QC Batch	BH24-2 SS5	QC Batch	BH24-3 SS1	RDL	MDL	QC Batch
Inorganics											
Moisture	%	5.9	9569056	5.4	9569056	4.1	9569080	13	1.0	0.50	9569056
Available (CaCl2) pH	На			8.02	9575275						

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

RESULTS OF ANALYSES OF SOIL

Bureau Veritas ID		ZYT618		ZYT619		ZYT620		ZYT621			
Sampling Date		2024/08/09		2024/08/09		2024/08/09		2024/08/09			
COC Number		N/A		N/A		N/A		N/A			
	UNITS	BH24-3 SS2	QC Batch	BH24-3 SS4	QC Batch	BH24-3 SS5	QC Batch	BH24-4 SS1	RDL	MDL	QC Batch
Inorganics											
Moisture	%	7.8	9569080	15	9569056	9.6	9569080	8.6	1.0	0.50	9569056
Available (CaCl2) pH	рН							7.74			9575290

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Bureau Veritas ID		ZYT622			ZYT623	ZYT623	ZYT624			
Sampling Date		2024/08/09			2024/08/09	2024/08/09	2024/08/09			
COC Number		N/A			N/A	N/A	N/A			
	UNITS	BH24-4 SS3	MDL	QC Batch	DUP3	DUP3 Lab-Dup	DUP5	RDL	MDL	QC Batch
Inorganics										
Moisture	%				3.3	3.4	7.5	1.0	0.50	9569056
Available (CaCl2) pH	рН	7.45		9575290						

RDL = Reportable Detection Limit
QC Batch = Quality Control Batch
Lab-Dup = Laboratory Initiated Duplicate

Bureau Veritas ID		ZYT625	ZYT626		ZYT627				ZYT628		
Sampling Date		2024/08/09	2024/08/09		2024/08/09				2024/08/09		
COC Number		N/A	N/A		N/A				N/A		
	UNITS	MW24-5 SS1	DUP4	QC Batch	MW24-5 SS2	RDL	MDL	QC Batch	MW24-5 \$\$3	MDL	QC Batch
Inorganics											
Moisture	%	8.3	7.6	9569080	12	1.0	0.50	9569056			
Available (CaCl2) pH	рН								7.74		9575290

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

RESULTS OF ANALYSES OF SOIL

Bureau Veritas ID		ZYT628			ZYT629	ZYT630			
Sampling Date		2024/08/09			2024/08/09	2024/08/09			
COC Number		N/A			N/A	N/A			
	UNITS	MW24-5 SS3 Lab-Dup	MDL	QC Batch	MW24-5 SS4	MW24-5 SS9	RDL	MDL	QC Batch
Inorganics									
Moisture	%				15	20	1.0	0.50	9569056
	1				_				

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

DIOXINS AND FURANS BY HRMS (SOIL)

Bureau Veritas ID		ZYT629							
Sampling Date		2024/08/09							
COC Number		N/A				TOXIC EQU	IVALENCY	# of	
	UNITS	MW24-5 SS4	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
Dioxins & Furans									
2,3,7,8-Tetra CDD *	pg/g	<0.253 (1)	0.253	1.00	0.227	1.00	0.253	0	9587136
1,2,3,7,8-Penta CDD *	pg/g	0.233	0.136	5.00	0.258	1.00	0.233	1	9587136
1,2,3,4,7,8-Hexa CDD *	pg/g	<0.193 (1)	0.193	5.00	0.204	0.100	0.0193	0	9587136
1,2,3,6,7,8-Hexa CDD *	pg/g	0.634	0.143	5.00	0.173	0.100	0.0634	1	9587136
1,2,3,7,8,9-Hexa CDD *	pg/g	0.837	0.147	5.00	0.179	0.100	0.0837	1	9587136
1,2,3,4,6,7,8-Hepta CDD *	pg/g	1.51	0.124	5.00	0.743	0.0100	0.0151	1	9587136
Octa CDD *	pg/g	7.92	0.140	10.0	0.800	0.000300	0.00238	1	9587136
Total Tetra CDD *	pg/g	<0.253	0.253	1.00	0.400			0	9587136
Total Penta CDD *	pg/g	0.233	0.136	5.00	0.400			1	9587136
Total Hexa CDD *	pg/g	1.96	0.150	5.00	0.400			4	9587136
Total Hepta CDD *	pg/g	2.57	0.124	5.00	0.400			2	9587136
2,3,7,8-Tetra CDF **	pg/g	0.191	0.113	1.00	0.181	0.100	0.0191	1	9587136
1,2,3,7,8-Penta CDF **	pg/g	0.390	0.138	5.00	0.242	0.0300	0.0117	1	9587136
2,3,4,7,8-Penta CDF **	pg/g	0.347	0.127	5.00	0.211	0.300	0.104	1	9587136
1,2,3,4,7,8-Hexa CDF **	pg/g	0.418	0.123	5.00	0.228	0.100	0.0418	1	9587136
1,2,3,6,7,8-Hexa CDF **	pg/g	<0.343 (1)	0.343	5.00	0.203	0.100	0.0343	0	9587136
2,3,4,6,7,8-Hexa CDF **	pg/g	0.822	0.117	5.00	0.177	0.100	0.0822	1	9587136
1,2,3,7,8,9-Hexa CDF **	pg/g	0.296	0.140	5.00	0.185	0.100	0.0296	1	9587136
1,2,3,4,6,7,8-Hepta CDF **	pg/g	1.48	0.128	5.00	0.185	0.0100	0.0148	1	9587136
1,2,3,4,7,8,9-Hepta CDF **	pg/g	0.469	0.142	5.00	0.194	0.0100	0.00469	1	9587136
Octa CDF **	pg/g	1.08	0.137	10.0	0.919	0.000300	0.000324	1	9587136
Total Tetra CDF **	pg/g	0.191	0.113	1.00	0.400			1	9587136
Total Penta CDF **	pg/g	0.737	0.132	5.00	0.400			2	9587136
Total Hexa CDF **	pg/g	2.44	0.124	5.00	0.400			5	9587136
Total Hepta CDF **	pg/g	2.96	0.135	5.00	0.400			3	9587136

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin

** CDF = Chloro Dibenzo-p-Furan

(1) EMPC / NDR - Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.

DIOXINS AND FURANS BY HRMS (SOIL)

Bureau Veritas ID		ZYT629							
Sampling Date		2024/08/09							
COC Number		N/A				TOXIC EQU	IVALENCY	# of	
	UNITS	-	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
TOTAL TOXIC EQUIVALENCY	pg/g						1.01		
Surrogate Recovery (%)								•	
37CL4 2378 Tetra CDD *	%	64							9587136
C13-1234678 HeptaCDD *	%	73							9587136
C13-1234678 HeptaCDF **	%	69							9587136
C13-123478 HexaCDD *	%	75							9587136
C13-123478 HexaCDF **	%	67							9587136
C13-1234789 HeptaCDF **	%	74							9587136
C13-123678 HexaCDD *	%	85							9587136
C13-123678 HexaCDF **	%	70							9587136
C13-12378 PentaCDD *	%	69							9587136
C13-12378 PentaCDF **	%	60							9587136
C13-123789 HexaCDF **	%	72							9587136
C13-234678 HexaCDF **	%	71							9587136
C13-23478 PentaCDF **	%	61							9587136
C13-2378 TetraCDD *	%	67							9587136
C13-2378 TetraCDF **	%	67							9587136
C13-OCDD *	%	76							9587136

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin

** CDF = Chloro Dibenzo-p-Furan

DIOXINS AND FURANS BY HRMS (SOIL)

Bureau Veritas ID		ZYT631							
Sampling Date		2024/08/09							
COC Number		N/A				TOXIC EQU	IVALENCY	# of	
	UNITS	DUP6	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
Dioxins & Furans									
2,3,7,8-Tetra CDD *	pg/g	<0.134	0.134	1.00	0.227	1.00	0.134	0	9587136
1,2,3,7,8-Penta CDD *	pg/g	<0.139	0.139	5.00	0.258	1.00	0.139	0	9587136
1,2,3,4,7,8-Hexa CDD *	pg/g	<0.160	0.160	5.00	0.204	0.100	0.0160	0	9587136
1,2,3,6,7,8-Hexa CDD *	pg/g	<0.183 (1)	0.183	5.00	0.173	0.100	0.0183	0	9587136
1,2,3,7,8,9-Hexa CDD *	pg/g	<0.157 (1)	0.157	5.00	0.179	0.100	0.0157	0	9587136
1,2,3,4,6,7,8-Hepta CDD *	pg/g	1.54	0.124	5.00	0.743	0.0100	0.0154	1	9587136
Octa CDD *	pg/g	9.07	0.151	10.0	0.800	0.000300	0.00272	1	9587136
Total Tetra CDD *	pg/g	<0.134	0.134	1.00	0.400			0	9587136
Total Penta CDD *	pg/g	<0.139	0.139	5.00	0.400			0	9587136
Total Hexa CDD *	pg/g	0.804	0.160	5.00	0.400			2	9587136
Total Hepta CDD *	pg/g	2.98	0.124	5.00	0.400			2	9587136
2,3,7,8-Tetra CDF **	pg/g	<0.141	0.141	1.00	0.181	0.100	0.0141	0	9587136
1,2,3,7,8-Penta CDF **	pg/g	<0.129	0.129	5.00	0.242	0.0300	0.00387	0	9587136
2,3,4,7,8-Penta CDF **	pg/g	<0.116	0.116	5.00	0.211	0.300	0.0348	0	9587136
1,2,3,4,7,8-Hexa CDF **	pg/g	<0.128	0.128	5.00	0.228	0.100	0.0128	0	9587136
1,2,3,6,7,8-Hexa CDF **	pg/g	<0.125	0.125	5.00	0.203	0.100	0.0125	0	9587136
2,3,4,6,7,8-Hexa CDF **	pg/g	<0.122	0.122	5.00	0.177	0.100	0.0122	0	9587136
1,2,3,7,8,9-Hexa CDF **	pg/g	<0.161	0.161	5.00	0.185	0.100	0.0161	0	9587136
1,2,3,4,6,7,8-Hepta CDF **	pg/g	0.975	0.142	5.00	0.185	0.0100	0.00975	1	9587136
1,2,3,4,7,8,9-Hepta CDF **	pg/g	<0.181	0.181	5.00	0.194	0.0100	0.00181	0	9587136
Octa CDF **	pg/g	0.629	0.129	10.0	0.919	0.000300	0.000189	1	9587136
Total Tetra CDF **	pg/g	<0.141	0.141	1.00	0.400			0	9587136
Total Penta CDF **	pg/g	0.558	0.122	5.00	0.400			1	9587136
Total Hexa CDF **	pg/g	1.28	0.133	5.00	0.400			2	9587136

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin

** CDF = Chloro Dibenzo-p-Furan

(1) EMPC / NDR - Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.

DIOXINS AND FURANS BY HRMS (SOIL)

Bureau Veritas ID		ZYT631							
Sampling Date		2024/08/09							
COC Number		N/A				TOXIC EQU	IVALENCY	# of	
	UNITS	DUP6	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
Total Hepta CDF **	pg/g	2.21	0.159	5.00	0.400			2	9587136
TOTAL TOXIC EQUIVALENCY	pg/g						0.459		
Surrogate Recovery (%)	•								
37CL4 2378 Tetra CDD *	%	84							9587136
C13-1234678 HeptaCDD *	%	87							9587136
C13-1234678 HeptaCDF **	%	83							9587136
C13-123478 HexaCDD *	%	98							9587136
C13-123478 HexaCDF **	%	91							9587136
C13-1234789 HeptaCDF **	%	77							9587136
C13-123678 HexaCDD *	%	96							9587136
C13-123678 HexaCDF **	%	93							9587136
C13-12378 PentaCDD *	%	106							9587136
C13-12378 PentaCDF **	%	103							9587136
C13-123789 HexaCDF **	%	88							9587136
C13-234678 HexaCDF **	%	96							9587136
C13-23478 PentaCDF **	%	107							9587136
C13-2378 TetraCDD *	%	74							9587136
C13-2378 TetraCDF **	%	85							9587136
C13-OCDD *	%	71							9587136

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

** CDF = Chloro Dibenzo-p-Furan

* CDD = Chloro Dibenzo-p-Dioxin

DS Consultants Limited Client Project #: 24-300-100

Sampler Initials: DAS

TEST SUMMARY

Bureau Veritas ID: AFBK01

Shipped:

Collected: 2024/08/09

Sample ID: DUP 7 Matrix: Soil

Received: 2024/08/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Moisture	BAL	9687851	N/A	2024/10/08	Joe Thomas
OC Pesticides (Selected) & PCB	GC/ECD	9687663	2024/10/08	2024/10/08	Akruti Patel
OC Pesticides Summed Parameters	CALC	9685873	N/A	2024/10/09	Automated Statchk

Bureau Veritas ID: ZYT608

Collected: 2024/08/09

Sample ID: BH24-1 SS1 Matrix: Soil

Shipped:

Received: 2024/08/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	9579186	2024/08/15	2024/08/16	Medhat Nasr
Free (WAD) Cyanide	TECH	9574762	2024/08/14	2024/08/14	Prgya Panchal
Conductivity	AT	9575958	2024/08/14	2024/08/14	Gurparteek KAUR
Hexavalent Chromium in Soil by IC	IC/SPEC	9582926	2024/08/17	2024/08/19	Violeta Porcila
Acid Extractable Metals by ICPMS	ICP/MS	9580628	2024/08/16	2024/08/16	Jaswinder Kaur
Moisture	BAL	9569080	N/A	2024/08/10	Muhammad Chhaidan
OC Pesticides (Selected) & PCB	GC/ECD	9687663	2024/10/08	2024/10/09	Akruti Patel
OC Pesticides Summed Parameters	CALC	9685873	N/A	2024/10/10	Automated Statchk
pH CaCl2 EXTRACT	AT	9575290	2024/08/14	2024/08/14	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9568697	N/A	2024/08/15	Automated Statchk

Bureau Veritas ID: ZYT609

Collected: Shipped:

2024/08/09

Sample ID: BH24-1 SS2 Matrix: Soil

Received:

2024/08/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	9568698	N/A	2024/08/15	Automated Statchk
Hot Water Extractable Boron	ICP	9691843	2024/10/09	2024/10/10	Medhat Nasr
Free (WAD) Cyanide	TECH	9690412	2024/10/09	2024/10/10	Prgya Panchal
Conductivity	AT	9693432	2024/10/10	2024/10/10	Gurparteek KAUR
Hexavalent Chromium in Soil by IC	IC/SPEC	9690668	2024/10/09	2024/10/09	Sousan Besharatlou
Acid Extractable Metals by ICPMS	ICP/MS	9691645	2024/10/09	2024/10/10	Viviana Canzonieri
Moisture	BAL	9569056	N/A	2024/08/10	Jeremy Apoon
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	9574798	2024/08/13	2024/08/14	Joan Jin
pH CaCl2 EXTRACT	AT	9690624	2024/10/09	2024/10/09	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9687213	N/A	2024/10/11	Automated Statchk

Bureau Veritas ID: ZYT610

Shipped:

Collected: 2024/08/09

Sample ID: DUP1 Matrix: Soil

Received:

2024/08/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	9579186	2024/08/15	2024/08/16	Medhat Nasr
Free (WAD) Cyanide	TECH	9574762	2024/08/14	2024/08/14	Prgya Panchal
Conductivity	AT	9575958	2024/08/14	2024/08/14	Gurparteek KAUR
Hexavalent Chromium in Soil by IC	IC/SPEC	9582926	2024/08/17	2024/08/19	Violeta Porcila

TEST SUMMARY

Bureau Veritas ID: ZYT610

Sample ID: DUP1

Matrix: Soil

Collected: 2024/08/09

Shipped:

Received: 2024/08/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Acid Extractable Metals by ICPMS	ICP/MS	9580628	2024/08/16	2024/08/16	Jaswinder Kaur
Moisture	BAL	9569080	N/A	2024/08/10	Muhammad Chhaidan
pH CaCl2 EXTRACT	AT	9575290	2024/08/14	2024/08/14	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9568697	N/A	2024/08/15	Automated Statchk

Bureau Veritas ID: ZYT610 Dup

Sample ID: DUP1

Matrix: Soil

Collected: 2024/08/09

Received: 2024/08/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Moisture	BAL	9569080	N/A	2024/08/10	Muhammad Chhaidan

Bureau Veritas ID: ZYT611

Sample ID: DUP2

Matrix: Soil

Collected: 2024/08/09

Shipped:

Shipped:

Received: 2024/08/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	9568698	N/A	2024/08/15	Automated Statchk
Moisture	BAL	9569056	N/A	2024/08/10	Jeremy Apoon
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	9574798	2024/08/13	2024/08/14	Joan Jin

Bureau Veritas ID: ZYT612

> Sample ID: BH24-1 SS4

Matrix: Soil

Collected: 2024/08/09

Shipped:

Received: 2024/08/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	9573977	N/A	2024/08/14	Abdikarim Ali
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9576187	2024/08/14	2024/08/15	Mohammed Abdul Nafay Shoeb
Moisture	BAL	9569056	N/A	2024/08/10	Jeremy Apoon
pH CaCl2 EXTRACT	AT	9575275	2024/08/14	2024/08/14	Kien Tran

Bureau Veritas ID: ZYT613

Sample ID: BH24-1 SS5

Matrix: Soil

Collected: 2024/08/09 Shipped:

Received: 2024/08/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	9568401	N/A	2024/08/13	Automated Statchk
Moisture	BAL	9569080	N/A	2024/08/10	Muhammad Chhaidan
Volatile Organic Compounds in Soil	GC/MS	9569599	N/A	2024/08/12	Gabriella Morrone

Bureau Veritas ID: ZYT614

Sample ID: BH24-2 SS1

Matrix: Soil Collected: 2024/08/09 Shipped:

Received:

2024/08/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	9568698	N/A	2024/08/15	Automated Statchk

Report Date: 2024/10/11

DS Consultants Limited Client Project #: 24-300-100 Sampler Initials: DAS

TEST SUMMARY

Bureau Veritas ID: ZYT614

Sample ID: BH24-2 SS1

Collected: Shipped:

2024/08/09

Matrix: Soil

Received: 2024/08/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	9579186	2024/08/15	2024/08/16	Medhat Nasr
Free (WAD) Cyanide	TECH	9572053	2024/08/13	2024/08/13	Prgya Panchal
Conductivity	AT	9575958	2024/08/14	2024/08/14	Gurparteek KAUR
Hexavalent Chromium in Soil by IC	IC/SPEC	9582926	2024/08/17	2024/08/19	Violeta Porcila
Acid Extractable Metals by ICPMS	ICP/MS	9580628	2024/08/16	2024/08/16	Jaswinder Kaur
Moisture	BAL	9569056	N/A	2024/08/10	Jeremy Apoon
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	9574798	2024/08/13	2024/08/14	Joan Jin
pH CaCl2 EXTRACT	AT	9575290	2024/08/14	2024/08/14	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9568697	N/A	2024/08/15	Automated Statchk

Bureau Veritas ID: ZYT614 Dup

Sample ID: BH24-2 SS1

Matrix: Soil

Collected: Shipped:

Received: 2024/08/10

2024/08/09

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	9574798	2024/08/13	2024/08/14	Joan Jin

Bureau Veritas ID: ZYT615

Sample ID: BH24-2 SS4

Matrix: Soil

Collected: 2024/08/09

Shipped:

Received: 2024/08/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	9573977	N/A	2024/08/14	Abdikarim Ali
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9576187	2024/08/14	2024/08/15	Mohammed Abdul Nafay Shoeb
Moisture	BAL	9569056	N/A	2024/08/10	Jeremy Apoon
pH CaCl2 EXTRACT	AT	9575275	2024/08/14	2024/08/14	Kien Tran

Bureau Veritas ID: ZYT616

Sample ID: BH24-2 SS5

Matrix: Soil

Collected: Shipped:

2024/08/09

Received: 2024/08/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	9568401	N/A	2024/08/13	Automated Statchk
Moisture	BAL	9569080	N/A	2024/08/10	Muhammad Chhaidan
Volatile Organic Compounds in Soil	GC/MS	9569599	N/A	2024/08/12	Gabriella Morrone

Bureau Veritas ID: ZYT617

Sample ID: BH24-3 SS1

Matrix: Soil

Collected: Shipped:

2024/08/09

Received: 2024/08/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	9568698	N/A	2024/08/15	Automated Statchk
Moisture	BAL	9569056	N/A	2024/08/10	Jeremy Apoon
OC Pesticides (Selected) & PCB	GC/ECD	9690075	2024/10/08	2024/10/10	Li Peng
OC Pesticides Summed Parameters	CALC	9681597	N/A	2024/10/08	Automated Statchk
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	9574798	2024/08/13	2024/08/14	Joan Jin

Report Date: 2024/10/11

DS Consultants Limited Client Project #: 24-300-100 Sampler Initials: DAS

TEST SUMMARY

Bureau Veritas ID: ZYT618

Sample ID: BH24-3 SS2 Matrix: Soil

Collected:

2024/08/09

Shipped:

Received: 2024/08/10

Test Description	Instrumentation	Batch	Extracted	Data Analyzad	Analyst
Test Description	instrumentation	Daten	Extracted	Date Analyzed	Anaiyst
Hot Water Extractable Boron	ICP	9579186	2024/08/15	2024/08/16	Medhat Nasr
Free (WAD) Cyanide	TECH	9574762	2024/08/14	2024/08/14	Prgya Panchal
Conductivity	AT	9575958	2024/08/14	2024/08/14	Gurparteek KAUR
Hexavalent Chromium in Soil by IC	IC/SPEC	9582926	2024/08/17	2024/08/19	Violeta Porcila
Acid Extractable Metals by ICPMS	ICP/MS	9580628	2024/08/16	2024/08/16	Jaswinder Kaur
Moisture	BAL	9569080	N/A	2024/08/10	Muhammad Chhaidan
pH CaCl2 EXTRACT	AT	9575290	2024/08/14	2024/08/14	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9568697	N/A	2024/08/15	Automated Statchk

Bureau Veritas ID: ZYT619

Sample ID: BH24-3 SS4

Matrix: Soil

2024/08/09 Collected: Shipped:

Received: 2024/08/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	9573977	N/A	2024/08/14	Abdikarim Ali
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9576187	2024/08/14	2024/08/15	Mohammed Abdul Nafay Shoeb
Moisture	BAL	9569056	N/A	2024/08/10	Jeremy Apoon

Bureau Veritas ID: ZYT620

Sample ID: BH24-3 SS5

Matrix: Soil

Collected: 2024/08/09 Shipped:

Received: 2024/08/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	9568401	N/A	2024/08/13	Automated Statchk
Moisture	BAL	9569080	N/A	2024/08/10	Muhammad Chhaidan
Volatile Organic Compounds in Soil	GC/MS	9569599	N/A	2024/08/12	Gabriella Morrone

Bureau Veritas ID: ZYT621

Sample ID: BH24-4 SS1

Matrix: Soil

Collected: 2024/08/09

Shipped:

Received: 2024/08/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Moisture	BAL	9569056	N/A	2024/08/10	Jeremy Apoon
Polychlorinated Biphenyl in Soil	GC/ECD	9571819	2024/08/12	2024/08/13	Svitlana Shaula
pH CaCl2 EXTRACT	AT	9575290	2024/08/14	2024/08/14	Kien Tran

Bureau Veritas ID: ZYT622

Sample ID: BH24-4 SS3

Matrix: Soil

2024/08/09 Collected: Shipped:

Received:

2024/08/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
pH CaCl2 EXTRACT	AT	9575290	2024/08/14	2024/08/14	Kien Tran

DS Consultants Limited Report Date: 2024/10/11 Client Project #: 24-300-100 Sampler Initials: DAS

TEST SUMMARY

Bureau Veritas ID: ZYT623

Sample ID: DUP3

Matrix: Soil

Collected: 2024/08/09

Shipped:

Received: 2024/08/10

Test Description	Instrumentation Batch		Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	9573977	N/A	2024/08/14	Abdikarim Ali
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9576187	2024/08/14	2024/08/15	Mohammed Abdul Nafay Shoeb
Moisture	BAL	9569056	N/A	2024/08/10	Jeremy Apoon

Bureau Veritas ID: ZYT623 Dup

Sample ID: DUP3

Matrix: Soil Collected: 2024/08/09 Shipped:

Received: 2024/08/10

Test Description Date Analyzed Instrumentation Batch Extracted Analyst 2024/08/10 Moisture BAL 9569056 N/A Jeremy Apoon

Bureau Veritas ID: ZYT624

Sample ID: DUP5 Matrix: Soil

Collected: 2024/08/09 Shipped:

Received:

2024/08/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Moisture	BAL	9569056	N/A	2024/08/10	Jeremy Apoon
Polychlorinated Biphenyl in Soil	GC/ECD	9571819	2024/08/12	2024/08/13	Svitlana Shaula

Bureau Veritas ID: ZYT625

Sample ID: MW24-5 SS1

Matrix: Soil Collected: 2024/08/09

Shipped:

Received: 2024/08/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	9579186	2024/08/15	2024/08/16	Medhat Nasr
Free (WAD) Cyanide	TECH	9574762	2024/08/14 2024/08/14 Prgya Panchal		Prgya Panchal
Conductivity	AT	9575958	2024/08/14	2024/08/14	Gurparteek KAUR
Hexavalent Chromium in Soil by IC	IC/SPEC	9582926	2024/08/17	2024/08/19	Violeta Porcila
Acid Extractable Metals by ICPMS	ICP/MS	9580628	2024/08/16	2024/08/16	Jaswinder Kaur
Moisture	BAL	9569080	N/A	2024/08/10	Muhammad Chhaidan
pH CaCl2 EXTRACT	AT	9575290	2024/08/14	2024/08/14	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9568697	N/A	2024/08/15	Automated Statchk

Bureau Veritas ID: ZYT626 Collected: 2024/08/09 Sample ID: DUP4 Shipped:

Matrix: Soil 2024/08/10 Received:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	9579186	2024/08/15	2024/08/16	Medhat Nasr
Free (WAD) Cyanide	TECH	9574762	2024/08/14	2024/08/14	Prgya Panchal
Conductivity	AT	9575958	2024/08/14	2024/08/14	Gurparteek KAUR
Hexavalent Chromium in Soil by IC	IC/SPEC	9582926	2024/08/17	2024/08/19	Violeta Porcila
Acid Extractable Metals by ICPMS	ICP/MS	9580628	2024/08/16	2024/08/16	Jaswinder Kaur
Moisture	BAL	9569080	N/A	2024/08/10	Muhammad Chhaidan
pH CaCl2 EXTRACT	AT	9575290	2024/08/14	2024/08/14	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9568697	N/A	2024/08/15	Automated Statchk

DS Consultants Limited Client Project #: 24-300-100

Sampler Initials: DAS

TEST SUMMARY

Bureau Veritas ID: ZYT627

Collected:

2024/08/09

Sample ID: MW24-5 SS2 Matrix: Soil

Shipped: Received:

2024/08/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	9568698	N/A	2024/08/15	Automated Statchk
Moisture	BAL	9569056	N/A	2024/08/10	Jeremy Apoon
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	9574798	2024/08/13	2024/08/14	Joan Jin

Bureau Veritas ID: ZYT628

Collected:

2024/08/09

MW24-5 SS3

Sample ID: Matrix: Soil

Shipped: Received:

2024/08/10

Test Description Instrumentation **Extracted Date Analyzed Batch** Analyst pH CaCl2 EXTRACT ΑT 9575290 2024/08/14 2024/08/14 Kien Tran

Bureau Veritas ID: Sample ID:

ZYT628 Dup

Collected: Shipped:

2024/08/09

Matrix:

MW24-5 SS3 Soil

Received:

2024/08/10

Test Description Instrumentation **Batch** Extracted **Date Analyzed** Analyst pH CaCl2 EXTRACT ΑТ 9575290 2024/08/14 2024/08/14 Kien Tran

Bureau Veritas ID: ZYT629 Collected:

2024/08/09

Sample ID:

MW24-5 SS4

Shipped:

Matrix: Soil Received: 2024/08/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	9568698	N/A	2024/08/15	Automated Statchk
Dioxins/Furans in Soil (1613B)	HRMS/MS	9587136	2024/08/20	2024/09/10	Yan Qin
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	9573977	N/A	2024/08/14	Abdikarim Ali
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9576187	2024/08/14	2024/08/15	Mohammed Abdul Nafay Shoeb
Moisture	BAL	9569056	N/A	2024/08/10	Jeremy Apoon
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	9574798	2024/08/13	2024/08/14	Joan Jin

Bureau Veritas ID: ZYT630

Sample ID: MW24-5 SS9

Matrix: Soil Collected: Shipped:

2024/08/09

Received:

2024/08/10

Test Description	Instrumentation Batch Extracted Date Analyzed		Analyst		
1,3-Dichloropropene Sum	CALC	9568401	1 N/A 2024/08/13 Autom		Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9576187	2024/08/14	2024/08/15	Mohammed Abdul Nafay Shoeb
Moisture	BAL	9569056	N/A	2024/08/10	Jeremy Apoon
Volatile Organic Compounds and F1 PHCs	GC/MSFD	9569568	N/A	2024/08/12	Xueming Jiang

Bureau Veritas ID: ZYT630 Dup

Sample ID: MW24-5 SS9 Collected: Shipped:

2024/08/09

Matrix: Soil

Received:

2024/08/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9576187	2024/08/14	2024/08/15	Mohammed Abdul Nafay Shoeb	

TEST SUMMARY

Collected: 2024/08/09 **Bureau Veritas ID:** ZYT631

Shipped:

Sample ID: DUP6
Matrix: Soil **Received:** 2024/08/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Dioxins/Furans in Soil (1613B)	HRMS/MS	9587136	2024/08/20	2024/09/09	Yan Qin

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	6.3°C
•	

Revised Report (2024/10/11): OC Pesticides analysis added to sample BH24-3 SS1 per client Kirstin Olsen's request.

Sample ZYT630 [MW24-5 SS9]: VOC/F1 Analysis: Soil weight exceeds the protocol specification of approximately 5g in the field preserved vial. Additional methanol was added to the vial to ensure extraction efficiency.

O.REG 153 OC PESTICIDES (SOIL)

OC Pesticides (Selected) & PCB: OC Pesticide Analysis: Matrix spike exceeds acceptance limits, probable matrix interference.

OC Pesticides (Selected) & PCB: Matrix spike exceeds acceptance limits, probable matrix interference.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

DS Consultants Limited Client Project #: 24-300-100

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP	 D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9569568	4-Bromofluorobenzene	2024/08/12	99	60 - 140	100	60 - 140	97	%		
9569568	D10-o-Xylene	2024/08/12	105	60 - 130	93	60 - 130	84	%		
9569568	D4-1,2-Dichloroethane	2024/08/12	105	60 - 140	103	60 - 140	104	%		
9569568	D8-Toluene	2024/08/12	102	60 - 140	102	60 - 140	94	%		
9569599	4-Bromofluorobenzene	2024/08/12	100	60 - 140	100	60 - 140	97	%		
9569599	D10-o-Xylene	2024/08/12	107	60 - 130	90	60 - 130	96	%		
9569599	D4-1,2-Dichloroethane	2024/08/12	103	60 - 140	107	60 - 140	105	%		
9569599	D8-Toluene	2024/08/12	103	60 - 140	101	60 - 140	94	%		
9571819	Decachlorobiphenyl	2024/08/13	108	60 - 130	108	60 - 130	105	%		
9573977	1,4-Difluorobenzene	2024/08/14	111	60 - 140	114	60 - 140	99	%		
9573977	4-Bromofluorobenzene	2024/08/14	91	60 - 140	92	60 - 140	96	%		
9573977	D10-o-Xylene	2024/08/14	121	60 - 140	103	60 - 140	97	%		
9573977	D4-1,2-Dichloroethane	2024/08/14	101	60 - 140	112	60 - 140	101	%		
9574798	D10-Anthracene	2024/08/14	89	50 - 130	103	50 - 130	108	%		
9574798	D14-Terphenyl (FS)	2024/08/14	84	50 - 130	96	50 - 130	100	%		
9574798	D8-Acenaphthylene	2024/08/14	84	50 - 130	95	50 - 130	89	%		
9576187	o-Terphenyl	2024/08/14	105	60 - 140	106	60 - 140	109	%		
9587136	37CL4 2378 Tetra CDD	2024/09/08	80	35 - 197	69	35 - 197	60	%		
9587136	C13-1234678 HeptaCDD	2024/09/08	63	23 - 140	73	23 - 140	88	%		
9587136	C13-1234678 HeptaCDF	2024/09/08	70	28 - 143	77	28 - 143	86	%		
9587136	C13-123478 HexaCDD	2024/09/08	76	32 - 141	91	32 - 141	104	%		
9587136	C13-123478 HexaCDF	2024/09/08	88	26 - 152	91	26 - 152	89	%		
9587136	C13-1234789 HeptaCDF	2024/09/08	56	26 - 138	68	26 - 138	87	%		
9587136	C13-123678 HexaCDD	2024/09/08	100	28 - 130	96	28 - 130	103	%		
9587136	C13-123678 HexaCDF	2024/09/08	102	26 - 123	98	26 - 123	101	%		
9587136	C13-12378 PentaCDD	2024/09/08	72	25 - 181	73	25 - 181	87	%		
9587136	C13-12378 PentaCDF	2024/09/08	75	24 - 185	69	24 - 185	70	%		
9587136	C13-123789 HexaCDF	2024/09/08	79	29 - 147	87	29 - 147	101	%		
9587136	C13-234678 HexaCDF	2024/09/08	85	28 - 136	100	28 - 136	99	%		
9587136	C13-23478 PentaCDF	2024/09/08	70	21 - 178	73	21 - 178	81	%		
9587136	C13-2378 TetraCDD	2024/09/08	86	25 - 164	71	25 - 164	59	%		

Page 33 of 48

DS Consultants Limited Client Project #: 24-300-100 Sampler Initials: DAS

Matrix Spike SPIKED BLANK **Method Blank RPD** QC Batch **Parameter** Date % Recovery **QC Limits** % Recovery **QC Limits** Value UNITS Value (%) **QC Limits** 9587136 C13-2378 TetraCDF 2024/09/08 90 24 - 169 71 24 - 169 74 % 9587136 C13-OCDD 2024/09/08 43 17 - 157 52 17 - 157 83 % 9687663 2,4,5,6-Tetrachloro-m-xylene 2024/10/08 118 50 - 130 80 50 - 130 70 % 9687663 2024/10/08 69 % Decachlorobiphenyl 119 50 - 130 91 50 - 130 9690075 2,4,5,6-Tetrachloro-m-xylene 2024/10/10 82 50 - 13068 50 - 130 82 % 9690075 Decachlorobiphenyl 2024/10/10 68 87 80 % 50 - 130 50 - 130 9569056 Moisture 2024/08/10 3.0 20 9569080 Moisture 2024/08/10 O 20 9569568 1,1,1,2-Tetrachloroethane 2024/08/12 60 - 140 NC 50 122 107 60 - 130 < 0.040 ug/g 9569568 98 NC 1,1,1-Trichloroethane 2024/08/12 111 60 - 140 60 - 130 < 0.040 ug/g 50 50 9569568 1.1.2.2-Tetrachloroethane 2024/08/12 106 60 - 140 94 60 - 130 < 0.040 ug/g NC 9569568 1,1,2-Trichloroethane 2024/08/12 113 60 - 140 60 - 130 < 0.040 NC 50 99 ug/g 9569568 1.1-Dichloroethane 108 94 60 - 130 NC 50 2024/08/12 60 - 140 < 0.040 ug/g ug/g 9569568 1.1-Dichloroethylene 2024/08/12 110 60 - 140 98 60 - 130 < 0.040 NC 50 9569568 1.2-Dichlorobenzene 2024/08/12 110 60 - 140 98 60 - 130 < 0.040 NC 50 ug/g 9569568 1.2-Dichloroethane 2024/08/12 113 60 - 140 99 60 - 130 < 0.049 ug/g NC 50 9569568 1,2-Dichloropropane 2024/08/12 110 60 - 140 97 60 - 130 < 0.040 ug/g NC 50 9569568 1,3-Dichlorobenzene 2024/08/12 111 60 - 140 99 60 - 130 < 0.040 ug/g NC 50 98 NC 50 9569568 1.4-Dichlorobenzene 2024/08/12 110 60 - 140 60 - 130 < 0.040 ug/g 9569568 Acetone (2-Propanone) 2024/08/12 108 60 - 140 96 60 - 140 < 0.49 ug/g NC 50 9569568 2024/08/12 109 60 - 140 97 60 - 130 NC 50 Benzene < 0.0060 ug/g 9569568 Bromodichloromethane 2024/08/12 110 60 - 14097 60 - 130< 0.040 ug/g NC 50 NC 9569568 Bromoform 2024/08/12 111 60 - 140 103 60 - 130 < 0.040 50 ug/g 9569568 Bromomethane 2024/08/12 95 60 - 140 83 60 - 140 < 0.040 ug/g NC 50 9569568 Carbon Tetrachloride 2024/08/12 122 60 - 140 108 60 - 130 < 0.040 ug/g NC 50 9569568 Chlorobenzene NC 2024/08/12 100 60 - 140 90 60 - 130 < 0.040 50 ug/g 50 9569568 Chloroform 2024/08/12 114 60 - 140 96 60 - 130 < 0.040 ug/g NC 9569568 cis-1,2-Dichloroethylene 2024/08/12 115 60 - 140101 60 - 130 < 0.040 NC 50 ug/g 9569568 87 NC 50 cis-1,3-Dichloropropene 2024/08/12 99 60 - 140 60 - 130 < 0.030 ug/g 9569568 Dibromochloromethane 2024/08/12 116 60 - 140102 60 - 130 < 0.040 NC 50 ug/g 9569568 Dichlorodifluoromethane (FREON 12) 2024/08/12 73 60 - 14069 60 - 140 < 0.040 ug/g NC 50

DS Consultants Limited Client Project #: 24-300-100 Sampler Initials: DAS

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9569568	Ethylbenzene	2024/08/12	98	60 - 140	89	60 - 130	<0.010	ug/g	NC	50
9569568	Ethylene Dibromide	2024/08/12	110	60 - 140	98	60 - 130	<0.040	ug/g	NC	50
9569568	F1 (C6-C10) - BTEX	2024/08/12					<10	ug/g	NC	30
9569568	F1 (C6-C10)	2024/08/12	91	60 - 140	101	80 - 120	<10	ug/g	NC	30
9569568	Hexane	2024/08/12	111	60 - 140	105	60 - 130	<0.040	ug/g	NC	50
9569568	Methyl Ethyl Ketone (2-Butanone)	2024/08/12	111	60 - 140	100	60 - 140	<0.40	ug/g	NC	50
9569568	Methyl Isobutyl Ketone	2024/08/12	99	60 - 140	90	60 - 130	<0.40	ug/g	NC	50
9569568	Methyl t-butyl ether (MTBE)	2024/08/12	102	60 - 140	91	60 - 130	<0.040	ug/g	NC	50
9569568	Methylene Chloride(Dichloromethane)	2024/08/12	118	60 - 140	102	60 - 130	<0.049	ug/g	NC	50
9569568	o-Xylene	2024/08/12	105	60 - 140	95	60 - 130	<0.020	ug/g	NC	50
9569568	p+m-Xylene	2024/08/12	97	60 - 140	88	60 - 130	<0.020	ug/g	NC	50
9569568	Styrene	2024/08/12	99	60 - 140	90	60 - 130	<0.040	ug/g	NC	50
9569568	Tetrachloroethylene	2024/08/12	112	60 - 140	99	60 - 130	<0.040	ug/g	NC	50
9569568	Toluene	2024/08/12	106	60 - 140	95	60 - 130	<0.020	ug/g	NC	50
9569568	Total Xylenes	2024/08/12					<0.020	ug/g	NC	50
9569568	trans-1,2-Dichloroethylene	2024/08/12	120	60 - 140	105	60 - 130	<0.040	ug/g	NC	50
9569568	trans-1,3-Dichloropropene	2024/08/12	109	60 - 140	95	60 - 130	<0.040	ug/g	NC	50
9569568	Trichloroethylene	2024/08/12	113	60 - 140	100	60 - 130	<0.010	ug/g	NC	50
9569568	Trichlorofluoromethane (FREON 11)	2024/08/12	111	60 - 140	98	60 - 130	<0.040	ug/g	NC	50
9569568	Vinyl Chloride	2024/08/12	102	60 - 140	91	60 - 130	<0.019	ug/g	NC	50
9569599	1,1,1,2-Tetrachloroethane	2024/08/12	127	60 - 140	123	60 - 130	<0.040	ug/g	NC	50
9569599	1,1,1-Trichloroethane	2024/08/12	113	60 - 140	107	60 - 130	<0.040	ug/g	NC	50
9569599	1,1,2,2-Tetrachloroethane	2024/08/12	100	60 - 140	107	60 - 130	<0.040	ug/g	NC	50
9569599	1,1,2-Trichloroethane	2024/08/12	115	60 - 140	115	60 - 130	<0.040	ug/g	NC	50
9569599	1,1-Dichloroethane	2024/08/12	113	60 - 140	108	60 - 130	<0.040	ug/g	NC	50
9569599	1,1-Dichloroethylene	2024/08/12	122	60 - 140	112	60 - 130	<0.040	ug/g	NC	50
9569599	1,2-Dichlorobenzene	2024/08/12	117	60 - 140	110	60 - 130	<0.040	ug/g	NC	50
9569599	1,2-Dichloroethane	2024/08/12	117	60 - 140	118	60 - 130	<0.049	ug/g	NC	50
9569599	1,2-Dichloropropane	2024/08/12	115	60 - 140	114	60 - 130	<0.040	ug/g	NC	50
9569599	1,3-Dichlorobenzene	2024/08/12	118	60 - 140	110	60 - 130	<0.040	ug/g	NC	50
9569599	1,4-Dichlorobenzene	2024/08/12	119	60 - 140	111	60 - 130	<0.040	ug/g	NC	50

DS Consultants Limited Client Project #: 24-300-100

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9569599	Acetone (2-Propanone)	2024/08/12	120	60 - 140	127	60 - 140	<0.49	ug/g	NC	50
9569599	Benzene	2024/08/12	114	60 - 140	108	60 - 130	<0.0060	ug/g	NC	50
9569599	Bromodichloromethane	2024/08/12	108	60 - 140	111	60 - 130	<0.040	ug/g	NC	50
9569599	Bromoform	2024/08/12	109	60 - 140	120	60 - 130	<0.040	ug/g	NC	50
9569599	Bromomethane	2024/08/12	99	60 - 140	92	60 - 140	<0.040	ug/g	NC	50
9569599	Carbon Tetrachloride	2024/08/12	123	60 - 140	115	60 - 130	<0.040	ug/g	NC	50
9569599	Chlorobenzene	2024/08/12	107	60 - 140	103	60 - 130	<0.040	ug/g	NC	50
9569599	Chloroform	2024/08/12	114	60 - 140	110	60 - 130	<0.040	ug/g	NC	50
9569599	cis-1,2-Dichloroethylene	2024/08/12	118	60 - 140	115	60 - 130	<0.040	ug/g	NC	50
9569599	cis-1,3-Dichloropropene	2024/08/12	105	60 - 140	109	60 - 130	<0.030	ug/g	NC	50
9569599	Dibromochloromethane	2024/08/12	114	60 - 140	120	60 - 130	<0.040	ug/g	NC	50
9569599	Dichlorodifluoromethane (FREON 12)	2024/08/12	86	60 - 140	81	60 - 140	<0.040	ug/g	NC	50
9569599	Ethylbenzene	2024/08/12	118	60 - 140	109	60 - 130	<0.010	ug/g	NC	50
9569599	Ethylene Dibromide	2024/08/12	110	60 - 140	114	60 - 130	<0.040	ug/g	NC	50
9569599	Hexane	2024/08/12	135	60 - 140	123	60 - 130	<0.040	ug/g	NC	50
9569599	Methyl Ethyl Ketone (2-Butanone)	2024/08/12	113	60 - 140	126	60 - 140	<0.40	ug/g	NC	50
9569599	Methyl Isobutyl Ketone	2024/08/12	108	60 - 140	124	60 - 130	<0.40	ug/g	NC	50
9569599	Methyl t-butyl ether (MTBE)	2024/08/12	109	60 - 140	111	60 - 130	<0.040	ug/g	NC	50
9569599	Methylene Chloride(Dichloromethane)	2024/08/12	111	60 - 140	108	60 - 130	<0.049	ug/g	NC	50
9569599	o-Xylene	2024/08/12	124	60 - 140	116	60 - 130	<0.020	ug/g	NC	50
9569599	p+m-Xylene	2024/08/12	115	60 - 140	107	60 - 130	<0.020	ug/g	NC	50
9569599	Styrene	2024/08/12	120	60 - 140	116	60 - 130	<0.040	ug/g	NC	50
9569599	Tetrachloroethylene	2024/08/12	117	60 - 140	103	60 - 130	<0.040	ug/g	NC	50
9569599	Toluene	2024/08/12	114	60 - 140	106	60 - 130	<0.020	ug/g	NC	50
9569599	Total Xylenes	2024/08/12					<0.020	ug/g	NC	50
9569599	trans-1,2-Dichloroethylene	2024/08/12	122	60 - 140	114	60 - 130	<0.040	ug/g	NC	50
9569599	trans-1,3-Dichloropropene	2024/08/12	116	60 - 140	120	60 - 130	<0.040	ug/g	NC	50
9569599	Trichloroethylene	2024/08/12	120	60 - 140	113	60 - 130	<0.010	ug/g	NC	50
9569599	Trichlorofluoromethane (FREON 11)	2024/08/12	117	60 - 140	106	60 - 130	<0.040	ug/g	NC	50
9569599	Vinyl Chloride	2024/08/12	110	60 - 140	103	60 - 130	<0.019	ug/g	NC	50
9571819	Aroclor 1242	2024/08/13					<0.010	ug/g	NC	50

DS Consultants Limited Client Project #: 24-300-100

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9571819	Aroclor 1248	2024/08/13					<0.010	ug/g	NC	50
9571819	Aroclor 1254	2024/08/13					<0.010	ug/g	NC	50
9571819	Aroclor 1260	2024/08/13	122	30 - 130	123	30 - 130	<0.010	ug/g	NC	50
9571819	Total PCB	2024/08/13	122	30 - 130	123	30 - 130	<0.010	ug/g	NC	50
9572053	WAD Cyanide (Free)	2024/08/13	98	75 - 125	101	80 - 120	<0.01	ug/g	NC	35
9573977	Benzene	2024/08/14	106	50 - 140	95	50 - 140	<0.020	ug/g	NC	50
9573977	Ethylbenzene	2024/08/14	114	50 - 140	93	50 - 140	<0.020	ug/g	NC	50
9573977	F1 (C6-C10) - BTEX	2024/08/14					<10	ug/g	NC	30
9573977	F1 (C6-C10)	2024/08/14	108	60 - 140	87	80 - 120	<10	ug/g	NC	30
9573977	o-Xylene	2024/08/14	106	50 - 140	86	50 - 140	<0.020	ug/g	6.9	50
9573977	p+m-Xylene	2024/08/14	110	50 - 140	90	50 - 140	<0.040	ug/g	NC	50
9573977	Toluene	2024/08/14	93	50 - 140	77	50 - 140	<0.020	ug/g	3.4	50
9573977	Total Xylenes	2024/08/14					<0.040	ug/g	NC	50
9574762	WAD Cyanide (Free)	2024/08/14	99	75 - 125	100	80 - 120	<0.01	ug/g	NC	35
9574798	1-Methylnaphthalene	2024/08/14	87	50 - 130	97	50 - 130	<0.0050	ug/g	NC	40
9574798	2-Methylnaphthalene	2024/08/14	84	50 - 130	95	50 - 130	<0.0050	ug/g	NC	40
9574798	Acenaphthene	2024/08/14	85	50 - 130	93	50 - 130	<0.0050	ug/g	NC	40
9574798	Acenaphthylene	2024/08/14	82	50 - 130	92	50 - 130	<0.0050	ug/g	NC	40
9574798	Anthracene	2024/08/14	85	50 - 130	94	50 - 130	<0.0050	ug/g	NC	40
9574798	Benzo(a)anthracene	2024/08/14	89	50 - 130	99	50 - 130	<0.0050	ug/g	NC	40
9574798	Benzo(a)pyrene	2024/08/14	88	50 - 130	99	50 - 130	<0.0050	ug/g	NC	40
9574798	Benzo(b/j)fluoranthene	2024/08/14	86	50 - 130	100	50 - 130	<0.0050	ug/g	NC	40
9574798	Benzo(g,h,i)perylene	2024/08/14	88	50 - 130	101	50 - 130	<0.0050	ug/g	NC	40
9574798	Benzo(k)fluoranthene	2024/08/14	92	50 - 130	98	50 - 130	<0.0050	ug/g	NC	40
9574798	Chrysene	2024/08/14	87	50 - 130	97	50 - 130	<0.0050	ug/g	NC	40
9574798	Dibenzo(a,h)anthracene	2024/08/14	94	50 - 130	104	50 - 130	<0.0050	ug/g	NC	40
9574798	Fluoranthene	2024/08/14	87	50 - 130	96	50 - 130	<0.0050	ug/g	NC	40
9574798	Fluorene	2024/08/14	87	50 - 130	96	50 - 130	<0.0050	ug/g	NC	40
9574798	Indeno(1,2,3-cd)pyrene	2024/08/14	88	50 - 130	100	50 - 130	<0.0050	ug/g	NC	40
9574798	Naphthalene	2024/08/14	78	50 - 130	92	50 - 130	<0.0050	ug/g	NC	40
9574798	Phenanthrene	2024/08/14	85	50 - 130	94	50 - 130	<0.0050	ug/g	NC	40

DS Consultants Limited Client Project #: 24-300-100

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9574798	Pyrene	2024/08/14	85	50 - 130	94	50 - 130	<0.0050	ug/g	NC	40
9575275	Available (CaCl2) pH	2024/08/14			100	97 - 103			1.5	N/A
9575290	Available (CaCl2) pH	2024/08/14			100	97 - 103			0.031	N/A
9575958	Conductivity	2024/08/14			105	90 - 110	<0.002	mS/cm	2.2	10
9576187	F2 (C10-C16 Hydrocarbons)	2024/08/15	106	60 - 140	107	80 - 120	<10	ug/g	NC	30
9576187	F3 (C16-C34 Hydrocarbons)	2024/08/15	103	60 - 140	104	80 - 120	<50	ug/g	NC	30
9576187	F4 (C34-C50 Hydrocarbons)	2024/08/15	88	60 - 140	86	80 - 120	<50	ug/g	NC	30
9579186	Hot Water Ext. Boron (B)	2024/08/16	106	75 - 125	111	75 - 125	<0.050	ug/g	0.45	40
9580628	Acid Extractable Antimony (Sb)	2024/08/16	113	75 - 125	116	80 - 120	<0.20	ug/g	NC	30
9580628	Acid Extractable Arsenic (As)	2024/08/16	97	75 - 125	99	80 - 120	<1.0	ug/g	NC	30
9580628	Acid Extractable Barium (Ba)	2024/08/16	92	75 - 125	102	80 - 120	<0.50	ug/g	8.5	30
9580628	Acid Extractable Beryllium (Be)	2024/08/16	96	75 - 125	97	80 - 120	<0.20	ug/g	NC	30
9580628	Acid Extractable Boron (B)	2024/08/16	94	75 - 125	95	80 - 120	<5.0	ug/g	NC	30
9580628	Acid Extractable Cadmium (Cd)	2024/08/16	97	75 - 125	98	80 - 120	<0.10	ug/g	NC	30
9580628	Acid Extractable Chromium (Cr)	2024/08/16	97	75 - 125	99	80 - 120	<1.0	ug/g	7.6	30
9580628	Acid Extractable Cobalt (Co)	2024/08/16	100	75 - 125	103	80 - 120	<0.10	ug/g	1.6	30
9580628	Acid Extractable Copper (Cu)	2024/08/16	105	75 - 125	101	80 - 120	<0.50	ug/g	2.6	30
9580628	Acid Extractable Lead (Pb)	2024/08/16	96	75 - 125	100	80 - 120	<1.0	ug/g	1.5	30
9580628	Acid Extractable Mercury (Hg)	2024/08/16	94	75 - 125	100	80 - 120	<0.050	ug/g	NC	30
9580628	Acid Extractable Molybdenum (Mo)	2024/08/16	99	75 - 125	99	80 - 120	<0.50	ug/g	NC	30
9580628	Acid Extractable Nickel (Ni)	2024/08/16	102	75 - 125	104	80 - 120	<0.50	ug/g	5.5	30
9580628	Acid Extractable Selenium (Se)	2024/08/16	100	75 - 125	101	80 - 120	<0.50	ug/g	NC	30
9580628	Acid Extractable Silver (Ag)	2024/08/16	98	75 - 125	100	80 - 120	<0.20	ug/g	NC	30
9580628	Acid Extractable Thallium (TI)	2024/08/16	96	75 - 125	98	80 - 120	<0.050	ug/g	NC	30
9580628	Acid Extractable Uranium (U)	2024/08/16	100	75 - 125	102	80 - 120	<0.050	ug/g	7.7	30
9580628	Acid Extractable Vanadium (V)	2024/08/16	94	75 - 125	104	80 - 120	<5.0	ug/g	1.9	30
9580628	Acid Extractable Zinc (Zn)	2024/08/16	NC	75 - 125	102	80 - 120	<5.0	ug/g	16	30
9582926	Chromium (VI)	2024/08/19	92	70 - 130	94	80 - 120	<0.18	ug/g	NC	35
9587136	1,2,3,4,6,7,8-Hepta CDD	2024/09/08	139	70 - 140	112	70 - 140	0.666, EDL=0.122	pg/g	4.9	25

DS Consultants Limited Client Project #: 24-300-100

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9587136	1,2,3,4,6,7,8-Hepta CDF	2024/09/08	106	82 - 122	117	82 - 122	0.436, EDL=0.109	pg/g	11	25
9587136	1,2,3,4,7,8,9-Hepta CDF	2024/09/08	102	78 - 138	111	78 - 138	0.186, EDL=0.129	pg/g	NC (4)	25
9587136	1,2,3,4,7,8-Hexa CDD	2024/09/08	99	70 - 164	108	70 - 164	<0.155, EDL=0.155	pg/g	NC	25
9587136	1,2,3,4,7,8-Hexa CDF	2024/09/08	105	72 - 134	110	72 - 134	<0.158, EDL=0.158	pg/g	NC	25
9587136	1,2,3,6,7,8-Hexa CDD	2024/09/08	100	76 - 134	111	76 - 134	<0.157, EDL=0.157	pg/g	NC	25
9587136	1,2,3,6,7,8-Hexa CDF	2024/09/08	102	84 - 130	110	84 - 130	<0.139, EDL=0.139	pg/g	NC	25
9587136	1,2,3,7,8,9-Hexa CDD	2024/09/08	100	64 - 162	109	64 - 162	<0.151, EDL=0.151	pg/g	NC	25
9587136	1,2,3,7,8,9-Hexa CDF	2024/09/08	98	78 - 130	109	78 - 130	<0.169, EDL=0.169	pg/g	NC	25
9587136	1,2,3,7,8-Penta CDD	2024/09/08	98	25 - 181	104	25 - 181	<0.155, EDL=0.155	pg/g	NC	25
9587136	1,2,3,7,8-Penta CDF	2024/09/08	106	80 - 134	109	80 - 134	<0.141, EDL=0.141	pg/g	NC	25
9587136	2,3,4,6,7,8-Hexa CDF	2024/09/08	108	70 - 156	107	70 - 156	<0.142, EDL=0.142	pg/g	NC	25
9587136	2,3,4,7,8-Penta CDF	2024/09/08	101	68 - 160	107	68 - 160	<0.113, EDL=0.113	pg/g	NC	25
9587136	2,3,7,8-Tetra CDD	2024/09/08	102	67 - 158	112	67 - 158	<0.126, EDL=0.126	pg/g	NC	25
9587136	2,3,7,8-Tetra CDF	2024/09/08	200 (1)	75 - 158	110	75 - 158	<0.114, EDL=0.114	pg/g	NC (3)	25
9587136	Octa CDD	2024/09/08	110	78 - 144	113	78 - 144	2.48, EDL=0.150	pg/g	8.7	25
9587136	Octa CDF	2024/09/08	92	63 - 170	102	63 - 170	<0.783, EDL=0.783 (2)	pg/g	NC	25
9587136	Total Hepta CDD	2024/09/08					0.666, EDL=0.122	pg/g	2.7	25

DS Consultants Limited Client Project #: 24-300-100

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9587136	Total Hepta CDF	2024/09/08					1.11, EDL=0.118	pg/g	3.6	25
9587136	Total Hexa CDD	2024/09/08					<0.154, EDL=0.154	pg/g	4.8	25
9587136	Total Hexa CDF	2024/09/08					0.188, EDL=0.151	pg/g	14	25
9587136	Total Penta CDD	2024/09/08					<0.155, EDL=0.155	pg/g	NC	25
9587136	Total Penta CDF	2024/09/08					<0.126, EDL=0.126	pg/g	2.6	25
9587136	Total Tetra CDD	2024/09/08					<0.126, EDL=0.126	pg/g	NC	25
9587136	Total Tetra CDF	2024/09/08					<0.114, EDL=0.114	pg/g	NC	25
9687663	a-Chlordane	2024/10/09	167 (1)	50 - 130	84	50 - 130	<0.0020	ug/g	NC	40
9687663	Aldrin	2024/10/09	144 (1)	50 - 130	86	50 - 130	<0.0020	ug/g	NC	40
9687663	Aroclor 1242	2024/10/09					<0.015	ug/g	NC	40
9687663	Aroclor 1248	2024/10/09					<0.015	ug/g	NC	40
9687663	Aroclor 1254	2024/10/09					<0.015	ug/g	NC	40
9687663	Aroclor 1260	2024/10/09					<0.015	ug/g	NC	40
9687663	Dieldrin	2024/10/09	133 (1)	50 - 130	85	50 - 130	<0.0020	ug/g	NC	40
9687663	Endosulfan I (alpha)	2024/10/09	151 (1)	50 - 130	67	50 - 130	<0.0020	ug/g	NC	40
9687663	Endosulfan II (beta)	2024/10/09	89	50 - 130	74	50 - 130	<0.0020	ug/g	NC	40
9687663	Endrin	2024/10/09	140 (1)	50 - 130	89	50 - 130	<0.0020	ug/g	NC	40
9687663	g-Chlordane	2024/10/09	185 (1)	50 - 130	82	50 - 130	<0.0020	ug/g	NC	40
9687663	Heptachlor epoxide	2024/10/09	148 (1)	50 - 130	81	50 - 130	<0.0020	ug/g	NC	40
9687663	Heptachlor	2024/10/09	146 (1)	50 - 130	88	50 - 130	<0.0020	ug/g	NC	40
9687663	Hexachlorobenzene	2024/10/09	127	50 - 130	73	50 - 130	<0.0020	ug/g	NC	40
9687663	Hexachlorobutadiene	2024/10/09	85	50 - 130	89	50 - 130	<0.0020	ug/g	NC	40
9687663	Hexachloroethane	2024/10/09	196 (1)	50 - 130	71	50 - 130	<0.0020	ug/g	NC	40
9687663	Lindane	2024/10/09	132 (1)	50 - 130	80	50 - 130	<0.0020	ug/g	NC	40
9687663	Methoxychlor	2024/10/09	176 (1)	50 - 130	129	50 - 130	<0.0050	ug/g	NC	40
9687663	o,p-DDD	2024/10/09	142 (1)	50 - 130	95	50 - 130	<0.0020	ug/g	NC	40

DS Consultants Limited Client Project #: 24-300-100

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9687663	o,p-DDE	2024/10/09	157 (1)	50 - 130	95	50 - 130	<0.0020	ug/g	NC	40
9687663	o,p-DDT	2024/10/09	162 (1)	50 - 130	113	50 - 130	<0.0020	ug/g	NC	40
9687663	p,p-DDD	2024/10/09	118	50 - 130	100	50 - 130	<0.0020	ug/g	NC	40
9687663	p,p-DDE	2024/10/09	195 (1)	50 - 130	80	50 - 130	<0.0020	ug/g	NC	40
9687663	p,p-DDT	2024/10/09	220 (1)	50 - 130	111	50 - 130	<0.0020	ug/g	NC	40
9687851	Moisture	2024/10/08							3.6	20
9690075	a-Chlordane	2024/10/10	90	50 - 130	84	50 - 130	<0.0020	ug/g	NC	40
9690075	Aldrin	2024/10/10	92	50 - 130	73	50 - 130	<0.0020	ug/g	NC	40
9690075	Aroclor 1242	2024/10/10					<0.015	ug/g	NC	40
9690075	Aroclor 1248	2024/10/10					<0.015	ug/g	NC	40
9690075	Aroclor 1254	2024/10/10					<0.015	ug/g	NC	40
9690075	Aroclor 1260	2024/10/10					<0.015	ug/g	NC	40
9690075	Dieldrin	2024/10/10	194 (1)	50 - 130	100	50 - 130	<0.0020	ug/g	32	40
9690075	Endosulfan I (alpha)	2024/10/10	106	50 - 130	87	50 - 130	<0.0020	ug/g	NC	40
9690075	Endosulfan II (beta)	2024/10/10	105	50 - 130	86	50 - 130	<0.0020	ug/g	NC	40
9690075	Endrin	2024/10/10	112	50 - 130	97	50 - 130	<0.0020	ug/g	NC	40
9690075	g-Chlordane	2024/10/10	113	50 - 130	90	50 - 130	<0.0020	ug/g	NC	40
9690075	Heptachlor epoxide	2024/10/10	140 (1)	50 - 130	89	50 - 130	<0.0020	ug/g	NC	40
9690075	Heptachlor	2024/10/10	93	50 - 130	72	50 - 130	<0.0020	ug/g	NC	40
9690075	Hexachlorobenzene	2024/10/10	88	50 - 130	64	50 - 130	<0.0020	ug/g	NC	40
9690075	Hexachlorobutadiene	2024/10/10	197 (1)	50 - 130	78	50 - 130	<0.0020	ug/g	NC	40
9690075	Hexachloroethane	2024/10/10	46 (1)	50 - 130	63	50 - 130	<0.0020	ug/g	NC	40
9690075	Lindane	2024/10/10	94	50 - 130	81	50 - 130	<0.0020	ug/g	NC	40
9690075	Methoxychlor	2024/10/10	122	50 - 130	126	50 - 130	<0.0050	ug/g	NC	40
9690075	o,p-DDD	2024/10/10	99	50 - 130	104	50 - 130	<0.0020	ug/g	NC	40
9690075	o,p-DDE	2024/10/10	100	50 - 130	85	50 - 130	<0.0020	ug/g	NC	40
9690075	o,p-DDT	2024/10/10	80	50 - 130	97	50 - 130	<0.0020	ug/g	NC	40
9690075	p,p-DDD	2024/10/10	115	50 - 130	108	50 - 130	<0.0020	ug/g	NC	40
9690075	p,p-DDE	2024/10/10	101	50 - 130	86	50 - 130	<0.0020	ug/g	1.5	40
9690075	p,p-DDT	2024/10/10	68	50 - 130	106	50 - 130	<0.0020	ug/g	NC	40
9690412	WAD Cyanide (Free)	2024/10/09	106	75 - 125	117	80 - 120	<0.01	ug/g	NC	35

DS Consultants Limited Client Project #: 24-300-100

			Matrix	Spike	SPIKED	BLANK	Method E	lank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9690624	Available (CaCl2) pH	2024/10/09			101	97 - 103			0.14	N/A
9690668	Chromium (VI)	2024/10/09	86	70 - 130	90	80 - 120	<0.18	ug/g	NC	35
9691645	Acid Extractable Antimony (Sb)	2024/10/10	96	75 - 125	102	80 - 120	<0.20	ug/g	NC	30
9691645	Acid Extractable Arsenic (As)	2024/10/10	98	75 - 125	102	80 - 120	<1.0	ug/g	3.6	30
9691645	Acid Extractable Barium (Ba)	2024/10/10	91	75 - 125	99	80 - 120	<0.50	ug/g	1.4	30
9691645	Acid Extractable Beryllium (Be)	2024/10/10	100	75 - 125	102	80 - 120	<0.20	ug/g	NC	30
9691645	Acid Extractable Boron (B)	2024/10/10	96	75 - 125	98	80 - 120	<5.0	ug/g	NC	30
9691645	Acid Extractable Cadmium (Cd)	2024/10/10	94	75 - 125	98	80 - 120	<0.10	ug/g	NC	30
9691645	Acid Extractable Chromium (Cr)	2024/10/10	96	75 - 125	100	80 - 120	<1.0	ug/g	0.051	30
9691645	Acid Extractable Cobalt (Co)	2024/10/10	92	75 - 125	100	80 - 120	<0.10	ug/g	1.1	30
9691645	Acid Extractable Copper (Cu)	2024/10/10	95	75 - 125	99	80 - 120	<0.50	ug/g	4.1	30
9691645	Acid Extractable Lead (Pb)	2024/10/10	88	75 - 125	96	80 - 120	<1.0	ug/g	1.7	30
9691645	Acid Extractable Mercury (Hg)	2024/10/10	87	75 - 125	95	80 - 120	<0.050	ug/g	NC	30
9691645	Acid Extractable Molybdenum (Mo)	2024/10/10	91	75 - 125	94	80 - 120	<0.50	ug/g	NC	30
9691645	Acid Extractable Nickel (Ni)	2024/10/10	94	75 - 125	103	80 - 120	<0.50	ug/g	4.0	30
9691645	Acid Extractable Selenium (Se)	2024/10/10	94	75 - 125	101	80 - 120	<0.50	ug/g	NC	30
9691645	Acid Extractable Silver (Ag)	2024/10/10	89	75 - 125	94	80 - 120	<0.20	ug/g	NC	30
9691645	Acid Extractable Thallium (TI)	2024/10/10	88	75 - 125	96	80 - 120	<0.050	ug/g	NC	30
9691645	Acid Extractable Uranium (U)	2024/10/10	90	75 - 125	97	80 - 120	<0.050	ug/g	3.5	30
9691645	Acid Extractable Vanadium (V)	2024/10/10	102	75 - 125	103	80 - 120	<5.0	ug/g	1.3	30
9691645	Acid Extractable Zinc (Zn)	2024/10/10	93	75 - 125	101	80 - 120	<5.0	ug/g	2.4	30
9691843	Hot Water Ext. Boron (B)	2024/10/10	98	75 - 125	93	75 - 125	<0.050	ug/g	15	40

DS Consultants Limited Client Project #: 24-300-100

Sampler Initials: DAS

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RPE)
QC Batch	Parameter	Date % Recovery QC Limits % Recovery		QC Limits	Value	UNITS	Value (%)	QC Limits		
9693432	Conductivity	2024/10/10			100	90 - 110	<0.002	mS/cm	2.7	10

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

- (1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.
- (2) RT>2 seconds PCDD/DF analysis-Peak maxima of monitored ions exceeds 2 seconds
- (3) RT > 3 seconds PCDD/DF analysis Peak detected exceeds expected retention time (from internal standard) by greater than 3 seconds.RT>2 seconds PCDD/DF analysis-Peak maxima of monitored ions exceeds 2 seconds
- (4) EMPC / NDR Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Just Jenon
Angel Guerrero, Supervisor, Ultra Trace Analysis, HRMS and SVOC
Cirstina Carrière
Cristina Carriere, Senior Scientific Specialist
Louis A Harding
Louise Harding, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

www.BVNA.com

6740 Campobello Road, Missisaauga, Ontario L5N 2L8 Phone: 905-817-5700 Fax: 905-817-5779 Toli Free: 800-563-6266

CHAIN OF CUSTODY RECORD ENV COC - 00014v5

Page ____ of ____

									_			_				300	750									
Invoice information	Invoice to (requires report)			Report	nformatic	on (if differs fr	un involc	:e)						00	Project in	formatio	on	1-00								
Company:	5 Concultants	Compan				-					Quet	tation	#:													
Contact Name: Q1	who Govel	Contact Name:	K	181	In	0/50	200				P.O,	#/ AFE	#:	4.		7 111				Ties.	131	41	1			
Street Address: 625	21 Highway 7	Street	100000		24.50						Proje	ect#:		74	300	1-0	00)		5	11.5	14	3 1			
city: Young	and the second second	City:				Prov:		ostal ode:			Site	tr:				3130				- 13	Ą۴	9	N Y	ONT	2024	-08-2165
Phone:	7 31.24.51 11.77 35.55.5	Phone:	T						-			Locatio	on:			-				7	n:f	1	И,			
Email: CLCC	anthrope Scansulton	18 Finall:	10	3/5	Ren	@ dscs	MSU	letros	13.	Car	Site	Locatio	m			^			_	\	1),	Æ4	14			
Copies:	JC. USAS	Coples	Cs	din	OR G	grow	luz	Ten!	3.0	200	Sam	pled By	y:	Ot	NOV	141-	-Sh	ala	<u></u>	ī						
	Regulatory							1 2		4	5	6	7	8 9	10 11	1.2	3 14	15 16	17 16	19 2	C 21	. 22			rnaround Ti	ime (TAT)
Table 1	Res/Park Med/Fine Ind/Comm Coarse	E COME	558*	Sanit	40G, Table ary Sewo	Bylaw	_					П											10 S to	7 Day		10 Day
Table 2 Table 3 Table	Agri/other For RSC	E Min 3 c			n Sewer B Municipal	lylaw lity		-]						100				1							around Tim	
	Include Criteria on Cortificat	e of Analysis (heck If ye	Othe	r			1	10	1	.0.	1 1	anics	HWS-B)		1	1		1	1 1	E		☐ Sam		harges app	1 Day
CAMADIECA	NUST BE KEPT COOL (<10°C) FROM TIME OF S				DE ALL VED	NTAC			LAB FILTRATION REQUIRED			Н	Reg 153 metals and inorganics	si es						1 1	# OF CONTAINERS SUBMITTED	LYZE				
3AMIP CEST	NOST BEREFI COOL (CIO C) PROMITIME OF S	AMPERING DIGIT	I DELIVER	10.60	60	5 25 4		0 6	N RE	1		1	sand	Reg 153 ICPMS metals Reg 153 metals THE CrVI. ICPMS metal	S				H		ERSS	DO NOT ANALYZE	☐ 2 Da	V	ш	3 Day
	Sample Identification		Date Samp	oled	Time (24hr)			FIELD PRESERVED	STIO			Ш	metal	Reg 153 ICPMS r Reg 153 metals (He. Cr.V., ICPM)	I			(3)		1	TAIN	ONO	Date		YYYY	MM DD
	(Please print or Type)	YYY	Y MM	DD	нн м	ntsM Matr	ix	I B	E	BTEX/FI	F2 - F4	3	153	153 CrV	A 2	H					8	D-0	Required:		7	
-	Mall Leal			100	1		V	1 1	3	15	Ċ	VOC	Reg	Reg Reg	20	1	_			11	111	HOLD			omments	
1	3H24-1 SSI	25	408	69	AM	102	1						/								1			di	. 4	
2	2424-1 SSZ	- 11	1	1	Y	1									1											2000
3	UNPI												1			-					,	1				
4	2.00		-11-	11	-/-	++		+	+-	+		\vdash	~				-	+		++	-	+	_	-	- 1	
_	10015	\dashv	1	++-	1-11	+				-					V		_	-	₩.	-	I	\perp				
5	BH24-1 224									V	V				1						4					
6	BH24-1 SS5			Ħ								V									3					
7	RH74-2 SS	\							,		Г		V		./					$\dagger \dagger$	2					
8	BHZY-2 SSL	1	+	++-	1			+	-	1	,			0 0	7	H	-	-		+		-		-		
	BH201-5 33-	1-1-1	+	+	+		-		+	V	V	. 11	/	_	V		_	_	\vdash		4	1				
9	BH24-5 322	- 11		\perp	Ш					L	L	V	_							\perp	3			100		
10	BH24-3 SS	1 12	,		Ш				1						1						1					
11	RH24-355	21	11	11	\Box		1						1								1					
12	RH24-2 <	44	1	V	V	1	1	\vdash	1	1/	1	1		-			1		\vdash	1-1	2	5	-			
	AGREED TO IN WRITING, WORK SUBMITTED OF	THIS CHAIN C	ECUSTOR	W IS STEE	ECT TO B	DEAL VESITA	S STAND	AGIA TIES	Mean	V	DILIO	INE S	Chun	COSTUIS	CHAIN OF C	Heropy	DOCUM	NEW YORK	NOW!! FOC	1000		_	e or oun	en le la	n caubir	And the last
		A	VAILAGLE F	OR VIEW	VING AT W	WW.BVNA.CC	M/TERM	S-AND-	CONDI	TIONS	OR BY	CALLI	NG TE	HE LABORA	TORY LISTE	DAROVE	TO OBT	UN A COP	ryo wreedo	WENT AN	DACCE	PIANC	C 07 00N 1	ERIVIS AR	CONDITI	ONS WHICH ARE
LAB USE ONLY	Yes No			LAR USE	ONLY	Yes	No	Т					Ĩ			LAB US	E ONLY			Ma			2.0			Temperature
Seal present	·c 8	7 4	Seal pr						,c				- (Seal prese	nt			Yes	No		°C				reading by:
Seal Intact Cooling media present	7	2 3	Seal In	tact g media	present	-	Spare			1		2	-1	3	Seal Intact Cooling ma		ont		·2.				, 1	2		
	by: (Signature/ Print) YYYY	Date	DD		me		R	erelved	by: (5	Ignatu	re/ Pr	rint)	_		YYYY		Date		00	Time	мм			Special (instructions	-
, Olma Al		080			Spn	10	1						41	AN	207	100	08	_	40,000		30	-				277
1 WHOCH	onular and cory	100	-1	117	76.11)1 7		100		, ,		J/ (- 4	112		-	- 0	- 1		9	/0	=				
2						2	-	2000			_				i				- 1	1		1				THE STATE OF

www,BVNA.com

6740 Campobello Road, Mississauga, Ontario LSN 2L8 Phone: 905-817-5700 Fax: 905-817-5779 Toll Free: 800-563-6266

CHAIN OF CUSTODY RECORD ENV COC - 00014v5

Page 2 of 2

Invoice Information Invoice to (requires report)	Report Information (If differs from Invoke)	Project information
N - 1 - 1	Company: Quotation #:	riojett (normaton
Contact Contact		
Name: Street 22	Street	LAB USE ONLY - PLACE STICKER HERE
Street 22 Address: Postal	Address: Project #:	20-100
City: Kenghan Prov. Officia:	Code: Site #:	300~ (1)0
Phone:	Phone: Site Location: Site Location: Site Location: Site Location:	Rush Confirmation #:
Email: accounting & grown suffr	I I I I I I I I I I I I I I I I I I I	Al-Sharlock
Coples: Regulatory Cri	100 100 1	
Table 1 Mea/Fark Med/Fine Table 2 Indi/Comm Coarse Med/Fine Table 3 Agri/Other For RSC E Table Med/Fine Med/Fine	CCME	Rush Turnaround Time (TAT)
Include Criteria on Certificate of		Same Day 10ay
SAMPLES MUST BE KEPT COOL (<10°C) FROM TIME OF SAM	ING UNTIL DELIVERY TO BUREAU VERITAS	DS 2 Day ☐ 3 Day
Sample Identification (Please print or Type)	STEW FILE MESSERVED THE Department of Mark Mark Mark Mark Mark Mark Mark Mark	GILLINGS STATE DAY Same Day
1 RH74-3 SSE		3 Comments
2 RHTU-4 SCI	1294 08 69 AM Soil	
1 1/1/21 33]		
3 0H24-4 SSS		
1 2,0063		3
SUPE		
6 MAINPOLLES CCI		
14/14/2		
OUPY		
" MW24-5 55!	<u></u>	
" MW 24-S SS3		V
" MW24-5 SE		1//
11 AAM/24-5 55		8
- PVVVV		
2 0006	V V V	
*UNLESS OTHERWISE AGREED TO IN WRITING, WORK SUBMITTED ON TO	S CHAIN OF CUSTODY IS SUBJECT TO BUREAU VERITAS STANDARD TERMS AND CONDITIONS. SIGNING OF THIS CH AVAILABLE FOR VIEWING AT WWW.BVNA.COM/TERMS-AND-CONDITIONS OR BY CALLING THE LABORATC	IAIN OF CUSTODY DOCUMENT IS ACKNOWLEDGMENT AND ACCEPTANCE OF OUR TERMS AND CONDITIONS WHICH ARE. DRY USTED ABOVE TO OBTAIN A CORY
LAB USE ONLY Yes No	LAB USE ONLY Yes No	LAB USE ONLY Temperature
Seal present °C		Yes No reading by:
Seal Intact	Seal Intact	eal intact
Cooling media present 1 2 Relinquished by: (Signature/Print)	ite Time	cooling media present 1 2 3 Date Time Special instructions
Dina Al-Shalah 2009	100 100 100	YYYY MM DD HH MM
1 INIVIA MI SMUILLE TO TOOL	08 69 9245PM? SEE PAGE 1	<u> </u>
2	2	

www.BVNA.com

6740 Campobello Road, Mississauga, Ontario LSN 2L8 Phone: 905-817-5700 Fax: 905-817-5779 Toll Free: 800-563-6266

CHAIN OF CUSTODY RECORD ENV COC - 00014v5

Page of

Invoice	Informa	ition	Invoice to (requires report	t)	1		Report	Informa	ition (if	differs from invo	oice)	_	-							Proje	t Info	rmatic	on				T				
Compa	ny :		10.50.5.00.00	sultants Ltd		Compar	ny:		9	DS Co	nsultants Ltd	i,				Quota	tion#	T														
Contac	•		Accour	its Payable		Contact Name:				Kir	stin Olsen					P.O. #	/ AFE#															10-Aug-24 08:30
Name: Street	av		6221 Hv	vy 7, Unit 1		Street Address	25		62	21 His	ghway 7. Unit	t 16				Projec	t #:	7				2	4-30	0-10	0			1				on Gibson
Addres City:	S:	Vaughan	Prov	: ON Post	al L4H 0K8		*	Vaugha	an	F	rov: ON	Post		L4H	0к8	Site#:	8	1											110	AS	snt	
Phone:			905-	264-9393	e: I	Phone:				437	7-928-2794	TCOUC				Site Lo	cation	:											111	11 1 11	_	406235
Email:		acc	counting@	dsconsulta	ints.ca	Email:			kol	sen@	dsconsultant	ts.ca				Site Lo Provin	ocation	1					Ont	ario							C	400233
Copies						Copies:			ad	ina@	dsconsultant					Sampl	led By							l-Sha						No.		
REG 153	Table 1 Table 2 Table 3 Table	v	Res/Park Ind/Comm Agri/other	Med Coar For F		CCM Reg *min 3 MISA PWC	558* day TAT A QO	Sani Stor	m Sewe Munic er:	wer Byla er Bylaw		1	2	98	4	5	6		8	81	10	11	12	13 1	4 15	16	17	18 15	9 20			Regular Turnaround Time (TAT) 2 5 to 7 Day 10 Day Rush Turnaround Time (TAT) Surcharges apply Same Day 1 Day
	SAI	MPLES MUST			VI TIME OF SAME					VERITAS			-	REQUIRE				nd inorganics	etals	metals, HWS - B)										SSUBME	NOT ANALYZE	2 Day 3 Day
		Sai	mple Ident	ification			Date Sam	pled		me lhr)	university :	LTERED	FIELD PRESERVED	LAB FILTRATION REQUIRED	-			metals and	Reg 153 ICPMS metals	Neg 153 metals (Hg, Cr VI, ICPMS r			icides							# OF CONTAINERS SUBMITTED	DO NOT	Date YYYY MM DI
			lease print			YY	YY MN	DD	нн	мм	Matrix	HELD FILTERED	FIELD PR	LAB FILT	BTEX/F1	F2 - F4	VOCs	Reg 153	Reg 153	Neg 153 (Hg. Cr.)	PAHS	Hd	OC Pesticides							# OF CO	HOLD - DO	Required: Comments
1			BH24-	1 SS1		20	24 08	09			Soil												x							1		Add to C406235
2			DU	P7		20	24 08	09			Soil								1,			,								1		Add to C4O6235
3			BH24-	1 SS2		20	24 08	09			Soil						2	(1		Add to C406235
4							*			15																						
5																															R	
6																		7						0					h	h		
7																						Ť										2
8																				٨		٦		۱i-	ti,	1	n	0	1			
9																				_	11	u	C	41	Ш	J	I I	u	•			
10																		L													1	
11																																18. 4
12																																
*UNL	SS OTH	ERWISE AGRE	ED TO IN WRI	TING, WORK S	UBMITTED ON T	HIS CHAIN	OF CUSTO	DY IS SU	BJECT T	O BURE	AU VERITAS STAN	NDARI RMS-	TERM	AS AN	D CON	DITIO	NS. SI	GNIN VG TI	G OF T	THIS C	HAIN	OF CU	STODY	DOCL	IMENT BTAIN	IS ACK	NOWLE	DGMEN	IT AND	ACCE	PTAN	CE OF OUR TERMS AND CONDITIONS WHICH A
	LAB US	E ONLY	Yes , 1	No				LAB US				No		- Annali										SE ONI			Yes		No			Temperatur reading by
Seal po			/	•с	0	0 1	-	present intact					1	°C							Seal p Seal ir	resent									*C	
		present	1		1 2	3		ing medi		nt			1_		1		2		3		Coolir	ig med	ia pre	sent			L,	1	Time	1_	_	1 2 3 Special instructions
	Reli	nquished by:	(Signature/I	Print)	YYYY	Date MM	DD	нн	1	/M	Wirt	Rece	eived I	by: (S	ignatu	re/Pr	int)	a		_	2	YYYY	7	Date			OD	нн		мм		эреца пъгисиона
1		Dina	Al-Shalah	4	2024	10	07	20	OP	m	BH	111	TH	L	S	W.	int) KL	14	10	K	20	21	1	1	0	C	7	14	1	y		C
2											2												_									eren

Exceedance Summary Table – Reg153/04 T2-Soil/Res-C

Result Exceedances

Sample ID	Bureau Veritas	ID Parameter	Criteria	Result	DL	UNITS			
BH24-1 SS2	ZYT609-02	Conductivity	0.7	7.9	0.002	mS/cm			

The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to applicable regulatory guidelines.

Your Project #: 24-300-10 Your C.O.C. #: C#1007141-01-01

Attention: Kirstin Olsen

DS Consultants Limited 6221 Highway 7, Unit 16 Vaughan, ON CANADA L4H 0K8

Report Date: 2024/09/20

Report #: R8329205 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C4P1529 Received: 2024/08/14, 16:40

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Methylnaphthalene Sum	2	N/A	2024/08/19	CAM SOP-00301	EPA 8270D m
Dioxins/Furans in Water (1613B) (1)	1	2024/08/27	2024/09/12	BRL SOP-00410;BRL SOP-	EPA 1613B m
				00407 & 405	
Dioxins/Furans in Water (1613B) (1)	1	2024/08/27	2024/09/14	BRL SOP-00410;BRL SOP-	EPA 1613B m
				00407 & 405	
PAH Compounds in Water by GC/MS (SIM)	2	2024/08/16	2024/08/18	CAM SOP-00318	EPA 8270E

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, EPA, APHA or the Quebec Ministry of Environment.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

 $Reference\ Method\ suffix\ "m"\ indicates\ test\ methods\ incorporate\ validated\ modifications\ from\ specific\ reference\ methods\ to\ improve\ performance.$

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Confirmatory runs for 2,3,7,8-TCDF are performed only if the primary result is greater than the RDL.

Your Project #: 24-300-10 Your C.O.C. #: C#1007141-01-01

Attention: Kirstin Olsen

DS Consultants Limited 6221 Highway 7, Unit 16 Vaughan, ON CANADA L4H 0K8

Report Date: 2024/09/20

Report #: R8329205 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C4P1529 Received: 2024/08/14, 16:40

Encryption Key

Bureau Veritas 20 Sep 2024 19:06:05

Please direct all questions regarding this Certificate of Analysis to: Ashton Gibson, Project Manager Email: ashton.gibson@bureauveritas.com

Phone# (905)817-5765

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

DIOXINS AND FURANS BY HRMS (WATER)

Bureau Veritas ID		ZZV804						
Sampling Date		2024/08/14						
COC Number		C#1007141-01-01			TOXIC EQU	IVALENCY	# of	
	UNITS	MW24-5	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
Dioxins & Furans								
2,3,7,8-Tetra CDD *	pg/L	<1.13	1.13	9.52	1.00	1.13	0	9601658
1,2,3,7,8-Penta CDD *	pg/L	<1.46	1.46	47.6	1.00	1.46	0	9601658
1,2,3,4,7,8-Hexa CDD *	pg/L	<1.80	1.80	47.6	0.100	0.180	0	9601658
1,2,3,6,7,8-Hexa CDD *	pg/L	<1.36	1.36	47.6	0.100	0.136	0	9601658
1,2,3,7,8,9-Hexa CDD *	pg/L	4.07	1.50	47.6	0.100	0.407	1	9601658
1,2,3,4,6,7,8-Hepta CDD *	pg/L	8.67	1.07	47.6	0.0100	0.0867	1	9601658
Octa CDD *	pg/L	52.2	1.24	95.2	0.000300	0.0157	1	9601658
Total Tetra CDD *	pg/L	9.87	1.13	9.52			1	9601658
Total Penta CDD *	pg/L	14.9	1.46	47.6			3	9601658
Total Hexa CDD *	pg/L	34.9	1.54	47.6			4	9601658
Total Hepta CDD *	pg/L	33.7	1.07	47.6			2	9601658
2,3,7,8-Tetra CDF **	pg/L	<1.19	1.19	9.52	0.100	0.119	0	9601658
1,2,3,7,8-Penta CDF **	pg/L	<1.33	1.33	47.6	0.0300	0.0399	0	9601658
2,3,4,7,8-Penta CDF **	pg/L	<1.11	1.11	47.6	0.300	0.333	0	9601658
1,2,3,4,7,8-Hexa CDF **	pg/L	<1.17	1.17	47.6	0.100	0.117	0	9601658
1,2,3,6,7,8-Hexa CDF **	pg/L	<1.04	1.04	47.6	0.100	0.104	0	9601658
2,3,4,6,7,8-Hexa CDF **	pg/L	<1.14	1.14	47.6	0.100	0.114	0	9601658
1,2,3,7,8,9-Hexa CDF **	pg/L	<1.29	1.29	47.6	0.100	0.129	0	9601658
1,2,3,4,6,7,8-Hepta CDF **	pg/L	<1.14	1.14	47.6	0.0100	0.0114	0	9601658
1,2,3,4,7,8,9-Hepta CDF **	pg/L	<1.19	1.19	47.6	0.0100	0.0119	0	9601658
Octa CDF **	pg/L	<1.06	1.06	95.2	0.000300	0.000318	0	9601658
Total Tetra CDF **	pg/L	<1.19	1.19	9.52			0	9601658
Total Penta CDF **	pg/L	<1.21	1.21	47.6			0	9601658
Total Hexa CDF **	pg/L	<1.15	1.15	47.6			0	9601658
Total Hepta CDF **	pg/L	<1.16	1.16	47.6			0	9601658

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxinlike Compounds

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin

** CDF = Chloro Dibenzo-p-Furan

DIOXINS AND FURANS BY HRMS (WATER)

Bureau Veritas ID		ZZV804						
Sampling Date		2024/08/14						
COC Number		C#1007141-01-01			TOXIC EQU	JIVALENCY	# of	
	UNITS	MW24-5	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
TOTAL TOXIC EQUIVALENCY	pg/L					4.39		
Surrogate Recovery (%)				•				
37CL4 2378 Tetra CDD *	%	94						9601658
C13-1234678 HeptaCDD *	%	106						9601658
C13-1234678 HeptaCDF **	%	96						9601658
C13-123478 HexaCDD *	%	87						9601658
C13-123478 HexaCDF **	%	91						9601658
C13-1234789 HeptaCDF **	%	109						9601658
C13-123678 HexaCDD *	%	114						9601658
C13-123678 HexaCDF **	%	102						9601658
C13-12378 PentaCDD *	%	108						9601658
C13-12378 PentaCDF **	%	94						9601658
C13-123789 HexaCDF **	%	100						9601658
C13-234678 HexaCDF **	%	94						9601658
C13-23478 PentaCDF **	%	105						9601658
C13-2378 TetraCDD *	%	95						9601658
C13-2378 TetraCDF **	%	90						9601658
C13-OCDD *	%	115						9601658

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxinlike Compounds

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin

** CDF = Chloro Dibenzo-p-Furan

DIOXINS AND FURANS BY HRMS (WATER)

Bureau Veritas ID		ZZV805						
Sampling Date		2024/08/14						
COC Number		C#1007141-01-01			TOXIC EQU	JIVALENCY	# of	
	UNITS	DUP1	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
Dioxins & Furans								
2,3,7,8-Tetra CDD *	pg/L	<1.17	1.17	9.62	1.00	1.17	0	9601658
1,2,3,7,8-Penta CDD *	pg/L	3.11	1.36	48.1	1.00	3.11	1	9601658
1,2,3,4,7,8-Hexa CDD *	pg/L	<2.17	2.17	48.1	0.100	0.217	0	9601658
1,2,3,6,7,8-Hexa CDD *	pg/L	5.40	1.22	48.1	0.100	0.540	1	9601658
1,2,3,7,8,9-Hexa CDD *	pg/L	10.4	1.26	48.1	0.100	1.04	1	9601658
1,2,3,4,6,7,8-Hepta CDD *	pg/L	34.4	1.13	48.1	0.0100	0.344	1	9601658
Octa CDD *	pg/L	108	1.33	96.2	0.000300	0.0324	1	9601658
Total Tetra CDD *	pg/L	25.2	1.17	9.62			3	9601658
Total Penta CDD *	pg/L	72.3	1.36	48.1			6	9601658
Total Hexa CDD *	pg/L	103	1.29	48.1			4	9601658
Total Hepta CDD *	pg/L	94.7	1.13	48.1			2	9601658
2,3,7,8-Tetra CDF **	pg/L	<8.49 (1)	8.49	9.62	0.100	0.849	0	9601658
1,2,3,7,8-Penta CDF **	pg/L	<2.45	2.45	48.1	0.0300	0.0735	0	9601658
2,3,4,7,8-Penta CDF **	pg/L	5.12	1.13	48.1	0.300	1.54	1	9601658
1,2,3,4,7,8-Hexa CDF **	pg/L	14.1	1.14	48.1	0.100	1.41	1	9601658
1,2,3,6,7,8-Hexa CDF **	pg/L	7.04	1.04	48.1	0.100	0.704	1	9601658
2,3,4,6,7,8-Hexa CDF **	pg/L	9.15	1.08	48.1	0.100	0.915	1	9601658
1,2,3,7,8,9-Hexa CDF **	pg/L	1.50	1.28	48.1	0.100	0.150	1	9601658
1,2,3,4,6,7,8-Hepta CDF **	pg/L	29.4	1.23	48.1	0.0100	0.294	1	9601658
1,2,3,4,7,8,9-Hepta CDF **	pg/L	3.12	1.41	48.1	0.0100	0.0312	1	9601658
Octa CDF **	pg/L	7.81	1.15	96.2	0.000300	0.00234	1	9601658

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxinlike Compounds

QC Batch = Quality Control Batch

- * CDD = Chloro Dibenzo-p-Dioxin
- ** CDF = Chloro Dibenzo-p-Furan
- (1) EMPC / NDR Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.
- RT>2 seconds PCDD/DF analysis-Peak maxima of monitored ions exceeds 2 seconds

RT > 3 seconds - PCDD/DF analysis - Peak detected exceeds expected retention time (from internal standard) by greater than 3 seconds.

DIOXINS AND FURANS BY HRMS (WATER)

Bureau Veritas ID		ZZV805						
Sampling Date		2024/08/14						
COC Number		C#1007141-01-01			TOXIC EQU	IVALENCY	# of	
	UNITS	DUP1	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
Total Tetra CDF **	pg/L	5.59	1.58	9.62			2	9601658
Total Penta CDF **	pg/L	45.9	1.16	48.1			7	9601658
Total Hexa CDF **	pg/L	58.6	1.13	48.1			7	9601658
Total Hepta CDF **	pg/L	32.5	1.31	48.1			2	9601658
TOTAL TOXIC EQUIVALENCY	pg/L					12.4		
Surrogate Recovery (%)	•						•	
37CL4 2378 Tetra CDD *	%	77						9601658
C13-1234678 HeptaCDD *	%	106						9601658
C13-1234678 HeptaCDF **	%	102						9601658
C13-123478 HexaCDD *	%	109						9601658
C13-123478 HexaCDF **	%	104						9601658
C13-1234789 HeptaCDF **	%	104						9601658
C13-123678 HexaCDD *	%	125						9601658
C13-123678 HexaCDF **	%	114						9601658
C13-12378 PentaCDD *	%	105						9601658
C13-12378 PentaCDF **	%	104						9601658
C13-123789 HexaCDF **	%	112						9601658
C13-234678 HexaCDF **	%	110						9601658
C13-23478 PentaCDF **	%	102						9601658
C13-2378 TetraCDD *	%	95						9601658
C13-2378 TetraCDF **	%	106						9601658
C13-OCDD *	%	117						9601658

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxinlike Compounds

QC Batch = Quality Control Batch

- ** CDF = Chloro Dibenzo-p-Furan
- * CDD = Chloro Dibenzo-p-Dioxin

O.REG 153 PAHS (WATER)

Bureau Veritas ID		ZZV804	ZZV805		
Sampling Date		2024/08/14	2024/08/14		
COC Number		C#1007141-01-01	C#1007141-01-01		
	UNITS	MW24-5	DUP1	RDL	QC Batch
Calculated Parameters					
Methylnaphthalene, 2-(1-)	ug/L	<0.071	<0.071	0.071	9575579
Polyaromatic Hydrocarbons	•			•	
Acenaphthene	ug/L	<0.050	<0.050	0.050	9583059
Acenaphthylene	ug/L	<0.050	<0.050	0.050	9583059
Anthracene	ug/L	<0.050	<0.050	0.050	9583059
Benzo(a)anthracene	ug/L	<0.050	<0.050	0.050	9583059
Benzo(a)pyrene	ug/L	<0.0090	<0.0090	0.0090	9583059
Benzo(b/j)fluoranthene	ug/L	<0.050	<0.050	0.050	9583059
Benzo(g,h,i)perylene	ug/L	<0.050	<0.050	0.050	9583059
Benzo(k)fluoranthene	ug/L	<0.050	<0.050	0.050	9583059
Chrysene	ug/L	<0.050	<0.050	0.050	9583059
Dibenzo(a,h)anthracene	ug/L	<0.050	<0.050	0.050	9583059
Fluoranthene	ug/L	<0.050	<0.050	0.050	9583059
Fluorene	ug/L	<0.050	<0.050	0.050	9583059
Indeno(1,2,3-cd)pyrene	ug/L	<0.050	<0.050	0.050	9583059
1-Methylnaphthalene	ug/L	<0.050	<0.050	0.050	9583059
2-Methylnaphthalene	ug/L	<0.050	<0.050	0.050	9583059
Naphthalene	ug/L	<0.050	<0.050	0.050	9583059
Phenanthrene	ug/L	0.038	0.043	0.030	9583059
Pyrene	ug/L	0.080	0.10	0.050	9583059
Surrogate Recovery (%)					
D10-Anthracene	%	105	102		9583059
D14-Terphenyl (FS)	%	86	82		9583059
D8-Acenaphthylene	%	97	98		9583059
RDL = Reportable Detection QC Batch = Quality Control B					

TEST SUMMARY

Bureau Veritas ID: ZZV804

Collected: 2024/08/14 Shipped:

Sample ID: MW24-5 Matrix: Water

Received: 2024/08/14

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	9575579	N/A	2024/08/19	Automated Statchk
Dioxins/Furans in Water (1613B)	HRMS/MS	9601658	2024/08/27	2024/09/12	Yan Qin
PAH Compounds in Water by GC/MS (SIM)	GC/MS	9583059	2024/08/16	2024/08/18	Jonghan Yoon

Bureau Veritas ID: ZZV805

Collected: 2024/08/14

Sample ID: DUP1 Matrix: Water Shipped:

Received: 2024/08/14

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	9575579	N/A	2024/08/19	Automated Statchk
Dioxins/Furans in Water (1613B)	HRMS/MS	9601658	2024/08/27	2024/09/14	Yan Qin
PAH Compounds in Water by GC/MS (SIM)	GC/MS	9583059	2024/08/16	2024/08/18	Jonghan Yoon

GENERAL COMMENTS

Each te	emperature is the	average of up to t	hree cooler temperatures taken at receipt
	Package 1	14.7°C	
			-
Result	s relate only to the	e items tested.	

QUALITY ASSURANCE REPORT

DS Consultants Limited Client Project #: 24-300-10 Sampler Initials: KS

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9583059	D10-Anthracene	2024/08/17	77	50 - 130	104	50 - 130	107	%		
9583059	D14-Terphenyl (FS)	2024/08/17	82	50 - 130	96	50 - 130	98	%		
9583059	D8-Acenaphthylene	2024/08/17	92	50 - 130	95	50 - 130	98	%		
9601658	37CL4 2378 Tetra CDD	2024/09/12			83	35 - 197	87	%		
9601658	C13-1234678 HeptaCDD	2024/09/12			113	23 - 140	93	%		
9601658	C13-1234678 HeptaCDF	2024/09/12			103	28 - 143	84	%		
9601658	C13-123478 HexaCDD	2024/09/12			99	32 - 141	90	%		
9601658	C13-123478 HexaCDF	2024/09/12			90	26 - 152	80	%		
9601658	C13-1234789 HeptaCDF	2024/09/12			111	28 - 138	91	%		
9601658	C13-123678 HexaCDD	2024/09/12			103	28 - 130	91	%		
9601658	C13-123678 HexaCDF	2024/09/12			105	26 - 123	90	%		
9601658	C13-12378 PentaCDD	2024/09/12			119	25 - 181	95	%		
9601658	C13-12378 PentaCDF	2024/09/12			103	24 - 185	88	%		
9601658	C13-123789 HexaCDF	2024/09/12			110	29 - 147	94	%		
9601658	C13-234678 HexaCDF	2024/09/12			102	28 - 136	87	%		
9601658	C13-23478 PentaCDF	2024/09/12			116	21 - 178	96	%		
9601658	C13-2378 TetraCDD	2024/09/12			84	25 - 164	86	%		
9601658	C13-2378 TetraCDF	2024/09/12			88	24 - 169	86	%		
9601658	C13-OCDD	2024/09/12			121	17 - 157	103	%		
9583059	1-Methylnaphthalene	2024/08/18	102	50 - 130	105	50 - 130	<0.050	ug/L	NC	30
9583059	2-Methylnaphthalene	2024/08/18	101	50 - 130	105	50 - 130	<0.050	ug/L	NC	30
9583059	Acenaphthene	2024/08/18	101	50 - 130	106	50 - 130	<0.050	ug/L	NC	30
9583059	Acenaphthylene	2024/08/18	100	50 - 130	105	50 - 130	<0.050	ug/L	NC	30
9583059	Anthracene	2024/08/18	48 (1)	50 - 130	106	50 - 130	<0.050	ug/L	NC	30
9583059	Benzo(a)anthracene	2024/08/18	44 (1)	50 - 130	101	50 - 130	<0.050	ug/L	NC	30
9583059	Benzo(a)pyrene	2024/08/18	46 (1)	50 - 130	102	50 - 130	<0.0090	ug/L	NC	30
9583059	Benzo(b/j)fluoranthene	2024/08/18	46 (1)	50 - 130	103	50 - 130	<0.050	ug/L	NC	30
9583059	Benzo(g,h,i)perylene	2024/08/18	46 (1)	50 - 130	99	50 - 130	<0.050	ug/L	NC	30
9583059	Benzo(k)fluoranthene	2024/08/18	49 (1)	50 - 130	106	50 - 130	<0.050	ug/L	NC	30
9583059	Chrysene	2024/08/18	46 (1)	50 - 130	102	50 - 130	<0.050	ug/L	NC	30
9583059	Dibenzo(a,h)anthracene	2024/08/18	45 (1)	50 - 130	102	50 - 130	<0.050	ug/L	NC	30

QUALITY ASSURANCE REPORT(CONT'D)

DS Consultants Limited Client Project #: 24-300-10 Sampler Initials: KS

Matrix Spike SPIKED BLANK **Method Blank RPD** % Recovery QC Batch **Parameter** Date % Recovery **QC Limits QC Limits** Value UNITS Value (%) **QC Limits** 9583059 Fluoranthene 2024/08/18 40 (1) 50 - 130 109 50 - 130 < 0.050 ug/L NC 30 9583059 Fluorene 2024/08/18 88 50 - 130 104 50 - 130 < 0.050 ug/L NC 30 9583059 Indeno(1,2,3-cd)pyrene 2024/08/18 46 (1) 50 - 130 102 50 - 130 < 0.050 ug/L NC 30 9583059 2024/08/18 104 NC 30 Naphthalene 101 50 - 130 50 - 130 < 0.050 ug/L 9583059 Phenanthrene 2024/08/18 57 50 - 130108 50 - 130 < 0.030 ug/L NC 30 9583059 2024/08/18 41 (1) 108 < 0.050 NC 30 Pyrene 50 - 130 50 - 130 ug/L <1.60, EDL=1.60 9601658 2024/09/12 107 70 - 140 1.9 1,2,3,4,6,7,8-Hepta CDD pg/L 25 (2) 9601658 1,2,3,4,6,7,8-Hepta CDF 2024/09/12 105 82 - 122 <1.36, EDL=1.36 pg/L 3.7 25 9601658 2024/09/12 106 78 - 138 <1.44, EDL=1.44 0.94 25 1,2,3,4,7,8,9-Hepta CDF pg/L 106 2.9 25 9601658 1.2.3.4.7.8-Hexa CDD 2024/09/12 70 - 164 <1.41. EDL=1.41 pg/L 9601658 1,2,3,4,7,8-Hexa CDF 2024/09/12 109 72 - 134 <1.23, EDL=1.23 pg/L 0 25 0.93 25 9601658 1.2.3.6.7.8-Hexa CDD 2024/09/12 107 76 - 134 <1.39. EDL=1.39 pg/L 9601658 2024/09/12 <1.10. EDL=1.10 25 1.2.3.6.7.8-Hexa CDF 102 84 - 130 pg/L 5.7 9601658 1,2,3,7,8,9-Hexa CDD 2024/09/12 116 64 - 162 <1.36, EDL=1.36 pg/L 7.1 25 25 9601658 1.2.3.7.8.9-Hexa CDF 2024/09/12 104 78 - 130 <1.29. EDL=1.29 pg/L 3.8 1,2,3,7,8-Penta CDD 0 25 9601658 2024/09/12 106 25 - 181 <1.42, EDL=1.42 pg/L 9601658 1,2,3,7,8-Penta CDF 2024/09/12 108 80 - 134 <1.46, EDL=1.46 pg/L 4.5 25 25 9601658 2,3,4,6,7,8-Hexa CDF 2024/09/12 103 70 - 156 <1.30. EDL=1.30 pg/L 3.8 9601658 2,3,4,7,8-Penta CDF 2024/09/12 104 68 - 160 <1.24, EDL=1.24 2.8 25 pg/L 9601658 2,3,7,8-Tetra CDD 2024/09/12 110 67 - 158 <1.20, EDL=1.20 pg/L 5.3 25 9601658 2,3,7,8-Tetra CDF 2024/09/12 107 75 - 158 0. RDL=10.0 pg/L 0 25 <4.84, EDL=4.84 78 - 144 9601658 Octa CDD 2024/09/12 106 pg/L 1.9 25 (2) 9601658 2024/09/12 5.07, EDL=1.02 25 Octa CDF 105 63 - 170 3.7 pg/L 9601658 **Total Hepta CDD** 2024/09/12 <1.91, EDL=1.91 pg/L 9601658 **Total Hepta CDF** 2024/09/12 <1.38, EDL=1.38 pg/L 9601658 Total Hexa CDD 2024/09/12 <1.39, EDL=1.39 pg/L 9601658 **Total Hexa CDF** 2024/09/12 <1.20, EDL=1.20 pg/L 9601658 **Total Penta CDD** 2024/09/12 <1.42, EDL=1.42 pg/L 9601658 **Total Penta CDF** 2024/09/12 <1.34, EDL=1.34 pg/L

QUALITY ASSURANCE REPORT(CONT'D)

DS Consultants Limited Client Project #: 24-300-10

Sampler Initials: KS

			Matrix Spike		SPIKED BLANK		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9601658	Total Tetra CDD	2024/09/12					<1.20, EDL=1.20	pg/L		
9601658	Total Tetra CDF	2024/09/12					<1.25, EDL=1.25	pg/L		

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

- (1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.
- (2) EMPC / NDR Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Angel Guerrero, Supervisor, Ultra Trace Analysis, HRMS and SVOC

Louise Harding, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

P1529																				
24/08/14	16:40		ureau Veritas 740 Campobello Roa	ad, Mississauga, Onto	ino Canada L5N	2L8 Tel:(905) 817-9	700 Toll-free 800-	563-6266 Fax	c(905) 817-	5777 www.l	bvna.com				(回機			Page of	
	INVOICE TO:					REPORT TO:							PROJECT INFORMATION:				NONT 2024	22 2222		
ompany Name:	pany Name: #32616 DS Consultants Limited					Company Name: DS Consultants						Quotation # C35427				1 85 a C	NONT-2024-08-2999 3ottle Order #:			
et et it					Attenti	Altention: Kigfin colsen						O. #.								
441440					Addres	Address:						oject:	ject 24-300-10						1007141	
Vaughan ON L4H 0K8 (905) 264-9393											Project Name:					COC#;		Project Manager:		
						Email: Kolsege & Consultants-ca, Ksalib@ So						- CERTINIDORO (PXC)		Harim S			C#1007141-01-01		Ashton Gibson	
				ER INTENDED F			MUST BE			_	ANALY	SIS REQUE	STED (PLEASE	BE SPECIFIC)		THE RESIDENCE OF THE PERSON OF	Turnaround Tim	e (TAT) Require	od:	
	SUBMITTE	D ON THE	BUREAU VERI	ras drinking v	A PARTY OF THE PAR	N OF CUSTODY		:(olo						1 1	1 1	Pegular (Please provide advance	e notice for rust	rprojects	
Regulation 153 (2011) Other Regulations					Special I	.⊆								Regular (Standard) TAT: (will be applied if Rush TAT is not specified):			V			
Table 1																	Standard TAT = 5-7 Working days for most tests			
Table 3 Apri/Other For RSC MISA Musicipality				IHW		eld) / pl		Water						Please note: Standard TAT for certain tests such as BOD and Dioxins/Furans are days - contact your Project Manager for details.						
Table PWQO Reg 406 Table						ered Is/I	*	rans in V						Job Specif	ic Rush TAT (if applies to e	ntire submissio	n)			
Other					-	Field Filtered (please Metals / Hg / Cr / teg 153 PAHs		1 5					1 1	Date Requir	Date Required:Tim Rush Confirmation Number:		uired:			
Include Criteria on Certificate of Analysis (Y/N)?)		ie d	Field N							Rush Confir			for #)			
Sample	Barcode Labe	el	Sample (Location)	Identification	Date Sampled	Time Sampled	Matrix		0.8	Dio C						# of Bottles		Comments		
		MW24-5 Aug			Aug. 1,4-2	of AM	GW		V	/						3				
			DUPI			V	V		V	/						3				
											-									
* R)	ELINQUISHE	D BY: (Signa	ture/Print)	Date: (YY/M	M/DD)	Time	RECEIVED E	Y: (Signature	/Print)		Date: (YY/MM/	DD)	Time	# jars used an		Labor	atory Use Only			
Kann-S. 24/08/14				/14	51	S/L SUGA			R SALVAN 2024/		14	16:40	not submitted	Time Ser	Tempera	ture (°C) on Recei	Present Intact	Yes No		
IS THE RESPON	NT AND ACCE	PTANCE OF C	JISHER TO ENSURE	ED ON THIS CHAIN OF ARE AVAILABLE FOR THE ACCURACY OF AGE INFORMATION C	THE CHAIN OF (USTODY RECORD.	NONMENTAL-LABO AN INCOMPLETE C	RATORIES/RE	TODY MAY	COC-TERN RESULT IN	AS-AND-CONDI ANALYTICAL 1	TIONS. AT DELAYS.			ES MUST BE K UNTIL	EPT COOL (< 10° C) DELIVERY TO BURE.	FROM TIME OF SAMPLING ALL VERITAS		u Veritas Yellow: Clie	

Bureau Veritas Canada (2019) Inc.